
Synchronization in Digital Twins for Industrial
Control Systems

Fatemeh Akbarian1, Emma Fitzgerald1,2, Maria Kihl1
1Department of Electrical and Information Technology, Lund University, Sweden

2Institute of Telecommunications, Warsaw University of Technology, Poland

Abstract—Digital twins, which are a new concept in industrial
control systems (ICS), play a key role in realizing the vision of
a smart factory, and they can have different effective use cases.
With digital twins, we have virtual replicas of physical systems so
that they precisely mirror the internal behavior of the physical
systems. Hence, synchronization is necessary to keep the states
of digital twins in sync with those of their physical counterparts.
Otherwise, their behavior may be different from each other,
and it can lead to wrong decisions about the system that can
have catastrophic consequences. In this paper, we propose three
different architectures for digital twins, and then by investigating
their ability to follow the physical systems behavior, we will
determine the best architecture, whose output has the lowest
error compared with the physical system’s output.

Index Terms—Digital Twin, Smart factory, Synchronization

I. INTRODUCTION

Industrial control system (ICS) is a general term that
encompasses several types of control systems, including su-
pervisory control and data acquisition (SCADA) systems,
distributed control systems (DCS), and other control system
configurations. Along with advanced technologies in ICS,
such as big data, Internet-of-Things (IoT), cloud computing,
etc, the current manufacturing industry is going through an
unprecedented dramatic change in the last decade, and smart
manufacturing has attracted much attention [1].

Digital Twin is one of the main concepts associated with
smart manufactoring, and it opens up new possibilities in
terms of monitoring, simulating, optimizing and predicting
the state of cyber-physical systems (CPSs). A digital twin
duplicates the physical model for remote monitoring, viewing,
and controlling based on the digital format, and its main goal
is to closely follow products during production (the physical
twin) and simulate the process to adjust the production with
the results of these simulations [2].

The concept of digital twins has its origins in NASAs
Apollo program, as a twin of a spacecraft was built for
two purposes, viz., (i) training before the mission and (ii)
supporting the mission by mirroring flight conditions based
on data coming from the spacecraft in operation [3], [4].
Motivated by the need to utilize machine or process data for
the purpose of prognostics, digital twins were proposed for
production systems in the cloud that simulate the conditions
of their physical counterparts based on physical models [5].

In smart factories, the digital twin is located in cloud
resources and includes simulation of all components and units

of the physical part, so it allows advanced simulations of
a complete manufacturing system. These simulations in the
digital twin should be done in real-time to enable it to track
the physical part’s behavior. Furthermore, the virtual part
should be able to imitate its physical counterpart accurately.
Hence, synchronization between the digital and physical parts
is crucial.

So far, different architectures, as well as use cases, have
been proposed for digital twins. However, most of these
works have missed the synchronization between the digital
and physical parts. For example, the authors in [6] propose
a framework for digital twins that can be automatically gen-
erated from the specification and run independently from the
physical environment. In [7], a digital twin has been developed
that estimates the characteristics of a photovoltaic energy
conversion system. This digital twin is created by using the
mathematical model of the system and it does not follow
the physical systems behavior but rather estimates the correct
behavior of the system. Hence, although it is useful for fault
detection in the system, there is no synchronization between
the digital and physical twins which is the most important part
of the definition of digital twin.

There are a few works that have suggested replication and
synchronization but only for some limited cases. To the best
of our knowledge, [8] is the only work that has suggested a
method for synchronization. In [8], a passive state replication
approach has been proposed. In this method, the inputs of the
physical system that constitutes a stimulus should be fed to
the digital twin. For example, a setpoint that a user chooses
for the system through the HMI (Human-Machine Interface)
is a kind of data that should be replicated in the digital twin.
However, using passive monitoring in this approach may result
in missing some important data related to the physical systems
states. Also, this method does not allow the digital twin to
follow the physical system continuously; for instance when
there are unexpected changes in the system like faults, the
digital twin is not able to imitate these changes.

Motivated by these challenges, we make the following novel
contributions in this paper:
• We propose three different architectures for digital twins.
• We evaluate the ability of these proposed architectures to

mirror their physical counterparts behavior.
• We demonstrate which architecture from these proposed

architectures has the best performance in keeping the

ar
X

iv
:2

00
6.

