
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Performance Evaluation of QUIC vs TCP for Cloud Control Systems

Peng, Haorui; Tärneberg, William; Fitzgerald, Emma; Kihl, Maria

Published in:
The 31st International Conference on Software, Telecommunications and Computer Networks - SoftCOM 2023

DOI:
10.23919/SoftCOM58365.2023.10271592

2023

Document Version:
Early version, also known as pre-print

Link to publication

Citation for published version (APA):
Peng, H., Tärneberg, W., Fitzgerald, E., & Kihl, M. (2023). Performance Evaluation of QUIC vs TCP for Cloud
Control Systems. In The 31st International Conference on Software, Telecommunications and Computer
Networks - SoftCOM 2023 IEEE - Institute of Electrical and Electronics Engineers Inc..
https://doi.org/10.23919/SoftCOM58365.2023.10271592

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.23919/SoftCOM58365.2023.10271592
https://portal.research.lu.se/en/publications/b4c45405-3445-4366-b858-79d93d327f0d
https://doi.org/10.23919/SoftCOM58365.2023.10271592


Performance Evaluation of
QUIC Vs. TCP for Cloud Control Systems

Haorui Peng, William Tärneberg, Emma Fitzgerald, Maria Kihl
Department of Electrical and Information Technology, Lund University, Lund, Sweden

{haorui.peng, william.tarneberg, emma.fitzgerald, maria.kihl}@eit.lth.se

Abstract—QUIC is a UDP-based transport layer protocol
developed by Google that is designed to deliver lower latency
performance than TCP. However, its performance has been found
to vary across different studies due to discrepancies in targeted
applications and experimental configurations. Therefore, the pro-
tocol evaluation is heavily dependent on the QoS requirements of
the target application. In this paper, we evaluate the performance
of QUIC for cloud control systems by comparing it with TCP and
TCP-based protocols. We performed the evaluation under two
different cloud environments: a private edge cluster and public
cloud. Different networks were utilized under multiple scenarios,
including 5G, Ethernet LAN and Internet. Our objective is to
determine if QUIC can meet the QoS requirements of a cloud
control system. By focusing on this specific use case, we aim to
provide a more comprehensive understanding of the potential
benefits and limitations of QUIC on cloud control systems. The
results of our evaluation suggest that the performance of different
protocols varies based on the characteristics of different control
systems. However, QUIC offers more advantages in deploying
and enhancing time-critical systems.

Index Terms—Cloud control systems, Transport layer proto-
cols, QUIC

I. INTRODUCTION

Quick UDP Internet Connections (QUIC) [1] is a transport
layer protocol that was initially proposed and developed by
Google since 2012 and aims to provide an alternative to TCP
for deploying today’s web application. It has been globally
enabled on Google services such as YouTube and Gmail [2],
as well as Meta services such as Facebook and Instagram. It
is also supported by today’s major browsers such as Chrome,
Microsoft Edge, Firefox and Safari.

QUIC was standardized by The Internet Engineering Task
Force (IETF) at 2021 [1], and later, HTTP3, an HTTP protocol
that relies on QUIC was standardized in 2022 [3]. According
to the report from Google, QUIC has achieved 10% reduction
in page loading time for their properties and 30% reduction in
rebuffers for video services [4]. Meta also reported that, with
QUIC, Facebook users have experienced a 6% reduction in
request errors and 20% tail latency reduction [5].

Considering the low latency benefits, we believe that QUIC
could be a more appropriate protocol for Cloud Control Sys-
tems (CCSs) [6]. CCSs are cyber-physical systems that deploy
the controller in a public or edge cloud, and the controller
communicates with the control plant through a network. By
utilizing QUIC, CCSs could potentially benefit from reduced
latency and improved network performance.

Although there are conflicting results regarding the per-
formance of QUIC and its potential to replace TCP/TLS
in web applications [7]–[11], most studies have shown that
QUIC outperforms TLS/TCP in less reliable networks and
with smaller packet sizes [7]–[9]. According to [12], these
discrepancies may be due to differences in application settings
and protocol implementation used in the experiments. Overall,
while QUIC has shown promise in reducing latency and
improving performance in certain applications and network
conditions, its benefits and limitations are highly dependent
on the specific use case and network environment. Further
research and evaluation are necessary to fully understand
the potential benefits and drawbacks of QUIC in various
contexts. An application-oriented evaluation of transport layer
protocols is crucial for critical applications like CCSs and their
developers, as such a system requires low-latency and reliable
end-to-end communication.

