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Impact of Positioning Uncertainty on Autonomous Intersection
Management System

SeyedeZahra Chamideh1, William Tärneberg 2 and Maria Kihl 3

Abstract— Connected Autonomous Vehicles (AVs) have the
potential to revolutionize Intelligent Transportation Systems
(ITS) by addressing urban transport challenges, such as
Autonomous Intersection Management (AIM). However, the
assumption of highly accurate positioning in most ITS appli-
cations does not align with real-life situations. While extensive
research has been conducted to improve positioning accuracy,
few studies have evaluated the impact of position accuracy on
AV systems. This paper investigates the level of positioning
errors that our state-of-the-art AIM system, which outperforms
conventional intersection management systems, can tolerate. A
comprehensive analysis of positioning accuracy requirements
for a collision-free AIM system is conducted. The investigation
reveals that our AIM system can safely handle vehicles’ move-
ments in the presence of positioning errors up to four meters
in a high traffic flow rate. Furthermore, the impact of sensor
accuracy and wireless communication uncertainties on control
strategies is considered. This research provides valuable insights
into the challenges of designing robust autonomous systems
that can withstand various uncertainties, including positioning
techniques, and demonstrates the potential of AVs in enhancing
ITS.

I. INTRODUCTION

Future intelligent transportation systems are anticipated to
rely significantly on connected Autonomous Vehicles (AVs).
Through cooperative vehicle systems and the elimination
of human error, these AVs empower themselves with the
capability to autonomously perceive the environment, man-
age mobility, and make independent decisions [1]. Intelligent
transportation System (ITS) further enhance this potential by
establishing a control framework that improves the overall
driving experience through vehicle-to-vehicle and vehicle-
to-infrastructure communication [2]. In this context, Co-
operative AVs have garnered significant research attention,
particularly in the development and evaluation of ITS ap-
plications like Autonomous Intersection Management (AIM)
and intelligent road merging. These applications heavily rely

*This work was partially supported by the Excellence Center at
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on positioning technologies, geographic data, and the real-
time navigation capabilities of vehicles to ensure reliable
travel for all involved vehicles and other road users [3].

In the context of AIM applications, ensuring accurate
positioning is crucial for the effective and safe navigation of
vehicles. However, various factors can impact the accuracy of
positioning systems, including signal interference, multi-path
propagation, and atmospheric effects, leading to the accumu-
lation of errors and ultimately reducing positioning accuracy.
While Global Navigation Satellite Systems (GNSS), such
as the Global Positioning System (GPS), are commonly
used for providing positioning inputs, challenges persist,
particularly in urban scenarios. Signal blockage, multi-path
propagation, and non-line-of-sight propagation can introduce
errors ranging from 10 to 20 meters, compromising the
accuracy of vehicle positioning [4].

In addition to GNSS, standalone wireless communication-
based techniques, such as Vehicle-to-Vehicle (V2V) and
Vehicle-to-Infrastructure (V2I) communication, can be em-
ployed to determine road users’ positions. These techniques
rely on the relative positions of connected Autonomous
Vehicles (AVs) with respect to fixed infrastructure, providing
an alternative means of achieving accurate positioning when
GNSS signals are obstructed or unavailable [3]. To address
the challenges associated with positioning accuracy, several
techniques have been developed. These include the utiliza-
tion of Kalman filtering algorithms and the combination of
multiple positioning technologies to improve accuracy [5],
[6].

One approach involves combining a reference position
obtained through GNSS with information from wireless
communication-based positioning. This hybrid technique has
demonstrated the capability to estimate the absolute position
of road users with an error of less than 1 meter [7], [8].
However, it is important to acknowledge certain drawbacks
of this hybrid approach, such as the requirement for addi-
tional hardware, which can increase system complexity and
cost [9].