03
44

7v
1

 [
ee

ss
.S

Y
]

 5
 J

un
 2

02
0

digital twin in sync with the physical system.

II. TARGETED SYSTEM

The targeted system, which concerns industrial control
systems, is illustrated in Fig. 1. In this figure, the physical
domain is inside a factory, which consists of several different
systems, and each of these systems needs to be controlled by
their local controller. The output and input of the ith system
in the physical domain and their counterparts in the digital
domain have been denoted respectively by yi, ui, y′i, and u′i.
With digital twins, we have simulated models of each real
system in the physical part. These models can be defined
by using data-driven methods or they can be created based
on laws of physics. However, since most of the machines in
a factory are complex systems, utilizing data-driven methods
like system identification algorithms can be the best choice.
In this approach, we feed some different input signals to the
system and record output signals. Then, based on these inputs,
their outputs, and system identification algorithms, we can find
the best model for the system.

As can be seen in Fig. 1, digital twins are located in a
cloud and they interact with the physical domain through the
network. As was said before, the main goal of digital twins
is following the physical systems’ behavior. In order to fulfill
this, synchronization is necessary to keep the states of digital
twins consistent with those of their physical counterparts.
Therefore, the challenging issue is how the architecture of
digital twins should be constructed and which signals from
the physical domain should be sent to the digital domain.

III. PROPOSED SOLUTION

In order to make digital twins able to follow the physical
systems continuously so that they can imitate physical systems
behavior even when there are unexpected changes in the sys-
tem, we propose three different architectures for implementing
digital twins. In each of these architectures, we

Fig. 1. Targeted system overview

Fig. 2. Architecture I

illustrate which signals are needed to be sent from the physical
domain to the digital domain in the cloud. Also, in all of
these architectures, we assume that in the virtual domain we
have a model of the real system that is obtained by system
identification algorithms.

A. Architecture I

Architecture I is illustrated in Fig. 2. The motivation behind
this architecture is that generally, this is the simplest way to
make digital twins that may come to mind, and our objective is
to investigate the performance of this simple architecture. As
can be seen in Fig. 2, in this architecture, in the virtual domain
we have the model of the real system. Also, we consider
the controller in the virtual domain to be exactly the same
controller as for the real system in the physical domain. If
we use the output signal of the modeled system in the virtual
domain as the feedback signal for the virtual controller, in
this case, the digital twin and the physical twin will work
independently and there is no synchronization between them.
Hence, in this architecture, the output signal of the real system,
which is measured by sensors, will be sent to the virtual
domain via the network and will be used as the feedback signal
for the virtual controller. However, since models of systems
usually do not work exactly the same as to real systems, using
the output signal of the real system as a feedback signal for
the controller in the digital domain may not only cause the
digital twin not to follow the physical system but the digital
twin may also become unstable. We will investigate this in
Section V of this paper.

B. Architecture II

Fig. 3 shows architecture II. In this architecture, in order
to have the equivalent behavior of the physical system in
the digital domain, we try to design an observer. We were
motivated to propose this architecture since from a control
theory perspective, we need a kind of observation for making
digital twins. The observer can estimate the physical systems
behavior using input and output signals of the physical system,
which are sent through the network to the digital domain. Here,
we propose using a Kalman filter as an observer. Because
Kalman filter can estimate the actual signal by optimally
removing noise from the its input signals. We suppose the
state-space model of the physical system is as follows:

xk+1 = Axk +Buk +Gwk w → N(0, Q)
yk = Cxk + Fvk v → N(0, R)

(1)

Fig. 3. Architecture II

In this model x is the state vector, y is the output signal, u
is the input signal, w is process noise and v is measurement
noise. Here we consider process noise and measurement noise
to be white noise with covariances Q and R respectively.
A Kalman filter for this system will be designed using the
following algorithm, which consists of two parts: time update
and measurement update [9]. The time update part consists of
the following steps:

1) x̂k|k−1 = Akx̂k−1|k−1 +Bkuk (2)

2) Pk|k−1 = Gk−1Qk−1G
T
k−1 +Ak−1Pk−1|k−1A

T
k−1 (3)

and the measurement update part consists of following steps:

3) Kk = Pk|k−1C
T
k

(
CkPk|k−1C

T
k + FkRkF

T
k

)−1
(4)

4) x̂k|k = x̂k|k−1 +Kk

(
yk − Ckx̂k|k−1

)
(5)

5) Pk|k = (I −KkCk)Pk|k−1 (6)

where P is the estimating covariance matrix and K is
Kalman gain. This observer estimates state variables of the
system. The systems output can also be estimated based on
these state variables and using the system model as follows:

ŷk = Cx̂k (7)

so in this way, we can have an estimation of the physical
system’s behavior in the digital domain.

