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Lecture notes on some 

probabilistic strength calculation models 
 

Per Johan Gustafsson, Div. of Structural Mechanics, LU, 2014  

 
 Weibulls distribution function 

 Weibulls weakest link model 

 Size effects in strength 

 Strongest link model 
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Weibull’s distribution and weakest link theory 

 

 
  

 (From (Danielsson, 2013)) 



 

                                 The name Weibull*) is internationally associated with: 
 

1) The Weibull probability distribution function, is much used in several areas of science and 
technology for definition of stochastic properties. For instance the stochastic strength properties 
of a link: 

 
 
 

 
 
 
 

 S(F)  is the cumulative probability distribution function for the strength of the link.  This means 
that S(F) is the probability that the link will fail if loaded from zero load up to the load F.  

 Fo and m are the two parameters that define the properties of the link (“material paramet.”).  
        (There is also a three parameter Weibull distribution, not discussed here.) 
 
2) The Weibull weakest link model, is used  for analysis of the strength of structural elements, e.g. 

the strength of a chain made up of several links: 

 
       *)  Waloddi Weibull, professor at KTH, was born in Kristianstad 1887 and died in France 1979.  
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F [kN] 

S  [-] 

Distribution function  
for the strength of a link 

Probabilty density function  
for the strength of a link  dS/dF  [1/kN] 

F [kN] 

The reading that the failure probality S=0.21 for 
F=150 kN means that 21 % of the links have a 
strength less than or equal to 150 kN. 

*) The reading that the failure probability density 
dS/dF =0.0061 kN-1 for F=150 kN means that 0.61 
% of the links fail for each 1 kN increase of the 
load, when the load is close to 150 kN.  

*) 
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1) The Weibull distribution function    EXAMPLE 

 
 

with Fo=200 kN 

and m=5 
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The strength scaling 
parameter Fo is the 
63.2 % fractile value. 

*) 

*) The curve shape parameter m has a one-to-one relation to 
COV and to normalized fractile and mean values:  

m COV F5% /Fo F50% /Fo Fmean /Fo 

   3 36.4 % .372 .885 .893 
   5 22.9 % .552 .929 .918 
10 12.1 % .743 .964 .951 
20   6.3 % .862 .982 .974 

 

If Fmean and COV are known for 
some set of test data, then 
parameters m and Fo of the 
Weibull distribution can be 
determined, e.g. from a table or 
by a Matlab command.   

Distribution function dS/d(F/Fo) [-] 



 

2)  The Weibull weakest link model  (using Weibulls probality distribution function) 
 

 
The probability that one specific link fails before the load F is reached:                                                 (1) 

The probability that the link can carry F:                                                                                                        (2) 

The prob. that all n links can carry its load Fi
*

:                                                       

                          

                                                                      (3) 

 

The probability that the chain fails before load is F:                                                                                      (4) 

                                                *
The load F is allowed to be different for different links.      
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For the case of equal loading of all n links, Fi=F, is the failure probability:  

                                                                                                                                                                 (5) 

 

Next the case of different but proportional loading of the n links,  Fi=Fmax λi , where Fmax is the loading 

of most loaded link and λi defines the load distribution. For this general case is the failure probability: 

    

                                                                                                                                                                 (6) 

Note the similarity between these extreme value distributions and the strength distribution for  

a single link:                                             … only different scaling of the load!      This is a special and 

convenient feature of Weibull analysis, giving, i.a., equal COV for a link and a chain. 
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One link 

Chain with 
5 links  

Example:  Fo=200 kN 
m=5 (COV =21 %) m)oF/F(
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For one link: 

For a chain with n links: 
Chain with  
100 links 



 

SUMMARY, for a LINK and a CHAIN   

The weibull strength distribution for a single link:  

          (7)  

  

The corresponding extreme value distribution for the strength for a chain made up of n links,  

where the links can be differently but proportionally loaded according to Fi=Fmax λi , as  

quantified by the magnitude of Fmax then the chain fails,:  

 

          (8) 

Note: the only difference between the two distributions is the load scaling factor: 

                                                      and                                          respectively      (9)      
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Prob. that V fails:                                           where n=V/ΔV.   For ΔV→dV the sum is:       

 

 

 

 

                                                                  …(10) 

Thus the probability of failure of V before the external loading of V has reached a magnitude corresponding 
to stresses σ(x) in V is 
 

 

                                                            where σo is the 63.2 % fractile strength of the volume dV      (11) 
           

 

Next the strength of a material 
volume V made up of small 

volumes ΔV or dV is analyzed as a 
chain made up of links. 

