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Abstract

Realistic modelling of pedestrians in Autonomous Vehicles (AV)s and AV testing is crucial
to avoid lethal collisions in deployment. The majority of AV trajectory forecasting literat-
ure do not utilize the motion cues present in 3D human pose because it is hard to gather
large datasets of articulated 3D pedestrian motion. In this thesis we discuss the difficulties
in data gathering and propose a pedestrian model that overcomes the issues by utilizing
various datasets and learning paradigms to learn articulated semantically reasoning ped-
estrian motion. We show that such learnt pedestrian models can and should be utilized
in AV testing, instead of heuristics as in previous work, to test AVs on realistic and hard
scenarios. We propose a framework for generating varied AV test scenarios by posing AV
test case generation as a visual problem. Finally we provide a method to improve existing
articulated human pose forecasting by utilizing individual specific motion cues on the fly.
This thesis discusses the difficulties in articulated pedestrian sensing, proposes a pedestrian
model to overcome these difficulties showing a direct use of the pedestrian model in AV
testing, and shows the possible further improvements to articulated pedestrian motion fore-
casting should articulated models be utilized in AV trajectory planning. We hope that this
work aids in the further development of articulated and semantically reasoning pedestrian
models in AV testing and trajectory planning.
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Popular Science Summary

Autonomous vehicles (AV) are vehicles that are equipped with a logical unit that can steer
the vehicle. The AV is also equipped with sensors. These sensors such as cameras and
radars are used to sense objects and traffic participants around the vehicle. To avoid col-
lisions the AV must be able to detect and avoid the traffic participants around itself. To
avoid lethal accidents collisions with vulnerable road users in particular should be avoided.
Before deployment, the AV must be tested to ensure that it can avoid collisions with pedes-
trians. This is often done in simulation to avoid putting humans at risk. To perform these
simulations we need to model pedestrians realistically. Unfortunately capturing detailed
pedestrian behaviour data is hard. We show that it is possible to model pedestrians even
with missing data by making use of multiple sources of information. Finally, we show that
realistic pedestrian models can be used to effectively test AVs in simulation.

Detecting humans in traffic is hard. Human detection methods that perform the best on
standard computer vision benchmarks detect pedestrians poorly in videos gathered onboard
a vehicle. This is because pedestrians appear often at a distance, off-centre and are poorly
visible in the onboard videos. This is different from standard benchmarks where humans
are centred in the images and well visible. Poor detection quality of pedestrians makes any
further detailed modelling of pedestrians hard.

A difficulty in modelling traffic from data is that road users often show monotone beha-
viours. Pedestrians tend to walk on sidewalks, and cars tend to drive on streets. A key
question is how to model traffic behaviours that we know exist but rarely observe in data.
We present a realistic pedestrian model that avoids collisions even though such behaviour
is never seen in the traffic dataset.

AV models tend to model pedestrians as boxes. This is sub-optimal, as the human body
pose contains a lot of information about the human’s future motion. Just by looking at
an image of a pedestrian running we, as humans, can say that the pedestrian will continue
running for example. The human pose is not being modelled in AVs because it is hard to
capture pedestrian poses in traffic. Our pedestrian model can be used to extend datasets
with human poses, and can even be used to create collision scenarios of existing data.

Once a pedestrian’s pose is detected, it should be used to forecast the pedestrian’s motion
such that the AV can plan a safe trajectory. Existing methods for human pose prediction are
evaluated on unrealistically short time horizons. Each individual has his/her own unique
motion patterns, but this cannot be used by the prediction model when the model only
observes less than 0.5s of motion. An individual’s motion patterns should be exploited to
get an accurate prediction of the individual’s future motion. We show that classical statistics
methods can be used to personalize human motion prediction on the fly.
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Collisions are rare in traffic, and even more so in traffic datasets. Therefore collisions need to
be simulated to test the AV’s behaviour in scenarios that could lead to a collision. We note
that existing simulation methods model pedestrians unrealistically. Our methods make it
possible to simulate collisions between AVs and realistic pedestrians in varied traffic scenes,
with varied traffic density and with varied traffic participant behaviour.

In conclusion, this thesis shows the difficulties in pedestrian detection and modelling. We
propose methods to overcome the shortcomings of existing pedestrian motion models. Fi-
nally, we show that it is possible to generate collision scenarios to test AVs with realistic
pedestrian models.
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Chapter 1

Introduction

An autonomous vehicle (AV) is a vehicle equipped with sensors and a reasoning unit that
decides the AV’s motion given the sensors’ observation of the world. The reasoning unit
should use the sensor’s data to move the vehicle in traffic in a safe and legal manner.

AVs promise to save lives by reducing the number of traffic accidents occurring due to
human error. To do so AVs must at first be able to reason at least as well as human drivers.
But how should the AV’s driving performance be evaluated?

Pedestrians and bicyclists are particularly vulnerable in traffic, and collisions with them even
at relatively low speeds could be lethal. Therefore it is crucial that an AV avoids collisions
with pedestrians. The AV’s collision avoidance ability with vulnerable road users (VRU)
cannot be tested in real physical experiments due to the risk it poses to VRUs. Therefore
there is a need for simulated tests that evaluate the AV’s ability to avoid collisions with
VRUs.

Simulating test cases poses a number of problems. Firstly simulating realistic and varied
sensor data is hard. Secondly, the simulated traffic behavior should be realistic. Thirdly
to be time-efficient the simulations should only contain the test cases that are hard for the
AV. We present methods that use realistic human models to test the behavior of AVs in
near-collision scenarios in papers II and III.

Modeling pedestrians is hard due to the stochastic motion of humans, as seen in Fig.1.1.
The data appears stochastic because the intents (i.e. why the pedestrian chose this particular
trajectory and speed) of pedestrians even in ground truth data is in general unknown. And
even if the intents of the pedestrians are known then each individual has unique dynamics
due to his/her anatomy and behavior traits. Paper I proposes a pedestrian model that takes
into consideration the surrounding traffic and human dynamics.
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Figure 1.1: Pedestrian trajectories as seen from above in a study hall. The trajectories run crisscross through the room
with some general motion trends. Pedestrian trajectories in the Edinburgh Informatics Forum Pedestrian
Database, image from [1]. Reprinted with author’s permission.

A large number of AV trajectory planning models [2–35] treat pedestrians as boxes. This
however omits the motion cues available in the human pose, as seen in Fig.1.2. Humans
are often treated as boxes because it is hard to extract human poses in traffic data and
because bounding boxes are common when modeling vehicles [34, 36–44]. To remedy
this sometimes human head direction, action or 2D pose (in the image plane) are used to
provide partial motion cues in pedestrian behavior prediction [45–52], and just a few models
use 3D pose [53, 54] to predict if a pedestrian will cross the street or not. In a perfect world,
we would wish to obtain a dataset of pedestrian poses gathered in the wild with all of the
surroundings that may affect a pedestrian’s motion through traffic. Currently, there is no
such dataset as exact human-pose estimation requires motion capture technology that has
largely been confined to indoor settings and requires the use of markers. We discuss the
difficulties in recovering articulated human motion in paper v.

If a perfectly labeled dataset of human poses in traffic was made available then this would en-
able AVs to foresee pedestrian motion more exactly with pedestrian pose forecasting models.
The majority of human pose forecasting models foresee the average motion of an average
individual. But poses also contain each individual person’s unique motion patterns. These
unique patterns even enable person identification from gait [55–58]. As observations of an
individual accumulate the motion models can be re-calibrated to fit the specific individual’s
rather than an average human’s motion. This is done in paper Iv.

The scientific contribution of this thesis is presented in the papers I-v. Gathering artic-
ulated 3D pedestrian motion in traffic, to preserve the underlying semantic relations in

2



Figure 1.2: It is much harder to foresee the pedestrian’s future speed and direction when observing the bounding
boxes (above), than when observing the poses (below).

the motion, is hard as discussed in paper v. In paper I a semantically reasoning, collision-
avoiding, and articulated pedestrian model is presented, by combining different learning
methods and datasets. Papers II and III show that realistic pedestrian models such as the
one from paper I can and should be used to generate realistic and hard test cases for AVs,
in particular when the number of pedestrians increases. In paper Iv a method to person-
alize articulated human motion forecasting on the fly with timeseries analysis is presented.
Altogether the thesis discusses why articulated pedestrian sensing is hard in traffic in paper
v, proposes a method to remedy the lack of articulated in-traffic pedestrian data in paper
I, shows that learned pedestrian models can and should be used in AV testing in papers II
and III, and proposes improvements to articulated pedestrian forecasting models motivated
by typical interactions in traffic in paper Iv. We argue that articulated and semantically
reasoning pedestrian modeling can improve pedestrian motion forecasting accuracy in AV
planning and testing. We hope that this thesis will aid in the further development of artic-
ulated and semantically reasoning pedestrian modeling in AV path planning and testing,
as improved pedestrian motion forecasting may save lives in AV deployment.

We provide an overview of the necessary background knowledge for the papers I-v with
comments on recent developments in the respective background fields in chapters §3-§6.
The methods developed in this thesis are Machine Learning (ML) and statistical models.
Therefore a basic introduction to ML and timeseries analysis with a focus on the methods
covered in the thesis are provided in §3, providing a basis to papers I-v. More specifically the
ML methods utilized in papers I,Iv and v that sense and model pedestrians are introduced
in §4. We discuss the different subtasks of pedestrian sensing that are commonly solved
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in the computer vision community. To clarify what is meant by an AV in papers II and III
a short introduction to the basic building blocks of an AV is provided in §5 followed by
a discussion on the difficulties of sensor simulations of AVs and difficulties in AV testing
relevant to papers II and III. Finally, a short introduction to 3D reconstruction focusing
on the used methods is given in §6, in detail discussed in paper v. 3D reconstruction is
essential in pedestrian and AV modeling and testing because the AV needs to know the
distance to objects when planning its motion. Distance is however lost when taking 2D
images of the 3D world, so this needs to be recovered using 3D reconstruction methods.
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Chapter 2

Research Questions

This thesis largely concentrates on pedestrian sensing and modelling; in particular in the
testing of AVs. Pedestrians, vehicles and bicycles behave differently in traffic and this should
be reflected in their models. A large amount of research effort is put into modelling vehicles,
and often a model developed to forecast vehicles is simply extended to model pedestrians.
However, the motion of pedestrians does not resemble cars, this should be reflected in the
model. Such methods also ignore the additional information available in the pedestrian’s
semantic surroundings and pose relevant for pedestrian motion prediction. Therefore the
first research question can be formulated as follows.

[RQ1] What affects a pedestrian’s motion, and how can we model this in pedestrian fore-
casting models utilized in AVs and AV testing?

In paper v we discuss how pedestrians can be sensed and based on this in paper I we propose
a pedestrian model that models human dynamics in interactions with the scene. In papers
II and III we note that there is a gap between our knowledge of human motion and the
models used in AV testing. In papers II and III we show that state-of-the-art (STOTA)
pedestrian models should be used in AV testing. The thesis argues that pedestrian pose
should be modelled instead of bounding boxes in AV’s path planning, as poses provide rich
motion cues needed to improve motion planning. Secondly, human motion in traffic is
affected by the environment semantics, and this should be included in the ideal model of a
pedestrian. Paper Iv proposes a general method to personalize human motion forecasts to
a specific individual’s dynamics.

The majority of decisions taken in traffic are based on semantics and geometry. For example,
cars tend to drive in the centre of the road and aim to avoid other vehicles. One of the key
research questions is the following.
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[RQ2] How can we model the effect of semantics and geometry on pedestrians?

[RQ3] How should a scene be modelled to allow for the simulation of semantically reason-
ing pedestrians and AVs?

It should be noted that geometry and semantics are inherently interlinked. By detecting the
3D shape of a car it is easier to detect that the object is a car, while vice versa observing a car
it is easier to reconstruct it as we may have prior knowledge of a typical car’s shape. In traffic,
an object’s motion is dictated by its semantic class and the semantic objects surrounding
it. Therefore semantics must be included when modelling the decision-making process of
the different traffic participants. In papers I-III and v the scene is a 3D model labelled by
semantics and RGB. This explicit modelling of semantics allows for the evaluation of safety
measures during simulation. More compact representations exist for AV decision-making
but these are less applicable for simulations. This is an important trade-off because AVs
generate large amounts of data that should be utilized to improve existing models.

Traffic data is special because we as humans have a lot of understanding and prior knowledge
of the rules of traffic and what may influence other traffic participants. But the majority
of motion in traffic is mundane and uniform. The majority of traffic interactions are safe,
and thus they provide little knowledge to artificial agents on what an unsafe situation may
look like. Therefore there is a need to utilize our prior knowledge in modelling to avoid re-
learning known rules and to model critical but less likely situations rather than the average
behavior of traffic. The following research questions are central to this thesis.

[RQ4] How can we utilize prior knowledge in models?

[RQ5] How can we learn from datasets that are not representative of the true variability?

[RQ6] How can we optimize models for specific behavior rather than the average behavior
observed in the data?

In the papers I-III, Reinforcement Learning (RL) is utilized to extrapolate beyond the ex-
isting data and to learn from critical situations not present in the data while utilizing prior
knowledge. In paper Iv individual-specific available information is utilized to personalize
average motion forecasts. The average motion forecast in paper Iv can be seen as prior
knowledge while the personalization is learnt.

[RQ7] How can we balance learning with prior knowledge?

The balance between prior knowledge and learning boils down to the classical bias-variance
trade-off because prior knowledge inherently introduces bias while reducing variance and
thus speeding up learning. This is tackled differently in the different papers. In paper I
prior knowledge and learning are balanced by combining RL and supervised learning. In
papers II and III a prior is used to speed up early learning. In paper Iv the prior is adapted

6



with classical statistical methods.

We treat scenario-based AV testing to allow testing of the full pipeline of AV. The following
is a relevant question to ask.

[RQ8] What variations in traffic data may affect an AV’s safety? How can we test an AV to
ensure safety under varying conditions?

An AV when utilized should be able to avoid collisions in any traffic layout with any traffic
density, with any traffic behavior and under any visual qualities. Therefore it should be
tested with varied road-layouts, traffic density, traffic behavior and visual qualities. The
papers II and III propose methods to do this, omitting only visual qualities as this falls
beyond the breadth of this work. In particular traffic participant behavior (in particular of
pedestrians) is under-studied in previous work on scenario-based test case generation.

In traffic, the same driver or pedestrian may exhibit different behaviors from day to day
depending on the traffic density, the goal location and his/her mood (depending on how
hurried, tired or upset the person is). Therefore to ensure safe travels an AV must react
correctly independently of how its traffic co-participants are behaving. One of the central
questions of this thesis can be formulated as follows.

[RQ9] How can we model different pedestrian behaviors in traffic?

Papers II and III present AV testing methods that allow for any goal-driven pedestrian be-
havior models to be utilized. Paper I allows different behaviors to be learned in safe traffic
situations and in near-collision scenarios. Paper Iv models individual human dynamics.

It is hard to detect articulated humans in real traffic data, therefore humans are often mod-
elled by bounding boxes. This gives rise to the following research question.

[RQ10] How can we learn to model pedestrian motion when only partial or noisy labels
are available?

In paper v it is seen that label errors aggregate when sensing humans in a pipeline and in
3D reconstructions. Therefore paper I utilizes bounding boxes to learn pedestrian behavior
in traffic scenes and a separately trained human dynamics model to capture realistic human
dynamics. The model in paper I can be used to augment existing traffic datasets with
articulated pedestrians. In papers II and III in a generated collision, in the spirit of RL, it is
unclear what decisions along the trajectory of a pedestrian led to a collision. Nonetheless,
with just the knowledge that a collision occurred, we can learn how to place pedestrians
such that collisions occur with an AV. In paper Iv, not all data is available when learning
is initialized, so the model is updated as new data becomes available. In general, when a
large enough dataset of correct labels is available supervised learning allows for precise and
efficient training of a model. If this is not the case we must resort to other methods such
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as RL with a weaker and indirect (we don’t know which timestep in the sequence provided
the signal) learning signal.

Finally, the thesis deals with sample-efficient AV testing. It is impossible to test the AV on
all possible scenarios that may occur as there are so many possible outcomes. Therefore we
can concentrate tests on scenarios that the AV finds hard. One of the research questions
dealt with in the thesis is the following.

[RQ11] How can we efficiently test a driving system in realistic scenarios?

In paper v it is seen that errors accumulate when sensing pedestrians in a pipeline, making
the final results too noisy to be useful. This illustrates the importance of testing the full
pipeline of the AV (i.e. testing the outcome of steering at the result of a given sensor input)
as done in papers II and III to detect accumulating errors. In traffic, realism includes but is
not limited to the distribution of traffic participants in the scene, the behavior and motion
of all traffic participants in reaction to one another, and the realism of the sensors. When
testing AVs we are not interested in the most difficult scenarios if they are impossible in real
life, but the difficult scenarios that are in fact likely to occur. Therefore instead of modelling
co-participants in traffic as adversarial as in previous works, in papers II and III we learn
which realistic placements of traffic members can result in collisions with an AV. AV testing
therefore needs to answer the following question.

[RQ12] How can we balance difficulty and realism in AV test cases?

In papers II and III we suggest balancing the two by incorporating factors that promote
realism in the prior and reward of the test case generator. In paper II we note that test case
generation is a constrained optimization problem and by introducing further constraints
on the AV we can ensure that difficult cases are found. It is important to introduce realistic
constraints, such as constraining the AV’s observation of pedestrians by ensuring the pedes-
trians are occluded in a realistic manner. Paper III presents a general framework that is easily
extendable with realistic constraints on the AV. Data augmentation, as proposed in papers
I, II and III, allows the creation of test cases from real data, providing high sensor realism.
Because realistic traffic data is often similar, in that most traffic participants follow traffic
rules, it is particularly difficult to generate realistic, varied and critical traffic participant
behaviors.
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Chapter 3

Machine Learning and Statistics

Machine Learning (ML) is a field of mathematical models that adapt to data. The process
of a model adapting to data is referred to as learning. ML has gained popularity because
the world contains a large number of phenomena that can be modeled but we have not yet
found an analytic model that captures the behavior of the system so we must approximate
the behavior from the available data instead. A large number of the ML methods are func-
tion approximators. In difference to classical statistical methods ML provides highly flexible
models (i.e. often with more parameters) but with fewer statistical guarantees. The higher
number of parameters means that more data is needed to fit ML models than classical stat-
istical models in general. With digitalization, dataset sizes have grown, and dataset growth
within visual problems has further been brought about by crowd-sourcing and crawling the
net to generate datasets such as [59, 60]. In the current age of data models with billions of
parameters [61–64] can be trained, allowing complex behaviors such as speech or vision to
be modeled.

ML can be roughly divided into three paradigms supervised learning, unsupervised learning,
and Reinforcement Learning (RL). The central problem in supervised learning is that of re-
gression analysis to find a function approximator that can model the output or dependent
variables given input or independent variables. In supervised learning we assume that the
function values i.e. labels are known for a number of data points in the input variables.
The data may contain errors and noise so it is treated as a set of random variables. The
relationship between the input and output variables is often non-linear and unknown. Un-
supervised learning methods learn the structure of the data without access to labels or the
need for human annotators to provide explicit feedback on the model’s performance. Fi-
nally, RL instead of learning from a dataset, interacts with a system of interest and learns
to operate the system from interactions. An example of this is a model that learns to drive
a car by controlling the wheel, the gas, and the brake pedals. In more classical terms RL
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can be seen as a discrete-time system identification problem in automatic control.

The problem central to ML is the following; given some parametrization Θ of the approx-
imating function fΘ we wish to minimize a measure of fitness, the loss J, in expectation

min
Θ

E[J(fΘ, ppp)], (3.1)

where ppp is a data point (in RL ppp is one roll-out or trajectory). ML is different from clas-
sical statistics utilizes models with more parameters than classical statistical models, and in
general assumes that the underlying structure in the data is unknown. Therefore ML does
not have the same statistical guarantees on model fitness as classical statistical methods but
allows the models to be more expressive in practice. However, when data is scarce classical
models can outperform ML models as fewer parameters need to be estimated.

3.1 Deep Learning

This section will provide an introduction to supervised and RL. Independently of the chosen
paradigm Artificial Neural Networks (ANNs) [65] are popular function approximators in
ML. This is because ANNs are flexible, can model large datasets well, and have proven in
practice to be optimizable in a reasonable amount of time. Inspired by the brain, an ANN
consists of small units called perceptrons. Each perceptron is connected to a number of
neurons structured into layers. The goal is to learn the weights of the connections. A per-
ceptron weighs the M-dimensional input vector u ∈ RM with the weight vector w ∈ RM

before applying a non-linearity fa known as the activation function. The perceptron output
is

yp = fa(uTw + w0), (3.2)

where w0 ∈ R is a learnable intercept known as the bias. For a network consisting of Nl
layers the inputu of perceptrons in layer l, 2 ≤ l ≤ Nl typically consists of the concatenated
outputs yp of the perceptrons in layer l− 1. If all of the weights w in a layer are non-zero
then the layer is called a fully connected layer. The outputs of the layers are referred to as
features. Features describe task-specific characteristics of the data. Features found in higher
layers of the networks are often more abstract than features from lower layers that are closer
to the model input. Deep neural networks are ANNs with a large number (at least more
than 10) of layers and therefore contain abstract features. It is common that the last layers of
the ANN, containing the most abstract features, are fully connected layers allowing for the
full interaction of knowledge among features. The last layer of the network often contains
a special non-linearity to obtain outputs that are probabilities. In particular, to ensure that
the sum of outputs from the last layer is one, the soft-max function can be applied. The
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i-th element of the softmax function value is given by

softmax(zi) =
exp(zi)∑Nz
j=1 exp(zj)

, (3.3)

where z ∈ RNz is a vector with i-th element zi, and Nz is the size of the vector.

3.1.1 Convolutional Neural Networks

Figure 3.1: Max pooling of a 16 by 16 image by a 4 by 4 max-pooling window. The image is divided up into partitions
the size of the filter (the different partitions are in blue, yellow, red, and green) and the largest value
within each partition (in red text) is returned. The result is the 4 by 4 image to the right.

In images, objects need to be detected independently of their placement in the image.
Therefore translationally invariant convolutional filters are commonly used to constrain
the number of weights in each layer. A convolutional filter K, also known as the kernel, of
size wk × hk × D is applied to an image (possibly the output of a previous layer) I of size
W×H× D. The convolution is given by

Y(m, n) =
wk∑
i=1

hk∑
j=1

D∑
k=1

I(m− i, n− j, k)K(i, j, k). (3.4)

The application of the filter on the whole image in (3.4) is called a convolution. A Convo-
lutional Neural Network(CNN) is an ANN that contains convolutional layers. In a convo-
lutional layer, the perceptrons share wk × hk × D weights to model all of the connections
with the W×H×D dimensional input, where in general wk×hk < W×H. For very large
datasets it has been shown that Transformers (recently introduced ANN architecture) out-
perform convolutions, as they learn this convolutional weight sharing, but are not confined
to it [66]. Dilation can be used to increase the visual field of a filter without increasing the
number of weights. Dilational convolution with stride sr ∈ Z+ is given as,

Y(m, n) =
wk∑
i=1

hk∑
j=1

D∑
k=1

I(m− isr, n− jsr, k)K(i, j, k). (3.5)
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Typical activation functions utilized in the network are the sigmoid function and the Recti-
fied Linear Unit defined as ReLU(x) = max(x, 0) [67]. ReLU is a simple piece-wise linear
function but with enough layers (possibly infinitely many) a network with only ReLU ac-
tivation function can approximate any continuous function.

The sigmoid function σ(x) = (1+ e−x)−1 is a smooth growing curve around the origin and
approximates the Heaviside step function when approaching positive or negative infinity.

Pooling is used to extract the results of the most important features from an image. Max-
pooling [68] subsamples an image by selecting maximal values from partitions of an image
as seen in Fig.3.1. The final result, to the right, is reduced in size by a factor equal to the
size of the filter.

Figure 3.2: Given four points on a grid p1,p2,p3,p4 with known function values, we wish to estimate the function
value at the point (x, y)).

When a dense label is required it may be necessary to upsample images. This can for
example be done by bilinear interpolation. A bilinear interpolation of a point (x, y) between
four points p1,p2,p3,p4 on a pixel grid as shown in Fig.3.2 is found by first interpolating
along the x axis

Fi,1(x) =
x− p1,x

p2,x − p1,x
F(p1)−

x− p2,x

p2,x − p1,x
F(p2), (3.6)

Fi,2(x) =
x− p3,x

p4,x − p3,x
F(p3)−

x− p4,x

p4,x − p3,x
F(p4), (3.7)

where (F(p1), F(p2), F(p3), F(p4)) are the function values of the function F that is be-
ing interpolated at points (p1,p2,p3,p4) and the x and y coordinates of the points are
(p1,x, p2,x, p3,x, p4,x) and (p1,y, p2,y, p3,y, p4,y) respectively. Then finally the interpolation is
given by also interpolating along the y axis

Fi(x, y) =
y− p1,y

p3,y − p1,y
Fi,1(x)−

y− p3,y

p3,y − p1,y
Fi,2(x). (3.8)
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3.1.2 Recurrent Neural Networks

Recurrent Neural Networks (RNN)s [65] are used to model temporal relations because they
allow for weight sharing across time steps. RNN units contain self-connections, meaning
that the RNN layer’s output ht ∈ RMh becomes the unit’s input at the next timestep,

ht = fa(uTw + hT
t−1ŵ + w0), t = 1 . . .Th (3.9)

where ŵ ∈ RMh are the weights of the self-connection, and Th is the length of the RNN’s
memory. During training, the gradients of ŵ might explode or diminish. To avoid this
the Long Short Term Memory (LSTM) can be used instead. One LTSM unit maintains its
memory in the cell state ct ∈ R, and the cell states of all of the Mc LSTM units in a layer are
gathered in a vector ct ∈ RMc . The LSTM unit controls information flow with three gates;
the input gate gu

t - controls information flow from u, forget gate gc
t - controls information

flow from ct−1 and output gate gh
t - controls how much of the information from the cell

state ct is output. The gates gu
t , gc

t , gh
t ∈ (0, 1) are all given by

gu
t = σ(uTwu + cT

t−1ŵu + wu,0) (3.10)

gc
t = σ(uTwc + cT

t−1ŵc + wc,0) (3.11)

gh
t = σ(uTwh + cT

t−1ŵh + wh,0) (3.12)

where wu,wc,wh ∈ RM and ŵu, ŵc, ŵh ∈ RMc are the weights wu,0,wc,0,wh,0 ∈ R are
biases of the input, forget and output gate respectively and σ is the sigmoid function. An
update variable ĉt is used to calculate the update step by the current timestep’s input,

ĉt = tanh(uTwĉ + cT
t−1ŵĉ + wĉ,0), (3.13)

where wc ∈ RM and ŵc ∈ RMc are weights and wĉ,0 ∈ R is a bias, and tanh is the
hyperbolic tangent. The update variable ĉt is used with gaiting to update the cell state,

ct = gc
tct−1 + gu

t ĉt. (3.14)

Finally, LSTM’s value is given by gating gh
t of the cell state,

ht = gh
t tanh(ct). (3.15)

Recently Transformers have gained popularity over RNNs because they can learn to pay
attention to occurrences over a larger time-span, and therefore effectively have a longer
memory.
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3.1.3 Training

ANN weights are found through numeric optimization. The loss function of an ANN has
in general an unknown shape, most importantly the loss is not guaranteed to be a convex
function, so it is common to use Stochastic Gradient Descent (SGD) [65] to optimize it.
The dataset is often too large to fit in memory so we cannot calculate the exact gradient
of the expectation in (3.1). Therefore iterative batch-based optimization methods, such as
SGD, are used. The gradient of the loss is estimated by a finite randomly drawn batch of
the data that is used to update the parameters Θt of iteration t ∈ Z+ by

Θt+1 = Θt − η
1

Nb

Nb∑
i=1

∂

∂Θ
J(fΘ, pppi), (3.16)

where η ∈ R is the learning rate, deciding the step size of the optimization, and pppi is i-th
point in the t-th batch of size Nb. Iterating through the whole dataset once in batches is
known as one epoch, it is common to train ANNs for multiple epochs.

Since ANNs often have a large number of parameters, learning may progress at different
speeds for different parameters. Therefore it may be necessary to adapt the learning rate
η for the different parameters. This can be achieved by the popular Adam (name derived
from adaptive moment estimation) [69] that utilizes first and second moment estimates
of the gradient to adapt the learning rate of different parameters. By treating the batch
estimate of the partial derivative gt,k =

1
Nb

∑Nb
i=1

∂
∂Θk

J(fΘ, pppi) of the k-th parameter where
1≤ k ≤ NΘ at optimization step t as a stochastic variable, the first two moments of this
random variable can be estimated by the moving averages mt,k (mean) and vt,k(uncentered
variance). Moving averages are used because gt,k is assumed to be non-stationary. The
moving averages mt,k ← β1mt−1,k + (1− β1)gt,k and vt,k ← β2vt−1,k + (1− β2)g2

t,k have
update rates β1 and β2 respectively. The estimated mt,k and vt,k are biased estimates. The
unbiased estimates m̂t,k = mt−1/(1 − βt

1) and v̂t,k = vt−1/(1 − βt
2) are used to scale

the learning rate by the estimated mean m̂t,k and the inverse square root of the uncentered
variance (v̂t)

−1/2. The learning rate scaling ratio m̂t,k/
√

v̂t,k can be treated in some sense
as a signal-to-noise ratio (SNR), the larger the SNR the larger the learning rate. The full
algorithm is given in Algorithm 1, where ϵ is the machine epsilon added to avoid numeric
instabilities.

The network biases w0 are zero-initialized and the weights wl of layer l are initialized ran-
domly [70] according to the uniform Glorot initialization (also known as Xavier initializ-
ation) given as

wl ∼ U

(
−

√
6

Nu + Nh
,

√
6

Nu + Nh

)
, (3.17)
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Algorithm 1 The Adam Optimization Algorithm
m0,k = 0, v0,k = 0, t = 0
while Θt,k not converged do

t = t + 1
Calculate gt,k =

1
Nb

∑Nb
i=1

∂
∂Θk

J(fΘ, pppi)

mt,k ← β1mt−1,k + (1− β1)gt,k
vt,k ← β2vt−1,k + (1− β2)g2

t,k
m̂t,k ← mt−1

(1−βt
1)

v̂t,k ← vt−1
(1−βt

2)

Θt,k = Θt−1,k − η
m̂t,k√
v̂t,k+ϵ

end while

where U is the uniform distribution, Nu is the size of the input vector u to the ANN’s l-th
layer, and Nh is the number of perceptrons in the l-th layer.

The gradient∇ΘJ(fΘ, pppi) is calculated layer by layer with the back propagation algorithm [65],
by first calculating the gradient of the last layer and then moving backward in the network
the gradients of all of the weights can be calculated efficiently reusing the gradients of deeper
layers due to the chain rule.

It should be noted that in difference to classical statistical models, ANNs are often over-
parameterized. Studies have shown that over-parametrization and large datasets [71–73] are
key components to attain high accuracy ANNs. Still early stopping [68] is common prac-
tice to avoid overfitting to the training dataset and thus not being able to generalize to new
unseen data. To this end, the dataset used is commonly divided into the training, valida-
tion, and test set. The model is trained on the training set and tested on the validation set
throughout the training process. Once the validation error does not improve significantly
or even starts to increase the training is terminated and the model with the best perform-
ance on the validation set is evaluated on the previously withheld test set to give an estimate
of how the model would perform on new unseen data. Any hyperparameters (parameters
that need to be optimized separately from Θ such as learning rate, or model’s architecture)
are tuned based on the model’s performance on the validation set.

3.2 Supervised Learning

In the supervised learning setting the goal is to learn a function that can model a labeled
dataset. In the parametric case Maximum Likelihood Estimation can be used to find model
parameters that maximize the model’s likelihood. The likelihood fl(Θ;D) is the model para-
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meter’s Θ probability density function conditioned on the given the datapoints (ppp,y) ∈ D
with labels y. The Maximum Likelihood Estimate (MLE) is found by

ΘMLE = argmax
Θ

fl(Θ;D), (3.18)

where the parameters Θ that describe the dataset D with the highest probability according
to the model are found. Assuming that the data labels y ∈ RNy follow the deterministic
function fΘ but are observed with additive Gaussian noise

y ∼ N (fΘ(ppp),Σ) , (3.19)

where Σ is the covariance matrix then the likelihood fl is given following notation of [74]
as,

fl(Θ;D) =
ND∏
i=1

N
(
yi|fΘ(pppi),Σ

)
. (3.20)

Then the negative log-likelihood L is given as

L(Θ;D) =
ND∑
i=1

(
yi − fΘ(pppi)

)T
Σ−1 (yi − fΘ(pppi)

)
+ c, (3.21)

where c = ND
2
(
Ny ln(2π) + ln(|Σ|)

)
is a constant. If the additive errors are identical and

independently distributed (i.i.d.) that is Σ = σ2
l I, where σl ∈ R+ and I is an identity

matrix, then the MLE estimate is given by the least squares loss,

ΘMLE = argmin L(Θ;D) = argmin

ND∑
i=1

∥yi − fΘ(pppi)∥
2. (3.22)

This will be utilized in Paper I to combine the supervised and RL objectives.

3.2.1 Object Detection

Object detection is the task of placing a bounding box around an object of interest in an
image. The bounding box should also be given a class label among a set of semantically
meaningful class labels ( such as ”car”, ”traffic light” etc). This is a supervised learning task
requiring human-annotated bounding boxes and labels.

The Region Convolutional Neural Network (RCNN) [75] performs object detection in two
stages; region proposal where regions of interest are extracted from images and object clas-
sification by evaluating convolutional features per region of interest that are then classified.
Faster RCNN (FRCNN) [76] is a popular object detection network because it attains high
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Figure 3.3: The FRCNN architecture. From left to right. Given an image (in blue) VGG-16 convolutional layers are
applied (in orange) resulting in convolutional features (in light blue). The RPN is applied as a sliding
window (in dark blue, with the anchor point in red) on the convolutional features. The RPN (in light
grey) consists of a shared fully connected layer followed by a regression head producing bounding box
coordinates and a classification head producing object-class scores. The RPN is evaluated for k anchor
boxes (in white) with different scales and aspect ratios centered around the anchor point (in red).

classification accuracy with good throughput. Faster RCNN stems from RCNN. FRCNN
improves upon RCNN by utilizing a Region Proposal Network (RPN) that shares features
with the classifier. The convolutional features are borrowed from the popular VGG-16 [77]
a popular CNN for image classification (providing a class label per image). The RPN is a
small network that slides across the convolutional features and consists of two heads one
regressing over the region of interest borders and the other classifying the object see Fig.3.3.
When sliding across the convolutional features the center of RPN’s field of view is fitted
with k anchor boxes with different scale and aspect ratios. The regressor head learns the
exact placement of the k bounding boxes and the classifier evaluates the class belonging of
the k anchor boxes.

The full loss of the model consists of a per-class log-likelihood loss for the object classi-
fication and a robust loss for the bounding box placement and size that is active only if
the object classification is correct. The classification is considered correct when the ratio
of intersection over union (iou.) area of the ground truth and predicted bounding box is at
least 0.7, and the class label is correct.

The full model is trained iteratively by first training the class regression and object detector
separately. Then the detector’s convolutional weights are shared and frozen, while the re-
gressor is trained. Followed by a step where only the weights specific to the detector are
trained.

3.2.2 Semantic Segmentation

Semantic segmentation is the task of labeling each pixel in an image with a class label.
STOTA semantic segmentation is performed by CNNs [78–82]. Semantic segmentation re-
quires heavy labeling from human annotators and is therefore particularly difficult in video
where each frame should be labeled. Weak supervision has become a popular method to
overcome the need for large amounts of annotations in video segmentation [79, 81, 83, 84].
The Gated Recurrent Flow Propagation(GRFP) net [79] is an optical flow-based video seg-
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Figure 3.4: The GRFP architecture: Optical flow ft−1,t is calculated from frames It and It−1 and used to warp the
previous frame’s semantic segmentation ht−1. The STGRU calculates the current frame’s segmentation ht
from the warped segmentation wt and the current frame’s per frame segmentation.

mentation network. Optical flow is an estimate of the motion of objects from one frame to
the next in a video sequence. The GRFP model uses the convolutional image segmentation
network DilationalNet-10 [80] to segment the frame It at timestep t ∈ [2, . . .TG], where
TG is the length of the video sequence, producing a segmentation dt. DilationalNet-10 is
a CNN that uses dilated convolutions to avoid loss of resolution in layers and to make
dense label prediction easier. The GRFP net uses also a CNN, the FlowNet 2.0 [85], to
estimate the optical flow ft−1,t between frames t − 1 and t. The flow is used to warp the
segmentation ht−1 of the previous frame t − 1. The resulting warped segmentation wt is
an estimate of the expected segmentation at timestep t. It promotes temporal smoothness
along frames, anddt provides new information in case of occlusions and large motions. The
two segmentations dt and wt are input to a Spatio-Temporal Transformer Gated Recurrent
Unit (STGRU) that outputs the GRFP’s estimated semantic segmentation ht, see Fig.3.4.
The STGRU’s gating is designed to utilize dt when occlusions occur, and otherwise wt for
temporal smoothness. To obtain the probability that the pixel at x, y belongs to a class the
ht is placed through a softmax function, producing zx,y. During training, STGRU allows
warping to the timestep with ground truth labels. The network is trained to minimize the
negative log-likelihood

L(Θ;D) = −
∑
It∈D

∑
x,y

log(p(zx,y = cx,y|Θ, It)), (3.23)

where cx,y are the ground truth labels, and the probability is obtained as the softmax estim-
ated probability zx,y = cx,y.

Instance segmentation is a related task, where the objective is to identify the pixels that belong
to individual objects in images that contain multiple instances of the objects. In traffic,
this would most importantly allow us to identify individual pedestrians and vehicles on a
pixel level. Path Aggregation Network for Instance Segmentation (PANNET) [86] is based
on the FRCNN architecture. It adds an additional mask network, as shown in Fig.3.5, on
top of the convolutional features, that estimates the mask of the individual object within
a bounding box. PANNET uses Pyramid features [87], a filtered concatenation of low
and upsampled high-level features, with an additional bottom-up feature fusion network
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Figure 3.5: Architecture of PANNET. From left to right Pyramid features are extracted by Pyramid Net (in orange)
followed by additional bottom-up feature fusion (in light blue) and multi-resolution pooling (in grey of
dark blue features from multiple scales). A sliding network with two branches is applied to the pooled
features. The RPN branch extracts a bounding box and a class and the masking branch extracts pixel-level
instance masking.

followed by multi-resolution pooling to obtain feature details from low-level features and
semantic context from high-level features. The full model architecture is shown in Fig.3.5.

Recently the connection between instance segmentation in video (segmenting all instances
of an object in each frame) and the similar task of multi-object tracking (where the indi-
viduals have to be re-identified or tracked from one frame to the next) has gained atten-
tion [83, 88, 89]. Segmentation networks trained on large and varied semi-automatically
collected datasets (1 labeled billion object masks) are able to generalize zero shot to other
related tasks [90]. Segmentation is becoming less supervised in both human labeling and
in label classes [88, 91–96]. The latter is obtained by language model encoded semantic
labels which enable multi-class labeling of objects and segmentation with previously unseen
class labels during inference. The trend of reducing the need for human annotations can
also be seen in object detectors [94, 97] and 3D segmentation [98, 99]. Recently the term
Computer Vision in the Wild has been coined to the study the transferability of the popular
natural language supervised visual models across computer vision tasks [100].

