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Summary

Explicit formulas were developed for the stress in lap joints loaded in-plane by normal
force, shear force and edge-wise bending, giving shear stress in the bond layer. The bond
layer material was assumed to be linear elastic with equal or different shear stiffness in the
two principal directions of the joint. The two adherends were assumed to act as rigid
bodies. By these assumptions were equations for the shear stresses 7., and z,, in the bond
layer developed, the z-axis being normal to the bond area. The global stiffness properties of
a joint were also determined.

Explicit equations for the stresses oy, 7., and o, in the adherend material were determined
by means equations of equilibrium and by assuming linear variation of the normal stress o,
with respect to y, i.e. the same variation as assumed in conventional beam theory.

Knowing the stress fields for the stresses in the bond layer and in the adherends, also the
maximum stresses were determined, making it possible to formulate failure criteria and
identify different joint failure modes. With strength properties typical for wood adherends
and a glue bond layer it was for joints exposed to bending found that bond failure was
decisive only for very short joints, i.e. for joints with a small length to height ratio. For
joints with intermediate length to height ratios were the adherend material modes of failure
and the corresponding stress components decisive: the shear stress z,, the rolling shear
stress 7,. and/or the tension perpendicular to grain o,. The normal stress oy is decisive for
the full bending moment capacity of the adherends. This capacity was reached for long
joints.

The accuracy of the stress equations were studied by means of plane stress finite element
analysis, taking into account linear elastic deformations of the adherends. It was found that
the assumption of linear variation of the normal stress o, with respect to y is reasonable.
The assumption of rigid adherend performance was studied by identifying a dimensionless
adherend rigidity ratio, which for joints with an isotropic adherend material is Ebt/(Ga®)
where E, b and a represents the Young’s modulus, thickness and length, respectively, of
the adherends, and ¢ and G the thickness and the shear modulus, respectively, of the bond
layer material. Good accuracy was for found for joints made up of steel adherends joined
by means of a rubber foil glued between the steel parts. For corresponding rubber foil
adhesive joints with wood adherends was good accuary found for joints of small size.






1. Introduction

Lap joints of the kind shown Figure 1 are considered. The adherends can be made of wood,
steel or any other reasonably stiff structural material. In the analysis it is assumed that the
adhered material is very stiff as compared to the bond layer material. The bond layer is
assumed to compliant with a linear elastic isotropic or orthotropic performance. It can for
instance be made up of a rubber foil glued in between the two adherends. The results
obtained might be applicable also to nailed joints and punched metal plate nail fastener
joints with a large number of nails so that their action can be approximated with distributed
shear stress.

Only the in-plane performance of joints with a rectangular bond area is considered. The
analysis is thus 2D and relates to the stress components oy, o, and 7, in the adherends and
to the out-of-plane shear stress components 7. and 7;. in the bond layer, and to the joint
strength as limited by the magnitude of these stress components. It is in analogy with beam
theory analysis assumed that the variation of the normal stress o is linear with respect to y.
The below derivations are carried out with reference to a single lap joint, Figure 1a), but
the results are valid also for double lap joints and pairs of double lap joints, Figure 1 b).

Method for calculation of the 3D stiffness and bond layer stress components in lap joints
has been dealt with in (Gustafson, 2006). The purpose of the present study is to find
equations for simple calculation of the adherend stresses oy, o, and 7, in the joint area.
Experimental tests of various wood material lap joints joined with a flexible bond layer
have shown that fracture in the wood corresponding to the stress components oy, o; and/or
7., often is decisive for the load carrying capacity. The calculated stresses are approximate
as a result of the assumptions of rigid adherend performance and linear variation of oy with
respect to y. Experimental results are available in (Gustafsson, 2007) and (Bjérnsson and
Danielsson, 2005) for rubber foil glued lap joints glulam-to-glulam, LVL-to-glulam, wood-
to-wood and glulam-to-steel.
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Figure 1. Example of lap joints: a) with a single lap and, b), with two double laps.







2. Bond layer shear stress and joint stiffness

2.1 Notations and assumptions

-, | ry o}
y Ol e— —
dy . T
h/2 g dx : : «—
Vb, \% :Vo M l
M, 0 | rj\ °
/Uifb,u X k4 N, Ap=ah
z P A. =bh
h/2 P I, =bh> /12
Lo I, =(a’h+ah’)/12
— = Gyz /ze
a’2 a’2 | AZV = pA,
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Figure 2. Back adherend of the joint in Figure 1a) with notations.

Notations and measures of an adherend are shown in Figure 2. The thickness of the bond
layer is denoted ¢. The bond area is a rectangle, ak, and the adherend is a cuboid, ahb. The
bond layer shear stresses 7. and 7., and the global joint stiffness are calculated at the
following assumptions:

Rigid performance of the adherends

Relative movement between the two adherends only in the x-y plane, i.e. 2D analysis
Linear elastic isotropic or orthotropic properties of the bond layer

Constant shear strain and stress in the bond layer across the thickness ¢ of the layer, i.e.
constant 7, and 7;. with respect to z

The cases isotropic and orthotropic stiffness of the bond layer are both dealt with. The
isotropic shear modulus is denoted G, and the orthotropic shear moduli are denoted G,, and
G,.. The case of orthotropic shear stiffness of the bond layer is of interest in the case of
wood adherends since the out-of-plane shear deformations of the adherends in an
approximate manner can be considered by including them in the bond layer compliance.



