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A B S T R A C T   

Hazardous materials in buildings cause project uncertainty concerning schedule and cost estimation, and hinder 
material recovery in renovation and demolition. The study aims to identify patterns and extent of poly
chlorinated biphenyls (PCBs) and asbestos materials in the Swedish building stock to assess their potential 
presence in pre-demolition audits. Statistics and machine learning pipelines were generated for four PCB and 
twelve asbestos components based on environmental inventories. The models succeeded in predicting most 
hazardous materials in residential buildings with a minimum average performance of 0.79, and 0.78 for some 
hazardous components in non-residential buildings. By employing the leader models to regional building reg
isters, the probability of hazardous materials was estimated for non-inspected building stocks. The geospatial 
distribution of buildings prone to contamination was further predicted for Stockholm public housing to 
demonstrate the models’ application. The research outcomes contribute to a cost-efficient data-driven approach 
to evaluating comprehensive hazardous materials in existing buildings.   

1. Introduction 

The potential presence of hazardous materials creates uncertainty for 
time and cost estimates in renovation and demolition projects as well as 
health concerns for workers (Powell et al., 2015; Rašković et al., 2020). 
A considerable quantity and variety of contaminants remain in the built 
environment nowadays, and their extent and location in buildings are 
rarely known due to insufficient documentation and verification 
(Bergsdal et al., 2014; Franzblau et al., 2020; Govorko et al., 2017; Wilk 
et al., 2019). As such, pre-demolition audit practice is introduced to 
identify the presence and quantify the amounts of hazardous materials 
to guide demolition contractors and waste handling companies in 
evaluating the contamination risk in material sorting (ECORYS, 2016; 
Wahlström et al., 2019b, 2019a). The audit inventories are also crucial 
for implementing selective demolition and deconstruction, as well as for 
quality assessment of reclaimed materials as a foundation for designing 
closed-loop circular strategies (Bergmans et al., 2017; Wahlström et al., 
2020, 2019a). Nevertheless, the current time-consuming and costly 
practice of identifying hazardous materials on a building basis can 
hardly be used to estimate the remaining hazardous materials for the 
entire existing building stock. In addition, the quality and the 

completeness of inventory vary significantly between building types and 
regions, depending on the experience of auditors and building 
complexity (Wu et al., 2021a, 2021b). To prepare for and improve 
in-situ inspection of material quality appraisal and prevent second 
contamination in material recovery, exploring new approaches for 
enhancing the efficiency of in-situ hazardous material screening is 
necessary. 

Since the 1990s, polychlorinated biphenyls (PCBs) have been used as 
impregnation agents in building components for enhancing fire resis
tance and electrical insulation, while asbestos was commonly used for 
sound and heat insulation as additives to glue, joints, paints, or plaster in 
construction. Several data-driven methods, such as material flow and 
stock analysis, were investigated to estimate residual PCB and asbestos 
stock for a longer timeframe at an aggregated level based on PCB field 
sampling and source-centric inventories, and the import and consump
tion data of asbestos products from demolition activities. However, 
studies of forecasting upcoming hazardous waste streams from a top- 
down perspective (Donovan and Pickin, 2016; Zoraja et al., 2021) or 
mapping local emission sources from a bottom-up approach (Bergsdal 
et al., 2014; Diamond et al., 2010; Diefenbacher et al., 2016; Shanahan 
et al., 2015) have limitations. The former concerns the certainty of 
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determining the lifetime of components and variation in sensitivity 
analysis due to extensive data sources and multiple assumptions, while 
the latter is fairly resource-demanding for a broad uptake in an 
urban-wide application. 

In light of these shortcomings, machine learning is a rather cost- 
efficient, accurate, and scalable approach to computing multivariate 
prediction models. It offers an opportunity for exploiting past inventory 
records to identify the presence patterns of hazardous materials in 
buildings (Wu, 2022; Wu et al., 2022b, 2021c). Several prediction ap
plications were developed in former studies and promising results were 
attained for mapping asbestos-containing products and roofing mate
rials (Abriha et al., 2018; Krówczyńska et al., 2020; Wilk et al., 2019), 
estimating the probability distribution of radioactive concrete (Wu 
et al., 2023), and classifying the potential presence of asbestos and 
PCB-containing building materials (Wu et al., 2022b, 2022a). The re
sults of these pilot studies may be used to improve in-situ hazardous 
material identification for intervention planning, such as source elimi
nation and safe waste management. 

This study deepened the analyses in the direction of expanding the 
prediction scope to multiple asbestos and PCB-containing materials and 
compared model robustness between regional building stocks. The pri
mary focus was to identify critical variables and their synergies corre
lating with the presence of asbestos and PCB in buildings built between 
1930 and 1985, and further on, attempting to quantify the extent of 
contaminated materials in the Swedish building stock. The chosen 
period is deemed suitable as substantial hazardous materials are 
frequently detected in buildings built before the ban on asbestos and 
PCB in the mid-70s in Sweden (Wu, 2022; Wu et al., 2021a). The 
research outcomes contribute to bridging the interdisciplinary areas 
between the EU Registration, Evaluation, Authorization, and Restriction 
of Chemicals (REACH, EC 1907/2006) and the EU Resource efficiency 
opportunities in the building sectors legislations (COM 445, 2014), 
which can facilitate relevant authorities to formulate hazardous sub
stances risk management policies for circular building (Swedish Na
tional Board of Housing Building and Planning, 2023). Other actors in 
the construction and demolition waste management sector, such as 
property owners, demolition contractors, and waste handling com
panies, could also benefit from risk-informed inspection planning. To 

realize the overarching research goals, three objectives are specified: 

(i) To evaluate the quality and quantity of pre-demolition audit in
ventories and describe the statistics of PCB and asbestos- 
containing material detection in regional building stocks.  

(ii) To develop machine learning models for predicting PCB and 
asbestos-containing materials and analyze prediction outcomes.  

(iii) To estimate and visualize the probability distribution of PCB and 
asbestos-containing materials in regional building stocks. 

2. Material and methods 

The study was designed in three parts: (i) data sources assembling, 
(ii) data preprocessing and validation, and (iii) machine learning 
modeling and prediction, illustrated in Fig. 1. 

2.1. Data sources assembling 

Pre-demolition audit inventories conducted between 2010 and 2022 
were collected from the city archives of the most populated Swedish 
municipalities – Stockholm, Gothenburg, Malmö, as well as Kiruna, a 
smaller town situated in the north where many buildings were demol
ished due to mining activities. After data cleaning, i.e., removal of 
buildings lacking registers and buildings categorized as complementary 
buildings, etc., 788 observations remained, of which 47% were from 
Stockholm, 35% from Gothenburg, 10% from Malmö, and 8% from 
Kiruna. This data sampling had a broad geographical coverage repre
senting heterogeneous building stock and diverse inventory types, 
including consultancy reports, protocol, control plans, and demolition 
plans. Then the inventories were digitalized into a machine-readable 
dataset, where the purposes and the extent of the investigation, in
spection date, auditors, decontamination, and detection of hazardous 
materials were recorded following the Resource and waste guidelines for 
construction and demolition (Byggföretagen, 2019) to ensure high data 
quality and documentation coherence. The dataset contained 69% of 
buildings with total inspection and 14% of buildings with decontami
nation records of PCB or/and asbestos. 