Despite numerous research efforts focusing on positioning
accuracy, there is a notable lack of investigation into the
impacts of position uncertainties onITS applications. Many
of these applications are designed with the assumption of
flawless position data [10]. While some studies have touched
upon related aspects, such as evaluating maximum position
errors for AVs in real-world scenarios and comparing the
performance of standalone GNSS positioning with hybrid
positioning utilizing GNSS and 5G signals [7], there is still
a need for comprehensive research in this area. For instance,



limited research has been conducted on the effect of position
uncertainties on intelligent signalized intersections controlled
by traffic lights [11] . In a subsequent study, authors have
mathematically modeled position uncertainty and proposed
a robust algorithm for controlling vehicles’ movements in a
road merging application [12] . However, the broader impact
of position uncertainties on autonomous intersection manage-
ment remains largely unexplored. Therefore, it is essential to
investigate the specific influence of position uncertainties on
the performance and efficiency of autonomous intersection
management systems. This leads us to the research question:
How do position uncertainties affect the effectiveness and
reliability of autonomous intersection management?

In order to investigate the impact of positioning uncer-
tainties on the performance of AIM systems as the main
objective of this study, we conducted our study using our
previously proposed state-of-the-art autonomous intersection
management system, known as Hierarchical Model Predic-
tive Control (HMPC) [13]. The selection of HMPC as our
study case was based on our previous research where we
demonstrated its superiority over other AIM strategies. The
results of our simulations clearly demonstrate the effective-
ness of HMPC in handling positioning uncertainties. HMPC
exhibited safety, scalability, and robustness against packet
loss and delays caused by wireless communication systems.
Therefore, we believe that an AIM system based on HMPC
is an ideal choice for evaluating the impact of positioning
uncertainties on AIM system performance. Our simulation
experiments were performed in the realistic simulation envi-
ronment SUMO, specifically focusing on an urban scenario
with varying levels of positioning uncertainties.

Throughout our investigation, we aimed to gain a deeper
understanding of the influence of positioning uncertainties on
the AIM system and provide valuable insights to enhance its
overall performance. Our findings indicate that HMPC can
safely handle vehicle movements even in the presence of
positioning errors of 10 meters. However, as the traffic flow
rate exceeds 500 vehicles per hour, the control algorithm
requires more accurate positioning information to ensure safe
operations.

Furthermore, our simulation results demonstrate that more
accurate positioning not only contributes to collision-free
operations at lower traffic flow rates but also facilitates
smoother movement, reduces fuel consumption, and pro-
motes a sustainable system. Therefore, understanding and
mitigating the impact of positioning uncertainties on the AIM
system can significantly enhance its efficiency, safety, and
environmental performance.

II. TARGETED SYSTEM

The objective of this paper is to analyze the effects of
positioning uncertainties on the complex issue of the AIM
system. Specifically, our study focuses on a network of
three intersections, as illustrated in Figure 1. These intersec-
tions are designed without the reliance on traditional traffic
lights, posing unique challenges for traffic management.
To ensure the safe crossing of vehicles in this scenario, a

Fig. 1: Targeted System and Intersections layout

comprehensive examination of the behavior of autonomous
vehicles is necessary. By analyzing the effects of positioning
uncertainties in this context, we aim to provide valuable
insights and strategies to enhance the performance and safety
of the AIM system.

Each intersection is equipped with an Intersection Coor-
dination Unit (ICU), which serves as a control unit and has
a designated coverage area. The ICU is capable of covering
and coordinating the traffic within its coverage area. The
ICU is called the corresponding ICU for the vehicles in
its coverage area. Vehicles are equipped with an On-Board
Unit (OBU) that integrates various sensors such as LiDAR,
RADAR, and cameras. Additionally, each vehicle also has a
local computing node connected to the OBU, which can uti-
lize optimization algorithms to prevent dangerous situations.
This robust system enables efficient management of traffic
flow and enhances safety for autonomous vehicles navigating
the intersections.

Each vehicle periodically sends its status message to
its corresponding ICU. Wireless network communication is
enabled through V2I links, but packet losses and delays are
expected. Modern vehicles with advanced collision avoid-
ance functions are capable of perceiving their surroundings.
For instance, vehicles use cameras or radar sensors to detect
other vehicles in front of them and take necessary actions to
avoid collisions. However, several factors can affect percep-
tion accuracy, which can, therefore, affect the AIM system
performance [14]. In this research, we will consider sensors’
accuracy and uncertainties in wireless communication as
additional uncertainties that will pose significant challenges
when designing control strategies.