2.2 lsotropic case

The assumptions made in Section 2.1 imply for the case of isotropic bond layer properties
that

Ty |=G/t|Au—yA@ |=G/t|1 0 —y|| Au
Tyz Av+ xA6 0 1 x ||Av (1)
AG

where Au, Av and A@indicate the relative rigid body movement between the two adherends
with the centre of the bond area as point of reference as indicated in Figure 2:

Au | =
Av
AG

)

< §
D < =

front back

The surface loads r, and r, acting on the back adherend are by the law of action and
reaction equal to the bond layer shear stresses:

2-.)CZ
) 3)

The force and moment actions that are statically equivalent to the surface loads are
obtained from Eq. (1) by integration:

Np =J "y |dA=G/t|4 0 0 | Au
Vp 4, ry 0 4 O Av (4)

My X1y, = yry 0 0 1[,|Ad

This equation gives the stiffness of the joint with the centre of the bond area as point of
reference. 4, is the bond area and 7, is the polar moment of inertia of the bond area as
defined in Figure 2. Equilibrium of the adherend relates the surface load action to the cross
section forces and moments:

Nyl [-1 0 07N,
=l 0 -1 o7, (5)
My| |0 —a/2 -1|M,

Before the calculation of adherend stresses it is convenient to combine (4) and (5) for
calculation of the relative displacements from given cross section quantities:



Aul=—t/G |1/ 4 0 0o [N

o

Av 0 1/ 4 0o |, (6)

A 0 al21,) U1, || M

P 0

Use of Eq. (1) and (3)-(6) gives the following alternative equations for the bond layer shear

stresses as a function of the global joint deformation, the surface load actions or the cross
section forces and bending moment:

T =[x |=G/t|[1 0 —yl|Au|=
Tyz Vy 0 1 X AV

AO
(7)
I O AN I el @y Y || No
Ab Ip Vb Ab 2Ip Ip Vo
0 1 x My 0 o1 ax X lim,
4 1, 4 20, I,
The total bond layer shear stress, 7, is:
tp =t 47 = GI(Au—yAO)? +(Av+xA0) =
2 2 2
N2 vV} M M
2 2
= [T (P ) B N = ®)
Ay Ay I, bip
N2 V2 (M, +V,al2)? 5 . 2M,+V,al2)
= [Ty (T ) e e e (a, — 9N,
A; A7 I Apl

2.3 Orthotropic case

For orthotropic stiffness properties of the bond layer is

Tyz | | (G /1)(Av+xAD) B(Av + xA0) 0 B fx|Av
A6

[z‘xz} :{(ze /t)(Au —yA@)} =G, /z{ (Au — yAB) } =G,, /T 0 —y:| Aul (9)



where f=G,. /G,.. Analysis in analogy with the analysis for isotropic bond layer stiffness
gives the joint stiffness as

Nb :ze/t Ab 0 0 Au

Vi 0 Agr 0 || Av (10)
M, 0 0 [ZV AO

where 4;" and 1)) are defined in Figure 2. The orthotropic correspondence to Eq. (6)

becomes

Au |=-t/Gy, |1/ 4, 0 0 N,

Av 0 l/Agr 0 V, (11)
AO 0 al21y) 11y |[Mo

which gives the following alternative equations for the bond layer shear stresses and for the
surface load acting on the adherend:

Ty =T | = G/t |1 0 —yl|lAu|=
Tz ry 0 B px||lAv

AB
(12)

S L et ay y_ | No
or or or

4p 1911V Ap 219 191 Ve

0 1 px || My, 0 _ 1 Pax —pfx | M,
or or or
Ay 15 Ap 219 19

The alternative equations for the total shear stress of an orthotropic bond layer becomes

Tp =T 4 7h = Gy /0 (Au— yAO) + B2 (Av+ xA0)> =

2 2 2
N:2 v M oM
- \/—’2’+%+0—f’2(ﬂ2x2 +32)+ ==L (BxV, — yN,) = (13)
Ay Ay Up) Apl
N2 V2 M +V,alD? 5 5 o 2AM,+V,al2)
o R e A SR s OBV, ~ yN,)
A 47 19) A1
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2.4 lllustration of bond layer shear stress distribution

Isotropic bond laver, f=1.0 Orthotropic bond layer, 5=0.25

T, max/min: 4.10/-4.10 MPa T, max/min: 8.53/-8.53 MPa

-10(
-100 -50 0 50 100 150 - -100 -50 0 50 100 150

7,, max/min: 6.15/-6.15 MPa 7, max/min: 3.20/-3.20 MPa

: — -100 s
-50 0 50 100 150 ~-150 -100 50 0 50 100 150

Tp, max/min: 9.11/0.00 MPa

The above illustrations of calculated distribution and magnitude of the shear stresses in an
isotropic and an orthotropic bond layer are valid for a joint with length =300 mm and
height #~=200 mm loaded by a pure bending moment M,=26.67 kNm. The calculations
were made by means Eq. (12) and (13). Red color indicates positive shear stress and dark
blue color negative or zero shear stress. The bending moment 26.67 kNm corresponds to
the bending stress 40 MPa for beam cross section of height 200 mm and width 100 mm.

11






3. Adherend stress analysis

3.1 Assumptions

The adherend stresses o, o, and 7, are derived by means of two assumptions and by use
of equations of equilibrium and static equivalence. The first assumption is that the surface
loads r, and r, are according to Eq. (7) for the isotropic case and according to (12) for the
orthotropic case. Eq. (7) and (12) were obtained from the assumption listed in Section 2.1
and are thus accurate if the adherends are stiff and the bond layer is linear elastic and
reasonably thin. The second assumption is that the normal stress o; has a linear variation
with respect to y, i.e. that

oy (x,3) = C1(x) + Co(x)y (14)

The linear variation of oy(y) is in accordance with the Bernoulli-Euler and Timoshenko
beam theories. No assumption is made with respect to the properties of the adherend
material. However, the assumptions of linear o,(y) and surface loading according to Eq. (7)
or (12) suggests that the analysis relates primarily to adherends that are linear elastic and
stiff as compared to stiffness of the bond layer.

