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Age-relatedmisfolding and aggregation of disease-linked proteins in selective brain regions is a characteristic of neurodegenerative
diseases. Although neuropathological aggregates that characterize these various diseases are found at sites other than synapses,
increasing evidence supports the idea that synapses arewhere the pathogenesis begins. Understanding these diseases is hampered by
our lack of knowledge of what the normal functions of these proteins are and how they are affected by aging. Evidence has supported
the idea that neurodegenerative disease-linked proteins have a common propensity for prion protein-like cell-to-cell propagation.
However, it is not thought that the prion-like quality of these proteins/peptides that allows their cell-to-cell transmission implies a
role for human-to-human spread in common age-related neurodegenerative diseases. It will be important to better understand the
molecular and cellular mechanisms governing the role of these aggregating proteins in neural function, especially at synapses, how
their propagation occurs and how pathogenesis is promoted by aging.

1. Synapses

The brain is particularly vulnerable to degenerative diseases
of ageing. Aberrant aggregation of proteins/peptides is the
common theme among these diseases. Alzheimer’s disease
(AD) and Parkinson’s disease (PD) are the most common
age-related neurodegenerative diseases, while other less com-
mon, albeit devastating, neurodegenerative diseases include
Huntington’s disease (HD), amyotrophic lateral sclerosis
(ALS), prion diseases, and frontotemporal dementia (FTD).
Although the specific protein aggregates and selective cellular
vulnerabilities differ, shared disease mechanisms are increas-
ingly apparent among neurodegenerative diseases and next
to aberrant protein aggregation also include anatomically
selective cell-to-cell propagation. Major themes of research
on these diseases have included therapeutic neurotransmit-
ter replacement, most successful with dopamine for PD,
elucidating the biology of aberrant protein misfolding, and
trying to understand how ageing promotes the development
of these diseases. More recently, synapses have moved more
to the center of research on these diseases [1, 2]. Neurites

(axons and dendrites) and synapses are a unique feature
of neurons and play fundamental roles in brain function.
Furthermore, the aggregation-prone proteins linked patho-
logically and genetically to neurodegenerative diseases are
normally present particularly at synapses. For example, the
PD-linked protein 𝛼-synuclein is known to normally reside
primarily in presynaptic compartments [3, 4], although, as
the name indicates, a nuclear role also characterizes this
protein that aggregates in the distinctive cytoplasmic Lewy
bodies andLewyneurites that characterize PDand the related
Lewy body dementia (LBD).

An important role at synapses for the AD-linked 𝛽-
amyloid (A𝛽), and the amyloid precursor protein (APP) from
which it is derived, is also increasingly becoming apparent
(Figure 1). APP is transported down axons and dendrites
to synapses [2, 5], where the proteases that generate A𝛽
are also localized [6]. The precise processing and trafficking
of APP and A𝛽 in pre- versus postsynaptic compartments
and how these relate to the mechanism of synaptic damage
in AD remain to be elucidated. Evidence supports that A𝛽
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Figure 1: Schema of synaptic biology relating to Alzheimer’s
disease. APP is present in endosomes, including early and late/MVB
endosomes, as well as at the cell surface. A𝛽 is associated withMVBs
and other endosomes, as well as being secreted from the cell surface,
also via exosomes.The relative proportions of A𝛽 peptides and APP
processing in the pre- versus postsynapse remain uncertain. The
cellular mechanism(s) of A𝛽 transmission from or to the pre- and
postsynapse is also not yet clear. MVB: multivesicular body; EE:
early endosome; SV: synaptic vesicle.

accumulation in synapses alters synaptic function by altering
important synaptic proteins and receptors [2].

A major hurdle for research on neurodegenerative dis-
eases has been that the normal physiological roles and func-
tions of the aggregation-prone proteins have been difficult
to ascertain. A potential reason for this could very well be
that synapses are so complex and are only gradually being
elucidated. Althoughmouse knockout studies do not support
that loss of function of the disease-linked proteins is the
salient issue in these various diseases [7, 8], it is nevertheless
possible that their propensity to aggregate is a feature that
makes these proteins normally important at synapses. It is
further possible that a better understanding of the normal
function of neurodegenerative-linked proteins at synapses
will be important in order to uncover better therapeutic
targets and devise more effective therapies for these diseases.

Synaptic activity and plasticity are of central importance
in the brain and at synapses, and it has become clear that
neurodegenerative disease-linked proteins are modulated by
synaptic activation [9, 10]. The major nonneuronal cells of
the brain, the astrocytes and microglia, are also increasingly
linked to synaptic function and thereby might impact the
pathophysiology of these diseases that appear to initiate at
synapses. Modulation of synapses has also been shown to
directly impact synapse damage in the brain of transgenic
mouse models of neurodegenerative diseases [11].

