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Abstract—Cloud Control Systems (CCSs) harness the power
of cloud resources to carry out intense computational tasks,
however, they face challenges in delivering time-critical control
signals due to network and cloud-induced delays. In this paper,
we introduce a novel framework, “Punctual Cloud”, designed
to enhance the timely delivery of control signals in CCS. This
framework ensures that control signals are calculated in the
cloud and delivered promptly, minimizing system-induced delays.
The punctual cloud framework allows a basic controller to
manage dynamic, time-sensitive processes over the cloud and
is implemented in a microservice architecture to simplify CCS
deployment and maintenance. Our evaluation indicates that our
framework, while requiring less computational effort, is capable
of tolerating longer delays compared to an optimal controller
like Model Predictive Control (MPC), which is typically used in
time-delay control systems.

Index Terms—Cloud Control systems, Time-critical control,
Delay compensation, Microservice architecture

I. INTRODUCTION

Industry 4.0 has catalyzed the digital transformation of man-
ufacturing systems, with cloud computing emerging as a cru-
cial component, thanks to its seemingly unlimited computing
resources and storage capacity. The cloud plays various roles
within industrial systems, including data storage, centralized
scheduling, and control task computing. Among all the cloud
industrial applications, Cloud Control System (CCS) for real-
time applications present the most stringent demands on cloud
and network infrastructure.

CCSs are a type of Networked Control Systems (NCSs)
where the controllers are deployed as services in either cen-
tralized or edge clouds. These systems typically close their
control loops through IP networks and run their controllers in
a virtualized environment with layered software management
and access control in the cloud.

Furthermore, cloud computing has ushered the microservice
architecture, a new software design paradigm that breaks
a monolithic application into multiple microservices in the
cloud. This approach enhances both the maintainability and
deployability of an application, making it the most promising
software paradigm for cloud web services. However, it also
introduces inter-service communications, potentially extending
service response times.

These factors may result in a longer and more variable
wait time for plants to receive control signals from CCS
compared to other control systems. This waiting time is termed
as response delay. A lengthy response delay makes operating
a CCS challenging, particularly for real-time plants with fast

dynamics. These systems may fail if the correct control signal
is not delivered promptly for actuation.

Research such as those presented in [1], [2] has demon-
strated the impact of latency due to virtualization technology in
cloud computing. Similarly, various studies on low-latency or
real-time cloud applications have acknowledged the challenges
posed by delays within CCS [3], [4].

Control systems characterized by response delays fall into
the category of time-delayed control systems, a well-explored
research area. Traditional approaches such as the Smith Pre-
dictor and its variants have been employed for decades [5],
[6]. MPC, a type of controller that uses a model to calculate a
sequence of future control signals [7], [8], has also been used
to compensate for delay in time-delay systems. This method
is especially useful in CCS, given the cloud’s ability to handle
the significant computational demands of MPC [9], [10].

CCS research has also been conducted for various applica-
tions and goals. For instance, [11] introduced a concept similar
to CCS called Control as a Service (CaaS), which aimed at
real-time adaptive cruise control over a wireless network using
MPC. [12] presented a method to avoid collisions in a multi-
robot scenario using an edge-based centralized MPC method
and deployment. [13] proposed a security framework for CCS
capable of detecting and mitigating cyber-attacks, thereby
enhancing system resilience. A multi-tier industry control
system combining local and edge controllers was explored
in [14], while [15] resolved a mission-critical control task
using an MPC-based cloud service. Lastly, [16] investigated a
resource allocation problem within CCS.

The field of CCSs offers substantial potential to maximize
the benefits of cloud computing for industrial control sys-
tems. Despite time-delay control systems being extensively
researched over decades, the latency challenges associated
with deploying CCS remain largely unexplored. Most litera-
ture on Networked Control Systems (NCSs) does not address
response delays significantly longer than the control appli-
cation’s sample interval or the variance in delay. Moreover,
while MPC has been widely considered as a solution for
CCS, its computational time and resource demands cannot be
overlooked. The capability of MPC to handle lengthy response
delays is limited, as we demonstrate later in our evaluation.
Additionally, prior CCS research has seldom capitalized on the
microservice architecture when deploying on cloud or edge
infrastructures. In this paper, we introduce a new framework,
“Punctual Cloud”, designed to deploy CCS that can mitigate
delays between the cloud controller and the plant, caused by
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Fig. 1: Cloud control system, where the states and control
signals are sent via the network between the plant and cloud
controller.

network and cloud environments. This framework is relevant
when the control signal’s response delay exceeds one sampling
interval of the control application, resulting in system perfor-
mance degradation. This is a common occurrence in time-
critical control systems characterized by fast plant dynamics
and short sampling intervals.

