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Summary 
 
Explicit formulas were developed for the stress in lap joints loaded in-plane by normal 
force, shear force and edge-wise bending, giving shear stress in the bond layer. The bond 
layer material was assumed to be linear elastic with equal or different shear stiffness in the 
two principal directions of the joint. The two adherends were assumed to act as rigid 
bodies. By these assumptions were equations for the shear stresses τxz and τyz in the bond 
layer developed, the z-axis being normal to the bond area. The global stiffness properties of 
a joint were also determined.  
 
Explicit equations for the stresses σx, τxy and σy in the adherend material were determined 
by means equations of equilibrium and by assuming linear variation of the normal stress σx 
with respect to y, i.e. the same variation as assumed in conventional beam theory.  
 
Knowing the stress fields for the stresses in the bond layer and in the adherends, also the 
maximum stresses were determined, making it possible to formulate failure criteria and 
identify different joint failure modes. With strength properties typical for wood adherends 
and a glue bond layer it was for joints exposed to bending found that bond failure was 
decisive only for very short joints, i.e. for joints with a small length to height ratio. For 
joints with intermediate length to height ratios were the adherend material modes of failure 
and the corresponding stress components decisive: the shear stress τxy, the rolling shear 
stress τyz and/or the tension perpendicular to grain σy. The normal stress σx is decisive for 
the full bending moment capacity of the adherends. This capacity was reached for long 
joints.    
 
The accuracy of the stress equations were studied by means of plane stress finite element 
analysis, taking into account linear elastic deformations of the adherends. It was found that 
the assumption of linear variation of the normal stress σx with respect to y is reasonable. 
The assumption of rigid adherend performance was studied by identifying a dimensionless 
adherend rigidity ratio, which for joints with an isotropic adherend material is Ebt/(Ga2) 
where E, b and a represents the Young’s modulus, thickness and length, respectively, of 
the adherends, and t and G the thickness and the shear modulus, respectively, of the bond 
layer material. Good accuracy was for found for joints made up of steel adherends joined 
by means of a rubber foil glued between the steel parts. For corresponding rubber foil 
adhesive joints with wood adherends was good accuary found for joints of small size.     
 
 
 
 
   
 
 
 



Denna sida skall vara tom!



5 
 

1.  Introduction 

Lap joints of the kind shown Figure 1 are considered. The adherends can be made of wood, 
steel or any other reasonably stiff structural material. In the analysis it is assumed that the 
adhered material is very stiff as compared to the bond layer material. The bond layer is 
assumed to compliant with a linear elastic isotropic or orthotropic performance. It can for 
instance be made up of a rubber foil glued in between the two adherends. The results 
obtained might be applicable also to nailed joints and punched metal plate nail fastener 
joints with a large number of nails so that their action can be approximated with distributed 
shear stress.  
 
Only the in-plane performance of joints with a rectangular bond area is considered. The 
analysis is thus 2D and relates to the stress components σx, σy and τxy in the adherends and 
to the out-of-plane shear stress components τxz and τyz in the bond layer, and to the joint 
strength as limited by the magnitude of these stress components. It is in analogy with beam 
theory analysis assumed that the variation of the normal stress σx is linear with respect to y. 
The below derivations are carried out with reference to a single lap joint, Figure 1a), but 
the results are valid also for double lap joints and pairs of double lap joints, Figure 1 b).  
 
Method for calculation of the 3D stiffness and bond layer stress components in lap joints 
has been dealt with in (Gustafson, 2006). The purpose of the present study is to find 
equations for simple calculation of the adherend stresses σx, σy and τxy in the joint area. 
Experimental tests of various wood material lap joints joined with a flexible bond layer 
have shown that fracture in the wood corresponding to the stress components σx, σy and/or 
τxy often is decisive for the load carrying capacity. The calculated stresses are approximate 
as a result of the assumptions of rigid adherend performance and linear variation of σx with 
respect to y. Experimental results are available in (Gustafsson, 2007) and (Björnsson and 
Danielsson, 2005) for rubber foil glued lap joints glulam-to-glulam, LVL-to-glulam, wood-
to-wood and glulam-to-steel.  
 
 

 
 
Figure 1. Example of lap joints: a) with a single lap and, b), with two double laps. 

a) x 

y 

b) 

z 
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2.  Bond layer shear stress and joint stiffness 

2.1  Notations and assumptions 

Figure 2. Back adherend of the joint in Figure 1a) with notations. 
 
