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Popular summary in English

Historically, the earliest known lenses, crafted from polished crystal, notably
quartz, trace their roots back to 2000 BC from Crete. The Greeks and Romans
advanced these tools by filling glass spheres with water and creating rudimentary
lenses. These ancient innovations underscore the significance of optical materials
in the world’s evolution.

Over the years, the definition and scope of optical materials have expanded.
This growth is largely attributed to IT advancements, which, in turn, have
fostered rapid growth in optoelectronics applications. Optical materials, as un-
derstood today, span a broad spectrum, encompassing traditional principles as
well as cutting-edge topics. They form the backbone for technologies ranging
from ultraviolet, visible, infrared, non-linear optics, solid-state lasers, optical
waveguides, and optical thin films, to nanophotonics.

The journey from the ancient lenses of Crete to today’s advanced optical ma-
terials was shaped by numerous techniques and methods. Geometric optics,
one of the foundational models, regarded light as rays that travel straight and
bend when interacting with surfaces. While this model simplified many phe-
nomena, it was soon evident that to account for wave effects like diffraction and
interference, a more comprehensive model was needed. Thus, physical optics
emerged.

Furthermore, the 19th-century progress in electromagnetic theory unveiled that
light waves were essentially electromagnetic radiation. This shifted the paradigm
and further expanded our understanding. Yet, certain phenomena required an
understanding of light’s wave-like and particle-like properties, leading to the
inception of quantum optics, which integrates quantum mechanics with optical
systems.

Today, quantum optics which involves with optimization of optical materials
is important for applications such as laser stabilization and quantum informa-
tion, as it can improve the performance and functionality of these technologies.
Optimization of optical materials can involve designing new materials with de-
sired optical properties or modifying existing materials with external stimuli or
processes. Optimization of optical materials can also involve developing new fab-
rication methods or characterization techniques that can produce high-quality
optical devices or systems. Optimization of optical materials is an active area of
research that involves interdisciplinary collaboration among physics, chemistry,
engineering, biology, and medicine.
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The extensive applications and complexities surrounding optical materials neces-
sitate a robust theoretical approach. Theory plays a pivotal role in the discovery
and optimization of optical materials for various reasons:

• Predictive Capabilities: Theoretical approaches enable scientists to
predict how materials might behave under certain conditions, thereby aid-
ing in the design and tailoring of materials for specific applications.

• Efficiency: Through theory, we can simulate scenarios, test hypotheses,
and optimize material properties without extensive physical testing, saving
both time and resources.

• Advanced Applications: Theoretical insights drive innovation. By un-
derstanding materials at a fundamental level, we can engineer them for
advanced applications, be it in nanophotonics or optoelectronics, to name
a few.

• Foundation for Future Innovations: A solid theoretical grounding en-
sures that as the field evolves, newer models and theories can be built upon
established ones. This continuum of knowledge fosters rapid advancements
and technological innovations.

Among theoretical approaches first-principles calculations, especially those based
on density functional theory (DFT), are invaluable in comprehending the atom-
istic characteristics of materials. They provide insights into the linear optical
response of materials, which is essential for many optical applications. The
advancement in computational methods is continually pushing the boundaries
and providing even more precise and comprehensive insights into the optical
behaviors of various materials.

The aim of this work is to enhance the existing knowledge of certain optical
materials and to develop a framework and methods that could facilitate the op-
timization and discovery of a new class of optical materials. To achieve this goal,
this work focuses on theoretical methods that can advance our understanding
of the optical properties and behaviors of these materials. This can enable the
creation of new types of optical materials or the improvement of the perform-
ance and functionality of existing optical devices and instruments by providing
further in-depth knowledge of their intrinsic properties.
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Populärvetenskaplig sammanfattning p̊a svenska

Historiskt sett kan de tidigaste kända linserna, tillverkade av polerad kristall,
särskilt kvarts, sp̊ara sina rötter tillbaka till 2000 f.Kr. p̊a Kreta. Grekerna och
romarna förbättrade dessa produkter genom att fylla glassfärer med vatten, vil-
ket skapade grundläggande linser. Dessa gamla innovationer betonar betydelsen
av optiska material i världens utveckling.