The volume ΔVi is loaded by stress σi.  
The strength properties of the volumes ΔV are defined by parameters σo and m.   
Assumption: The volume V is assumed to fail as soon as any of volumes ΔV fails. Brittle failure! 
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The strength distribution for the reference loading case:  

 

           (12)  

 

where  σref  is short for σo(dV/Vref)1/m and is the 63.2 % fractile strength for reference case. 

 

The strength distribution for the general case, with σo(dV/Vref)1/m=σref  and  σ(x)=σmaxλ(x) is: 

 

 

           (13)  
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The only difference between the reference loading case strength distribution for σ, (12), and the general 
loading case strength distribution for σmax, (13), is the load scaling. The ratio between the two loading 
scaling factors is obtained from eq (12) and (13): 
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This ratio is valid for any fractile strength value including the median value and also mean value since the 
distributions are equal when normalized with respect the loading scale factor.  For instance is the mean 
strength for general loading case 

                             

m/1

)x(

m/1

Vref
t dV

V

1

V

V
f

m
failuremeanmax,











 















    (14) 

                             where ft is the mean strength of the reference specimen.  

 The volume ratio indicates a size effect. 

 The λ-integral indicates a stress distribution effect. 

 
The integration can for simple stress distributions be carried out analytically, for other cases numerical 
integration can be needed.  



 
  An example     (from Danielsson, 2009)   
 

                       

    For constant bending moment M ( i.e for ML=MR=M and V=0) is the bending strength ff *)  by (14) 

    found to be: 
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    Lbh= Vref           and m=10 (corresponding to COV=11.5 %)   gives  tf35.1ff   

    Lbh= 2Vref        and m=10 (corresponding to COV=11.5 %)    gives  tf26.1ff   

    All (Lbh/Vref )  and m→∞ (corresponding to COV=0)             gives tf00.1ff   

 

                                              *) the bending strength ff is by definition Mfailure/(bh2/6) 

  

h 
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By Weibull theory also the failure location probability can be calculated.  
Below are for 4 types of loading of a simply supported beam shown the shape of the bending moment 
diagrams and corresponding failure probability diagrams, valid for m=14 (COV=9.5 %). 
 

            
The cases a)-d) are ordered according to failure probability at equal max bending moment.  
(From Gustafsson, 1983)  

a) 
b) 

c) d) 



 

Strength at a stress singularity as predicted by Weibull theory  

 

 
                                             
For a sharp crack with a square root stress singularity Weibull theory predicts: 
 

 Zero load carrying capacity if m>4   (COV<28.5%) 

 Non-zero finite load capacity of the crack tip only for m=4   (COV=28.5%) 

 Not even for infinitely large load failure at the tip of the crack if m<4  (COV>28.5%) 
 
Thus, Weibull theory does not give any useful results when applied to the analysis of cracks and notches 
with singular stress. 

  
(Details in Gustafsson 1983)  

F 
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    Some concluding remarks relating to the weakest link model    

 
Important assumptions  

 Global failure as soon as the failure criterion is fulfilled in one point (brittle!) 

 Not applicable to stress singularities (stressed based criterion) 

 No strength correlation in between neighboring points of material 
 
Alternatives and extensions 

 Integration of the failure probability over volume V replace by surface area A integration 

 The 2-parameter strength distribution model replaced by the 3-parameter model (exponent (σ/σo)m 
replaced by ((σ-σu)/σo)m) 

 The linear elastic model stress-strain model replaced by non-linear model 

 Also a “strongest link model” can be proposed and might be useful in some cases.  
 