2. Endosomes

The endosome-lysosome system and the ubiquitin protea-
some system (UPS) play many essential roles in cells and
are increasingly implicated in neurodegenerative diseases
of ageing [12]. In neurons, these systems, best known for
their role in protein degradation, are also important for the
normal function of synapses [13].The diversity of rare genetic
neurodegenerative storage diseases of childhood linked to
aberrant protein or lipid accumulation in the endosome-
lysosome system supports the potential disease relevance of
this system also in the common age-related degenerative
diseases of the brain [14]. The endosome-lysosome system
is involved in many central functions, including cellular
internalization, degradation, and release. In Down syndrome
(DS), characterized by trisomy of chromosome 21, which
invariably leads to age-relatedAD-like pathology anddemen-
tia, abnormal endosome enlargement has long been known to
precede the characteristic neuropathological amyloid plaques
and tau tangles [15].

The related autophagy system is intimately linked with
the endosome-lysosome system and is important for the
engulfment and degradation of larger subcellular structures,
including whole organelles. Autophagy is a prominent neu-
ropathological feature of neurodegenerative diseases [16],
where autophagic vesicles, limited by double ormultilamellar
membranes, accumulate in neurons and their processes.
Autophagic vesicles are particularly abundant in dystrophic
neurites in AD brain and transgenic mouse models of AD.
Autophagic vesicles are thought to form from the formation
of double membranes in the cytoplasm. Autophagic vesicles
are thought to subsequently fuse with endosomes or lyso-
somes followed by degradation of their contents by lysoso-
mal proteases. Although autophagy is considered a mech-
anism of normal cellular degradation, autophagy is rarely
seen on electron micrographs of normal brain (personal
observations). The autophagy system is further implicated
in neurodegenerative diseases of ageing, since inhibition
of the mammalian target of rapamycin (mTOR), which is
well known to induce autophagy, was found to prolong
the lifespan in lower organisms and mammals [17]. More
recent studies show that pharmacological mTOR inhibition
by rapamycin is protective in transgenic mouse models of
Alzheimer’s disease [18, 19]. A challenge for the development
of treatments of neurodegenerative diseases based on mTOR
inhibition is that mTOR is part of a central signaling system
regulating many cellular functions. For example, mTOR is
important in synaptic plasticity [20].

Neurites can extend considerable distances and synapses
are thus at a greater distance from their cell bodies than
are components of other cells. Moreover, lysosomes do not
normally reside in neurites and synapses. Therefore, protein
degradation at synapses depends on retrograde transport
via endosomes back to the cell body. Late endosomes can
take on some limited lysosomal functions, but compared to
lysosomes they aremuch less efficient at degradation, particu-
larly of aggregation prone insoluble proteins. Endosomes also
play important roles in the regulated delivery, recycling, and
degradation of receptors at synapses that are important for
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synaptic plasticity [21]. Interestingly, the inner vesicles that
characterize the late endosomal multivesicular body (MVB,
alternatively called multivesicular endosome) are released as
exosomes, and increasing evidence suggests that exosomes
may be important in the release and propagation of neu-
rodegenerative disease-linked proteins [22]. Several of these
disease-linked proteins have been localized to endosomes.
For example, AD-linkedA𝛽 peptideswere shown to normally
localize and then accumulate and aggregate particularly in
MVBs of dystrophic neurites and synapses of AD transgenic
mouse models and human AD brains, where they associated
with localized subcellular pathology, even prior to extracellu-
lar amyloid plaques [23–25].

The UPS is also increasingly linked with neurodegener-
ative diseases of ageing. For example, mutations in Parkin
represent an example of a UPS-linked protein (component
of a ubiquitin ligase) that is mutated in familial forms of
PD. Moreover, the UPS and the endosome-lysosome system
are linked, since transmembrane proteins at the cell surface,
including APP and neurotransmitter receptors at synapses,
can be ubiquitinated and routed via the endocytic pathway
to the lysosomes for degradation [13, 26]. AD-linked A𝛽
normally localizes to andwithADpathogenesis preferentially
accumulates at the outer limiting membranes of MVBs [23]
where the endosomal sorting complexes required for trans-
port (ESCRT) reside, which is involved in targeting ubiq-
uitinated transmembrane proteins for degradation. Experi-
mental evidence supports that accumulating A𝛽42 associated
withMVBs impairsMVB sorting by disrupting the UPS [26].
Altered regulation of synaptic protein trafficking from early
aberrant protein/peptide accumulation near synapses might
lead to the earliest synapse dysfunction in neurodegenerative
diseases [2]. Interestingly, mutations of CHMP2b, a compo-
nent of ESCRTIII, have been linked with familial forms of
FTD [27]. Although FTD, the 2nd most common cause of
dementia before the age of 65, is not genetically linked with
A𝛽/APP, it has been linked to familial mutations in tau, the
main constituent of the other characteristic neuropathology
of AD, the neurofibrillary tangles. Moreover, cells release tau,
which interestingly is also stimulated by synaptic activity [28].
Release of taumay potentially occur viaMVBs and exosomes.
Cell-to-cell propagation of tau has recently become a hot
topic in the field of neurodegenerative diseases [29].