Pointcloud segmentation is a task where a class label should be given to all points in a 3D
pointcloud. One popular architecture for pointcloud segmentation is the Pointnet++ [101].
Pointnet++ consists of layers of set abstractions (SA). A SA operates on groups of points
centered around a centroid point. A SA consists of three processes; subsampling of the
centroids, grouping points around the centroid, and pointnet feature evaluation. The
centroids are selected by iterative farthest point sampling. Then for each centroid point, all
points within a radius distance are grouped to belong to the centroid. Finally, the centroid
and a feature vector calculated from its group are concatenated and output. The Point-
net [102] feature vector of the variable length np group members (p1, . . . ,pn) is found by

fp(p1, . . . ,pnp) = fγ
(

max
i=1,...,np

fh(pi)

)
, (3.24)

where fγ and fh are learnable multi-layer perceptrons and fp is invariant to permutations and
can approximate any continuous set function. Features across layers or varying size group
balls are concatenated into features to make the network robust to changes in pointcloud
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density. To propagate dense labels to all points, feature propagation is performed by in-
terpolating final labels between points according to distance. The model is trained with
the cross entropy loss. Let the estimated probability of a point belonging to class ci be
p(ci|X,Θ), with Ni points belonging to the class out of a total of N points. Then assuming
the class probabilities are independent the likelihood is given by,

L(Θ) = − log

(MC∏
i=1

p(ci|X,Θ)Ni

)
= −

MC∑
i=1

Ni log(p(ci|X,Θ)), (3.25)

where MC is the number of classes. The cross entropy loss (CE) is obtained by normalizing
by the number of datapoints N,

CE(Θ) = −
MC∑
i=1

Ni

N
log(p(ci|X,Θ)) = −

MC∑
i=1

p(ci) log(p(ci|X,Θ)). (3.26)

Note that this is the same loss as (3.23) simply with a multiplicative constant difference.

3.3 Reinforcement Learning

Figure 3.6: To the left: A Markov Decision Process: In a state st an agent takes actions at according to its policy π,
and obtains from the environment its subsequent state st and reward rt. The agent’s policy π is chosen
such that cumulative future reward is maximized. This is an RL problem when the environment dynamics
p are unknown. To the right: A Multi Agent RL game. Each of the N agents takes actions based on its
individual states. The agents observe each other (possibly partially) through their states. Agents optimize
their individual rewards which may have different objectives.

An agent interacts with a world it does not know the dynamics of, RL learns how the
agent should act to perform a given task in this unknown world. More formally RL solves
an unknown Markov Decision Process (MDP) [103]. An MDP as visualized in Fig.3.6 Left
consists of a set of states s ∈ RNs and actions a ∈ RNa . The agent can transition along
states by taking actions. The world is assumed to be stochastic so state transitions are defined
by an unknown probability function st+1 ∼ p(.|st,at). Each state-action transition is
evaluated by a reward rt+1 = fr(st,at, st+1) ∈ R, where fr is a real valued function.
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We wish to find a policy at ∼ π(.|st) that maps from states to actions and describes the
behavior of the agent that maximizes the expected cumulative reward,

JRL = max
π

E

[ Ts∑
t=1

γtrt|s0 ∼ μ,at−1 ∼ π(.|st−1), st ∼ p(.|st−1,at−1)

]
, (3.27)

where μ is the distribution of initial states, and γ is a discounting factor to encourage early
high rewards. An agent’s discounted expected cumulative future reward when following
policy π from state st is known as the value function Vπ , and can be expressed through the
Bellman equations,

Vπ(st) = E [rt+1 + γVπ(st+1)|at ∼ π(.|st), st+1 ∼ p(.|st,at)] . (3.28)

Similarly, the Q value is defined as the discounted expected cumulative future reward when
following policy π from state st after performing the action at,

Qπ(st,at) = E [rt+1 + γVπ(st+1)|st+1 ∼ p(.|st,at)] . (3.29)

When (3.28) and are evaluated for the optimal policy π∗ we refer to the equations as the
Bellman optimality equations.

Model-based RL methods estimate the unknown world dynamics p from the agent’s interac-
tions with the environment and then solve the Bellman optimality equations using methods
for solving MDPs [103]. Model-based RL method’s performance depends on the estimation
of the world dynamics p, and often it is hard to obtain a good estimate of p because world
interactions are seldom uniform in states and actions. Model-based RL methods need spe-
cial care when utilized with non-stationary world dynamics. Model-free methods instead
directly estimate the optimal policy π∗, these methods are known as policy gradient methods,
or the optimal value functions Vπ∗ or Qπ∗ , known as action value methods. Most notable
examples of action value methods in visual problems is deep Q-learning [104–106] and of
policy-based methods Proximal Policy Optimization (PPO) [107–109] and of methods that
learn both the policy and value functions, known Action-Critic methods, Asynchronous
Advantage Actor Critic (A3C) [110] is among the most well known methods.

Policy Gradient Methods

Policy gradient (PG) methods [103] parameterize the policy πΘ and directly optimize the
loss (3.27). The expectation in (3.27) is given as,

∫
Q

μ(s0)

Ts−1∑
t=0

γtrt+1

t∏
k=0

πΘ(ak|sk)p(sk+1|sk,ak)dτ, (3.30)
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where s = (s1 . . . sTs)
T, a = (a0 . . . aTs)

T, Q is the region of integration over s0, s,a and
dτ = ds0dsda. The Policy Gradient Theorem [103] simplifies the derivative of (3.27) to∫

Q
μ(s0)

Ts−1∑
t=0

γtrt+1
∂πΘ(at|st)

∂Θ
p(st+1|at, st)

t−1∏
k=0

πΘ(ak|sk)p(sk+1|ak, sk)dτ. (3.31)

The expectation in (3.31) cannot be estimated with Monte Carlo (MC) simulation because
the action distribution is missing. Utilizing the standard manipulation, below, MC estim-
ation can be performed,

∂πΘ(a|s)
∂Θ

= πΘ(a|s)
(

1
πΘ(a|s)

∂πΘ(a|s)
∂Θ

)
= πΘ(a|s)

∂ log(πΘ(a|s))
∂Θ

. (3.32)

Now a Markov Chain Monte Carlo (MCMC) estimate of the expectation over s0, s,a can be
formed, and the gradient of the loss, as below, is used in SGD to optimize the parameters,

∂

∂Θ
JRL ∝ E

[Ts−1∑
t=0

γtrt+1
∂

∂Θ
log(πΘ(at|st))

]
≈

Ms∑
i=1

Ts−1∑
t=0

γtrit+1
∂ log(πΘ(a

i
t|si

t))

∂Θ

(3.33)
where Ms samples of the full trajectory are sampled, with the i-th trajectory being

(si
0,a

i
0, s

i
1,a

i
1, . . . , a

i
Ts
, si

Ts+1). (3.34)

The REINFORCE [111] algorithm samples Ns trajectories with the current estimate of the
parametric policy, then updates the policy parameters with the gradient estimate (3.33). The
policy updates with sampling are repeated until convergence.

PPO optimizes a surrogate objective that is a lower bound of (3.27). The lower bound is
optimized instead to avoid taking too large gradient steps into areas of unexplored state-
action space. The A3C utilizes the advantage instead of the reward in (3.27). The advantage
Aπ∗(st,at) = Qπ∗(st,at)−Vπ∗(st) is estimated by a neural network. In Q-learning the Q-
function is estimated from data with the Bellman equations and an optimal deterministic
policy is extracted [103] by π∗(st) = argmaxa Qπ∗(st,a).

RL in Traffic

A number of problems in traffic are particularly well suited to be modeled by RL because in
traffic we often encounter intelligent agents that interact with their environment. A traffic
participant can be seen as an RL agent that aims to reach a goal under some preferences
described by its reward. In general traffic participants are not ominous and their observation
of the world is not necessarily the true state of the world. Therefore in general RL models
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of traffic participants solve a Partially Observable Markov Decision Process (POMDP). In
a POMDP an agent must learn the world dynamics in the presence of missing data (for
example due to occlusions or incorrectly estimated velocities and distances).

The interaction of traffic participants can be described as a Multi Agent Reinforcement learn-
ing (MARL) Game [112, 113], see Fig.3.6 right, where all traffic participants interact with
one another but ultimately each traffic participant is trying to reach their goals according
to their individual priorities that can be expressed as a reward. Each traffic participant
may have their own individual dynamics. Because the traffic agents interact with one an-
other their optimal behavior depends on the behavior of the other traffic participants. The
problem solution is non-stationary, therefore we often seek a Nash equilibrium - a state
where no agent can improve their utility by selecting a different action. Traffic as a general
sum game in a POMDP is particularly difficult to find the solutions to [114]. Because of
the non-stationarity MARL specific methods exist, but a number of them are empirically
outperformed by PPO [109].

RL versus Supervised Learning

Both RL and supervised learning have their strengths and weaknesses. In RL MC sampling
is used to estimate expectations. This together with the credit assignment problem in RL
leads to less sample-efficient learning than in supervised learning. By the credit assignment
problem, we mean that the reward does not clearly clarify which states must be visited to
reach a final reward-giving state (for example realizing that one must open a door to enter
a new room). But MC sampling also provides robustness as a large variety of state-action
pairs are observed during training when compared to supervised learning.

Combining RL and supervised learning to obtain robust but sample efficient learning is
presented in Paper I, and in other applications [115, 116]. Inverse Reinforcement Learning
(IRL) [117, 118] refers to an alternative method of learning from expert demonstrations with
RL. In IRL the task is to recover a reward function that can explain the demonstrations,
after which the regular RL problem is solved. This is in general a hard problem to solve and
may require solving the RL problem multiple times. Imitation Learning (IL) is a set of often
supervised methods in the RL setting that learn a policy that imitates the demonstrations.
behavior Cloning (BC) [119] is an example of an IL algorithm that uses supervised learn-
ing to model the state-action distribution of the policy from demonstrations. Generative
Adversarial Imitation Learning (GAIL) [120] is also an imitation learning method that per-
forms imitation learning with a Generative Adversarial Network (GAN) [121]. The learned
policy is a generator network that is evaluated by a discriminator network that discriminates
between demonstrations and samples from the learned policy.
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3.4 Timeseries Analysis

A stochastic process is defined by [122] as a family of random variables Y1,Y2 . . .. The index
of the random variables will be referred to as time. Timeseries analysis is concerned with
modeling stationary stochastic processes. Here we will treat only real valued one dimen-
sional stationary processes with zero mean. A wide sense stationary process is defined by [122]
as a process with a constant and finite mean, a finite variance, and with an auto-covariance
between Yt and Yk that can be expressed as function c(t − k) of the time difference t − k.
An autoregressive (AR) model of order P of a process assumes that the next random variable
is a sum of the past P random variables and a white noise. The AR model is given as

Yt = −
P∑

i=1

aiYt−i + ϵt, (3.35)

where ai are model parameters and ϵt ∼ N (0, σw) is normal distributed noise with variance
σw. It is common that we only have one realization of the timeseries, so if the timeseries
is stationary then we can use (y1, y2 . . .) to estimate ai and σw. Note that ϵt are assumed
to be independent. To find the parameters Θa = (a1, . . . , aP) we take the expectation of
(3.35) after multiplication with Yt−k, we get,

E [ϵt,Yt−k] = E [Yt,Yt−k] +

P∑
i=1

aiE [Yt−iYt−k] , (3.36)

Since ϵt and Yt−k are uncorrelated, and Yt are zero-mean, (3.36) simplifies to the Yule-Walker
equations,

σ2
wδ(k) = c(k) +

P∑
i=1

aic(k− i), (3.37)

where δ(k) is the Kronecker delta function (δ(k) = 1 when k = 0, and 0 otherwise for
k ∈ Z). After evaluating (3.37) for various k a system of linear equations can be obtained
from which model parameters Θa can be found given the estimated auto-correlation c(k)
values.

Prediction Error identification Method (PEM) [123] is performed to obtain online estimates
of the parameters Θa. The one-step prediction error is minimized, here using the L2 norm
and a forgetting factor λ to allow for time-varying parameters,

Θ∗
n = argmin

Θn

n∑
t=1

λn−t∥yt − ŷt∥22, (3.38)

24



where ŷt = ϕ
T
t Θt, and ϕt = [−yt−1, . . .− yt−P]

T, and Θt are the current estimates of the
parameters Θa. The least squares estimate

Θn =

[
n∑

t=1

λn−tϕtϕ
T
t

]−1 n∑
t=1

λn−tϕtyt, (3.39)

is obtained by setting the gradient of (3.38) with respect toΘ to zero. LetP−1
n =

∑n
t=1 λ

n−tϕtϕ
T
t

and fn =
∑n

t=1 λ
n−tϕtyt, then

Θn = Pnfn, (3.40)

P−1
n = λP−1

n−1 + ϕnϕ
T
n , (3.41)

fn = λfn−1 + ϕnyn. (3.42)

Following [123] we can rewrite (3.40) as

Θn = Pn (λfn−1 + ϕnyn) = Pn
(
λP−1

n−1Θn−1 + ϕnyn
)
, (3.43)

= Pn
([
P−1

n − ϕnϕ
T
n
]
Θn−1 + ϕnyn

)
, (3.44)

= Θn−1 +Pnϕn
(
yn − ϕT

nΘn−1
)
, (3.45)

resulting in an online parameter update, wherePn’s update (3.41) can efficiently be inverted
with the matrix inversion lemma giving

Pn =
1
λ
Pn−1

(
I− ϕnϕ

T
nPn−1

ϕT
nPn−1ϕn + λ

)
, (3.46)

where I is an identity matrix. The update simplifies further when considering the product,

Pnϕn =
Pn−1ϕn

ϕT
nPn−1ϕn + λ

, (3.47)

in the update of the parameters (3.45).
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Chapter 4

Human Motion Modelling

Figure 4.1: To the left: 2Dprojection of the human skeleton onto the image plane results in a 2D skeleton that depends
on the camera view. Middle: Human pose formed by joints and skeleton connecting the joints in 3D. To
the right: A dense human body model, an example of GHUM in the zero-pose.

Human motion modeling is divided between different subdomains that model different
variables of the human motion of which we will cover articulated human motion modeling
and human trajectory modeling. Human motion forecasting is concerned with capturing
the motion of the limbs and joints of a moving human, while trajectory forecasting aims
to model the factors that affect a walking human’s path or trajectory in traffic. In paper
I these two fields are combined. Articulated human motion forecasting requires access to
measurements of human joint or body part positions over time see Fig.4.1. It is not easy
to obtain 3D reconstructions of human bodies because human body shape is deformable
in difference to a large number of static objects, and therefore we often cannot utilize the
classical 3D reconstruction methods to 3D reconstruct humans from videos. Instead in

27



each frame, the shape of the human must be estimated. To this end, there are a number of
specialized models.

It is not obvious how to model human bodies in 3D. There are a number of alternatives
for example learnable dense body surface models such as SMPL [124, 125] and GHUM [126]
that fit a 3D mesh to a skeleton, this is known as skinning. The dense body models, as
shown in Fig.4.1 right, adapt the mesh to both body pose and the individual’s body shape.
A dense model allows for direct image segmentation, physics-based [127] and/or detailed
human motion modelling [128], but requires more effort to estimate than pose. A dense
model may be fit directly to LiDAR pointclouds [129]. Modeling humans in LiDAR alone
is hard because LiDAR provides a relatively sparse pointcloud of the human body, as seen
in Fig.4.2, even if the human is close to the sensor (the density of points decreases as the
human is further away from the sensor).

Figure 4.2: Pedestrians in Waymo LiDAR dataset.To the left: an early frame showing pedestrians at a crossing. Ped-
estrians are surrounded by blue, yellow, and turquoise bounding boxes. The point density of pedestrians
varies from frame to frame as can be seen by comparing the two left most pedestrians in the left and
middle image. Three sample zoom-ins of pedestrians are given to the right, showing that sometimes ped-
estrian pose is visible in LiDAR scans but not always. The ground points are aggregated across frames as
detailed in Paper I supplementary material.

An alternative is to model humans by their joint positions as in Fig.4.1 middle. The human
skeleton is a natural and compact expression of the human pose. The number of tracked
joints and the specific joints considered vary from model to model. A difficulty in detecting
human pose is detecting the appropriate bone length of the skeleton in varied clothing,
poses, and in the presence of occlusions. Therefore it requires in-lab gathered ground truth
labels to train robust pose estimation systems in 3D. Often 2D pose is utilized instead to
alleviate the need for 3D pose data. By 2D pose we mean the pixel locations of joint
positions in images, shown in Fig.4.1 left. Even though data gathering is easier for 2D pose
estimation, motion forecasting is harder in 2D because 2D poses are dependent on the
camera location and rotation.

In traffic data, it is uncommon to model 3D human pose because ground truth labels are not
available. Therefore trajectory forecasting often models humans with 3D or 2D bounding
boxes or top view 2D locations of humans in a scene. Articulated human motion models
are not yet popular in motion planning in traffic. Trajectory forecasting models concentrate
on modeling the effect of other traffic participants and the scene semantics on the trajectory
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of a pedestrian. A human’s motion in traffic is affected by a large number of variables [130,
131]; body dynamics, external factors such as other traffic participants, and the human’s
mood or intent. There exist also models that attempt to learn human intent from body
pose dynamics [52, 53, 132] or images [45, 51].

4.0.1 Human 2D Pose Estimation

Human 2D Pose estimation is a task where given an image of a human the goal is to find the
pixel locations (x1 . . .xNJ) of NJ anatomical joints, as seen in Fig.4.1 right. We would like
to model human motion in 3D poses, but this requires access to large amounts of varied
in-lab gathered Motion Capture (MoCap) data. There are still relatively few such datasets
because data gathering is time consuming. Therefore 2D human pose estimation is a pop-
ular research topic because 2D human joint locations can be quickly estimated by human
annotators, allowing for in general larger datasets with large variations in individuals, poses,
light and background to be generated.

Graphical models were popular 2D pose estimators in 2010 because they explicitly allow the
modeling of the skeletal structure. A graphical model is a statistical model that models the
interactions (conditional dependence) of stochastic variables in a graph. However, inference
in graphical models is complex due to the recurrent structure of the information flow.
Pose Machines [133] utilize an inference machine that approximates the information flow of
message passing in a graphical model. The problem is posed as a multi-class classification
problem where a classifier should classify each pixel as containing joint i. A belief map for
joint i gives each pixel the confidence that joint i is located at the pixel. The belief maps
for all joints are gathered in bt ∈ Rw×h×NJ . An inference machine is a sequence of TM
classifiers gt, t = [1 . . .TM], where each stage t in the sequence uses the previous classifer’s
gt−1 belief map bt−1 of the joint locations and hierarchical image features xz to refine the
belief maps. The pose machine can be summarized as,

b1 = g1(xz) (4.1)
bt = gt(xz,bt−1), 2 ≤ t ≤ TM. (4.2)

At each stage the previous layer’s belief map provides context. Each classifier gt, where
t = [1 . . .TM] has a separate loss and they are trained independently.

Convolutional Pose Machines [134], a popular 2D human pose estimation network, im-
proved upon Pose Machines by utilizing fully convolutional features instead of the Histo-
grams of Gradients (HOG) features and CNNs as classifiers gt. Convolutional features are
naturally hierarchical, allowing natural progression in the receptive field of visual context.
Convolutional Pose Machines are also differentiable end-to-end and avoid vanishing gradi-
ents by having a loss at the end of each stage. The model’s full loss is a sum of the per-stage
losses.
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A shortcoming of Convolutional Pose Machines is that they can only estimate the pose of
one human. To allow for multi-human pose estimation OpenPose [135, 136] estimates Part
Affinity Field s (PAF) which are vector maps that model limbs that connect the estimated
joint positions. The PAF’s lt ∈ Rw×h×2×CL where CL is the number or limbs, are calculated
again by a TL staged convolutional inference machine

l1 = ψ1(xj) (4.3)
lt = ψt(xj, lt−1), 2 ≤ t ≤ TL, (4.4)

where ψt are CNNs and the pretrained convolutional layers of VGG-19 [77] are used to
calculate image features xj. The PAF final lTL and the image features xj are used to calculate
per joint belief maps in a second staged convolutional inference machine,

b1 = ρ1(xj, lTL) (4.5)
bt = ρt(xj, lTL ,bt−1), 2 ≤ t ≤ TJ (4.6)

where ρt are CNNs and TJ is the number of stages in the joint position estimating module.
Because there are multiple instances of each joint it is unclear between which joint instances
limbs should occur. The PAF is integrated along the lines that join possible connecting
joints, and this value is used to weigh the possible connections. The limb connections are
found by weighted bipartite graph matching, which is solved one limb at a time with the
Hungarian algorithm. Finally, the limbs can be connected to form a skeleton. Both model
parts are trained to minimize the L2 distance to ground truth PAFs and joint position belief
maps.

4.0.2 Human 3D Pose Estimation

Reconstructing human pose is hard because humans are non-rigid objects and wear clothes
with varying appearances, and humans have varying body shapes and poses. Because hu-
mans are not rigid objects we cannot utilize the general 3D reconstruction methods if the
human is observed over multiple timesteps. However, it is clear that humans can infer the
3D pose of another human from a 2D image. Therefore it should be possible to train a
CNN to do the same. Unfortunately, there is a lack of large datasets with both 2D and 3D
annotated human joint positions, therefore information needs to be shared across datasets.

To this end the Deep Multitask Architecture for Fully Automatic 2D and 3D Human Sensing
(DMHS) [137] performs jointly human body part segmentation, 2D pose estimation, and
3D pose estimation. Like in OpenPose each task is carried out by a convolutional inference
machine, see Fig.4.3, but the different inference machines share information at each step.
The joint position belief maps are given by,

b1 = ρ′1(xb) (4.7)
bt = ρ

′
t(x

′
b,bt−1), 2 ≤ t ≤ TB, (4.8)
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Figure 4.3: An example showing the progression of 2D pose estimation and body part labeling in DMHS stages. The
estimate of joint positions and body parts is initially incorrect at stage 1 (in red) and is gradually improved
by each stage until the final estimate of stage 6 is output. A similar process is performed for the 3D pose
estimate, but it is not depicted here.

where xb and x′
b are convolutional image features found by a 7 and 4-layer convolutional

nets respectively, and ρ′t are CNNs. Like previously L2 loss with ground truth belief maps
is used to train the module. In body part segmentation each pixel is classified to one body
part label. The body part segmentation’s belief maps zt ∈ Rw×h×NB are found by

z1 = ψ′
111(xb,b1) (4.9)

zt = ψ
′
t(x

′
b,bt, zt−1), 2 ≤ t ≤ TB, (4.10)

where ψ′
ttt are CNNs. The CE loss is minimized when training the segmentation module.

Finally a feature vector for estimating the 3D poses rt ∈ Rw×h×NR is given by,

r1 = ξ1(xb,b1, z1) (4.11)
rt = ξt(x

′
b,bt, zt, rt−1), 2 ≤ t ≤ TB, (4.12)

where ϕ′
t are CNNs. Finally 3D positions of the joints X̂ ∈ RNJ,3 are found by applying

a fully connected network X̂ = fR(rTB). The total mean per joint position error (MPJPE)
for the dataset is minimized to train the 3D reconstruction module,

MPJPE(X̂,X∗) =
1
NJ

NJ∑
i=1

∥X̂i −X∗
i∥2, (4.13)

where X̂i ∈ R3 and X∗
i ∈ R3 are the i-th joint coordinates in the estimated X̂ and

ground truth 3D joint vectors X∗ respectively. The full model’s loss function is a sum of
the three different module’s loss functions. Each module can be trained separately or jointly.
This allows the model parts to be trained on different datasets where different annotations
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are available (2D joint positions, body-part segmentation, and 3D joint positions) without
the need for one dataset with all three label types. Therefore the model can be trained on
more data, providing robustness during inference. Higher accuracy could be obtained if all
three labels are available on the same image data.

4.1 Pedestrian Trajectory Forecasting

The problem of pedestrian trajectory forecasting is popularly considered to be the following.
Given T top view frames of the scene, with the past T timestep positions in the top view
image of all pedestrians in the scene, forecast the pedestrians’ positions for the next S steps.
For sample trajectories of humans see Fig.1.1. Human trajectories are affected by a num-
ber of factors; the goal of the human, the mood of the human, the individual’s dynamics
(may depend on age and other physical qualities), the behavior and placement of traffic
participants, and the geometry or layout of the traffic scenario. Using a top view image of
a scene [138–141] does not allow the existing trajectory forecasting models to observe the
pedestrian’s pose or head direction, making goal location estimation and the forecasting of
exact human dynamics harder.

Probably the most influential model in the field is the Social Forces model [142] that attempts
to model the interactions between pedestrians. Each pedestrian has a goal and a desired
velocity towards the goal. Pedestrians in general tend to avoid other pedestrians and this is
modelled by a repulsive force that is a function of the distance between pedestrians and the
direction of motion. A similar repulsive force is exhibited towards obstacles. Pedestrians
can also exhibit time-dependent attractive forces when traveling in a group, or when staying
close to an object. All forces are exhibited towards a visible area of the moving direction.
The motion of a pedestrian is found by applying these social forces to the desired velocity
with a stochastic additive component.

The social forces model has motivated the SocialLSTM [143] that learns social interactions
in an LSTM, by sharing the hidden states of neighboring pedestrians’ LSTMs. SocialL-
STM paved the way for a large number of ANNs [144–147] that model spatio-temporally
the pedestrian interactions with one another. The Social Forces model also inspired the
modeling of pedestrian to pedestrian interactions with GANs [148, 149], coarse to fine
networks [150, 151], Graph Neural Networks [152, 153], Transformers [154] and a learnable
physics model [155]. There exist also methods that model pedestrians as RL agents [23, 156,
157], perform multi-modal [151, 158, 159] or augmented predictions [160]. In an attempt to
learn pedestrian intentions key point and waypoint anchored trajectory forecasting meth-
ods [161, 162] have been developed after paper I was published.

A number of critical works have been published showing that constant velocity methods
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can outperform a large number of trajectory forecasting methods [163], and a study [164]
showing that the majority of social modeling methods do not understand collisions. In dif-
ference to this, in paper I our model is compared to the constant velocity baseline, and our
model is trained to avoid collisions with RL. Paper I uses RL when learning beyond exist-
ing data while learning efficiently from observed trajectories through supervised learning.
The majority of the available work however do not model the interactions between humans
and vehicles, and only the later work use scene semantics in the modelling of pedestrian
trajectories. Further none of the models ensure that the predicted trajectories are following
realistic human dynamics, or model human pose. To our knowledge paper I is the first
to model the influence vehicles and scene semantics have on pedestrians, and provide an
articulated trajectory.

Models that simultaneously detect and predict the trajectories of pedestrians and vehicles [14,
16, 19] have become popular due to their easy use in AVs. A number of models that specific-
ally model human crossing behavior at intersections based on gaze or 2D pose (i.e. pose in
the image plane) [165–169] exist. These methods are often based on a single still image and
cannot be used to model pedestrians in other locations in traffic or when the pedestrians
are further away from the vehicle. Because both the human and the car influence one an-
other we optimally wish to model their influence on one another. To this end, there exist
a number of augmented reality studies [166, 170–172] where humans are asked to react to
cars in simulation. The issue with these datasets is that they are relatively small because the
experiments are time-consuming.

4.2 Human Pose Forecasting

Human pose forecasting is the problem of predicting the 3D pose for Tout timesteps given the
3D poses of the human for the past Tin timesteps. Human pose forecasting is concerned
with modeling joint movement and often the pose is centered around the center of the
hip joints, known as the root joint, to remove the motion of the full body. It has been
noted in paper I and in [173, 174] that it is advantageous to forecast the trajectory and pose
jointly. The main problem in human pose forecasting is concerned with how to model both
the temporal and spatial relations present. The continuous movement of a joint creates
temporal patterns, and the dependence of joints upon one another creates spatial patterns.
Due to the physical properties of the human body, certain motions may be invalid, and
some more probable.

The majority of early ANN based human pose forecasting methods [175, 176] use RNNs [177–
179] or Variational Autoencoders (VAE)s [180, 181] that should learn the motion of the joints.
Recently Graph Convolutional Networks [182–186] have gained popularity as a method to
model relations between joints. The Space-Time-Separable Graph Convolutional Network
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for Pose Forecasting (STSGCN) [183] is a relatively low dimensional model that improved
significantly over previous work. The model uses Graph Convolutional Networks (GCN)
to encode human pose. GCN’s approximate convolutions in graphs [187]. A graph here
is a set of vertices described by feature vectors vg that are connected by weighted edges.
An adjacency matrix G ∈ RNg,Ng described the graph connections of a matrix with Ng
vetrices. The adjacency matrix component Gi,j contains the weight of the edge connect-
ing vertex i with vertex j. The diagonal elements Gi,i of a graph adjacency matrix denote
the number of vertices the vertex i is connected with. A normalized graph Laplacian is
L = I−D− 1

2GD− 1
2 , where D contains the diagonal elements of G. The eigenvalues ∆g

of L measure the frequency of the connections corresponding to the eigenvectors Ug of G.
A graph convolution ⋆ of a graph vg with a filter fg is applied as

fg ⋆ vg = Ugfg(∆g)U
T
g vg, (4.14)

where fg is the learnable filter that is applied to the diagonal elements of ∆g. In STS-
GCNs, the convolution is approximated and separated into a matrix multiplication with
two learnable vectors WΘ and AΘ. Where WΘ ∈ RNc×NC weighs the vertex features,
where Nc is the number of channels in the input vertex features and NC of the output
features, and AΘ ∈ RNgNt×NgNt is the learned adjacency matrix where Nt is the observable
time horizon. A GCN layer consisting of a learnable graph convolution with a non-linearity
fσ is given as,

fg ⋆ vg = fσ(AΘVgWΘ), (4.15)

where Vg ∈ RNgNt×Nc is the input to the GCN. To reduce learnt variables the STSGCNs
explicitly separate the temporal and spatial components of the learnt adjacency matrix AΘ.
The model applies the spatial adjacency matrix spatially over one channel and the temporal
adjacency matrix across multiple channels per spatial location. STSGCN uses the Para-
metric Rectified Linear Unit (PreLu) activation function that is a relaxation of the ReLU
function allowing parametric a non-zero gradients for x < 0 PreLu(x) = ax, otherwise
PreLu(x) = x. A four-layered GCN encodes the K past poses, which are decoded by a
four-layered Temporal Convolutional Network (TCN). A TCN [188] consists of a 1×1 con-
volution followed by a causal convolution, performing convolutions across the time domain
rather than spatially, followed by a nonlinearity. TCNs model temporal patterns and have
a longer memory than RNNs [188]. The STSGCN is trained to minimize the average per
joint position or angle errors.

From the animation community, human motion modelling has been done mostly with
motion retargeting. That is small samples of MoCap data are replayed from a database with
adjustments to new limb lengths. Interpolation is used to smooth motion between different
motion samples from the database. The Phase-Functioned Neural Networks (PFNN) [189]
is a popular model that utilizes ANNs instead of a database. PFNN models walking as
a cyclic behavior according to the placement of the feet. A cycle begins when the right
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foot touches the ground and has phase π when the left foot touches the ground. All other
poses are assigned a phase through interpolation. The phase functional neural network
consists of a phase function fα that assigns ANN weights wNN = fα(α,α,Wα) to the
motion forecasting network based on the phase α of the motion. The phase function fα
is a Catmull-Rom spline, a differentiable cyclic interpolation between the control points
Wα = (wα1 ,wα2 ,wα3 ,wα4). The phase function fα =

∑4
i=1 fw(α,α)wαi is a weighted

sum of the control points, where the weights are given by a non-linear function fw(α,α)
of the phase α and the control point phases α = (α1, α2, α3, α4). The NN that forecasts
joint positions fNN is a three-layered fully connected network with 512-dimensional hidden
layers with Exponential Rectified Linear Unit(ELU) activations ELU(x) = max(x, 0) +
exp(min(x, 0))−1. The network fNN obtains its weights from the interpolation fα, so the
full model is trained by optimizing the objective,

JPFNN = min
Wα

∥YPFNN − fNN(fα(α,α,Wα),XPFNN)∥, (4.16)

where XPFNN is a vector consisting of the inputs, and YPFNN of the outputs of fNN. The
vector XPFNN contains the previous timestep’s hidden layers of the network fNN, past joint
velocities and positions, gait style (walking, running, jumping etc), and future planned
trajectory for the human. The vector YPFNN contains the next timestep joint positions, ve-
locities and rotations, the future translation of the root joint, the next timestep’s phase and
future predicted trajectory. The control phases α are chosen at fixed points. More com-
plicated human motions have been replicated for animation with learning-based models
trained in a physics engine to mimic the motion of humans [108, 190–192].

There is still a gap between existing human trajectory models and human pose forecasting
models. This is likely due to the lack of MoCap data of humans interacting freely in a
general environment. The general lack of highly accurate but varied MoCap data has led
to increased research efforts into generative methods that attempt to learn a latent space
that is representative of the possible human motions [193–198]. It is however clear that
a combined model capable of human trajectory forecasting and human pose forecasting
could improve results on both tasks.
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Chapter 5

Autonomous Vehicles

Autonomous vehicles reason about what steering signals to give based on sensor observa-
tions. By steering signals, we mean steering angle, throttle, gas and break signals. Vehicles
can have a number of sensors such as cameras, Light Detection And Ranging (LiDAR),
thermal cameras, radar, ultrasonic, event cameras, etc. A LiDAR consists of a consist of
light-source and a light detector. Distance to objects is measured by the time of flight of
the reflected light. LiDAR sensors produce a pointcloud that is denser the closer an object
is to the sensor. We will concentrate on cameras and LiDAR as sensor inputs to allow
the use of the vast majority of visual recognition and modelling from the computer vision
community. A combination of sensors is expected to perform best, especially in varying
visual conditions.

To make driving decisions based on sensor input there are a number of subtasks to be solved.
The following two subtasks are usually assumed to be solved by a unit separate from what
is considered to be the AV model:

• Route Planning - What roads to take to travel from a start location to a destination.
There exist various commercial products such as Google Maps, etc. that solve this.

• Localization - Exact localization of the vehicle. This is needed to provide the vehicle
close by sub-goals known as waypoints and a local layout of the road to ease percep-
tion.

The following subtasks are usually considered to be a part of the AV:

• Perception - Detecting traffic signs, other traffic participants and their motion, the
layout of the neighbourhood of the AV i.e. the scene, and any other relevant objects.
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• Behavior Planning - Planning how the other traffic participants may behave and how
the AV should move to avoid collisions with them.

• Motion Planning - Planning how to move to reach the waypoint in a feasible (from
the standpoint of the car dynamics) and comfortable manner.

• Vehicle Control - How to perform the planned motion in actuator control. Requires
control and understanding of the vehicle physics in the current road conditions.

In modular AV systems, these subtasks are solved by one or more separate systems, and in
end-to-end models, one single model is responsible for solving all of the above AV subtasks.
End-to-end models are typically Deep RL or imitation learning models. End-to-end meth-
ods [199–204] have obtained impressive results on AV driving benchmarks [205] and allow
the information to flow among the different sub-components (including uncertainty), but
provide little insight to what the decisions were based on. On the other hand in hier-
archical models such as [206] decisions are easier to interpret but separating the different
problems into modules may inhibit the natural information flow, leading to miscommu-
nication among the modules, or even negligence of important objects or situations. There
exist a number of methods [207] that utilize one single model from perception to motion
planning but use methods from automatic control such as Proportional-Integral Derivative
(PID) control [208] for vehicle control. Independently of the design when evaluating the
AV it is crucial to ensure that any errors made in the full pipeline should be detected during
testing. Therefore papers II and III propose methods to test the full pipeline of an AV.

5.1 Perception and Behavior Planning

This work in particular concentrates on the perception and behavior-planning tasks in AVs.
To this end, we will shortly give an overview of the models used to capture the objects in
the AV’s proximity. One problem that is central in AV modelling from images and LiDAR
is the amount of data that is generated. To plan the AV’s trajectory the distances to objects
in the scene must be recovered, however, this takes a large amount of space and without
compression, a scene observation of 2s can take around 10-30 GB to store (this is the case
for the scenes in paper v). In an hour of driving this would mean around 20 TB of data.
Therefore it is crucial to filter out only salient information so that the observed data can be
saved or communicated to a server to improve future models. Therefore compact represent-
ations of the traffic scene have been explored in the literature [209–213]. Nonetheless 3D
pointclouds and dense 3D reconstructions as well as LiDAR data can be used for realistic
simulations.

Birds-Eye View (BEV) images (i.e. top view image of a scene) of the local neighbourhood
have been considered [210], because they allow for clear distance and motion measurements

38



and can be directly utilized in a number of neural computer vision models. Unfortunately,
visual cues of pedestrians and other cars are lost. In BEV the AV cannot, for example,
observe the pedestrian’s pose or head direction which are both important cues for human
motion prediction in traffic [165–169, 214]. The BEV allows for motion planning mod-
els [215, 216] to capture the semantic relations of the scene and the traffic agents, but is
susceptible to miscalculations in depth.

Another common approach is to use rasterized High Definition maps [209, 217–219], where
the scene is further simplified to road lanes and 3D bounding boxes for co-traffic parti-
cipants. Though this method is extremely compact and allows for the direct matching of
road lanes as captured in images to the road lanes as found in a map, it is possible that this
method is too simple omitting the scene semantics and therefore omitting important data
for the motion planning task.

Finally there exist models that simultaneously perform object detection, tracking and plan-
ning [14, 16, 19] in top view images. Trajectory forecasting and motion planning in the pres-
ence of occlusions has recently gained attention [220–224]. Similarly models that predict
multi-modal motion and safe planning are of interest to be able to avoid threat filled ac-
tions [225–230]. Note that in the majority of the planning models pedestrians and vehicles
are modelled homogeneously [34, 36–44], assuming that a similar model will be able foresee
their behavior. We argue that there is no particular reason to believe that this is the case
when humans and vehicles have different behaviors in traffic. This is also strongly motiv-
ated by the fact that models developed to foresee vehicles’ motion exclude the visual and
motion cues present in human pose and gaze.

5.2 Simulating Autonomous Vehicles

Simulation is often used to train and test AVs because it is cheaper and safer than training or
testing in the real world. A large number of AV methods have been developed in simulation
environments such as CARLA [205, 214]. These simulation environments are built on
physics engines and utilize complex models of the vehicle’s dynamics allowing the testing
of steering. However, it is hard to generate realistic sensor output. The realism of the
generated sensor output is easily evaluated by humans in images, but less so in LiDAR
scans. Realistic LiDAR simulation is studied in [231], this requires correct modelling of
datapoint and noise distributions. Even if sensor outputs are modelled in great detail an
AV model that performs well on simulated data may fail on real data due to the discrepancy
between the simulated training data and real test data. This is known as the simulated-to-
real gap (Sim2Real). The AV research community has placed a lot of effort into closing the
Sim2Real gap [232–235], but this requires additional treatment of existing methods.
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The Sim2Real gap is particularly of interest for visual data when modelling pedestrians
because in the real world humans can vary in size, height, age, body composition and
dynamics. This is seldom represented in the simulated data. Secondly, the majority of
pedestrian detection models that utilize articulated models, thus allowing for precise human
motion modelling, rely on visual data. Finally, in traffic in particular there is also a Sim2Real
behavioral discrepancy. It is common to encounter only the best and the worst behaviors of
vehicles and pedestrians in simulations, but in reality there are a large number of variations
in how traffic participants can behave depending on their goal, mood, traffic density, and
the presence of abnormal traffic behavior and temporal constraints.

This has made the augmentation of real data an interesting research field to allow for more
varied data with a smaller Sim2Real gap. To this end, there has been an explosion of visual
models that allow one to generate new views in a traffic scene [236–239]. The rise of Neural
Radiance Fields (NeRF) [240] has given hope to new view synthesis. The increase in new
view synthesis methods gives hope that AVs could be tested in augmentations of real data.
The drawbacks to this are still that a large amount of data needs to be recorded, and it
is currently unclear how to adapt the models to show the possible visual and behavioral
variability in the scene. Similarly, LiDAR data generation and augmentation have been
studied in [231]. Ultimately the goal is to be able to augment data by being able to generate
new views (so the AV can move freely in the space), to generate new behaviors for traffic
participants possibly changing the number of traffic participants and by visually altering
the scene.

5.3 Testing Autonomous Vehicles

Accidents and critical scenarios occur seldom in traffic. Therefore critical scenarios need to
be simulated to test and train AVs. A critical scenario can be defined in a number of ways,
from the occurrence of an accident to an uncomfortable driving style. The behavior of an
AV should be tested under varied conditions to ensure traffic safety, namely under

• adversarial attacks - that is a small perturbation is added to sensor measurements
changing the perceptive model’s output and affecting the planned route of the AV,

• traffic density variations - variations in the number of vehicles and pedestrians present,

• behavioral variations - variations in the traffic participants behavior,

• presence of abnormally behaving traffic participants - other traffic participants may
not follow traffic rules or behave out of the ordinary,

• car dynamics variations - variations in road conditions may change the car dynamics,
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• visual variations- variations in the appearance of different objects, but also in the
weather conditions,

• scene layout variations - different traffic scenarios.

