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Abstract—Advanced cellular communication systems provide
increased potential for opportunistic high-accuracy positioning.
In this paper, long-term evolution (LTE) downlink signals from
two commercial base stations (BS) are received by a massive
antenna array mounted on a passenger vehicle. Multipath com-
ponent (MPC) parameters, like delays and angle-of-arrival (AOA)
are extracted from the received signals on a snapshot-by-snapshot
basis, and then associated across snapshots with a low complexity
joint probability data association approximation algorithm. The
associated parameters are used to jointly estimate the positions
of the vehicle, the transmitters, and the virtual transmitters (VT)
with a simultaneous localization and mapping (SLAM) algorithm.
Both reflector and scatterer models are adopted, and clock and
angular offsets are taken into account in the algorithm. The
measurement results show the effectiveness of the data association
algorithm and the accuracy of the SLAM algorithm. The vehicle’s
horizontal position error of SLAM fused with proprioception is
less than 5.5 meters after a traversed distance of 530 meters,
compared to that of the un-aided proprioception which is 15
meters.

Index Terms—MPC delay, AOA, LTE, massive antenna array,
data association, JPDA, integer linear programming, binary tree
partition, positioning, localization, SLAM.

I. INTRODUCTION

Cellular communication systems have been widely de-
ployed and achieved tremendous progress in recent years
in terms of quality of service and communication speeds.
Large bandwidths and granular angular resolution benefit
not only communication, but can also enable high accuracy
positioning [1], [2]. The natural evolution for such systems is
to integrate sensing and communication [3]. This integration
can introduce new features to the communication systems
themselves, including proactive beam prediction and handover
optimization [4], as well as synergize with other systems,
e.g., intelligent transport systems, to provide high-accuracy
vehicular positioning services [5]–[7].

There are numerous approaches for performing cellular
signal-based positioning, which can be categorized as proxim-
ity, triangulation, trilateration, fingerprinting (especially ma-
chine learning based fingerprinting), hybrid methods, and
bayesian filtering based methods like simultaneous localization
and mapping (SLAM) [8]. SLAM is a powerful method
suitable for online applications in unknown environments or
ones with limited resources.

Implementing SLAM entails addressing several challenges.
In many cases, data association (DA) is a critical and challeng-
ing problem [9]. When the DA is unknown, FastSLAM [10]
takes a simple maximum likelihood DA for each particle inde-
pendently. Only the particles with the highest likelihood of DA
with observations can survive the future update. FastSLAM
offers low complexity for DA compared to other methods, but
it has the drawback of not being able to generate a unified
map. Fixed and accurate DA for all particles can not merely
provide a unified map, but also increase the effectiveness of
SLAM. In order to achieve accurate DA, several advanced
algorithms have been developed, e.g., joint probabilistic data
association (JPDA) [11], multiple hypothesis tracker (MHT)
[12], and graphical model approaches [13], etc. In general,
JPDA can find the optimal DA, but it has high complexity
even for a relatively large number of measurements, therefore,
some low complexity JPDA approximation algorithms have
been proposed, see, e.g., [14], [15].

In this paper, downlink signals from multiple commercial
long-term evolution (LTE) base stations (BS) are received by
a massive antenna array in an urban environment [16]. The
multipath component (MPC) parameters, including delays,
azimuthal angles-of-arrival (AOA), and elevational AOA, are
extracted and employed for positioning. First, the joint proba-
bilistic association (JPDA) of MPC parameters from different
snapshots is represented as an integer linear programming
(ILP) problem, and the approximation of ILP is achieved by
finding the m best association hypotheses with the binary tree
partition algorithm. Next, the SLAM algorithm is applied to
the associated parameters to find the position of the vehicle,
the transmitters, and the virtual transmitters with the fusion of
onboard inertial measurement unit (IMU) and wheel odometry.
Static but unknown clock offsets between the vehicle and
the BSs are assumed, as well as static calibration errors in
the antenna array mounting on the vehicle. A SLAM model
considering both reflectors and scatterers is adopted. Results
from field measurements show that the JPDA approximation
can associate MPC parameters accurately and provide good
input to SLAM, which works well in the complicated urban
environment tested. After traversing 530 meters the horizontal
positioning error is less than 5.5 meters.