By utilizing aggregated data from vehicles, the ICU is
able to predict and prevent potentially dangerous situations
that may not be anticipated by an individual vehicle’s OBU.
This is particularly crucial in scenarios where line-of-sight
is obstructed between vehicles approaching from different
directions. To achieve this, the ICU employs a Model
Predictive Control (MPC) algorithm, which is a control



strategy that uses a predictive model of a system to optimize
future actions based on current and predicted states, that
incorporates data from all vehicles within the intersection.
The primary objective of the MPC algorithm is to determine
optimal speeds for each vehicle, ensuring smooth traffic flow
and minimizing the risk of accidents or collisions.

Through the analysis of aggregated data from multiple
vehicles, the ICU plays a vital role in identifying and ad-
dressing potential hazards. Unlike a single vehicle’s sensors,
the ICU considers factors beyond the scope of individual
vehicles, including the movements of vehicles that may
not be directly visible due to obstructed line-of-sight. By
orchestrating the movement of AV within its coverage area
and assigning reference speeds, the ICU optimizes traffic
flow and enhances safety on the road. This comprehensive
approach to traffic management, leveraging aggregated data
and precise control, reduces the likelihood of accidents and
promotes efficient and safe transportation. In our study, the
ICU, along with the control algorithm executed within it, is
referred to Global Centralized Layer (GCL) [13].

The OBUs receive reference speeds from their correspond-
ing ICU, which are then utilized by a local MPC optimization
algorithm. This algorithm empowers the vehicle to precisely
govern its movements, maintaining the reference speed and
effectively avoiding collisions with leading vehicles. In our
study, we refer to this vehicle-centric control algorithm as
the Local Decentralized Layer (LDL). As the local MPC
algorithm primarily focuses on the vehicle’s immediate sur-
roundings and its leader, it operates at a significantly faster
pace than the GCL. Importantly, the OBU is designed to
perform this optimization autonomously, independent of the
ICU. This autonomy mitigates potential collision risks stem-
ming from lost, inaccurate, infeasible solution, or delayed
messages from the ICU. By incorporating this additional
layer of safety, the system ensures that the vehicle consis-
tently makes the safest and most optimal decisions while
navigating the road.

III. SYSTEM MODEL

This section presents an overview of the system model
utilized in this research, which serves as the foundation for
defining metrics and conducting experiments. Additionally,
to enable the utilization of our Hierarchical Model Predictive
Control (HMPC) algorithm in a network of intersections,
while considering positioning errors, we propose modifica-
tions not only to the control algorithm but also to the system
model.

A. Intersection Model

In the system, there exists a set of K = {1, 2, . . . ,K}
ICUs which is located at K intersections. The coverage area
of an ICU is determined by the geometry and layout of the
intersections. It is designed to encompass the region where
vehicle-ICU interactions occur, enabling effective monitoring
and coordination of traffic within that area. The size and
shape of the coverage area can vary based on factors such as
lane count, proximity of neighboring intersections. For the

sake of simplicity, we simplify the representation of each
ICU’s coverage area by using a circular shape with a specific
radius, denoted as Rk. When a vehicle enters the coverage
area of two ICUs, it will select the ICU associated with the
nearest upcoming intersection as the corresponding ICU for
communication.

An ICU covers a set of N k
t AVs at time t and it is called

the corresponding ICU for the vehicle i ∈ N k
t . A vehicle that

enters the intersection will follow a path. Since the coverage
area is modeled as a circle, all different paths have almost
the same length. We describe all possible paths in the critical
zone with the set Γk. Two different paths may intersect inside
the critical zone where the vehicles on these paths have a
potential risk of side collision in this specific intersect point,
called the conflict point (CP) of the corresponding paths.

B. Vehicle model

A set of Nt = {1, 2, . . . , Nt} AVs exist in the system
described in Section II at time t where N k

t ⊂ Nt are in
the coverage area of ICU k ∈ K. If a vehicle i ∈ Nt does
not exist in the coverage area of any ICU, i.e, i /∈ ∀N k

t , the
vehicle can continue with its local controller.