The stresses oy, o, and 7., can now be determined from the equations of equilibrium for a
plate,

%4_%4_&:0

ox oy b as)
oo, Ot
Doy T Ty

oy ox b

, together with the boundary conditions indicated in Figure 2: i.e. three edges where the
edge tractions are zero and one edge where the integrated action of o is statically
equivalent with the cross section loads N, and M,, and the integrated action of 7, is
statically equivalent with V.

In the below are the equilibrium and static equivalence calculations carried out in steps in

analogy with beam theory analysis so that distributed beam load and also the cross section
bending moment, normal force and shear force are obtained as intermediate results.

13



3.2 Adherend line loads

The surface loads r, and r, acting on the adherend can by static equivalence be expressed
as force and moment line loads ¢y, ¢, and m. acting on the line y=0:

q, hi2 | r, Ghll O 0 Au
v, t 10 1 X Av | =
O 5 1 B 5
m, —yr, 0 0 A7/12| A0
(16)
n+a’ 0 0 || Mo
—h 2, 2 V
:H 0 h“+a” +6ax 12x 0
1o nal2  n* Mo
The above result is valid for the isotropic case. The orthotropic case gives
as ] hj} | Gel 10 0 [ Au
gy |~ o ry Y t |10 pB px | Av|=
m, — 1y 0 0 A*/12] A0
- (17)
_ n? +,Ba2 0 0 N,
= 127" 0 h? +ﬂa2 +6fBax  128x|| Vo
P 0 h’al2 n? M,
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3.3 Adherend cross-section forces and moment

The cross section forces and moment acting on the part to the left of a cross section located
at x are obtained by equations of equilibrium. The action of the line loads is calculated by
integration from x=-a/2 to x=x. For the isotropic case, the equations of equilibrium give:

N ¢ ~ 45 (s) .
= S =
Vi) | _;/» —q,(5) (13)
M (x) gy (s)(x—5)—m,(s)
_—Gh(x+a/2) |1 0 0 Au
- t 0 1 (x—al2)/2 Av |=

0 —(x+al2)/2 (@®>+h*)/12-x(x—-al2)/6||AO

h? +a® 0 0 N,

x+al2 2 2
=53 0 h™ +a” +3a(x—al2) 6(x—al2) V,
ha+a 0 (~h2/2-a?/12—ax)(x—al2)  h®+a®-2x(x—al2)|| M,

The relation V'=dM/dx, often cited in textbooks, is not valid in this case because of the non-
zero bending moment line load m..

For the orthotropic case, i.e. for f#1, is found:

N(x) _ T —qx(s) ds =
Ve |, —q, () (19)
M (x) g, (s)(x—5)—m_ (s)

-G h(x+al2)[1 0 0 Au

- t 0 B B(x—al2)/2 Av | =

0 —B(x+al2)/2 (Ba®>+h>)/12-Bx(x—al2)/6]||AO

_ h(x+al2)
..
1219
h? +a? 0 0 No
0 h? + Ba’ +3Ba(x—al2) 68(x—al2) Vo
0 (~h212-Ba* 12— Bax)(x—al2) K%+ Ba’ -2Bx(x—a/2) | Mo

15



3.4 Normal stress o

Due to the assumption if linear distribution of o, with respect to y, o, can be calculated in
the same way as by conventional beam theory:

o V@ M)y
A 1

(20)

4 z

where 4.=bh is the cross-section area and Iz=bh3/ 12 is the moment of inertia of the cross-
section. With N(x) and M(x) from Eq. (18), the normal stress oy in point (x,y) is for the
isotropic case found to be

o, = 2x+a)
2abh

N, +

2, 2 2 2
N (h" +a” +2ax)(4x" —a”) hy v

21
91,1, =

+

(—h2 —a? +2x? —ax)(2x+a) hy Y,
241,1, ¢

The orthotropic case gives

2x+a)
o 2abh ¢

(h? + Ba® +2Bax)(4x* —a®) hy
V, +

(22)
961,19

(—h2 —ﬂaz +2ﬂx2 — Pax)(2x+a) hy M
241,19 ?

16



3.5 Shear stress 7,y

Ya
h/2-+— —
Gy l : : o,
| Tya
LT
T: 1 Txy
g1
™ s,
|_dx | .
I X

Figure 3. Free body diagram of a part (4/2-y)dx of an adherend.

The shear stress 7, in a point (x,y) is found by equilibrium of the horizontal forces acting
on a strip (h/2-y)dx of the adherend shown in Figure 3:

hl/2 hi/2
J (o (x+dx)—o,(x))bdy + I rydxdy — 7 y,bdx =0 (23)
y y

By dividing all terms by dx and noting that

ox(x+dx)—o,(x) do,
dx dx

; (24)

it is for the isotropic case by use of the expressions for 7, and o, given by Eq. (7) and (21)
found that

o ((h? +a>)(dx+2a) + 3a(dx> —a?))(h> —ahy?) .
v 3841,1, 0

(25)

2 213 a2
N (4x° —a”)(h” —4hy”) M,
64IZIp

17



For the case of an orthotropic bond layer, the shear stress is:

_ (W% + Ba®)4x+2a) + 3Ba(4x® —a®))(h* - 4hy*) v
3841,19" ’