Notations and measures of an adherend are shown in Figure 2.  The thickness of the bond 
layer is denoted t. The bond area is a rectangle, ah, and the adherend is a cuboid, ahb. The 
bond layer shear stresses τxz and τyz, and the global joint stiffness are calculated at the 
following assumptions: 
 
• Rigid performance of the adherends 
• Relative movement between the two adherends only in the x-y plane, i.e. 2D analysis 
• Linear elastic isotropic or orthotropic properties of the bond layer 
• Constant shear strain and stress in the bond layer across the thickness t of the layer, i.e. 

constant τxz and τyz with respect to z   
 
The cases isotropic and orthotropic stiffness of the bond layer are both dealt with. The 
isotropic shear modulus is denoted G, and the orthotropic shear moduli are denoted Gxz and 
Gyz. The case of orthotropic shear stiffness of the bond layer is of interest in the case of 
wood adherends since the out-of-plane shear deformations of the adherends in an 
approximate manner can be considered by including them in the bond layer compliance.     
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2.2  Isotropic case  
 
The assumptions made in Section 2.1 imply for the case of isotropic bond layer properties 
that 
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where Δu, Δv and Δθ indicate the relative rigid body movement between the two adherends 
with the centre of the bond area as point of reference as indicated in Figure 2: 
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The surface loads rx and ry acting on the back adherend are by the law of action and 
reaction equal to the bond layer shear stresses: 
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The force and moment actions that are statically equivalent to the surface loads are 
obtained from Eq. (1) by integration: 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Δ
Δ
Δ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ ∫
θ
v
u

I
A

AtGdA

yrxr
r
r

M
V
N

p

b

b

xy

y

x
A

b

b

b
b

00
00
00/

    (4) 

 
This equation gives the stiffness of the joint with the centre of the bond area as point of 
reference. Ab is the bond area and Ip is the polar moment of inertia of the bond area as 
defined in Figure 2. Equilibrium of the adherend relates the surface load action to the cross 
section forces and moments: 
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Before the calculation of adherend stresses it is convenient to combine (4) and (5) for 
calculation of the relative displacements from given cross section quantities: 
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Use of Eq. (1) and (3)-(6) gives the following alternative equations for the bond layer shear 
stresses as a function of the global joint deformation, the surface load actions or the cross 
section forces and bending moment: 
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The total bond layer shear stress, τb, is: 
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2.3  Orthotropic case 

For orthotropic stiffness properties of the bond layer is 
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where β=Gyz /Gxz. Analysis in analogy with the analysis for isotropic bond layer stiffness 
gives the joint stiffness as 
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where or

bA and or
pI are defined in Figure 2. The orthotropic correspondence to Eq. (6) 

becomes  
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which gives the following alternative equations for the bond layer shear stresses and for the 
surface load acting on the adherend: 
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The alternative equations for the total shear stress of an orthotropic bond layer becomes 
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2.4  Illustration of bond layer shear stress distribution 
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The above illustrations of calculated distribution and magnitude of the shear stresses in an 
isotropic and an orthotropic bond layer are valid for a joint with length a=300 mm and 
height h=200 mm loaded by a pure bending moment Mo=26.67 kNm. The calculations 
were made by means Eq. (12) and (13). Red color indicates positive shear stress and dark 
blue color negative or zero shear stress. The bending moment 26.67 kNm corresponds to 
the bending stress 40 MPa for beam cross section of height 200 mm and width 100 mm. 

Isotropic bond layer, β=1.0        Orthotropic bond layer, β=0.25 

  τyz  max/min: 6.15/-6.15 MPa                      τyz  max/min: 3.20/-3.20 MPa           

  τb,  max/min: 7.40/0.00 MPa                         τb, max/min: 9.11/0.00 MPa           

 τxz  max/min: 4.10/-4.10 MPa                      τxz max/min: 8.53/-8.53 MPa               
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3.  Adherend stress analysis 
3.1  Assumptions 

The adherend stresses σx, σy and τxy are derived by means of two assumptions and by use 
of equations of equilibrium and static equivalence. The first assumption is that the surface 
loads rx and ry are according to Eq. (7) for the isotropic case and according to (12) for the 
orthotropic case. Eq. (7) and (12) were obtained from the assumption listed in Section 2.1 
and are thus accurate if the adherends are stiff and the bond layer is linear elastic and 
reasonably thin. The second assumption is that the normal stress σx has a linear variation 
with respect to y, i.e. that  
 

yxCxCyxx )()(),( 21 +=σ         (14) 
 
The linear variation of σx(y) is in accordance with the Bernoulli-Euler and Timoshenko 
beam theories. No assumption is made with respect to the properties of the adherend 
material. However, the assumptions of linear σx(y) and surface loading according to Eq. (7) 
or (12) suggests that the analysis relates primarily to adherends that are linear elastic and 
stiff as compared to stiffness of the bond layer. 
 