Meanwhile, the building registers from the Swedish Energy 

Fig. 1. Study outline.  
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Performance Certificates (EPCs), the Swedish Real Estate Taxation reg
ister, and the Municipal Cadastral register, were compiled and merged 
via the Feature Manipulation Engine (FME) to supplement generic in
formation, including cadastral affiliation, building usage and charac
teristics (Johansson et al., 2017). Coupling multiple registers was 
beneficial in comparing the data quality between database updates and 
enhanced dataset completeness. Then the data merging uncertainties 
were assessed by characterizing the matching relationships of the 
number of properties and buildings. To evaluate the representativeness 
of the training dataset to the prediction dataset, the mean and missing 
values of features were examined against the building stock of the 
sampled municipalities in Appendix A Table A1. The building registers 
of the observed buildings were used as features for model training, while 
the registers of uninspected buildings were employed as the input data 
for prediction. 

2.2. Data preprocessing and validation 

The data preprocessing concerning data evaluation, missing data 
imputation, and feature engineering, was applied to the dataset inte
grated from inventories and building registers. Based on the building use 
type code, data were stratified into various building classes – residential 
(i.e., single-family and multifamily houses) and non-residential building 
(i.e., school, commercial/office, and industrial buildings) subsets to 
obtain a rather homogeneous observation cluster. Despite non- 
residential buildings only accounting for a small part of the Swedish 
building stock, its sample proportion in the environmental inventories 
was rather large since many of them were built before the 80s. Specific 
building classes, i.e., public and school buildings, have more quality 
inventory data as they are renovated frequently with decontamination 
records. To maximize data utilization and compare patterns of asbestos 
and PCB components in non-residential buildings with literature, a study 
scope on comprehensive hazardous materials for the entire building 
stock was determined. The statistical description of the features between 
the training and prediction dataset was further described in Appendix A 
Table A2. The quality and quantity of inventories were assessed using 
Eq. (1) to determine potential hazardous materials for modeling, 
referred to the previous work by Wu et al. (2021a). The weighting 
scheme for different inventory types was configured based on the 
detailed level of hazardous material information and the experience 
level of auditors. Consultancy reports and protocols contained detection 
records of hazardous components, whereas control and demolition plans 
only indicated the presence of hazardous substances. 

y =
(Ir × nr + Ip × np + Ic × nc + Id × nd)

N
× K (1)   

y = Assessment score [0–100]. 
I = Inventory type for weighting individual observations. I = 1 if it is 
a report (r), I = 0.75 if it is a protocol (p), I = 0.5 if it is a control plan 
(c), and I = 0.25 if it is a demolition plan (d). 
n = The number of observations in the studied subgroup [0 < n]. 
N = The number of observations in the entire dataset. 
K = Weight based on data size. K = 1 if n >= 400, K = 0.75 if 300 =<

n < 400, K = 0.5 if 200 =< n < 300, K = 0.25 if 100 =< n < 200, K =
0 if n < 100. 

Missing values of predictive variables were computed and replaced 
through the k-nearest neighbors algorithm (k-NN) using the mean value 
from the two nearest neighbors found in the training set for data size and 
quality improvement. The raw features comprised geographical attri
butes, i.e., postcode, cadastral attributes, i.e., building category and 
types, and building parameters, i.e., construction year, heated area, the 
number of floors, basements, stairwells, apartments, and ventilation 
types. Then the derived features, such as building physical footprint, 
area per apartment, and stairwell, were created for modeling. 

2.3. Machine learning model and prediction 

The clean dataset was partitioned into an 80% training set and a 20% 
validation set taking account of sample weights of target variables 
through Python scikit-learn and H2O libraries, which provide distrib
uted and scalable machine learning and predictive analytics. Automated 
machine learning (AutoML) automates steps in the machine learning 
pipeline using a wrapper function to train various algorithms for mul
tiple machine learning tasks simultaneously and providing explain
ability for groups of models or individual models, including 
hyperparameter tuning and model evaluation (Ledell and Poirier, 2020). 
Then the class imbalance between binary labels and materials for each 
data subgroup was addressed by stratifying and specifying balance 
classes in the model configuration. Six classifiers were trained and 
compared via the AutoML pipeline, including the Distributed Random 
Forest (DRF, including Extremely Randomized Trees XRT), Generalized 
Linear Model with regularization (GLM), Gradient Boosting Machine 
(GBM), Extreme Gradient Boosting (XGBoost), fully-connected multi-
layer Deep Neural Network (DNN), and Stacked Ensembles (stacking a 
meta-learner at the second-level to find the optimal combination of base 
learners). In the two-fold prediction, 20 sub-models for all buildings set, 
and ten sub-models for residential and non-residential building sets were 
created. Various parameter settings were experimented with, including 
variable encoding, feature combination, and appending sample weights, 
and then extensive training and fine-tuning were carried out by random 
grid search given the small data size, and the training stopped until the 
pre-defined maximum training time was reached. Thereafter, the per
formance of models was ranked on the leaderboard based on logarithmic 
loss (error rates), and the lead models from the 5-fold cross-validation 
and the prediction of the validation set were selected according to the 
highest F1 (weighted average of Precision and Recall calculated by 
predicted class), and the optimal area under the receiver operating 
characteristic curve (ROC AUC, true positive rate against false positive 
rate calculated by predicted probability value). The feature impacts and 
the impact magnitude of the prediction outcomes from lead models were 
analyzed through methods such as confusion matrix, variable impor
tance, partial dependence plots, and SHapley Additive exPlanations 
(SHAP) summary (Rodríguez-Pérez and Bajorath, 2020). 

Subsequently, the lead models were applied to the regional building 
databases to predict PCB and asbestos-containing materials in buildings 
without pre-demolition audit inventories, of which the potential pres
ence of PCB and asbestos in Stockholm, Gothenburg, Malmö, and Kiruna 
municipalities were estimated by predicted class and compared their 
probability distribution by construction year among all buildings and 
building type subsets. Furthermore, the probability of containing spe
cific PCB and asbestos materials was predicted in a showcase for the 
municipality-owned public housing companies in Stockholm consid
ering the high performance of models for residential buildings and the 
large sample size of the training set from Stockholm. Using the organi
zation number in the taxation registers, 1910 residential buildings with 
complete registers were retrieved from building owners 
Familjebostäder, Stockholmshem, and Svenska Bostäder with a building 
composition of 1878 multifamily houses, 20 rowhouses, seven attached 
houses, and five chain houses, and supplied to the models of residential 
buildings for prediction. Then the prediction outcomes of three PCB- 
containing materials and eight asbestos-containing materials were 
visualized on the building footprint maps, which were derived from the 
OpenStreetMap, using Python geopandas, osmnx (Boeing, 2017), and 
plotly Mapbox libraries for geospatial analysis. 