To this end, testing can be performed in a scenario-based manner [241–245] or modu-
larly [246–249]. Scenario-based testing allows for the testing of end-to-end AV models
and for the testing of interactions of the modules of a modular AV model. Scenario-based
testing allows for qualitative analysis of the realism of generated test scenarios. This is ad-
vantageous because a large number of high-risk scenarios are unrealistic, and AVs should be
tested on critical and plausible scenarios. An easy example of a very high-risk but unrealistic
scenario is one where all traffic participants (including pedestrians and bikers) actively seek
collisions with the AV. The probability of a collision is high in this case, but the chances
of encountering such a scenario in real traffic are slim, therefore this is not a particularly
interesting test scenario. Instead realistic high-risk scenarios where for example a collision
may occur due to poor visibility in regular traffic are of higher interest.

Test case generation can be separated into white-box treatments and black-box treatments
of the AV. In white box models the decision-making model of the AV and the AV’s dy-
namics are assumed to be known. White box modelling must be performed (and possibly
developed) uniquely for each AV model architecture, but is in general more efficient than
black box modelling where the AV’s reasoning is considered to be unobservable- i.e. a
black box. Black box modelling in AV testing however provides a general method to test
and compare any AV models.

When utilizing dynamic programming or reachable sets to back-track collisions the world
dynamics must be known and reversible in simulation. This is in general hard for end-
to-end AV models that make decisions based on signal input, as backtracking requires the
ability to reverse sensor simulations, and omits the possibility of utilizing real-world traffic
data with unknown dynamics for external traffic participants. Further, back-tracking-based
methods require that the set of collisions in space and time are known, which in general is
not the case due to the sparsity of collisions. Finally, additional care must be taken to ensure
that the initial state of scenarios that are found by back-tracking are realistic in traffic and
that the scenarios are semantically coherent. Therefore the following discussed methods
utilize forward simulations only to generate collisions.

There exist a number of methods to generate test cases for AVs. The problem can be solved
through data interpolation [250], extrapolation [251] or by perturbation [252–254]. How-
ever, these methods often lead to scenarios that are similar to the original data, not providing
insight into the AV’s performance on unseen scenarios. Optimally the test generator should
generate realistic and varied test cases that represent the possible variability in all realistic
collision scenarios. Because real datasets are relatively small it is unlikely that the existing
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public datasets are able to cover all of the possible variability in real traffic scenario geomet-
ries, traffic behaviors, traffic density and visual variations. This limits also the variability
of test cases that can be generated from the existing public datasets, therefore extrapolative
methods must be used to generate more varied test cases. Some realism is expected to be
lost with extrapolation.

Collision generation can also be seen as a black box or white box optimization prob-
lem [255–257], where scene-describing parameters are optimized to induce collisions. To
utilize the MDP structure of the problem RL can be used instead to choose adversarial scene
parameters [258, 259] or be used to model adversarial traffic participants [260]. Collision
generation can be treated as an adversarial attack on the car [261, 262], but the generated
scenarios are confined by the variability of the existing dataset. When only planning com-
ponents are tested driveable-area-based test case generation methods can be used [263–265].

In this work, we draw attention to the pedestrian models utilized in test case generation.
Often human behavior is modelled extremely simplistically as a constant velocity motion
or as adversarial agents (i.e. collision seeking) with little respect for human dynamics. This
makes collision generation easy, but the generated collisions are not likely because the hu-
man motion is unrealistic. Further, the scene’s realism falls with an increasing number of
unrealistic pedestrians. A realistic pedestrian’s motion is semantically grounded in a traffic
scene (i.e. the pedestrian follows traffic rules to some degree depending on the scene geo-
metry and traffic density), physically plausible for the human body to exhibit and varying
depending on the pedestrian’s intention and the traffic around the pedestrian.

Finally, it is worth noting that there is a large number of possible additional open quality
issues with AVs such as how to share data privately when communicating with other devices,
how to perform calculations energy efficiently, what to communicate among AVs, how to
scale up the data gathering and who is liable in the case of an accident.

42



Chapter 6

3D Reconstruction

An image is a two dimensional projection of the three dimensional world. Therefore by
taking a picture we lose information along one dimension; the distance from the camera
center to the object. By performing 3D reconstruction we aim to recover this distance such
that we may find the 3D positions of all points seen in a camera. Here some of the basics
of 3D reconstruction are shortly presented.

6.1 The Pinhole Camera Model

Figure 6.1: To the left: As light rays pass a small aperture they create an image of the world on the back of the camera.
The distance from the aperture to the image is known as the focal length denoted by f. To the right: The
camera’s coordinate system in an image, where Z points outwards.

The pinhole camera models a camera as an enclosed box with a single hole. As light rays
pass the hole a reversed image of the world is drawn on the back of the camera wall as seen
in Fig.6.1. It is assumed that the hole in the camera is small enough such that only one ray
of light from each point passes through it, allowing us to see a sharp image. The location of
the aperture is known as the focal point, and the distance from it to the back of the camera
is the focal length, denoted f. In practice, the image may be captured by a digital ray of
sensors, placed at the back wall of the camera, that digitalizes the image. As the image is
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captured by an array of light sensors on the back of the camera the image may be deformed
by the shape and placement of the sensors. This is commonly described by the camera’s
internal parameters gathered in the intrinsic matrix K ∈ R3×3, that describes how the
camera projects the 3D points onto the image plane. Images are commonly digitalized
into pixels. Often each pixel is represented by three colors red green and blue giving rise to
the RGB representation that consists of three images - one per color. The different colored
images are referred to as the different channels of the image and are commonly indexed by
a third channel depth index.

The camera is translated by cx ∈ R3 and rotated byR ∈ R3 with respect to some global co-
ordinate system, where cx and R are in general unknown. The camera has its own coordin-
ate system that defines the positions of the different pixels at x ∈ R, y ∈ R coordinates
(pointing to the right and downwards respectively in the image plane) and the coordinate
pointing outwards from the camera is the depth or z ∈ R axis, as seen in Fig.6.1. To ease
notation we will treat the image that is formed in front of the camera and is therefore not
upside down. If the matrix K is known we can form a calibrated image that is formed at
one unit length in front of the camera, i.e. z = 1, is centered around the camera’s focal
point and has square pixels. The image x of a 3D point X in the global coordinate system
is formed by

zx = K[R|cx]X, (6.1)

where P = K[R|cx] is the camera matrix, and note that X ∈ R4 with number one as the
last coordinate to allow translation to be written as a matrix multiplication.

6.2 Overview of Structure from Motion

In a typical Structure from Motion(SfM) problem an object or a scene is observed from a
number of cameras. The aim is to find the 3D structure of the objects depicted in the
images, and the positions and rotations of the cameras P. The classical 3D reconstruc-
tion processes are often divided into a sparse and a dense reconstruction. A sparse 3D
reconstruction is found from selected points in images to reduce computational costs and
increase robustness to noise. As a second step, a dense reconstruction may be performed
after the camera matrices P have been found.

Sparse reconstruction is usually performed on points that are expected to look similar across
views. Typically these points are corner points or similar that are found by their high
gradients in different directions and colors. The selected points are described by feature
vectors such as the well-known Scale Invariant Feature Transform (SIFT) [266], which have
recently been replaced by learned features [267]. The feature vectors are then compared
by a similarity measure and matched across images. Because a large number of points can
have similar appearances it is common to encounter a large number of outliers and noise.
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To reduce the effect of outliers Random Sample Consensus (RANSAC) [268] is commonly
used. This is a process in which a small (possibly minimal) number of matches are selected
at random, and camera matrices are found according to the matches. This is done a number
of times. The best fit among the random samples is found by maximizing the number of
inliers (points with a reprojection residual below a certain threshold). The reprojection
residual ∥x′

r − xr∥, see Fig.6.2, is the distance from the projection x′
r of a reconstructed

pointX′ to the original 2D pointxr in the image space. The sparse reconstruction’s solution
is often finetuned by a global optimization over the 3D points and camera matrices, the
optimization is known as bundle adjustment (see §6.4). Finally, dense 3D reconstruction
is performed by finding the depth of each pixel in each image. This can be done by for
example disparity estimation, see §6.3.

6.3 Basics of Binocular Triangulation

Figure 6.2: When observing a 3D pointXwith a projection xl in the left image then we know that the corresponding
point in the right image must lie of the epipolar line er in the right image marked as the orange line.
The object could be found along any of the dashed grey lines, and xr can be found by matching xl with
all pixels along er. The camera centers cl and cr are separated by the baseline b in purple. The epipolar
plane is marked in green. If the point xl is incorrectly matched with x′

r then this results in the incorrectly
reconstructed point X′ instead of X.

A binocular rig consists of two identical cameras that are fixed such that they view the world
horizontally in parallel (just like our eyes). Image rectification can be used to ensure that the
images are exactly parallel. Any visible object will be shifted in pixel values from one image
to the other along epipolar lines as seen in Fig.6.2. Epipolar lines lie in the same plane as
the cameras, and in our work most often the epipolar lines are horizontal. Therefore if an
object has x-coordinate x1 ∈ R in the left image and x-coordinate x2 ∈ R in the right then
the displacement of the object between the images d = x1 − x2 is known as the disparity.

In Fig.6.3 we can see the triangle that is spanned by the cameras and the viewed object, for
notational simplicity here we form the image in front of the camera center at a depth f. The
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Figure 6.3: The same object appears on the right of the camera center in the left camera and to the left of the camera
center in the right camera. This spans a triangle drawn in dark blue that has a base b ∈ R and height
z ∈ R. The dark blue triangle is similar with the pink triangle within it with base b − d and height z − f.

unknown depth from the object to the cameras is denoted z and it is the height of the dark
blue triangle. The distance between the cameras b ∈ R, also known as the baseline, is the
base of the triangle in dark blue. Because the image of the object is assumed to lie to the
right of the focal point of the left camera x1 is positive, and x2 lies to the left of the right
camera’s focal point so x1 is negative. Therefore the pink triangle’s base can be expressed as
b − d, and its height is z − f. Because the pink and the blue triangle surrounding it have
the same ratio of height to base,

z
b
=

z− f
b− d

=⇒ z =
bf
d
.

Finally, we note that the baseline and focal length are physical values that are known and can
be measured from the experimental setup. Therefore the depth of an object z is inversely
proportional to the disparity d. Dense disparity is however quite often noisy. It is found
by comparing a small region of size h × w of an image to other regions of the image of
the same size, by methods such as the classical Sum of Squared Differences (SSD) [269]. If
the image contains multiple regions that look similar then the disparity may be confused
about which are the regions that match. Note that there exist modern monocular depth
estimation networks [270] that learn to estimate the depth of all objects in a single image.
These methods were still in the development stage at the time of developing the paper v, so
paper v utilizes disparity. It should be noted that the monocular depth estimator networks
need to be trained on similar data as they are utilized on, and may be outperformed by
classical methods in previously unseen scenes.
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6.4 Bundle Adjustment

Bundle adjustment optimizes the camera matrices and 3D points such that re-projection
error (∥x′

r−xr∥ in Fig.6.2 for all points and images) of the recovered 3D object is minimal.
This is done using non-linear least squares. For simplicity, we assume that the camera’s
internal matrix K is known. Let Mi points Xi ∈ R4 in the world be projected in Mj
cameras with camera matrices P1 . . .PMj . The point xi,j ∈ R3 is a projection of the point
Xi in the j-th camera. The projection is described as xi,j =

1
ziPjXi, where zi is the depth

of the i-th point in the global coordinate system. Then bundle adjustment is the joint
optimization of the camera’s external parameters in Pj and the 3D points Xi to minimize
the reconstruction error

min
X1...XMi ,P1...PMj

∑
i

∑
j

∥∥∥∥xi,j −
1
ziPjXi

∥∥∥∥2

. (6.2)

The problem is bipartite; if Pj are known then the optimization of Xi becomes independ-
ent, and vice versa. This can be utilized in the optimization of 6.2. When bipartiteness is
utilized then the points and cameras can be optimized iteratively by alternating between
keeping Xi fixed while optimizing Pj and keeping Pj fixed while optimizing over Xi. The
problem can be solved by for example linearized Gauss-Newton or Levenberg–Marquardt
methods [269]. A well-known shortcoming of bundle adjustment methods is that they are
often dependent on the initialization of the camera matrices and can fail to converge if
initialized too far from the global optimum. Uncertainties from 2D point matching can be
included in the bundle adjustment objective. It should be noted that since the development
of the results of paper v modern deep learning-based methods for feature matching [271],
and SfM [272, 273] and even dense simultaneous localization and mapping (SLAM) sys-
tems [274–276] have been developed.

In paper v a moving camera is treated as multiple differently positioned cameras after re-
moving dynamic objects from the images. One of the key difficulties in reconstructions
from a moving camera is motion blur, that is blur in an image as a result of motion or too
low shutter speed. It is difficult to recognize the same points from multiple blurred images,
therefore bundle adjustment can be calculated only for a few of the 3D points and cameras.

6.5 Procrustes Analysis

The set of 3D points {X̃1 . . . X̃N} that are estimated from images by SfM or SLAM are
known as a 3D pointcloud. If we observe the same 3D object or scene again at a different
point in time we may wish to recognize the same 3D structure. Therefore we need a method
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to align two 3D pointclouds. To this end, Procrustes Analysis [277] may be used to find the
scaling, rotational and translational difference between two 3D pointclouds with known
matching points. In paper v Procrustes Analysis is used to compare human poses.

Given two sets of N points gathered into matrices A,B ∈ R(N,3), then full Procrustes
analysis finds the optimal rotation, translation and scaling such that the ordered pointclouds
match,

JP = min
β,γ,Γ

∥∥B− βAΓ− 1Nγ
T∥∥ (6.3)

by optimizing the scaling β > 0 and the rotation matrix Γ ∈ SO(3), and translation
γ ∈ R3, where 1N is a vector of ones with length N. The points in A,B are assumed to
be centered around their centroids. The solution [277] to (6.3) is

γ∗ = 0 (6.4)

Γ∗ = UVT where
BTA

∥B∥∥A∥
= VD̂U

T
, U,V ∈ SO(3). (6.5)

β∗ =
trace(BTAΓ∗)

trace(ATA)
, (6.6)

where D̂ is a diagonal matrix with positive real values on the diagonal. If D̂ contains
negative elements on the diagonal then this means that a reflection should be performed.
Procrustes analysis is used in Paper v to correct impossible 3D reconstructed poses by find-
ing the closest match in a dataset of plausible poses to a reconstructed pose.

Orthogonal Procrustes Analysis [278] can be used, where Γ is allowed to be in any ortho-
gonal matrix, i.e. det(Γ) = +−1, thus allowing for reflections. The problem is simplified
from (6.3) by dropping the scaling β and translation γ∗. The solution [278] is somewhat
less elegant,

BTAATB = VoDoV
T
o (6.7)

ATBBTA = UoDoU
T
o (6.8)

Γ∗
o = UoV

T
o (6.9)

and is given by the diagonalizations (6.7) and (6.8), where Do is a real diagonal matrix with
non-zero diagonal entries and Vo,Uo are orthonormal matrices.
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Chapter 7

Concluding Marks

As humans, we have a large understanding of traffic rules as well as an inherent under-
standing of human motion. Training computers with the goal of reaching the same levels
of understanding as humans is a challenging task for computers. In most countries, hu-
mans are allowed to build their internal understanding of the world and its dynamics for
15-18 years before being allowed behind the wheel of a vehicle. However, it is completely
unacceptable for a computer with poorer computational power (in particular in vision)
than the human brain to learn such behavior for 18 years (in fact longer due to the lower
computational power of computers) by solving other related tasks needed to understand
the world and its dynamics. Learning systems should in fact be compared to a new-born
baby who is being taught to drive a car. This comparison makes the achievements made in
autonomous driving much more impressive. When in particular looking at how computers
understand the behavior of humans one should note that humans have a large advantage
compared to computers; we can transfer our knowledge of how our own bodies move to
form expectations of the motions of pedestrians. Humans start to learn about their dy-
namics already before being born [279] and sensorimotor systems are developed further
through sporadic movement during sleep [280]. Further, it can be expected that our brains
are wired to be biased to understand human dynamics such that one can foresee his or her
own body’s motion in complex tasks with extremely little computation time [281]. There-
fore computers are at a disadvantage compared to humans in pedestrian forecasting and
effort is needed to catch up in pedestrian motion modelling with humans. Human motion
prediction becomes more confined in physiologically detailed models such as the sensory-
driven muscle-reflex model of human legs [282] or the neuromechanical models [283, 284]
as some motion can be modelled by Central Pattern Generators (CPG). This thesis argues
that by modelling interactive pedestrians with (at least) articulated motion in traffic we
should be able to improve the AVs’ safety in interactions with humans.
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In general pedestrian motion can be expressed to be stochastic (when compared to cars for
example) because there are a large number of unobservable factors that affect a pedestrian’s
motion. However, somehow humans are able to effectively predict the possible motions of
pedestrians. In paper I we have made an attempt to model a number of, to our knowledge
previously unmodelled, factors that clearly affect pedestrian motion in traffic. We overcome
shortcomings in available data by combining prior knowledge and various datasets.

Secondly, we note that humans and vehicles are mathematically speaking playing a game
when interacting in traffic. In this game, both pedestrians and vehicles are on the same
team even though they do not share exactly the same objectives. The actions of pedestrians
do affect the actions of AVs and vice versa. Therefore special care must be taken when
modelling pedestrian motions in traffic. In particular, in AV testing pedestrians should
be modelled as cooperatively interactive to identify the AV’s shortcoming in interactions
with realistic pedestrians. We show that utilizing cooperative pedestrians in AV testing is
possible in papers II and III.

AVs should be tested in collision-prone scenarios before deployment. This requires the
efficient generation of collision-prone scenarios in varied settings. But the scenarios where
collisions are most likely to occur are often unrealistic, therefore realism and collision-
proneness must be balanced. In difference to previous work papers II and III utilize realistic
pedestrian behaviors making the search for collision-prone scenarios harder. To ensure that
collisions occur the AV and pedestrians can be constrained by the environment by, for
example, occluded views of the world. Paper III proposes an easily extendable framework
that allows for varied constraining of the AV. This is important because as the AV (and
possibly also the pedestrian model) improves more constraints need to be added to the AV
to ensure that collision scenarios exist.

Detecting pedestrians from onboard a moving vehicle is hard. In particular, because pedes-
trians are often small or occluded. Further, a number of articulated human sensing methods
fail to produce stable results on traffic data, because the models are commonly trained and
benchmarked on datasets where humans are clearly visible. Detecting the 3D pose and
the distance to the human from binocular images is further made harder by the fact that
vehicles often move forward at speeds that cause a number of 3D reconstruction meth-
ods to fail. Paper v motivates why a dataset of articulated pedestrian motion has not yet
been developed, due to the challenges in detecting and reconstructing humans from images
captured from moving vehicles.

If articulated pedestrian data is available what kind of improvement in motion forecasting
may be expected? Human pose forecasting is commonly treated as a timeseries problem.
In paper Iv we argue that the common benchmarks are not representative of real-world
interactions, where an AI system in general has longer interactions with individuals than
benchmarked. We argue that the existing benchmarks restrain methods from utilizing the
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personalized motion patterns present in each individual’s motion and propose a simple
timeseries method to remedy this.

In the following, we will provide a more detailed summary of contributions, shortcomings,
and outlooks for each paper.

Paper I is the first work to capture pedestrian-vehicle interactions, pedestrian-pedestrian
interactions, pedestrian-semantics interactions, and the pedestrian’s dynamics by modeling
human pose. Because a complete dataset of articulated pedestrian motion in traffic is not
available this is achieved by combining different training methods and sub-models trained
on different datasets. In particular, RL is used to extrapolate beyond the training data
with a prior-knowledge motivated reward function, while simultaneously optimizing the
supervised objective. Realistic human dynamics are enforced by a model trained on in-lab
captured human motion data. This work shows that it is possible to capture the relations
that we know exist in traffic even though a complete labeled dataset of pedestrian motion
in traffic does not exist yet. Instead, this can be achieved by bridging learning between
different datasets and prior knowledge.

Paper I takes the first step in modeling many of the effectors in pedestrian motion. The
model could be improved in a number of ways. A multi-modal model should be able
to better capture the possible changes in the direction of the trajectory or the different
variations in human dynamics and behaviors. This could possibly be achieved for example
by using Info-GAIL [285] instead of supervised learning. Generative Adversarial Imitation
Learning (GAIL) [120] uses a discriminator as a reward function for the acting policy. Info-
GAIL models each individual’s behavior as a latent variable. This allows the variation in
trajectories exhibited by even just one individual to vary from observation to observation
depending on the individual’s mood, which can encoded in the latent variable. Further,
the learned reward of InfoGAIL would allow for the model to naturally be trained on
scenes with no prior pedestrian motion data. Of course, other multi-modality modeling
techniques may be used as well. Secondly, the model can further be grounded to ground
truth motion data during trajectory forecasting by evaluating the generated poses’ distance
to the GT human semantic masks. This would possibly require a dense human model
to fit on the pedestrians but would provide some feedback on the accuracy of the model-
generated poses.

Since more near-collision traffic datasets have become available it would be of interest to
learn the human behavior from these datasets and transfer the collision-avoiding behavior
model of the pedestrian to a general traffic dataset. Further explicit modeling of inter-
actions, human groups, human gaze, and goal location prediction could be added to the
model in paper I. Language models (LMs) could be used to model the pedestrian’s decision
process at street crossings. Since the release of paper I goal-driven [161, 162] and semantic
pedestrian behavior modelling [18, 286] have gained popularity. Further, simulating hu-
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man poses in semantically meaningful ways in indoor and outdoor environments has also
gained popularity in the human pose modeling community [287–290].

Papers II and III show that AV testing can be treated as a visual problem, thus allowing
for scene generalizable collision scenario generation. The papers show that it is possible
to find collision scenarios with interactive and learned pedestrian models instead of the
heuristics utilized in previous work. Paper II shows that for one pedestrian and one AV
we can find collisions if the problem is constrained enough and the pedestrian behavior is
goal-conditioned. In paper III the result is extended to multiple pedestrians and vehicles
showing how to adapt paper II to generate realistic collisions with multiple pedestrians. It
is not straightforward to generate realistic-looking collision scenarios with multiple ped-
estrians because the most collision-prone scenarios are exponentially less likely the more
abnormalities they contain. Note that the most collision-prone scenarios are abnormal.
Paper III provides a general framework that can be extended with further RL agents to test
more advanced AV models.

Papers II and III are the first steps in utilizing realistic pedestrian models in AV testing and
as such can be improved further. State-of-the-art (STOTA) AV models should be tested in
the setup proposed by the papers. This is likely not trivial, because a STOTA AV is expec-
ted to drive well thus making collision generation harder. To counter this, a reasonable set
of constraints imposed on the AV must be found by possibly extending the framework of
paper III with additional RL agents that pose further constraints on the AV. For example, if
the scene contains enough occluded spaces (this could be attained by an RL agent) then the
pedestrians could travel through occluded spaces making collision avoidance hard for the
AV. A prior distribution for collisions could be learned from a collision dataset or gener-
ated from a knowledge base describing different collisions. Finally, weather and pedestrian
dynamics, physique, and visuals should be varied.

Paper v points out that 3D reconstruction of on-vehicle gathered images is hard because
many reconstruction methods cannot handle large forward motion combined with poor
visual quality, moving objects, a lot of unstructured surfaces, and a lot of occlusions. This
has led to the popularization of LiDAR to measure the distance to objects. Unfortunately,
human sensing from LiDAR has not yet caught up with image-based models, likely be-
cause LiDAR pointclouds of humans are quite sparse. Paper v also highlights the dis-
crepancy between articulated human sensing benchmarks and traffic data. Humans are
often clearly visible, centered in images, and close to the camera in benchmarks, while
in traffic humans often appear far away, are occluded, poorly visible, and off the center.
This has since partially been remedied with per frame 2D pose datasets on traffic data such
as [291–293]. Similar benchmarks with estimated 3D poses are being developed for LiDAR
data [294]. Benchmarks that allow the evaluation of forecasting articulated pedestrians
instead of bounding boxes in AV motion planning are yet to be developed.
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In paper Iv we show that popular human motion forecasting benchmarks are not represent-
ative of realistic human-robot interactions, since most human-robot interactions are longer
than benchmarked. During long interactions, the prediction model should adapt its pre-
diction to the individual as the interaction continues. We utilize the knowledge that each
individual has unique motion patterns to personalize neural human motion predictions
with timeseries analysis. Timeseries analysis allows online adaption of the existing model
predictions with few parameters. AR models can only improve predictions on a short time
horizon because the prediction power of timeseries models decreases exponentially with
time. To obtain longer-time horizon improvements, meta-learning [295, 296] could be
used to learn the correction of the average motion model for new individuals. In key pose
base models [297, 298], target pose prediction should be personalized with meta-learning
to allow for personalized long-term predictions. In general human motion datasets are
still too small to capture the variation in physique in the population of humans. To scale
this up consistent human pose estimation methods that do not require access to a lab are
needed. Steps have been taken in the right direction but still more work is needed to attain
temporally smooth 3D pose estimates in the wild.

Data gathering of traffic data is currently still expensive, so until this can be scaled up we
need to rely on priors to make learning efficient because the existing publicly available
datasets are not large enough to capture the variability in the world needed to ensure safe
driving. The main issue in data gathering is that we unfortunately currently rely on super-
vised learning for a large number of tasks (this guarantees that what the models predict is
correct) such as articulated human motion forecasting. Therefore to scale up learning un-
supervised methods for articulated human sensing should be explored further to popularize
articulated human motion modelling in AV planning and testing.

Here we have noted discrepancies in the human models utilized for motion prediction in
AV’s, pedestrian trajectory prediction, human motion prediction and gait recognition. This
suggests that more interdisciplinary work would lead to improved models in all fields. This
could hopefully be achieved with joint conferences and benchmarks, as currently a lot of
related work is not communicated across different research communities.

Finally, this thesis has shown that it is not trivial to find realistic, collision-prone scenarios
for AVs. But it is in fact possible with visual semantically reasoning frameworks as suggested
in Paper III. Modeling pedestrians accurately in autonomous vehicle testing is crucial if we
wish to ensure the safety of real pedestrians in deployment.
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7.1 Annotation

7.1.1 Mathematical Annotation

Symbol Meaning

α phase in PFNN
α vector of control phases in PFNN
α1, α2, α3, α4 control phases in PFNN
A matrix describing a pointcloud Procrutes
AΘ learnable adjacency matrix in GCN
Aπ∗ advantage function
a action in RL
a parameter is PreLU
ai parameters in timeseries analysis
ai

0 action at timestep 0 in the i-th samples trajectory
ai

1 action at timestep 1 in the i-th samples trajectory
ai

t action at timestep t in the i-th samples trajectory
ai

Ts action at timestep Ts in the i-th samples trajectory
at action at timestep t in RL
β scaling in Procrustes
β∗ optimal scaling in Procrustes
β1 update rate of moving average in ADAM
β2 update rate of second moment estimator in ADAM
B matrix describing a pointcloud Procrutes
b baseline the distance between two cameras on a binocular rig.
b1 per joint belief map in human pose reconstruction at stage 1
bt per joint belief map in human pose reconstruction at stage t
Cl number of limbs
c constant in MLE
c covariance function in timeseries
ci the i-th class
cl left camera’s position in global coordinate system
cr right camera’s position in global coordinate system
ct cell state in LSTM
ct element of ct
ĉt temporary or updated cell state in LSTM
cx camera’s position in global coordinate system
cx,y ground truth semantic class label at (x, y)
∆g eigenvalues of L
δ Krockner’s delta function
D diagonal matrix of the diagonal of G
D̂ Diagonal matrix in Procrustes Analysis
D dataset
D depth on an image in convolution
d disparity
dt semantic segmentation found by DilationalNet-10 of frame t
ϵ machine zero in ADAM
ϵt white noise in timeseries
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η learning rate
el epipolar line in left image
er epipolar line in right image
F function value to be interpolated in bilinear interpolation
Fi bilinear interpolation
Fi,1 bilinear interpolation along x-axis on first row
Fi,2 bilinear interpolation along x-axis on second row
f focal length
fα phase function
fγ activation function pointnet
fσ nonlinearity in GCN
fΘ parametric function approximator in ML
fa activation function in perceptron
fg filter in graph convolution
fh pointnet location encoding
fl likelihood
fn observation vector of n timesteps in PEM
fNN the ANN that forecasts poses in PFNN
fp pointnet function
fR function mapping to 3D joints DMHS.
fr reward frunction
ft−1,t optical flow from frame t − 1 to t
fw weights of interpolation in PFNN
Γ rotation in Procrustes
Γ∗ optimal rotation in Procrustes
Γo rotation and reflection in Procrustes
Γ∗

o optimal rotation and reflection in Procrustes
γ forgetting rate in RL
γ translation in Procrustes
γ∗ optimal translation in Procrustes
G graph adjacency matrix
Gi,j element of the matrix G
gt classifier in inference machines
gc
t forget gating in LSTM

gh
t output gating in LSTM

gu
t input gating in LSTM

gt,k partial derivative with respect to the k-th parameter in the t-th optimization step
H height an image in convolution
h height of a window in SSD- disparity estimation
hk height of a convolution filter
ht hidden layer in RNNS, the output of STGRU in GRFP.
ht output of a single RNN or LSTM unit, a component of ht

I identity matrix
I image in convolution
It frame t in GRFP
i iterator
J general ML loss
JP loss of Procrutes Analaysis
JRL RL loss
j iterator
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K camera intrinsic matrix
K convolutional filter
k iterator, number of anchor boxes in FRCNN
λ forgetting factor in timeseries analysis
L Laplace matrix of a graph
L negative log likelihood
l layer in neural network
l1 PAF at inference stage 1
lt PAF at inference stage t
lTl PAF at last inference stage
μ initial state distribution in RL
M dimension of input vector in perceptron, dimensionality of data in NNs
MC number of classes
Mc dimension of cell state in LSTM
Mh dimension of hidden layer in an RNN
Mi number of 3D points in bundle adjustment
Mj number of cameras in bundle adjustment
m0,k moving average of g0,k

mt,k moving average of gt,k

m̂t,k unbiased mean estimator of gt,k

Ms number of samples
N number of datapoints in pointcloud, number of RL agents in MARL
N Normal distribution
NΘ number of parameters
Na dimensionality of action space
NB number of body part segmentations
Nb number of datapoints in a random batch
NC number of output channels in STS-GCN
Nc number of input channels in STS-GCN
ND number of datapoints in dataset
Ng number of vertices in a graph
Nh dimensionality of layer l’s output
Ni number of points in class ci

NJ number of joints
Nl number of layers in a network
NR number of dimensions in 3D pose features
Ns dimensionality of state space
Nu dimensionality of layer l’s input
Nt number of timesteps in STS-GCN
Ny dimensionality of labels y
Nz size of softmax function input
n number of datapoints in online parameter estimation
np number of points in a Pointnet group
π policy in RL
π∗ optimal policy in RL
πΘ parametric policy in RL
ϕt past observations in PEM
ψttt classifier in openpose
ψ′

ttt classifier in DMHS
P camera matrix
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P order of an AR process
Pj j-th camera matrix
Pn inverted covariance matrix in online regression
p probability
ppp A point in a dataset
p1 3D point
p1,p2,p3,p4 four points on a grid
p1,x, p2,x, p3,x, p4,x x-coordinates of p1,p2,p3,p4

p1,y, p2,y, p3,y, p4,y y-coordinates of p1,p2,p3,p4

pppi A point in a random patch
Q area of integration over trajectories in RL
Qπ q-value function of policy π
Qπ∗ optimal q-value function
ρt classifier in openpose
ρ′

t classifier in dmhs
R camera’s rotation matrix
rt reconstruction features DMHS
rt reward at timestep t
ri
t reward at timestep t in the i-th trajectory
Σ covariance matrix in MLE
σ sigmoid function
σl variance in MLE
σw variance of white noise in timeseries analysis
S Number of steps of prediction in trajectory forecasting
si

0 state at timestep 0 in the i-th samples trajectory
si

1 state at timestep 1 in the i-th samples trajectory
si

Ts+1 state at timestep Ts + 1 in the i-th samples trajectory
sr dilational stride rate
st state in RL
Θ learnable parameters in a general ML loss
Θa vector of AR parameters
ΘMLE MLE of the parameters Θ
Θt online parameter estimate
Θt parameters in SGD
Θt,k k-th parameter on the t-timestep in SGD
τ a trajectory or roll-out in RL
TB number of stages of joint position estimation in DMHs
TG number of frames in a video
Th last timestep in RNNs
Tin the number of past timesteps in human pose forecasting
TJ number of stages in joint position estimation in OpenPose
TL number of stages in PAF estimation in OpenPose
TM number of stages in inference machine
Tout the number of predicted timesteps in human pose forecasting
Ts maximal number of timesteps in sequential RL, could be inf
t iterator
U rotational matrix in Procrustes
U the uniform distribution
Ug eigenvectors of Graph matrix
Uo rotational matrix in orthogonal Procrustes
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u input to a perceptron
V rotational matrix in Procrustes
Vπ value function of policy π
Vπ∗ optimal value function
Vg graph networks hidden layer
Vo rotational matrix in orthogonal Procrustes
vg feature vectors of vertices of a graph
v0,k second moment estimator of g0,k in ADAM
vt,k second moment estimator of gt,k in ADAM
v̂t,k unbiased second moment estimator of gt,k in ADAM
W width of an image in convolution
Wα control point weights in PFNN
WΘ learnable vertex weights in STS-GCN
w weight in a perceptron
ŵ weight of hidden layer in RNNs
w width of a window in Disparity estimation
w0 bias in perceptron
wα1 ,wα2 ,wα3 ,wα4 control point weights in PFNN
wc weight in forgetting gate LSTM
wĉ weight in update state LSTM
ŵc cell weight in forgetting gate LSTM
ŵĉ cell weight in update state LSTM
wc,0 bias in forgetting gate LSTM
wĉ,0 bias in forgetting gate LSTM
wh weight in output gate LSTM
ŵh cell weight in output gate LSTM
wh,0 bias in output gate LSTM
wk width of a convolution filter
wl weight of l-th layer in an ANN
wNN NN weights in PFNN
wt warped segmentation in GRFP
wu weight in input gate LSTM
ŵu cell weight in input gate LSTM
wu,0 bias in input gate LSTM
ξttt classifier in DMHS
X a 3D point
X a 3D point, random variable
X′ an incorrectly recovered 3D point
X∗ ground truth joint 3D positions
X̂ estimated joint 3D positions
{X̃1 . . . X̃N} estimated 3D points
Xi a 3D point
X∗

i ground truth i-th joint 3D position
X̂i an estimated i-th joint 3D position
XPFNN PFNN input vector
x a point in an image
x pixel’s horizontal coordinate in an image
x1 . . . xNJ positions of 2D joints
x1 the object’s x-coordinate in the left image in triangulation
x2 the object’s x-coordinate in the right image in triangulation
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xb image features in the first stage of DMHS
x′
b image features in DMHS

xi,j a point in an image
xj image features in OpenPose
xl a point in the left image
xr a point in the right image
x′
r projection of an incorrectly reconstructed point X′

xz image features in PoseMachines
Y output of convolution
YPFNN PFNN output vector
Y1, Y2 random variables in timeseries analysis
Yt random variable in timeseries analysis
y labels in MLE
y pixel’s vertical coordinate in an image
yi i-th datapoints labels in MLE
yn n-th observation in PEM
yp output of a perceptron
yt realisation of Yt

ŷt one step prediction of Yt

z a vector, input to softmax
z depth from camera to object
zi vector z i-th element, input to softmax
zi depth of point Xi

zj vector z j-th element, input to softmax
zt semantic segmentation estimate at stage t DMHS
zx,y GRFP’s estimated confidence for different classes at (x, y).

7.1.2 Abbreviations

Symbol Meaning

ANN Artificial Neural Networks
AV Autonomous Vehicles
BA Bundle Adjustment
CE Cross Entropy error
CNN Convolutional Neural Network
CPG Central Pattern Generators
DMHS Deep Multitask Architecture for Fully Automatic 2D and 3D Human Sensing
ELU Exponential Rectified Linear Unit
FRCNN Faster RCNN
GAIL Generative Adversarial Inverse Learning
GCN Graph Convolutional Network
iou intersection over union
LiDAR Light Detection And Ranging Sensor
ML Machine Learning
MLE Maxmimum Likelihood Estimation
MoCap Motion Capture
MVS Multi view Stereo
PFNN Phase Functional Neural Network
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PreLU Parametric Rectified Linear Unit
RANSAC Random Sample Consensus
RCNN Region Convolutional Neural Network
ReLU Rectified Linear Unit
RL Reinforcement Learning
RNN Recurrent Neural Networks
SfM Structure from Motion
SGD Stochastic Gradient Descent
SIFT Scale Invariant Feature Transform
Sim2Real Simulated to Real
SLAM Simultaneous Localization and Mapping
SNR Signal to noise ratio
SSD Sum of Squared Differences
STSGCN Spatio-Temporal Separable Graph Convolutional Network
STOTA state of the art
TCN Temporal Convolutional Network
VRU Vulnerable Road User

7.1.3 Abbreviations of Conferences

Symbol Meaning

AAAI Association for the Advancement of Artificial Intelligence
ACCV Asian Conference on Computer Vision
ACM Association for Computing Machinery
CoRL Conference on Robot Learning
CVPR Computer Vision and Pattern Recognition
ECCV European Conference on Computer Vision
ICCAR International Conference on Control, Automation and Robotics
ICCV International Conference on Computer Vision
ICLR International Conference on Learning Representations
ICML International Conference on Machine Learning
ICPR International Conference on Pattern Recognition
ICRA International Conference on Robotics and Automation
IROS International Conference on Intelligent Robots and Systems
ITSC International Conference on Intelligent Transportation Systems
IV Intelligent Vehicles Symposium
NeuRIPS Conference on Neural Information Processing Systems
RO-MAN International Symposium on Robot and Human Interactive Communication
TOG Transactions On Graphics
WACV Winter Conference on Applications of Computer Vision
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Abstract. We present a model for generating 3d articulated pedestrian
locomotion in urban scenarios, with synthesis capabilities informed by
the 3d scene semantics and geometry. We reformulate pedestrian trajec-
tory forecasting as a structured reinforcement learning (RL) problem. This
allows us to naturally combine prior knowledge on collision avoidance, 3d
human motion capture and the motion of pedestrians as observed e.g. in
Cityscapes, Waymo or simulation environments like Carla. Our proposed
RL-based model allows pedestrians to accelerate and slow down to avoid
imminent danger (e.g. cars),while obeyinghumandynamics learnt from in-
lab motion capture datasets. Specifically, we propose a hierarchical model
consisting of a semantic trajectory policy network that provides a distribu-
tion over possible movements, and a human locomotion network that gen-
erates 3d human poses in each step. The RL-formulation allows the model
to learn even from states that are seldom exhibited in the dataset, utiliz-
ing all of the available prior and scene information. Extensive evaluations
using both real and simulated data illustrate that the proposed model is
on par with recent models such as S-GAN, ST-GAT and S-STGCNN in
pedestrian forecasting, while outperforming these in collision avoidance.
We also show that our model can be used to plan goal reaching trajectories
in urban scenes with dynamic actors.

1 Introduction

Pedestrian trajectory prediction is an important sub-problem for safe autonomous
driving. Recent 3d traffic datasets [1–6] focus on bounding box detection and pre-
diction of cars and pedestrians. Bounding boxes are popular since they provide
information on the location and velocity of the travelling object, and are relatively
well suited tomodel cars, but neglect the detailedmotion cues present in pedestrian
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doi.org/10.1007/978-3-030-69532-3 29) contains supplementary material, which is
available to authorized users.
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Fig. 1. Pedestrian trajectories and poses generated by our agent on a Waymo scene.
RGB and semantic pointclouds of the scene are shown in the top and bottom images,
respectively. A local neighborhood of these pointclouds are observed by the agent.
Coloured lines on the ground show different trajectories taken by the agent when
initialized with varying agent histories, cf. Sect. 2.2. The agent crosses the roads without
collisions. Cars and other pedestrians in the scene are shown as positioned in the first
frame and are surrounded by bounding boxes for clarity. (Color figure online)

posture. Pedestrian poses compactlymodel posture andmotion cues andhave been
shown effective in pedestrian intent prediction [7–9]. However, to our knowledge
there exists no large-scale datasets with ground truth annotations of pedestrian
poses in traffic. Moreover, most previous work in pedestrian pose modelling has
been performed without spatial reasoning [7,9] or using action-conditioned human
models [8]. In contrast, we formulate pedestrian synthesis as a 3d scene reasoning
problem that is constrained by human dynamics and where the generated motion
must follow the scene’s 3d geometric and semantic properties as seen in Fig. 1. To
impose human dynamics, the articulated pose trajectories are conditioned on the
current and past poses and velocities.