Each vehicle i ∈ N k
t has a predetermined path γk

i ∈ Γk

and the path is perfectly followed. A vehicle will not change
its path while crossing the intersection. The position of the
vehicle at ICU, centralized controller, corresponds to the
remaining distance from the center of its corresponding path.
However, in the local controller, only the relative distance
to the vehicle ahead is taken into account, not the absolute
position. In other words, the local controller ensures that the
vehicle maintains a safe distance from the vehicle in front of
it on the same path, without regard to the vehicle’s position
with respect to the intersection as a whole.

The system imposes certain limitations on vehicle dy-
namics, including the maximum deceleration (represented
as umin) and maximum acceleration (represented as umax).
Furthermore, in accordance with common traffic regulations
observed in many jurisdictions, vehicles are not permitted to
make U-turns within the intersection area. This restriction
aims to promote the smooth flow of traffic and mitigate the
potential risks of accidents, particularly in busy intersections.
Consequently, the assumption that U-turns are prohibited
ensures that the minimum speed along a vehicle’s trajectory
is always positive. Additionally, a speed limit, denoted as
vmax, is enforced within the intersection.

C. Space state model

The main objective of the HMPC is to ensure a safe
intersection with a smooth and comfortable flow of all
vehicles. The optimization process occurs at every sampling
intervals, denoted by τ , for a predefined time horizon of
T . The specific values of τ and T depend on the layer
of the HMPC in optimization problem. For instance, the
control system in LDL and GCL updates at discrete sampling
intervals of τd and τc, respectively. In each interval, the state
of a given vehicle i in the discrete space model is defined
by the equation (1) at time n.



xi,n+1 =

[
1 −τ
0 1

]
xi,n +

[
− 1

2τ
2

τc

]
ui,n 0 ≤ n ≤ T (1)

Equation (1) is derived using a displacement formula
that represents the distance vector an object travels, i.e.
its displacement, based on its initial velocity, acceleration,
and travel time. The initial value, xi,0, used to initiate the
algorithm. In GCL, it is obtained from the latest information
status collected from vehicle i, while in LDL, it is derived
from the vehicle’s current position.

D. Uncertainties model
To develop and test the impact of realistic position un-

certainty on our AIM system, HMPC, we need to model
positioning errors based on real-world data. In this section,
we describe how we mathematically modeled positioning
errors at the GCL and LDL layers.

In LDL, we assume that vehicles are aware of leader
vehicle and obstacles, with the help of on-board sensors
such as IMU and LiDAR. The sensors can measure the
relative position of detected objects with a maximum bound
for positioning error. The maximum possible positioning
error from on-board perception is represented by emax. We
model the relative positioning error in LDL level as a normal
distribution where σl = 0.5emax. This means that there is a
60% probability that the position error falls within 0.25emax

and emax.

p̂i,t = pi,t +N (0, 0.5emax) (2)

In Equation (2), the variable pi,t denotes the actual posi-
tion of vehicle i at time t, whereas the estimated position
of vehicle i, denoted by p̂i,t, corresponds to the position
detected by the following car. It is worth noting that p̂i,t is
utilized in the LDL of the following vehicle that is behind
vehicle i.

In GCL, an positioning uncertainty model was utilized,
which was proposed in [12]. Through a real-world ex-
periment, it was observed that the position error could
be characterized by a zero-mean normal distribution with
variance σg . Meanwhile, the rate of change of the position
error was found to conform to a logistic distribution L(0, s),
where s is a scale parameter determines the rate at which
the distribution’s density function changes. As a result, the
values of the position error at time t can be determined by
combining the previous error value at time t−1 and an error
drift that is modeled using a logistic distribution as described
in Equation (3).

ei,t = ei,t−1 + L(0, s) (3)

Therefore, the estimated position of vehicle i at the GCL,
denoted by p̃i,t can be expressed as an equation based on its
actual position, which is as Equation (4).

p̃i,t = pi,t + ei,t (4)

Upon a vehicle’s entry into the simulation network, its initial
longitudinal position error e0 is derived from a normal dis-
tribution. The mean and variance of the distribution depends
on the vehicle’s location and surrounding environment.