C. Architecture III

Architecture III is demonstrated in Fig. 4. In this archi-
tecture, similar to Architecture I, we have the model of the
real system. However, unlike Architecture I, the controller
in the virtual domain is not similar to the controller in the
physical domain. Here, in order to keep the digital twin in
sync with the physical system, we design a new controller for
the digital domain. The objective of designing this controller is
controlling the system in the digital domain so that it imitates
its physical counterparts behavior. For this, we design a PID
(Proportional, Integral, Derivative) controller that receives the
real systems output signal as a reference signal. First, by
comparing this signal with the output signal of the digital twin
an error signal is calculated:

e = yi − y′i (8)

Then a PID controller is designed as follows:

Fig. 4. Architecture III

u′c = Kpe+Kd
de

dt
+Ki

∫ t

0

e(t)dt (9)

where kp is proportional gain, kd is derivative gain and ki
is integral gain. This controller tries to calculate the control
signal so that it minimizes the error between the output of the
digital and physical twins. We will evaluate the performance
of this architecture in Section V.

IV. EXPERIMENT

We evaluate our proposed architectures using a simulated
ball and beam process in Matlab. As the physical twin, we
simulate the ball and beam process using the Lagrangian
equation of motion for the ball:

0 =

(
J

R2
+m

)
r̈ +mg sinα−mrα̇2 (10)

α =
d

L
θ (11)

and we choose its parameters based on [10].
We use a set of input and output data of this system to

extract a model based on system identification algorithms, and
we use this model as the counterpart of the physical system
in the digital domain. In order to simulate the network that is
between the physical domain and digital part (cloud), we uti-
lize TrueTime [11], a Simulink toolbox for simulating network
transmissions. We consider this network to be Ethernet with
2.5% packet loss probability and 40 ms network delay. Also,
we consider process noise and measurement noise as white
noise with the covariances 5×10−6 and 1×10−3 respectively.

The performance of each of the proposed architectures is
evaluated by measuring the error between the output signals
of the architecture and the physical system |y − y|. We also
measure settling time, the time it takes for the error |y − y|
between the output signal of the digital twin y and the output
signal of the physical system y to fall to within 2% of y.

V. RESULTS

In this section, results are presented for all three proposed
architectures for digital twins. In order to investigate how these
proposed architectures are able to follow the physical systems
behavior even when some unexpected changes happen in the
system, first, we choose 1 as a setpoint for the ball position
in the physical domain and then at 25 s we add a ramp signal
with slope=0.01 to the prior setpoint. As can be seen in Fig. 5,

Fig. 5. Performance of proposed architectures

the digital twin of the ball and beam system made based
on Architecture I, not only does not follow its counterparts
behavior, but also is unstable. This happens since simulated
models of systems usually do not work exactly the same as
real systems, and so using the output signal of the real system
as a feedback signal for the controller in the digital domain
causes instability.

The dash-dotted curve in Fig. 5 shows the output signal of
the digital twin made using Architecture II. As can be seen, in
transient state, the digital twin does not behave similar to the
physical system, but in steady state, it can follow the physical
systems behavior well. The error signal for this architecture
is illustrated in Fig. 6, and the average of this signal (mean
error) equals 0.0193. Also, as can be seen in Fig. 5 and 6, the
settling time for architecture II equals 11.22 s.

The output signal of the digital twin made using Archi-
tecture III is illustrated by the dashed curve in Fig. 5. This
signal follows the position of the ball in the physical domain
well. The error signal for this architecture is shown in Fig. 6,
and the average of this signal (mean error) equals 0.0054,
which is very small. Also, as can be seen in Fig. 5 and 6,
the settling time for Architecture III in this experiment equals
1.77 s, shorter than the settling time of Architecture II

As a result, we can say Architecture III has the best
performance because it has the smallest mean error and
also the fastest settling time. After that, as a second option,
Architecture II could be useful if the transient state is not
important. However, Architecture I is unstable and is not a
good option for making digital twins.