3. Results and discussion 

The section presents the results in four parts – data analytics of the 
inventories, predictive model development via machine learning, model 
output interpretation and visualization, and probability estimation of 
PCB and asbestos-containing materials in existing buildings. 
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3.1. Data analytics 

Explorative data analysis was performed based on the collected in
ventories to attain an overview of the presence of hazardous materials in 
buildings and determine data quality and quantity for modeling. The 
detection rate and the data size of hazardous materials in each munic
ipality are illustrated in Appendix A Table A3. The average detection of 
PCB and asbestos in the selected regional building stocks was 47% and 
78%. A closer analysis showed that 43 % of observations contained both 
asbestos and PCB, 36% contained either of the substances, and only 21% 
of observations had neither substance. Approximately 8% of buildings 
contained more than two types of PCB materials, while the corre
sponding percentage of asbestos materials was 47%. Among all, PCB 
capacitors in lights or burners were found in more than half (51%) of the 
buildings, and around one-fifth of the buildings contained PCB joints or 
sealed double-glazing windows. On the other hand, the most frequently 
detected asbestos materials were pipe insulation (65%), door or window 
insulation (61%), and cement panels (60%), followed by floor mats 
(49%) and joints (49%), ventilation channel (42%), and carpet glue 
(40%). Only one-third of the buildings were found with asbestos tile or 
clinker. Overall, the patterns of PCB joints and sealed double glazing 
windows, as well as asbestos valves, panels, tile or clinker, and joints or 
sealants were alike in Stockholm and Gothenburg with minor variation. 
Malmö and Kiruna had relatively few inspection records and thus the 
uncertainty of detection rates was high. 

Furthermore, the inventory data were applied to the equation 
described in Section 2.2 to identify hazardous materials with large 
numbers of detailed detection records. The data assessment matrix in 
Appendix A Fig. A1 presents the assessment scores of PCB and asbestos- 
containing materials computed by Eq. (1) across building classes and 
municipalities. All types of buildings except single-family houses in 
Stockholm and Gothenburg had fair data quality and quantity. The in
ventories from Malmö only contained non-residential buildings with low 
data quality and size, and Kiruna had insufficient and less comprehen
sive inventories with several blank areas (no records) and zero scores 
(less than five observations). According to the indication of the matrix 
scores and detection frequency, four PCB materials (i.e., joints, win
dows, capacitors, acrylic flooring) and eight asbestos materials (i.e., pipe 
insulation, door or window insulation, panel, tile or clinker, carpet glue, 
floor mat, ventilation channel, joints) were determined as the target 
variables for prediction. 

The detection frequency and the types of hazardous materials varied 
between building typologies, depending on material choice and the 
construction tradition of the area where buildings were situated. Com
plex buildings such as multifamily houses, schools, commercial build
ings, and industrial buildings tended to contain multiple PCBs (more 
than three types) or asbestos materials (more than five types), particu
larly those built between 1955 and 1980. Despite some of them having 
recent renovation years, the extent and the scope of renovation work 
could hardly be known from either registers or inventory, thus it could 
not be used as a parameter to determine the likelihood of hazardous 
material detection. Moreover, the detection rates may slightly be over
estimated due to the potential data selection bias from renovated or 
demolished buildings. The information of whether materials “existed” or 
“were not detected” in buildings was unavailable in current inventories, 
therefore, creating uncertainties in statistics. Former studies by Franz
blau et al. (2020), Govorko et al. (2019), and Song et al. (2016) 
computed statistics of asbestos material found in residential buildings in 
the U.S. and Australia, and public buildings in Korea, yet the prevalent 
asbestos materials and their detection rates were incomparable to this 
study as the building stock is country dependent. A similar conclusion 
applies to the result comparison of PCB quantification with Diamond 
et al. (2010) in Canada and Diefenbacher et al. (2016) in Switzerland. 

3.2. Predictive model development 

In the predictive model development, 36 training iterations were 
initiated for twelve hazardous materials on three datasets, and the best 
performance of each algorithm was benchmarked according to the 
leaderboards, presented in Table 1. Details on the leader models con
cerning algorithm types and hyperparameters, data size and class dis
tribution, maximized F1 threshold and error rates for train and 
validation sets can be found in Appendix B Table B1. The findings 
showed that machine learning classifiers attained promising results in 
predicting asbestos door or window insulation (AUCAB and F1AB: 0.85, 
AUCR and F1R: 0.94, AUCnR and F1nR: 0.84), asbestos pipe insulation 
(AUCAB and F1AB: 0.82, AUCR and F1R: 0.85, AUC nR and F1nR: 0.79), 
and PCB capacitors (AUCAB and F1AB: 0.82, AUCR and F1R: 0.85, AUC nR 
and F1 nR: 0.79). Asbestos ventilation channel (AUCAB and F1AB: 0.76, 
AUCR and F1R: 0.89) and joints (AUCAB and F1AB: 0.78, AUCR and F1R: 
0.83) could be predicted well in all buildings and residential building 
sets. The presence patterns of asbestos panels (AUCR and F1R: 0.87), tile 
or clinker (AUCR and F1R: 0.81), and carpet glue (AUCR and F1R: 0.87) in 
residential buildings were also identified. However, the PCB acrylic floor 
in the residential building set was highly imbalanced and failed in 
training because of one cardinality (the number of possible values that a 
feature can assume). On the other hand, the models trained on the non- 
residential set performed equally or slightly worse than those trained on 
all types of buildings, which was assumed to be due to the heterogeneous 
building constitutions. For the rest of the materials, the prediction rates 
were lower and the deviations between AUC and F1 were substantial. 