Our contribution is threefold. Firstly, our framework is de-
signed to ensure the ’punctuality’ of control signals, meaning
that a control signal generated by the cloud controller in CCS
can be timely delivered and actuated at the intended plant
state, even when system response delay exceeds one plant
sampling interval. Secondly, our proposed framework offers
a way to employ simple controllers to address the delays in
CCS that affect system performance. Our approach exhibits
superior control performance under long delay scenarios for
mission-critical applications, compared to optimal controllers
like MPC, which is commonly used in similar contexts.
Lastly, we present a testbed of the framework deployed in
a microservice architecture, which enables easy replacement
or upgrades for control algorithms.

II. TARGETED SYSTEM AND PROBLEM DESCRIPTION

In this paper, we focus on the CCS depicted in Fig. 1. Here,
the controller is positioned as a cloud service, either at the
network’s edge or within a centralized cloud. The control plant
dispatches its states as feedback to the remote cloud service,
which in turn returns the control signal back to the plant.

A. System Model

We consider a dynamic and observable control system with
a nonlinear discrete physical model Eq. (1), with plant state
x(k) at time k, and control signal u(k) that is actuated on the
state at this moment.

x(k + 1) = f(x(k), u(k)) (1)

The linearized discrete state-space equation of the control
system is presented as Eq. (2). The sampling interval of the
discrete system is Ts.

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
(2)

In a CCS involving a dynamic plant, the controller func-
tions as a cloud service, generating control signals remotely
based on the plant states transmitted from the plant over a
network. We define the response delay of the system as Tr, as
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Fig. 2: Top figure: Control diagram of a time-delay system
with d steps discrete response delay; Bottom figure: Time
series example when d = 2 in CCS.

represented in Eq. (3). This delay is a stochastic variable with
a mean value of µ and a jitter value of ϕ. It comprises the
sum of three time durations: Tup, Tdown, and Texe. Here, Tup
is the time required to send state information from the plant
to the controller, Tdown is the time to transmit a control signal
from the controller to the plant, and Texe is the execution time
for computing the control signal in the cloud. We define the
discrete response delay as d, as calculated in Eq. (3).

Tr = Tup + Tdown + Texe

d = ⌊Tr

Ts
⌋ (3)

When the discrete response delay d ⩾ 1, the CCS transforms
into a time-delay control system with a delay of d steps in
discrete time. The system can then be modeled as shown
in Eq. (4). The control diagram of this time-delay system is
depicted in the top figure of Fig. 2.

x(k + 1) = Ax(k) +Bu(k − d)

y(k) = Cx(k) +Du(k − d)
(4)

B. Problem description

As depicted in the lower illustration of Fig. 2, in a CCS,
when the response delay d ⩾ 1, the control signal u(k),
calculated in the cloud based on x(k), is returned to the plant
when the state has progressed to x(k + d), and when x(k) is
outdated.

A controller designed on a linear and delay-free model
(Eq. (2)) might still be capable of actuating and stabilizing
the plant. This suggests that u(k) might still be effective when
applied to x(k+d), provided the plant dynamics are slow, and
there is no substantial difference between x(k) and x(k+ d).
However, when the network delay significantly exceeds the
sampling interval Ts, and the plant exhibits fast dynamics,
such a delay-free model controller will no longer perform as
expected in a CCS. This is because u(k) is calculated based
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Fig. 3: Punctual cloud architecture

on the plant state x(k), which could drastically differ from
x(k + d).

In the subsequent section, we introduce the ”Punctual
Cloud” framework, which mitigates system delays without
modifying the existing delay-free controller. This ensures that
u(k) can be applied promptly at state x(k), even if the network
and the cloud system contribute to a significant response delay
d between the cloud controller and the plant.