IV. OPTIMIZATION ALGORITHMS ACROSS DIFFERENT
LAYERS

In this section, we will comprehensively describe our
optimization algorithms across various layers.

A. System cost and optimization

In the context of MPC, a system cost function is required
to minimize. In our study, we have formulated the system
cost as a function of vehicle speed and fuel consumption.
However, alternative metrics can also be employed to opti-
mize the control objectives.

The first objective of the control system is to maximize
vehicle speed. To this end, a target speed is utilized as the
reference value for the optimization algorithm. The target
speed must not exceed the maximum speed limit. In GCL, the
target speed is dependent on the traffic situation around the
ICUs. However, the strategy for determining the target speed
is beyond the scope of this paper. In LDL, the target speed
for the optimization problem is the vehicle’s reference speed
which obtained from its corresponding ICU. In instances
where a vehicle is not within the coverage area of any ICU,
the current velocity of the vehicle is set as the target speed
for the optimization problem.

The second objective of the control system is to ensure a
smooth flow of vehicles, which entails promoting gradual and
seamless changes in speed. This means that vehicles should
adjust their speed in a controlled manner, avoiding sudden
or abrupt accelerations or decelerations. Additionally, studies
conducted by the Environmental Protection Agency (EPA)
have demonstrated that minimizing accelerations and acceler-
ation rates can contribute to a reduction in fuel consumption.
Therefore, in addition to improving traffic flow, the control
system also plays a role in reducing the environmental impact
of vehicles on the road.

The system cost, Jk, in GCL, which operates on the ICU
k ∈ K, is defined as in Equation (5). where vi,n (the speed of
vehicle i at time interval n) and vtd (the target speed at time
t) are the MPC control and reference variables, respectively,
and ui,n (the acceleration of vehicle i at time interval n) is
the manipulated variable.

Jk =

Tc∑
n=0

Nk
t∑

i=1

(wvi(vi,n+1 − vtd)
2 + wui

(ui,n)
2)

+

Tc−1∑
n=0

Nk
t∑

i=1

w′
ui
(ui,n+1 − ui,n)

2 i ∈ N k
t , k ∈ K

(5)

In LDL, which operates on the vehicle i ∈ Nt, the system
cost, Ji, is defined in Equation (6). The algorithm’s target
speed, v̂ti , at time t is obtained from the most recent
optimization results of corresponding ICU.



Ji =

Td∑
n=0

(wviδi(vi,n+1 − v̂ti)
2 + wui(ui,n)

2)

+

Td−1∑
n=0

w′
ui
(ui,n+1 − ui,n)

2 i ∈ Nt

(6)

In Equations (5) and (6), wvi ,wui
and w′

ui
are weight

coefficients.

B. Constraints
The objective of the constraints is to avoid collisions by

keeping a safe distance between vehicles. The constraints are
a function of vehicles’ states, positions and speeds, and the
control input, i.e, vehicles’ acceleration.

At ICU k to avoid rear-end collisions between all vehicles
in coverage area, a minimum separation distance between
two vehicles on the same lane, dmin, is considered. The
following constraint in Equation (7) is defined to prevent
rear-end collisions between vehicle i and its leading vehicle
(LV) j, where j ∈ N k

t , at step n=0.

p̃i,n − p̃j,n ≥ dmin ∀i ∈ N k
t , j = LV (i) (7)

To ensure that no side collisions occur between vehicle i
and vehicle j within the intersection only one vehicle must
enters a conflict point CP (γi, γj) at a specific time, a linear
inequality constraint is defined as in equation (8) below.

|p̃i,n − p̃j,n| ≥ Rmin i, j ∈ N k
t , γi, γj ∈ Γk, γj ∈ Γk

i

(8)

Γk
i ⊂ Γk is a sub set of all possible paths in the

intersection k where vehicle j from path γj ∈ Γk
i , have

the potential to collide with vehicle i from path γi inside the
critical zone.