The DRF/XRT, GBM, XGBoost, and stacked ensemble models 
appeared to be more suitable for predicting asbestos and PCB materials. 
The GLM models seemed to be too simple to capture the material 
presence patterns, while DNN models were too complicated for training 
in such small datasets. The results of model performance aligned 
approximately with previous studies by Wu et al. (2022b) that reported 
an average of 78 % recall rate for asbestos pipe insulation in multifamily 
houses and 83 % recall rate for PCB joint in school buildings using lo
gistic regression, SVM, k-NN, and tree ensembled classifiers. Applying 
artificial neural networks to identify asbestos materials in residential 
dwellings indicated similar prediction performance – pipe insulation 
(AUC: 0.80), door and window insulation (AUC: 0.70), panel (AUC: 
0.65), tile or clinker (AUC: 0.51), carpet glue (AUC: 0.73), floor mats 
(AUC: 0.42), ventilation channel (AUC: 0.86) (Wu et al., 2022a). To 
further minimize false negative or false positive prediction, other less 
common metrics for cost-sensitive learning can be considered in the 
future, such as the Gini coefficient (inequality quantification among 
values of a frequency distribution based on the Lorenz curve for 
measuring the quality of a binary classifier), Absolute MCC (correlation 
indicators for the actual and predicted values by setting the threshold for 
the model’s confusion matrix to a value that generates the highest 
Matthews Correlation Coefficient), F2 (extra weight adjustment for 
recall rates to penalize models with more false negatives than false 
positives). 

Data quality and quantity were the primary limitations of the study. 
Given the well-trained models had reached the optimal bias and vari
ance trade-off, the irreducible errors could be attributed to uncertainties 
in data matching derived from data quality, for instance, 20% of ob
servations had insufficient information in either inventory or registers 
for data merging, 3% observations merged with duplicated register or 
parts of parameters were unmatched, and 1% observations were coupled 
between registers and aggregated inventory. Several hindrances related 
to data size were also encountered in modeling highly sparse and class- 
imbalanced datasets of various regions, building classes, and hazardous 
materials. Large amounts of missing data, i.e., the numbers of stairwells 
and apartments data led to the loss of extra features. In addition, critical 
features relevant to the prediction task might be lacking and result in 
difficulty in label distinguishment, such as the information on the 
location of historical asbestos products manufacture plants, suggested 
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correlated to asbestos used by Wilk et al. (2019), as well as the change 
rates of components related to renovation history and ownership types. 

3.3. Model interpretation 

To decode the gray box models, the variable importance heatmap 
across models for hazardous materials prediction for all buildings was 
compiled in Appendix B Fig. B1. Features, such as construction year, 
floor area, building physical footprint, and postcode, the number of 
floors, were commonly recognized as crucial for several hazardous 
material predictions. After that, the leader tree models of three haz
ardous materials with the highest performance— PCB capacitors, 
asbestos pipe insulation, and asbestos door and window insulation — 
were chosen for output interpretation in residential and non-residential 
building subsets. In the SHAP summary plots, feature values of the ob
servations were normalized at the y-axis and configured based on their 
SHAP values at the x-axis, indicating the impact magnitude of each 
predictive variable in descending order. Fig. 2 shows that the patterns of 
hazardous materials vary between regional building stocks. Residential 
buildings with large floor areas and equipped with exhaust ventilation 
as well as non-residential buildings, specifically office/commercial, and 
industrial buildings, built in the earlier ages without balanced ventila
tion with heat exchangers were more likely to contain PCB capacitors. 
Similar patterns were found in asbestos door and window insulation 
with considerable feature impact magnitude, where post-war residential 

buildings with large floor areas and building physical footprint, and old 
non-residential buildings (except for school buildings) with basements 
were vulnerable. The feature value directions were less evident in 
asbestos pipe insulation prediction which might be attributed to pipe 
changing, and features associated with residential buildings were floor 
area, the number of floors, building physical footprint, construction 
year, as well as postcode, construction year, floor area, and number of 
floors for non-residential buildings. 

The global interpretations of aggregated SHAP values were in good 
agreement with the literature. Diamond et al. (2010) and Shanahan 
et al. (2015) pointed out that PCB capacitors and joints were installed 
extensively in proportion to the building volume and electrical demand. 
Song et al. (2016) emphasized that the likelihood of detecting asbestos 
materials increased significantly by building age and building physical 
footprint. The earlier work from the authors also showed that these two 
variables were strongly correlated to the presence of asbestos pipe 
insulation in multifamily houses. The local explanation of individual 
observations of specific feature impact values could be obtained through 
the query at the either index or dataset level. 

3.4. Probability estimation of PCB and asbestos in regional building stocks 

The pre-trained models of the three selected PCB and asbestos ma
terials were employed in the building registers of four municipalities to 
estimate predicted labels for the three datasets on the regional scale, as 

Table 1 
Performance evaluation of average AUC and F1 score from cross-validation and validation set of the machine learning models for prediction of PCB and asbestos- 
containing materials (ACM). The values in bold signified leader models for respective hazardous material prediction.  

Algorithm GLM DRF/XRT GBM XGBoost DNN Stacked ensemble 
Metrics (e-2) AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 

All buildings 
PCB joint 64 42 76 56 78 57 74 54 66 46 – – 
PCB windows – – – – – – 60 37 – – 60 37 
PCB capacitors 73 77 82 79 82 79 79 77 80 79 – – 
PCB acrylic floor 24 7 41 12 61 14 48 11 44 12 66 16 
ACM pipe insul* 65 81 79 83 80 84 78 85 73 82 – – 
ACM door insul* 74 80 85 85 84 86 83 85 80 83 – – 
ACM panel 68 78 71 79 70 80 66 78 71 79 – – 
ACM tile/clinker 57 54 73 63 75 65 73 63 65 59 – – 
ACM carpet glue 64 62 73 66 75 68 71 65 68 64 – – 
ACM floor mat – – – – – – 63 67 – – 62 68 
ACM ventilation** – – 79 72 78 70 76 70 75 68 80 71 
ACM joint/sealant 70 71 77 74 80 76 75 74 69 70 – – 
Residential buildings (incl. single-family and multifamily houses) 
PCB joint 84 67 81 61 88 69 81 58 – – 85 68 
PCB windows 56 32 – – – – 61 35 – – 46 22 
PCB capacitors 86 79 84 75 82 74 66 62 – – 79 73 
PCB acrylic floor – – – – – – – – – – – – 
ACM pipe insul* 72 87 81 88 74 88 75 90 – – 78 87 
ACM door insul* 73 90 88 94 93 94 84 92 – – 90 94 
ACM panel 76 87 84 90 77 86 75 87 – – 82 88 
ACM tile/clinker 55 67 74 70 83 78 82 75 – – 80 73 
ACM carpet glue 69 71 – – – – 88 85 – – 88 83 
ACM floor mat 46 76 – – – – 61 76 – – 54 76 
ACM ventilation** 84 85 89 86 85 84 83 83 – – 90 87 
ACM joint/sealant – – 78 87 79 86 74 87 – – 75 86 
Non-residential buildings (incl. school, office/commercial, and industrial buildings) 
PCB joint 58 41 – – – – 75 53 – – 72 52 
PCB windows 66 47 68 44 60 37 66 42 – – 66 43 
PCB capacitors 75 79 – – – – 76 80 – – 75 78 
PCB acrylic floor 41 10 – – – – 68 18 – – 37 6 
ACM pipe insul* 65 79 76 81 75 82 73 81 – – 74 81 
ACM door insul* 80 82 – – – – 85 83 – – 85 83 
ACM panel 57 73 65 77 62 77 59 76 – – 65 77 
ACM tile/clinker 60 53 67 57 69 61 63 53 – – 66 56 
ACM carpet glue 70 65 72 66 73 67 71 65 – – 69 67 
ACM floor mat 54 64 67 66 68 66 65 65 – – 67 67 
ACM ventilation** 70 73 74 65 68 63 66 62 – – 72 64 
ACM joint/sealant 61 63 72 66 76 71 73 68 – – 73 67  