The structure of the paper is as follows. Sec. II introduces
the wireless signal system model. Sec. III describes the



JPDA approximation algorithm associating the estimated MPC
parameters from different snapshots, Sec. IV describes the
SLAM model using the MPC parameters after association,
Sec. V describes the iterative update of the SLAM algorithm
applied to localize the position of the vehicle and generate
a map of the transmitters and virtual transmitters. Sec. VI
presents the measurement setup and analysis of the results
from the data association algorithm and the SLAM algorithm.
Finally, Sec. VII summarizes the paper.

Notation: Matrices and vectors are denoted as uppercase and
lowercase boldface letters, e.g., A and a. The identity matrix
is denoted as I. The matrix transpose and matrix inverse are
denoted as superscripts (·)T and (·)−1 respectively. The 1-
norm and 2-norm of a vector are denoted as ∥·∥1 and ∥·∥2
respectively. The speed of light is c ≃ 3 · 108 m/s.

II. SYSTEM MODEL

A 128-port stacked uniform circular antenna array is
mounted on a passenger vehicle to receive the LTE signals
from multiple commercial base stations simultaneously in
urban environments. The channel frequency response from the
j-th port of the k-th BS is modeled as a sum of M MPCs
which are parameterized by the delay τm,j,k, direction-of-
arrival (DOA) Ωm,j,k, and Doppler shift νm,j,k. The DOA is
further divided into azimuth AOA φm,j,k and elevation AOA
θm,j,k. The time-varying directional transfer function of the
n-th subcarrier is represented as

hj,k[n] =
∑M
m=1 bR(Ω

m,j,k)Γm,j,kbj,kT e−i2π(n∆fτ
m,j,k−νm,j,kt) (1)

where bR(Ω
m,j,k) ∈ C128×2 is the receive antenna array

pattern, bj,kT ∈ C2×1 is the antenna response of the j-th port
of the k-th BS, ∆f is the subcarrier spacing, and Γm,j,k is
the polarimetric path weight matrix defined as

Γm,j,k =

[
γm,j,kHH γm,j,kVH
γm,j,kHV γm,j,kVV

]
. (2)

The matrix elements represent different polarization combina-
tions of the transmitter and the receiver antenna, e.g., HV is
horizontal-to-vertical.

The received common reference signal (CRS) [17] in the
frequency domain of the n-th subcarrier is given as follows

y[n] =

K∑
k=1

J∑
j=1

hj,k[n] · xj,kCRS [n] (3)

here xj,kCRS [n] is the CRS signal from the j-th antenna port of
the k-th BS at the n-th subcarrier.

Due to the presence of multiple BSs with colliding CRS,
the interference cancellation method is employed to separate
the CRS from the same antenna port of different BSs. Next,
the modified RIMAX algorithm is utilized to extract the MPC
parameters including delay, azimuth AOA, and elevation AOA
as described in [16].

In order to apply the estimated MPC delays to positioning,
they are converted into the distance domain by adding the
clock offset tkoffset between the k-th BS and the vehicle, which

is treated as an unknown constant, and multiplied by the speed
of light

dm,j,kt =
(
τm,j,kt + tkoffset

)
· c. (4)

The MPCs’ parameters at time index t can be grouped as

St =
[
s1,1,1t , . . . , sM,J,K

t

]
(5)

sm,j,kt =
[
dm,j,kt , φm,j,kt , θm,j,kt

]T
. (6)

III. LOW COMPLEXITY JOINT PROBABILISTIC DATA
ASSOCIATION APPROXIMATION

After the MPC parameters at each snapshot are estimated,
they need to be associated among different snapshots. JPDA
is a traditional method for DA with high computational com-
plexity, and it can be approximated by utilizing the ILP with
low complexity as shown in [14].