Specifically, we propose a semantic pedestrian locomotion (SPL) agent, a
hierarchical articulated 3d pedestrian motion generator that conditions its pre-
dictions on both the scene semantics and human locomotion dynamics. Our
agent first predicts the next trajectory location and then simulates physically
plausible human locomotion to that location. The agent explicitly models the
interactions with objects, cars and other pedestrians surrounding it, as seen in
Fig. 2. We develop two different pedestrian locomotion generators – one without
any restrictions that can roll forward from a given starting location, and one
which is additionally conditioned on a target location. The former is useful for
simulating generic pedestrian motion in traffic situations, while the latter can
be used to control the simulation target, for example when generating high-risk
scenarios. Moreover, our model can be used to augment existing traffic datasets
with articulated poses. For example, the 3d poses generated by the SPL agent can
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Fig. 2. Semantic pedestrian locomotion (SPL) agent and framework. The 3d environ-
ment Et = {S, Dt} consists of a semantic map S of static objects and a dynamic
occupancy map Dt of cars and people at time t (shown as blue and green trajectories,
ellipsoids indicate the positions at time t). The agent observes a top-view projection of
a local crop (yellow box) of Et. A velocity vt is sampled from the semantic trajectory
policy network (STPN). The human locomotion network (HLN) models the articulated
movement of the step vt. Note that the STPN observes pose information via the previ-
ous hidden state ht−1 from the HLN. In training, a reward evaluating the subsequent
state is given to the agent. (Color figure online)

be used to produce dense pedestrian predictions by applying a pose conditioned
human mesh such as SMPL [10]. Augmented pedestrians can then be produced
in semantic segmentation masks by projecting the dense pedestrian mesh onto
the image plane. RGB images can be augmented similarly, but this may addi-
tionally require a photorealistic style transfer similar to [11,12]. Alternatively,
LiDAR augmentations can be generated by sampling [13] from the dense bodies.

Learning to synthesize pedestrian motion is difficult, since the diversity
among expert pedestrian trajectories is often limited in the training data, espe-
cially for high-risk scenarios. A trajectory generation model trained via imitation
learning is unlikely to act reliably in situations that are not present in the train-
ing data. This implies e.g. that such an agent will likely behave poorly in near
collision scenarios, as these are not present in existing datasets. Recent work on
generative adversarial imitation learning (GAIL) [14] has recently gained popu-
larity within trajectory forecasting [15–18] since it models the data distribution
rather than cloning expert behaviour. GAIL is an inverse RL method where a
policy tries to mimic the experts and the reward function aims to discriminate
policy trajectories from expert trajectories. However, as for behaviour cloning,
GAIL cannot learn reliable behaviour in situations that are highly different from
those available in the training data, since the discriminator will in such cases be
able to trivially distinguish between generated and expert trajectories.

To allow our SPL agent to learn also from states outside the training set,
in Sect. 2 we pose the trajectory forecasting problem in the framework of rein-
forcement learning (RL). We extrapolate the learning signal with an optima-
preserving reward signal that additionally involves prior knowledge to promote
e.g. collision avoidance. We adapt the RL policy sampling process to simul-
taneously optimize the trajectory forecasting loss and maximize the reward.
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Moreover, our analysis in Sect. 2 can be used to adapt any trajectory forecasting
model into a robust articulated pedestrian synthesis model. By sampling initial
positions of the agent in different locations, all of the spatio-temporal data in
the driving dataset can be utilized. Because we train on a large number of differ-
ent spatial locations and in near-collision scenarios, our motion synthesis model
learns to generate plausible trajectories even in states that are far from expert
trajectories such as near-collision scenarios. In summary, our contributions are
as follows:

– We propose an articulated 3d pedestrian motion generator that conditions
its predictions on both the scene semantics and human locomotion dynam-
ics. The model produces articulated pose skeletons for each step along the
trajectory.

– We propose and execute a novel training paradigm which combines the
sample-efficiency of behaviour cloning with the open-ended exploration of
the full state space of reinforcement learning.

– We perform extensive evaluations on Cityscapes, Waymo and CARLA and
show that our model matches or outperforms existing approaches in three
different settings: i) for pedestrian forecasting; ii) for pedestrian motion gen-
eration; and iii) for goal-directed pedestrian motion generation.

1.1 Related Work

In pedestrian trajectory forecasting, social interactions of pedestrians have been
modelled with different GAN-based approaches [19,20], by social graphs [21–23],
by recurrent networks [24,25] and by temporal convolutions [26,27]. Differently
from us, these approaches only model the social interactions of pedestrians and
ignore cars and obstacles. An attention model is used by [28] to forecast pedes-
trian trajectory given environmental features and GAN-based social modelling
that neglects cars. Differently from [19–28] we utilize a locomotion model and
therefore do not need to learn human dynamics from scratch. All of the men-
tioned supervised models in pedestrian forecasting can in principle be trained
with our proposed methodology (cf. Sect. 2) to extend to unobserved states.

Our model does not rely on action detection (e.g. “walking” or “standing”)
of the expert dataset for trajectory forecasting, as opposed to action condi-
tioned intention detection networks [8,29] and motion forecasting models [30,31].
Instead the pedestrian’s future trajectory is conditioned on its past trajectory. A
benefit of our approach is thus that it avoids dealing with temporal ambiguities
associated with action detection. Recently it has been shown that pedestrian
future augmentation can improve pedestrian forecasting features [32]. Our gen-
erator produces articulated 3d trajectories on real data, and in comparison to
[33] we do not require the recreation of the full dataset in a simulation environ-
ment. We note that the goal-reaching version of our model could be utilized with
a goal proposal method [34] to provide multiple future augmentations to data.

Human synthesis models for still images [11,18,35–37] aim to synthesize poses
in semantically and geometrically plausible ways in images, and have no temporal
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modelling, but could be used to initialize the SPL’s pose trajectories. The works
[36,37] model likely locations for humans in images. The models in [11,18,35]
synthesize pedestrians with 3d models, but do this only in static scenes. Similar
to us, the affordance model of [38] explicitly incorporates 3d scene semantics to
propose plausible human poses, but only for static scenes. Synthetic videos are
generated in [39] by cropping humans from sample videos and pasting them into
target videos followed by visual smoothing with a GAN, but this approach does
not guarantee semantic plausibility.

The majority of 3d human pose forecasting models concentrate on predicting
future poses given only the past pose history [40–42]. In [43] human pose futures
are predicted on a static dataset by forecasting a trajectory, to which poses are
fitted by a transformer network. Differently from our work the reasoning is per-
formed in 2d which leads to geometrically implausible failure cases. [44] forecast
pedestrian motion by combining a pose predicting GRU [45] with social pooling
and a 2d background context layer. Both [43,44] are not readily applicable to
driving datasets as they lack modelling of cars and require access to high quality
2d human poses which are in general hard to obtain in driving datasets.

2 Methodology

The pedestrian trajectory forecasting problem on a dataset D of pedestrian
trajectories can be formulated as follows. Let x0, . . . ,xt,xt+1, . . . xT be a pedes-
trian trajectory1 of length T in D. Given the trajectory x0, . . . ,xt up to
timestep t we would like to predict the pedestrian’s position in the next timestep
xt+1 = xt + vt, where vt is the step taken by the pedestrian from xt to xt+1.
Each position xt is associated with a state st, described in detail in Sect. 2.1,
that includes the pedestrian’s past trajectory and other relevant scene informa-
tion at position xt. We denote the density function of the random variable vt

conditioned on st as p(vt|st). The prediction task is to estimate p(vt|st) by a
parametric function pΘ(vt|st) where the step forecast is v̂t = maxv t

pΘ(vt|st).
The maximum likelihood estimate of the model parameters Θ is then given by

Θ∗ = arg max
Θ

log L(Θ|D) = arg max
Θ

∑

D

T−1∑

t=0

log pΘ(vt|st) (1)

From the RL perspective on the other hand, an agent has an initial position
x0 and takes steps by sampling from a parametric policy: vt ∼ πΘ(vt|st). After
taking a step vt the agent finds itself in a new location xt+1 = xt + vt and in
training receives a reward R(st,vt). The objective is to find a policy πΘ that
maximizes the expected cumulative reward,

J (Θ) = EπΘ

[
T−1∑

t=0

R(st,vt)

]
(2)

1 The xt are 2d locations in the movement plane.
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Comparing the RL perspective with the standard forecasting formulation,
we first note that πΘ(vt|st) = pΘ(vt|st). Furthermore, the optima of (1) is
unchanged if it is multiplied by a function R(st,vt) that obtains its maximum at
all (st,vt) ∈ D, i.e. on the expert trajectories. Thus, assuming that the actions
taken by the pedestrians in D are optimal in the reward function R, we can
rewrite the maximum likelihood objective (1) as a Monte Carlo estimate of the
policy gradient objective [46], sampled from the expert trajectories (st,vt) ∈ D:

Θ∗ = arg max
Θ

∑

D

T−1∑

t=0

log πΘ(vt|st)R(st,vt) (3)

We can now unify the policy gradient objective (3) and the supervised objec-
tive (1) by sampling respectively from (s̃t, ṽt) ∼ πΘ and (st,vt) ∈ D. Optimizing
(3) while sampling from both the expert trajectories and the current parametric
policy equates to iteratively optimizing the policy gradient objective and the
maximum likelihood objective. Thus we have shown that (1) can be rewritten as
a policy gradient objective assuming a reward function that obtains its optima
on D. In Sect. 2.4 we construct a reward function that fulfills this criteria.

By posing the supervised learning problem of pedestrian trajectory forecast-
ing as an RL problem, the detailed human dynamics model HLN becomes part of
the observable environment dynamics and does not need to be modelled explic-
itly in the trajectory prediction model πΘ. This is a natural way of combining
accurate human motion models trained on in-laboratory motion capture data
[47,48] with trajectories available in autonomous driving datasets [1–6].

In the following subsections we present our SPL agent, which performs human
3d motion synthesis within two modules. First a semantic pedestrian locomotion
network (STPN) samples a step vt based on st, and then a human locomotion
network (HLN) generates realistic body joint movements to the next position
xt+1. The HLN is first trained in a supervised fashion (see Sect. 2.3). Then the
STPN and HLN modules are combined, and the STPN is trained by alternating2

between sampling from expert trajectories and from arbitrary states, following
the objective (3). Figure 2 provides an overview of the SPL model.

2.1 States and Actions

The agent acts in the voxelized 3d environment Et = {S,Dt} over the time
horizon {0, . . . , T}, where Et is a 3d pointcloud reconstruction of a scene with
resolution 20 cm × 20 cm × 20 cm. The reconstruction Et consists of stationary
objects S and a dynamic occupancy map Dt of moving objects. Specifically, the
dynamic occupancy map marks the timestamps of voxel occupancies by other
pedestrians and cars (in separate channels) in the time horizon {0, . . . , T}. For
past timesteps 0 − t the dynamic occupancy map contains the past trajectories
of cars and pedestrians, while a constant velocity model is used to predict the
future t+1, . . . , T . Further details of Dt are in the supplement. Each 3d point in
2 See details of the alternating training in the supplement.
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Et is described by a semantic label l and an RGB-color label c. We let Et(xt) =
{S(xt),Dt(xt)} denote a 5 m × 5 m × 1.8 m rectangular 3d crop of Et centered
at the agent’s current position xt and touching the ground.

The agent’s state at time t consists of its external semantic state st and the
internal locomotion state lt. The external semantic state is defined as

st = {E2d
t (xt),vt−N , . . . ,vt−1,dv,ht−1} (4)

where E2d
t (xt) is a top-view projection of Et(xt), vt−N , . . . ,vt−1 constitute the

agent’s movement history for the past N = 12 timesteps, dv is the displacement3

to the closest vehicle, and ht−1 is the hidden layer of the HLN (cf. Sect. 2.3)
which informs about the agent’s posture, pose and acceleration. The locomotion
state

lt = {xt−M , . . . ,xt−1,xt, gt−M , . . . gt−1, gt, jt, it,xt+1, |vt|} (5)

consists of the past positions xt−M , . . . ,xt−1 of the agent (M = 11), the current
position xt, the past gait characteristics gt−M , . . . , gt−1, the next step’s gait
gt, the joint positions and velocities jt and it, the next trajectory position
xt+1 = xt + vt, and the speed |vt|. The gait characteristic gt is a binary vector
indicating if the agent is standing, walking or jogging and is regressed from |vt|.
The joint positions jt are the 3d positions of the root-joint centered 30 BVH
joints of the CMU motion capture data [49].

2.2 Semantic Trajectory Policy Network (STPN)

The STPN is a neural network that parametrizes πΘ(vt|st), the velocity distri-
bution of the agent in position xt with state st. We factorize πΘ(vt|st) into a
Gaussian distribution over speed |vt|, and a multinomial distribution over dis-
cretized unit directions ut. Since the agent is acting and observing the world
in a regular voxel grid, the movement directions are discretized into the eight
directions North (N), North-East (NE) and so on: N, NE, E, SE, S, SW, W, NW,
as well as a no-move action. After the velocity vt is sampled, the agent’s next
position xt+1 is given by the HLN in Sect. 2.3. The new position is often close
to xt + vt but could be adjusted by the HLN to ensure physical plausibility.

The policy πΘ(vt|st) is parameterized by a neural network, consisting of
a convolutional features extractor, an agent history encoder and two parallel
fully connected (FC) layers. The convolutional features extractor consists of two
convolutional layers of size (2, 2, 1) with ReLU activations and max pooling. The
agent history encoder is a 32-unit LSTM [50] that extracts a temporal feature
vector f t from the agent’s past trajectory vt−N , . . . ,vt−1. The parallel FC layers
both receive4 as input the convolutional features, the temporal features f t, the
displacement vector dt and the hidden state5 ht−1 of the HLN. The previous
unit direction ut−1 is added as a prior to the output of the first FC layer,

3 This is comparable to a pedestrian being aware of cars in its vicinity.
4 The goal-directed agent additionally includes the direction to the goal at this stage.
5 The previous hidden state is used, as the HLN is executed after the STPN.
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and the result is then fed through a softmax activation to output a probability
distribution over the unit directions ut. The second FC layer is activated by
the sigmoid function which is scaled with the maximal speed 3 m/s to produce
μt, the mean of the normal distribution that models the speed taken at time
t. Hence |vt| ∼ N (μt, σ), where σ is exponentially decreased from 2 to 0.1 in
training. Finally, the sampled velocity vt is given by vt = |vt|ut.

2.3 Human Locomotion Network (HLN)

The HLN produces 3d body joint positions to take a step vt from xt. The HLN is
adapted from [51] with the addition of a velocity regression layer that estimates
gt in (5) from vt. Network weights are learnt following the data and procedure
in [51]. The HLN is a phase function network that is conditioned on the walking
phase of the body at time t, where the phase varies from 0 to 2π for a full cycle
from the right foot touching the ground until the next occurrence of the right
foot touching the ground. The HLN regresses jt+1, it+1 = h(lt), i.e. the joint
positions jt+1 and velocities it+1, conditioned on the current state lt (see Sect.
2.1).

The next position xt+1 of the agent is set to the plane coordinates of the
pelvis joint in jt+1 at timestep t + 1 (the agent is not allowed to move through
objects). The HLN architecture consist of three fully connected layers with 512
hidden units per layer and an exponential rectified linear function [52] as the
activation function. The last hidden layer ht is observed by the STPN in the
next timestep, informing it of the agent’s current posture. Network weights are
trained for different walking phases by augmenting surface curvature for constant
feet to ground distances from motion capture data as reported in [51].

2.4 Reward Signal

In training the agent’s state is evaluated by the reward function Rt = R(xt,vt)
at each step. We wish to estimate the optimal policy πΘ�(vt|st) that maximizes
the total expected reward. The reward function is designed so that its maximal
value occurs on the expert trajectories, as discussed in Sect. 2. A reward Rd = 1
is given for visiting a pedestrian trajectory in the dataset D, otherwise Rd = 0.
The reward is given only for newly visited locations to promote the agent to
move. We also encourage the agent to move close to positions where pedestrians
tend to appear. To approximate a pedestrian density map from D we apply an
exponential kernel on the trajectory locations in D, i.e.

Rk(xt,vt) = log

{
1
b

∑

xi∈D

T∑

t′=0

exp{−‖xi
t′ − xt+1‖}

}
(6)

where b is the bandwidth (we set b = 0.0001) and the sum is over all pedestrian
trajectory positions xi in the dataset D. We gather the terms that encourage the
agent to stay near trajectories in D as Rped(xt,vt) = Rk(xt,vt) + Rd(xt,vt).
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Fig. 3. Several 1-min trajectories of our SPL-goal agent reaching its goal location in
orange (maximum distance to goal: 120 m) on the CARLA test set. Car, person and
agent trajectories are shown in blue, green and red respectively. Left: Agent sharply
but safely crossing the street to reach a goal. Middle: Agent safely crossing the street
as no cars are approaching. Right: Agent safely moving along the pavement when given
a goal on the road. The shortest path to the goal would involve walking on the road
for a longer amount of time, so the agent balances its desire to reach the goal with the
risk of being on the road. (Color figure online)

To penalize collisions, let Rv, Rp and Rs be negative indicator functions
that are active if the agent collides with vehicles, pedestrians and static objects,
respectively. The terms are gathered as Rcoll(xt,vt) = Rv(xt,vt)+Rp(xt,vt)+
Rs(xt,vt). Note that Rped(xt,vt) is only given when Rp(xt,vt) = 0.

To encourage smooth transitions between the exhibited poses and to penalize
heavy effort motions, we penalize the average yaw φ (in degrees) of the joints in
the agent’s lower body as Rφ(xt,vt) = max(min(φ − 1.2, 0), 2.0). Thus the full
reward6 is R(xt,vt) = Rcoll(xt,vt) + Rped(xt,vt) + Rφ(xt,vt).

When the agent is given a goal location, every step taken towards the goal
should provide a reward for the improvement made relative to the initial goal
distance. Thus, given a goal location xg we define

Rg(xt,vt) =

{
1 if ‖xt+1 − xg‖ < ε

1 − ‖xt+1−xg‖
‖xt−xg‖ otherwise

(7)

where ε defines the distance from the goal location to the agent center.7 The full
reward8 of the goal reaching agent is R(xt,vt) = Rcoll(xt,vt) + Rped(xt,vt) +
Rφ(xt,vt) + Rg(xt,vt). Note that the goal-driven reward does not necessarily
reach its optima on expert trajectories, as the it is not assumed that xg ∈ D.

2.5 Policy Training

With a finite sequence length T , a large number of states are in practice unreach-
able for the agent with an initial location x0. However, thanks to the RL refor-
mulation the agent can be initialized in any location. By regularly choosing
6 Each term weighted with the respective weights, λv = 1, λp = 0.1, λs = 0.02,

λk = 0.01, λd = 0.01, λφ = 0.001.
7 We set ε = 20

√
2 cm, i.e. the agent must overlap the goal area.

8 The weights except for λv = 2, λg = 1 are the same. The fraction term of Rg is
weighted by 0.001.
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Fig. 4. Subsampled pose sequence in a Waymo test scene, showing the SPL agent
walking behind a car (indicated with an orange 3d bounding box) to avoid a collision,
and then returning to the crosswalk. A zoomed out view of the scene at the beginning
of the agent’s trajectory is shown in the top left. (Color figure online)

information dense x0, the number of samples needed to learn critical behaviours
such as collision avoidance can be reduced, and thus the agent is initialized
in front of cars, near pedestrians, randomly, on pavement and on pedestrians.
Agents are trained in Tensorflow [53] using Adam [54] with a batch size of 30
trajectories, learning rate of 10−3, and a discount rate of 0.99.

3 Experiments

The proposed pedestrian motion generation agent is evaluated on both simulated
and real data, with and without target goals. The goal-free and goal-directed
agents are denoted SPL and SPL-goal, respectively. Since the human locomo-
tion network (HLN) described in Sect. 2.3 imposes realistic human dynamic con-
straints, we present all results with the HLN performing joint transformations
along the trajectories. We compare SPL with the following methods:

– Behaviour cloning (BC) is an imitation learning baseline. BC is trained with
the same network structure as SPL, but by only sampling from D, i.e. max-
likelihood forecasting. The same hyperparameters as for SPL are used.

– Constant velocity (CV) models pedestrian motion with a constant velocity,
which as shown in [55] is surprisingly effective in many cases. When initialized
on a pedestrian it continues with the last step velocity of that pedestrian.
When initialized elsewhere, a Gaussian with μ = 1.23 and σ = 0.3 (same as
[56]) is used to estimate speed and the direction is drawn at random.

– S-GAN is the Social-GAN [19] used for pedestrian forecasting.
– S-STGCNN (S-STG in tables) the Social Spatio-Temporal Graph Convolu-

tional Neural Network [23], a pedestrian trajectory forecasting network.
– ST-GAT is the Spatial-Temporal Graph Attention Network [22], another

recent pedestrian trajectory forecasting network.
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– CARLA-simulated (GT) are the pedestrians simulated in CARLA, here con-
sidered ground truth. These pedestrians follow hand-designed trajectories.

S-GAN, S-STGCNN and ST-GAT are trained with default hyperparameters
from the official implementations. We compare SPL-goal with the following:

– Goal direction (GD) takes the shortest Euclidean path to the goal.
– Collision avoidance with deep RL (CADRL) [57] walks towards the goal loca-

tion while avoiding moving objects around itself. CADRL is a learning based
model for collision avoidance with dynamic obstacles.

3.1 Datasets

Simulated Data from CARLA. The CARLA package [58] is a simulator for
autonomous driving. RGB images, ground truth depth, 2d semantic segmenta-
tions and bounding boxes of pedestrians and cars are collected from the simulator
at 17 fps. Town 1 is used to collect training and validation sets, with 37 and 13
scenes, respectively. The test set consists of 37 scenes from Town 2.

Fig. 5. Multiple SPL-goal agent trajectories generated from the same initial position
in Cityscapes. The agent can be seen reaching different goals (marked by crosses). The
agent chooses to walk on pavement when nearby.

3D Reconstructions from Cityscapes. This dataset [59] consists of on-board
stereo videos captured in German cities. The videos are 30 frames long with a
frame rate of 17 fps (video length: 1.76 s). We use GRFP [60] to estimate the
semantic segmentation of all frames. The global reconstructions are computed by
COLMAP [61] assuming a stereo rig with known camera parameters. The density
of the dense reconstructions from COLMAP varies; an example reconstruction
can be seen in Fig. 5. Cars and people are reconstructed frame-by-frame from
PANnet [62] 2d bounding boxes and instance level segmentation masks. Triangu-
lation is used to infer 3d positions from 2d bounding boxes. The dataset consists
of 200 scenes; 100 for training, 50 for validation and 50 for testing.

LiDAR Waymo. The Waymo dataset [2] consist of 200 frame 10 Hz LiDAR
3d scans, traffic agent trajectories and RGB images in 5 directions from the top
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of a data gathering car. We subsample a dataset of the 100 most pedestrian
dense scenes in 50 m radius to the collecting car. We use 70, 10 and 20 scenes for
training, validation and testing, respectively. The images are segmented by [63]
and the semantic labels are mapped to the 3d scans by the mapping between
LiDAR and cameras provided by the Waymo dataset.

3.2 Training and Evaluation Details

In CARLA and Waymo the training sequence length is 30 timesteps, and in
testing 300 timesteps (≈17 s). The agents are trained for 20 epochs, 10 of which
are STPN-pretraining without the HLN, and 10 of which are further refinements
with the HLN attached (cf. Sect. 2.2 and Sect. 2.3). Agents tested on Cityscapes
are first trained on CARLA for 10 epochs and refined on Cityscapes for 22
epochs. Agents that are given a goal are trained with a sequence length of 10
timesteps for the first 5 epochs, after which the sequence length is increased to
30. The SPL-goal agents are refined from the weights of goal-free SPL agent that

Table 1. Left: Evaluation of pedestrian motion generation with 17s rollouts on the
CARLA test set. The SPL (goal-free) agent is compared to the behaviour cloning
(BC), constant velocity (CV) heuristics, as well as to to S-GAN [19], ST-GAT [22]
and S-STG(CNN) [23]. The average of five different starting scenarios is shown (on
pedestrian, random, close to a car, near a pedestrian, or on pavement). Our SPL agent
collides with objects and people (fo) and cars (fv) less frequently than any other
method, while travelling (d) only slightly shorter than ST-GAT. Right: Our SPL-goal
agent outperforms or matches the goal direction (GD) heuristic and CADRL in success
rate (fs), while colliding much less (fv, fo).

SPL BC CV S-GAN ST-GAT S-STG

fo 0.02 0.03 0.13 0.14 0.14 0.02
fv 0.07 0.13 0.16 0.16 0.15 0.12
d 7.0 1.6 3.7 5.1 7.9 0.47

fo fv fs

SPL-goal 0.09 0.01 0.78
CADRL 0.24 0.08 0.75
GD 0.14 0.07 0.78

Table 2. Left: Average displacement error (m) for pedestrian forecasting on CARLA
and Waymo. Our SPL agent receives the second lowest forecasting error on both
datasets. The ST-GAT outperforms SPL on the CARLA dataset but yields the worst
results on the Waymo dataset. On the Waymo dataset our SPL and BC models out-
perform the others with a large margin. Right: Our SPL agent avoids more collisions
(fo +fv), walks further (d) and stays more on pavements (fp) than ground truth simu-
lated pedestrians (GT) on CARLA. The SPL agent is initialized on the same positions
as the simulated pedestrians.

SPL BC S-GAN ST-GAT S-STG

CARLA 0.11 0.22 0.16 0.09 0.12
WAYMO 0.06 0.03 0.11 0.13 0.11

fo fv d fp

SPL 0.00 0.0 17.0 0.46
GT 0.08 0.0 16.0 0.35
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was trained on CARLA, with the addition of a feature indicating the direction
to the goal. Each test scene is evaluated for 10 episodes with different spatial
and agent history initializations to compute mean metrics.

3.3 Results

Evaluation metrics are adapted from the benchmark suite of CARLA and are:

– fo, average frequency of collisions with static objects and pedestrians;
– fv, average frequency of collisions with vehicles;
– d, average Euclidean distance (in meters) between agent’s start and end loca-

tion in episodes;
– fp, average frequency of the agent being on pavements;
– fs, success rate in reaching a goal (only applicable for goal reaching agents).

CARLA. Table 1 (left) shows that our SPL agent generates long trajectories
and yields significantly fewer collisions than the compared methods. The SPL
average trajectory length 7.0 m is 11% less than the furthest travelling ST-GAT
of 7.9 m, but the SPL agent collides 53% less with vehicles and 86% less with
objects and pedestrians. As shown in Table 2 (right), SPL even outperforms the
CARLA-simulated (GT) trajectories in collision avoidance, and learns to stay
on the sidewalk more, despite GT being the experts. To show the effect on the
loss (1) of training on states outside of the expert trajectories, we compute the
average negative log-likelihood loss (NLL) with respect to expert trajectories on
the test set for the STPN module of SPL and of the BC baseline, obtaining losses
of 0.009 and 0.013, respectively. The lower NLL of STPN indicates that training
on states outside the expert trajectories provides more informative features and
a model that acts more similar to ground truth data (i.e. expert trajectories).
Finally, the SPL agent obtains the second lowest one-step trajectory forecasting
error, or average displacement error (ADE), as seen in Table 2 (left).

Table 3. Left: The SPL agent has learnt to avoid collisions with cars and pedestrians
significantly better than BC, CV, S-GAN, ST-GAT and S-STG(CNN) on the Waymo
data. Right: SPL-goal outperforms CADRL and GD on all metrics on Cityscapes.
SPL-goal can reach goals while avoiding cars even in noisy scenes.

SPL BC CV S-GAN ST-GAT S-STG

fo 0.07 0.16 0.22 0.60 0.71 0.15
fv 0.03 0.06 0.10 0.26 0.12 0.07
d 1.4 4.0 1.2 2.9 2.5 0.34

fo fv fs

SPL-goal 0.23 0.03 0.71
CADRL 0.28 0.10 0.70
GD 0.28 0.09 0.70

To the right in Table 1 the SPL-goal agent is compared to CADRL and to
the goal direction (GD) heuristic when given a goal at a distance of 6 m. Our
SPL-goal agent achieves a slightly higher success rate (fs) than CADRL while
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being on par with GD. Moreover, SPL-goal is significantly better at avoiding
collisions with cars, people and obstacles than the compared methods. In Fig. 3,
the SPL-goal agent can be seen safely crossing streets to reach its goals.

Cityscapes. The 3d reconstructions of moving objects in the Cityscapes data
can be noisy due to errors in depth estimation in frame-by-frame reconstruction,
as well as noise in bounding boxes and semantic segmentation. Therefore the
goal reaching task is harder in Cityscapes than in CARLA. Agents are initialized
on pavement, near cars or randomly. The SPL-goal agent outperforms the GD
heuristic and CADRL in collision avoidance as seen in Table 3 (right). Sample
trajectories of our agent can be seen in Fig. 5.

Waymo. In Table 3 (left), our SPL agent, BC, CV, S-GAN, ST-GAT and ST-
GCNN are evaluated on 4 second trajectories. The SPL agent is significantly
better at collision avoidance than any other model that is only trained on expert
pedestrian trajectories. It should be noted that the collision-aware SPL agent
travels slower than BC to avoid collisions, which results in shorter trajectories on
average. However SPL’s trajectories are three times longer than S-STG(CNN)
with half of the collisions. The SPL model has the second lowest ADE after
BC (which shares SPL’s architecture) on the Waymo dataset as seen in Table 2
(left). The SPL model is the only model to perform well on trajectory forecasting
on both simulated and real data, while outperforming all models in collision
avoidance. Qualitative examples of the SPL agent (without goals) are shown in
Fig. 1, Fig. 6 and frame-by frame car avoidance in Fig. 4.

Fig. 6. SPL agent trajectories on the Waymo dataset, showing the pedestrian taking
a number of different paths depending on how the agent history is initialized (cf. Sect.
2.2). Cars and other pedestrians are indicated with 3d bounding boxes.
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4 Conclusions

We have introduced a novel hierarchical 3d pedestrian locomotion generation
model, based on explicit 3d semantic representations of the scene and 3d pedes-
trian locomotion model. By training the generator with a unified reward and
likelihood maximization objective, the model learns to forecast well on both
real and simulated data, while outperforming even expert trajectories in colli-
sion avoidance. More generally, our formulation can be used to adapt or refine
any maximum likelihood-based trajectory forecasting method to simultaneously
handle collision avoidance and forecasting. Our formulation also enables the
use of articulated human models to enforce human dynamics on the trajectory
forecasting model. Finally, the proposed pedestrian motion generator can also
be refined to plausibly navigate among other pedestrians and traffic to specific
goals. Future work includes studying finer grained agent-scene interactions, for
example modelling traffic signs, crossroads, and other relevant objects in urban
scenes.
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1 Supplementary Videos and Further Visualizations

In the file pedestrian synthesis in waymo.mp4, example trajectories generated
by our goal-free SPL agent on the Waymo test set are shown. The agent is
visualized as a skeleton, which is generated by the human locomotion network
(HLN), cf. §2.3 in the main paper. Also, 3d bounding boxes of cars and other
pedestrians are shown. The agent can be seen to wait for a bus before crossing
and starting to run when cars close to it start moving. The agent can also
be seen crossing the street while walking behind a car and crossing a busy
intersection. When the ground truth trajectories end, the bounding boxes of
cars and pedestrians stand still, but the agent continues to produce plausible
trajectories. In Fig. 1 a small qualitative example of the agent cutting corners
and leaving the crosswalk can be seen. Such plausible but perhaps imperfect
behaviour from the point of view of traffic laws would need to be explicitly
modelled to be achieved by classical planners (based on methods such as visibility
graphs or spatial navigation meshes ).

In the file pedestrian synthesis in cityscapes.mp4, example trajectories
generated by our SPL-goal agent on the Cityscapes test set are shown. Two
observed pedestrians visualized as the blue and yellow bounding box can be seen
walking along the pavement. A car is approaching marked by the red bounding
box. It is unclear where the pedestrians are heading, as they may decide to cross
the street on the crosswalk, continue along the curb or continue forward. Our
agent can be used to rollout the motion of the pedestrian in yellow in all of
these cases. The agent is initialized with the past movements of the pedestrian in
yellow after which it generates movement in multiple plausible directions, shown
as the moving skeleton (which again is produced by the HLN module). In the
second scene we show the temporal visualization of Fig. 5 from the main paper.

Frame by frame visualizations from the CARLA test set in Fig. 3 shows that
the HLN produces smooth poses even when accelerating from standing to running
or when running away from cars.
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Fig. 1: A subsampled pose sequence in Waymo showing the SPL agent cutting
corners and choosing to avoid the crosswalk. This kind of imperfect but plausible
traffic behaviour would not be modelled by classical planning methods.To the top
left: it can be seen that no cars are approaching the pedestrian. The pedestrian
continues to the left once on the pavement.

Further visualizations of the SPL agent on the CARLA test set can be seen
in Fig. 2. In these visualization we show the SPL agent trained only with RL, i.e.
without any alternation between imitation learning and RL (cf. Algorithm 1).

Fig. 2: Additional 1-minute trajectories of our goal-free SPL agent on the CARLA
test. Note that in these examples we show an SPL agent that was trained without
any objective that encourages it to track another pedestrian – it was trained only
to walk safely and plausibly in the environment based on the reward signal in
§2.4 of the main paper. Car and person trajectories are shown in blue and green,
respectively. Red indicates the agent’s trajectory, with terminal position indicated
by an orange cross. Left: Agent walking along a pavement. The pavement also
continues to the right close to the initial location, and the agent initially walks
a few steps in that direction. It then then turns to move towards the camera,
which indicates the inherent multi-modality of plausible paths to take. Middle:
When initialized on the road on a trajectory of a crossing pedestrian, the agent
moves away from the road onto the pavement parallel to to the road. Blue arrows
indicate the directions of the nearby cars. Note that the agent is not hit by
any of the cars (the bottom car has moved away before the agent reaches that
trajectory). The agent produces a plausible but different trajectory from the one
it was initialized on. Right: Agent moving to the sidewalk when initialized on the
road. The agent follows the curvature of the pavement in the end of its trajectory.
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Fig. 3: Top: A subsampled (every 4th frame) pose sequence in the CARLA test
set showing the agent successfully running to avoid two cars. Bottom: The agent
starts running from a standing initial position to leave the road. The movements
are temporally smooth even when the agent accelerates from standing.

2 Details of our Model Architecture

In Fig. 5 we show the network architecture of the proposed model. The semantic
and RGB top-view projections as well as the dynamic occupancy map (constructed
as shown in Fig. 4) are processed by the convolutional features extractor, which
consists of two convolutional layers with ReLU activation and followed by max
pooling. The agent’s past trajectories (i.e. the agent history) are processed by
an LSTM. Finally, two independent fully connected layers process the HLN’s
locomotion feature ht−1, the agent’s displacement dt to the closest vehicle, the
encoded agent history f t, and the convolutional features to produce two feature
vectors fu and fµ. The multinomial distribution over unit directions is given by
πΘ(U t|st) = softmax(fu + ut−1). The addition of ut−1 acts as a prior to make
the agent move in the same general direction unless motivated by the current
state st to change direction. The mean speed is given by µt = σ(fu), where σ is
the sigmoid function. Finally, the agent’s velocity vt for the current timestep is
given by vt = |vt|ut.

3 Semantic 3d Reconstruction of Cityscapes

The 3d reconstruction of the environment Et is performed in two parts – one global
reconstruction for static objects S and a frame-by-frame stereo reconstruction
for moving objects in Dt. Semantic segmentation is used to mask out people,
cars and bikes, when performing sparse 3d reconstruction. Dynamic objects are
represented by cuboids in Dt, which are found by performing 2d object detection
followed by triangulation.

A semantic segmentation network is used to estimate the semantic mask
of each frame. The points in the found 2d semantic masks are triangulated to
find the corresponding 3d points in the world. A 3d point pi which is visible in
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Fig. 4: Construction of the dynamic occupancy map. The pedestrian and car
trajectories are extended by constant velocity estimates at each timestep, as
indicated by the dashed lines in the top-right rectangle. Timestamps of future and
past occupancy in the agent’s neighborhood are then mapped into an occupancy
map, centered around the agent. Finally, the current timestamp t is subtracted
to provide a relative dynamic occupancy map centered around 0. Note that the
pedestrians and cars present are represented in separate channels in the semantic
3d reconstruction input E.

frames i, .., j has the 2d projections ui, ..,uj . Each 2d point ui corresponds to
a semantic label estimate li. The mode of li, ..., lj is assigned as the label of pi.
Alternatively, a 3d semantic segmentation method could be used. The resulting
pointclouds are regularized by a voxel grid G. In the regularization, the color of a
voxel is determined by the mode color of the points in the voxel. Semantic class
is determined in the same fashion. The voxelized static environment is filtered
with a median filter with size (1, 4, 4). Finally, the height of the ground plane is
estimated as the mode of points in the 3d semantic pointcloud with the semantic
labels for ground, road, sidewalk, parking, terrain and rail tracks.

4 Training Procedure for the SPL and SPL-goal Agents

The SPL and SPL-goal agents are trained to simultaneously minimize the pedes-
trian trajectory forecasting error by maximizing the model likelihood on the
pedestrian trajectories in the data, and to maximize the respective reward func-
tions. In §2 of the main paper it is shown that the two objectives can be rewritten
as a single one, with two sampling techniques (sampling agent locations and
moves from the expert trajectories, or from the current policy). Given expert
trajectories (xi0, . . .x

i
T ) ∈ D, which can also be described by the state-velocity
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Fig. 5: Semantic trajectory policy network (STPN) architecture. A top-view of
an agent-centered local crop of the 3d pointcloud with RGB and semantic labels,
together with a top-view of the dynamic occupancy map, is processed by the
convolutional features extractor. The N last agent velocities vt−N , . . . ,vt−1 are
fed to a 32-unit LSTM, whose hidden state is denoted f t. The human locomotion
network (HLN) extracts from the previous locomotion state lt−1 the locomotion
feature ht−1 (recall that the STPN is executed before the HLN, and thus the
STPN only has access to the previous hidden state ht−1 of the HLN). Finally,
the convolutional features, agent history feature f t, locomotion feature ht−1 and
displacement vector dt to the closest vehicle are concatenated and fed to two
separate fully connected layers. The first layer feeds into a softmax to produce
a distribution pt over the unit movement directions (unit velocities), and the
second layer feeds into a sigmoid to produce the mean speed µt for a normal
distribution from which a speed |vt| is sampled. The agent’s velocity vt for the
current timestep is finally given by vt = |vt|ut.

pairs (si0,v
i
0) . . . (siT ,v

i
T ), and given the set of agent initializations5 I, the full

optimization can be performed by following Algorithm 1 that samples gradients
from the expert pedestrian (initialized from (x, v) ∈ D) and the policy trajectories
(initialized from x0 ∈ I, and thereafter following vt ∼ πΘ(v|st) where xt+1 is
given by HLN step towards xt + vt), respectively.

In all experiments the semantic trajectory policy network (STPN, cf §2.2 in
the main paper) is trained first without the HLN, cf. Table 1. The SPL agent
is then refined with the HLN executing the steps provided by the STPN, as
visualized in Fig. 3 of the main paper. During this training step the HLN weights
are kept frozen (please refer to §2.5 for training procedure and evaluation). The
CARLA goal driven agent SPL-goal-CARLA (Table 1 in main) is initialized from

5 I contains initializations near cars, near pedestrians, on pavement and at random.
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Algorithm 1 Unified Batch Policy Gradient and Maximum Likelihood Estima-
tion

for N epochs do
for pedestrian i in D do

Initialize batch gradient direction g = 0
Initialize agent on the ith pedestrian’s initial state s0 = si0
for t in [0, T ] do

Take expert action v = vit
Evaluate gradient g = g + ∂ΘR(s,v) log(πΘ(s|v))

end for
for Initialization j in I do

Initialize agent on the jth initial state s = sj0
for t in [0, T ] do

Sample action vjt ∼ πΘ(v|s)
Take action v = vjt
Evaluate gradient g = g + ∂ΘR(s,v) log(πΘ(v|s))

end for
end for
Update Θ with gradient step in direction g.

end for
end for

the pretrained weights of SPL-CARLA noted here for clarity as STPN-CARLA to
indicate that no training with the HLN is performed. Since the Cityscapes dataset
does not contain tracking and therefore trajectories, the STPN-Cityscapes is
initialized from STPN-CARLA, and is trained on the Cityscapes dataset for 14
epochs. The STPN-Cityscapes is the initialization of the SPL-goal-Cityscapes
presented in Table 3. Finally the SPL Waymo agent in Table 3 is initialized
from the weights of STPN Waymo. The initialization and training epochs are
gathered in Table 1. The agent history is initialized randomly when the agent is
not initialized on top of a pedestrian in the data. This provides a random initial
direction and promotes exploration in early stages of learning.