* Asbestos-containing material pipe insulation, asbestos-containing material door or window insulation. 
** Asbestos-containing material ventilation channel. 
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Fig. 2. Feature impact and magnitude based on the SHAP values in residential and non-residential building subsets: (i) PCB capacitors, (ii) asbestos pipe insulation, 
(iii) asbestos door and window insulation. The postcode initial in Stockholm is 1, Malmö 2, Gothenburg 4, and Kiruna 9. The building type code for school buildings is 
8–21, single-family houses are 30–32 and 35, multifamily houses are 33, industrial buildings are 40–53, and office and commercial buildings are 99. 
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shown in Table 2. For regional residential building stock, it was esti
mated that around 2%, 57%, and 14% of buildings contained PCB ca
pacitors, asbestos pipe insulation, and door and window insulation. On 
the contrary, the corresponding shares for non-residential buildings 
were 44%, 92%, and 60%. The findings complied with the existing 
expert assumptions that these hazardous materials were more pervasive 
in non-residential buildings. The average predicted detection rates in all 
buildings were lower than the previous statistics in Appendix A 
Table A3, which reflected the actual building stock constitution of 95% 
of residential buildings in comparison to the residential building shares 
in inventories of 29% for PCB capacitors, 37% for asbestos pipe insu
lation and 33% for door and window insulation. 

The probability distribution of hazardous materials in regional 
buildings was further investigated by municipalities and building types 
across building ages. The results in Fig. 3 agreed with the previous 
statistics of the predicted class and exhibited interesting trends. 
Compared to non-residential buildings, residential buildings had lower 
probabilities of containing PCB capacitors and asbestos door and win
dow insulation, except for the residential buildings in Kiruna. However, 
the tendency reversed in the mid-70s when the probability of asbestos 
pipe insulation in non-residential buildings dropped significantly, and 
the downward trends could also be observed in the other two hazardous 
materials that were assumed due to the PCB and asbestos bans in Swe
den. Yet surprisingly, the probability of PCB capacitor and asbestos pipe 
insulation in residential buildings did not decrease over time compared 
to the trend identified in the asbestos door and window insulation. Be
sides, the confidence intervals for the residential buildings in Stockholm, 
Gothenburg, and Malmö were smaller than non-residential buildings, 
while the Kiruna data showed divergent development and were regar
ded as invalid and unrepresentative unless more training data from the 
municipality was collected. The overall patterns at the building stock 
level offered insights to relevant authorities and municipalities for 
formulating decontamination policies and guidelines for the existing 
buildings. 

The choropleth maps in Fig. 4 display the predicted geospatial 

distribution of hazardous materials for a subset of municipality-owned 
residential buildings in Stockholm. The probability indication at the 
building level allowed building owners to assess contamination expo
sure based on the probability cluster, offered decision-support for risk- 
based inspection planning, and suggested detailed material sampling 
before renovation and (selective) demolition. To apply the data-driven 
application on the national scale, it is necessary to include more in
ventories from other municipalities for training to reduce misclassifi
cation, meanwhile, taking local building stock differences into account. 
By introducing diverse observations, the sample representativeness of 
the geographical coverage will improve (Clemmensen and Kjærsgaard, 
2022) with a sufficient sample size for constructing individual models to 
overcome building class imbalance between sampling and population. 
The checkpointing models delivered in the study lay a foundation for the 
future when more data are available and can be integrated into web 
visualization interfaces. 

Other statistical and machine learning modeling applications were 
developed to facilitate in-situ hazardous material identification and 
source separation (Wu et al., 2021c). Recognition of asbestos cement 
roofing on the macro scale was made possible by applying convolutional 
neural networks (Krówczyńska et al., 2020; Raczko et al., 2022) and 
random forest algorithms (Abriha et al., 2018; Wilk et al., 2019) on 
aerial imagery, field inventories, and building databases, while detec
tion of asbestos fiber on the micro-scale was succeeded through prin
cipal component analysis with hyperspectral imagery (Bonifazi et al., 
2019, 2018). To characterize multiple asbestos materials, descriptive 
statistics at the building level were obtained based on input data from 
mobile app surveys (Govorko et al., 2019), waste audit inspection re
ports (Franzblau et al., 2020), and asbestos product databases 
(Mecharnia et al., 2019). However, the results of these methods had 
limited predictive capacity and high estimation uncertainties. To over
come the shortcomings, the granularity and diversity of prediction 
outcomes were improved by constructing models from data with tem
poral and geographical representativeness. Compared to previous 
studies by the authors (Wu et al., 2023, 2022b, 2021a), the novelty of 
the paper was highlighted by demonstrating the machine learning 
pipeline from model training, interpretation, prediction to outcome 
utilization. As the models were developed from building registers and 
pre-demolition audit inventories accessible in many European countries, 
they have promising potential for methodological replication and 
upscaling. 

4. Conclusions 

The study systematically investigated the presence of hazardous 
materials in the built environment and ascertained the prediction po
tential of machine learning using pre-demolition audit inventories as 
input data. Beyond describing statistical results for individual contam
inants like former research, the proposed predictive approach in the 
study enables a comprehensive and cost-efficient evaluation of multiple 
in-situ hazardous materials for existing buildings. PCB and asbestos 
were found in 47% and 78% of inventoried buildings, of which 43% of 
observations contained both substances and 36% contained either of the 
substances. The data assessment matrix showed that multifamily houses, 
school buildings, offices/commercial and industrial buildings contained 
sufficient data labels with satisfactory quality for modeling. The leader 
models varied between prediction tasks, but the Distributed Random 
Forest (including Extremely Randomized Trees), Gradient Boosting 
Machine, Extreme Gradient Boosting, and Stacked Ensembles models 
usually attained optimal performance. Nearly all PCB and asbestos 
materials could be predicted with average AUC and F1 above 0.79 in the 
residential building set except for PCB windows and acrylic floor and 
asbestos floor mat. 