III. PUNCTUAL CLOUD FRAMEWORK

In this section, we introduce the ”Punctual Cloud” frame-
work for CCS, enabling a simple delay-free model-based
controller to manage a remote plant despite substantial delays.
The concept involves enhancing control signal punctuality by
integrating delay estimator and state predictor services along-
side the controller service in the cloud. They are collectively
deployed in a microservice architecture, either in the cloud or
at the edge, as shown in Fig. 3.

The framework, demonstrated as a control diagram in Fig. 4,
predicts the plant state x(k + d) when the controller receives
state x(k). The controller subsequently generates control sig-
nal u(k + d). Unlike MPC which anticipates a sequence of
future states, our method predicts the plant state only at the
future time k + d, when the generated control signal will be
actuated on the plant.

The delay estimator, state predictor, and controller operate
independently, allowing individual algorithm changes without
affecting other components, as long as the required inputs and
outputs in Fig. 4 are furnished. In the following segment, we
present the methods employed in each component of our CCS
for managing a dynamic plant with arbitrary network delays
operating at a sampling rate Ts.

A. Delay estimator

The delay estimator generates an estimate of the current
discrete response delay, denoted as d̂. This estimation is then
utilized by the state predictor to forecast the state x̂(k + d̂).
Accordingly, the controller generates a control signal u(k+ d̂)
based on this predicted state, which is slated for actuation on
the plant at time k + d̂.

To estimate the continuous response delay T̂r associated
with each control signal, we employ the Exponential Moving
Average (EMA) approach, as illustrated in Eq. (5). In this
equation, ω signifies the weight of the EMA estimator, and
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Fig. 4: Top figure: Control diagram of the punctual cloud for a
CCS with d steps discrete response delay; Bottom figure: Time
series example when d = 2 in CCS with punctual cloud.

T input
r —transmitted alongside x(k) by the plant—provides

information about the response delay related to previously
delivered control signals. The discrete time horizon d̂, output
by the delay estimator, is depicted in Eq. (6).

T̂r = ωT̂r + (1− ω)T input
r (5)

d̂ = ⌊ T̂r

Ts
⌋ (6)

B. State Predictor

With the estimated delay d̂, the state predictor forecasts the
state x̂(k + d̂) based on the input x(k). Consequently, the
controller is able to generate u(x+d̂) using this predicted state.
We utilize a Smith Predictor, which is based on a nonlinear
model of the system. The Smith Predictor concept holds
that if the model mirrors the plant, the controller of a time-
delay system can be designed around its delay-free model [6].
However, models are not perfect and there is always a disparity
between a plant and its model. The Smith Predictor addresses
this by factoring in the error in the previous prediction x̂(k)
and incorporating it into the next prediction x̂(k+1). As such,
a control signal is generated based on x̂(k+1)+x(k)− x̂(k).

Algorithm 1 Smith Predictor in d steps

Input: x(k), d, {u(k), u(k + 1), ..., u(k + d̂− 1)}
Output: x̂(k + d̂)

i← 1
e(k)← x(k)− x̂(k)
while i ≤ d do

x̂(k + i)← f(x(k + i− 1), u(k + i− 1)) + e(k)
x(k + i)← x̂(k + i)
i← i+ 1

end while



In our state predictor, we leverage the nonlinear model of the
plant to reduce model error compared to a linearized model.
We use Eq. (7) to predict one step ahead for discrete time.
To predict the state d̂ steps ahead, we run Eq. (7) for d̂
times, as illustrated in Algorithm 1. It’s noteworthy that the
algorithm utilizes u(k), u(k + 1), ...u(k + d̂− 1), which are
control signals generated from previous state inputs.

e(k) = x(k)− x̂(k)

x̂(k + 1) = f(x(k), u(k)) + e(k)
(7)

C. Controller

Our suggested system employs a controller meant for
a delay-free plant model, for instance, a Linear Quadratic
Regulator (LQR) [17]. Like the MPC, the LQR also uses
an optimization object. However, unlike the MPC which
requires online optimization during control process, the LQR’s
optimization is performed offline using the delay-free model
(Eq. (2)). The control signal u(k + d̂), set to act at time
k+ d̂, is computed in the cloud control service as Eq. (8). This
calculation uses the input reference state xref and a predicted
state x̂(k+ d̂) for the plant at time k+ d̂. Here, K is the LQR
gain, calculated in advance based on the optimization result.

u(k + d̂) = K(xref − x̂(k + d̂)) (8)

It’s important to mention that while we’ve selected the LQR as
our controller, due to its low computational complexity when
deployed as a cloud service, our system is flexible and can
easily accommodate other types of controllers.