Table 1: Number of epochs trained for different models presented. The number
of epochs of pretraining shows the number of epochs STPL is trained without
the HLN, and No of epochs is the number of epochs the two modules are trained
together.

Model Dataset Weight initialization
No. of epochs
pretraining

No. of epochs
training

SPL CARLA Random 10 8
SPL-goal CARLA (STPN-CARLA) 21 14
SPL Waymo Random 1 1
STPN Cityscapes (STPN-CARLA) 14 -
SPL-goal Cityscapes (STPN-Cityscapes) 22 17
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5 Ablation Study of Reward Function

Table 2: Ablations of the STPN with an average over all of the presented
initializations. The ablation results are on the CARLA validation set with
a maximal episode length of 5.8s. fd is the frequency on locations occupied
by pedestrians, fpav is the frequency on pavement. The full model balances
between collisions, travelling far and implicitly learns to stay on pavement
without explicitly staying on pedestrian trajectories.

Model fo,p fcar d fd fpav

Rdist +Rcoll 0.01 0 4.7 0.14 0.61
Rped 0.55 0 9.6 0.24 0.48
Rcoll +Rd 0.03 0.1 13 0.45 0.79
Rcoll +Rk 0.02 0 16 0.04 0.45

Rcoll +Rped, λp = λv = λs 0.04 0 15 0.31 0.38
Rcoll +Rped 0.04 0 8.5 0.32 0.77

To show the need for the different reward components we present a short
ablation study in table Table 2 on the CARLA test set. The different models are
the STPLN agent trained with the listed reward weights. The Rped is trained
with a positive reward for being on pedestrian trajectory λd = 0.01 and λk = 0.01.
This leads to an agent that is oblivious to collisions and collides with a frequency
of 0.55. As a baseline, we present an agent trained without the pedestrian reward
components and instead a positive reward Rdist +Rcoll for moving further from
the start location and a negative reward for collisions (λdist = 0.001). This agent
Rdist + Rcoll visits the pedestrian occupancy map seldom fd = 0.14. Further
only including one of the pedestrian reward components Rcoll +Rd ,Rcoll +Rk
leads to an agent that ignores cars when only rewarded for staying on expert
trajectories, and to an agent that seldom visits the pedestrian occupancy map
when only rewarded for staying on the pedestrian heatmap. Finally the the
model trained with the full reward Rcoll + Rped balances between all of these
metrics. To show the effect of the different collision components of the reward,
we set the penalty for colliding with cars, pedestrians and obstacles equal to 1
Rcoll + Rped, λp = λv = λs and observe that this leads to an agent that is on
pavementfpav half of the times compared to the proposed model Rcoll +Rped.
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Abstract: There exist several datasets for developing self-driving car methodolo-
gies. Manually collected datasets impose inherent limitations on the variability
of test cases and it is particularly difficult to acquire challenging scenarios, e.g.
ones involving collisions with pedestrians. A way to alleviate this is to consider
automatic generation of safety-critical scenarios for autonomous vehicle (AV) test-
ing. Existing approaches for scenario generation use heuristic pedestrian behavior
models. We instead propose a framework that can use state-of-the-art pedestrian
motion models, which is achieved by reformulating the problem as learning where
to place pedestrians such that the induced scenarios are collision prone for a given
AV. Our pedestrian initial location model can be used in conjunction with any goal
driven pedestrian model which makes it possible to challenge an AV with a wide
range of pedestrian behaviors – this ensures that the AV can avoid collisions with
any pedestrian it encounters. We show that it is possible to learn a collision seeking
scenario generation model when both the pedestrian and AV are collision avoiding.
The initial location model is conditioned on scene semantics and occlusions to
ensure semantic and visual plausibility, which increases the realism of generated
scenarios. Our model can be used to test any AV model given sufficient constraints.

Keywords: Autonomous Vehicles, AV Testing, Reinforcement Learning

1 Introduction

Research on autonomous vehicle (AV) models has gained momentum in recent years [1]. There exist
both end-to-end AV models which make decisions directly based on visual sensor outputs [1–6], and
hierarchical models which require intermediate processing (such as pedestrian detection) of sensor
outputs for decision making [7, 8]. To ensure traffic safety, e.g to avoid fatal collisions [9], there is a
need to evaluate the various AV models in safety-critical situations. In this paper we consider safety
testing of the full pipeline of perceptive AV models – from sensor inputs (e.g. images) to steering.
There exist several datasets [10–17] for developing and evaluating AV models, but manually collected
data is typically gathered from traffic scenarios that seldom exhibit collision and near-collision
scenarios. This shortcoming has lead to recent developments of safety-critical test case generation
methods [18–32] for AV models. These existing approaches resort to simulated pedestrians which
are not representative of the rich and varied behavior of real pedestrians [33] – either the pedestrian
trajectories are handcrafted, or the pedestrian models are trained to behave in unnatural ways (e.g.
pedestrian agents which are adversarially trained to collide with vehicles). Thus these methods may
provide insufficient insights on how the AV would act in scenarios involving real pedestrians. At the
same time, there exist a large number of state-of-the-art pedestrian behavior models [34–49] which
learn, from real traffic scenarios, how pedestrians interact with the world.

Different from [18–32], we reformulate the problem of generating challenging scenarios as one of
learning the distribution µ of pedestrian initial locations x0 which are likely to induce collisions
between the pedestrian and the AV, for a given pedestrian behavior model π. This reformulation
allows the use of state-of-the-art goal driven pedestrian behavior models π in AV test case generation,

∗Work partially done while at Lund University.

5th Conference on Robot Learning (CoRL 2021), London, UK.
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Figure 1: Overview of the proposed safety-critical test case generation model for AVs. The Adver-
sarial Test Synthesizer (ATS) is trained to position a pedestrian with behavior model π such that the
induced scenario is likely to yield a collision with the AV ρ (car to the right). Four example scenarios
are shown. Scenarios #3 and #4 are visually implausible, as a pedestrian cannot simply appear from
nowhere into the line of sight of an AV. Scenarios #1 and #2 are both plausible and challenging, as
the pedestrian is close to the AV and not in the line of sight of the AV due to the occlusions.

which means that the AV can be stress tested in more realistic scenarios compared to prior works.
There exist three types of pedestrian behavior models – collision seeking, collision ignorant, and
collision avoiding – each of which gives rise to a distinct optimization problem in our framework.
We are the first to show empirically that a non-trivial solution exists when the pedestrian model is
collision avoiding. Different from previous work [18–32], we explicitly model scene semantics to
learn to generate semantically and visually plausible traffic scenarios. Our model can be used to
augment existing data by adding simulated safety critical pedestrians to real traffic scenarios.

In real traffic an AV can be expected to encounter pedestrians with a range of different behaviors.
Some individuals follow traffic rules and plan their movements based on the surroundings; others are
inattentive and take risks. Independently of the pedestrian’s overall behavior, an AV should be able to
avoid collisions with the pedestrian when it appears from an occluded space. To ensure this, AV test
scenarios should cover the true variation of different pedestrian behaviors. Previous works [18–32]
either assume that the pedestrian motion can be modelled by a simple constant velocity model, or
that the pedestrian motion is adversarial to the AV. In reality however, collisions do not occur only
when a pedestrian has a perfectly predictable path (e.g. constant velocity), or when the pedestrian
is actively seeking to get hit by the AV (e.g. adversarial pedestrian model). Quite the contrary –
most collisions occur because pedestrians are distracted, due to occlusions or noise. To alleviate
the previous unrealistic assumptions on pedestrian motion in generative AV testing, we separate
the problem of finding the pedestrian location distribution µ from the modelling of the pedestrian
behavior. The main problem is then to find a location distribution µ such that the number of collisions
between a black-box AV and a black-box pedestrian is maximal in expectation. In AV testing the
proposed approach should be used with as many different pedestrian behavior models as possible, as
an AV should be seeking to avoid collisions with all (even collision seeking) pedestrians.

The pedestrian location distribution µ, shown in Fig. 1, is conditioned on scene semantics, distance to
the AV, as well as a dynamic occupancy and occlusion map. Occlusions can cause an AV to miss
a pedestrian (or vise versa) [50] and can thus cause collisions, therefore affecting the shape of µ.
Furthermore, µ is likely to be shaped by the scene semantics (e.g., pedestrians are more likely to
reside on sidewalks than on grass) [33, 51, 52]. In previous works, test case generation for AVs
has been treated as a reinforcement learning problem [20–24, 32] or as a black-box optimization
problem solved by bayesian optimization (BO) [18, 21]. BO [53] cannot be used to learn µ as µ is
inherently discontinuous – in realistic scenarios pedestrians can only appear from occluded spaces
[51] (cf. Fig. 2). Reinforcement learning (RL) on the other hand does not assume that the policy µ
is continuous, and avoids the curse of dimensionality (that occurs in classical control and planning
methods) in problems, like ours, with large state spaces with unknown world dynamics [54]. We
thus propose the Adversarial Test Synthesizer (ATS), an RL agent which positions pedestrians in a
given scene (see Fig. 1). It selects initial locations for the pedestrian according to its policy µ, which
is optimized to increase the number of collisions. For the ATS agent, the uncontrollable external
dynamics include the scene, the AV, and all other pedestrians and cars. We model µ as a heatmap
over the scene, parametrized by a deep convolutional neural network. Our pedestrian initial location
model µ allows collision seeking scenario generation with any goal driven pedestrian behavior model
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and any AV model. This allows for more varied and more realistic testing of the AV. We show that
near-collision scenario generation with a collision avoiding pedestrian gives rise to a previously
unstudied optimization problem in AV testing. We show that this problem has a solution.

1.1 Related Work

Previous works [21, 23, 24] have studied the generation of full pedestrian trajectories (x0, . . . , xT )
for AV testing, such that the trajectory is adversarial to the AV ρ. This leads to the pedestrian only
behaving in a suicidal manner. This is unnecessarily limiting as typically it is not only the AV which
aims to avoid collisions. Ultimately in testing we wish to ensure that the AV can avoid collisions with
adversarial as well as collision avoiding pedestrians. In [18] pedestrians are modelled with constant
velocity and are initialized from a set of predefined positions. The AV is retrained in a loop with the
test case generator. In [21] existing trajectories are adapted to become adversarial. The suggested
method requires a varied ground truth dataset and the generated data is dependent on the variability
of the existing dataset. Similarly, [25, 26, 28–31] augment existing datasets in a latent or trajectory
space, which again requires a large and varied ground truth dataset.

When only testing the vehicle control of a hierarchical AV system, the set of initial locations that
cause collisions can be found by the Hamiltonian-Jacobi reachability set [55]. This is not possible in
our setup since we consider the full stack of the AV, not only the control problem. Moreover, in our
framework the pedestrian is not necessarily adversarial to the AV, and the scene dynamics cannot
be described by a differential game. Our proposed approach allows the testing of AV models with
pedestrian models that are semantically aware, collision avoiding, goal reaching and articulated. We
do not use robust control methods because we utilize explicit pedestrian behavior models.

There are a number of recent studies which explore visual relations in data from the AV’s perspec-
tive [51, 52, 56]. Makansi et al. [51] learn a visual prior for where pedestrians and other objects can
appear from the perspective of a camera mounted on an AV. A similar problem of realistic object
placement in LiDAR scenes is studied in [56]. Finally, [52] show that visual cues from an on-board
camera can be used to learn walkable areas in a scene. The results of [51, 52, 56] indicate that
realistic data contains strong correlations between the scene’s semantic structure as well as the the
presence and behavior of pedestrians and stationary obstacles. We thus include such semantic cues
and occlusions in our proposed pedestrian location distribution model µ, as described in §2.

2 Methodology

In our framework, the ATS µ and the AV model ρ play an indirect constrained minimax game, and
no assumptions are made about the pedestrian behavior model π. Thus π can be cooperative with
either the AV ρ or ATS µ, or be ignorant with respect to both of these. The problem then becomes
a constrained indirect three-agent minimax game with up to two agents per team. The study of the
equilibrium [57, 58] is beyond the scope of this paper. However, it is clear that if the AV ρ, pedestrian
behavior π and pedestrian location distribution µ are unconstrained, then the minimax problem has a
trivial solution. If the pedestrian is always initialized arbitrarily close to the front of the AV (when
the AV’s initial velocity is forward), then this will always lead to a collision. If the pedestrian and the
AV always stand still or always move in opposite directions, then there are never any collisions. To
avoid trivial solutions, sufficient constraints are needed.

To illustrate the minimax problem, assume that the loss functions for the AV ρ, the pedestrian π, and
the ATS µ are respectively given by a sum of the expectation of the number of collisions and other
loss components. Let the number of collisions between a given AV and pedestrian be measured by an
indicator function I that is 1 if a collision occurs and 0 otherwise. The AV model ρ and the pedestrian
location distribution model µ are learnt by minimizing the loss functions Jρ and Jµ respectively,

min
ρ
Jρ = min

ρ

(
Eµ,ρ,π[I] + fρ(ρ)

)
s.t. ρ ∈ Bρ (1)

min
µ
Jµ = max

µ

(
Eµ,ρ,π[I]− fµ(µ)

)
s.t. µ ∈ Bµ, (2)

where fρ and fµ are loss components of Jρ and Jµ, respectively. And Bρ and Bµ describe the model
constraints of ρ, and µ respectively. Equations (1) - (2) express the general optimization problem
when the pedestrian behavior π is independent of E[I] (for example constant velocity π). If π is
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collision avoiding then (1) - (2) together with the following equation describe the general problem
min
π
Jπ = min

π

(
Eµ,ρ,π[I] + fπ(µ)

)
s.t. π ∈ Bπ, (3)

where fπ is the loss component of Jπ, and Bπ describes the constraints on the model π. If the
pedestrian behavior model π is adversarial then (3) will be replaced by maxπ

(
Eµ,ρ,π[I] + fπ(µ)

)
s.t. π ∈ Bπ . It is clear that the choice of the behavior policy π changes the optimization problem and
affects the solutions of µ and ρ. Depending on the choice of π, the set of applied constraints Bρ and
Bµ may need to be adjusted to ensure that none of the models converge to a trivial solution. Previous
works [18–32] have considered the cases where π is adversarial or a constant velocity model. In our
experiments we illustrate that with sufficient constraints on µ, π and ρ, a non-trivial solution exists for
(2) when π is collision avoiding. The classical existence conditions of a solution of zero-sum game
cannot be applied [57, 59] because the problem at hand is not a zero-sum game, as the pedestrian has
loss terms fπ that are not present in the AV’s loss function Jρ.

2.1 Special Case: Three Reinforcement Learning Agents

We view the problem of learning the pedestrian initial location distribution as a reinforcement learning
(RL) problem with three agents: the pedestrian, the AV and the ATS. At timestep t ∈ {0, T − 1}
the pedestrian and the AV move in the scene by taking actions aπt and aρt , respectively; we gather
these in a joint vector at = (aπt , a

ρ
t ). The pedestrian’s action is sampled from the pedestrian policy

aπt ∼ π(.|sπt ) conditioned on its observation sπt of the scene which includes the AV. Similarly, the
AV chooses actions as aρt ∼ ρ(.|sρt ) where sρt is the AV’s observation of the scene which includes the
pedestrian. The states sπt and sρt respectively contain the pedestrian’s and the AV’s final goal location.
We join sπt and sρt as a vector st = (sπt , s

ρ
t ). The unknown world model p(st+1|st, at) provides the

transition probabilities from state st to state st+1 when the pedestrian and the AV take the joint action
at. The pedestrian’s and the AV’s actions are evaluated by the reward functions rπ(st, at, st+1) and
rρ(st, at, st+1), respectively. The policies π and ρ are trained to maximize the respective expected
discounted cumulative future rewards (i.e. the utility) at each state st.

We assume that the AV’s initial location y0, initial velocity vρ0 and final goal location are given. Before
the 0th timestep the ATS observes sµ = (S,D,OP ), where S is the top view RGB and semantic
images of the scene, with constant velocity predicted dynamic occupancy D of the AV(calculated
from y0 and vρ0 ), external cars and external pedestrians in the scene, and OP is the elementwise
product between the occlusion map from the AV’s perspective O and µ’s prior distribution P . The
prior P is a heuristic of µ which assigns high probability to pedestrian initial locations that are close
to the AV and that can lead to a collision assuming constant motion vρ0 of the AV. The ATS agent
samples an initial pedestrian location x0 from the policyOPµ(sµ), which is the product betweenOP
and the learnable policy µ. To reduce notational clutter we will in §2.1 omit the notation OP from
OPµ and let µ denote the policy of ATS. The pedestrian with an initial location x0 is given a goal
location gπ and velocity vπ0 such that the pedestrian’s path to gπ coincides with the AV’s assuming
both move with constant velocity. After sampling the pedestrian’s initial location x0 we simulate the
pedestrian at the location x0 with velocity vπ0 . Next we can simulate the pedestrian’s and the AV’s
observation of the world sπ0 , s

ρ
0 at t = 0. Our aim is to find the the initial distribution µ – i.e. the

policy of the ATS agent – which leads to the highest utility for the reward function rµ(st, at, st+1),
where rµ attains its highest value when the AV and pedestrian collide.

In our experiments the learnable ρ, π, µ are modelled by policy gradient models and share the loss

J = Ex0∼µΘ(.|sµ),sµ∼q,aπt ∼π,a
ρ
t∼ρ,st∼p(.|st,at)

[
T−1∑
t=0

γtr(st, a
π
t , a

ρ
t , st+1)

]
, (4)

where r = (rµ, rπ, rρ). The loss functions’ dependence on I is expressed in the different re-
ward functions. To simplify notations let the state-action history τ = (a0, s1, ..., aT−1, sT ),
and the discounted cumulative reward R =

∑T−1
t=0 γtr(st, at, st+1). We can express (4) as

E[R] =
∫
sµ

∫
x0

∫
τ
R(x0, τ)q(sµ)µ(x0|sµ)pτ (τ |x0)dτdx0ds

µ, where pτ is the probability density
function of τ given x0, and q is the probability density function of sµ. Let Ω be the set of allowed
values for (τ, x0, s

µ) then for finite T (4) can be rewritten to reveal the relationship between µ and r,

J =

∫
Ω

q(sµ)µ(x0|sµ)

T−1∑
t=0

γtr(st, at, st+1)

t∏
k=0

π(aπk |sπk )ρ(aρk|s
ρ
k)p(sk+1|sk, ak)dτdx0dsµ. (5)
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Figure 2: Left: A top view image of a sample prior P of µ. In red are other pedestrians, and in blue
are cars. The prior implies a higher likelihood of pedestrian initial placement which are close to the
AV. Right: The same prior after a multiplication with the occlusion map O.

Figure 3: Top-view of two different scenarios. The AV is green, external cars and pedestrians are blue
and dark red, respectively. In each of the two examples, the left image shows the prior distribution
and the right image shows the final initial distribution. Left example: The prior P induces a high
likelihood for initializing a pedestrian close to the AV, but the probability map is very smeared out.
The final distribution Pµ is much less scattered than P and more peaked close to the AV (indicated
also with an external orange ellipsoid, to more clearly show where the probability mass is). Right
example: We see a similar phenomenon as in the left example, in the dense dataset (see supplement).

From the above it is clear that µ’s one step reward is Rµ =
∑T−1
t=0 γtrµ(st, at, st+1). We use

REINFORCE [60] to find µ. The models ρ and µ can be learnt simultaneously as shown in the
supplement. If the environment model p is known, we can try to find the closed form solution of (5).
Using Bellman equations would then allow for a white-box treatment of the AV and the pedestrian.

2.2 Adversarial Test Synthesizer

The ATS is a policy gradient agent, with policy µ. Its objective is to provide an initial position x0 to
the pedestrian agent such that the pedestrian collides with the AV. To do so the ATS needs to find
locations near the AV where pedestrians and their motion are difficult to detect for the AV. To this
end the ATS gets an input consisting of a top view image of the scene, the prior P of µ that depends
on the distance to the AV, and the temporal mapping of dynamic objects D. The initial distribution µ
depends also on the scene semantics S, as ATS should learn that pedestrians are more likely to reside
near certain semantic classes such as pavement. The policy µ is conditioned on the state sµ of size
(128×256×C), where C = 17 is the number of channels. Due to the success of neural networks in
vision tasks and the visual nature of the input µ is modelled by a two layered convolutional neural
network with bi-linear interpolations and a softmax output layer (see Fig.1 in supplement). The output
of the network µ(sµ) is a heatmap of size (128×256). The heatmap is multiplied by the prior P (see
Fig. 2) to avoid sampling x0 that cannot possibly lead to a collision. To enforce visual feasibility the
ATS can be required to sample x0 only from locations that are occluded for the AV. This can be done
by sampling x0 ∼ OPµ(sµ), i.e.the product of the occlusion map O, the prior P and µ(sµ).

The ATS’s reward rµ evaluates at timestep t the pedestrian’s behavior at position xt. Collisions with
all external objects, cars and pedestrians are penalized but collisions with the AV are given a positive
reward. Steps xt taken in areas often visited by pedestrians are rewarded. Steps at towards the goal
gπ are rewarded. The reward rµ is adapted from rπ §2.3.

2.3 Pedestrian Model

The collision avoiding pedestrian behavior policy π is the goal driven Semantic Pedestrian Locomotion
model (CARLA SPL) [46]. The π is a policy gradient agent that is trained by alternatively optimizing
π for the maximum likelihood objective of pedestrian trajectory forecasting and for the policy gradient
objective of collision avoidance. The reward function rπ (see supplement) of π encourages motion
in pedestrian dense areas with the reward term Rped and penalizes collisions with cars (including
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the AV), other pedestrians and static objects in the reward term Rcoll. The reward component Rg
encourages movement towards the goal location gπ , and Rφ penalizes unnaturally large motions.

The model observes a local crop St(xt) of size 5m × 5m of the semantic labels and RGB top
view image of scene S and a local crop Dt(xt) of the dynamic occupancy map Dt. Further the
state sπ contains a history of past actions and poses taken by the pedestrian in the past N = 12
timesteps, the displacement to the closest car dxt and the displacement to the goal gπ. In summary
sπt = (St(xt), Dt(xt), a

π
t−1 . . . a

π
t−N , d

x
t , ‖xt − gπ‖). The policy gradient model takes a step aπt

consisting of a direction and a speed. The step aπt is articulated by the Human Locomotion Network.

Unless otherwise stated the pedestrian models weights are kept constant to not deviate from the learnt
pedestrian motion. The CARLA SPL model is trained to avoid collisions with the external cars. The
external cars have a lower average speed than the highest possible speed for ρ. This implies that π
expects ρ to always have the same dynamics as its surrounding cars.

2.4 Autonomous Vehicle Model

The AV model ρ is intentionally simple to illustrate the framework empirically and to avoid making
constraining assumptions about the AV. The focus of this work is to show that collision avoiding
pedestrian behavior models can be successfully used in autonomous AV test case generation given
enough constraints on the problem. The AV is a policy gradient model with the state sρt = (‖xt −
yt‖, dt, δt) at timestep t; where ‖xt − yt‖ is the AV’s distance to the pedestrian agent, dt is the AV’s
distance to the closest car, and δt is the AV’s intersection with the sidewalk. The AV’s speed ct is
sampled fromN (sigmoid(wT sρt +b), σρ), where w, b are learnt weights, and σρ = 0.1. The sampled
speed ct is then scaled by the maximal speed of 70km/h. The AV’s initial position y0 and direction
are chosen randomly among the external cars’ constant velocity future trajectories.

The AV ρ is assumed to have a constant direction and the policy gradient model controls the speed of
the AV. Speed control can be enough to avoid collisions, as the AV can stop or accelerate to avoid a
collision. Extending the AV’s model to allow directional changes complicates the learning as the AV
receives two conflicting objectives: to move to a goal location further ahead and to avoid collisions.
The research on AVs deals with balancing such conflicting objectives, and in the future we aim to
replace the minimal AV model with a state-of-the-art AV model. Replacing the current AV model
with a state-of-the-art AV model requires additional constraints to avoid 0 gradients in early training
(as the trained AV model may outperform the untrained ATS).

The reward function rρ penalizes the AV for collisions with cars, people and static objects. The AV
is penalized for driving on the sidewalk proportionally to the AV’s overlap with the sidewalk. To
motivate the AV to move, a positive reward is given at the end of the episode for the distance travelled
‖y0 − yT ‖. The full reward function rρ is given in the supplementary.

3 Experiments

We experiment on a dataset gathered from CARLA[61]. Training data is collected from Town 1 and
consists of 100 training and 50 validation scenes. The test set consists of 37 scenes from Town 2. For
each scene a 3d reconstruction of RGB and semantic segmentation is created from a AV’s perspective.
In all experiments the scenes 51m× 25.6m are voxelized into 20cm cube voxels. All of the tested
ATS models are evaluated and trained with the base AV model. During initial experimentation it was
noted that the AV model ρ had trouble learning collision avoidance without an initializer µ. The base
AV model is trained on two scenes for 200 epochs with a µ that is trained on the training dataset for 10
epochs. A trajectory length of T = 30 is used to train the AV model, and T = 100 is used to train the
pedestrian initial distribution models. Each scene is evaluated for 10 episodes with T = 100. During
testing the pedestrian and AV models perform the mode and mean actions respectively. The action
of the ATS model is sampled. The models are evaluated with three different random seeds and the
average and the standard deviation (stdev) of the three runs are reported. The reported metrics are

– #. collisions - number of collisions the AV model ρ has with pedestrians on average.
– π-entropy - entropy of the pedestrian policy during the length of an episode.

In Table 1 left the proposed pedestrian initial distribution models OPµ and Pµ from §2.2 generate
more than twice as many collisions (std=0.01) as sampling x0 from the priors P and the occlusion-
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Table 1: Left: The proposed OPµ and Pµ generate more than twice the collisions compared to the
baselines; the heuristics the priors P and OP and the random initialization from occluded spaces
Random O. Right: An ablation studying the effect of the prior during the training of µ shows that the
µ is robust to changes in the prior during training as OPµ and Pµ trained with the priors OP and P
respectively, and tested with the prior OP , have indistinguishable collision rates (stdev 0.01).

Random O Prior P Prior OP OPµ Pµ

#. collisions 0.06 0.10 0.09 0.22 0.24
π-entropy 0.85 0.60 0.65 0.25 0.24

Testing prior OP Pµ OPµ

#. collisions 0.21 0.22
π-entropy 0.29 0.25

Table 2: Collision rates of the Pµ model trained with collision avoiding, distracted, collision seeking
and constant velocity pedestrians. The pedestrian model does not affect the collision rate of the
proposed µ, as long as the pedestrian model is not the constant velocity model.

Collision
avoiding SPL

Distracted
SPL+ε

Adversarial
SPL A.

Adversarial
STPN

Constant
velocity HLN

#. collisions 0.21(+−0.02) 0.22(+−0.03) 0.22(+−0.01) 0.19(+−0.01) 0.11(+−0.02)
π-entropy 0.29(+−0.01) 0.25(+−0.02) 0.029(+−0.001) 0.53(+−0.03) 0

masked prior OP . This confirms that µ learns and improves beyond the initial prior distribution,
and that OPµ produces more collisions than the hand-designed heuristics P and OP . The baseline
Random O the random initialization of pedestrians from occluded spaces with 360◦field of view
has the lowest collision frequency. This is likely because occluded spaces may be far from the AV.
The proposed OPµ has a lower π-entropy than the prior OP suggesting that OPµ has learnt to
initialize the pedestrian such that the pedestrian’s direction of movement is as predictable as possible.
With low π-entropy µ has more control over π’s trajectory. To the left in Fig. 3 the prior P and
the corresponding scene’s Pµ distribution are visually compared. The Pµ has learnt decisively to
initialize the pedestrian near the AV, and with a higher probability towards the sidewalk than the road.

In Table 1 left the models OPµ ( i.e. µ trained and tested with the prior OP ) and Pµ ( i.e. µ trained
and tested with prior P ) showed no significant difference. Showing that a 90◦view occlusion map
does not significantly affect µ. Further applying the occlusion mask O only in testing does not affect
the number of collisions, as seen when comparing Pµ to OPµ in Table 1 right. This suggests that
curriculum learning may be used to enforce larger changes to the prior P to facilitate 360◦field of
view occlusion masks (for LiDAR data). A visual comparison of P and OP can be seen in Fig. 2.

In Table 2 the following pedestrian behavior policies are used to train µ,
– Collision avoiding SPL - the goal reaching collision avoiding pedestrian model described in §2.3
– Distracted SPL+ε - a distracted SPL pedestrian. With a 0.3 probability at each timestep the

pedestrian will not notice the AV for m ∼ Poisson(2) timesteps.
– Adversarial SPL A. - an adversarial SPL agent. The SPL model that is finetuned with the Rµ

reward. SPL A. is trained simultaneously with µ (see supplementary Algorithm 1 with αρ = 0).
– Adversarial STPN A. - an adversarial agent that has the Semantic Trajectory Policy Network

architecture [46] i.e. the SPL architecture without the Human Locomotion Network (HLN). The
STPN A. is trained from random weights simultaneously with µ to maximize the the number or
collisions (RSTPN = I from §2). STPN A. is not trained to maximize the negative log-likelihood
of pedestrian trajectories like the SPL models, and it is the only model without locomotion.

– Constant velocity CV - constant velocity motion articulated by [62]. The agent moves towards the
goal with a speed drawn from a Gaussian with µ = 1.23ms−1 and σ = 0.3 [63].

The models Pµ trained with the collision avoiding SPL, the distracted SPL+ε, the adversarial
finetuned pedestrian policy SPL A. and the adversarial STPN A. (most similar to previous work)
are on-par, showing that µ can learn to control the collision avoiding SPL as well as an adversarial
pedestrian model. The collision seeking STPN A. does not outperform the collision avoiding SPL
likely due to STPN A.’s high entropy that makes STPN A. hard to control for µ. STPN A. has no
motion priors and can get hit by the AV with motions that have a low likelihood in real pedestrian
trajectories, such as zigzagging in the middle of the road. Even though the CV model is the most
controllable, the initializer trained to control CV results in the lowest collision rate because the AV
has an easy time avoiding collisions with the CV. The µ trained on SPL+ε distracted pedestrian could
be expected to have a higher collision rate than SPL, as π has a noisier estimate of the AV’s position.
Unfortunately µ does not learn to utilize this unnaturally unstructured (and thus unpredictable) noise.
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Figure 4: Sample trajectories of the Simultaneous-µ, ρ model, sub-sampled at 5 frames from frame 0.
First row: The AV changes speed thus causing the pedestrian to incorrectly estimate the AV’s motion
and walk into the AV. Second row: The pedestrian waits for the AV to pass before crossing the road.

This illustrates the need for a realistic noise model. Natural noise in the pedestrian’s observation
of the AV could be expected to be more structured, for example high noise levels are expected near
occluded spaces. Some sample trajectories of the simultaneously trained µ and ρ (see supplement) are
shown in Fig. 4 - a collision prone initialization, and an initialization that does not lead to a collision
because the AV speeds away.

4 Conclusions and Future Work

We are the first to utilize state-of-the-art pedestrian forecasting models in generative AV testing. We
have proposed a general framework that is capable of stress testing the collision avoidance of AVs
with a wide range of pedestrian behavior models. In practice we wish to ensure that an AV can avoid
collisions with all pedestrians (intoxicated, law-obedient, children etc.), and thus should test the
AV with as many different pedestrian behaviors as possible. Our empirical evaluations show that a
goal driven pedestrian model with any behavior can be used in this framework. This is a significant
result, as no prior work has shown that a collision avoiding pedestrian model can be used to generate
collisions with a collision avoiding AV. To achieve this, we have proposed the Adversarial Test
Synthesizer (ATS) which, given any goal driven pedestrian model, learns the pedestrian initial location
distribution µ that maximizes the expected number of collisions with a given AV. The ATS is modelled
by a neural network which receives as input the top view image of the scene, the scene semantics, the
occupancy of dynamic objects, and outputs a distribution µ over pedestrian initial locations. We have
shown that µ can learn to adversarially position a collision avoiding pedestrian model that has been
trained on ground truth pedestrian data and obeys human locomotive dynamics. Our work, for the first
time, shows that generative models of AV test scenarios can utilize state-of-the-art pedestrian motion
models instead of the typically used models which do not resemble real pedestrian motion. Stress
testing AVs with state-of-the-art pedestrian forecasting models decreases the statistical difference
between tested and real pedestrian behaviors, which could reduce the likelihood of real life AV
crashes.

We have shown that a learnable pedestrian initial location distribution µ exists for stress testing a basic
AV model. Ultimately we wish to extend the result to state-of-the-art AV models. Since the model
µ treats the AV and the pedestrian agent as black-boxes, µ can be trained to adjust to the dynamics
of a more sophisticated AV as is. However, finding a non-trivial solution will require a careful
readjustment of the choice of sufficient but realistic constraints. The problem can be constrained
spatially by tight streets, occlusion dense scenes, lack of space due to traffic density, or by setting
a limit on the pedestrian’s maximal distance to the AV. Alternatively, the pedestrian model can be
constrained by adjusting the noise level of the pedestrian’s internal prediction of the AV’s future
motion, the noise level of the pedestrian’s observation of the AV, or the pedestrian’s goal, dynamics or
personality. Similarly, the noise in the AV’s observation of pedestrians and other traffic participants
and their motion should be high enough to lead to collisions. As seen in the experiments, unstructured
noise cannot be utilized by µ, thus careful modelling of the noise of the chosen AV’s observations is
required. In future work the pedestrian’s internal prediction of the AV’s motion could be impaired
with a psychologically or physiologically inspired noise process.
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1 Additional visualizations: supplementary videos

In the attached video Supplemenatry_Scenarios_with_Diverse_Pedestrian_Behaviors_
for_AV_Testing.mp4 a number of sample trajectories are shown. The video contains sample
trajectories where the pedestrian initial positions are sampled from the prior P , the model Pµ-D from
Table 2 (Pµ-D is trained on the dense dataset D) and the model Simultaneous-µ, ρ from Table 3.
The trajectories sampled from the prior P and from the model Pµ-D are shown with an untrained AV
ρ, as this is what the model Pµ-D is trained on. The pedestrian initial position is sampled from the
respective model and the pedestrian behaviour model described in §2.3 of the main paper is used to
roll out the pedestrian trajectory. The visualizations show sample trajectories with a length of at most
100 steps (they are edited to stop when the pedestrian and AV collide). The trajectories are performed
on a visualization scene that is gathered in the same fashion as the dense dataset, but is not a part of
the dense dataset. The first frame is kept still for 6s to ease detecting the pedestrian’s and AV’s initial
positions.

The video shows three sample trajectories where the pedestrian model π is initialized by sampling
from the prior x0 ∼ P . It can be seen that even when the pedestrian model is initialized near the
AV it seeks to reach a sidewalk, or walks along the middle of the road avoiding collisions to reach
its goal. Note that goals are placed out as before: by reflecting the pedestrian’s position x0 in the
constant velocity prediction of AV’s trajectory. These sample trajectories visualize that it is not trivial
where to place the pedestrian to ensure a collision. The model µ (see Fig. 1), has initially random
weights. Therefore samples drawn from the initial Pµ strongly resemble the samples of prior P .

The next three sample trajectories are from the model Pµ-D trained on the dense dataset. The samples
show that the model has learnt to initialize the pedestrian model π such that the pedestrian misjudges
the AV’s motion and gets hit by the AV. Note that the AV could have 0 speed already at the first
timestep/frame and thus avoid collisions by standing. The fourth sample trajectory from the Pµ-D
model illustrates a failure case for the initialization model. In the fourth trajectory of the Pµ-D model
it can be seen that if the AV and the pedestrian are initialized far away from one another then the
initializer has little control over the pedestrian’s trajectory and it is harder for the initializer to enforce
a collision. Note the collision avoidance behaviour of the pedestrian model. In this trajectory the
pedestrian curves around the AV to increase its distance to the AV.

Finally we see a sample failure case for the Simultaneous-µ, ρ model where both µ and ρ are trained
simultaneously. The AV and the pedestian model are initialized close by, but both the the pedestrian
and AV are good enough at collision avoidance to avoid a collision. This trajectory visualizes that
problem of initializing a pedestrian such that it gets hit by a AV is not trivial. Even though the
pedestrian is running towards the AV, the AV has learnt to accelerate to avoid collisions.

∗Work partially done while at Lund University.

5th Conference on Robot Learning (CoRL 2021), London, UK.
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2 The proposed µ model

In the following the details of the pedestrian initial distribution model µ are provided. Its objective
is to model the distribution of initial positions x0 of the pedestrian agent locations from where the
pedestrian collides with the AV ρ. A sample trajectory of the Monte Carlo estimate of the gradient of
Jπ is evaluated by sampling the initial position of the pedestrian x0 from µ, the pedestrian actions
aπ ∼ π and the AV actions from aρ ∼ ρ. The roll-outs are evaluated by a reward function rµ that
rewards collisions between the AV with position yt and the pedestrian xt, where t ∈ [0, T ] is the
timestep. Since the ATS cannot control the actions of the behaviour policy π beyond the first timestep,
the model µ does not receive a new state in response to the chosen action, only a reward rµ. The
pedestrian’s initial position x0 ∼ OPµ(sµ) is considered to be the action taken by the policy gradient
agent µ.

2.1 Model input sµ

The pedestrian distribution model µ observes the scene as sµ = (S,D,OP ). Here S contains the top
view RGB image and semantic labels of the scene (possibly constructed from a reconstruction). The
same semantic labels are used as in the pedestrian model π. The dynamic mapping D contains the
constant velocity predictions of the external cars, the AV and the external pedestrians. The dynamic
map D is the reciprocal of the dynamic map used in the pedestrian behaviour model π, and contains
a separate channel for cars and pedestrians. Finally µ observes the product of the occlusion map and
the prior OP .

The proposed model µ takes as input a tensor sµ of size (128×256×C) where C = 17 is the number
of channels. The input channels contain the RGB channels of the top view of the scene at timepoint
t = 0. The sµ contains 9 channels for the semantic segmentation of the static objects in the scene. The
sµ contains two channels for the inverted dynamic occupancy map D and two channels containing
the occupancy of the AV and external pedestrians and cars at timestep 0. Finally the occlusion-map
masked prior OP is input as a separate channel to sµ, to inform µ of which car to challenge.

2.1.1 The prior P

Given that the pedestrian has a maximal speed of ‖vπmax‖ = 3ms−1 there exists a cone of points h
from which the pedestrian can reach the AV’s constant velocity trajectory. The prior for the points in
x ∈ h is ‖x− y0‖−1 where y0 is the initial position of the AV. The prior P (x) is 0 within the braking
distance ‖vρ0‖2/(2g ∗ 0.8) of the AV assuming dry road conditions (0.8 as friction coefficient), and
vρ0 is the AV’s initial velocity. This is to avoid sampling from the trivial initializations within the AV’s
braking distance, thus leading to an inevitable collision. The points x that are on the constant velocity
estimate of the AV’s trajectory receive a 0 prior. Finally for all other points the prior is ||x− y0||−2.
The prior can be summarized as follows,

P (x) =


‖x− y0‖−1 if x ∈ h
0 if ‖x− y0‖ < (vρ0 )2

250∗0.8
0 if x is on the line y0 + t ∗ vρ0 , t > 0

‖x− y0‖−2 all other x,

(1)

where x is a point in the scene, y0 is the AV’s initial location, h is the cone of points from which
the pedestrian can reach the AV’s constant velocity trajectory, vρ0 is the AV’s initial velocity, and t
is time. The edges of the cone h are easily found by defining the AV’s constant velocity vρ0 (AV’s
initial velocity at timestep t = −1) future motion as a line ŷt = y0 + t ∗ vρ0 . The shortest distance
from any point x in front of the AV to the AV’s future trajectory ŷt is the distance from the point x to
the orthogonal projection x⊥ of the point in the line ŷt. Let the constant velocity AV reach x⊥ at
timepoint t̂. Then if ‖x − x⊥‖ < t̂‖vπmax‖, where ‖vπmax‖ = 3ms−1 is the maximal speed of the
pedestrian, then the point x ∈ h.