The stresses σx, σy and τxy can now be determined from the equations of equilibrium for a 
plate, 
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, together with the boundary conditions indicated in Figure 2: i.e. three edges where the 
edge tractions are zero and one edge where the integrated action of σx is statically 
equivalent with the cross section loads No and Mo, and the integrated action of τxy is 
statically equivalent with Vo. 
 
In the below are the equilibrium and static equivalence calculations carried out in steps in 
analogy with beam theory analysis so that distributed beam load and also the cross section 
bending moment, normal force and shear force are obtained as intermediate results. 
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3.2  Adherend line loads  
 
The surface loads rx and ry acting on the adherend can by static equivalence be expressed 
as force and moment line loads qx, qy and mz acting on the line y=0:  
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The above result is valid for the isotropic case. The orthotropic case gives 
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3.3  Adherend cross-section forces and moment 
 
The cross section forces and moment acting on the part to the left of a cross section located 
at x are obtained by equations of equilibrium.  The action of the line loads is calculated by 
integration from x=-a/2 to x=x. For the isotropic case, the equations of equilibrium give: 
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The relation V=dM/dx, often cited in textbooks, is not valid in this case because of the non-
zero bending moment line load mz. 
 
For the orthotropic case, i.e. for β≠1, is found: 
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3.4  Normal stress σx 

Due to the assumption if linear distribution of σx with respect to y, σx can be calculated in 
the same way as by conventional beam theory: 
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where Ac=bh is the cross-section area and Iz=bh3/12 is the moment of inertia of the cross-
section. With N(x) and M(x) from Eq. (18), the normal stress σx in point (x,y) is for the 
isotropic case found to be 
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The orthotropic case gives 
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3.5  Shear stress τxy 
 

 
Figure 3.  Free body diagram of a part (h/2-y)dx of an adherend. 
 
 
The shear stress τxy in a point (x,y) is found by equilibrium of  the horizontal forces acting 
on a strip (h/2-y)dx of the adherend shown in Figure 3: 
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By dividing all terms by dx and noting that 
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it is for the isotropic case by use of the expressions for rx and σx given by Eq. (7) and (21) 
found that 
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For the case of an orthotropic bond layer, the shear stress is: 

 

oor
pz

oor
pz

xy

M
II

hyhax

V
II

hyhaxaaxah

64
)4()4(

384
)4())4(3)24)(((

2322

232222

−−
+

+
−−+++

=

β

ββτ

  (26) 

 
 
 

3.6  Normal stress σy 

The normal stress σy in a point (x,y) is determined by equilibrium of the vertical forces 
acting on the strip (h/2-y)dx shown in Figure 3: 
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Dividing all terms by dx and with dxddxxdxx xyxyxy //))()(( τττ =−+ , it is by use of Eq. 
(7) and (25) for the isotropic case found that  
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and for the orthotropic case that 
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3.7  Verification of stress formulas 

The equations for the stresses σx, τxy, and σy i.e. Eq. (21) and (22), (25) and (26), and (28) 
and (29), must fulfill the two differential equations of equilibrium and the boundary 
conditions: 
 

• fulfill Eq. (15) for all x and y, for all values No, Vo and Mo 
• give σx = τxy = 0 for x=-a/2  
• give σy= τxy = 0 for y=±h/2  
• and for x=a/2 give 
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These conditions can be fulfilled by various stress fields. The particular stress solution 
considered here must moreover fulfill the assumption of linear variation of σx with y, i.e. 
Eq. (14). The above conditions make it possible to check the stress equations. 
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3.8  Illustration of distribution of stresses in an adherend 
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The above illustrations of calculated magnitude and distribution of the in-plane stresses in 
an adherend for isotropic and an orthotropic bond layer properties are valid for a joint with 
length a=300 mm and height h=200 mm and adherend thickness b=100 mm loaded by a 
pure bending moment Mo=26.67 kNm. The calculations are made by means Eq. (22), (26) 
and (29). Note the different magnitude of the stresses σy and τxy for the isotropic and 
orthotropic cases, although the shape of the stress distributions are the almost same. For σx 
and σy is red color indicating positive stress (tension) and blue color negative stress. For τxy 
is red color indicating negative stress and dark blue color zero stress. 