The GCL control algorithm is responsible for computing
a reference speed that guarantees each vehicle has exclusive
access to every conflict point on its path. However, to ensure
resilience and robustness, the LDL will not blindly follow the
reference speed provided by the GCL. The primary goal of
the constraints incorporated into the LDL is to continuously
maintain a safe distance from adjacent vehicles, as detected
by on-board sensors, and thereby prevent any unanticipated
collisions. To achieve this objective, the constraint specified
in Equation (9) is defined as follows:

pi,n−p̂j,n ≥ dmin i ∈ Nt, j = O(i), 1 ≤ n ≤ Td+1 (9)

where dmin is the minimum separation distance between
two vehicles and O(i) is the obstacle or vehicle ahead
detected by vehicle i.

V. EVALUATION
In this section, we will describe our simulation envi-

ronment with the primary goal of assessing the effect of
uncertain positioning on an intersection managed by HMPC.
The main focus is to evaluate the system’s safety and envi-
ronmental efficiency performance. Through our experiments,
we will investigate the impact of positioning uncertainty on
these metrics.

A. Simulation Environment

We have used our simulation environment that has been
developed based on SUMO [15] in our previous works [13].
We made modifications to SUMO to enable our control
strategy to manipulate the speed of each vehicle, rather
than relying on the default microscopic flow algorithms. The
precise positions of the vehicles obtained from the SUMO
simulator are manipulated using Equations (2) and (4) in our
LDL and GCL control layers, respectively. These equations
allow us to evaluate the effect of position uncertainties on
HMPC.

B. Experiments

In this paper, we examine a network of three intersections
that operate without traffic lights. Each lane in the system is
3.5 meters wide, and the maximum speed limit is 72 km/h
(vmax = 20 m/s). We assume that vehicles enter the system
with an initial speed slightly lower than the maximum speed
limit. In our simulations, we assume similar traffic flow
rates for all system entries. We used a fixed target speed
of 45 km/h for all three intersections. The GCL algorithm
is performed every 1 second at each ICU. We modeled
each intersection area as a circle with a radius of 90m.
Therefore, each vehicle will stay within the coverage area
of one intersection for at least four ICU simulation intervals.

We assumed that the ICU has access to vehicles’ status
messages via V2I communication and the wireless links have
a reliability of 98% (i.e. a packet loss probability of 2%).

In our study, we examined three different scenarios:
• AVs that are exposed to line-of-sight GNSS signal, and

a standalone GNSS-based positioning is utilized.
• A hybrid 5G-GNSS positioning technique is used and

it is assumed that at least one 5G base station (gNBs)
and one satellite are accessible.

• Vehicles with hybrid 5G-GNSS positioning have access
to at least two 5G base stations (gNBs) and one satellite.

Table I provides a summary of the simulation parameters
and specifications utilized in our simulations.

Figure 2 shows the histogram of positioning error for 500
vehicles which cross the system with average speed of 45
km/h in our three different scenarios. As it is clearly shown
in Figure 2 Scenario 1 with the probability of 40% the
positioning error can be higher than 10 meters. However, In
Scenario 2 the maximum position error is 10 meters but still
in 40% of situations error is higher than 5 meters. Scenario
3 has the best positioning accuracy with maximum error 2
meters.

Figure 2 depicts a histogram displaying the positioning
errors of 500 vehicles traveling through our system at an
average speed of 45 km/h in three distinct scenarios. As
illustrated in the figure, Scenario 1 exhibits a probability of
40% for positioning errors exceeding 10 meters. Conversely,
in Scenario 2, the maximum error is capped at 10 meters,
but 40% of the cases still experience errors higher than 5
meters. Finally, in Scenario 3, system has the highest level
of positioning accuracy, with a maximum error of only 2
meters.



Fig. 2: The distribution of positioning error when 500
random vehicles cross the intersection with average speed
of 45 km/h 1) Scenario 1 standalone GNSS positioning 2)
Scenario 2 hybrid method based on GNSS and one gNB
availability 3) Scenario 3 hybrid method based on GNSS
and two gNBs availability.