2.1.2 The semantic segmentation of static objects in S

The RGB and semantic top view of the scene’s static objects is referred to as S. The construction of
the semantic map and the top view RGB of S follow the procedure of [1]. The semantic labels used
are building, fence, static obstacles, pole, road, sidewalk, vegetation, wall and traffic sign/light. The
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Figure 1: Pedestrian initial spatial distribution Pµ architecture. The model input consists of channels
for the top view scene semantic and RGB S, the dynamic occupancy map D, and the prior P that
may be replaced by PO to enforce initialization in occluded spaces only. Note that the dynamic
occupancy map D of µ and the dynamic occupancy map Dt of π are different. The neural network
output is multiplied by the prior P to produce the pedestrian initial spatial distribution.

semantic segmentation is obtained by gathering 2D semantic labeled images from the data gathering
stationary AV’s perspective together with the depth map of the scene in the same perspective. The 3D
points of each pixel can then be reconstructed from the depth map, and a segmentation label and a
RGB color can be assigned to each 3D point. This is done for very 50th gathered frame (500 frames
in total). Finally mode-voting is applied to obtain the semantic class of a 3D point, and mean to
attain the color. The dense dataset is gathered from a moving drone’s perspective. Finally the 3D
reconstruction is voxellized and projected into the top-view perspective.

2.1.3 The dynamic occupancy map D

The dynamic occupancy map contains the constant velocity estimates of the cars and external
pedestrians in separate channels. This provides the model with the most basic car and pedestrian
motion estimates. Given that a car’s constant velocity estimate at timestep t is the bounding box
bt, the pixels in the bounding box bt are set to D(bt) = 1/t if D(bt) < 1/t. That is the earliest
occupancy is noted in the inverted dynamic map. The earlier steps in the forecast trajectories are
more relevant to µ as they are temporally closer to the pedestrian initialization x0.

Note that in the pedestrian behaviour modelDt refers to a dynamic occupancy map that is not inverted
and that is dependent on the timestep t. Dt contains the AVs, external pedestrians and cars occupancy
trajectories up to timestep t, and the constant velocity future trajectory estimates of all pedestrians
and cars from timestep t onwards. The map Dt is constructed in the same fashion as D, but Dt

also includes occupancy for previous timesteps. Further Dt uses scaled (by constant 0.003 to ensure
values lie in range [0,1] for sequence lengths up to 300 timesteps) but not inverted timestamps. The
pedestrian observes a local neighborhood of this dynamic map denoted Dt(xt) which is bigger than
the pedestrian.

2.2 Model architecture

The model architecture is visualized in Fig. 1. The proposed µ model has an input of size
(128×256×C). This is passed through a (3×3×C×1) convolution followed by a (2×2×1) max-
pooling layer. Let the output of this max-pooling layer be referred to as l1. l1 is convoluted by a
(2×2×1×1) filter, (2×2×1) max-pooling and passed through ReLu activation. Let the output of the
Relu activation be called l2.
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Now l1 and l2 are bi-linearly interpolated back to the original image resolution of (128×256), let the
upsampled layers be denoted by L1, L2. The neural network output is then µ(sµ) = softmax(L1 +
L2), where softmax is the softmax all of the pixels of the image to ensure that the model output is
a distribution. Finally the µ(sµ) is multiplied by the prior P to get the estimated pedestrian initial
spatial location distribution Pµ(sµ).

3 Reward functions

Here we will provide the details of the reward functions of µ, π, ρ. A number of the reward compo-
nents are shared between the model components.

3.1 Reward of µ

A number of the reward components are adapted from π. The reward function rµ consist of collision
terms Rv, Rp, Rs that are indicator functions which are activated when the controlled pedestrian’s
intended next step position xt + aπt collides with external vehicles, external pedestrians and static
objects respectively. We introduce a new reward term Ra an indicator function that is positive when
xt + aπt and the AV collide. The reward terms Rv, Rp, Rs are multiplied with negative factors
λv = −2, λp = −0.1, λs = −0.02 to discourage collisions with external agents and objects, while
Ra is multiplied with a positive factor λa = 2.

Further µ is rewarded for initializations that lead to pedestrian motion in areas often traversed by
pedestrians. This is done by the reward components Rd and Rk. To allow for per frame updates of the
dataset we adaptRd to be an indicator function which is 1 when xt+aπt is intercepting a past external
pedestrian trajectory or a constant-velocity predicted pedestrian trajectory (i.e. interception with a
non-zero Dt). In a similar fashion we define Rk to reward the pedestrian for being near external
pedestrian trajectories. Rk is evaluated as the ratio of non-zero pixels in Dt in the neighborhood
Dt(xt) of the pedestrian xt. The terms Rd and Rk are multiplied by λd = 0.01 and λk = 0.01.

Further a positive reward is given to µ for steps taken by π towards the goal gπ. Let the indicator
function Ig(st, at, gπ) be positive when xt + aπt has reached the goal, i.e. ‖xt + aπt − gπ‖ < ε,
where ε =

√
2 pixels. Then Rg(st, at, gπ) = 1− ‖xt+a

π
t −g

π‖
‖xt−gπ‖ when the agent has not reached the

goal location Ig(st, at, gπ) < 1. The goal term Rg is multiplied by λg = 0.1.

The reward components Rp, Rs, Rk, Rd, Rg are multiplied together when non-zero. When the
pedestrian collides with a vehicle, the AV or reaches a goal location then rµ is equal to only the
reward term Rv, Ra or Rg , and the model receives a 0 reward in the following time-steps. As shown
below and in the main paper the initial distribution model’s reward is dependent on the full trajectory
of the pedestrian and the AV model, and is thus expressed as

Rµ(τ) =

T∑
t=0

γtrµ(st, at, st+1). (2)

Further we can summarize rµ, as

rµ(st, at, st+1) =



λa if Ra(st, at, st+1)

λp if Rv(st, at, st+1)

0 if Rv(sk, ak, sk+1) > 0, for any k < t

0 if Ra(sk, ak, sk+1) > 0, for any k < t

0 if Ig(sk, ak, sk+1) > 0, for any k < t

Π(λpRp, λsRs, λkRk, λdRd, λgRg) otherwise

,

(3)
where Π(.) is the product of the non-zero inputs, and where in (3) the general lambda followed by
the general reward λ∗R∗ denotes the following function,

λ∗R∗ =


1 + λ∗R∗(st, at, st+1) if λ∗ > 0

1− λ∗R∗(st, at, st+1) if λ∗ < 0

1 otherwise .
(4)

4
128



3.2 Reward of π

The reward function of π consist of pedestrian motion encouraging terms Rped, collision penalizing
terms Rcoll, the terms Rg and Ig encouraging movement towards the goal gπ, and a term discour-
aging unnatural articulated motion Rφ. The collision discouraging terms in Rcoll(st, at, st+1) =
λpRp(st, at, st+1) +λsRs((st, at, st+1) +λπaRa(st, at, st+1), where Rv, Rp, Rs, Ra are described
in §3.1, and λπa = −λa. The reward term Rφ penalizes lathe changes in the average yaw φ (in
degrees) of the joints in the agent’s lower body as Rφ(xt, vt) = max(min(φ − 1.2, 0), 2.0). The
term Rg follows the definition given in §3.1. The pedestrian agent also receives a large positive
reward λG = 2 for reaching its goal location i.e. Ig(st, at, st+1) > 0. After collision with a car and
after reaching a goal the pedestrian agent is considered dead, and thus receives 0 rewards.

The pedestrian motion encouraging term Rped consists of a reward term that promotes motion
on pedestrian trajectories Rπd . The reward Rπd is an indicator function which is 1 if any pixel
in the pedestrian bounding box coincides with DT . The pedestrian bounding box is centered
at the pedestrian’s position xt and is of size 1.2m×1.2m. The second reward term in Rped is
Rπk that rewards the pedestrian for being near external pedestrian trajectories. The pedestrian
trajectories in DT are blurred by an exponential kernel producing a density map Dk. The pedestrian
is rewarded Rπk (st, at, st+1) = Dk(xt+1) is equal to the kernel smoothed valued of the kernel at the
pixel xt+1. The pedestrian like motion promoting terms can be gathered as, Rped(st, at, st+1) =
λkR

π
k (st, at, st+1)+λdR

π
d (st, at, st+1). A small negative rewardRφ(st, at, st+1) = max(min(φ−

1.2, 0), 2.0) is given for excessively large changes in the average lower body joints yaw φ of the
pedestrian agent’s articulated pose. The term Rφ is multiplied by λφ = −0.0001.

Finally the pedestrian reward can be summarized as

rπ(st, at, st+1) =


0 if agent is dead
λv if Rv(st, at, st+1) > 0

Rcoll +Rped + λgRg + λGIg + λφRφ otherwise
, (5)

where the reward terms Rcoll, RpedRg, Ig, Rφ are evaluated on (st, at, st+1) when input parameters
are omitted.

3.3 Reward of ρ

The reward function of the AV ρ contains the collision penalizing termsRρv, R
ρ
p, R

ρ
s that are analogous

to the collision penalizing terms Rv, Rp, Rs. The reward terms Rρv, R
ρ
p, R

ρ
s are indicator functions

that are 1 if the learnt AV’s planned position yt + aρt collides with an external car, any pedestrian
or static object in the timestep t + 1. The terms can again be gathered Rρcoll.(st, at, st+1) =
λρvR

ρ
v(st, at, st+1) +λρpR

ρ
p(st, at, st+1) +λρsR

ρ
s(st, at, st+1), where λρv = −2, λρp = −2, λρs = −2.

The reward function rρ contains also the term Ro(yt, a
ρ
t ) that is the ratio of pixels in the AV’s

bounding box that have the semantic label sidewalk, multiplied by λo = −0.1. Finally we introduce a
term to encourage the AV to move. The reward term Rdist(st, at, st+1) = ‖y0−yt‖/t∗vρmax, where
vρmax =70km/h is the maximal speed of the AV. The reward term Rdist is multiplied by λdist = 0.01.
The AV is considered dead after any collision (i.e. when max(Rρv, R

ρ
p, R

ρ
s) > 0), and thus a reward

of 0 is given after any collision. The full reward of the alive AV is,

rρ(st, at, st+1) = Rρcoll.(st, at, st+1) + λoRo(yt, a
ρ
t ) + λdistRdist(st, at, st+1). (6)

4 Simultaneous learning of µ, ρ and π

To gradually improve the AV at collision avoidance the ATS can be used to train the AV. Once the AV
improves the ATS can be fitted to the new AV model. This gives rise to the possibility of training the
AV and the ATS alternatively or even simultaneously. Here we present algorithms for alternative and
simultaneous training of the AV and the ATS model. If the pedestrian model is not dependent on an
external dataset then even the pedestrian model π can be trained simultaneously with ATS and AV. In
the following experiments in §5.3 we utilize the SPL-goal agent from [1] as the pedestrian model π.
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4.1 Policy Gradient Framework for the Problem Described in Section 3.1

We would like to find the parametrized Θ pedestrian initial location distribution µΘ that maximizes
the objective

Jµ(Θ) = Ex0∼µΘ(.|sµ),sµ∼q,aπt ∼π,a
ρ
t∼ρ,st∼p(.|st,at) [Rµ(x0, τ)] , (7)

where Rµ is the discounted cumulative reward Rµ(x0, τ) =
∑T−1
t=0 γtrµ(st, at, st+1), and τ trajec-

tory of an episode be denoted τ = (a0, s1, ..., aT−1, sT ), and x0 is the initial pedestrian position
location, π and ρ are the behaviour model’s of the pedestrian and the AV agent respectively, taking
actions aπt and aρt . And p(st+1|st, at) is the environment dynamics that predicts the successive state
st+1, where st = (sπt , s

ρ
t ) and at = (aπt , a

ρ
t ) are vectors containing the states and actions of the

pedestrian model π and AV ρ respectively. The traffic scene observations sµ have a distribution q(sµ).
Further rµ is µ’s reward function, and t is the current timestep and T is the episode length. Finally
s0 is a function of sµ, x0 (see Section 3.1 in main paper) and x0 ∼ µΘ(x0|sµ). Let the discounted
cumulative reward Rµ =

∑T−1
t=0 γtrµ(st, at, st+1) we can express (7) as

Jµ(Θ) =

∫
sµ

∫
x0

∫
τ

Rµ(x0, τ)pτ (τ |x0)µΘ(x0|sµ)q(sµ)dτdx0ds
µ, (8)

where pτ is the probability density function of τ given x0. Then pτ can be factored as follows,

pτ (τ |x0) =

T−1∏
t=0

π(aπt |sπt )ρ(aρt |s
ρ
t )p(st+1|st, at). (9)

Now taking a derivative of (9) with respect to the parameters θ we note that only µ depends on θ,

∇ΘJµ(Θ) =

∫
sµ

∫
x0

∫
τ

∇ΘµΘ(x0|sµ)Rµ(x0, τ)pτ (τ |x0)q(sµ)dτdx0ds
µ. (10)

We can now follow the classical policy gradient method [2] and use ∇ΘµΘ = µΘ∇Θ log(µΘ) , and
rewrite (10) as,

∇ΘJµ(Θ) =

∫
sµ

∫
x0

∫
τ

∇Θ log(µΘ(x0|sµ))Rµ(x0, τ)pτ (τ |x0)µΘ(x0|sµ)q(sµ)dτdx0ds
µ (11)

= E[log(µΘ(x0|sµ))Rµ(x0, τ)]. (12)

We can evaluate the above expectation with the Markov Chain Monte Carlo method. Given K
traffic scenes sµk , with M pedestrian initial locations xm,k0 ∼ µ(x0|sµk) in each traffic scene, and
N sample trajectories τm,k,n ∼ pτ (τ |xm,k0 ) for each pedestrian initialization xm,k0 then the Monte
Carlo estimate of 11, is the following

∇̂ΘJµ(Θ) =
1

NMK

M∑
m=1

K∑
k=1

N∑
n=1

Rµ(xm,k0 , τm,k,n)∇Θ log(µΘ(xm,k0 |sµk)). (13)

In the same manner using (9) we can estimate the gradient of πβ with,

∇̂βJπ(β) =
1

NMK

M∑
m=1

K∑
k=1

N∑
n=1

T−1∑
t=0

γtrπ(sm,k,nt , am,k,nt , sm,k,nt+1 )∇β log(πβ(aπ,m,k,nt |sπ,m,k,nt )).

(14)

And similarly the AV policy’s ρξ gradient can be estimated by,

∇̂ξJρ(ξ) =
1

NMK

M∑
m=1

K∑
k=1

N∑
n=1

T−1∑
t=0

γtrρ(s
m,k,n
t , am,k,nt , sm,k,nt+1 )∇ξ log(ρξ(a

ρ,m,k,n
t |sρ,m,k,nt )).

(15)

Finally the three gradient estimates (13),(14),(15) can be estimated from the same sample trajectories,
giving rise to Algorithm 1. Alternatively a possibly more stable alternating training scheme could be
used as shown in Algorithm 2
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Algorithm 1 Learning µ, π and ρ simultaneously

Initialize Θ1, β1, ξ1 randomly.
Initialize learning rates αΘ, αβ , αξ
Set µ1 = µ(Θ1), π1 = π(β1), ρ1 = ρ(ξ1)
for k = 1 . . .K iterations do

Initialize empty set O = {}
Sample sµk from the dataset
for m = 1 . . .M iterations do

Sample xk,m0 ∼ µk(x0|sµk)
for n = 1 . . . N iterations do

Sample τk,m,n ∼ pτ (.|xk,m0 ) where aπ,k,m,nt ∼ πk and aρ,k,m,nt ∼ ρk
Add sample trajectory τk,m,n to O

end for
end for
Update Θk+1 = Θk + αΘ∇̂ΘJµ(Θ) using samples in O
Update βk+1 = βk + αβ∇̂βJπ(β) using samples in O
Update ξk+1 = ξk + αξ∇̂ξJρ(ξ) using samples in O
Update parameters µk+1 = µ(Θk+1), πk+1 = π(βk+1), ρk+1 = ρ(ξk+1)

end for

Table 1: The number of epochs the µ of the presented models were trained for
Model Pµ OPµ Pµ-D SPL+ε SPL A. STPN A CV

6 9 2 8 9 2 10

5 Experiments

5.1 Hyperparameters in experiments

The Adam optimizer with a learning rate of αµ = 5× 10−3 for µ and αρ = 3× 10−2 for ρ is used
in experiments. The weights of µ are initialized randomly, and the weights of ρ are initialized to 1. A
discount rate of γ = 0.99 is used for all of the models. The presented values are of the pedestrian
location distribution models µ showed highest validation performance, seen in Table 1.

5.2 Experiments on the Dense CARLA dataset (D)

We introduce the Dense CARLA dataset (D) a smaller more object-dense dataset consisting of 4
different simulations of 5 scenes, gathered from a drone’s perspective. The model Pµ-D is trained on
the dataset and tested on the regular CARLA dataset. The model Pµ-D is trained with the reward
RSTPN , for a fair comparison the model is compared to Pµ trained on the regular dataset with the
reward RSTPN for 2 epochs. The results are shown in Table 2. The proposed µ is robust to changes
in dynamics from training to testing as seen in the small drop in the number of collisions when
comparing Pµ-D and OP − µ in Table 2. The model Pµ-D trained on the denser dataset leads to
fewer collisions than the base model Pµ and has a higher π-entropy than Pµ, likely because the π is
less controllable by µ in denser traffic. The distribution of Pµ-D is visualized in Fig.3 of the main
paper on a dense dataset scene.

5.3 Alternative and Simultaneous training

The AV and the initial pedestrian model are trained simultaneously and alternatively where in the latter
case the AV is trained for two epochs for every epoch of training µ. Both models are trained for a total
of 14 epochs with the reward rµ = RSTPN . We also report the Avg distance- the average distance
travelled by the AV. The Simultaneous-µ, ρ has collision rate that is not statistically not different
from OPµ in Table 2. But Alternative-µ, ρ has almost twice as many collisions as Simultaneous-µ, ρ.
Further the alternative Alternative-ρ has a similar collision rate when tested with OPµ. This suggests
that the AV model learnt by alternative training is poor at collision avoidance. The AV model
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Algorithm 2 Learning µ, π and ρ alternatively

Initialize Θ1, β1, ξ1 randomly.
Initialize learning rates αΘ, αβ , αξ
Set µ1 = µ(Θ1), π1 = π(β1), ρ1 = ρ(ξ1)
for j = 1 . . . J iterations do

Set µj,1 = µj , πj,1 = πj , ρj,1 = ρj
for k = 1 . . .Kµ iterations do

Initialize empty set O = {}
Sample sµj,k from the dataset
for m = 1 . . .M iterations do

Sample xj,k,m0 ∼ µj,k(x0|sµj,k)

Sample N trajectories τ j,k,m,n ∼ pτ (.|xj,k,m0 ) s.t. aπ,j,k,m,nt ∼ πj , a
ρ,j,k,m,n
t ∼ ρj , and

add to O
end for
Update Θj,k+1 = Θj,k + αΘ∇̂ΘJµ(Θ) using samples in O
Update µj,k+1 = µ(Θj,k+1)

end for
Set µj+1 = µj,Kµ
for k = 1 . . .Kπ iterations do

Initialize empty set O = {}
Sample sµj,k from the dataset
for m = 1 . . .M iterations do

Sample xj,k,m0 ∼ µj+1(x0|sµj,k)

Sample N trajectories τ j,k,m,n ∼ pτ (.|xj,k,m0 ) s.t. aπ,j,k,m,nt ∼ πj,k, aρ,j,k,m,nt ∼ ρj , and
add to O

end for
Update βj,k+1 = βj,k + αβ∇̂βJπ(β) using samples in O
Update πj,k+1 = π(βj,k+1)

end for
Set πj+1 = πj,Kπ
for k = 1 . . .Kρ iterations do

Initialize empty set O = {}
Sample sµj,k from the dataset
for m = 1 . . .M iterations do

Sample xj,k,m0 ∼ µj+1(x0|sµj,k)

Sample N trajectories τ j,k,m,n ∼ pτ (.|xj,k,m0 ) s.t. aπ,j,k,m,nt ∼ πj+1, aρ,j,k,m,nt ∼ ρj,k,
and add to O

end for
Update ξj,k+1 = ξj,k + αξ∇̂ξJρ(ξ) using samples in O
Update ρj,k+1 = ρ(ξj,k+1)

end for
Set ρj+1 = ρj,Kρ

end for
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Table 2: An ablation studying the effect of the prior during the training of µ shows that the µ is robust
to changes in the prior during training as OP − µ and P − µ trained with the priors OP and P
respectively, have indistinguishable collision rates (stdev is 0.02).

OP − µ Pµ-D

#. collisions 0.22 0.19
Avg distance 7.8 7.7
π-entropy 0.23 0.29

Table 3: Training the π and µ simultaneously Simultaneous results in metrics similar to those of
separately trained models. This is confirmed by testing the Alternative-µ,Simultaneous-µ against the
baseline AV, and the Alternative-ρ,Simultaneous-ρ against OPµ

Alternative
µ, ρ µ ρ

#. collisions 0.41(+−0.03) 0.22(+−0.02) 0.42(+−0.02)
Avg distance 5.4(+−0.1) 7.8 (+−0.5) 5.3(+−0.2)
π-entropy 0.18(+−0.01) 0.23(+−0.01) 0.16(+−0.01)

Simultaneous
µ, ρ µ ρ

#. collisions 0.21(+−0.02) 0.20(+−0.01) 0.25(+−0.02)
Avg distance 7.7(+−0.1) 7.9 (+−0.6) 7.5(+−0.5)
π-entropy 0.23(+−0.01) 0.21(+−0.01) 0.16(+−0.01)

Alternative-ρ travels 2 meters less than the other models in Table 3. Altogether this suggest that
the AV model does not benefit from alternative training with µ. Interestingly the Alternative-µ has
the same collision rate as OPµ, showing that the ATS model can improve even if the AV model
is lacking behind. The simultaneously trained µ and ρ are comparable in collisions and entropy
to the OPµ and the baseline AV model. Of higher interest is the low entropy that Alternative-ρ
and Simultaneous-ρ have when tested with OPµ. This could imply that even the AV can learn to
place itself such that the pedestrian agent acts as predictably as possible. Further OPµ receives
higher collision rates with Alternative-ρ and Simultaneous-ρ than Alternative-µ and Simultaneous-µ
respectively. We hypothesize that this could be because in simultaneous or alternative training it is
harder to balance hyperparameters to both µ and ρ.

6 Extending µ to model the pedestrian goal distribution

In the main paper we present the model µ that models the pedestrian initial distribution. Here we
present an extension of the model that also allows for learning the pedestrian behaviour model’s goal
location gπ distribution µg. Since µg is optimized with the same reward as µ, this should give the
pedestrian initial distribution model more opportunities to enforce collisions. The proposed method is
to use the same model architecture for µg as for µ, but to use a different prior Pg . It should be noted
that in initial experiments we tried to model µ and µg in the same network, by simply extending
µ with an additional fully connected layer outputting the goal distribution. It was quickly noticed
that when π’s initial position and goal location were undecided the model struggled to learn as most
sampled trajectories resulted in no collisions, even when µ was pretrained. It is clear that µg should
be conditioned on the sample x0 rather than on the distribution Pµ, as the best goal location depends
for example on which side of the AV the pedestrian is initialized. To do so the goal prior Pg is
conditioned on x0, y0, v

ρ
0 .

The goal prior Pg(x|x0, y0, v
ρ
0) is found by solving a linear system of inequalities. The goal prior is

found by solving for the points x ∈ g for which the constant velocity prediction of the AV and the
pedestrian collide within the given time and speed constraints. More specifically, the points x ∈ G
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solve for pedestrian speeds s and collision times t the following system of linear inequalities,
|y0 + vρ0t− x0 + (x− x0)st| ≤ sx + sy
0 ≤ t ≤ T
0 ≤ s ≤ ‖vπmax‖,

(16)

where sx, sy are the side lengths of the bounding boxes of the pedestrian and AV. For points x ∈ G a
collision is possible (i.e. there exists s, t that fulfill (16)), the goal prior is assigned the reciprocate
distance travelled by the pedestrian to the collision. Finally the goal prior is normalized. If ρ has an
initial speed of 0 then Pg = P . To summarize the goal prior is given by

Pg(x|x0, y0, v
ρ
0) =


P (x) if ‖vρ0‖ = 0

1
smax(x)tmin(x) for x ∈ G
0 otherwise,

(17)

where smax(x) is the maximal speed s for the point x that fulfills (17) and tmin(x) is the minimal
time for collision that fulfills (17) for x. When trained on two scenes, and validated on two scenes the
presented goal mode µg increased the frequency of collisions from 0.1 to 0.7 with 100 epochs on
the validation set. Note in this small experiment the SPL-goal model was used without the Human
Locomotion Network (i.e. the STPN-goal model), and µ and µg were trained with the rewardRSTPN .
—————————————

7 List of Mathematical Notations
• αβ- learning rate of the parameters β.
• αµ- learning rate of µ.
• αρ- learning rate of ρ.
• αΘ- learning rate of the parameters Θ.
• αξ- learning rate of the parameters ξ.
• at- a vector of actions taken by µ and ρ at timestep t.
• aπt - the action taken by the pedestrian at timestep t.
• aρt - the action taken by the AV at timestep t.
• Bµ- behavioural constraints for pedestrian inital spatial distribution.
• Bπ- behavioural constraints for the pedestrian’s policy.
• Bρ- behavioural constraints for the AV’s policy.
• β- parameters of the parametric policy π(β).
• b- bias in the AV model.
• bt- a car’s bounding box at timestep t.
• C- number of channels in µΘ.
• ct- AV’s speed sampled from a neural network.
• D- reciprocal temporal mapping of dynamic objects in sµ.
• Dk- heatmap of pedestrians. The exponential kernel blurred heatmap of pedestrians in DT .
• Dt- temporal mapping of dynamic objects in sπt .
• dt- AV’s distance to the closest external car.
• dxt - pedestrian agent’s distance to the closest external car .
• δt- AV’s intersection with the sidewalk.
• ε- maximal distance to the goal, to attain the goal-reaching related reward.
• fµ- additional terms of the loss Jµ that are not related to the number of collisions.
• fπ- additional terms of the loss Jπ that are not related to the number of collisions.
• fρ- additional terms of the loss Jρ that are not related to the number of collisions.
• γ- reward discount rate.
• g- acceleration of gravity.
• G- the set of possible goal locations that can lead to a collision assuming constant velocity

motion.
• gπ- the pedestrian’s goal location.
• h- the cone of initial locations that lead to a collision assuming that the AV moves at a

constant velocity, and that the pedestrian has a maximal speed of ‖vπmax‖ = 3ms−1.
• I- indicator function, indicating a collision.
• Ig- indicator function, indicating the pedestrian has reached its goal.
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• J- policy gradient loss function.
• Jµ- initial pedestrian placement’s loss.
• Jπ- pedestrian behaviour mode’s loss.
• Jρ- AV’s loss.
• K- number of traffic scenes in the dataset/ available in simulator.
• k- iterator.
• λ∗- the scaling of a general reward term R∗.
• λa- the scaling of the reward term Ra in rµ.
• λπa - the scaling of the reward term Ra in rπ .
• λd- the scaling of the reward term Rd and Rπd in rµ and rπ respectively.
• λdist- the scaling of the reward term Rdist.
• λG- the scaling of the reward term Ig .
• λg- the scaling of the reward term Rg .
• λk- the scaling of the reward term Rk and Rπk in rµ and rπ respectively.
• λo- the scaling of the reward term Ro.
• λφ- the scaling of the reward term Rφ.
• λp- the scaling of the reward term Rp.
• λρp- the scaling of the reward term Rρp.
• λs- the scaling of the reward term Rs.
• λρs- the scaling of the reward term Rρs .
• λv- the scaling of the reward term Rv .
• λρv- the scaling of the reward term Rρv .
• l1, l2- convolutional layers of the neural network µΘ.
• L1, L2- up-sampled layers of the neural network µΘ.
• µ- distribution of pedestrian initial locations.
• µg- distribution of pedestrian goal locations.
• µΘ- the policy gradient neural network modelling the pedestrian initial distribution in the

scene.
• M - number of sampled pedestrian initial locations.
• m- iterator.
• N - number of sampled trajectories.
• n- iterator.
• Ω- the set of allowed values for (τ, x0, s

µ).
• O- scene occlusion map.
• q- the probability distribution of scenes sµ.
• P - prior.
• Pg- prior of goal location.
• p- world dynamics and noise.
• pτ - the probability density function of τ .
• π- pedestrian behaviour model.
• ρ- AV’s policy.
• R =

∑T
t=0 γ

tr(st, at, st+1)- a vector of cumulative sums of rewards.
• R∗- A general reward term.
• Ra- A reward term that is 1 if the pedestrian agent collides with the AV.
• Rcoll reward terms that penalize collisions for the pedestrian agent.
• Rρcoll the AV’s reward terms that penalize collisions.
• Rd- a reward term that encourages the pedestrian to reside on non-zero pixels of D.
• Rπd - a reward term that encourages the pedestrian to reside on non-zero pixels of DT .
• Rdist- a reward term that encourages the AV to move.
• Rg- a reward term that encourages motion towards the goal gπ .
• Rk- a reward term that encourages the pedestrian to reside on a blurred D.
• Rπk - a reward term that encourages the pedestrian to reside on Dk.
• Rµ- the one step reward function of µ: the cumulative sum of rewards Rµ(x0) =∑

t γ
trµ(xt, a

π
t , yt, a

ρ
t ).

• Ro- A reward term that measures the ratio of pixels of the AV overlapping with the sidewalk..
• Rp- A reward term that is 1 if the pedestrian agent collides with another pedestrian.
• Rρp- A reward term that is 1 if the AV collides with a pedestrian.
• Rped- reward terms that encourage motion in areas frequently visited by pedestrians.
• Rφ - a reward term that discourages large unnaturally changes in the pedestrian’s pelvis.
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• Rρ- The AV’s cumulative discounted reward.
• RSTPN - the STPN model reward in Table 2 in the main paper.
• Rs- A reward term that is 1 if the pedestrian agent collides with static objects.
• Rρs- A reward term that is 1 if the AV collides with static objects.
• Rv- A reward term that is 1 if the pedestrian agent collides with an external vehicle.
• Rρv- A reward term that is 1 if the AV collides with an external vehicle.
• r = [rµ, rπ, rρ] - the joint reward vector of the pedestrian initial distribution model µ, the

pedestrian behaviour model π and the AV model ρ.
• rµ- the pedestrian initial distributions’ reward function (per timestep).
• rπ- the pedestrian behaviour model’s reward function.
• rρ- the AV’s reward function
• S- scene semantics.
• sµ = (S,D,OP )- the pedestrian initial location model’s state.
• sπ- the pedestrian behaviour model’s state.
• sρ- the AV’s state.
• smax - maximal collision speed for the pedestrian to collide with the AV from location x0.
• st- the AV and the pedestrian behaviour model’s state at time t.
• sρt - the AV’s state at time t.
• sπt - the pedestrian behaviour model’s state at time t.
• sx- the size of the bounding box of the pedestrian agent.
• sy- the size of the bounding box of the AV.
• σρ- the AV model’s standard deviation.
• t - timestep.
• tmin - minimal collision time for the pedestrian to collide with the AV from location x0.
• T - last timestep of an episode.
• Θ-parameters of µΘ.
• τ - the pedestrian and AV’s state-action history (a0, ..., sT , aT , sT+1).
• vπ0 is the pedestrian agent’s initial velocity.
• vρ0 is the AV’s initial velocity.
• vπmax- pedestrian’s maximal possible speed.
• vρmax- the AV’s maximal possible speed.
• x- a point in the scene.
• x0- initial position of pedestrian.
• xt- pedestrian’s position at timestep t.
• x⊥ - the otrohogonal projection of a point x in the line ŷt. A point that is on the the AV’s

future trajectory, and is closest to the point x.
• yt- AV’s position at timestep t.
• ŷt - the constant velocity prediction of the AV’s future motion
• w- learn-able weight in the AV’s model.
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Abstract. Recently there has been an increase in the number of avail-
able autonomous vehicle (AV) models. To evaluate and compare the
safety of the various models the AVs need to be tested in several diverse
safety-critical scenarios. We propose the Adversarial Test Case Genera-
tor (ATCG) that differently from previous test case generators allows for
the generation of realistic collision scenarios with varied AV and pedes-
trian behaviour models, on varied scenes and with varied traffic density.
Given a top-view image and the semantic segmentation of a traffic scene,
the ATCG learns to place multiple AVs and goal-reaching pedestrians in
the scene such that collisions occur. Pedestrians in previous multi-agent
traffic scenario generation works are confined to unrealistic behaviours
such as seeking collisions with the AV or ignoring the AV. Although
such scenarios with multiple suicidal pedestrians are collision prone it is
unlikely in reality that all pedestrians act abnormally. In realistic colli-
sion scenarios the generated pedestrians’ behaviours must resemble real
pedestrians. The ATCG is a team of Reinforcement Learning (RL) agents
and can be easily extended with additional RL agents to produce more
complex scenes allowing for advanced AVs to be tested.

Keywords: Autonomous Vehicle · AV Testing · Multi Agent
Reinforcement Learning

1 Introduction

The extensive work on autonomous vehicles (AV) [1–3] has brought about a
need for testing AVs [4] in safety-critical situations (such as collisions and near-
collisions) to ensure the safety of all traffic participants in deployment. Safety
critical scenarios are not frequent in traffic, therefore data gathering is extremely
time-consuming as well as unethical. Testing an AV on a dataset of collision sce-
narios [5–8] is not sufficient since any safety critical scenario dataset is inherently
limited in variability. To alleviate these issues safety-critical scenarios, in particu-
lar collisions between AVs and pedestrians, can be generated [9–33]. The majority

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Gade et al. (Eds.): SCIA 2023, LNCS 13886, pp. 354–372, 2023.
https://doi.org/10.1007/978-3-031-31438-4_24
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Fig. 1. The ATCG sees the top view projection of a 3D point cloud of the scene with
external cars and pedestrians (in gray) and their initial velocities (arrows). The ATCG
places out the coloured pedestrians and AVs in the scene with goals (marked as circles
in the colour of the AV or pedestrian) and initial velocities (arrows). Dotted lines show
areas occluded for the AVs. The dark blue pedestrian #1 is placed out such that it
is occluded for the green AV by an external pedestrian. The orange pedestrian #2 is
initialized in an area that is often frequented by pedestrians (light orange ground) and
occluded for the blue AV. The blue AV cannot see that the red AV is braking for the
orange pedestrian #2. Pedestrians (pedestrian #3) cannot be initialized within the
braking distance of the AVs (gray area under the AV’s wheels). (Color figure online)

of existing test case scenario generators [9–33] make scenario generation low para-
metric by either assuming heuristic motion models for pedestrians (i.e. constant
velocity or adversarial pedestrians) or by making particular confining assumption
about the geometry of the traffic scene (assuming a straight street, or a crossing
of a particular shape, etc.). As a first step [34] propose a visual single pedestrian
and single AV test case generator that generalizes across scenes without confin-
ing assumptions about the scene geometry and allows for test case generation with
various pedestrian behavior models. We propose the Adversarial Test Case Gener-
ator (ATCG) that generalizes [34] to multi-agent scenario generation, ensuring the
realism of the traffic scene and all of its participants. The ATCG is a team of Rein-
forcement Learning (RL) agents that learn where in a scene to place N pedestrians
and M AVs to generate collisions. The proposed framework allows for the inter-
changeability of the pedestrian and the AV models and can generate realistic and
diverse collision scenarios for AVs. We are the first to our knowledge to propose a
multi-agent AV collision scenario generator that can utilize any goal-driven state-
of-the-art pedestrian forecasting model, such as the collision-avoiding, semanti-
cally reasoning, pose articulated model [35].

Most AV models are either modular [3], with components for perception, plan-
ning and vehicle control, or end-to-end AV models [1,2] that directly map sensor
data to vehicle control. We aim to test the full pipeline of modular AVs and end-to-
end AV models by generating scenarios in a 3D environment. Modeling scenarios
in 3D allows for the simulation or augmentation of sensor data [36–41] as well as
the evaluation of the AV’s trajectory after actuation of the AVs control.
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Traffic is highly dependent on semantics [42,43]. The AVs and pedestrians
plan their future trajectory based on the semantic objects around them [44,45],
see Fig. 1. To generate collisions the ATCG must be able to predict the future
motion of the AVs and pedestrians, therefore the ATCG observes the scene
semantics. The ATCG utilizes scene-semantics dependent priors which increase
sample efficiency in learning without making assumptions about the geometry
of the scene and its participants [11–33].

Collision scenario generation is an optimization problem maximizing the
number of collisions over a set of scenario descriptive parameters. The AV can
either be treated as a black box [17–19] or white box [46,47]. White box treat-
ment provides strong gradients but limits the interchangeability of the AV model
and assumes that the AV and the environment are differentiable. The ATCG
models the AV as a black box to allow any AV model to be tested and to avoid
assumptions about the AV’s sensory inputs and dynamics. In literature the black
box optimization methods used to generate collision scenarios are Bayesian Opti-
mization (BO) [17], Genetic Algorithms (GA) [18–23] and RL [30–32,34]. BO [48]
suffers from the curse of dimensionality and therefore cannot be applied to visual
problems. RL takes gradient steps and is therefore more sample efficient than
GA. The ATCG is modeled by visual RL agents. When the AV is an RL agent
the collision scenario generation problem becomes a Multi-Agent Reinforcement
Learning (MARL) game [49].

The ATCG is composed of the Adversarial Autonomous Vehicle Initial Loca-
tion Agent (AVILA) which places out AVs in a given scene and the Adversarial
Pedestrian Initial Location Agent (APILA) which places out pedestrian agents.
The ATCG can be used to augment an existing dataset D = (Dc,Dp), (gray cars
and pedestrians in Fig. 1), of pre-recorded car and pedestrian trajectories respec-
tively Dc and Dp. Utilizing a team of RL agents to generate test scenarios allows
us to provide different task-specific reward functions to each agent. Pedestrians
and AVs have significantly different behaviour in traffic and this is reflected in
the reward functions of the AVILA and the APILA. The AVILA should place
AVs such that the AVs behave realistically until a collision occurs. Therefore
the AVILA is given a positive reward for collisions and is otherwise rewarded
according to the AV’s reward function. The APILA’s reward is analogous to the
AVILA’s. The ATCG can be extended with additional RL agents that further
constrain the AV, for example by occluding its vision. In difference to previous
work [34] we pose the problem of collision-prone test case generation as a teamed
MARL game, that is easily extendable to target other risk-based behaviours and
allows for realistic-looking scenario generation. We show that natural-looking
collision-prone traffic scenarios can be found for multiple collision-avoiding AVs
and pedestrians.

1.1 Related Work

AV test scenarios can be generated by adversarially perturbing data, possibly
in the latent space [24–29], to produce collisions [33,46,50]. However, the vari-
ability of the generated test cases is limited by the dataset’s diversity. Virtual
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Fig. 2. Different teams of the Multi-Agent Game are formed when the pedestrians’
behaviour is collision avoiding, collision ignorant or collision seeking.

reality can be used to record pedestrians’ poses in near collision scenarios [51–53]
producing realistic data, but human-in-the-loop data gathering is not scalable.
There are a number of component wise test case generators [54–59] for modular
AVs, specifically [55–60] test the visual systems only, and [54] tests the plan-
ning and control components of an AV. It is not straightforward how to combine
these component-wise test generators to evaluate the full pipeline of the AV from
sensor input to control. AV test case generation is still a young research topic
with a number of unanswered questions, such as suitable metrics [61], therefore
the scenario generator’s components (such as the pedestrian behaviour model,
dynamics models and sensor-modelling) should be interchangeable until stan-
dards are established in the field.