IV. TESTBED DEPLOYMENT

In this section, we provide a comprehensive description of
our testbed setup for the punctual cloud framework. As demon-
strated in Fig. 5, the testbed includes the plant under control,
the network interconnecting the plant and cloud services, and
the cloud services that is implemented using a microservice
architecture. The entire source code for the testbed will be
public after the publication of this paper.

A. The Ball and Beam plant

In our testbed, we emulate a Ball-and-Beam (BnB) plant as
the subject of control in the CCS. This emulation, hosted on an
Ubuntu server, is based on the source code provided by [18].
The controller’s objective is to maintain the ball at a reference
position on the beam through rotation, a time-critical task due
to the plant’s fast dynamics [15]. However, this plant can be
substituted with others depending on the control goals.

The BnB plant periodically sends a state vector x(k) at
intervals of Ts to the cloud services. This vector includes ball
position, beam angle, and ball speed. Along with the state
vector, the plant transmits the response delay T input

r of the
most recently received control signal for delay estimation.

x(k) =

x1(k)
x2(k)
x3(k)

 =

ball position
beam angle
ball speed

 (9)
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Fig. 5: Punctual cloud deployment. The left part of the dashed
line is the plant to be controlled, and the right part is the cloud
services in our framework.

B. Network between the plant and the cloud services

We employ HTTP with persistent connection for communi-
cation between the plant and our service cluster, given HTTP’s
widespread usage and support in cloud services [19]. The state
vector x(k) and response delay T input

r are transmitted as an
HTTP request to the cloud services, with the control signal
sent back as an HTTP response.

To emulate varying network situations in the testbed, we
use Netem [20] to introduce different delays on the network
interface of the emulated BnB plant. The added network delay,
Tadd, subject to a mean value µ and jitter ϕ, represents the
sum of Tup and Tdown as per Fig. 2. Thus, the actual response
delays, Tr, exceed Tadd due to the inclusion of execution time
in the cloud.

C. Punctual cloud services

Our punctual cloud includes three services: the controller,
delay estimator, and state predictor, each relying on the
output of another. To efficiently leverage microservice archi-
tecture’s benefits, we deploy these services in a Kubernetes-
orchestrated, bare-metal cluster consisting of seven Ubuntu
nodes [21]. The architecture mirrors the system proposed in
[16], but with more reliable inter-service communications via
a Message Queue (MQ).

In this architecture, the controller service, acting as the
”frontend,” accepts states from the plant and decouples the
received request’s information. The controller publishes the
response delay, T input

r , to a MQ, to which the delay estimator
service subscribes. The delay estimator, gauging recent net-
work conditions, estimates the response delay and updates the
database for the state predictor to read.

The controller also forwards x(k) and the previously gen-
erated control signal, u(k), to the state predictor via another
HTTP request. Upon request, the predictor reads the potential
response time, d̂, from the database, and predicts x̂(k + d̂).

The controller subsequently generates the control signal
u(k + d̂), based on the predicted state x̂(k + d̂). The plant
buffers the control signal if it arrives prior to time k + d̂



and actuates it at the appropriate time, ensuring that the state
x(k + d) does not expire beforehand.

V. EVALUATION

In this section, we detail the testbed’s system parameters
and the performance metrics for evaluating our punctual
cloud framework. We benchmark our system against a cloud-
deployed MPC and a LQR sans punctual cloud solution,
each as a standalone service within the same Kubernetes
cluster. The experimental results affirm the punctual cloud
framework’s efficacy in enhancing system performance when
discrete response delay d ⩾ 1, without imposing additional
computational overhead due to its microservice architecture.

A. Parameters of the BnB plant

In the experiment, we consider a BnB plant with beam
length= 1.1m and sampling time Ts = 50ms. The discredited
linear and delay-free state space model written as a form of
Eq. (2) has parameters as follows when considering the beam
length as 1.1m.