This paper presents an application specific evaluation of
QUIC for CCSs, which has not been previously explored.
We compare QUIC with TCP and evaluate the performance
of HTTP3 (based on QUIC) versus HTTP1.1 (with TLS
implemented) for a CCS while considering its specific Quality
of Service (QoS) requirements. We conduct experiments in
scenarios with different cloud environments and communica-
tion networks to investigate whether HTTP3/QUIC is a better
choice than legacy TCP-based protocols for CCS with specific
QoS requirements.

II. TARGETED SYSTEM

This section provides an overview of the system targeted
for our protocol evaluation, namely CCS, and highlights the
technical differences among the protocols that have an impact
on system performance.

A. QUIC, TCP and HTTP

QUIC has evolved through multiple versions over the past
decade, and the current major QUIC implementations available
in various programming languages conform to the IETF stan-
dard, which is also the QUIC version we address in this paper.
The application layer protocol based on QUIC is standardized
as HTTP3. In contrast to secured HTTP1.1, which is built
on top of a TLS layer and TCP transport protocol, HTTP3
relies on QUIC for all functionalities, including cryptographic
and transport handshake, and multiplexing. The multistream-
ing mechanism of QUIC and HTTP3 facilitates concurrent



data streams over a singular QUIC/UDP connection. This
feature mitigates head-of-line blocking and reduces connection
establishment and management latency, which contrasts with
HTTP1.1 that requires multiple concurrent TCP connections
for multiplexing.

Based on the targeted cloud control system in our work,
which involves a cloud application that requires full network
stack implementation, this paper focuses on comparing the two
HTTP protocols, namely HTTP3 based on QUIC/UDP and
HTTP1.1 based on TLS/TCP. Our evaluation mainly revolves
around the performance and behavior of these protocols in the
context of a cloud control system, and highlights their potential
advantages.

B. Cloud Control System

A cloud control system is a cyber-physical system where the
plant is a physical device such as robotic arms, autonomous
vehicles and production lines, but the the controller of the
system is implemented in the cloud. In a CCS, the control
loop is separated by a network. In combination with mobile
communication such as 5G, this type of systems are evolv-
ing rapidly in the Industry 4.0 era to enable automation in
manufacture, mining, etcetera [13], [14]. The control process
operates at a frequency appropriate for the specific plant,
where in each period, the plant sends its current state as
a request to the cloud-based controller, which computes a
control signal and synchronously replies with it. The control
signal is then applied to the plant for actuation. The length of
the period is also called the sampling rate of a cloud control
system, deciding the interval of subsequent requests made by
the plant.

The key difference between a CCS and a local control
system is the presence of network latency, which can result in
outdated control signals being applied to the plant. This can
negatively impact the performance and safety of the process.
The frequency of requests from the plant to the controller
depends on the plant model, and affects the design of the
controller. Processes that require higher request frequencies
for updating plant states and receiving control signals require
lower network latency and jitter to meet their dynamics.

Based on our previous study on CCSs [15], [16], where
HTTP1.1 was mainly implemented in the systems, the payload
size containing the plant state or control signal is typically
small, ranging from 200-300 bytes. This is much smaller
compared to payload sizes of web page or video downloads.
In most cases of CCSs, there is no need for segmentation of
the payload as both QUIC and TCP support payload sizes up
to 1350 bytes and 1500 bytes.

III. EXPERIMENT SETUP

In this section, we describe our experimental setup for
evaluating the performance of different protocols in CCSs, as
well as the performance metrics we consider. Specifically, we
compare QUIC with TCP as a transport protocol. Meanwhile,
since HTTP is still the most prevalent application protocol
used in cloud applications, we also evaluate the performance

of HTTP3 and HTTP1.1 over TLS/TCP. Thus, in this paper,
four servers are deployed using different protocols: (i) single
stream QUIC (ii) TCP only (without TLS) (iii) HTTP over
QUIC (HTTP3) and (iv) HTTP1.1 over TLS/TCP. Note that
in the first two cases, no application protocols are implemented
in the communication, so the packet size and network overhead
would be smaller than case (iii) and (iv).