Över åren har definitionen och omfattningen av optiska material utvidgats. Den-
na tillväxt tillskrivs i stor utsträckning IT-tekniker, vilket i sin tur har främjat
snabb tillväxt inom optoelektroniska tillämpningar. Optiska material, som de
först̊as idag, spänner över ett brett spektrum, och omfattar traditionella prin-
ciper s̊aväl som banbrytande ämnen. De utgör grunden för teknik som sträcker
sig fr̊an ultraviolett, synligt, infrarött, icke-linjär optik, till fasta tillst̊andslasrar,
optiska v̊agledare, optiska tunna filmer till nanofotonik.

Resan fr̊an de antika linserna p̊a Kreta till dagens avancerade optiska materi-
al formades genom m̊anga tekniker och metoder. Geometrisk optik, en av de
grundläggande modellerna, betraktade ljus som str̊alar som reser rakt och böjer
sig när de interagerar med ytor. Även om denna modell förenklade m̊anga fe-
nomen blev det snart uppenbart att för att ta hänsyn till v̊ageffekter som diff-
raktion och interferens behövdes en mer omfattande modell. S̊a uppstod fysisk
optik.

Dessutom avslöjade 1800-talets framsteg inom elektromagnetisk teori att ljusv̊agor
i grunden var elektromagnetisk str̊alning. Detta ändrade paradigmet och utökade
ytterligare v̊ar först̊aelse. Änd̊a krävde vissa fenomen en först̊aelse för ljusets
v̊agliknande och partikelliknande egenskaper, vilket ledde till uppkomsten av
kvantoptik, som integrerar kvantmekanik med optiska system.

Idag är kvantoptik som involverar optimering av optiska material viktigt för
tillämpningar som laserstabilisering och kvantinformation, eftersom det kan
förbättra prestanda och funktionalitet för dessa teknologier. Optimering av op-
tiska material kan innebära att designa nya material med önskade optiska egen-
skaper eller att ändra befintliga material med externa stimuli eller processer.
Optimering av optiska material kan ocks̊a innebära utveckling av nya fram-
ställningsmetoder eller karaktäriseringstekniker som kan producera högkvalitativa
optiska enheter eller system. Optimering av optiska material är ett aktivt forsk-
ningsomr̊ade som involverar tvärvetenskapligt samarbete mellan fysik, kemi,
teknik, biologi och medicin.

De omfattande tillämpningarna och komplexiteten kring optiska material kräver
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ett robust teoretiskt tillvägag̊angssätt. Teorin spelar en central roll i upptäckten
och optimeringen av optiska material av flera skäl:

De tidigast kända linserna var tillverkade av polerad kristall, särskilt kvarts.
Rötterna g̊ar att sp̊ara tillbaka till 2000 f.kr. p̊a Kreta. Grekerna och romar-
na förbättrade verktygen genom att fylla glassfärer med vatten, vilket skapade
grundläggande linser. Dessa gamla innovationer betonar betydelsen av optiska
material i världens utveckling.

• Prediktivitet: Teoretiska metoder gör det möjligt för forskare att förutsäga
hur material kan bete sig under vissa förh̊allanden, vilket hjälper till att
designa och anpassa material för specifika tillämpningar.

• Effektivitet: Genom teori kan vi simulera scenarier, testa hypoteser och
optimera materialens egenskaper utan omfattande fysisk testning, vilket
sparar b̊ade tid och resurser.

• Avancerade tillämpningar: Teoretiska insikter driver innovation. Ge-
nom att först̊a material p̊a en grundläggande niv̊a kan vi konstruera dem
för avancerade tillämpningar, vare sig det är inom nanofotonik eller opto-
elektronik, för att nämna n̊agra.