Let z1t , . . . , z
N
t be the states of all the targets, and

s1t , . . . , s
M
t be the measurements from one cell ID at time

index t. The term pt(c
j
i = 1) (denoted as pt(c

j
i )) represents the

probability of associating the measurement sit, i∈{0, 1, ...,M}
with the target zjt , j ∈ {1, ..., N} at time index t. Here the
index 0 represents a missed detection. The probability pt(c

j
i )

is defined as

pt(c
j
i ) ∝

{
(1− pd)pfa if i = 0

pd · N (sit; ẑ
j
t ,Σs) otherwise

(7)

where pd is the detecting probability, pfa is the false alarm
probability, N is the normal distribution, ẑjt is the predicted
position of the j-th target at time index t and Σs is the
covariance matrix of the target.

The JPDA algorithm calculates the marginalized probability
gt(c

j
i = 1) (denoted as gt(c

j
i )) on the joint data association

space Ψ that has all the possible associations between the
measurements and the targets based on the assumption that:

• Each measurement (except the one with index 0) origi-
nates from at most one target;

• Each target generates at most one unique measurement.
The space Ψ can be represented as

Ψ =

{
ψ = (cji )i∈[M ],j∈[N ] | cji ∈ {0, 1}

&

N∑
j=1

cji ≤ 1,∀i ∈ [M ] &

M∑
i=1

cji = 1,∀j ∈ [N ]

}
.

(8)

The element Ψji ⊂ Ψ includes all the associations that map
the j-th target to the i-th measurement, i.e., Ψji = {ψ ∈ Ψ |
cji = 1}, then gt(c

j
i ) is achieved by marginalizing over the

subset Ψji as
gt(c

j
i ) =

∑
ψ∈Ψj

i

p(ψ) (9)

where
p(ψ) =

∏
∀r∈[M ]
∀k∈[N ]

(
pt(c

k
r )
)ckr (10)



The data association problem can be rewritten as a mini-
mization problem as

f⋆1 = min
ψ∈Ψ

−log (p(ψ)) =
∑

∀r∈[M ]
∀k∈[N ]

−
(
log

(
pt(c

k
r )
)
· ckr

)

s. t.
N∑
k=1

ckr ≤ 1 ∀r ∈ [M ] &

M∑
r=0

ckr = 1 ∀k ∈ [N ]. (11)

It can be reformulated as an ILP problem [18]

f⋆1 = min
c∈{0,1}n

fT c s.t. Ac ≤ b (12)

here c = [c1, . . . , cn]
T is a binary vector of length of N(M +

1) so that cl = ckr , f = [f1, . . . , fn]
T is the cost vector so that

fl = −log(pt(ckr )), and the matrix A and the vector b are
defined to satisfy the constrains in eq. (11) as shown in [14].

The hypotheses space between the targets and the measure-
ments is huge when the number of targets and measurements is
relatively large, which results in high computation complexity
for JPDA, but it can be approximated by taking only a small
subset of the space ∆j

i that contains the hypotheses with
highest probabilities, so that

gt(c
j
i ) ≈

∑
ψ∈∆j

i

p (ψ) (13)

which is equivalent to finding m best solutions that fulfill
eq. (12). The first solution and the m-th best solution of
eq. (12) can be represented respectively as

c1 = argmin
c

fT c s.t. Ac ≤ b (14)

cm = argmin
c

fT c s.t.

{
Ac ≤ b

∀k < m, ⟨c, ck⟩ <
∥∥ck∥∥

1

(15)

In order to find all the m best solutions to approximate the
JPDA assignment probability of eq. (13), a low complexity
binary tree partition method is adopted in [14], which itera-
tively solves a series of constrained second-best problems. The
detailed algorithm is shown in Algorithm 1.