Xy

(26)

. Bax% —a®)(h® - 4hy?)
641,19

M

o

3.6 Normal stress o

The normal stress o, in a point (x,y) is determined by equilibrium of the vertical forces
acting on the strip (4/2-y)dx shown in Figure 3:

hl/2 h/2
I (Tyy (X +dx) =7, (x)) by + J. rydxdy — aybdx =0 (27)
y y

Dividing all terms by dx and with (7, (x +dx) — 7, (x))/dx =dt,), /dx, it is by use of Eq.
(7) and (25) for the isotropic case found that

(h? +a® + 6ax) (4hy> —h’y) x (4hy” = h3y)

o, = v, + 28
d 2881,1, ? 241,1, ? %)
and for the orthotropic case that
2 2 3,3 3,3
o, = (h” + pa” +6pax) (4hy” —h”y) vos Px (4hy” —h’y) M, 29)

o
288 1,19 241,19

18



3.7 Verification of stress formulas

The equations for the stresses oy, 7, and o; i.e. Eq. (21) and (22), (25) and (26), and (28)
and (29), must fulfill the two differential equations of equilibrium and the boundary

conditions:

o fulfill Eq. (15) for all x and y, for all values N,, V, and M,
e give oy = 7y, = 0 for x=-a/2

e give 0,= 1y, = 0 for y=+4h/2

e and for x=a/2 give

hi/2 hl/?2 hl/?2
jaxbdy =N,, j —yobdy=M, and I Typbdy =V, (30)
—h/2 —h/2 —-h/2

These conditions can be fulfilled by various stress fields. The particular stress solution
considered here must moreover fulfill the assumption of linear variation of o, with y, i.e.
Eq. (14). The above conditions make it possible to check the stress equations.

19



3.8 llustration of distribution of stresses in an adherend

Isotropic bond laver, 5=1.0 Orthotropic bond layer, 5=0.25
0, max/min: 40.0/-40.0 MPa 0, max/min: 40.0/-40.0 MPa

100

80

601

401

201 20
0 of
-20} -20

401

-60

-80f

2
0

- -100 -
-150 -100 -50 50 100 150 -150 -100 -50 0 50 100 150

7., max/min: 0.000/-6.92 MPa 7,y max/min: 0.00/-3.60 MPa

0 -100 50 0 50 100 150

oy max/min: 0.62/-0.62 MPa

-100
-150 -100 50 0 50 100 150 -1

o, max/min: 1.18/-1.18 MPa

-100"
0 50 100 150 -150

The above illustrations of calculated magnitude and distribution of the in-plane stresses in
an adherend for isotropic and an orthotropic bond layer properties are valid for a joint with
length ¢=300 mm and height #/=200 mm and adherend thickness /=100 mm loaded by a
pure bending moment M,=26.67 kNm. The calculations are made by means Eq. (22), (26)
and (29). Note the different magnitude of the stresses o, and 7., for the isotropic and
orthotropic cases, although the shape of the stress distributions are the almost same. For g,
and o, is red color indicating positive stress (tension) and blue color negative stress. For 1z,
is red color indicating negative stress and dark blue color zero stress.

20



4. Magnitude and location of extreme stresses

The bond layer stresses 7.., 7. and 7, and the adherend stresses o, 7, and o; are given by
the equations in Sections 2 and 3, respectively. The minimum and maximum of these
stresses are of concern in joint strength analysis. The locations and the values of the
extremes are for a joint with isotropic bond layer stiffness and exposed to pure bending
M,=M,#0 given in Table 1. For shear force loading, V,, and normal force loading, N,, are
the location of the extremes shown in Table 2. For orthotropic bond layers can the

corresponding results be obtained from the stress equations in Sections 2 and 3.

Table 1. Minimum and maximum of stresses at bending M, of an isotropic joint .

Stress Minimum Maximum
component Location, (x,y) Value Location, (x,y) Value
Tr (x,—h/2) —6M, (x,h/2) 6M,
Wa+d’ Wa+a’
—6M 6 M
T (a/2,y) i (—a/2,y) 5
” 1 +ha? ¥ +ha?
7 (0,0) 0 (xa/2,£h/2) | eNa®+h* M,
Wa+ha’
o, (al2,h12) —6M, (al2,—hi2) 6 M,
bh? bh?
Ty (0,0) ~9a* M, (+a/2,y) 0
ab(Ba+hady | (oEh/2)
o, (al2,hi\12) -M, (al2,-h/\12) M,
(—al2~h/12) | V3b@® +h?) | (—a/2,hi12) | Bb(a® +h?)

21




Table 2. Extreme value location and value at various loading of isotropic joint.

For normal force N, at x=a/2:

Stress Locations (x, y) Value
Txz (x,) N, /(ha)
Ty (x,) 0
7} (x,) N, /(ha)
Ox (a/2,y) N, /(bh)
Txy (x, ) 0
oy (x,) 0

For shear force V, at x=a/2:

Stress Locations (x, y) Value
Tyr (x, £h/2) See Eq. 7
Tyz (£a/2, y) See Eq. 7
th (max{-a/2,—(a® +h*)/(6a)}, 0), (al2, +h/2) See Eq. 8
Ox (ca? + h?) 6a) £ (@2 + KDY 6t +a2 12, £hi2y | S B2
Tay (max {~a/2,~(a* + h*)/(6a)}, 0) See Eq. 25
o, (+a/2, +h/12) See Eq. 28

For bending moment M, at x =a/2:

Stress Locations (x, y) Value
Tyy (x, £h/2) See Table 1
Ty (£a/2,y) See Table 1
7p (0,0), (xa/2, £h/2) See Table 1
o (a/2, £h/2) See Table 1
Txy (0,0), (£a/2, y), (x, £h/2) See Table 1
oy (tal/2,+h/12) See Table 1

*also (+q/2, +h/2)

22




5. Joint strength analysis

5.1 Failure criteria

Joint strength is here analyzed at the assumption of joint failure when any of the stress
components studied equals the corresponding strength parameter value. Combined failure
criteria taking into account several stress components are also possible. The strength
properties of the bond layer are regarded as isotropic and the strength properties of the
adherend material as orthotropic. The strength parameter notation is the notation
commonly used for wood. With the present joint failure criterion, the joint is predicted to
fail when any of the following criteria (a)-(f) is fulfilled:

(a) Bond layer failure:
Ty = fop (31)

The value of f, ; may for instance reflect the shear strength of a rubber layer and the two

glue lines between the rubber and the two adherends.

(b) Longitudinal out-of-plane shear stress failure in the adherend in the close vicinity of
the adherend-glue interface:

Te| = S0 (32)

(c) Rolling shear stress failure in the adherend in the vicinity of the bond line:

= fv,r (33)

‘Tyz

(d) Normal stress failure in adherend:

(34)

X

Jio foro, >0
- —feo foro, <0

This criterion for o, follows the assumption of joint failure when any of the stress

components equals the corresponding strength value. At strength design of wooden beams
in bending and combined bending and normal force is an additional third strength
parameter commonly used, namely the so-called bending strength f,, (Larsen and Riberholt,
1999), and an other adherend failure criterion is then used:

o o
— M+ =1 for 0., >0
ft,O fm
- o

M2 =1 for 6,,<0
fc,O fm
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where o, = N /(bh) and o, =|M,|/(bh* /6).
(e) Longitudinal in-plane shear stress failure in adherend:

=fv (35)

T xy

(f) Perpendicular to the joint normal stress failure in adherend:

foro, >0
_ {fz,90 3 (36)

o
|- Sego foro, <0

5.2 Joint bending strength analysis — isotropic bond layer

A joint exposed only to bending and with an isotropic bond layer is analyzed. The failure
modes corresponding to the above criteria (a)-(f) are for this case of loading illustrated in
Figure 4.

The full bending moment capacity of the joint is determined by bending failure of the
adherends. This moment is given by criteria (d) and denoted M, :

bh?

The bending moment at bond layer shear failure (a) is denoted M, ;, . By use of Eq. (31)
and (8) or Table 1 is the ratio M, ;, to M, found to be:

+— (38)

For longitudinal out-of-plane shear stress 7, in the adherend at the bond interface (b):

M 3
Hvoo _hea a”y )y (39)

My b h g3 Sy

And for the rolling shear stress 7., in the adherend at the bond interface (¢):

vz

Mv,r hl Cl2 fv,r

Ta+ 4 40
(42 (40)

m
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For longitudinal in-plane shear stress failure in the adherend (e):

M
_V’Oz§(f+ﬁ)£ (41)
M, 3 h af,
And for tensile stress perpendicular to grain failure in the adherend (f):
M 2
190 _ 630149 J1,90 42)
2
m h* Jm

For compressive stress perpendicular to the grain is the corresponding expression valid
with  f; ggreplaced by f. 9. For timber is f. 90> f; 90 and accordingly is f.9o not

decisive.

Failure modes of lap joint in bending

i M
(a) Bond area failure M, C I ) 0

(glue, rubber)

(b) and (c) Rolling shear D
and/or longitudinal shear M C ; M,
failure at bond area 0

| D M
M, C 2‘
D My
P —
(e) Beam shear failure OC

(f) Beam perpendicular to MOC —_—/| D M,

grain tensile fracture

(d) Beam bending failure

Figure 4. Failure modes of lap joint in bending.
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Mfailure /(bhzﬁn /6)

h/b=2.0

19 (a) Bond layer (c) Interface
' shear, 7, rolling shear, 7, (¢) Shear, 7,
L !
(b) Interface (f) Tension / / X
1 ; (d) Bending, o
long. shear, 7,, || perp., o, *
0.8+
0.6
0.4 -
02r
D 1 1 1 1 | 1
o 1 2 3 4 5

Figure 5. Joint bending moment capacity versus joint length to depth ratio at different

failure modes.

To illustrate the bending capacity corresponding to the different failure modes and how the
joint capacity is affected by ratios a/h and h/b adherend material parameters corresponding
to a quality of glued laminated timber are used. Characteristic strength values for glulam
‘L40° are according to the Danish "SBI-anvisning 210 Traekonstruktioner" (Larsen and

Riberholt, 2005):

fm,k =40 MPa

Sv90.k = o0k = fo.k =3.0MPa

Sk =1.5MPa
ft,90,k =0.5MPa

where the value of f,, ,. ;- , not defined in “SBl-anvisning 2107, is made equal to f,, ; /2 as

proposed in “Limtrdhandbok™ (Carling, 2001). Index k indicates characteristic value, i.e.
the 5 percentile value. For the bond layer is a shear strength value estimated from recent

tests of a glued rubber foil bond:

fv,b,k =5.0MPa
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The bending moment capacity of the joint versus bond area ratio a/#h for the different
failure modes is shown in Figure 5 for the above material strength parameter values and
adherend depth to thickness ratios/b =2.0. For the very short joints having a/h <0.5 is
the interface longitudinal shear stress in the wood 7, decisive. For 0.5<a/h < 2.7 is the
interface rolling shear in the wood decisive and for 2.7 < a/h < 4.8 is longitudinal shear in

the centre of the wood parts decisive. The joint reached has its full bending moment
capacity for a/h =4.8.