A. Evaluation Setup

To evaluate the performance of the protocols, we created
several client-server pairs using Golang, communicating over
different protocols. The client is the plant of a control system
that sends its current state periodically to the server, which
is the remote cloud controller. We implemented QUIC and
HTTP3 using the quic-go [17] library, which provides an
implementation of the IETF-standardized QUIC protocol.

The client runs on an Ubuntu-jammy machine with a 5.19.0-
38-generic Linux kernel, while the servers are containerized
using Docker and deployed on either an edge cluster or a
public cloud. We evaluate the performance of the protocols
under three different network scenarios, depending on where
the servers are deployed: (i) Ethernet (wired local area net-
work), (ii) Private 5G mobile network, (iii) Internet.

In order to evaluate how different protocols perform in
various cloud environments and under different network sce-
narios, we intentionally did not control or tune the networks
or network configurations specifically for the experiments.

The edge cloud environment used in the experiments con-
sists of a seven-node bare-metal cluster with Kubernetes
used for container orchestration. Each server is running in a
Kubernetes Pod with BestEffort QoS class, and each node of
the cluster is running on Ubuntu-jammy operating system with
Linux kernel version 5.15.0-69-generic. For the evaluation
under the edge scenario, two types of networks were used.
The first is a wired network where the client and the edge
cluster are only connected via Ethernet. The second is a private
5G mobile network hosted in the lab where we set up all the
experiments, and the mobile network configuration and the
base station setup are detailed in [16]. The client machine is
connected to a 5G WNC modem to enable mobile commu-
nication, and the core functions of the 5G network are also
deployed as Kubernetes services in the edge cluster, making
the servers mobile edge applications under this scenario.

For the public cloud environment, we deployed each server
as an Elastic Container Service (ECS) provided by AWS. The
host AWS data center is located in Stockholm, Sweden, and
each service is allocated 1 vCPU and 3GB memory with
the compute engine provided by AWS Fargate. Under this
scenario, the data path between the client and the servers
traverses the Internet, which is much more unpredictable than
the edge scenarios. Table I summarizes the three scenarios
used in our evaluation. Additionally, to provide an intuitive
view of the networks involved in our measurements, we
also included the Round Trip Time (RTT) value via PING
measurements to the servers through the underlying networks.



TABLE I
THREE EVALUATION SCENARIOS IN THE EXPERIMENT

Scenario Name Ethernet 5G AWS
Deployment
Env. Edge cluster Edge cluster AWS Public

Cloud
Network Ethernet LAN 5G Internet
RTT 0.520ms 10.688ms 13.553ms

For the evaluation, we mimic the behavior of a CCS by
designing a communication pattern between each pair of
client and server in our experiment, since we don’t focus
on the performance related to control processes. Specifically,
the client sends a request to the server every dms, which
corresponds to the sampling rate of a control system. Each
request contains a payload of p bytes. Upon receiving each
request, the server sends back a response that also contains p
bytes payload. In this way, the communication pattern mimics
a control system with a sampling time of dms, where each
message exchange between the plant and controller involves
a payload of p bytes. Following are the values of d and
p we have considered in our evaluation, aiming to imitate
different types of control systems. The evaluation experiment
was running for one hour under each pair of the parameters
for collecting sufficient amount of data for analysis.

• d (ms): 5, 10, 25, 50, 75, 100
• p (bytes): 128, 256, 512, 1024

B. Performance Metrics

Considering the QoS requirements of a CCS, we preformed
the evaluation on different protocols from two different per-
spectives: 1) the response delay and jitter of the delay, and
2) data volume.

The response delay in a CCS is the application response
time measured at the plant, reflecting how long it takes
to receive a server response after a request is made. This
delay impacts the plant’s ability to timely receive and act
upon control signals, as responses are expected before the
plant sends subsequent state updates. The response delay,
typically longer than network latency, accounts for transport
and application protocols processing time and the controller
application’s execution time in the cloud [18].

Based on [19], we calculate and express response delay
jitter as a percentage by dividing the mean jitter value by
the mean response delay. Jitter is vital to a CCS, particularly
when network latency matches or exceeds the control process’
sampling rate, necessitating delay compensation like plant
state predictions. High jitter signifies unpredictable network
and plant behavior, complicating delay compensation, while
lower jitter suggests predictability, simplifying compensation.