After all the m best solutions are found, the targets can
be updated by combining the associated measurements with
corresponding probabilities. If a measurement has all the
associated probabilities lower than a threshold, then it is
considered a new target and initialized, similarly, if a target
has all the associated probabilities lower than a threshold, then
it is considered a missed detection.

IV. SLAM MODEL USING THE ASSOCIATED MPC
PARAMETERS

MPCs from the same BS with line-of-sight (LOS), or
reflected and scattered by the environment with non line-of-
sight (NLOS) are considered as synchronized and independent
transmitters and virtual transmitters (VT) respectively [19].
The term VT is used to refer to all the transmitters for rep-
resentation convenience. The motivation of SLAM is to fuse
wireless signals and onboard sensors to accurately estimate

input : f ,A,b,m
output: c(k), k = 1, . . . ,m

1 c1 = argminc f
T c s.t. Ac ≤ b;

2 c2 = argminc f
T c s.t. Ac ≤ b, ⟨c, c1⟩ <

∥∥c1∥∥
1
;

3 Select arbitary j ∈ {i | c1i ̸= c2i };

4 F1
3 = {c ∈ Bn | Ac ≤ b, ⟨c, c1⟩ <

∥∥c1∥∥
1
, cj = c1j};

5 F2
3 = {c ∈ Bn | Ac ≤ b, ⟨c, c2⟩ <

∥∥c2∥∥
1
, cj = c2j};

6 c13 = argminc∈F1
3
fT c;

7 c23 = argminc∈F2
3
fT c;

8 for k = 3 to m do
9 lk = argminl f

T clk, c
k = clkk ;

10 F l
k+1 = F l

k, c
l
k+1 = clk,∀l < k, l ̸= lk;

11 Select arbitary jk ∈ {i | clki ̸= cki };

12 F lk
k+1 = F lk

k ∩ {c | ⟨c, clk⟩ <
∥∥clk∥∥

1
, cjk = clkjk};

13 Fk
k+1 = F lk

k ∩ {c | ⟨c, ck⟩ <
∥∥ck∥∥

1
, cjk = ckjk};

14 Remove constraints ⟨c, clk⟩ <
∥∥clk∥∥

1
from F lk

k+1;

15 Remove constraints ⟨c, ck⟩ <
∥∥ck∥∥

1
from Fk

k+1;

16 clk+1 = argminc∈Fl
k+1

fT c, for l ∈ {lk, k};

17 end
Algorithm 1: Binary tree partition to approximate JPDA

the position of the vehicle and provide a high-precision map
of VTs. The posterior can be represented as

p (V, r1:t | Z1:t,u1:t) (16)

here V represents the positions of the VTs, r1:t is the time
series of the vehicle state vector, Z1:t are the associated
parameters, and u1:t is the input velocity from other sensors
of the vehicle. The index 1 : t represents the time from time
index 1 to t.

The positions of the VTs are given as

V =
[
v1,1,1,1, . . . ,vL,M,J,K

]
(17)

vl,m,j,k =
[
vl,m,j,kx , vl,m,j,ky , vl,m,j,kz , dl,m,j,k

]T (18)

here vl,m,j,k is the position status vector of the VT from
the m-th MPC of the j-th antenna port of the k-th BS.[
vl,m,j,kx , vl,m,j,ky , vl,m,j,kz

]
is the position of the VT in Carte-

sian coordinates, and dl,m,j,k is the distance between the
BS and the scatterer. Here the scattering model from [19]
is adopted and one MPC is represented by L particles with
different scatterer distances.