Applications 

 Glas (surface integration) 

 Timber (size effect, effect of bending moment distribution) 

 Unreinforced concrete (not successful?) 

 Cast iron (?) 

 Fatigue of steel structures (?, surface integration) 

 Chains ! (?, summation for a finite number possible failure events) 

 Structures with several structural elements (?, summation for a finite number of possible failure 
events) 



                               

A load carrying structure 
with several elements that 
might fail. 



 
 

Size effects in strength 
 
 
 
                      Probabalistic strength theories and also fracture mechanics  
                      predicts a so-called “size effect” in strength. 
 
     

 
 
    
 
 
 

  

What is meant by  
“size effect” 

in relation to the strength of structural elements?  
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P 

P 

The influence of structural size on load carrying capacity as predicted by all models based on 

”elementary” continuum mechanics *):  

 

 Pfailure  ~   α2               (where P is force,                 e.g. in N)  

 qL,failure  ~ α                (where qL is force/length,   e.g. in N/m)  

 qA,failure  ~ constant  (where qA is force/area,      e.g. in N/m2)  

 qV,failure  ~ 1/α            (where qV is force/volume, e.g. in N/m3) 
  

This is found for all linear and non-linear material and geometrical performance, including stability 
analysis. The magnitude of displacement at failure is ~ α. 
 
Deviations from the above are referred to as “size effects”. 
 
Size effect are found by:  Tests, Fracture mechanics analysis, Weakest link analysis, etc  
                                                                                        *)The performance and strength of a homogeneous  

                                                                               material is defined in terms of stress and strain.  

 



 

h [m] 

Pf/(bh) 
[N/m2] 

Ideal plastic model (no size effect) 

Conv.  elastic brittle model (no size effect) 

Non-linear fracture mechanics (e.g. Hillerborg model) 

Weibull weakest link model, Pf/(bd) ~ 1/V1/m ~ 1/h3/m 

L b 

h 

P Size effect for elements without  
any stress singularity  



 

 
h [m] 

Pf/(bh) 
[N/m2] 

Ideal plastic model (no size effect) 

Non-linear fracture  
mechanics 
(e.g. Hillerborg model) 

Linear elastic fracture mechanics , Pf/(bd) ~ 1/h0.5 

 

L b 

h 

P Size effect for elements with  
a stress singularity  



     
 
   Some possible reasons for size effects 

 A large volume means greater probability for a weak point (Weibull) 

 The size of a FPR is essentially determined by the properties of the material, the size of the 
FPR is thus not proportional to the global size of the structure (fracture mechanics) 

 

 After the development of strain instability and strain localization is stress governed by 
absolute material deformation, not by strain (fracture mechanics, Hillerborg model) 

 

 For virtually all materials are the properties close to the surface of a volume more or less 
different from those within the volume 

 

 etc  

 
 
 
 

  



Strongest link model 

 
Weibulls weakest link model assumes global failure as soon as some stress based failure 
criterion is fulfilled for one structural element or in one point. The assumption is clearly valid 
for the strength of a conventional chain made up of links. 
 
An opposite model and assumption, that of global failure being governed by the strongest link, 
can be illustrated by the resistance that a zipper gives towards being opened. In this case the 
zipper link that give the hardest resistance is decisive. Opening of a zipper is analogous to crack 
propagation. This means that a strongest link model can be relevant in cases where global 
failure is governed by crack propagation along a crack path of some length, and more generally 
where failure of two or more structural elements, or points, must occur before global 
structural failure.  
 
 



To illustrate a strongest link model the strength of zipper links can for example be assumed 
according to the Weibull 2-parameter distribution function: 

 
 
                                      (15) 
 

where Fo and m are material parameters (link parameters), and where S is the probability that 
the link fails before the load is F.  
 
Now a zipper with n links is considered. The probability that all links has a strength less than F 
is Sn. Thus the distribution function for the strength of a zipper with n links is: 

 
 
                                                                               (16) 
 

For comparison, the distribution function for the strength of a conventional chain (as 
determined by the weakest link model) is:  
 

 
          (17) 
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Comparison between (15) and (17) shows that the weakest link model gives the same shape 
of the link and the chain distribution functions, only the strength reference value, Fo and 
Fo/n1/m , respectively, is different. This is a special feature of the 2-parameter Weibull 
distribution function. The strongest link model doesn’t show the same convenient feature.  
 