Neither bond layer shear failure nor perpendicular to grain tensile failure is predicted
forh/b=2.0. If increasing /b then the bond area related failure modes becomes less
important and the tension perpendicular grain failure mode of greater importance. For very
thick joints, i.e. for A/b<1.0, is the rolling shear fracture in wood of predominant
importance.

With adherend material data typical for timber and bond layer data typical for a rubber foil,
it seems that the required joint length for full bending moment capacity is governed either
by rolling shear fracture in the wood close to the bond area (thick joints) or by longitudinal
shear fracture within the wood parts.

5.3 Joint bending strength analysis — orthotropic bond layer

A joint exposed only to bending and with an orthotropic bond layer is analyzed. The
orthotropic bond layer properties are characterized by f, defined by f#=G,, /Gy, .

The full bending moment capacity of the joint is determined by bending failure of the

adherends. This moment capacity is given by criteria (d), it is denoted M, and is not
affected by S :

bh?

The bending moment at bond layer shear failure, M, 5 , is determined by (13):

M,y _ a(fa’+h*) fup _h (Blalh)’ +(a/h) fip
M, bmfpa® 0 fu b @i S

(44)

The bending moment M, 9y at longitudinal out-of-plane shear stress failure corresponding
to the stress componentr ., is determined by (12):

M 3
o Bl gy L 45)
M, bh nof,
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The bending moment M,,, at out-of-plane rolling shear stress failure corresponding to the
stress component 7, is also determined by (12):

M 2
v,r:ﬁ(l/ﬂ_i_a_z)f;,r
M, b o f,

m

(46)

The bending moment M, at in-plane shear stress failure corresponding to the stress
component 7,,, is determined by (26):

My _8a h,f
M, 3(h+,b’a)fm “7)

m

The bending moment M, o at tensile stress perpendicular to grain failure in the adherend is
determined by (29):

M 2
1,90 :6\/5( a_) ft,90

1,
M, B f,

(48)

For compressive stress perpendicular to the grain is the corresponding expression valid
with f; 9o replaced by f.9o. For timber is f.90> f; 9o and accordingly is f.go mnot

decisive in the case of wood adherends.
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6. Verification and accuracy study by finite
elements

6.1 Introduction

The major assumption made in the determination of bond layer stresses ty, and 1, (see
Section 2.1) was that of rigid adherends. The major assumption in the determination of the
2D adherend stresses oy, g, and 7y, (see Section 3.1) was that of linear distribution of o,
with respect to y.

In the below are the rigid adherend and the linear o, assumptions studied by means of plane
stress finite element calculations. Results of a dimensional analysis are presented before
going to numerical results. The dimensional analysis was made to identify a dimensionless
parameter that defines degree of rigidity of the adherends and to enable more general
conclusions from the numerical results.

6.2 Dimensionless parameters in stress analysis

A joint as defined in Figure 1a and Figure 2 is studied. The load applied to the joint is with
reference to the adherend shown in Figure 2 defined by the magnitude and the distribution
of the normal and shear stresses (tractions) acting on the surface (x=a/2, y):

{ax (al2,y)=04 f,(y/h) (49)

Txy(a/zay):GO fz'(y/h)

where o, is a scalar that defines the magnitude of the load and where f; and f; are

functions that defines the distributions. As an example, pure bending moment loading can
be defined by

oy =6M, ((bh*), f,(y/W)==(y/h)/2 and f.(y/h)=0 (50)
For the rigid adherend beam type of analysis presented in the previous sections are in
addition to the load, two dimensionless ratios needed for the calculation of stress in the

adherends. These two parameters are the joint shape ratio and the bond layer orthotropic
stiffness ratio:

alh
(5D
ﬂ:Gyz/ze
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All stresses are proportional to o, and the stresses in the bond layer are moreover
proportional to ratio (b/a). The stresses in a point (x/a, y/h) can thus be expressed as:

t./0y =(/a) f.(p,alh)
t,. /0y =(bla) f,.(B.alh)
7,10, =(b/a) f,(B,alh)
o.loy = f(B,alh)

Ty !0y = [oy(B,alh)

o, /0y = f,(B.alh)

(52)

Explicit expressions for the functions f,, etc can be obtained from equations (12) and (13),
and (22), (26) and (29), respectively.

Leaving the rigid adherend model and instead looking at a model where the adherends are
modeled as plane stress linear elastic isotropic plates, two dimensionless ratios have to be
added to those in (51):

(53)

ny

{Eb (G .a® /1)
The first ratio is a measure of the degree of rigidity of the adherends, E being the Young’s
modulus of the adherend material. The second dimensionless parameter, v, is the Poisson’s
ratio of the adhered material. For an orthotropic adherend material the number of
additional parameters is four:

Eb/G_a* /1)
Vi

E/E,
E /G,

(54)

E, is a measure of the magnitude of the stiffness of the orthotropic material. For an
isotropic material is E,=E.

Finally, the stresses in a point (x/a, y/h) in a joint made up of orthotropic adherends and an
orthotropic bond layer are found to be determined by dimensionless ratios according to:
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r./0y=(/a) f.(B.alh,EbNG.a" /1), E.E,E./G,)

r,./0y=(bla) f,.(B,alh, EbNG a/t),v, ,E,/E, E./G,))

,/00 =(bla) f,(B,alh, EbNG a*/),v,, E /E, E./G,) )
o./0y = f(B.alh,EbNG a’/t),v,, E /E, E/G,)

1,10y = fo(B.alh,EbNG a*It),v, E |E, E.IG,)

o,loy = f,(B.alh EbNG.a’/t),v,, E./E,E.G,)

6.3 Finite element model and calculated stress distributions

mm
M]_ . MR
NL : : NR
: h=200 i
R { Vi
| 400 i a=400 |, 400 L
| 1 | |
/| .
b=10 or 100 :
! b=10 or 100

Figure 6. Joint analyzed by finite elements.