A =

1 0.05 −0.008756
0 1 −0.3502
0 0 1

B =

−6.421e−5

−0.003853
0.022


C =

1 0 0
0 1 0
0 0 1

D = 0

(10)

The nonlinear physical model is as Equation (11) by giving
the control signal u(k) and state x(k), and where g = 9.80665
is the gravitational constant.

x2(k + 1) = 0.44Tsu(k) + x2(k)

M =
5

7
g sin(x2(k + 1))

N =
5

7
0.442u2(k)

Q = Tsx3(k) + x1(k)

x3(k + 1) =
NQ−M

1−BT 2
s

Ts + x3(k)

x1(k + 1) = Tsx3(k + 1) + x1(k)

x(k + 1) = [x1(k + 1), x2(k + 1), x3(k + 1)]T

(11)

In our evaluation, we generate a step response by varying the
set point of the ball’s position between 0 and 0.2m for the BnB
plant, assessing system performance under diverse network
scenarios. As the control signal u(k) actuates on the beam’s
center to maintain the ball at its set point, if the ball’s position
x1(k) exceeds 0.55, the ball falls off the beam, indicating
system instability.

B. Network parameters

In our experiments, we examine different network scenarios
by establishing network delays with a mean value of µ, along
with added jitter ϕ for a more realistic network experience
when connecting to a centralized cloud.

We experiment with added network delays Tadd having mean
values µ ranging from 0 to 200ms - four times the BnB plant’s

sampling time Ts. Jitter values ϕ range from 0 to a maximum
of 25ms, equivalent to 0.5Ts. The controller’s response delay
Tr will exceed the added network delay Tadd due to cloud
controller execution time.

Our evaluation focuses on two main network scenarios. The
first is a changing delay scenario, where the mean delay value
µ varies during controller operation, testing the adaptability
of the delay estimator. The second scenario comprises fixed
delay experiments, where Tadd follows a Pareto distribution
with a specific (µ, ϕ) value. We’ll present the following three
categories of experiments for this scenario:

1) Tadd has µ ∈ {0, Ts, 2Ts, 3Ts, 4Ts}, jitter ϕ = 0.
2) Tadd has ϕ ∈ {0, 0.1Ts, 0.2Ts, 0.3Ts, 0.4Ts, 0.5Ts}, de-

lay mean µ = 3Ts.
3) Tadd has µ ∈ {0, Ts, 2Ts, 3Ts, 4Ts}, jitter ϕ = 0.5Ts.

C. Parameters in punctual cloud services

Here we present the parameters employed in evaluating the
delay estimator and controller. It’s important to mention that
the state predictor is calculated based on the plant’s nonlinear
model and relies only on inputs from the controller and delay
estimator, without requiring any other parameters.

In our testbed, we utilize a delay estimator weight of ω =
0.98. The control signal u(k), which affects the beam’s angular
speed, is calculated with an LQR gain K, targeting a set point
xref for the ball’s position on the beam.

u(k) = K(

x1(k)
x2(k)
x3(k)

−
xref(k)

0
0

)
K =

[
−31.0027,−13.9077, 20.4937

] (12)

D. Performance metrics

For every network scenario detailed earlier, we assess the
performance of the system with our punctual cloud framework,
and compare it to the MPC and LQR using three different
measures:

1) Control performance is evaluated through Integral Ab-
solute Error (IAE). A smaller IAE suggests improved
control performance due to minimized deviation from
the set point. The IAE for an experiment duration T is
computed as Equation (13), where x1(k) is the position
state of the ball, and xref(k) is the set-point for the
position of the ball on the beam.