The vehicle’s state vector can be represented as

r1:t = [r1, . . . , rt] (19)

rt =
[
rx(t), ry(t), rz(t), rψ(t), rθ(t), rϕ(t), d

k
o , φo, θo

]T
(20)

where rp(t) = [rx(t), ry(t), rz(t)]
T is the vehicle’s position

in Cartesian coordinates at time index t, [rψ(t), rθ(t), rϕ(t)]
are the vehicle’s yaw, pitch, and roll, dko is the distance offset



caused by the clock offset tkoffset, φo and θo are the azimuthal
and elevational offset between the antenna array coordinates
and the vehicle coordinates due to calibration error.

The vehicle’s velocity ut includes longitudinal, lateral,
vertical, yaw, pitch, and roll velocities. Rotational velocities
are available from the IMU, and longitudinal speed is available
from the wheel odometry. The velocity can be represented as

ut = [ux, uy, uz, uψ, uθ, uϕ]
T
. (21)

The SLAM algorithm with known data association in [19]
is adopted to solve the posterior problem, and it can de-
compose the posterior into a factored form with the Rao-
Blackwellization algorithm [20] as

p (V, r1:t | Z1:t,u1:t) =

p (r1:t | Z1:t,u1:t)
∏

n∈{M,J,K}

L∑
l=1

p
(
vl,n | r1:t,Z1:t

)
.

(22)

Since the MPCs from different antenna ports and different
BSs are conditionally independent and separable by cell ID,
the posterior can be further factored as

p (V, r1:t | Z1:t,u1:t) = p (r1:t | Z1:t,u1:t)
K∏
k=1

J∏
j=1

M∏
m=1

L∑
l=1

p
(
vl,m,j,k | r1:t, zm,j,k1:t

) (23)

where zm,j,k1:t represents the associated parameters of the m-th
MPC from the j-th antenna port of the k-th BS. This method
can process the position estimation of VTs from different
associated MPCs, antenna ports, and BSs separately with low
complexity and high flexibility.

V. SLAM UPDATE WITH THE ASSOCIATED MPC
PARAMETERS

The vehicle’s status rt at time index t is a function of control
inputs ut and pose state rt−1 of previous time index t − 1,
and it is described in the motion model as

p(rt | rt−1,ut). (24)

A particle filter is adopted to estimate the vehicle’s posterior.
At each time index, it keeps a set of particles representing
the posterior p(r1:t |Z1:t,u1:t), and the set is denoted as
R1:t. Each particle ri,1:t represents the i-th hypothesis of the
vehicle’s path, i.e.,

R1:t = {ri,1:t}i = {ri,1, . . . , ri,t}i (25)

here each particle is assumed to have unique and constant
values of dki,o, φi,o and θi,o among the offset ranges.

The probabilistic hypothesis of the vehicle’s pose ri,t at
time index t is generated by sampling the particle ri,t−1 at
time index t− 1 from the probabilistic motion model

ri,t ∼ p (rt | ri,t−1,ut) . (26)

After all the vehicle’s particles are generated, the SLAM
algorithm updates the posterior of the VT estimates associated
with each particle. For a VT connected to the i-th vehicle

particle, its posterior corresponding to the l-th particle at the
time index t is updated as follows

p(vl,m,j,ki | ri,1:t, zm,j,k1:t ) =

ηp(zm,j,kt | ri,t,vl,m,j,ki )p(vl,m,j,ki | ri,1:t−1, z
m,j,k
1:t−1)

(27)

here η is the normalization factor, and the posterior of vl,m,j,ki

at the time index t − 1 is assumed to be Gaussian with the
mean and variance as follows

p
(
vl,m,j,ki | ri,1:t−1, z

m,j,k
1:t−1

)
∼ N

(
vl,m,j,ki ;µl,m,j,ki,t−1 ,Σl,m,j,k

i,t−1

)
. (28)

In order to ensure that the estimate of VT at the time index t
is Gaussian, the perceptual model p(zm,j,kt | ri,t,vl,m,j,ki ) is
linearized, and the measurement function can be approximated
through Taylor expansion as

h(vl,m,j,ki , ri,t) = ẑl,m,j,ki,t +Hl,m,j,k
i,t (vl,m,j,ki − µl,m,j,ki,t−1 ) (29)