We evaluate the data volume produced by different protocols
in a CCS, crucial when the controller is cloud-based and
service charges depend on traffic. Instead of throughput, which
relates to network bandwidth and data rate determined by
control plant frequency and payload size, we use the average
packet size per request and response (Equation (1)) to rep-
resent overall data volume. This measure clearly shows each

protocol’s network overhead, assisting in selecting a protocol
that minimizes data volume without affecting performances.

data volume per request =
Total sent data by the plant

Number of requests

data volume per response =
Total received by the plant

Number of responses
(1)

IV. EVALUATION RESULTS

In this section, we present the results from our evaluation
and our analysis on the results.

A. Response Time and Jitters

Based on the chosen values for the parameters d and
network latency given in various scenarios in Table I, we
have two different cases for evaluating the response delay and
its jitter: 1) the low-frequency case and 2) the high-frequency
case. In the low-frequency case, d is greater than the network
latency, such as when d = 25ms under AWS and 5G scenarios.
In this case, although the average response delay is longer than
the network latency, it is usually shorter than one sampling
interval d. The response delay and jitter performance shows the
reliability of the network in the system. In the high-frequency
case, when the sampling interval d is short than the network
latency, delay compensation will be needed in the control
system. However, a relatively lower response delay and smaller
jitter has more advantages in designing the compensation
algorithms.

1) Low-frequency case: Figure 1 displays the box plots of
response delays for various protocols in three scenarios. From
the bottom to the top, the box lines and whiskers indicate the
5th, 25th, 50th, 75th, and 95th percentile of the measurement
data. The evaluation results are based on increasing payload
size and a fixed sampling rate of d = 25ms, results in the
cases with sampling rate d ≥ 25ms are similar to this case.

Under all scenarios , single stream QUIC has around 0.3ms
higher delays than TCP, since we don’t have cryptographic
implementation in our deployed TCP communication, which
requires less handshake latency and processing time compared
to QUIC. Meanwhile, the response delays generally increase
with increasing payload size due to the higher processing time
on larger size packets. In the Ethernet scenario, which provides
the most reliable and lossless network among all our evaluated
scenarios, HTTP3 exhibits a worse performance than HTTP1.1
in terms of response delay, which is consistent with the
observations from previous research [10], [11]. Although 5G
gives higher network latency, is considered as a reliable mobile
network with little loss, and HTTP3 has higher response
delay than HTTP1.1 under the 5G scenario, which shows the
same behavior as the Ethernet scenario. Furthermore, we have
observed that the payload size has larger impact on QUIC
and HTTP3 in this case, especially on the median value of
response delay.

The performance of the protocols under the AWS scenario
exhibits differences from the other scenarios, where HTTP1.1



1

1.5

2

E
th

er
ne

t
R

es
po

ns
e

D
el

ay
(m

s) TCP QUIC HTTP1.1 HTTP3

15

20

25

5G
R

es
po

ns
e

D
el

ay
(m

s)

128 256 512 1024

13

14

15

Payload (bytes)

A
W

S
R

es
po

ns
e

D
el

ay
(m

s)

Fig. 1. Box-plots of response delay of different protocols under Ethernet, 5G
and AWS scenarios, with increasing payload size p and sampling rate d =
25ms. Due to different scales of observed network latency in each scenario,
the plots are presented in different scales, and the y-axes are broken from
origin start.

shows almost 1ms lower median values on response delays
compared to TCP, and it also has much wider ranges between
the first and third quartile compared to other protocols. This
behavior may be attributed to the possibility of cloud providers
restricting or deprioritizing certain traffic such as pure TCP
and QUIC, which have no application protocol implemented,
and this leads to an impact on the performance of the pro-
tocols. Other observation in the experiments under the AWS
scenario is that the HTTP1.1 packets with TLS/TCP can not
be decrypted, but the HTTP3 and QUIC can be. This may be
due to certain security rules implemented in the data center,
which also affect the delays introduced by HTTP1.1 under the
AWS scenario.