Key building features related to the presence of hazardous materials 
were determined and the extent of potentially contaminated building 
stock was estimated by leveraging the developed models. Components 

Table 2 
Estimating the share of buildings potentially containing PCB and asbestos ma
terials in the regional building stocks.  

Non-inventoried 
buildings 

Stockholm Gothenburg Malmö Kiruna Total 

Residential buildings 
(N) 

39,248 39,225 16,725 146 95,344 

Non-residential 
buildings (N) 

1563 1324 885 16 3788 

All buildings (N) 40,811 40,549 17,610 162 99,132 
PCB capacitor 
%Residential (AUC: 

0.86, F1: 0.79) 
0.01 0.04 0.01 0.78 0.02 

%Non-residential 
(AUC: 0.76, F1: 
0.80) 

0.30 0.58 0.48 0.56 0.44 

%All buildings (AUC: 
0.82, F1: 0.79) 

0.12 0.19 0.28 0.99 0.18 

ACM pipe insulation 
%Residential (AUC: 

0.81, F1: 0.88) 
0.63 0.43 0.77 0.31 0.57 

%Non-residential 
(AUC: 0.75, F1: 
0.82) 

0.98 0.83 0.98 0.75 0.92 

%All buildings (AUC: 
0.80, F1: 0.84) 

0.56 0.28 0.56 0.81 0.44 

ACM door and window insulation 
%Residential (AUC: 

0.91, F1: 0.94) 
0.20 0.10 0.12 0.12 0.14 

%Non-residential 
(AUC: 0.85, F1: 
0.83) 

0.57 0.51 0.80 0.25 0.60 

%All buildings (AUC: 
0.84, F1: 0.86) 

0.23 0.14 0.23 0.21 0.19  
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with PCB and asbestos materials were more common in post-war 
buildings with large floor areas and building physical footprints. In 
addition, building category, postcode, and ventilation types were also 
indicators useful in predicting hazardous materials. It was estimated 
that 18%, 44%, and 19% of regional buildings contain PCB capacitors, 
asbestos pipe insulation, and door and window insulation respectively, 
which were situated approximately within the statistical range consid
ering varied building type composition between the actual and the in
ventoried building stocks. Detailed probability distributions over the 
construction year showed distinctive patterns and certainty between 
residential and non-residential buildings with minor variations between 
regions, providing a diagnostic overview of asbestos and PCB-prone 
building stock for municipalities and the housing authority to imple
ment the EU Construction and Demolition Waste Management Protocol 
(ECORYS, 2016). The geospatial probability visualization of in-situ PCB 
and asbestos in the Stockholm public housing pinpointed high- risk 
buildings, which could be useful for property owners to make informed 
decisions when planning for pre-demolition audit. Future research is 
suggested to include more inventories from different municipalities and 
refine the machine learning models on the building typological and 
regional basis for better generalizability. 
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Table A1 
The statistical description of the features between the training and prediction dataset.  

Category Feature Feature 
representation 

Train Prediction 
Mean %Missing Mean %Missing 

Raw feature 
Geographics Postcode [1–, 2–, 4–, 9DDDD] – 0 – 0 

Cadastral affiliation Building category 
Building type 

[1–4] 
[1–99] 

– 
– 

0 
0 

– 
– 

0 
0 

Building 
parameter 

Construction year 
Floor area (m2) 

Numbers of floors 
Number of basements 
Number of stairwells 

Number of apartments 
Exhaust ventilation 
Balanced ventilation 

Balanced heat exchanger 
Exhaust with heat pump 

Natural ventilation 

[1930–1985] 
[–] 
[–] 

[0,1,2,3+] 
[1–] 
[–] 

[0,1] 
[0,1] 
[0,1] 
[0,1] 
[0,1] 

1960 
4337 

3 
1 
3 
31 
– 
– 
– 
– 
– 

0 
10 
16 
26 
47 
50 
43 
43 
43 
44 
43 

1960 
797 
3 
1 
2 
22 
– 
– 
– 
– 
– 

0 
20 
70 
69 
71 
71 
52 
52 
52 
52 
52 

Derived feature 
Building 
parameter 

Building physical footprint (m2) 
Area per stairwell (m2) 

Area per apartment (m2) 

[–] 
[0–] 
[0–] 

935 
1846 
151 

21 
67 
69 

595 
1287 
117 

70 
83 
76   

Table A2 
Sample distribution of the training and prediction datasets.  

Subset Building class Category* Type** %Train (N) %Prediction (N) 

Residential building Single-family house 1 30,31,32,35 18 (138) 80 (83,079) 
16(16,598) Multifamily house 1 33 19 (149) 

Non-residential building School building 3 8,19,21 24 (190) 1 (1333) 
Office/commercial 4 99 20 (159) 2 (2475) 
Industrial building 2 40–53 19 (150) 1 (973) 

Total    100 (786) 100 (104,458)  
* Building category according to property registers: 1- Residential, 2- Industry, 3- Society function, 4- Workplace. 
** Building type according to property registers: 8- College, 19- School, 21- University, 30- Detached house, 31- Detached chain house, 32- Semi-detached houses, 33- 

Multifamily building, 35- Small house with several apartments, 40- Other manufacturing industry, 41- Gas turbine plant, 42- Industrial hotel, 43- Chemical Industry, 
44- Condensation power plant, 45- Nuclear power plant, 46- Food industry, 47- Metal or machine industry, 48- Textile industry, 49- Wood products industry, 50- 
Hydropower plant, 51- Wind turbine, 52- Heating plant, 53- Other industrial building, 99- Unspecified.  

Table A3 
The detection rate and data size of hazardous materials in each municipality.  

Municipality Stockholm Gothenburg Malmö Kiruna Total 
Count 368 276 80 64 786  

%rate N %rate N %rate N %rate N %rate N 

PCB 43 256 51 227 37 67 71 21 47 571 
Joint/sealant 22 187 18 157 22 59 33 3 21 406 

Sealed windows 15 169 18 133 17 29 40 5 17 336 
Capacitors 49 118 50 147 17 12 93 14 51 291 

Acrylic flooring 4 139 3 116 0 15 0 1 3 271 
Door closer 36 55 56 18 50 4 100 1 42 78 

Cable with oil 11 71 24 21 50 2 100 1 16 95 
Others* 100 2 43 30 47 15 100 1 48 48 

Asbestos 78 344 75 254 84 76 88 25 78 699 
Pipe insulation 71 254 48 160 84 37 94 17 65 468 

Valves 30 66 35 72 80 5 100 1 35 144 
Door/win insulation** 67 197 46 142 87 23 90 10 61 372 

Panel 58 172 52 103 78 32 94 17 60 322 
Tile/clinker 33 229 36 174 46 39 62 13 36 455 
Carpet glue 45 187 26 139 68 41 44 9 40 376 
Floor mat 53 182 39 131 67 46 33 6 49 365 

Vent. channel 23 163 58 116 65 20 100 11 42 310 
Switchboard 83 6 16 61 100 3 100 1 27 71 
Joint/sealant 48 144 42 64 54 46 86 7 49 261 

Others* 60 114 73 63 42 31 100 14 64 222  
* Other asbestos-containing materials are for example, gasket, roofing felt, expansion vessel, spray insulation, etc., while other PCB materials are floor color, oil in 

elevator machine, contaminated concrete, etc. 
** Door or window insulation.  
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Fig. A1. Overview of the data assessment matrix by assigning quantile range weights for the data quality according to the inventory sources and the data size 
threshold of a minimum of five. The x-labels refer to Stockholm (Sthlm), Gothenburg (Gbg), Malmö (Mal), and Kiruna (Krn). 