ẑl,m,j,ki,t = h
(
µl,m,j,ki,t−1 , ri,t

)
(30)

where the function h is a set of equations to estimate the distance,
azimuth AOA, and elevation AOA from the positions of the vehicle
and the VT, and Hl,m,j,k

i,t is the Jacobian of h. The function h is
constituted by the following equations

d̂l,m,j,ki (t) =
∥∥∥µl,m,j,ki,t−1 − ri,p(t)

∥∥∥
2
+ dl,m,j,k + dki,o (31)

φ̂l,m,j,ki (t) = atan
(
ŷ

x̂

)
+ φi,o (32)

θ̂l,m,j,ki (t) = asin

(√
x̂2 + ŷ2

ẑ

)
+ θi,o (33)

here [x̂, ŷ, ẑ]T is achieved according to Euler’s rotation theorem [21]

[x̂, ŷ, ẑ]T = R (ri,ψ(t), ri,θ(t), ri,ϕ(t))
(
µl,m,j,ki,t−1 − ri,p(t)

)
(34)

and R (ri,ψ(t), ri,θ(t), ri,ϕ(t)) is the rotation matrix.
With the linearization, the mean and covariance of each VT at time

index t can be updated with the standard extended Kalman filter [22]
as follows

Kl,m,j,k
i,t = Σl,m,j,k

i,t−1 Hl,m,j,k
i,t

T
(Hl,m,j,k

i,t Σl,m,j,k
i,t−1 Hl,m,j,k

i,t

T
+Qt)

−1 (35)

µl,m,j,ki,t = µl,m,j,ki,t−1 +Kl,m,j,k
i,t (zm,j,kt − ẑl,m,j,ki,t ) (36)

Σl,m,j,k
i,t = (I−Kl,m,j,k

i,t Hl,m,j,k
i,t )Σl,m,j,k

i,t−1 . (37)

After the posteriors of all the VTs are updated, all the particles’
importance factors are calculated and applied proportionally in the
resampling of the particles. The i-th particle’s importance factor is
calculated as follows

wi,t =
target distribution

proposal distribution
=

p(ri,1:t | Z1:t,u1:t)

p(ri,1:t | Z1:t−1,u1:t)

∝ wi,t−1

∏
k∈K

∏
j∈J

∏
m∈M

L∑
l=1

w̃l,m,j,ki,t−1

∫
p
(
zm,j,kt | ri,t,vl,m,j,ki

)
p
(
vl,m,j,ki | ri,1:t−1, z

m,j,k
1:t−1

)
dvl,m,j,ki . (38)

The last part in the equation is already defined in eq. (28). With
the same linearization as in eq. (29), the importance factor can be
calculated as

wi,t ∝ wi,t−1

∏
k∈K

∏
j∈J

∏
m∈M

L∑
l=1

w̃l,m,j,ki,t (39)



TABLE I: Measurement system information [16]

Parameter Name Value
Center frequency 2.66 GHz
System bandwidth 20 MHz
BS number 2
Cell IDs of BS A 375, 376, 377
Cell IDs of BS B 177, 178, 179
Tx antenna port number 2
Rx antenna port number 128
Snapshot interval 75 ms
Total snapshot number 6850
Total test time 8.5 minutes
Traversed distance 530 meters

w̃l,m,j,ki,t = w̃l,m,j,ki,t−1

∣∣∣2πQl,m,j,k
i,t

∣∣∣− 1
2 (40)

e

(
− 1

2

(
z
m,j,k
t −ẑ

l,m,j,k
i,t

)T (
Q

l,m,j,k
i,t

)−1(
z
m,j,k
t −ẑ

l,m,j,k
i,t

))

and the covariance is

Ql,m,j,k
i,t =

(
Hm,j,k
i,t

)T
Σm,j,k
i,t−1H

m,j,k
i,t +Qt (41)

here Qt is the covariance matrix of the measurement.
The minimum mean square error (MMSE) estimation of the

positions of the vehicle and the VTs is defined as

r̄t =
∑
i

wi,t · ri,t (42)

v̄m,j,kt =
∑
i

wi,t ·
L∑
l=1

w̃l,m,j,ki,t · vl,m,j,ki . (43)