Additionally, the response delays show smaller variances
under the AWS scenario compared to the other scenarios,
which is also revealed by the jitter performance illustrated in
Figure 2. Under this scenario, since the ECSs hosting different
server applications are not under the control of the user,
the performance of each protocol may be influenced by the
cloud execution environment and virtual network environment,

Ethernet 5G AWS
0

5%

10%

15%

Scenario

Ji
tte

r

TCP QUIC HTTP1.1 HTTP3

Fig. 2. The jitter of different protocols under three scenarios, with payload
size p = 256bytes and sampling rate d = 25ms.

which also remain unknown to the user. Under the Ethernet
and 5G scenarios, TCP shows less jitter than QUIC, and
HTTP1.1 has less jitter than HTTP3.

In this case, both HTTP1.1 and HTTP3 require only
one connection at the transport layer (TCP or UDP). With
HTTP1.1, the TCP connection is persistent and reused by
each request, meaning that only one connection establishment
and transport/cryptographic handshake are needed. After the
connection is established, the client can simply send requests
and receive responses from the server. The acknowledgment
for each request and response is usually contained in the
response and the next request.

In the case of HTTP3, only one UDP connection is estab-
lished, but each request-response pair is carried by a separate
bidirectional stream that is initiated by the client. In order to
allow new streams to open for new requests, the server must
keep sending MAX STREAMS QUIC frames to permit the
streams to be opened cumulatively. Furthermore, as the next
request establishes a new stream, the acknowledgment of the
previous response cannot use the new stream and must be
sent separately. This behavior adds more overhead in HTTP3
compared to HTTP1.1 in the low-frequency case and results
in longer response delays and larger jitter.

2) high-frequency cases: In scenarios where the network
latency exceeds the plant sampling interval d, as in the high-
frequency case, multiplexing functionality is required for the
protocols to function properly. Pure TCP or signal stream
QUIC cannot achieve this, so the comparison in this case is
limited to HTTP3 and HTTP1.1. The response delay and jitter
performance with different payload sizes are shown in Figure 3
for a plant sampling interval of d = 5ms and an average net-
work latency of 10.688ms under the 5G scenario. We choose
this scenario as show case because the 5G network gives a
relatively larger network latency than Ethernet, which may
also longer than the sampling rate of certain control systems.
The computational environment is also more controllable by us
than the AWS scenario. The results indicate that, in this case,
HTTP3 outperforms HTTP1.1 with respect to both response
delay and jitter, which is in contrast to the low-frequency case.

When the network latency exceeds the plant sampling



20

30

5G
R

es
po

ns
e

D
el

ay
(m

s)

HTTP1.1 HTTP3

128 256 512 1024
0

5%

10%

15%

Payload (bytes)

Ji
tte

r

Fig. 3. Comparison of response delay (top) and jitter (bottom) performance
between HTTP1.1 and HTTP3 under the 5G scenario with increasing payload
size and a sampling rate of d = 5ms. The y-axis of the response delay
performance is broken from origin start.

interval d, the persistent TCP connection used by HTTP1.1 can
become a bottleneck due to head-of-line blocking. This occurs
when a slow response blocks the entire connection, leading to
longer response delays and higher jitter. However, the control
system must send the plant state periodically, regardless of
whether the response to the previous request has arrived or not.
An application using HTTP1.1 can handle this head-of-line
blocking by using a new TCP connection for the next request
before the response to the previous one has arrived. If a session
is not available between the client and the server, a new session
is established with new transport and cryptographic handshake.
If a session is established for a new request, but is not reused
by a subsequent request in a short time, it will be closed.
The average number of TCP sessions established per 1000
requests in a series of experiments under the 5G scenario is
shown in Figure 4, with the number of sessions increasing with
higher frequencies. The established session number varies for
different experiments even under the same parameter values,
due to the highly dependent network latency and jitter. Even
when the sampling rate d is larger than the network latency,
more than one TCP session may be established due to jitter.

In contrast, HTTP3 allows multiple streams to be es-
tablished simultaneously for multiple requests without extra
handshake effort, and it has the same behavior as the low-
frequency case. Therefore, in this case, HTTP3 outperforms
HTTP1.1 in terms of response delay and jitter.