    Isotropic bond layer, β=1.0         Orthotropic bond layer, β=0.25 

 σy  max/min: 1.18/-1.18 MPa                        σy  max/min: 0.62/-0.62 MPa             

τxy  max/min: 0.000/-6.92 MPa                    τxy  max/min: 0.00/-3.60 MPa         

   σx  max/min: 40.0/-40.0 MPa                        σx max/min: 40.0/-40.0 MPa           
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4.  Magnitude and location of extreme stresses 

The bond layer stresses τxz, τyz and τb and the adherend stresses σx, τxy and σy are given by 
the equations in Sections 2 and 3, respectively. The minimum and maximum of these 
stresses are of concern in joint strength analysis. The locations and the values of the 
extremes are for a joint with isotropic bond layer stiffness and exposed to pure bending 
Mo=Mb≠0  given in Table 1. For shear force loading, Vo, and normal force loading, No, are 
the location of the extremes shown in Table 2. For orthotropic bond layers can the 
corresponding results be obtained from the stress equations in Sections 2 and 3. 
 
Table 1. Minimum and maximum of stresses at bending Mo of an isotropic joint . 

Stress 

component 

Minimum Maximum 

Location, (x,y) Value Location, (x,y) Value 

xzτ  )2/,( hx −  
32

6
aah

M o

+
−

 )2/,( hx  
32

6
aah

M o

+
 

yzτ  ),2/( ya  
23

6
hah
M o

+
−

 ),2/( ya−  
23

6
hah

M o

+
 

bτ  )0,0(  0  )2/,2/( ha ±±  
33

226

haah

Mha o

+

+
 

xσ  )2/,2/( ha  
2

6

bh

M o−
 )2/,2/( ha −  

2
6

bh

M o  

xyτ  )0,0(  

)(4

9
33

2

haahb

Ma o

+

−
 )2/,(

),2/(
hx

ya
±

±
 0  

yσ  

)12/,2/(
)12/,2/(

ha
ha
−−

 
)(3 22 hab

M o

+

−
 

)12/,2/(
)12/,2/(

ha
ha

−
−

)(3 22 hab

M o

+
 



22 
 

Table 2. Extreme value location and value at various loading of isotropic joint. 

For normal force oN  at 2/ax = : 

Stress  Locations (x, y) Value 

xzτ  ),( yx  )/(haNo  

yzτ  ),( yx  0  

bτ  ),( yx  )/(haNo  

xσ  ),2/( ya  )/(bhNo  

xyτ  ),( yx  0  

yσ  ),( yx  0  

For shear force oV  at 2/ax = : 

Stress  Locations (x, y) Value 

xzτ  )2/,( hx ±  See Eq. 7 

yzτ  ),2/( ya±  See Eq. 7 

bτ  )0)},6/()(,2/(max{ 22 ahaa +−− , )2/,2/( ha ±  See Eq. 8 

xσ  
)2/,12/))6/()(()6/()(( 222222 haahaaha ±++±+−

*
 See Eq. 21 

xyτ  )0)},6/()(,2/(max{ 22 ahaa +−−  See Eq. 25 

yσ  )12/,2/( ha ±±  See Eq. 28 

For bending moment oM  at 2/ax = : 

Stress  Locations (x, y) Value 

xzτ  )2/,( hx ±  See Table 1 

yzτ  ),2/( ya±  See Table 1 

bτ  )0,0( , )2/,2/( ha ±±  See Table 1 

xσ  )2/,2/( ha ±  See Table 1 

xyτ  )0,0( , )2/,(),,2/( hxya ±±  See Table 1 

yσ  )12/,2/( ha ±±  See Table 1 

* also )2/,2/( ha ±±  
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5.  Joint strength analysis 

5.1  Failure criteria 

Joint strength is here analyzed at the assumption of joint failure when any of the stress 
components studied equals the corresponding strength parameter value. Combined failure 
criteria taking into account several stress components are also possible. The strength 
properties of the bond layer are regarded as isotropic and the strength properties of the 
adherend material as orthotropic. The strength parameter notation is the notation 
commonly used for wood. With the present joint failure criterion, the joint is predicted to 
fail when any of the following criteria (a)-(f) is fulfilled:  
 
(a)  Bond layer failure: 
 

bvb f ,=τ           (31) 
 
The value of bvf ,  may for instance reflect the shear strength of a rubber layer and the two 
glue lines between the rubber and the two adherends.  
 
(b)  Longitudinal out-of-plane shear stress failure in the adherend in the close vicinity of 
the adherend-glue interface: 
 

vxz f=τ           (32) 
 
(c)  Rolling shear stress failure in the adherend in the vicinity of the bond line: 
 

rvyz f ,=τ           (33) 

 
(d)  Normal stress failure in adherend: 
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This criterion for xσ  follows the assumption of joint failure when any of the stress 
components equals the corresponding strength value. At strength design of wooden beams 
in bending and combined bending and normal force is an additional third strength 
parameter commonly used, namely the so-called bending strength fm (Larsen and Riberholt, 
1999), and an other adherend failure criterion is then used: 
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where )/(bhNxn =σ  and )6//( 2bhM oxm =σ . 
 