In application of the strongest link model to crack propagation, F and Fo can represent stress 
intensity K (=(EG)0.5) and fracture toughness Kc, respectively, or crack driving force G and 
critical energy release rate Gc, respectively, or G0.5 and Gc

0.5, respectively, the later alternative 
giving proportionality between the parameter G0.5 and magnitude of external load.  
 
For given load P acting on the structure to be analyzed, K is commonly proportional to P and 
varies as the crack propagates: K=PK1(x) or Ki=PK1(xi). For a sufficiently short interval Δx=xi+1-xi  
K can however be regarded as approximately constant, Ki. Crack propagation a distance nΔx 
then gives the strength distribution function  

 
                                    (18) 
  
 

Kc and m are material parameters with length Δx as reference:  Kc is the fracture toughness 
that the material expose during crack propagation the (short) length Δx  and m is a measure 
of the scatter in Kc.  
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If K=PK1(x) is constant along the crack propagation path, (18) simplifies to: 
 

 
 
                                      (19) 
 

 
 
Example 1 (K constant):   

 
 
 
      (20)         where   K=M(12h)0.5/(bh2) 
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Example 1, cont.  For b=h=25 mm and with Kc=70 N/mm3/2  for Δx=20 mm (wood) is found: 

  

S 

M/(bh2/6) [N/mm2] 

 
n m 5% 

fractile 
strength 

COV 

1  4    9.9 28 % 

1  8 14.3 15 % 
10 4 22.4 10 % 
10 8 21.6   5 % 

 

 Long propagation length before global collaps gives greater strength (reversed size effect). 

 Long propagation length can give less scatter in global strength. 

 Material strength scatter can be positive in case of crack propagation failure, both for 
mean strength and 5 % fractile strength.  
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Example 2 (K varying): Determination of design equation from test results 
 

 
 
             (21)               where   K=PK1(xi)=Pxi(12h)0.5/(bh2) 

 
 

Example problem: A large number of tests with b=h=40 mm, a=140 mm and L=300 mm gave 
for a quality of wood mean strength 1600 N and standard deviation 250 N for P. A 5 % fractile 
strength design equation for the above type of double cantilever beam is sought.  
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Calculation: The reference length is more or less arbitrarily taken as Δx=10 mm, giving n=(300-
140)/10=16. S(P) and the corresponding mean value and standard deviation of P can then be 
calculated for xi=145, 155, … …, 295, for different Kc and m. By simple trial-error calculations Kc 
= 69.7 N/mm3/2 and m= 3.30 is found to correspond to the test recordings for mean and 
standard deviation.  
 
A 5% fractile strength design equation for double cantilever beams is then 
 

 
                                                   (22) 
 
 

from which P0.05 can be determined and where Δx=10 mm, Kc = 69.7 N/mm3/2, m= 3.30 and 
Ki=Pxi(12)0.5/(bh1.5) with xi= a+(i-1/2)Δx. 
 
Eq (22) is simple to solve numerically since the right hand side is 0 for P=0 and then increases 
continuously with P. 
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For a=100 mm; b=50 mm and h=75 mm was by (22) P0.05 obtained for various L: 
 
L  (mm) 110 120 130 140 150 200 400 800 
P0.05 (N) 2530 3923 4510 4803 4960 5142 5147 5147 

 
It is event that scatter in strength gives a positive length effect. In this example the rate of 
increase is significant only for small crack propagation lengths (L-a) since K increases with crack 
length.  
 
In the above examples a simple equation for K has been used, based on beam theory. This 
simple equation is not very accurate for small (L-a)/h, but makes results regarding influence of 
the strongest link concept easier to see.   
 
Possible influence and relevant choice of Δx remains to be studied, in particular Δx→dx.    
 


	Blank Page
	Blank Page