C. Performance Metrics

In this work, we investigate how inaccurate position data
affects the safety and efficiency of AIM system. The system
performs well when vehicles can pass the intersection with a
high speed which results in reduced waiting times and lower
congestion levels. Therefore, we have evaluated the average
speed of all vehicles in the system for different scenarios
described in Section V-A. The simulations were carried out

TABLE I: Simulation Parameters

Intersection parameters

umax 5 m/s2 Maximum allowed acceleration

umin -6 m/s2 Maximum allowed deceleration

vmax 20 m/s Maximum allowed speed

vmin 0 m/s Minimum allowed speed

Control Parameters

vtd 45 km/h Target speed at intersection ∀t
Rmin 7 m Minimum separation distance between the center

of two vehicles from different approaching lanes

dmin 6 m Minimum separation distance between the center
of two vehicles in the same lane

wvi 1 Weighting coefficient ∀i
wui 0.1 Weighting coefficient ∀i
w′

ui
0.5 Weighting coefficient ∀i

GCL LDL

Tc 10 s Td 2 s MPC prediction horizon

τc 1 s τd 0.1 s MPC sampling interval

Uncertainly Parameters

Reliability 98% V2I links are reliable in 98% of cases

Scenario 1

σg 5 m/s Standard deviation for position error

s 0.3 m/s Rate of change of the position error

Scenario 2

σg 1 m/s Standard deviation for position error

s 0.1 m/s Rate of change of the position error

Scenario 3

σg 0.1 m/s Standard deviation for position error

s 0.01 m/s Rate of change of the position error

LDL level position error parameters

σl 0.3 m/s Standard deviation for position error

for a traffic flow rate of 600 vehicles per hour per entry over
a 50-minute period, starting 30 minutes after the simulation
began to ensure a steady-state situation. Each vehicle may
choose a random route to one of the exits. All three scenarios
were subjected to the same traffic demand profile.

Furthermore, both layers of our AIM method have opti-
mization objectives that aim to facilitate smooth and com-
fortable vehicle movements [13]. Therefore, vehicles will
avoid high acceleration and deceleration, resulting in lower
fuel consumption and smoother movement of vehicles in the
system [16]. In our previous study [13], we demonstrated
the effectiveness of HMPC in minimizing acceleration and
acceleration rate, outperforming conventional intersection
management methods. However, in this study, we investigate
the impact of uncertainties on the performance of the system.
To accomplish this, we compared the normalized histograms
of acceleration of vehicles that passed through the system
during four hours. The vehicles will enter the system at a
traffic flow rate of 600 vehicles/hour/entry.

The AIM system is designed to be completely safe,
without any collisions. To assess the system’s safety, we
utilize the average number of collisions per hour as the
primary performance metric for traffic safety. To ensure the
reliability of our results, we conduct simulations multiple
times, employing different random seeds for each traffic flow
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Fig. 3: Comparison of average vehicle speeds over a 50-
minute period for three different scenarios with a consistent
traffic demand of 600 vehicles per hour. The figure illustrates
the influence of varying levels of positioning uncertainties on
vehicle speeds within the AIM system. Scenario 1 represents
the highest level of uncertainties, with a maximum posi-
tioning error exceeding 20 meters. Scenario 2 demonstrates
a medium level of positioning accuracy, with a maximum
error of 10 meters. Conversely, Scenario 3 exhibits the best
positioning accuracy, with a maximum error of 4 meters.

rate, which represents various traffic demand profiles. During
each simulation run, we record the number of collisions
detected by the SUMO simulator and then calculate the aver-
age number of detected collisions per hour. Additionally, to
gain insight into the average number of hazardous situations,
we also perform simulations without control strategies and
calculate the average number of collisions to quantify the
efficacy of our control strategies in preventing collisions.
This scenario is labelled as Without Control in our results
figure, and it enables us to assess the effectiveness of our
control strategies in ensuring the safety of the AIM system.