A joint with geometry according to Figure 6 is analyzed. The finite element model is made
up of 4-node plane stress plate elements of the Melosh type, overlapping in the joint area
and with internodal springs modeling the shear layer. The plate element size is 5x5 mm®.
Not glued end-parts of length s=25 mm were added to avoid stress-irregularities at bonded
edges found at plane stress analysis. The model was built in the Calfem/Matlab computer

program.

Seven FE-analyses are presented. In order to study the influence of the linear oy
assumption separately, first three analysis were made with high values of the adherend

rigidity ratio E b /(zea2 /t). Then two analyses corresponding to adherends made of steel
and wood, respectively, are presented.
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These five analyses relate to pure bending of the joint. Analyses number six and seven
relates to a loading that give pure shear force at the centre of the joint. The magnitude of
the bending load corresponds to beam bending stress 40.0 MPa for adherend width 100
mm, and the shear force load corresponds to beam shear stress 3.0 MPa for the same
adhered width.

Input data for the seven analyses are given in Table 1. Corresponding stress calculations
were made by the rigid adherend beam model.

The material and thickness data for the bond layer corresponds roughly to that of a thin
rubber mat glued in between the two adherends. The lower value, 0.33 MPa, for G, used
in the calculation representing wood corresponds to consideration to the low rolling shear
stiffness of wood: it can be reasonably to include the out-of-plane shear compliance of the
adherend when assigning a shear stiffness value to the bond layer. An equivalent value of

bond layer shear stiffness, G

yz,eqv?
of the bond layer and the two adherends, regarded as being exposed to the full shear stress
from the loaded surface to the centre of the adherend:

can be approximately estimated by adding compliances

t_ N b/2 N b/2 (56)
G G G G

yz,eqv yz,bond vz,adherend

yz,adherend

With t=1.0 mm, G, pons = 1.0 MPa, b=100 mm and G, ugherena = 50 MPa, Gyz,eqv becomes
equal to 0.33 MPa.

The seven pages after Table 1 shows the finite element model computational results on the
right hand side and on the left hand side the corresponding results of the rigid adherend
beam type of model.

Calculations 1-3 suggest that the bond layer stresses obtained by the rigid adherend model
coincide with those obtained by the finite element model for joints with high adherend
stiffness ratio E,b#/(Ga®). The calculated adherend stresses suggests that the assumption of
linear o, with respect to y has very little influence on oy and 7,. The calculated magnitude
and distribution of o, is somewhat affected.

Calculation no 4 compared to calculation no 1 suggests that the performance of a possible
typical steel-rubber-steel lap joint is almost identical to the performance of a rigid
adherend joint type of joint. Calculation no 5 compared to no 3 suggests that the
performance of a typical wood-rubber-wood lap joint is affected by the deformations in the
wood. For the bond layer shear stress is stress concentration to the corners of the bond area
found. Also the adherend stresses oy, 7., and o, are affected, although not as much as the
bond shear stress.

Calculations no 6 and 7 relate to the stresses at shear force loading. For the steel type of

joint are about the same stresses found by the rigid adherend model as by the finite element
model. For the wood type of joint some deviations can be seen. The stresses produced by
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shear force loading are in general small and the conventional beam shear stress in the close
vicinity of the joint is probably, in most cases, decisive for the load capacity.

Table 1. Material, thickness and load data used in FE-calculations.

Calculation no FE-1 FE-2 FE-3
Bond/Adherend | Rubb./Rigid | Rubb./Rigid | Rubb./Rigid
Bond/Adherend Iso./Iso. Orth./Iso. Orth./Orth.
G,., MPa 1.0 1.0 1.0
Gy,, MPa 1.0 0.33 0.33
t, mm 1.0 1.0 1.0
E,, MPa 210000%10° | 210000%10° | 12000%10°
E,, MPa Isotropic Isotropic 400*10°
G, MPa Isotropic Isotropic 750%10°
Oyy 0.3 0.3 0.0167
b, mm 10 10 100
Load M, kNm 26.67 26.67 26.
Load Vg, kN 0 0 0
Ebt/G,.a”) 13.1%10° 13.1%10° 7.5%10°
Calculation no FE-4 FE-5 FE-6 FE-7
Bond/Adherend | Rubb./Steel Rubb./Wood | Rubb./Steel | Rubb./Wood
Bond/Adherend Iso./Iso. Orth./Orth. Iso./Iso. Orth./Orth.
G,., MPa 1.0 1.0 1.0 1.0
G,., MPa 1.0 0.33 1.0 0.33
t, mm 1.0 1.0 1.0 1.0
E,, MPa 210000 12000 210000 12000
E,, MPa Isotropic 400 Isotropic 400
G,,, MPa Isotropic 750 Isotropic 750
Uyy 0.3 0.0167 0.3 0.0167
b, mm 10 100 10 100
Load Mg, kNm 26.67 26.67 -12.0 -12.0
Load Vg, kN 0 0 20.0 20.0
Ebt/(G.d®) 13.1 7.5 13.1 7.5
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Pure bending M,=26.67 kNm, isotropic bond layer 5=1.0