(e)  Longitudinal in-plane shear stress failure in adherend: 
 

vxy f=τ           (35) 

 
(f)  Perpendicular to the joint normal stress failure in adherend: 
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5.2  Joint bending strength analysis – isotropic bond layer 

A joint exposed only to bending and with an isotropic bond layer is analyzed. The failure 
modes corresponding to the above criteria (a)-(f) are for this case of loading illustrated in 
Figure 4.  
 
The full bending moment capacity of the joint is determined by bending failure of the 
adherends. This moment is given by criteria (d) and denoted mM : 
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The bending moment at bond layer shear failure (a) is denoted bvM , . By use of Eq. (31) 
and (8) or Table 1 is the ratio bvM ,  to mM  found to be:  
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For longitudinal out-of-plane shear stress xzτ  in the adherend at the bond interface (b): 
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And for the rolling shear stress yzτ  in the adherend at the bond interface (c): 
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For longitudinal in-plane shear stress failure in the adherend (e): 
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And for tensile stress perpendicular to grain failure in the adherend (f): 
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For compressive stress perpendicular to the grain is the corresponding expression valid 
with 90,tf replaced by 90,cf . For timber is 90,cf > 90,tf  and accordingly is 90,cf  not 
decisive. 

 

 
 
Figure 4. Failure modes of lap joint in bending. 

Failure modes of lap joint in bending 

(a)  Bond area failure 
       (glue, rubber) 

(b) and (c)  Rolling shear 
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       failure at bond area 

(d)  Beam bending failure 

(e)  Beam shear failure 
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Figure 5. Joint bending moment capacity versus joint length to depth ratio at different 
failure modes.   
 
 
To illustrate the bending capacity corresponding to the different failure modes and how the 
joint capacity is affected by ratios a/h and h/b adherend material parameters corresponding 
to a quality of glued laminated timber are used. Characteristic strength values for glulam 
‘L40’ are according to the Danish "SBI-anvisning 210 Traekonstruktioner" (Larsen and 
Riberholt, 2005): 
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where the value of krvf ,, , not defined in “SBI-anvisning 210”, is made equal to 2/,kvf  as 
proposed in “Limträhandbok” (Carling, 2001). Index k indicates characteristic value, i.e. 
the 5 percentile value. For the bond layer is a shear strength value estimated from recent 
tests of a glued rubber foil bond:  
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The bending moment capacity of the joint versus bond area ratio ha /  for the different 
failure modes is shown in Figure 5 for the above material strength parameter values and 
adherend depth to thickness ratio 0.2/ =bh .  For the very short joints having 5.0/ ≤ha  is 
the interface longitudinal shear stress in the wood xzτ  decisive. For 7.2/5.0 << ha  is the 
interface rolling shear in the wood decisive and for 8.4/7.2 <≤ ha  is longitudinal shear in 
the centre of the wood parts decisive. The joint reached has its full bending moment 
capacity for 8.4/ =ha .  
 
Neither bond layer shear failure nor perpendicular to grain tensile failure is predicted 
for 0.2/ =bh . If increasing bh /  then the bond area related failure modes becomes less 
important and the tension perpendicular grain failure mode of greater importance. For very 
thick joints, i.e. for 0.1/ ≤bh , is the rolling shear fracture in wood of predominant 
importance. 
 
With adherend material data typical for timber and bond layer data typical for a rubber foil, 
it seems that the required joint length for full bending moment capacity is governed either 
by rolling shear fracture in the wood close to the bond area (thick joints) or by longitudinal 
shear fracture within the wood parts.  
 
 
 
5.3  Joint bending strength analysis – orthotropic bond layer 

A joint exposed only to bending and with an orthotropic bond layer is analyzed. The 
orthotropic bond layer properties are characterized by β , defined by xzyz GG /=β .  
 