Appendix B Predictive model development and interpretation 

Table B1, Fig. B1.  

Table B1 
Overview of the lead machine learning models. StackEn entails stacked ensemble models.   

Data size Detection Leader model Max F1 threshold Error rate Hyperparameter 
0 1 Train Val Train Val 

All buildings 
PCB joint 406 321 85 GBM 0.19 0.27 0.21 0.16 No. trees: 24 

No. depths: 6 
No. leaves: 26–56 

PCB windows 336 280 56 XGBoost 0.13 0.06 0.25 0.50 No. trees: 34 
PCB capacitors 291 144 147 GBM 0.34 0.43 0.30 0.19 No. trees: 24 

No. depths: 6 
No. leaves: 25–45 

PCB acrylic floor 271 262 9 StackEn 0.04 0.01 0.27 0.65 No. bases: 3 
Baselearner: GBM, DNN 

Metalearner: GLM 
ACM pipe insulation 468 163 305 GBM 0.41 0.62 0.22 0.23 No. trees: 28 

No. depths: 6 
No. leaves: 32–57 

ACM door or window insulation 372 146 226 GBM 0.56 0.53 0.18 0.19 No. trees: 37 
No. depths: 5–9 

No. leaves: 12–18 

(continued on next page) 
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Table B1 (continued )  

Data size Detection Leader model Max F1 threshold Error rate Hyperparameter 
0 1 Train Val Train Val 

ACM panel 322 129 193 XRT 0.48 0.48 0.30 0.28 No. trees: 26 
No. depths: 12–20 
No. leaves: 46–86 

ACM tile/clinker 455 291 164 GBM 0.15 0.32 0.41 0.25 No. trees: 21 
No. depths: 6 

No. leaves: 29–50 
ACM carpet glue 376 224 152 GBM 0.36 0.37 0.29 0.32 No. trees: 27 

No. depths: 5–9 
No. leaves: 13–17 

ACM floor mat 365 185 180 XGBoost 0.38 0.43 0.45 0.41 No. trees: 30 
ACM ventilation channel 310 181 129 StackEn 0.43 0.51 0.27 0.21 No. bases: 3 

Baselearner: GBM, DRF, DNN 
Metalearner: GLM 

ACM joint 261 134 127 GBM 0.35 0.41 0.28 0.26 No. trees: 36 
No. depths: 4–7 
No. leaves: 8–11 

Residential buildings 
PCB joint 104 84 20 GBM 0.03 0.01 0.16 0.19 No. trees: 31 

No. depths: 6 
No. leaves: 7–34 

PCB windows 86 75 11 XGBoost 0.02 0.50 0.63 0.17 No. trees: 32 
PCB capacitors 83 53 30 GLM 0.49 0.60 0.17 0.12 Family: binomial 

Regular.: Ridge 
Lambda: 0.1001 

PCB acrylic floor 75 73 2 – – – – – – 
ACM pipe insulation 172 48 124 DRF 0.48 0.62 0.18 0.17 No. trees: 39 

No. depths: 6–12 
No. leaves: 23–36 

ACM door or window insulation 123 41 82 GBM 0.14 0.89 0.10 0.08 No. trees: 56 
No. depths: 6 

No. leaves: 10–30 
ACM panel 101 30 71 DRF 0.54 0.94 0.20 0.10 No. trees: 21 

No. depths: 6–13 
No. leaves: 16–29 

ACM tile/clinker 147 80 67 GBM 0.14 0.22 0.35 0.17 No. trees: 23 
No. depths: 6 

No. leaves: 25–45 
ACM carpet glue 108 60 48 XGBoost 0.45 0.55 0.19 0.10 No. trees: 36 
ACM floor mat 94 39 55 XGBoost 0.09 0.11 0.40 0.37 No. trees: 32 
ACM ventilation channel 96 44 52 StackEn 0.36 0.13 0.16 0.15 No. bases: 6 

Baselearner: GBM, DRF, GLM 
Metalearner: GLM 

ACM joint 70 23 47 DRF 0.54 0.62 0.25 0.14 No. trees: 32 
No. depths: 5–11 
No. leaves: 9–19 

Non-residential buildings 
PCB joint 302 237 65 XGBoost 0.26 0.61 0.32 0.20 No. trees: 33 
PCB windows 250 205 45 GLM 0.21 0.23 0.26 0.14 Family: binomial 

Regular.: Ridge 
Lambda: 0.242 

PCB capacitors 208 91 117 XGBoost 0.42 0.53 0.31 0.19 No. trees: 32 
PCB acrylic floor 196 189 7 XGBoost 0.07 0.03 0.10 0.30 No. trees: 56 
ACM pipe insulation 296 115 181 GBM 0.58 0.21 0.22 0.28 No. trees: 27 

No. depths: 6–7 
No. leaves: 14–20 

ACM door or window insulation 249 105 144 XGBoost 0.43 0.49 0.30 0.12 No. trees: 31 
ACM panel 221 99 122 StackEn 0.38 0.32 0.28 0.38 No. base: 3 

Baselearner: GBM, DRF 
Metalearner: GLM 

ACM tile/clinker 308 211 97 GBM 0.18 0.37 0.36 0.27 No. trees: 22 
No. depths: 6–8 

No. leaves: 11–22 
ACM carpet glue 268 164 104 GBM 0.21 0.29 0.39 0.30 No. trees: 20 

No. depths: 6–7 
No. leaves: 14–17 

ACM floor mat 271 146 125 GBM 0.26 0.40 0.38 0.35 No. trees: 28 
No. depths: 6–8 

No. leaves: 13–17 
ACM ventilation channel 214 137 77 XRT 0.34 0.28 0.29 0.26 No. trees: 33 

No. depths: 9–16 
No. leaves: 18–58 

ACM joint 191 111 80 GBM 0.20 0.28 0.36 0.26 No. trees: 26 
No. depths: 5–7 

No. leaves: 10–13  
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Fig. B1. Variable importance for asbestos and PCB materials in models for all buildings.  
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Fig. B1. (continued). 
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Wilk, E., Krówczyńska, M., Zagajewski, B., 2019. Modelling the spatial distribution of 
asbestos-cement products in Poland with the use of the random forest algorithm. 
Sustainability (Switzerland) 11. https://doi.org/10.3390/su11164355. 