VI. CONCLUSION

Digital Twin is one of the main concepts associated with
smart manufacturing. With digital twins, we have virtual
replicas of physical systems that precisely mirror the internal
behavior of the physical systems. Hence, synchronization to
keep the states of digital twins in sync with those of their
physical counterparts is crucial. In this paper, we proposed
three architectures to make a digital twin that works in sync
with its physical counterpart. We evaluated these architectures
and we demonstrated the output of Architecture III has the
smallest error compared with the physical systems output and

Fig. 6. Error signals

also has the smallest settling time.

ACKNOWLEDGMENT

This paper was supported by the Celtic-Next project
5G PERFECTA funded by Vinnova, and the SSF project
SEC4FACTORY under grant no. SSF RIT17-0032. The au-
thors are part of the Excellence Center at Linkping-Lund
on Information Technology (ELLIIT) strategic research area,
and the Nordic University Hub on Industrial IoT (HI2OT)
funded by NordForsk. Maria Kihl is partially funded by the
Wallenberg AI, Autonomous Systems and Software Program
(WASP) funded by the Knut and Alice Wallenberg Foundation.

REFERENCES

[1] J. Cheng, W. Chen, F. Tao, and C.-L. Lin, “Industrial IoT in 5G environ-
ment towards smart manufacturing,” Journal of Industrial Information
Integration, vol. 10, pp. 10–19, 2018.

[2] M. Farsi, A. Daneshkhah, A. Hosseinian-Far, and H. Jahankhani, Digital
Twin Technologies and Smart Cities. Springer, 2020.

[3] E. Glaessgen and D. Stargel, “The digital twin paradigm for future
NASA and US Air force vehicles,” in 53rd AIAA/ASME/ASCE/AHS/ASC
structures, structural dynamics and materials conference 20th
AIAA/ASME/AHS adaptive structures conference 14th AIAA, 2012, p.
1818.

[4] M. Grieves, “Digital twin: manufacturing excellence through virtual
factory replication,” White paper, vol. 1, pp. 1–7, 2014.

[5] M. Eckhart and A. Ekelhart, “Digital twins for cyber-physical systems
security: State of the art and outlook,” in Security and Quality in Cyber-
Physical Systems Engineering. Springer, 2019, pp. 383–412.

[6] ——, “Towards security-aware virtual environments for digital twins,”
in Proceedings of the 4th ACM workshop on cyber-physical system
security, 2018, pp. 61–72.

[7] P. Jain, J. Poon, J. P. Singh, C. Spanos, S. R. Sanders, and S. K. Panda,
“A digital twin approach for fault diagnosis in distributed photovoltaic
systems,” IEEE Transactions on Power Electronics, vol. 35, no. 1, pp.
940–956, 2019.

[8] M. Eckhart and A. Ekelhart, “A specification-based state replication
approach for digital twins,” in Proceedings of the 2018 Workshop on
Cyber-Physical Systems Security and Privacy, 2018, pp. 36–47.

[9] D. Simon, Optimal state estimation: Kalman, H infinity, and nonlinear
approaches. John Wiley & Sons, 2006.

[10] Ball and Beam: Simulink Modeling. [Online].
Available: http://ctms.engin.umich.edu/CTMS/index.php?example=
BallBeamsection\=SimulinkModeling.

[11] A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and K.-E. Arzen, “How
does control timing affect performance? analysis and simulation of
timing using jitterbug and TrueTime,” IEEE control systems magazine,
vol. 23, no. 3, pp. 16–30, 2003.

http://ctms.engin.umich.edu/CTMS/index.php?example=BallBeamsection \=SimulinkModeling.
http://ctms.engin.umich.edu/CTMS/index.php?example=BallBeamsection \=SimulinkModeling.

	I Introduction
	II Targeted System
	III Proposed Solution
	III-A Architecture I
	III-B Architecture II
	III-C Architecture III

	IV Experiment
	V Results
	VI Conclusion
	References