The full bending moment capacity of the joint is determined by bending failure of the 
adherends. This moment capacity is given by criteria (d), it is denoted mM  and is not 
affected byβ : 
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The bending moment at bond layer shear failure, bvM , , is determined by (13):  
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The bending moment Mv,90 at longitudinal out-of-plane shear stress failure corresponding 
to the stress component xzτ  is determined by (12): 
 

m

v

m

v

f
f

h
a

h
a

b
h

M
M

)( 3

3
90, β+=         (45) 

 



28 
 

The bending moment Mv,r at out-of-plane rolling shear stress failure corresponding to the 
stress component yzτ  is also determined by (12): 
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The bending moment Mv,0 at in-plane shear stress failure corresponding to the stress 
component xyτ  is determined by (26): 
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The bending moment Mt,90 at tensile stress perpendicular to grain failure in the adherend is 
determined by (29): 
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For compressive stress perpendicular to the grain is the corresponding expression valid 
with 90,tf  replaced by 90,cf . For timber is 90,cf > 90,tf  and accordingly is 90,cf  not 
decisive in the case of wood adherends. 
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6. Verification and accuracy study by finite 
    elements 
 
 
6.1 Introduction 
 
The major assumption made in the determination of bond layer stresses τyz and τyz (see 
Section 2.1) was that of rigid adherends. The major assumption in the determination of the 
2D adherend stresses σx, σy and τxy (see Section 3.1) was that of linear distribution of σx 
with respect to y.  
 
In the below are the rigid adherend and the linear σx assumptions studied by means of plane 
stress finite element calculations. Results of a dimensional analysis are presented before 
going to numerical results. The dimensional analysis was made to identify a dimensionless 
parameter that defines degree of rigidity of the adherends and to enable more general 
conclusions from the numerical results.    
 
 
 
6.2  Dimensionless parameters in stress analysis 
 
A joint as defined in Figure 1a and Figure 2 is studied. The load applied to the joint is with 
reference to the adherend shown in Figure 2 defined by the magnitude and the distribution 
of the normal and shear stresses (tractions) acting on the surface (x=a/2, y): 
 

⎪⎩

⎪
⎨
⎧

=

=

)/(),2/(
)/(),2/(

0

0

hyfya
hyfya

xy

x

τ

σ

στ

σσ
        (49) 

 
where 0σ  is a scalar that defines the magnitude of the load and where fσ and fτ are 
functions that defines the distributions. As an example, pure bending moment loading can 
be defined by  
 

0)/(and2/)/()/(,)/(6 2
00 =−== hyfhyhyfbhM τσσ    (50) 

 
For the rigid adherend beam type of analysis presented in the previous sections are in 
addition to the load, two dimensionless ratios needed for the calculation of stress in the 
adherends. These two parameters are the joint shape ratio and the bond layer orthotropic 
stiffness ratio: 
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All stresses are proportional to 0σ  and the stresses in the bond layer are moreover 
proportional to ratio (b/a). The stresses in a point (x/a, y/h) can thus be expressed as: 
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Explicit expressions for the functions fxz etc can be obtained from equations (12) and (13), 
and (22), (26) and (29), respectively. 
 
Leaving the rigid adherend model and instead looking at a model where the adherends are 
modeled as plane stress linear elastic isotropic plates, two dimensionless ratios have to be 
added to those in (51):  
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         (53) 

 
The first ratio is a measure of the degree of rigidity of the adherends, E being the Young’s 
modulus of the adherend material. The second dimensionless parameter, υ, is the Poisson’s 
ratio of the adhered material. For an orthotropic adherend material the number of 
additional parameters is four: 
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Ex is a measure of the magnitude of the stiffness of the orthotropic material. For an 
isotropic material is Ex=E.   
 
Finally, the stresses in a point (x/a, y/h) in a joint made up of orthotropic adherends and an 
orthotropic bond layer are found to be determined by dimensionless ratios according to: 
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6.3  Finite element model and calculated stress distributions  
 

   
 
Figure 6. Joint analyzed by finite elements. 
 
A joint with geometry according to Figure 6 is analyzed. The finite element model is made 
up of 4-node plane stress plate elements of the Melosh type, overlapping in the joint area 
and with internodal springs modeling the shear layer. The plate element size is 5x5 mm2.  
Not glued end-parts of length s=25 mm were added to avoid stress-irregularities at bonded 
edges found at plane stress analysis. The model was built in the Calfem/Matlab computer 
program.  
 
Seven FE-analyses are presented. In order to study the influence of the linear σx 
assumption separately, first three analysis were made with high values of the adherend 
rigidity ratio )//( 2 taGbE xzx . Then two analyses corresponding to adherends made of steel 
and wood, respectively, are presented.  
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These five analyses relate to pure bending of the joint. Analyses number six and seven 
relates to a loading that give pure shear force at the centre of the joint. The magnitude of 
the bending load corresponds to beam bending stress 40.0 MPa for adherend width 100 
mm, and the shear force load corresponds to beam shear stress 3.0 MPa for the same 
adhered width.  
 
Input data for the seven analyses are given in Table 1. Corresponding stress calculations 
were made by the rigid adherend beam model.  
 