IAE =

T∑
k=0

|x1(k)− xref(k)| , (13)

2) The computational overhead of each method is assessed
through their respective execution time, which measures
the time taken to compute a control signal. A lower
execution time signifies reduced computational burden
introduced by the services. Since our testbed implements
persistent HTTP connections, we can calculate the exe-
cution time Texe using the response delay Tr which can



TABLE I: Parameters in the experiments

Tadd Network delay added by Netem
u Mean value of Tadd
ϕ Jitter value of Tadd
Ts Sampling time of the plant
Texe Execution time of the services in the cloud
Tr, T̂r Response delay of control signals and its estimation
d, d̂ Response delay in discrete time and its estimation
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Fig. 6: The top figure is the control step response performances
when the added network delay Tadd changes by following the
pattern in the bottom figure.

be measured by the plant for each pair of HTTP request
and response:

Texe = Tr − Tadd (14)

3) Punctuality is assessed as the ratio of control signals
arriving ”on time” during the experiment. A control
signal u(k) is considered ”on time” if it reaches and
actuates at the plant before the corresponding state x(k)
expires. Higher punctuality reflects a greater proportion
of control signals being executed as intended and within
the desired time frame.

In Table I, we give all the parameters and their notations
that are employed in our experiment.

VI. RESULTS

In this section, we analyze the performance of the MPC,
stand-alone LQR, and our proposed punctual cloud framework
(referred to as ‘PunC’ in the figures) under various scenarios.

A. Changing delay scenario

In the changing delay evaluation scenario, we conduct
experiments where the mean value µ of the added network
delay Tadd varies from 0 to 4Ts according to a specific pattern
depicted in the lower figure of Fig. 6. As shown in the
figure, the control performance of each method is evaluated.
It is observed that the stand-alone LQR can handle response
delays up to 2Ts, while the MPC can tolerate delays up to
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Fig. 7: Performances of three methods when delay increases
and no jitter in Tadd. From top to bottom, each figure presents
the execution time, IAE, and punctuality with each method in
the evaluation.

3Ts, indicating a response delay d = 3. However, when Tadd
exceeds 3Ts, resulting in a discrete response delay d ≥ 3, both
the MPC and LQR fail to maintain the ball at its set point.

In contrast, our punctual cloud framework generates the
control signal u(k) based on the predicted state x̂(k) and
ensures its timely arrival to stabilize the actual plant state x̂(k),
assuming the network is lossless.

B. Fixed delay scenario

In the fixed delay scenario, we evaluate our system perfor-
mance by fixing the mean and jitter of Tadd in the Netem
configuration for each experiment. We analyze the system
performance in three cases.

1) Analysis on increasing µ and jitter ϕ = 0: In Fig. 8, we
observe the step response under different added delay values
with zero jitter. The stand-alone LQR fails to stabilize the
plant when Tadd = 3Ts, causing the ball to fall off the beam.
Similarly, when Tadd = 4Ts, the MPC fails to maintain the ball
at its set point. However, our proposed punctual cloud method
successfully keeps the ball around its reference position until
4Ts, albeit with some oscillation. This requires predicting the
plant state four steps ahead in discrete time.

The error plot in Fig. 8 demonstrates the performance of the
state predictor. It is evident that when Tadd reaches 4Ts, the
state predictor starts to exhibit significant errors, leading to
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control performance degradation and oscillations in the step
response. This highlights the impact of the accuracy of the
state predictor on control performance, especially for response
delays longer than 4Ts. When Tadd = Ts, Fig. 8 illustrates that
the prediction error is larger than in the case where Tadd = 2Ts.
However, given the relatively shorter delay and its minimal
impact on controller performances cross all three solutions, a
state predictor is superfluous in this case.

Fig. 7 illustrates the performance of each method in terms
of execution time, IAE, and punctuality as the added delay
increases from 0 to 4Ts. The stand-alone LQR has the shortest
execution time due to its simple P-controller nature. While the
MPC is also deployed as a single-service application without
inter-service communication, its response delay is longer than
that of our punctual cloud method. This is because MPC
requires online optimization for each control signal generation,
which is more computationally intensive. Despite the over-
head introduced by inter-service communications, the punctual
cloud method exhibits comparable or shorter response delays
due to its lightweight microservice architecture.

The IAE of all methods increases as the mean of Tadd
increases. The time-delayed control signals of MPC and LQR
become less effective as the delay grows, resulting in higher
deviations from the set point. When Tadd exceeds 3Ts, both
MPC and LQR exhibit significantly high IAE values above
1000, indicating system instability. However, our punctual
cloud method maintains lower error levels compared to the
other two methods.

From the punctuality plot in Fig. 7, it is evident that our
framework significantly improves the punctuality of control
signals. By incorporating the delay estimator and state pre-
dictor services, our method ensures that control signals are
applied to the plant state x(k) most of the time, leading to
enhanced control performance.