The endocytic pathway is also central to cholesterol and
lipid uptake and trafficking in neurons, which are implicated
in AD [30, 31] and are important in injury and synapse
remodeling in neurons. The lipoprotein carrier apolipopro-
tein E4 (ApoE4) polymorphism is the major genetic risk
factor for typical late onset AD. Cholesterol traffics via the
endocytic pathway into cells, and together with the endoplas-
mic reticulum (ER) and mitochondrial-ER membranes, this
interconnected pathway that regulates cellular cholesterol
metabolism has been related to A𝛽 [32]. Recent research sup-
ports that apoE, generated mainly by astrocytes, is important
for regulating neuronal A𝛽 [33, 34]. Interestingly, the apoE
receptor, low-density lipoprotein receptor (LDLR) related
protein (LRP), is routed from the plasma membrane to
the limiting membrane and then internal vesicles of MVBs
and interacts with APP via Fe65 [35]. As noted previously,

A𝛽 normally localizes to MVBs and with AD pathogenesis
accumulates at MVBs, and upon release from the cell,
MVB inner vesicles are then called exosomes. Thus, it is
conceivable that apoE biology intersects with A𝛽/APP in
endosomes andmight evenmodulate propagation of secreted
misfolded proteins via exosomes and/or protein degradation
via the MVB-lysosome pathway. In addition, endosomes
have a lower pH, which is known to promote aggregation
and amyloid formation of misfolding proteins, including A𝛽
and PrP [36–38]. Finally, evidence consistent with leakage
of endosome-lysosome contents by A𝛽 has been reported
[39, 40]. Consistent with such leakage, immunoelectron
microscopy showed marked accumulation of A𝛽42 directly
associated with outer membrane disruption of MVBs in AD
transgenicmice [23].Thus,multiple lines of evidence point to
an important role of the endosomal-lysosomal system and in
particular of endosomes at neurites and synapses in common
neurodegenerative diseases of ageing.

3. Prions

Prions are the unusual proteins that are best known for
their ability to propagate disease between members of a
species and between different species [41]. Prion diseases have
therefore been classified among infectious diseases. Formerly
classified as atypical “slow virus” diseases, this nomenclature
was abandoned, since they propagate as proteins and in
contrast to viruses lack nucleic acids. However, clinically and
pathologically, prion diseases are most similar to common
neurodegenerative diseases, such as AD. Prions can form
fibrillar aggregates with amyloid-like characteristics. The
normal role of the prion protein is also poorly understood
[8], although it is expressed at particularly high levels in
the brain and is thought to primarily localize to synapses.
Analogous to AD and PD, the majority of prion diseases are
sporadic, without a clear infectious or genetic cause. Less
common familial forms of prion disease with mutations in
the prion protein exist. Although the term prion is widely
associated with fear, based on its infectivity from highly
publicized outbreaks of prion disease, prion proteins are
normal proteins that can even provide protective functions
[42, 43]. Thus, prions, like amyloids [44], should not be only
viewed in a negative light, and PrP likely plays important
physiological roles, which potentially may be particularly
relevant at synapses. The mere evolutionary presence of PrP,
which is conserved in mammals, as well as some deficits
noted in PrP deficient mice [45], supports a physiological
role for PrP. A more recent development in research on
neurodegenerative diseases is the surprising realization that
other disease-linked aggregation prone proteins, such as A𝛽
[46, 47],𝛼-synuclein [48, 49], and tau [29], can also propagate
in experimental systems.