2 The Multi-agent Game

The ATCG is a team of RL agents with the common objective to increase the
number of collisions between the AVs and the pedestrians. The ATCG is com-
posed of the APILA with policy μ and the AVILA with policy ν. The ATCG’s
opposing team, the AVs’ team, aims to decrease the number of collisions. The
AV’s team is composed of the M goal-reaching AVs governed by policy ρ. The
N goal-reaching pedestrian agents with policy π can either be in the ATCG if π
is collision seeking, on the AVs’ team if π is collision avoiding, or on neither of
the teams if π is collision ignorant, as seen in Fig. 2. The pedestrian agents and
AVs can be any goal-driven behaviour models.

The pedestrian agents and the AVs are given rule-based goal locations. In
the future, the ATCG could be extended with an agent that chooses the goal
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Fig. 3. Given the visual scene state sν
0 AVILA places out M AVs in the scene sequen-

tially at locations y1
0 ...y

M
0 . After that sμ

0 is given to APILA, and APILA chooses sequen-
tially the initial locations x1

0...x
N
0 of the N pedestrians, producing the initial scene state

s0.

locations of the pedestrian agents with the objective of maximizing collisions.
Similarly, an AV’s goal location-picking agent could be added to the ATCG. Fur-
ther, an agent that places out parked cars could be added to the ATCG, with
the objective of obstructing the AVs’ view of the pedestrians. Or possibly an
agent responsible for placing out bus shelters in semantically plausible positions
such that the AVs’ view of the pedestrians is occluded (increasing the probability
that the AV misses the pedestrians, causing a collision). Each agent in the ATCG
can have an objective different from that of its teammates (i.e.maximizing col-
lisions vs. occlusions). Our proposed ATCG framework is easily extendable by
the addition of teammates.

3 The Adversarial Test Case Generator

Given a voxelized scene sν
0 containing external pedestrians and vehicles D the

AVILA places out M AVs sequentially as shown in Fig. 3. The AVILA is an
RL agent that chooses an initial location ym

0 for the m-th AV, 1 ≤ m ≤ M
according to its policy ym

0 ∼ ν(.|sν
m−1), where sν

m−1 is the scene description
containing m − 1 AVs. The AV with position ym

0 , goal location gρ,m
0 and initial

velocity vρ,m
−1 chosen as described in Sect. 3.1 is added to sν

m−1 forming sν
m. We

denote the scene containing all the M AVs as the APILA’s initial state sμ
0 . The

APILA samples the n-th pedestrian agent’s, 1 ≤ n ≤ N , initial position xn
0

from its policy xn
0 ∼ μ(.|sμ

n−1). The pedestrian with the initial position xn
0 , goal
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Fig. 4. The order of actions of the MARL game: The ATCG places out pedestrians
and AVs in the scene at timestep 0, producing s0. The pedestrian agents and AVs take
actions at simultaneously conditioned on the state st. The world dynamics p simulate
the scene forward into state st+1. The reward function r(st, at,st+1) is evaluated. If
st+1 is a terminal state the reward is provided to the ATCG, otherwise t = t+ 1.

location gπ,n
0 and velocity vπ,n

−1 chosen as described in Sect. 3.2 is added to sμ
n−1

forming sμ
n.

We define the state s0 as the state of the scene at timestep t = 0 containing
all of the AVs and pedestrian agents. The state st is a vector of the states of
the pedestrians and AVs st = (sπ,1

t , ..., sπ,N
t , sρ,1

t , ..., sρ,M
t ), where sπ,n

t is the
n-th pedestrian agent’s state and sρ,m

t is the m-th AV’s state at timestep t.
After s0 is formed, all of the pedestrian agents and the AVs simultaneously
choose each an action aπ,n

t ∼ π(.|sπ,n
t ) and aρ,m

t ∼ ρ(.|sρ,m
t ) for 0 ≤ t < T

until the end of the episode, as shown in Fig. 4. The motion of all pedestrians
and vehicles is simulated forward by the unknown world dynamics p. That is
st+1 ∼ p(.|st,at), where at = (aπ,1

t , ..., aπ,N
t , aρ,1

t , ..., aρ,M
t ) is a vector of the

actions taken by the pedestrian agents and AVs. The episode ends when t =
T − 1 or when a pedestrian agent collides with a vehicle. The state transitions
are evaluated by the pedestrian’s rπ(sπ,n

t , aπ,n
t , sπ,n

t+1), AV’s rρ(sρ,m
t , aρ,m

t , sρ,m
t+1),

the APILA’s rμ(sπ,n
t , aπ,n

t , sπ,n
t+1) and the AVILA’s rν(sρ,m

t , aρ,m
t , sρ,m

t+1) reward
functions. The rewards of the triplet (st,at, st+1) are gathered in a vector rt of
size 2(M + N). At the end of the episode the cumulative APILA’s reward for
the n-th pedestrian Rμ

n =
∑T−1

t=0 γtrμ(sπ,n
t , aπ,n

t , sπ,n
t+1) and the AVILA’s reward

for the m-th AV Rν
m =

∑T−1
t=0 γtrν(sρ,m

t , aρ,m
t , sρ,m

t+1) are given to ATCG. The
cumulative rewards for all agents are gathered in a vector R of size 2(M + N).
Details in Sect. 3.1, Sect. 3.2.
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3.1 The Adversarial Autonomous Vehicle Initial Location Agent

The AVILA’s policy ν models the AV’s initial location distribution and it is
the product of its prior νp and the parametric policy νΘ. The νp informs scene
semantic and geometric dependent prior knowledge and prevents zero gradi-
ents in early learning (due to lack of collisions between the AVs and pedestrian
agents). The AVILA’s action space is the set of valid initial locations for the AV
in the scene. Any location that would make the AV collide in the first timestep
is set to zero in the AVILA’s prior νp. The AVILA takes M actions (i.e. chooses
initial locations for M AVs). For m < M , the AVILA’s state is updated as
sν

m = fν(sν
m−1, y

m
0 ) by a deterministic function fν , and the state transition’s

reward is 0. The last state of the AVILA is the last state of the scene sT . The
AVILA’s trajectory is

(sν
0 , y

1
0) →r=0 (sν

1 , y
2
0) →r=0 ...(sν

M−1, y
M
0 ) →r=

∑M
m=1 Rν

m
(sT , .). (1)

On the last state transition, AVILA is rewarded for the full trajectories of all
the AVs. The AVILA’s policy ν(.|sν

0) = νpνθ(.|sν
0) is found by solving

max
Θ

E

[
M∑

m=1

cν
HH(νp

m−1νΘ(.|sν
m−1)) +

T−1∑

t=0

γtrν(sρ,m
t , aρ,m

t , sρ,m
t+1)

]

, (2)

where entropy H is added to the loss to increase exploration [62], and cν
H = 0.1

is a constant. The expectation in (2) is taken over all st,at for all 0 ≤ t ≤ T −1.

AVILA’s State. The state sν
m = (S,Dν

m, νp
m) contains a top view projection

S ∈ R
(128,256,12) of static objects in the scene labeled with RGB colors and

semantic segmentation labels, a dynamic occupancy map Dν
m ∈ R

(128,256,4), and
the prior νp

m ∈ R
(128,256). The Dν

m contains the future occupancy (predicted
with constant velocity) of all external pedestrians and cars in D and the (m−1)
AVs that have been placed out. The first two channels of D are the reciprocal
time of predicted occupancy for all vehicles and pedestrians respectively, drawing
AVILA’s attention to locations occupied in the near future. The third and fourth
channels are indicators of the occupancy of vehicles and pedestrians in timestep
t = 0. For the first AV the prior νp

1 (z) encourages initial locations that lead to
long AV trajectories within the scene. The unnormalized νp

1 (z) is the distance
from a valid location z to the end of the scene (shown as the distance between
the AV at y0 and the black circle gρ in Fig. 5) along the expected motion vz at z
(according to Dc). For all other AVs the prior νp

m encourages initial locations that
occlude the first AV’s point of view, by prioritizing locations in the proximity of
the first AV and within its field of view. For a position z that is a valid initial
location for the m-th AV, where m > 1, νp

m(z) is the reciprocal distance to the
first AV’s location from z. A factor 1/2 reduces νp

m(z) at all points z outside of
the first AV’s field of view. An AV at a position z is given the point’s expected
velocity vz as the initial velocity vρ,m

−1 and the edge point of the scene along the
direction vz from ym

0 as the goal location gρ,m
0 , see Fig. 5.
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Fig. 5. The cone (in blue) of initial positions h from which the pedestrian can reach
the vehicle’s initial motion vρ

−1, such that both the AV at y0 and the pedestrian at x0

can reach the same position x0 + dπ = y0 + dρ by time t, with a maximal pedestrian
speed of vπ

max = 3ms−1. A black circle is the AV’s goal location: the most distant point
in the scene on the AV’s trajectory. A pedestrian initialized at a position x0 is given
an initial goal gπ

0 that is x0’s reflection in the AV’s trajectory. The pedestrian’s initial
velocity vπ

−1 is given in the direction of gπ
0 . The pedestrian’s next goal gπ

1 is the last
valid point in the scene along vπ

−1. After reaching gπ
1 the pedestrian is given a goal gπ

2

that is in an orthogonal direction vπ
⊥ to vπ

−1 (Color figure online)

AVILA’s Reward Function. AVILA and the AV have similar reward func-
tions rν and rρ but with different reward weights λν �= λρ. The AVILA’s task
is to initialize the AV such that the AV collides with pedestrians but otherwise
performs as well as possible according to its reward function rρ (i.e. desired
AV behaviour). The reward rν = rν

coll. + λν
s.w.r

ν
s.w. + λν

dist.r
ν
dist. + λν

speedr
ν
speed

consist of a collision evaluating reward rν
coll., a reward penalizing overlap with

sidewalk rν
s.w., a reward promoting distance travelled rν

dist. and a reward penaliz-
ing speeding rν

speed, where λν
s.w. = −0.1, λν

dist. = 0.01, λν
speed = −0.1 are weights.

The reward rν
coll. = λν

vrν
v + λν

prν
p + λν

orν
o consist of indicator functions rν

v , rν
p , rν

o

that are 1 if the m-th AV at the position ym
t + vρ,m

t , (where Δt = 1) in the
frame t+ 1 collides with other vehicles, pedestrians, or any objects in S respec-
tively, weighted by λν

v = −2, λν
p = 2, λν

o = −2. The reward rν
s.w. is the m-th

AV’s relative intersection with the sidewalk. The relative distance traveled is
rewarded by rν

dist = ‖ym
t + vρ,m

t − ym
0 ‖/(t + 1)vρ

max, where vρ
max =70km/h

is the AV’s maximal speed. Speeding above vρ
ref =40km/h is penalized by

rν
speed = max(‖vρ,m

t ‖ − vρ
ref , 0). The AV is considered dead and it obtains a

zero reward after a collision.

The Model Architecture. The model νΘ is a two-layered convolutional neu-
ral network, with input sν

m- a multi-dimensional image. The model architec-
ture follows [34] with the addition of semantic channel normalization in sν

m to
balance the bias of from heavily represented semantic classes (like road) and
give more initial attention to less observed classes (like pole). Each seman-
tic channel of sν

m is normalized to sum to 1, resulting in the normalized s̃ν
m,

which is passed through the first convolutional layer (conv(3 × 3×C× 1)→max-
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pool(2× 2× 1)) resulting in the first layer’s output l1. The second convolutional
layer (conv(2× 2× 1)→max-pool(2× 2)→ ReLU), is applied to l1, producing
an output l2. Bilinear interpolation is used to upsample l1 and l2 to the size
(128,256) producing L1 and L2. Finally νΘ(.|s̃ν

m) = softmax(L1 + L2). During
training REINFORCE [62] with ADAM [63] optimizer is used.

3.2 The Adversarial Pedestrian Initial Location Agent

APILA’s policy μ is the product of the pedestrian initial location prior μp and the
parametric μω (same model architecture as AVILA, see Sect. 3.1) that models the
pedestrian initial location distribution. The APILA’s action space is the set of
valid initial pedestrian locations in the scene, invalid locations have a prior value
of 0. The APILA takes N actions (i.e. chooses initial locations for N pedestrians).
For 1 ≤ n ≤ N − 1, APILA’s state is updated as sμ

n = fμ(sμ
n−1, x

n
0 ) by a

deterministic function fμ and the state transition’s reward is 0. The last state
of the APILA is the scene’s last state sT and the final state transition’s reward
is λμ

σrμ
σ(x0) +

∑N
n=1 Rμ

n, where the additive reward component rμ
σ(x0), with

weight λμ
σ = 0.1, is the sum of the standard deviations of the pedestrians’ initial

locations x0 = (x1
0, ..., x

1
N ) coordinates. APILA’s policy μ(.|sμ

0 ) = μpμω(.|sμ
0 ) is

found by solving

max
ω

E

[

λμ
σrμ

σ(x0) +
N∑

n=1

cμ
HH(μp

n−1μω(.|sμ
n−1)) +

T−1∑

t=0

γtrμ(sπ,n
t , aπ,n

t , sπ,n
t+1)

]

,

(3)
where H is entropy, cμ

H = 0.1 is a constant, and where the expectation is taken
over all st,at for all 0 ≤ t ≤ T − 1.

APILA’s State. The state sμ
n = (S,Dμ

n, μp
n) where Dμ

n is a dynamic occupancy
map, and μp

n is the prior. The map Dμ
n is formed analogously to Dμ

n predicting
the motion of all AVs, the (n−1) pedestrians that have been placed out, and the
external pedestrians and cars in D. The prior is μp

n = (G(σ)n−1∗μTTC
n )μD, where

μTTC
n is smoothed by convolution with a 2D Gaussian filter with σ = 15, and

μD is the estimated pedestrian density heatmap. The reciprocal time to collision
(TTC [64]) map μTTC

n is zero in positions that would lead the pedestrian to
a collision on the first frame, within the AV’s braking distance, and on the
AV’s constant velocity future trajectory, to avoid trivial collisions. The set of
points that can lead to a collision assuming AV’s constant motion are denoted
h see Fig. 5. For z ∈ h, μTTC

n (z) = ‖z − y1
0‖−1 is the reciprocal distance to

the first AV. For all other valid points z′ /∈ h the prior is smaller, μTTC
n (z′) =

||z′−y1
0 ||−2. The μTTC

n has higher values in locations that could lead to a collision
quickly. APILA cannot control pedestrians’ trajectories beyond the first timestep
so it is preferable for the pedestrians to be placed near a possible collision,
to increase the likelihood of a collision. The objective (3) promotes all of the
pedestrians to be placed near the first AV, but realistically it is unlikely for an
AV to be surrounded by pedestrians. Therefore we smooth the prior to encourage
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Fig. 6. APILA’s reward: Red ovals indicate undesired and lethal pedestrian behaviour
(a penalizing reward), green indicates desired pedestrian behaviour (an increasing
reward), and yellow undesired (decreasing reward) but not lethal pedestrian behav-
ior. See Fig. 5 (Color figure online)

diversity in the placement of pedestrians while ensuring that collisions occur. The
pedestrian density map is

μD(z) = log

⎧
⎨

⎩

1
b

∑

x∈Dp

exp{−‖z − x‖}
⎫
⎬

⎭
, (4)

where b = 10−4 is the bandwidth of the exponential kernel. The μD provides a
data-driven prior for locations where pedestrians are more likely to occur.

APILA’s Reward Function. APILA’s reward shown in Fig. 6 evaluates the
n-th pedestrian’s behaviour at timestep t, where λμ

AV = 2N , λμ
v = 0, λμ

p = −0.1,
λμ

o = −0.02 and λμ
G = 0.001/N . N is a factor in λμ

AV because APILA should
be motivated to find locations where pedestrians collide with the AV even if
this implies that no further reward can be attained from any of the pedestrian
agents. Similarly N−1 is a factor in λμ

G. The reward term rμ
ped. = (1+λμ

DμD)(1+
λμ

ped.occ.r
μ
ped.occ.), where rμ

ped.occ. is an indicator function that is 1 if the position
xn

t + vπ,n
t coincides with an external pedestrian’s previous occupancy Dp, and

where λμ
ped.occ. = 0.01 and λμ

D = 0.01. Steps taken towards the goal are rewarded
by rμ

goal = 1 + λμ
g rμ

g , where rμ
g = (lπmax)

−1(|xn
t + vπ,n

t − gπ,n
t | − |xn

t − gπ,n
t |) and

lπmax is the step length of the pedestrian at vπ
max, and λμ

g = 0.02/N . The APILA
rewards the pedestrian for taking steps towards its goal, for moving in areas
visited by pedestrians, for colliding with AVs, and penalizes all other collisions.

The Pedestrian Model. The competitive pedestrian forecasting model
CARLA Semantic Pedestrian Locomotion (SPL)-goal from [35] is used. The
SPL is semantically reasoning, collision avoiding and goal-reaching. The SPL
is articulated by the Human Locomotion Network (HLN). The SPL enforces
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human motion like dynamics. In this work, differently from [34,35], the pedes-
trian agents are not considered dead when reaching a goal but instead are given
a new goal, Fig. 5.

The pedestrian’s state sπ,n
t consists of a 5m × 5m local crop S(xn

t ) of S, a
local crop Dπ,n

t (xn
t ) of the dynamic occupancy map Dπ,n

t , the history of the
SPL’s actions aπ,n

t−1, ..., a
π,n
t−12, the previous hidden state of HLN hn

t−1 encoding
the pedestrian’s pose, displacement to the closest vehicle dπ,n

t from xn
t , and

displacement (gπ,n
t −xn

t ) to the goal location gπ,n
t . The dynamic occupancy map

Dπ,n
t contains the past and predicted future (assuming constant motion) time of

occupancy of vehicles and pedestrians. In difference to [34,35] occluded objects
and objects outside of the pedestrian’s field of view are not observed in sπ,n

t .
The pedestrian reward is additive APILA’s reward Fig. 6, with negative

weights λπ
v = −2, λπ

AV = −2 and the addition of rπ
φ to the non-lethal nodes

of the bottom row of Fig. 6 to penalize non-smooth motions. The reward
rπ
φ = λπ

φ min(max(|φn
t |, 0) − 1.2, 2), where Δφ is the average yaw of the joints of

the lower body of the n-th pedestrian agent and λπ
φ = −0.0001.

The AV Model. There is extensive work done on AVs [1–3], and in the future,
we plan to extend our work to state-of-the-art AV models. We provide an
interface to CARLA [65], available at https://github.com/MariaPriisalu/atcg,
to allow for the use of the ATCG in the CARLA simulator. We use a speed-
controlling AV model that follows the trajectories of external vehicles Dc. Note
that because the pedestrians are not initialized within the braking distance of
the AV, the AV can always avoid collisions by standing still. A simple AV model
is used to avoid duplicating research of the AV community and to avoid making
assumptions about the AV model’s sensory inputs. The AV is a policy gradient
agent with the state sρ,m

t . The AV’s state consists of the distance to the closest
pedestrian dρ,m

t , the distance to the closest car δρ,m
t and the ratio of intersection

between the AV and the sidewalk fρ,m
t . The AV chooses its action as aρ,m

t ∼
N (sigmoid(wρsρ,m

t +bρ, σρ), where wρ, bρ are learnt with REINFORCE [62]. The
AV moves in the direction vρ,m

t that is the direction of expected motion for the
vehicle’s current location yρ,m

t . The AV’s speed vρ
maxaρ,m

t is the product of the
maximal AV’s speed vρ

max and the AV’s action aρ,m
t . The AV has perfect dynam-

ics. The AV model has the same reward function as AVILA but with weights
λρ

s.w. = −0.1, λρ
dist = 0.01, λρ

speed = −0.1, λρ
v = −1, λρ

p = −2, λρ
o = −2, σρ=0.1.

4 Experiments

All models are trained on the CARLA dataset [35] with the addition of the dense
dataset from [34] to the training set. The dataset contains 3D reconstructions
(with semantic and RGB labels) of scenes constructed from images gathered
onboard a car. The training set consists of 102 scenes and the validation set of
53 scenes of Town 1. The test set consists of 150 scenes of Town 2. The scenes are
of size 51.2m × 25.6m, with a voxel size (20 cm)3. When nothing else is stated the
AV base model from [34] is used to model AVs’ policy ρ in evaluations. During the
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evaluation, the pedestrian and the AV models act according to the mode of their
policies, but the ATCG samples actions from its policy. All models are trained in
Tensorflow, with a learning rate of 0.1 for the ATCG and the pedestrian models,
and a learning rate of 0.017 for the AV. A discounting factor γ = 0.99 is used,
and an entropy weight of cμ

H = 0.1, cν
H = 0.1 for the ATCG. When training only

the ATCG a trajectory length of T = 100 is used, and a trajectory length of 30
is used when the AV is trained alternatively with the ATCG. During training a
batch size of 30

N episodes is used (where N is the number of pedestrian agents),
and during validation each scene is evaluated for 5 episodes. In testing each
scene is evaluated for 10 episodes. The testing is performed with three different
random seeds and the average and standard deviation of the results are reported.
The measures reported are

– R+
π collision free - the average discounted cumulative reward of pedestrians

that do not take part in a collision with a vehicle.
– R+

ρ collision free - the average discounted cumulative reward of AVs that do
not take part in a collision with a pedestrian.

– # of collisions - the average number of collisions per episode.
– average μD - average pedestrian density value (4) of the pedestrians’ trajec-

tories.

We report Rμ the average APILA’s discounted cumulative reward and Rν the
average AVILA’s discounted cumulative reward to show the ATCG’s perfor-
mance with different pedestrian behaviours.

Fig. 7. The ATS’s policy and sample initialization. Full trajectory, bottom right image
The ATS [34] places the 8 pedestrians close to the AV in light blue (traveling to the
right), resulting in an unnatural collision scene. 1–8: The initial pedestrian location
distribution µ (peaks of the distribution are shown within green circles) of 8 pedestrians
(black boxes) is very peaked (lighter pink color indicates higher probability) close to
the white AV. (Color figure online)
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We begin by evaluating the APILA without AVILA. AVs are placed randomly
on valid initial locations. In the following 1 AV model and 8 pedestrian agents
are utilized. A randomly acting AV is used during training and the base AV
model during testing. APILA outperforms sampling from the ATS [34] and from
APILA’s prior μp as seen in Table 1 left by producing as many collisions as the
other methods but resulting in a higher pedestrian reward for pedestrians that do
not engage in collisions. The APILA’s initialized pedestrian motion is more often
in areas often visited by pedestrians, i.e. higher average μD, compared with the
ATS [34] and by the prior. The ATCG places pedestrians more naturally in the
scene than ATS, as seen in Fig. 7 and Fig. 8. Ablations showing the differences
between APILA and ATS [34] can be found in the supplement (available at
https://github.com/MariaPriisalu/atcg and on arXiv).

A fully trained AV makes it harder to find collisions, and thus makes the
training of APILA harder. The addition of AVILA allows the ATCG model to
place the fully trained AV in the scene relaxing the optimization problem and
allowing ATCG to be trained without balancing between the training of the AV

Table 1. Left: APILA gives more natural initial locations to pedestrians that are not
actively colliding (higher R+

π and average µD) with the AV, than ATS or the prior.
Right: ATCG places AVs and pedestrians more naturally than the prior as seen by the
higher rewards of the AVs R+

ρ and pedestrians R+
π that did not collide.

Metric Prior µp ATS[34] APILA

R+
π 3.7(±1.4) 3.0(±0.9) 4.9(±0.3)

# of coll. 0.13(±0.06) 0.4(±0.2) 0.27(±0.06)
average µD 0.37(±0.09) 0.34(±0.1) 0.56(±0.06)

Metric Prior ATCG

R+
π 1(±2) 1.8(±0.5)

R+
ρ −3.1(±0.5) −2.6(±0.1)

# coll. 0.2(±0.2) 0.3(±0.1)

Fig. 8. APILA’s policy and sample initialization. APILA’s policy µ in right bottom is
less dispersed than the prior µp in right top, but still varied enough to place pedestrians
in varied positions, mostly on the sidewalk. A collision (red circle) between the light
blue AV’s trajectory and a pink pedestrian’s trajectory is seen as well. The light blue
AV traveling to the left and the green pedestrian avoid a collision (green circle). The
ATCG places pedestrians more naturally in the scene than the ATS in Fig. 7 where all
pedestrians crowd the AV. (Color figure online)
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Table 2. The ATCG model is able to find collision scenarios with varied pedestrian
behaviour models when the AV and the ATCG are trained alternatively.

Metric Constant Velocity Distracted SPL SPL Collision Avoiding Collision Seeking

Rμ APILA’s reward↑ 0.5(±0.2) 1.2(±0.8) 0.76(±0.09) 0.60(±0.07) 0.6(±0.2)
Rν AVILA’s reward↑ −0.3(±0.6) 0.7(±0.8) 0.9(±0.2) 0.2(±0.4) −0.1(±0.8)
# collisions↑ 0.8(±0.3) 0.9(±0.3) 1.07(±0.06) 0.93(±0.06) 0.9(±0.3)

and APILA. The ATCG places AVs and pedestrians that are not involved in
a collision more naturally in the scene as indicated by the higher non-collision
rewards R+

ρ , R+
π compared to sampling from the prior, as seen in Table 1 right.

The ATCG is trained alternatively with the AV with the following pedestrian
models (all articulated by the Human Locomotion Network (HLN) [35]),

– Constant Velocity (CV) - a pedestrian moving at a constant velocity towards
its goal location with a speed drawn from the distribution N (1.23ms−1, 0.3)
[66].

– Semantic Pedestrian Locomotion (SPL) - semantically reasoning and collision
avoiding pedestrian model [35].

– Distracted SPL+ε - a pedestrian does not notice the closest AV with a prob-
ability of 0.3 and continues to be distracted for k ∼ Poisson(2) timesteps.

– Collision Avoiding (CA) - the SPL model that is trained further with the
reward rπ. This pedestrian learns to avoid collisions with the AV (see Fig. 2).

– Collision Seeking (CS) - the SPL model that is trained further the reward rπ

but with λAV = 2. This pedestrian learns to collide with the AV (see Fig. 2).

Independently of the pedestrian model utilized the ATCG can generate collisions
as seen in Table 2. The ATCG with CV pedestrian model produces the lowest
collision rate because the AV can easily learn the pedestrian’s motion and avoid
collisions. The ATCG with the distracted SPL+ε and the SPL produce a higher
reward for AVILA than with the collision seeking (CS ) or collision avoiding (CA)
pedestrians. This is likely because both CS and CA are trained together with
the AV and ATCG resulting in a less stable optimization problem for the ATCG
(the collision-avoiding and the collision-seeking pedestrian RL games in Fig. 2).
The ATCG has a high APILA’s reward Rμ even with the CA pedestrian because
the CA is predictable for the ATCG. The CA is initialized with the SPL model
and trained further with SPL’s objective and therefore CA has a lower entropy
than the SPL. As expected, the CA has fewer collisions than the SPL model.
During training, it was noticed that training the AV with the AVILA made the
AV act more cautious of collisions with other vehicles. The effect of varying the
pedestrian model on the ATCG with a constant AV model, and on APILA are
found in the supplement.

5 Conclusion and Future Work

By reformulating AV collision scenario generation as a teamed RL problem it
is possible to train semantically reasoning RL models that place out AVs and
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pedestrian agents in a scene. The visually reasoning ATCG generalizes across
scenes. The model does not make strict assumptions about the scene, but instead
reasons based on visual input. Any prior knowledge is given through the seman-
tically motivated priors. The ATCG being separated into different agents allows
for the agents to solve the separate tasks of finding the natural but collision-
prone initial distributions of AVs and pedestrians. In a multi-agent scenario the
natural distribution of different agents is particularly important because the
most collision-prone initial locations are less likely with the increasing number
of traffic agents. The proposed ATCG balances the search for collision-prone
scenarios with the search for realistic scenarios. When the AV is an RL agent
then the ATCG and the AV are playing a MARL game. The ATCG can gen-
erate collisions independently if the pedestrian agent is on the ATCG’s team,
the AV’s team, or neither team, see Fig. 2. The ATCG can be used to generate
natural-looking collision scenarios for varied AV and pedestrian models, with
varied traffic density for varied scenes.

The ATCG can be easily extended by adding further agents that are responsi-
ble for placing out other constraining factors for the AV (for example placing out
parked cars that occlude the AV’s vision). This can be done easily by introduc-
ing a scene semantics dependent prior and a reward that balances the object’s
natural occurrence in scenes with obstructiveness for the AV. This is a natu-
ral way of ensuring that the AV and the pedestrians have enough constraints
such that collisions occur even as the AV and the pedestrian models improve in
collision avoidance. Extending the ATCG agent with additional RL agents and
evaluating state-of-the-art AV models is our future work.
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1 Additional experimental results

1.1 Qualitative results of the ATCG model

In Fig. 1 it can be seen that ATCG produces natural-looking and varied initial
locations for AVs and pedestrians (all external agents in dark blue color). Some
of the pedestrians (in green circles) manage to avoid collisions with the AVs and
others do not (red circles).

The policy of the ATCG agents can be seen in Fig. 2. Note that the ATCG’s
policy is more dispersed than that of ATS as seen in Figure 7 of the main paper.
This is due to the Gaussian smoothing in the prior of APILA, introducing the
estimated pedestrian density µD as factor in APILA’s prior µp and introducing
the sum of the standard deviations of the initial location coordinates rσ(x0) in
the total reward of APILA. See section §1.2 below.

The Table 2 in the main paper the AV and the ATCG have been trained
alternatively, here in Table 1 we only train the ATCG and keep the AV model
constant. The ATCG is able to find collision scenarios for the base AV model
independently of pedestrian behavior model. The Collision seeking and Collision
avoiding pedestrians result in the highest rewards for APILA and AVILA.

1.2 Ablation study of APILA

The APILA is adapted from ATS [1] by introducing smoothing µTTC
n with

2D Gaussian filter (G) on the ATS’s prior µTTC
n , by including the estimated

pedestrian density µD in the prior µp and by the introduction of the reward term
rσ(x0). The effect of these ablations on APILA can be seen in Table 2. Note
that ATS [1] only places out pedestrians, and AVILA is novel. The policy of the
ablation in Table 2 without G,µD and rσ(x0) can be seen in Figure 7 of the main
paper. The visual inspection of Figure 7 of the main paper shows that without
smoothing pedestrians crowd the AV. To avoid placing all pedestrians near the AV
smoothing was introduced, and the resulting pedestrians’ initializations are shown
in Fig. 1 and Fig. 2 and Figure 8 of the main paper. Smoothing (G) decreases
APILAs collision rate but increases the pedestrians’ average pedestrian density
value (average µD), as seen in Table 2. After smoothing more pedestrians get
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Fig. 1. Four sample scenarios showing multiple cases where the AV and pedestrians
manage to avoid collisions (shown with green circles) and cases where they collide
(shown with red circles). The top lane of cars is moving to the left and the bottom lane
to the right.

Fig. 2. A sample scenario depicting no collision but varied and realistic initialization
of pedestrians and AVs by ATCG. The first row shows AVILA’s policy for placing
out 4 AVs, second to fourth row show APILA’s policy for placing out the first to 8th
pedestrian. The trajectories of all of the agents are shown in the fourth row third
column.
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Table 1. Performance of ATCG trained with various pedestrian models and with the
base AV model.

Metric Constant
velocity

Distracted
SPL SPL Collision

avoiding
Collision
seeking

Rµ APILA’s 0.6(+−0.3) 0.8(+−0.5) 0.5(+−0.4) 1.0(+−0.6) 1.0(+−0.1)
Rν AVILA’s -7.6(+−0.6) -9(+−2) -7.0(+−0.6) -6.7(+−0.9) -8(+−3)
# collisions 1.0(+−0.2) 0.7(+−0.3) 1(+−0.2) 0.87(+−0.06) 0.9(+−0.4)

Table 2. Ablations of APILA.

µD rσ(x0) G ↑ R+
π collision free ↑# collisions ↑ average µD

1.5(+− 0.3) 0.5(+− 0.1) 0.32(+− 0.2)
✓ 3.2(+− 0.4) 0.5(+− 0.1) 0.25(+− 0.08)

✓ 2.8(+− 1.6) 0.4(+− 0.2) 0.3(+− 0.1)
✓ 6.3(+− 0.9) 0.1(+− 0.1) 0.51(+− 0.07)

✓ ✓ 4.0(+− 0.9) 0.3(+− 0.1) 0.52(+− 0.08)

✓ ✓ ✓ 4.9(+− 0.3) 0.27(+− 0.06) 0.56(+− 0.06)

initialized on the sidewalk and further away from the AV where more pedestrians
can naturally be found. The pedestrian density map µD inclusion provides APILA
prior knowledge of typical pedestrian distributions in the given scene. The reward
rσ(x0) encourages variation among the initial locations of the pedestrians. Both
the inclusion of rσ(x0) and µD increase the collision rate and decrease the
tendency of pedestrian agents to stay near areas often visited by pedestrians.
The decrease in collisions brought about by smoothing is countered by the
inclusion of µD and rσ(x0). This is likely because both µD and rσ(x0) encourage
variation among the initial locations of the N pedestrians, leading the model
to find more scenarios that lead to collisions. We propose to include all of the
model components µD,G and rσ(x0) to balance between likely and collision-prone
scenarios, but the choice may vary due to the application.

The effect of varying the pedestrian behavior policy on APILA can be seen in
Table 3, utilizing a goal-driven collision avoiding pedestrian such as SPL results in
a comparable number of collisions with using a constant velocity pedestrian model.
We also report the metric H(π−) collision - the pedestrian behaviour policy’s
entropy during its collision course. The constant velocity pedestrian results in a
lower average µD than the other pedestrian behavior models, as the other models
are trained to tend to stay in areas frequented by pedestrians. Utilizing randomly
distracted pedestrians [1] does not lead to an increase in collisions, likely because
the pedestrian’s distracted behaviour is unstructured and thus not learnable
for APILA, as also confirmed in [1]. The collision seeking pedestrian attains a
higher entropy during collisions and is thus more unpredictable in near-collision
scenarios causing the collision frequency to drop, while the collision avoiding
pedestrian’s entropy is low making the pedestrian’s motion easier to predict even
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Table 3. The constant velocity pedestrian model results in a decreased number of
collisions. APILA can generate collisions independently of the pedestrian behaviour
policy. The SPL model produces the most pedestrian-like behaviour.

Metric Constant
velocity

Distracted
SPL SPL Collision

avoiding
Collision
seeking

R+
π collision free 1.8(+−0.1) 3.1(+−1.5) 4.9(+−0.3) 2.5(+−0.6) 3.7(+−0.8)

# collisions 0.2(+−0.1) 0.4(+−0.2) 0.27(+−0.06) 0.3(+−0.1) 0.13(+−0.06)
average µD(xt) 0.48(+−0.08) 0.45(+−0.04) 0.56(+−0.06) 0.31(+−0.01) 0.5(+−0.2)
H[π]− collision 0 0.08(+−0.02) 0.05(+−0.03) 0.04(+−0.01) 0.1(+−0.1)

if the pedestrian attempts to avoid collisions. Most notably APILA can generate
collisions independently of the pedestrian behaviour policy.

Fig. 3. APILAs model trained with 7 and 8 pedestrians start learning with a higher
reward and continue to increase in reward with an increasing number of epochs.

As expected increasing the number of pedestrians implies a higher collision
frequency giving a higher reward value, as seen in Fig. 3.

1.3 Ablations of AVILA

In Fig. 4 the average number of collisions between AVs and pedestrians is shown.
It can be seen that a larger number of AVs results in general in a larger number
of collisions. Three AVs appear to be optimal for the given dataset. It could be
that beyond this the AVs have trouble avoiding collisions with one another when
trying to avoid pedestrians.
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Fig. 4. Three AVs produce the largest amount of collisions between the AVs and
pedestrians on the validation set.
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Abstract. It is difficult to perform 3D reconstruction from on-vehicle
gathered video due to the large forward motion of the vehicle. Even ob-
ject detection and human sensing models perform significantly worse on
onboard videos when compared to standard benchmarks because objects
often appear far away from the camera compared to the standard object
detection benchmarks, image quality is often decreased by motion blur
and occlusions occur often. This has led to the popularisation of traffic
data-specific benchmarks. Recently Light Detection And Ranging (Li-
DAR) sensors have become popular to directly estimate depths without
the need to perform 3D reconstructions. However, LiDAR-based methods
still lack in articulated human detection at a distance when compared to
image-based methods. We hypothesize that benchmarks targeted at ar-
ticulated human sensing from LiDAR data could bring about increased
research in human sensing and prediction in traffic and could lead to
improved traffic safety for pedestrians.

Keywords: Pedestrian Detection · Autonomous Vehicles

1 Introduction

Autonomous vehicle (AV) research is gaining momentum [1–4] in modeling vehicle-
to-vehicle interactions, but pedestrian-vehicle motion planning models [5–46]
could be improved by articulated human motion modelling. Pedestrians in dif-
ference to vehicles provide strong visual cues of their intent, as well as current
and future motion through their articulated pose [47–49]. Human motion is pre-
dictable up to one second with around one centimeter average per joint error
when observing articulated motion [50]. The motion information present in the
pedestrian pose is unused in most AV motion planning models [5–46], as well
as in AV model testing. Progress in articulated pedestrian modeling is slowed
down by the lack of data due to the difficulty in recovering articulated pedestrian
poses in real traffic scenarios. The importance of preserving the relationship be-
tween pedestrian motion and scene semantics on pedestrian motion perception
is shown in Fig. 1. The lack of data has lead to the development of AV scene
understanding models [5–46] that are oblivious to pedestrian poses and other vi-
sual cues (such as facial expressions etc), thus simply omitting available motion
cues. Further AV testing is not yet utilizing realistic articulated pedestrian mod-
els and instead tests AV’s interactions with heuristic pedestrian motions [51–77].
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Since AV’s are not evaluated in interactions with real humans at scale the possi-
ble safety issues in pedestrian detection, tracking and forecasting are relatively
unknown.

Fig. 1. By semantically modeling articulated pedestrians an AV in orange in the left
figure can foresee that pedestrian 1 will continue moving in the same direction eventu-
ally being occluded by the tree (see right figure), that pedestrian 2 may choose to cross
when standing next to a crosswalk (see right figure), and that the third pedestrian
will continue to cross once visible. Modeling articulated pedestrians will also ease the
AV to differentiate between the second and third pedestrians as their paths cross (see
figure on right), as a sudden change in direction is unlikely on a crossroad and given
the pedestrians’ articulated pose.

We argue that articulated semantically grounded pedestrian sensing and mod-
eling is currently an underdeveloped research field due to a lack of Ground Truth
(GT) data. Supervised articulated human sensing models [78–89] are often evalu-
ated on clean benchmarks [90–95] where humans are and clearly and often fully
visible, close to the camera and captured in good lightning conditions. This leads
to methods that fail at a distance as well as in the presence of motion blur or poor
lightning and occlusions. Unsupervised [94, 96–104] and weakly supervised [105–
115] training have become popular to overcome the lack of difficult and varied
GT data. These models could however be improved with combined temporal and
traffic-centered semantic modeling to obtain human 3D pose tracking at scale
from a moving vehicle.

A ground truth dataset of articulated human motion in 3D would allow one
to evaluate the discrepancy between the true and estimated scale and depth,
robustness to occlusions, and motion blur in human pose detection and forecast-
ing. In parallel to this work, an approximated dataset of articulated humans
in the wild has been released [116], but the dataset still exhibits humans that
are close to the camera in the presence of little camera motion when compared
to images from traffic and lacks annotations in the presence of large occlusions.
Even though [116] is a step in the right direction it does not express the full com-
plexity of the problem of articulated pedestrian motion estimation from onboard
vehicles.

Existing monocular absolute scale depth estimators generalize poorly on pre-
viously unseen scenes [117, 118]. The same may be expected of the partially
supervised and unsupervised 3D human sensing models [94, 96–115], and this
is likely to also affect the estimated limb lengths of the pedestrian. Correctly
estimated limb lengths however allow for a precise estimation of the pedestrian’s
travelling speed. Note that a moving camera requires a robust and temporally
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smooth pedestrian sensor and motion model to deal with possible image blur,
occlusions and to avoid confusion between the motion of the pedestrian and the
camera. Robust and complete pedestrian motion sensing and prediction may
directly reduce the number of lethal collisions with AVs.