The material and thickness data for the bond layer corresponds roughly to that of a thin 
rubber mat glued in between the two adherends.  The lower value, 0.33 MPa, for Gyz used 
in the calculation representing wood corresponds to consideration to the low rolling shear 
stiffness of wood: it can be reasonably to include the out-of-plane shear compliance of the 
adherend when assigning a shear stiffness value to the bond layer. An equivalent value of 
bond layer shear stiffness, eqvyzG , , can be approximately estimated by adding compliances 
of the bond layer and the two adherends, regarded as being exposed to the full shear stress 
from the loaded surface to the centre of the adherend:   
 

adherendyzadherendyzbondyzeqvyz G
b

G
b

G
t

G
t

,,,,

2/2/
++=       (56) 

 
With t=1.0 mm, Gyz,bond = 1.0 MPa, b=100 mm and Gyz,adherend = 50 MPa, eqvyzG ,  becomes 
equal to 0.33 MPa.   
 
The seven pages after Table 1 shows the finite element model computational results on the 
right hand side and on the left hand side the corresponding results of the rigid adherend 
beam type of model.  
 
Calculations 1-3 suggest that the bond layer stresses obtained by the rigid adherend model 
coincide with those obtained by the finite element model for joints with high adherend 
stiffness ratio Exbt/(Ga2). The calculated adherend stresses suggests that the assumption of 
linear σx with respect to y has very little influence on σx and τxy. The calculated magnitude 
and distribution of σy is somewhat affected. 
 
Calculation no 4 compared to calculation no 1 suggests that the performance of a possible 
typical steel-rubber-steel lap joint is almost identical to the performance of a rigid 
adherend joint type of joint. Calculation no 5 compared to no 3 suggests that the 
performance of a typical wood-rubber-wood lap joint is affected by the deformations in the 
wood. For the bond layer shear stress is stress concentration to the corners of the bond area 
found. Also the adherend stresses σx, τxy and σy are affected, although not as much as the 
bond shear stress.  
 
Calculations no 6 and 7 relate to the stresses at shear force loading. For the steel type of 
joint are about the same stresses found by the rigid adherend model as by the finite element 
model. For the wood type of joint some deviations can be seen. The stresses produced by 
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shear force loading are in general small and the conventional beam shear stress in the close 
vicinity of the joint is probably, in most cases, decisive for the load capacity.    
 
 
         Table 1. Material, thickness and load data used in FE-calculations. 

 
 
 
 

Calculation no 
Bond/Adherend 
Bond/Adherend 

FE-1 
Rubb./Rigid 

Iso./Iso. 

FE-2 
Rubb./Rigid 

Orth./Iso. 

FE-3  
Rubb./Rigid 
Orth./Orth. 

Gxz, MPa 1.0 1.0 1.0 
Gyz, MPa 1.0 0.33 0.33 
t, mm 1.0 1.0 1.0 

Ex, MPa 210000*105 210000*105 12000*105 
Ey, MPa Isotropic Isotropic 400*105 
Gxy, MPa Isotropic Isotropic 750*105 
υxy 0.3 0.3 0.0167 
b, mm 10 10 100 

Load MR, kNm 26.67  26.67  26. 
Load VR, kN 0 0 0 

Exbt/(Gxza2) 13.1*105 13.1*105 7.5*105 

Calculation no 
Bond/Adherend 
Bond/Adherend 

FE-4 
Rubb./Steel 

Iso./Iso. 

FE-5 
Rubb./Wood 
Orth./Orth. 

FE-6 
Rubb./Steel 

Iso./Iso. 

FE-7 
Rubb./Wood 
Orth./Orth. 

Gxz, MPa 1.0 1.0 1.0 1.0 
Gyz, MPa 1.0 0.33 1.0 0.33 
t, mm 1.0 1.0 1.0 1.0 

Ex, MPa 210000 12000 210000 12000 
Ey, MPa Isotropic 400 Isotropic 400 
Gxy, MPa Isotropic 750 Isotropic 750 
υxy 0.3 0.0167 0.3 0.0167 
b, mm 10 100 10 100 

Load MR, kNm 26.67  26.67  -12.0  -12.0  
Load VR, kN 0 0 20.0 20.0 

Exbt/(Gxza2) 13.1 7.5 13.1 7.5 
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      Rigid adherend beam analysis            FE-analysis FE-1 
Isotropic, almost rigid adherend 

Pure bending M0=26.67 kNm, isotropic bond layer  β=1.0  
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      Rigid adherend beam analysis            FE-analysis FE-2 
Isotropic, almost rigid adherend 

Pure bending M0=26.67 kNm, orthotropic bond layer β=0.33  
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    Rigid adherend beam analysis               FE-analysis FE-3 
Orthotropic, almost rigid adherend 