2) Analysis on increasing ϕ when µ = 3Ts: In this case,
we focus on the performance of our punctual cloud framework
with an added delay mean value of µ = 3Ts and increasing
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Fig. 9: The first two sub-figures are IAE and punctuality
performances of punctual cloud when jitter increases and
added network delay is 3Ts. The bottom figure is the box
plots of response delay in each experiment.

jitter from 0 to 0.5Ts. Since the stand-alone LQR fails to
stabilize the system even without jitter in the network, we
only present the control performance of our proposed punctual
cloud framework.

From the box plots of response time Tr in Fig. 9, we observe
that as jitter increases, the median value of response delays
remains relatively unchanged, but there is a larger variance
and significantly higher 95th quantile. This makes achieving
punctuality more challenging with the EMA algorithm used
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Fig. 10: IAE and punctuality performances of three methods
when delay increases and jitter is 0.5Ts

in delay estimation.
Fig. 9 also reveals that the IAE increases as jitter increases,

but the system can still be stabilized with our punctual cloud
frame work under the maximum jitter value evaluated. The
larger error in control performance can be attributed to the
punctuality plot, where we observe that lower punctuality
leads to larger IAE. The decreased punctuality has two main
effects on control performance. Firstly, control signals may
be applied to plant states that differ significantly from the
predicted states on which the signals were based. Secondly,
lower punctuality results in lower accuracy in state prediction
since the predictor does not have knowledge of which control
signals were actually applied between states x(k) and x(k+d).

3) Analysis on increasing µ with ϕ = 0.5Ts: In Fig. 10, we
present the performances of all three methods with increasing
mean value µ of the added network delay Tadd when jitter ϕ
is set to 0.5Ts in Netem, following a Pareto distribution.

Similar to previous cases, neither MPC nor LQR can tolerate
the added network delay when it results in a response delay
larger than 3 steps in discrete time. However, in this specific
scenario, even our punctual cloud framework fails to maintain
system stability when µ = 4Ts. The main reason can be
observed in Fig. 11, where we see a significant increase
in delay estimation error with EMA when there is larger
jitter in the network. This leads to lower punctuality and
inaccurate state prediction. Furthermore, in Fig. 8, we observe
that when µ = 4Ts, the ball starts oscillating around the
reference position due to inaccurate state prediction caused by
longer delays. A higher jitter in the network introduces more
uncertainties and inaccuracies in the prediction, ultimately
rendering the control system unstable.

VII. CONCLUSION

In this paper, we introduced the ”Punctual Cloud” frame-
work for controlling time-critical applications in the cloud,
specifically addressing the timely delivery of control signals
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Fig. 11: The Absolute delay estimation error in punctual cloud
when jitter ϕ = 0 and ϕ = 0.5Ts

in cloud control systems with long response delays. Our
framework enables the use of a simple controller designed
based on a delay-free system model, without requiring any
modifications to the controller itself.

The key components of our framework are the delay es-
timator and state predictor services, which work together to
estimate the arrival time of control signals at the plant and
compute the control signal based on the predicted plant state
at that time. We evaluated our method using a BnB plant
emulator with a sampling interval of 50ms and deployed it as
microservice architecture in a Kubernetes cluster. The network
delay between the plant and the cluster was emulated using
Netem.

We compared our framework with two other cloud con-
trol services, an MPC and a stand-alone LQR. The results
demonstrated that our punctual cloud framework could tolerate
network delays up to 4 times the sampling interval (4Ts),
providing accurate predictions for up to 4 steps in a discrete
time. In contrast, MPC and LQR could only tolerate delays
up to 2 times the sampling interval (2Ts). Our method also
exhibited resilience to network jitter up to 25ms(0.5Ts) under
Pareto distribution, as long as the network delay remained
below 4Ts.

Our analysis suggests that improving the accuracy of delay
estimation and state prediction algorithms can further enhance
delay tolerance. The modular nature of our system allows
for easy replacement and integration of alternative algorithms
in these services. Our future work includes evaluating our
framework on more time-critical industrial plants than BnB,
as well as refining the accuracy of our delay estimator and
state predictor.
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