Pedestrian trajectory forecasting is hard because pedestrians appear to move
stochastically when compared to the more regular motion of cars, in particular
when pedestrians are modelled by their bounding (3d) boxes [5–46]. In general
pedestrian motion prediction is hard as the goal of the pedestrians and the rea-
son for a particular speed is unknown even if articulated motion is available. But
pedestrians plan their motion in the scene depending on the geometry of the se-
mantics surrounding them; for example, pedestrians may cross the road to avoid
staying on a pavement that is very shallow and is next to a densely trafficked
road [48, 49]. Further, pedestrian dynamics depend on the particular pedestrian’s
physique [50]. A complete pedestrian forecasting model should therefore be se-
mantically aware as well as articulated. Currently, to our knowledge only [119]
present an articulated semantically reasoning pedestrian forecasting model. A
key difficulty in training articulated and semantically reasoning pedestrian mod-
els lies in the lack of data as mentioned before, but also in the lack of varied
data. Pedestrians act often monotonely in traffic [120–122] as complex behav-
iors occur seldom in traffic, and existing datasets often do not express the full
variability in human dynamics and appearances. To be utilized on-board in real
time further research is necessary into robust real-time articulated semantically
reasoning pedestrian motion models.

Fig. 2. The modular reconstruction process: First the data capturing the vehicle’s
trajectory is estimated from GPS coordinates or accelerometer data, this is then used
to initialize camera matrices in the 3D reconstruction of the scene. The frames of the
binocular video are semantically segmented, semantic segmentation is used to remove
moving objects (vehicles and people), and the background objects are 3D reconstructed.
The semantic segmentation (or images) is then used to find the bounding boxes (BBox)
of pedestrians. Then pose estimation is performed followed by filtering to disallow
physically unplausible poses. Note that from semantic segmentation 3D BBox of cars
can be estimated.

Autonomous vehicles typically have a number of sensors that all together
generate large amounts of data (possibly up to the order of Tb per minute), so
the data must be filtered for salient objects. By filtering the data we stand at
the risk of possibly missing something important like a partially occluded pedes-
trian. Therefore how to best represent a traffic scene for autonomous driving
is still an open research topic [123–127]. Within motion planning High Defini-
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tion (HD) maps containing scene details in a compact representation [128], and
Bird’s Eye View (BEV) images that is to say top view image of the scene, are
common because they allow for 2D vision models to easily be utilized on traffic
data [124]. Both HD and BEV are compressed scene representations that do
not in general allow for sensor data augmentations. In this work we opt for a
semantically labeled 3D reconstruction with articulated pedestrians because this
allows for detailed modeling of pedestrians, the evaluation of physical distances
between objects, and data augmentation for a number of sensors (such as cam-
era and LiDAR). This is an uncompressed scene representation that allows for
data augmentation and testing but it is difficult to recover from only onboard
binocular video, as will be detailed. Human sensing is performed on images [129–
141] because this is a more mature research field than human sensing from other
sensor data such as LiDAR-scans [142–146].

Recovering a semantic 3D model of the scene with articulated pedestrians can
be done modularly as shown in Fig. 2 by estimating the recording device’s motion,
semantically segmenting the scene, and 3D reconstructing the scene. Adding
articulated pedestrians to the 3D scene reconstruction requires detecting the
pedestrians in the scene, estimating the pose of the pedestrians in 2D, estimating
the pose of the pedestrians in 3D, and filtering any physically unrealistic poses. A
number of estimation errors can occur along the way, making such data gathering
hard. We hypothesize that articulated human sensing, tracking and prediction
could be improved by combining the three tasks, as is done for vehicles in [146–
151]. After the development of the presented results pose tracking has been posed
as the problem of tracking the pose of one or more pedestrians [152–154].

Note that even though human motion can be captured with a Motion Cap-
ture (MoCap) system, or recently even from selected images [116], it is not trivial
to set up large-scale experiments to gather traffic datasets that contain a large
variety of possible scene geometries, semantics, and GT poses. This is because
MoCap data gathering requires intervening with the scene, and existing human
pose sensing methods from images cannot yet capture the poses of all humans in
the images [116]. Further, most MoCap methods cannot be utilized accurately
outdoors with large occlusions. More research is needed in human motion capture
in traffic. Markerless human pose detection results often look impressive [155],
but don’t often present any results for humans who are far away in the pres-
ence of motion blur, which is the case in traffic data. Human detection at a
distance in the presence of motion blur is still challenging, let alone human pose
detection. Other sensors can be used to remedy motion blur and aid in human
detection [156] and articulated human sensing, for example [157] perform an ini-
tial step to utilize LiDAR and images to detect distant humans in real traffic
data.

2 Scene reconstruction

We use the Cityscapes dataset [158] that consists of binocular video sequences,
with a length of 30 frames at 17 frames per second, gathered from calibrated
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Fig. 3. A sub-sampled sequence of frames from the Cityscapes dataset, Aachen.

cameras placed on the front screen of a vehicle. Sample images are shown in Fig. 3.
The data gathering vehicle’s position can be estimated from the provided GPS
coordinates or accelerometer data. Disparity maps are provided for each frame,
and a GT semantic segmentation is provided of the leftmost camera’s image
at the 20th frame. The images contain some blur because they are captured
from behind the windscreen as the vehicle moves. Image blur, the fast camera
motion in the forward direction (most 3D reconstruction methods are fragile to
this) and independently moving objects make 3D reconstruction of the sequences
hard. The inherent difficulties in 3D reconstructing onboard videos have led to
the increased popularity of LiDAR for depth estimation.

Fig. 4. Visualizations of 3D pointclouds from using the vehicle’s GPS coordinates or
accelerometer readings to estimate camera position with per-frame disparity maps. The
GPS is noisier than the accelerometer resulting in a noisier pointcloud.
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2.1 Initial Camera Positions

Assuming that the cameras cannot move within the rig or the car we can esti-
mate the cameras’ motion as the vehicle’s motion. The vehicle’s motion can be
estimated from the Global Positioning System (GPS) or the accelerometer data.
The GPS coordinates contain jumps as seen in Fig. 4 where the cameras’ esti-
mated position and each frame’s disparity map are used to create pointclouds
for each frame that are then aggregated. It can be seen that in the GPS-based
vehicle trajectory, the vehicle’s rotation oscillated from frame to frame causing
the 3d point clouds of different frames to diverge, while the accelerometer data
results in a smoother pointcloud. This suggests that the accelerometer-based
vehicle trajectory is a better initialization for the camera matrices in a 3D recon-
struction system.

2.2 3D Reconstruction

Multiple 3D reconstruction methods were tested, but only COLMAP [159] con-
verged on a large number of the available sequences. It should be noted that
all libraries were tested on the same three sequences, all containing some mov-
ing pedestrians and vehicles and strong forward motion as this is typical for
the Cityscapes dataset. The following libraries were tested with the following
results: Open Structure for Motion Library (OpenSFM) [160]- A Structure from
Motion(SFM) system, that is an incremental 3d reconstruction system. Fails to
reconstruct the Cityscapes scenes likely because the change in camera rotation
is too small between frames. Bundler [161] is also a SFM system. Finds <10
matches, and fails again likely because the images are blurry and the rotational
difference between the initial camera views is too small. OpenCV Structure from
motion library [162] - A SFM library that uses DAISY features [163]. Result
of 30 frames - finds relatively few points without a clear structure. See Fig. 5.
VisualSFM [164] a paralellized SFM pipeline with Bundler. Only a thresholded
number of large-scale features are matched across images. This unfortunately
fails possibly because of image blur or the lack of distinct large-scale structures
in the images. The method is unable to find enough SIFT feature points likely
because the images are blurry and finds no verified matches between two stereo
images. Finally, VisualSFM cannot handle forward motion, not finding a good
initial pair of images with enough matches. ORBSLAM [165]- ORB-feature [166]
(a fast feature descriptor combining gradient and binary features) based Simul-
taneous Localization And Mapping (SLAM) system. Finds too few keypoints,
likely due to blur and depth threshold. Results in a too sparse reconstruction.
COLMAP [167, 168]- an incremental SFM and Muti-view stereo(MVS) system.
Extracts SIFT [169] features that are exhaustively matched (other matching
methods are also available) across all images. Converges for 150 scenes on the
training and validation set and 150 scenes on the test set. See Fig. 6. For further
details on the different systems see Table 1 and the Appendix.

A number of the reconstruction methods fail to find reliable matches across
images, likely because of the motion blur and poor quality of the images as the
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Table 1. Overview of the algorithms used by the different SFM and SLAM libraries.
See the Appendix for more details.

Method Image
features

Matching
algorithm

First view
selection

Method for
selecting addi-
tional views

Bundle
Adjustment

OpenSFM HAFP+HOG Exhaustive
Fast approx. NN

First frames
>30% outliers

largest overlap
with pointcloud

Bundler SIFT Exhaustive
approx NN

large difference
in rotation

largest overlap
with pointcloud SPA

OpenCv DAISY Exhaustive NN inexact
Newton

VisualSFM SIFT GPU Preemptive
mathcing

thresholded no.
of large features

largest overlap
with pointcloud

Multicore
BA

ORBSLAM ORB Stereo matching
closer than 40b first frames next frame Levenberg

Marquardt

COLMAP SIFT Exhaustive NN Algorithm of
Beder & Steffen high inlier ratio PCG

Fig. 5. 3D pointcloud reconstructed by the OpenCV library. There are too few 3D
points in the pointcloud to detect what has been reconstructed.

Fig. 6. COLMAP’s sparse 3D reconstruction of the scene depicted in Fig. 7 and Fig. 4.
The red rectangular pyramids depict the different camera positions, showing correctly
that the vehicle traveled on a curved road.
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cameras are mounted behind the windscreen of the vehicle. Secondly, the major-
ity of visual 3D reconstruction methods fail at reconstructing in the presence of
large forward motion of the camera in particular at fast speeds (i.e. the speed
of a car) in the presence of a large number of objects at a large distance to the
camera. COLMAP [167, 168] differs mostly from the other methods by the fact
that it is modeled for camera views with at times large overlaps; by its outlier ro-
bust triangulation, probabilistic new view selection and iteratively applied final
Bundle adjustment (BA) alternated with filtering and triangulation. It should,
however, be noted that COLMAP is not applicable in real-time, (recently a real-
time adaption [159] has become available), and it could not reconstruct all of
the Cityscapes scenes ( 3475 in the training set and 1525 in the test set). The
majority of 3D reconstruction methods are not well-fitted to reconstruct images
captured from a moving vehicle. This has led to the increased popularity of
LiDAR sensors as they can measure directly the distance to objects which is par-
ticularly useful in the presence of moving objects (pedestrians, cars, bikers etc.)
when only a few images may be available of the object at a particular location.

2.3 Filtering out Non-stationary Objects in the 3D Reconstructions

Moving objects such as cars and pedestrians need to be removed in SFM, to this
end the Gated Recurrent Flow Propagation (GRFP) net [170] that is a video
segmentation network that utilizes optical flow to stabilize semantic segmenta-
tion in video data. The GRFP is used to segment the frames of the Cityscapes
sequences.

COLMAP is adapted by adding semantic segmentation as an additional chan-
nel (in addition to the 3 RGB channels) describing points during SFM. The
camera matrices are initialized based on the accelerometer data. A subsampled
sequence of frames from the left camera can be seen in Fig. 3 and the semantic
segmentation of the last frame in the left and the right images can be seen in
Fig. 7. The resulting sparse reconstruction in Fig. 6 and dense reconstruction
can be seen in Fig. 8. Semantic segmentation of the reconstructed 2D points is
then transferred to the 3D pointcloud as detailed in the supplementary material
of [171]. Note that moving objects are filtered out only during sparse reconstruc-
tion, the dense reconstruction is instead filtered for objects with dynamic object
labels during voxelisation.

A number of reconstructions are shown in Fig. 9. Some reconstructions cor-
rectly recover the structure of the road such as Tübingen, Ulm and Weimar,
also in Fig. 10. In general, the reconstruction deteriorates further away from the
camera. This can be seen in the reconstruction of Tübingen in Fig. 9 where some
of the road (in purple) is misaligned with the rest of the reconstruction and is
tilted downwards. This is expected as objects further away from the camera are
harder to recognize and estimate the distance to. The reconstructions elongate
objects as can be seen in the reconstruction of Tübingen Ulm and Weimar in
Fig. 9. COLMAP is however not always successful, when the frames change in
viewpoints is small the found reconstruction ends up being flat like in Bremen
in Fig. 9 or almost flat like seen in the top view of Darmstadt in Fig. 9.
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Fig. 7. Points belonging to moving objects cannot be used in the SFM and must
filtered out. In the top row, the semantic segmentation of the left and the right camera
images are shown for one frame, and in the bottom row, the points used in the sparse
reconstruction of COLMAP are shown. In red points that are included in the SFM are
shown. In blue points that are omitted in the SFM (as they belong to semantic classes
of pedestrians and vehicles) are shown.

Fig. 8. COLMAP’s dense 3D reconstruction of the scene depicted in Fig. 7 and Fig. 4.
The dense reconstruction is noisy but the scene is recognizeable.
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Fig. 9. Dense reconstructions. First row: The Bremen sequence’s first frame (to the left)
and a flat reconstruction (to the right) labeled with semantic segmentation labels (top)
and RGB (bottom).Second row: The Darmstadt’s reconstruction appears fine from the
front view (middle) but is flat and curved when viewed from the top (left).Third row:
Tübingen results in a correct reconstruction of the street close to the camera (middle),
but an incorrect estimation of the street topology due to uphill view (right).Fourth
row: Ulm is reconstructed correctly with a patch of grass separating the road and
the sidewalk as seen in front (middle) and top view(to the right).Fifth row: Correctly
reconstructed street shape as seen in front (middle) and top view (to the right).
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Table 2. Frequency of the semantic classes on the CARLA dataset and accuracy of
the Pointnet++ for the different semantic classes. The semantic classes are in the order
of decreasing frequency. Objects of class wall obtains the lowest accuracy.

Class vegetation building road sidewalk fence static wall pole sign
Frequency % 37.62 18.50 17.87 17.55 3.00 2.81 1.71 0.83 0.09
Accuracy 0.93 0.86 0.88 0.67 0.84 0.51 0.50 0.88 0.71

To directly label a poinctloud experiments were conducted with the popu-
lar pontcloud segmentation network Pointnet++ [172]. The Cityscapes has no
GT segmented pointclouds, so a model that was finetuned on CARLA [173]
generated pointclouds was tested but resulted in confused labels. Finetuning of
Pointnet++ [172] on the synthetic CARLA dataset(from [171]) resulted in a low
mean average class accuracy of 0.62, with per class results shown in Table 2. The
classes that occur seldom get low accuracy, so objects such as traffic sign get
almost always incorrectly labelled. It is also worth noting that strangely enough
points belonging to walls are correctly marked only in half of the occurences. In
general the results suggest that Pointnet++ results are not on bar with labelling
3D reconstructions according to projections of 2D semantic maps. It is possible
that more recent methods [174–181] could improve the results.

Fig. 10. Additional dense reconstructions from Bremen showing that noise levels vary
but the street shape is often successfully reconstructed.
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Fig. 11. Segmentation, BBoxes and 2D joint position estimates of OpenPose with Di-
lational, GRFP and FRCNN. Dilational net and GRFP manage to separate different
pedestrians who are visually close by but also introduce false positives. GRFP produces
cleaner BBoxes than Dilational.

3 Pedestrian sensing

Detecting humans is hard because they are relatively small in traffic images, they
vary in physique and visual qualities depending on the human’s pose and clothing,
and they change their positions from frame to frame. The fact that most popular
object detectors are biased to detect close-up objects centered in an image makes
them ill-fitted to traffic data because in traffic humans appear often a distance
from the camera. We compared object detection, segmentation, and human pose
detecting network’s ability to detect pedestrians on the Cityscapes dataset [158]
by comparing the detected pedestrian’s BBox overlap with BBoxes generated
from GT segmentations. The tested methods are

– DilationalNet-10 [182]- A popular semantic segmentation network with di-
lated convolutions for larger receptive field.

– The Gated Recurrent Flow Propagation(GRFP) [170] - A temporally smoothed
video segmentation network showing temporally smooth result on the Cityscapes
dataset [158].

– Faster-RCNN(FRCNN) [183] - A popular object detection network with high
throughput and good performance on benhcmarks.

– OpenPose [82, 83] - A popular multi human 2D pose estimating network, that
has a runtime that scales well with increasing number of visible humans.
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Table 3. The number of true positive, false negative and false positive BBoxes on the
training and validation sets of Cityscapes for the 20th frame. The two strongest con-
tenders for pedestrian detection are the GRFP and the FRCNN. The GRFP produces
the largest number and area of true positives, and the FRCNN produces the smallest
number and area of false positives and negatives.

Model True Average False Average False Average
positives TP area positives FP area Negatives FP area

Dilational 2887 0.699 7,516 0.008 16,664 0.016
GRFP 3588 0.707 14,317 0.01 15,980 0.015
FRCNN 2952 0.706 578 0.001 16,522 0.009
OpenPose 165 0.682 343 0.003 18,997 0.017

In Table 3 it can be seen that FRCNN produced the smallest false posi-
tive(FP) and false negative(FN) average BBox area, but has the second highest
true positive(TP) Intersection over Union (IoU) area. Because the areas of the
BBoxes vary we present both the FP, FN, and TP counts and areas (normal-
ized with respect to the total GT BBox areas), to observe how many individuals
are detected versus how much of the visual area is covered by the pedestrians.
FRCNN is accurate in detecting large BBoxes, and it detects on average larger
BBoxes than the GRFP as seen in Fig. 12 Left. GRFP on the other hand is
better at capturing distant pedestrians but also produces a large amount of FPs.
Based on this FRCNN is the most suitable pedestrian detector as it is the most
accurate in detecting pedestrians close to the vehicle, these pedestrians have the
highest risk of being run over if undetected.

Fig. 12. Left: The average relative BBox areas of the different pedestrian detection
methods. FRCNN detects on average the largest BBoxes and OpenPose the smallest.
Right: The average distance from estimated joint positions to human mask (from GT
segmentation). GRFP’s human BBoxes result in the lowest distance from estimated
joint positions to human mask and OpenPose in the largest.
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OpenPose is used to estimate the articulated human 2D pose on the BBoxes
found by Dilational, GRFP and FRCNN and on the whole image. We introduce
the Mean Per Joint Distance to Segmentation(MPJDS) metric which is the av-
erage distance from an estimated 2D joint position to a pedestrian or biker
segmentation mask. The MPJDS is an approximate measure of how accurately
OpenPose can estimate the pose of a pedestrian present in the BBoxes found
by the different models, results are shown in Fig. 12 Right. GRFP results is the
smallest error likely because GRFP detects smaller BBoxes than FRCNN re-
sulting in smaller absolute errors. OpenPose applied on the whole image detects
pedestrians that appear to be far away from the camera, but fails to estimate
their pose, resulting in large joint errors for small BBoxes. Eventhough Open-
Pose has presented impressive results it fails to detect multiple pedestrians in
traffic scenarios without a separate pedestrian detector.

Table 4. The FRCNN detects fewer pedestrians and bikers than Dilational but results
in a lower MPJDS, suggesting that FRCNN detects pedestrians that are clearer.
Model MPJDS MPJDS Number of Number of Crossover Crossover

norm. pedestrians bikers pedestrians bikers
GT 32.50 0.99 1,803 17,415 1.0 1.0
Dilational 27.17 0.87 850 4,572 0.94 0.91
FRCNN 10.74 0.38 392 2,888 0.86 0.85

Fig. 13. Left: FRCNN detects only large BBoxes. Dilational can detect smaller BBoxes,
but many GT bbes are undetected by both methods. Right: The BBoxes found by
FRCNN are in general representative of the GT BBox sizes, while Dilational underes-
timates BBox sizes.

To study the accuracy of OpenPose on BBoxes that truly contain a pedestrian
we filter out the BBoxes that have at least 50% cross-over with the GT BBoxes,
results are shown in Table 4. By cross-over is meant the percentage that the GT
BBox intercepts the estimated BBox with. If an estimated BBox intercepts with a
number of GT BBoxes then only the highest cross-over is recorded. The MPJDS
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of OpenPose applied on the GT BBoxes in Table 4 is much larger than that of the
other two methods because the GT contains pedestrians who are hard to spot in
the images (distant or occluded as seen in sizes in Fig. 14). These pedestrians go
unnoticed by the Dilational and FRCNN. Even though FRCNN has a lower cross-
over percentage than the Dilational it obtains the lowest MPJDS suggesting that
FRCNN detects the most clearly visible pedestrians. In Table 4 it can be seen
that FRCNN detects fewer pedestrians and bikers Dilational, but results in a
much lower MPJDS. The MPJDS of FRCNN is high even though the cross-
over is lower than for the other models. This is likely because FRCNN finds
pedestrians that are closer to the camera and thus clearer, omitting smaller
pedestrians that are captured by Dilational as seen in Fig. 13Left.

The FRCNN correctly estimates the GT BBox sizes as seen in Fig. 13 Right,
but Dilational underestimates BBox sizes showing the pedestrians only partially
and therefore has a higher MPJDS than FRCNN even for large GT BBoxes as
seen in Fig. 14. Dilational net can detect smaller pedestrians because it has been
trained on the Cityscapes dataset in difference to FRCNN. It is possible that
FRCNN cannot detect small pedestrians because it has been trained with larger
anchor sizes than the visible pedestrians. An example showing close up occluded
pedestrians comparing the GRFP, Dilational net, FRCNN and GT can be seen
in Fig. 11.

Fig. 14. Left: The MPJDS is plotted against the BBox area for the BBoxes found
by the different methods. FRCNN finds larger BBoxes and results in lower MPJDS
for these larger BBoxes than for the BBoxes found by Dilational net, suggesting that
FRCNN finds easier to detect pedestrians. Right: Histogram of MPJDS distribution
of the FRCNN detections shows that most errors are small. There appear to be no
outliers with large MPJDS error.

The Dilational net has trouble differentiating between the labels: “pedes-
trian”, “biker”, and “bike” as seen in Fig. 11. Therefore Dilational net BBoxes
are fitted with skeletons after allowing biker and pedestrian labels to be inter-
preted as the same label. Also, bike labels are allowed to be interpreted as human
if they are in connection to rider or pedestrian labels. In Fig. 11 it can also be
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Table 5. By introducing smallest size constraints on the BBoxes the number of false
positives can be reduced significantly.

Model GT GT Filtered Dilational GRFP
True Positives 15,934 8,986 3,316 3,643
False Positives 0 0 235 1,038

seen that only a small change in the placement of the BBox around a pedestrian
results in variations in the estimate of the pose, showing that OpenPose is not
robust to errors in pedestrian BBox placement.

Further on crowded images the FRCNN has superior performance because
it can separate between pedestrians as seen in Fig. 22, and GRFP is superior in
distant pedestrian detection as seen in Fig. 23. In the crowded scene the pose
estimator gets confused with BBoxes because for some pedestrians only a single
body part is visible, and it is hard for the pose estimator to detect that the body
part is not just a blurry image of a human. Videos of sample pose estimations
can be found at https://youtu.be/qpxpdtHbbGA where it can be seen that the
pose estimations are not temporally smooth for any of the proposed methods.
To avoid false detections of the Dilational net and GRFP we remove any BBoxes
that are smaller than 7 pixels in width and 25 pixels in height. This results in
a decrease in the number of false positives for GRFP and the Dilational as seen
in Table 5.

Fig. 15. A scene’s semantic segmentation, disparity map, triangulation of the frame
from the disparity map and the triangulated human pose.

184



Semantic and Articulated Pedestrian Sensing Onboard a Moving Vehicle 17

3.1 Reconstructing Pedestrians

Triangulation can be used to reconstruct the human 3D poses from the 2D poses
found with the dataset’s disparity maps. This however results in a noisy pose
estimate as seen in Fig. 15. Stereo triangulation results in a noisy 3D reconstruc-
tion. The triangulated 2D joint positions can therefore receive incorrect depth
resulting in implausible 3D poses. Often a body joint receives the depth of the
background resulting in an elongated limb, as seen in Fig. 16. To correct such
errors we apply a threshold to limb lengths, proportioned according to the hip
length or back-bone length of the pedestrian. This is not robust because the
hip and backbone length are estimated according to a standard skeleton from
Human3.6M [90]. The limb length can be estimated according to an average
skeleton relative to the height of a person. The height of the person can be
roughly approximated from the bounding box height, with the downside that
BBox height is pose-dependent.

The corrected skeleton may still suggest a physically implausible pose. To
correct this the nearest neighbour plausible pose is found from Human3.6M [90].
To find an outlier robust estimate of the nearest neighbor a thresholded loss is
applied. Procrusets analysis is used to find the optimal alignment between the
skeletons. The final corrected pose with scaling according to hip or backbone are
shown in Fig. 16.

Fig. 16. To the Left: Incorrectly triangulated head position, full image in Fig. 15. All
axis are in meters. Procrustes corrected skeletons with (a) scaled according to backbone
length and (b) scaled according to hipbone length. Neither of the scalings give the
desired result.

It is clear that the scaling and rotation of the resulting 3D pose are imper-
fect. When triangulating the pose for each frame jitter can be expected between
frames due to noise. Therefore a monocular single-person 3D pose estimator
Deep Multitask Architecture for Fully Automatic 2D and 3D Human Sensing
(DMHS) [184] is tested as well.

The DMHS is applied to GT and FRCNN see Fig. 17 left and right respec-
tively. At times FRCNN provides a too small BBox, by increasing the boundary
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Fig. 17. To the Left DMHS estimates the pose of a pedestrian decently correctly when
the pedestrian is clearly visible. The 3D pose (scale in cm), 2D pose and Body part
segmentation are shown respectively. To the right BBox enlargement improves the pose
estimation when some limbs are not visible.

(with 10%) the results improve, see Fig. 17 right. The pose detector fails when
multiple people are present in the BB, or when the pedestrians are poorly visi-
ble. Eventhough FRCNN detects close-up pedestrians, still very few BBoxes are
clearly visible and thus few obtain accurate pose estimations.

3.2 Reconstructing Vehicles

Fig. 18. To the left Cityscapes disparity map and right COLMAP depth estimate of a
FRCNN BBOx of a car clearly contain multiple cars.

The FRCNN has trouble separating multiple instances of cars when cars are
parked in a row as seen in Fig. 18 due to the large visual overlap. During triangu-
lation for simplicity we model cars found by the detection model by fixed sized
3D BBoxes. As a result during 3D triangulation multiple vehicles that are visible
in one 2D BBox get replaced by one 3D BBox with an average disparity for all
ofthe cars visible in the 2D bbox. This results in an incorrect 3D reconstruction
of the scene. To improve this Path Aggregation Network for Instance Segmen-
tation (PANNET) [185] an FRCNN architecture based instance segmentation
network is utilized instead. Sample segmentation showing the correct instance
segmentation of PANNET is shown in Fig. 3.2.
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Fig. 19. PANNET correctly separates different parked cars even in the presence of
occlusions.

4 Developments in the field

The presented results were developed from 2016 to 2018. In parallel to our
work [186, 187] noted that detecting objects at a distance is hard, and in partic-
ular human detection at a distance or in the presence of occlusions has gained
popularity [188–195]. Further it has been noted by [196] that a number of hu-
man detection models do not generalize across datasets. Optimal alignment of
BBoxes has also been studied in [197]. The run-time accuracy trade-off of object
detection methods aimed to be utilized on AVs is studied in [198].

More compact representations of scenes are often utilized in AV planning
containing either rasterized graphs with local context [199] or BEV represen-
tations [124]. This is suitable as planning must occur fast, but we still believe
that articulated human motion ought to be included in the representation. The
advantage of utilizing 3D pointclouds and images is that the 3D reconstructed
scenes can easily be utilized to train AVs on augmented data [119, 171, 200].

Human and object detection in traffic from alternative sensors like Radar [201],
LiDAR [143, 202–206], event cameras [207] have been studied as a way to boost
object and human detection performance. Methods to improve low-quality im-
age data by reducing motion blur [208], increasing image quality in low light or
low-resolution images [209] performing detection on RAW images [210], or ob-
ject in-painting to recover from occlusions [211] could possibly greatly improve
human sensing in real traffic data.

Further LiDAR sensors have gained popularity to avoid the difficult task of
estimating the depths of moving objects. Unfortunately sensing of articulated
humans in LiDAR [212] has not yet caught up with the methods developed to
sense humans in videos. There exist methods that combine LiDAR and RGB
fusion [37, 145, 213–215] for pedestrian detection and trajectory forecasting, the
same could be done for human pose forecasting. Human pose estimation has
developed greatly with more models that fit meshes to human bodies to densely
estimate human pose and semantic mask [184, 212, 216–218], methods that rea-
son about the physics of the estimated pose have been developed [219–221], as
well as methods that utilize temporal constraints [222–224]. Still, the majority
of articulated human sensing methods are developed on visuals where humans
are centered in the images [184, 216, 217, 219–221], leaving a gap to traffic
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data where most humans are relatively far away. Human pose estimation and
forecasting are more frequently being combined with segmentation [225–227],
tracking [225, 228, 229] gait recognition [230] and camera pose estimation [231,
232]. Human motion can be very informative in traffic and pedestrian behavior
modeling can even be used to detect vehicles in blind spots in traffic [233]. To
maximally utilize the available information in human motion, methods that are
robust to variations in the human physique and behavior need to be developed,
but this is hard due to the relative lack of data.

Vehicle orientation and shape estimation techniques are amongst others in
images [234], in LiDAR [235]. A method that jointly performs semantic segmen-
tation and 3D reconstructions could benefit both tasks [236].

Improved depth estimation of pedestrians and vehicles through a LiDAR
data-like data representation Pseudo-LiDAR is studied in [237, 238] Finally,
3D reconstruction methods have developed greatly with more learning inte-
grated into the 3D reconstruction pipeline [239–243], from learned monocular
depthmaps [244], to learned 3D reconstruction features [245] to 3d matching [246]
and the visually pleasing NERF-based methods [247, 248]. Semantic segmenta-
tion, tracking, and object detection methods are also becoming less supervised
utilizing learned matching and language model based labels [144, 249–256]. Com-
bining different visual tasks like object detection semantics segmentation, track-
ing with 3D modeling has seen success in [144, 257]. This is quite natural because
as seen in Fig. 18 the two tasks are closely intertwined and information sharing
may help in both directions.

Traffic datasets that are focused on pedestrians have become more abun-
dant [258–269], but there exist only datasets with estimated articulated labels
for pedestrians [157]. Even though progress has been made on marker-less human
motion capture [116] the methods need to be made robust for multiple humans at
a distance and in the presence of occlusions. In parallel to our work, a study [270]
on occlusion rates in pedestrian bounding boxes on the Cityscapes dataset was
performed. We note that [270] may be treated as complementary to the work
presented here that focuses on the task of 3D human pose reconstruction rather
than just bounding box occlusions.

5 Conclusion

None of the discussed methods of 3D reconstructing human pose are robust
enough to be utilized to forecast human motion for assisted driving. This is be-
cause there is a gap in performance for human sensing methods between the
datasets used in standard benchmarks and the performance on real traffic data,
suggesting that benchmarks of human motion sensing are not representative of
utilization in traffic. Instead, traffic-based articulated 3D human sensing bench-
marks should be developed. Available 3D human pose datasets in the wild [116]
still lack in distant pedestrians under poor lighting conditions, or provide only
approximate human poses [157]. To make articulated human sensing robust tem-
poral smoothness, consistent use of an individual’s estimated limb lengths, fore-

188



Semantic and Articulated Pedestrian Sensing Onboard a Moving Vehicle 21

seeing typical motions given the human’s environment, and understanding of the
physical constraints of the human body should be solved simultaneously as the
problems share information. So far a number of methods have solved some of
these subproblems, but a unifying method is still to be developed. As a result
to the lack of a robust articulated humans sensing method a large number of
existing autonomous vehicle planning models [5–30, 37, 38, 42–46, 199] treat
pedestrians by their bounding boxes, thus omitting the motion cues available in
human pose and therefore ignoring available future motion cues. If robust and
complete articulated human sensing methods are developed, then complete hu-
man forecasting methods may be developed and utilized in the planning stages
of AVs.
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A 3D reconstruction systems overview

Open Structure for Motion Library (OpenSFM) [160]- A Structure for Motion
system, that is an incremental 3d reconstruction system. Uses Hessian Affine
Feature Point detector [271] and Histogram of Oriented Gradients (HOG) [272]
descriptors jointly which are nearest neighbor matched [273] across images. A
rotation-only transformation is found between the first frames if at least 30% of
the points are outliers (to ensure a large enough change in viewpoint). From the
initial pair, a sparse 3D cloud is found by the 5-point algorithm or by assuming
planar motion of the camera, whichever performs best. The resulting camera
matrices are then used for triangulation and bundle adjustment (BA). Additional
frames are added according to the largest overlap with the existing pointcloud,
and are aligned with the pointcloud to minimize the re-projection error of the
pointcloud. BA is applied after adding new images to the pointcloud. Fails to
reconstruct the Cityscapes scenes likely because the change in camera rotation
is too small between frames.

Bundler [161] is also a SFM system. It detects SIFT [169] features that are
matched with approximate nearest neighbors [274]. RANSAC [275] is used to
find the fundamental matrix with the 8-point algorithm [276]. The fundamental
matrix is refined, its outliers are removed and keypoints tracks are checked for
consistency. Levenberg-Marquardt [277] is used to find the first camera matrices
and in sparse bundle adjustment [278] for any additional cameras (images chosen
in the order of largest number of matches with triangulated points) that are
initialized with Direct Linear Transform (DLT) [276]. The initial image pair is
chosen such that there is a large enough rotational difference between the images.
Finds <10 matches, and fails again likely because the images are blurry and the
rotational difference between the camera views is too small.

OpenCV Structure from motion library [162] - A SFM library that uses
DAISY features [163]. Finds the essential matrix with RANSAC and the 8-point
algorithm. And an inexact Newton method Schur-based solvers [279] to optimize
BA. Result of 30 frames - finds relatively few points without clear structure. See
Fig. 5
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VisualSFM [164] a parallelized SFM pipeline with Bundler. Uses SIFT on the
GPU [280] and Multicore Bundle adjustment [281]. Only a thresholded number
of large-scale features are matched across images. This unfortunately fails pos-
sibly because of image blur or the lack of distinct large-scale structures in the
images. The method is unable to find enough SIFT feature points likely because
the images are blurry and finds no verified matches between two stereo images.
Finally, VisualSFM cannot handle forward motion, not finding a good initial
pair of images with enough matches.

ORBSLAM [165]- ORB-feature [166] (a fast feature descriptor combining
gradient and binary features) based Simultaneous Localization And Mapping
system. ORB features from the left image are matched along epipolar lines with
ORB features from the right image, and the disparity is calculated. Points that
are further than 40 baselines away from the camera are ignored. The points
that are close to the camera are triangulated, and the left camera is considered
to be the origin. Additional cameras are added by performing camera position
optimization in BA between matched 3D points and keypoints in the new frame,
BA of the newly added added keypoints, and by finally performing full BA
after loop-closure detection and correction. BA is optimized with Levenberg–
Marquardt implemented as g20 [282] Finds too few keypoints, likely due to blur
and depth threshold. Results in a too sparse reconstruction. Fig. 6.

COLMAP [167, 168]- an incremental Structure for Motion and Muti-view
stereo system. Extracts SIFT [169] features that are exhaustively matched (other
matching methods are also available) across all images. The reconstruction is
built from an initial pair of images, chosen by [283, 284] additional views are
chosen by high inlier ratios that approximate uncertainty estimates and by priori-
tizing images with uniformly distributed keypoints that match with triangulated
points. The method uses a robust RANSAC-based triangulation with adaptive
outlier thresholds to add new camera views to the reconstruction. Local BA is
performed after a new camera view is added. Finally, a global BA is performed
iteratively followed by filtering of outliers and degenerate camera view, and trian-
gulation until the BA converges. BA is performed by Preconditioned Conjugate
Gradient [279, 281] for a large number of cameras and by [285, 286] for smaller
systems. Converges for 150 scenes on the training and validation set and 150
scenes on the test set out of the 3475 scenes available. See

B Additional Results

B.1 Error distribution per human body joint

In Fig. B it can be seen that in general feet are the hardest to estimate the
position of, while the head is the easiest. If the articulated human motion is
to be predicted we however need the feet position to be accurate to foresee the
pedestrian’s future velocity. To improve this temporally smooth human detection
and pose estimation methods should be utilized in the future. In Fig. BRight a
comparison between the error distribution of Dilational net and GRFP is shown.
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Fig. 20. Left: The JDS for different joints. The feet are the most difficult to detect.
Right: Comparison of the MPJDS rates of the Dilational and GRFP net. GRFP has
lower MPJDS than the Dilational net.

It is clear that GRFP produces joint estimations that have a lower distance to
the human mask.

B.2 Procrustes Analysis

The results of aligning the thresholded pose with its nearest neighbor from Hu-
man3.6M is shown in Fig. 21. Because all limb lengths are reconstructed under
noise the different limbs get elongated or compressed to a different degree. There-
fore scaling the pose according to hip length results in this case in a too large
scaling factor because the hip length is compressed in the reconstruction. The
backbone is elongated so scaling according to the backbone results in a too small
scaling factor. The elongations and compression of the different limbs vary from
one triangulated pose to another, making the choice of a scaling factor hard.
The height difference between the feet and the heat depends on the pose and
is therefore not a suitable measure for scale. The same applies to the distance
between the feet and hands.

B.3 Additional Pedestrian Detection and Pose Estimation

OpenPose misses a large number of pedestrians (with variations from frame to
frame) as seen in the supplementary video at https://youtu.be/qpxpdtHbbGA
and Fig. 22. OpenPose misses pedestrians due to large distance to camera, poor
lightning and motion blur as seen in the supplementary video. OpenPose can
produce impressive results when pedestrians are close to the camera but at a
distance it has trouble with occlusions and can produce a number of odd false
positive pedestrian detections, as seen in the video. Pedestrian detection is im-
proved by applying FRCNN object detector. But FRCNN still omits distant
pedestrians as seen in the video and Fig. 22,Fig. 23, and Fig. 24. On the other
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Fig. 21. Skeleton with thresholded limb lengths after scaling according to hip bone
length shown with its nearest neighbor from the Human3.6M dataset. The longer skele-
ton is the thresholded 3D reconstructed human pose. The unthresholded skeleton is
shown in Fig. 16 Left.

hand the semantic sgementation networks are susceptible for false positive as
seen in the video. Finally it can be noted that on close by pedestrians FRCNN
produces bboxes that are larger than the pedestrian often leading to better 2D
pose estimates than the segmentation network, as seen in Fig. 25.

B.4 Additional DMHS results

The DMHS’s accuracy is like OpenPose, depent on the bbox placement. Because
the FRCNN produces bboxes that jump from frame to frame as seen in Fig. 26.
FRCNN can even jump frames, by being unable to detect pedestrians at some
frames. This motivates our suggestion that temporally smoothed methods should
be developed for articulated pedestrian detection. DMHS’s quality varies from
image to image, some samples with quality variations are shown in Fig. 27
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Fig. 22. OpenPose when applied on the whole image detects only a few pedestrians.
FRCNN detects some selected pedestrians. The segmentation networks can detect all
of the pedestrians, but because they produce only class labels one single BBox is given
to multiple pedestrians. GRFP has smoother segmentation than DilationalNet and
results in a better separation of the pedestrian Bboxes.

Fig. 23. FRCNN misses a large number of the distant pedestrians. The Dilational net
and GRFP detect more distant pedestrians than FRCNN and GRFP results in a more
accurate 2D pose for the closest pedestrian to the right.
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Fig. 24. On the top: Dilational Net can detect pedestrians even in the presence of
occlusions, but produces one single bounding box for close by pedestrians. FRCNN
can detect pedestrians that are close to the camera well, but fails to detect far away
pedestrians.

Fig. 25. The placement of the bounding box affects the estimated 2D body pose. FR-
CNN produces larger bounding boxes than found by the GT segmentation mask. This
produces a more correct 2D body pose.
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Fig. 26. Consequtive pedestrian detections by FRCNN followed by 2D pose(top row),
body parts segmentation (middle row) and 3D pose estimates(bottom row). No pedes-
trian is detected in frames 12,13 and 15,16. The FRCNN BBoxes jump around the
pose estimates to jump. When the pedestrians head is not visible then the body part
segmentation fails. The 3D poses do not resemble the true 3D pose as the human ap-
pears to be crawling on knees in 3D poses. The 2D poses jump from frame to frame.

Fig. 27. Some varied results of DMHS.DMHS gets confused in the case of multiple
occluding humans. And appears to have trouble with body part segmentation when a
human is on a bike. The 2D body pose estimate seems to be greatly affected by the
poorly fitting FRCNN bboxes that leave out the pedestrians head.
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