VI. RESULTS AND DISCUSSION
In Figure 3, we present the average vehicle speeds over

a 50-minute period starting 30 minutes into the simulation
run for a traffic flow rate of 600 vehicles per hour. This flow
rate was chosen to generate sufficient dangerous situations
for evaluating the impact of uncertainties. Notably, scenario 3
with accurate positioning information available to the ICUs
demonstrated the best performance, with resulting average
speeds similar to or slightly below the target speed. However,
in scenarios 1 and 2, the GCL results may not be safe enough
in certain situations due to the lack of accurate positioning,
resulting in the need for LDL to react faster to avoid un-
predictable dangerous situations. This could result in sudden
braking or local speed reductions. As shown in Figure 3,
scenario 1 demonstrated the worst system performance. This
suggests that positioning uncertainties have a significant
influence on the behavior and performance of vehicles within
the AIM system. The observed trend indicates that increased
inaccuracies require vehicles to constantly adapt their speeds
to compensate for the lack of precise positioning information.

Fig. 4: Comparison of average vehicle accelerations for three
different scenarios over a four-hour period within the system.
The subfigure (a) shows the average acceleration including
both high and low acceleration data, while the subfigure
(b) focuses solely on high acceleration data by removing
low acceleration data. The results highlight the impact of
different scenarios on vehicle acceleration and demonstrate
the effectiveness of the AIM system in minimizing high
acceleration events.

Figure 4 depicts the histogram of vehicles accelerations
within the system, where vehicles enter at a traffic flow rate
of 600 vehicles per hour. The findings from this analysis
reveal that the control algorithms effectively prevent exces-
sive acceleration or deceleration. This outcome aligns with
our system’s objectives, as minimizing absolute acceleration
is a key priority. However, it is worth noting that at the
LDL level, an increased number of non-autonomous and
non-cooperative vehicles may lead to the detection of more
unpredicated dangerous situations at GCL level. Nonethe-
less, as demonstrated in Figure 4 , the difference between
different scenarios are relatively minor. This indicates that
the vehicles’ acceleration and deceleration requirements re-
main moderate. These results further validate the success of
our AIM system in effectively managing the movement of
vehicles.

In order to implement an AIM in an operational system, it
is crucial to evaluate the traffic safety. To this end, we have
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Fig. 5: The average number of collisions per hour at various
traffic flow rates. The red text represents the average number
of collisions that would be expected in the absence of any
control strategies , i.e, Without Control scenario. The results
highlight the effectiveness of the HMPC system in reducing
the number of collisions across varying traffic flow rates.

approximated the average number of collisions per hour, as
explained in Section V-C, and assessed this metric for various
traffic flow rates. In the simulations presented in this study,
we assumed that the wireless communication links would be
reliable in 98% of cases. The results of our simulations are
displayed in Figure 5. It is important to note that evaluating
traffic safety in different level of uncertainties is a critical
aspect of deploying AIM methods in real-world applications.

Figure 5 clearly demonstrates that the HMPC system faces
significant safety issues in Scenario 1 when the positioning
error exceeds 12 meters as shown in Figure 2, which is
nearly three times longer than a typical car length. The
ICU, GCL, experiences complete randomness in positioning,
which limits the vehicle’s ability to respond effectively to
hazardous situations at the LDL level. However, in compar-
ison with the absence of control strategies, the LDL layer is
still able to avoid many collisions. For instance, at flow rates
of 500 vehicles per hour, the system can prevent almost 160
collisions, although 16 collisions are still considered high-
risk safety concerns.

In contrast, our simulation results show that the HMPC
system can safely manage AVs’ behavior in Scenario 2 at
flow rates below 500 vehicles/hour, even with a maximum
position error of 10 meters. In Scenario 3, where the maxi-
mum position errors at both the GCL and LDL levels are less
than 1 meter, as evident in Figure 5, the system is completely
safe, even during high traffic flow rates.

VII. CONCLUSIONS

In conclusion, this study presents a comprehensive investi-
gation of the impact of positioning uncertainties on real-time
intersection management systems. By applying modification
to our previously proposed AIM method and conducting
simulations in the SUMO environment, we demonstrated
that our system is safe for positioning errors less than 10

meters and traffic flow rates of up to 500 vehicles/hour/lane.
However, when traffic flow rates increase, more accurate
positioning is necessary to maintain safe and comfortable
vehicle movements with lower acceleration. These findings
highlight the importance of accurate positioning in the design
of real-time intersection management systems, which could
ultimately lead to safer and more efficient traffic flow.
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