B. Data Volume

In Figure 5, we present the data volume evaluation results of
a set of experiments under the 5G scenario, where the payload

5 10 25 50 75 100128 256 512 1024

1

100

Interval(ms) Payload (bytes)

N
o.

of
T

C
P

se
ss

io
ns

pe
r

10
00

re
qu

es
ts

Fig. 4. Average number of TCP sessions established in HTTP1.1 experiments
for 1000 requests under different plant sampling intervals and payload sizes.
The z-axis value indicates the number of sessions per 1000 requests. In the
higher frequency case with a sampling interval of d = 5ms, approximately
100-200 sessions were established for every 1000 requests. This number
decreased to less than 15 sessions per 1000 requests when the sampling
interval was d = 10ms. When d was greater than 50ms, typically only 1
or 2 sessions were used during each experiment.

size of each request and response is 128 bytes. We chose
this scenario for analysis because it gives a relatively larger
network latency, meanwhile the edge cloud execution environ-
ment is more controllable. The figure shows that HTTP1.1 has
a larger data volume per request than HTTP3 in all cases. This
is primarily because TCP has a larger header size than UDP
and QUIC, resulting in HTTP1.1 having a larger packet size
than HTTP3 with the same payload amount. Comparing the
data volume per request to the actual HTTP packet sizes in the
figure, we can observe that the data volume per request with
HTTP1.1 is much closer to its actual packet size compared
to HTTP3. This implies that the overhead of HTTP1.1 is
mainly due to the large header size in each protocol, while
the overhead in HTTP3 is mainly introduced by the stream
control frames and ACK packets as discussed earlier.

It is worth noting that in the high-frequency case with a
sampling rate of d = 5ms, the data volume of HTTP1.1 is
much higher than in other cases. This is because of the large
number of TCP session establishments in this case, which is
also evident in Figure 4, and the handshake packets causing
a lot of network overhead. In general, considering the cost
of deploying the controller in public cloud, HTTP3 is a more
economical choice than HTTP1.1.

V. CONCLUSIONS

This paper presents our evaluation of transport protocols for
CCSs, with the aim of exploring the potential advantages of
deploying QUIC/HTTP3 over legacy TCP-based protocols. We
conducted experiments under three different network scenarios
and evaluated protocol performance based on two key factors:
system response delay and jitter, and data volume created
by the system. Our results show that when a control system
operates at a relatively low frequency and network latency is
not significant, QUIC and HTTP3 exhibit worse performance



0

200

400

600

Payload size

HTTP3 packet size

HTTP1.1 packet size

D
at

a
vo

lu
m

e
(b

yt
es

/r
eq

ue
st

)

5 10 25 50 75 100

600

400

200

0

Payload size
HTTP3 Packet size

HTTP1.1 Packet size

Interval (ms)

D
at

a
vo

lu
m

e
(b

yt
es

/r
es

po
ns

e)

HTTP1.1 HTTP3

Fig. 5. Data volume per request (top) and per response (bottom) under the
5G scenario with different sampling intervals and payload size of 128 bytes.
The bar charts depict the data volume generated by different protocols, where
the red lines represent the payload size of 128 bytes. Additionally, the orange
and blue lines denote the packet size of a single HTTP1.1 and HTTP3 request
and response.

than TCP and HTTP1.1, consistent with previous research.
However, under higher frequency with significant network
latency, HTTP3 demonstrates shorter and less variant response
delay, which is beneficial for more time-critical applications
and advanced control designs. In terms of data volume, HTTP3
generates less data per request and less network overhead,
indicating that it is a more cost-effective choice for deploy-
ing controllers in public clouds. Going forward, we plan to
deploy actual time-critical control processes and examine the
effectiveness of delay compensation with different protocols.

VI. ACKNOWLEDGMENT

This work was partially supported by the Wallenberg
AI, Autonomous Systems and Software Program (WASP)
funded by the Knut and Alice Wallenberg Foundation, the
SEC4FACTORY project, funded by the Swedish Foundation
for Strategic Research (SSF), and the IMMINENCE project
funded by Sweden’s Innovation Agency (VINNOVA). The au-
thors are part of the Excellence Center at Linköping-Lund on
Information Technology (ELLIIT), and the Nordic University
Hub on Industrial IoT (HI2OT) funded by NordForsk.

REFERENCES

[1] J. Iyengar and M. Thomson, “QUIC: A UDP-based multiplexed and
secure transport,” RFC 9000, May 2021, last Accessed: July 4, 2023.
[Online]. Available: https://www.rfc-editor.org/info/rfc9000

[2] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar, J. Bailey, J. Dorfman,
J. Roskind, J. Kulik, P. Westin, R. Tenneti, R. Shade, R. Hamilton,
V. Vasiliev, W.-T. Chang, and Z. Shi, “The QUIC transport protocol,”
in Proceedings of the Conference of the ACM Special Interest Group on
Data Communication. ACM, 2017.