VI. MEASUREMENT SETUP AND RESULTS ANALYSIS

A measurement system using USRP to control the switch of the
128-port stacked uniform circular antenna array was developed, and
a measurement campaign of receiving commercial LTE signals from
multiple BSs was conducted by mounting the system on the roof of a
vehicle and driving in the urban area of the city of Lund, Sweden. The
parameters are shown in Table I. The 128 receiving antennas were
switched in a fixed pattern with a 0.5 ms switching interval. The
vehicle moved at a relatively low speed of around 1.0 m/s due to the
nature of the switched antenna array system. The ground truth pose
was generated using an OXTS RT3003G system. The longitudinal
speed was taken from the wheel odometry, and the yaw velocity was
retrieved from the IMU. Both sensors were available in the vehicle.

The MPC azimuth AoA estimates from RIMAX for sector 376
of BS A and sector 178 of BS B are shown in Fig. 1 and Fig. 2
respectively. The associated MPC azimuth AoA estimations from
the JPDA approximation after pruning the ones with short lifetimes
are also shown in the corresponding figures. It can be observed
that the JPDA approximation can associate the MPC azimuth AOA
estimations accurately and suppress the spurious MPCs effectively.

The measurement trajectory is shown in Fig. 3. It contains the
trajectories of ground truth, SLAM, and proprioception. Here SLAM
estimation fuses the delays and angular information from the cellular
signals, the rotation information from the IMU, and the speed
information from the wheel odometry, while proprioception uses the
information from the IMU and wheel odometry alone. The estimated
positions of the physical reflectors corresponding to VTs from SLAM
are calculated, and they are shown in the figure as different color
dots. The physical reflectors at 33.8 seconds are shown as stars and
corresponding buildings are highlighted. It can be observed that the
physical reflectors’ positions fit well with the map data.

The absolute error of the estimated vehicle trajectory from SLAM
and proprioception only are shown as a function of time in Fig. 4. It
can be observed that SLAM with JPDA approximation can improve
positioning performance greatly. It has 5.5 meters of maximum
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Fig. 1: Cell 376 multipath component azimuth AOA estimated
by RIMAX and associated with JPDA approximation.
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Fig. 2: Cell 178 multipath component azimuth AOA estimated
by RIMAX and associated with JPDA approximation.

absolute horizontal error around 270 seconds and has 4 meters of
horizontal error at the end after a traversed distance of 530 meters.
Proprioception alone has 20 meters of maximum horizontal absolute
error and 15 meters of horizontal error at the end of the measurement.

VII. CONCLUSION

In this paper, multipath component parameters like delays and
angular information are used for positioning. These parameters are
extracted from the commercial LTE base stations received by the 128-
port antenna array in urban environments, associated with the joint
probabilistic data association approximation algorithm, which repre-
sents the data association as an integer linear programming problem
and approximates the solution with binary tree partition effectively.
Afterward, the associated multipath component parameters are sent
to the SLAM algorithm, which can process the multipath components
of each antenna port of each base station independently and consider
the reflector and scatterer model with fixed clock and angular offsets
between the vehicle and the BSs. The data association results show
the accuracy and effectiveness of the adopted algorithm, and the
positioning results validate the SLAM algorithm and demonstrate the
capability of exploiting LOS and NLOS multipath components for
high accuracy positioning in complicated urban environments.



Fig. 3: The ground truth trajectory together with the SLAM
estimation and proprioception-only, and the positions of re-
flectors from one sector.
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Fig. 4: The absolute error of SLAM and proprioception.
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