Wu, P.-Y., 2022. Predicting Hazardous Materials in the Swedish Building Stock Using 
Data Mining. Lund University. 

Wu, P.-Y., Johansson, T., Mangold, M., Sandels, C., Mj, K., 2023. Estimating the 
probability distributions of radioactive concrete in the building stock using Bayesian 
networks. Expert Syst. Appl. 222 https://doi.org/10.1016/j.eswa.2023.119812. 

Wu, P.-Y., Mangold, M., Sandels, C., Johansson, T., Mjörnell, K., 2022a. Modeling 
artificial neural networks to predict asbestos-containing materials in residential 
buildings. In: IOP Conference Series: Earth and Environmental Science. https://doi. 
org/10.1088/1755-1315/1122/1/012050. 

Wu, P.-Y., Mjörnell, K., Mangold, M., Sandels, C., Johansson, T., 2021a. A data-driven 
approach to assess the risk of encountering hazardous materials in the building stock 
based on environmental inventories. Sustainability (Switzerland) 13, 1–26. 

Wu, P.-Y., Mjörnell, K., Mangold, M., Sandels, C., Johansson, T., 2021b. Tracing 
hazardous materials in registered records : a case study of demolished and renovated 
buildings in Gothenburg. J. Phys. Conf. Ser. 2069. https://doi.org/10.1088/1742- 
6596/2069/1/012234. 

Wu, P.-Y., Mjörnell, K., Sandels, C., Mangold, M., 2021c. Machine learning in hazardous 
building material management: research status and applications. Recent Prog. 
Mater. 03 https://doi.org/10.21926/rpm.2102017, 1–1.  

Wu, P.-Y., Sandels, C., Mjörnell, K., Mangold, M., Johansson, T., 2022b. Predicting the 
presence of hazardous materials in buildings using machine learning. Build. Environ. 
213 https://doi.org/10.1016/j.buildenv.2022.108894. 

Zoraja, B., Ubavin, D., Stanisavljevic, N., Vujovic, S., Mucenski, V., Hadzistevic, M., 
Bjelica, M., 2021. Assessment of asbestos and asbestos waste quantity in the built 
environment of transition country. Waste Manag. Res. https://doi.org/10.1177/ 
0734242×211064031. 

P.-Y. Wu et al.                                                                                                                                                                                                                                  

https://doi.org/10.1016/j.jhazmat.2017.11.056
http://refhub.elsevier.com/S0921-3449(23)00387-7/sbref0008
http://refhub.elsevier.com/S0921-3449(23)00387-7/sbref0008
http://refhub.elsevier.com/S0921-3449(23)00387-7/sbref0008
https://doi.org/10.1021/es9012036
https://doi.org/10.1021/acs.est.5b04626
https://doi.org/10.1021/acs.est.5b04626
https://doi.org/10.1177/0734242&times;16659353
https://doi.org/10.1016/j.scitotenv.2020.136580
https://doi.org/10.3390/ijerph16244922
https://doi.org/10.2196/formative.8370
https://doi.org/10.1016/j.apenergy.2017.06.027
https://doi.org/10.3390/rs12030408
http://refhub.elsevier.com/S0921-3449(23)00387-7/sbref0018
http://refhub.elsevier.com/S0921-3449(23)00387-7/sbref0018
https://doi.org/10.1145/3360901.3364428
https://doi.org/10.1061/(asce)hz.2153-5515.0000266
https://doi.org/10.1061/(asce)hz.2153-5515.0000266
https://doi.org/10.1016/j.buildenv.2022.109092
https://doi.org/10.1177/0734242&times;20936763
https://doi.org/10.1007/s10822-020-00314-0
https://doi.org/10.1007/s10822-020-00314-0
https://doi.org/10.1021/acs.est.5b00906
https://doi.org/10.15269/jksoeh.2016.26.3.267
https://www.regeringen.se/pressmeddelanden/2022/02/boverket-ska-hjalpa-byggsektorn-att-utvecklas-mot-en-cirkular-ekonomi/
https://www.regeringen.se/pressmeddelanden/2022/02/boverket-ska-hjalpa-byggsektorn-att-utvecklas-mot-en-cirkular-ekonomi/
https://www.regeringen.se/pressmeddelanden/2022/02/boverket-ska-hjalpa-byggsektorn-att-utvecklas-mot-en-cirkular-ekonomi/
http://refhub.elsevier.com/S0921-3449(23)00387-7/sbref0027
http://refhub.elsevier.com/S0921-3449(23)00387-7/sbref0027
http://refhub.elsevier.com/S0921-3449(23)00387-7/sbref0027
http://refhub.elsevier.com/S0921-3449(23)00387-7/sbref0028
http://refhub.elsevier.com/S0921-3449(23)00387-7/sbref0028
http://refhub.elsevier.com/S0921-3449(23)00387-7/sbref0028
https://doi.org/10.6027/TN2019-508
https://doi.org/10.3390/su11164355
http://refhub.elsevier.com/S0921-3449(23)00387-7/sbref0031
http://refhub.elsevier.com/S0921-3449(23)00387-7/sbref0031
https://doi.org/10.1016/j.eswa.2023.119812
https://doi.org/10.1088/1755-1315/1122/1/012050
https://doi.org/10.1088/1755-1315/1122/1/012050
http://refhub.elsevier.com/S0921-3449(23)00387-7/sbref0034
http://refhub.elsevier.com/S0921-3449(23)00387-7/sbref0034
http://refhub.elsevier.com/S0921-3449(23)00387-7/sbref0034
https://doi.org/10.1088/1742-6596/2069/1/012234
https://doi.org/10.1088/1742-6596/2069/1/012234
https://doi.org/10.21926/rpm.2102017
https://doi.org/10.1016/j.buildenv.2022.108894
https://doi.org/10.1177/0734242&times;211064031
https://doi.org/10.1177/0734242&times;211064031

	Machine learning models for the prediction of polychlorinated biphenyls and asbestos materials in buildings
	1 Introduction
	2 Material and methods
	2.1 Data sources assembling
	2.2 Data preprocessing and validation
	2.3 Machine learning model and prediction

	3 Results and discussion
	3.1 Data analytics
	3.2 Predictive model development
	3.3 Model interpretation
	3.4 Probability estimation of PCB and asbestos in regional building stocks

	4 Conclusions
	Funding
	Institutional review board statement
	Informed consent statement
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix A Data analytics and feature selection
	Appendix B Predictive model development and interpretation
	References