Pure bending M0=26.67 kNm, orthotropic bond layer β=0.33  
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Isotropic steel adherend 

Pure bending M0=26.67 kNm, isotropic bond layer β=1.0  
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     Rigid adherend beam analysis       FE-analysis FE-6 
Isotropic steel adherend 

Shear loading V0=40 kN, M0= -8.0 kNm, isotropic bond layer β=1.0  

τb=constant=0.5 
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     Rigid adherend beam analysis          FE-analysis FE-7 
Orthotropic wood adherend 

Shear loading V0=40 kN, M0= -8.0 kNm, orthotropic bond layer β=0.33  

τb=constant=0.5 
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6.4  Influence of adherend stiffness ratio )( 2GaEbt/   
 

 
Figure 7. Maximun shear stress max,xyτ in adherend versus adherend stiffness ratio 

)/( 2GaEbt  for a joint loaded by a bending moment M0 and made up of isotropic 
adhedrends (ν =0.3) and an isotropic bond layer.  
 
 
The influence of the adheren stiffnes ratio is studied by calculating the maximum of the 
adherend shear stress τxy for various values of Ebt/(Ga2) for joints made up of isotropic 
adherend and bond layer materials, and loaded by a bending moment, M0=σ0bh2/6. To be 
more precise, following Eq. (55), ratio τxy,max/σ0 is calculated for β=1, h/a=1/4, 1/2 and 1/1, 
various Ebt/(Ga2), υ=0.3, Ex/Ey=1 and Ex/Gxy= 2(1+υ).   
 
The computational results are shown in Figure 7. It seems that τxy,max is affected by the 
adherend stiffness ratio for values of Ebt/(Ga2)≤10. For Ebt/(Ga2)≤1 there is a very evident 
influence. As Ebt/(Ga2) approaches zero, one may expect a plane stress model to predict 
zero τxy,max.  
 
Figure 8 shows that not only the magnitude of the stresses, but also the overall distribution 
of the stresses changes when the adherend stiffness ratio is decreased from about 10 and 
downwards.  
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The present example relates to an isotropic material. An approximate estimation of the 
corresponding approximate shift-values for Ebt/(Ga2) for an orthotropic adherend material 
and/or an orthotropic bond layer material can be obtained by replacing E with yxEE and 

G with yzxzGG , respectively. For wood-rubber-wood joints this suggests that the rigid 
adherend model can give accurate stress predictions in some cases, e.g. for joints with 
small length a, but not always.  
 
If using the rigid adherend model in stress analysis of joints with compliant adherends and 
exposed to bending, it seems that the maximum bond layer shear stress τb in general will be 
underestimated, the maximum adherend stress σx will be slightly underestimated, the 
adherend shear stress τxy somewhat overestimated and also the adherend normal stress σy 
somewhat overestimated. 
 
For a joint exposed to shear force loading, the same trends are found expect for σy for 
which the rigid adherend model give an underestimation. For a joint exposed to normal 
force loading, application of the rigid adherend model to a joint with compliant adherends 
will give underestimation of the maximum bond layer shear stress. The influence on the 
maximum of the adherend stresses σx will be zero or very small. Maximum of τxy and σy 
will in general be of minor interest since these stress components can be expected to be 
zero or very small for the normal force loading of the joint. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Shear stress 0/στ xy  in a stiff adherend, a), and in a compliant adherend, b).  
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7.  Concluding remarks       

In strength design of joints attention is commonly attracted to the capacity of the joining 
device, e.g. a glue bond line or dowels. However, in some cases, or perhaps even in many 
cases, the stresses in the adherend material are decisive for the capacity of the joint. This is 
the case when the joining device has large load capacity as compared to the strength of the 
adherend material. An example is joining of timber structural elements by means rubber 
foil glue joints. To get a possibility to estimate the stresses not only in the bond layer, but 
also in the adherend material explicit stress equations were developed by assuming a rigid 
performance of the adherends. Comparison to results of planes stress finite element 
analyses showed good results for joints with high adherend rigidity ratio Ebt/(Ga2). Timber 
rubber foil adhesive joints are typically in an order of magnitude between high and low 
values of the rigidity ratio. This implies the need for a calculation model where the 
deformation of the adherend material is considered. One such model is the plane stress 
finite element model, which, however, has the drawback of not allowing simple explicit 
stress equations. Another possibility is modeling of the deformation of the adherends with 
a beam theory model. Using the Timoshenko beam theory, this leads to a set of 6 
homogeneous differential equations with 6 unknown scalar functions of the length 
coordinate x. It is unfortunate that theses equations probably lead to stress equations that 
are comprehensive, although perhaps explicit.  
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