Despite the many years of research on prion propagation,
the cellular mechanism(s) of propagation still remain(s)
unclear. The recent surge of research on this topic partic-
ularly in AD, PD, ALS, and HD will undoubtedly lead to
important new insights. Some overlooked earlier papers have
provided clues to cellularmechanisms of propagation in these
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diseases. For example, a literature from the 1990s showed that
exogenously added extracellular AD-linked A𝛽1–42 peptides
induced a marked upregulation of newly generated A𝛽42
within the treated cells [50]. Moreover, it was shown that
extracellular A𝛽1–42 failed to alter synapses in the absence
of APP or in neurons where de novo generation of A𝛽
was inhibited [10]. Similarly, depletion of endogenous PrP
protects against scrapie-induced PrP pathogenesis [51, 52].
While neurons generate A𝛽 from APP within neurons,
secreted A𝛽 can also be internalized by neurons [53]. More
recent evidence points to synapses as selective sites of neuron-
to-neuron spread of A𝛽 [54]. One could speculate that release
of exosomes might be particularly prominent near synaptic
terminals, although it was estimated that only about 1% of
released A𝛽 was associated with exosomes [55]. Overall,
the cell biology of such synapse-associated endocytic and
exocytic pathways in neurons is less well understood than of
other cells.

A challenge in considering prion-like cell-to-cell propa-
gation is to explain where and how the initial pathological
conformation of disease-linked peptide forms and what
determines the anatomical selectivity of spread by various
disease-linked proteins. Recent evidence supports the sur-
prising scenario that in the setting of aberrant intracellular
protein aggregation, the secretion ofAD-linkedA𝛽 is actually
impaired [56]. In general, the release of more toxic soluble
oligomers appears to be at much lower levels than those
of monomeric proteins; for example, the concentration of
A𝛽 oligomers is about 1% of the monomeric forms in
cerebrospinal fluid. In addition, aggregation of misfolded
proteins begins in a selected population of neurons. Thus,
it follows that if abnormal aggregation can initially arise
spontaneously in one anatomical region, it might be possible
that other vulnerable cells might also have de novo appear-
ance of abnormal aggregated conformations rather than a
prior requirement for propagation from other cells. It is also
possible that despite the reductions in the normal secretion
of monomers, cell-to-cell transmission of more aggregated
oligomers may be the driving force in disease propagation,
which even at low levels might still act as the nidus to drive
further aggregation in the recipient cells.

There is no convincing evidence that proteins linked
to the common age-related neurodegenerative diseases can
spread from person to person as was recently highlighted
in a study of patients who had received growth hormone
[57]. Thus, neuroscientists need to contribute to reducing
the excessively alarmist view that is linked with the term
prion in the public. Actual prion diseases are remark-
ably rare in humans and even the highly publicized out-
breaks were relatively small in scale. For example, the
number of human cases of variant Creutzfeldt-Jakob dis-
ease cases per year associated with the outbreak of bovine
spongiform encephalopathy in Great Britain peaked in
the year 2000 with 28 deaths (http://www.promedmail.org
/direct.php?id=20120809.1236446). Yet, this overall low inci-
dence of human cases should not take away from the impor-
tance of proper safety precautions associated with avoiding
contamination with prions or in efforts to prevent prion
outbreaks in animals and man.

4. Conclusion

Neurodegenerative diseases of ageing are a growing disease
epidemic that is placing an increasing financial and emo-
tional toll on societies. Our slow progress in developing
treatments that will eventually slow down or even halt the
progression of these debilitating diseases likely hinges on a
better understanding of the complexity of the ageing brain,
cell biology, and synapses. Rare gene mutations or more
common polymorphisms have provided new clues in our
understanding of the biochemical pathways that determine
these important diseases. Synapses are turning out to be
potentially critically vulnerable sites prone to diseases of
protein misfolding. The major degradative organelles, the
lysosomes, localize to the cell body of neurons and are thus
removed from distal neurites and synapses in which various
endosomal organelles provide diverse functions, including
secretion and degradation. Cellular degradation systems,
such as the endosome-lysosome system and the UPS, may
be particularly vulnerable to the development of age-related
dysfunction of the nervous system and thereby might pre-
dispose to aberrant protein aggregation with ageing. Major
contributors to the ageing process, including mitochondrial
dysfunction, cardiovascular disease, and inflammation, likely
impact the declining function of these important cellular
degradation pathways. It will be critical to better define the
cellular and biochemical pathways implicated in neurodegen-
erative diseases as well as to elucidate the normal biology
of synapses. It is also possible that the aggregation-prone
properties ofmisfolding proteins linked to neurodegenerative
diseases hinge on their normal role at synapses and their
propensity to aggregate. Furthermore, it will be important to
better define themore precise cellular mechanisms leading to
cell-to-cell propagation of neurodegenerative disease-linked
proteins.
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