[3] M. Bishop, “HTTP/3,” RFC 9114, Jun. 2022, last Accessed: July 4,
2023. [Online]. Available: https://www.rfc-editor.org/info/rfc9114

[4] “Google Edge Network,” last Accessed: July 4, 2023. [Online].
Available: https://peering.google.com/#/learn-more/quic

[5] M. Joras and Y. Chi, “How Facebook is bringing QUIC to
billions,” last Accessed: July 4, 2023. [Online]. Available: https:
//engineering.fb.com/2020/10/21/networking-traffic/how-facebook-is-b
ringing-quic-to-billions/

[6] P. Skarin, “Control over the cloud: Offloading, elastic computing,
and predictive control,” Ph.D. dissertation, Department of Automatic
Control, Lund University, Nov. 2021.

[7] B. V. D. Cunha, X. Li, W. Wilson, and K. Harfoush, “Performance
benchmarking of the QUIC transport protocol,” in 2023 IEEE 20th
Consumer Communications & Networking Conference (CCNC). IEEE.

[8] S. Cook, B. Mathieu, P. Truong, and I. Hamchaoui, “QUIC: Better
for what and for whom?” in 2017 IEEE International Conference on
Communications (ICC). IEEE, 2017.

[9] P. Megyesi, Z. Kramer, and S. Molnar, “How quick is quic?” in 2016
IEEE International Conference on Communications (ICC). IEEE, 2016.

[10] M. Seufert, R. Schatz, N. Wehner, and P. Casas, “QUICker or not?
-an empirical analysis of QUIC vs TCP for video streaming QoE
provisioning,” in 2019 22nd Conference on Innovation in Clouds,
Internet and Networks and Workshops (ICIN). IEEE, 2019.

[11] D. Saif, C.-H. Lung, and A. Matrawy, “An early benchmark of quality
of experience between HTTP/2 and HTTP/3 using lighthouse,” IEEE
International Conference on Communications, 2020.

[12] M. Moulay, F. D. Munoz, and V. Mancuso, “On the experimental assess-
ment of QUIC and congestion control schemes in cellular networks,” in
19th Mediterranean Communication and Computer Networking Confer-
ence, MedComNet 2021. IEEE, 2021.

[13] Nokia, “5G at the Sandvik underground test mine: A private wireless
network enabling mining automation,” last Accessed: July 4, 2023.
[Online]. Available: https://go.rocktechnology.sandvik/l/490131/2021-
09-10/99yx1z

[14] B. K. Christer Boberg, Malgorzata Svensson, “Distributed cloud – a
key enabler of automotive and industry 4.0 use cases,” last Accessed:
July 4, 2023. [Online]. Available: https://www.ericsson.com/en/reports-
and-papers/ericsson-technology-review/articles/distributed-cloud

[15] F. Akbarian, W. Tärneberg, E. Fitzgerald, and M. Kihl, “Attack resilient
cloud-based control systems for industry 4.0,” IEEE Access, vol. 11,
2023.

[16] H. Peng, W. Tarneberg, E. Fitzgerald, F. Tufvesson, and M. Kihl,
“Evaluation of control over the edge of a configurable mid-band 5g
base station,” in 6th IEEE International Conference on Fog and Edge
Computing, ICFEC 2022. IEEE, 2022.

[17] “quic-go: A quic implementation in pure go,” last Accessed: July 4,
2023. [Online]. Available: https://github.com/quic-go/quic-go

[18] H. Peng, W. Tarneberg, E. Fitzgerald, and M. Kihl, “Punctual cloud:
Unbinding real-time applications from cloud-induced delays,” in 2021
International Symposium on Networks, Computers and Communications.
IEEE.

[19] S. Poretsky, S. Erramilli, J. Perser, and S. Khurana, “Terminology
for Benchmarking Network-layer Traffic Control Mechanisms,” RFC
4689, Oct. 2006, last Accessed: July 4, 2023. [Online]. Available:
https://www.rfc-editor.org/info/rfc4689