Rigid adherend beam analysis FE-analysis FE-1
Isotropic, almost rigid adherend
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Pure bending M,=26.67 kNm, orthotropic bond layer 5=0.33

Rigid adherend beam analysis FE-analysis FE-2
Isotropic, almost rigid adherend
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Pure bending M,=26.67 kNm, orthotropic bond layer 5=0.33

Rigid adherend beam analysis FE-analysis FE-3
Orthotropic, almost rigid adherend
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Pure bending M,=26.67 kNm, isotropic bond layer f=1.0

Rigid adherend beam analysis FE-analysis FE-4
Isotropic steel adherend
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Pure bending M,=26.67 kNm, orthotropic bond layer 5=0.33

Rigid adherend beam analysis FE-analysis FE-5
Orthotropic wood adherend
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Shear loading V,=40 kKN, M,=

-8.0 kNm, 1sotropic bond layer =1.0

Rigid adherend beam analysis

FE-analysis FE-6
Isotropic steel adherend
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Shear loading V,=40 kN, M,= -8.0 kNm, orthotropic bond layer 5=0.33

Rigid adherend beam analysis FE-analysis FE-7
Orthotropic wood adherend
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6.4 Influence of adherend stiffness ratio Ebt/(Ga®)

2-xy,max /00 O-O = 6M0 /bh2
0.25F---- Mmoo oo e SRR,
1 —— —— — - Rigid adherend beam analysis 1
i i Elastic adherend FE-analyis i
0.2 - e R e EEEEEEE R REREEEEEEEEE e
| | | Th/a=1
0.15 Wa=12
T YT
h/a=1/4 |
0.05 4
0
Ebt [(Ga™)
Figure 7. Maximun shear stress 7,, .. in adherend versus adherend stiffness ratio

Ebt/(Ga®) for a joint loaded by a bending moment M, and made up of isotropic
adhedrends (v =0.3) and an isotropic bond layer.

The influence of the adheren stiffnes ratio is studied by calculating the maximum of the
adherend shear stress 7., for various values of Ebt/(Ga®) for joints made up of isotropic
adherend and bond layer materials, and loaded by a bending moment, M;=cybh’*/6. To be
more precise, following Eq. (55), ratio 7y max/00 is calculated for f=1, h/a=1/4, 1/2 and 1/1,
various Ebt/(Ga®), v=0.3, E/E,=1 and E,/G,= 2(1+v).

The computational results are shown in Figure 7. It seems that 7,y max 1s affected by the
adherend stiffness ratio for values of Ebt/(Ga*)<I0. For Ebt/(Ga*)<1 there is a very evident
influence. As Ebt/(Ga®) approaches zero, one may expect a plane stress model to predict
ZETO Tyy max-

Figure 8 shows that not only the magnitude of the stresses, but also the overall distribution
of the stresses changes when the adherend stiffness ratio is decreased from about 10 and
downwards.
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The present example relates to an isotropic material. An approximate estimation of the
corresponding approximate shift-values for Ebt/(Ga®) for an orthotropic adherend material

and/or an orthotropic bond layer material can be obtained by replacing £ with ,/E E, and

G with ,/G_G,_, respectively. For wood-rubber-wood joints this suggests that the rigid

xz < yz 2
adherend model can give accurate stress predictions in some cases, e.g. for joints with
small length a, but not always.

If using the rigid adherend model in stress analysis of joints with compliant adherends and
exposed to bending, it seems that the maximum bond layer shear stress 7, in general will be
underestimated, the maximum adherend stress o, will be slightly underestimated, the
adherend shear stress 7, somewhat overestimated and also the adherend normal stress g,
somewhat overestimated.

For a joint exposed to shear force loading, the same trends are found expect for o, for
which the rigid adherend model give an underestimation. For a joint exposed to normal
force loading, application of the rigid adherend model to a joint with compliant adherends
will give underestimation of the maximum bond layer shear stress. The influence on the
maximum of the adherend stresses o, will be zero or very small. Maximum of 7., and o,
will in general be of minor interest since these stress components can be expected to be
zero or very small for the normal force loading of the joint.

100

50

-50
a)
Ebt [(Ga*)=8.0

-100
-200 -150 -100 -50 0 50 100 150 20C

100

Ebt /(Ga*)=0.08

-

-100
-200 -150 -100 -50 0 50 100 150 20L

Figure 8. Shear stress 7,, /0, in a stiff adherend, a), and in a compliant adherend, b).
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7. Concluding remarks

In strength design of joints attention is commonly attracted to the capacity of the joining
device, e.g. a glue bond line or dowels. However, in some cases, or perhaps even in many
cases, the stresses in the adherend material are decisive for the capacity of the joint. This is
the case when the joining device has large load capacity as compared to the strength of the
adherend material. An example is joining of timber structural elements by means rubber
foil glue joints. To get a possibility to estimate the stresses not only in the bond layer, but
also in the adherend material explicit stress equations were developed by assuming a rigid
performance of the adherends. Comparison to results of planes stress finite element
analyses showed good results for joints with high adherend rigidity ratio Ebt/(Ga®). Timber
rubber foil adhesive joints are typically in an order of magnitude between high and low
values of the rigidity ratio. This implies the need for a calculation model where the
deformation of the adherend material is considered. One such model is the plane stress
finite element model, which, however, has the drawback of not allowing simple explicit
stress equations. Another possibility is modeling of the deformation of the adherends with
a beam theory model. Using the Timoshenko beam theory, this leads to a set of 6
homogeneous differential equations with 6 unknown scalar functions of the length
coordinate x. It is unfortunate that theses equations probably lead to stress equations that
are comprehensive, although perhaps explicit.
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