• Grunden för framtida innovationer: En solid teoretisk grund gör att
när fältet utvecklas kan nya modeller och teorier byggas p̊a etablerade.
Denna kunskapskontinuitet främjar snabba framsteg och teknologiska in-
novationer.

Bland teoretiska metoder är first-principles-beräkningar, särskilt de baserade
p̊a densitetsfunktionsteori (DFT), ovärderliga för att först̊a materialens atomis-
tiska egenskaper. De ger insikt i materialens linjära optiska respons, vilket är
väsentligt för m̊anga optiska tillämpningar. Framstegen inom beräkningsmetoder
fortsätter att flytta gränserna och ge ännu mer precisa och omfattande insikter
i de optiska beteendena hos olika material.

Syftet med detta arbete är att förbättra den befintliga kunskapen om vissa
optiska material och att utveckla ett ramverk och metoder som kan underlätta
optimeringen och upptäckten av en ny klass av optiska material. För att uppn̊a
detta m̊al fokuserar föreliggande arbete p̊a teoretiska metoder som kan förbättra
v̊ar först̊aelse för de optiska egenskaperna och beteendena hos s̊adana material
och kan möjliggöra skapandet av nya.
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1 Introduction

1.1 Optical materials

Optical materials are a type of material used in optics that have distinct char-
acteristics and applications due to their unique crystalline structures [1]. They
find extensive application in the construction of various optical components such
as lenses, prisms, beam splitters [2], and filters [3], and serve as integral elements
in laser systems [4]. One of their distinctive property is birefringence, where the
crystal exhibits double refraction, causing light rays to split into two distinct
paths. Additionally, they possess high refractive indices, meaning that they
can significantly bend light, thereby influencing the optical path and the sys-
tem’s focus. Furthermore, optical materials display nonlinear optical behavior,
a feature that allows light waves to interact in complex and beneficial ways.
For example, they can convert the frequency of light, combine light beams, or
generate controlled light pulses. Such unique capabilities make optical materials
indispensable for the functioning and optimization of a myriad of optical devices
and systems.

Doping crystals with Rare Earth (RE) ions is a common practice to modify
and enhance certain properties. Doping occurs when one type of atom or ion is
replaced by a different atom or ion in the crystal lattice. The schematic picture
of this process is shown in Figure 1. The new atom or ion, known as a substitu-
tional impurity, may have a different size, charge, or electron configuration than
the atom it replaces, thereby altering the crystal’s properties. These changes
can substantially impact the optical and physical characteristics of the crystal,
modifying properties such as refractive index, and structural integrity [5, 6].
Doping can also affect the luminescence properties of optical materials. Lumin-
escence is the emission of light by a material (Figure 2) in response to excitation
by an external energy source, such as light or heat. When a substitutional de-
fect occurs, it can create localized energy states within the crystal lattice, which
can modify the luminescence properties of the material [7, 8]. For example, the
introduction of a substitutional defect can change the color or intensity of the
emitted light, or shift the emission spectrum to a different wavelength [9]. This
effect can be exploited for applications such as solid-state lighting and color dis-
plays. In addition, substitutional defects can alter the mechanical and thermal
properties of optical materials. For example, the introduction of a substitutional
defect can increase or decrease the material’s hardness or thermal conductivity,
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Figure 1: Schematic view of the substitutional defect. Note how the impurity atom displaces the neighboring
atoms.

which can affect its durability and heat dissipation properties. This effect can
be important for applications such as laser optics and thermal management.
Despite some risks, intentionally introduced impurities can enhance certain at-
tributes of optical materials and potentially offer new functionalities for diverse
applications [10].

The RE ions, for instance, fall under the category of intentional dopants. Their
unique electron configurations lead to sharp, well-defined energy levels and make
them suitable as phosphors and scintillators for lighting, imaging, and sensing
applications [11, 12, 13, 14]. Moreover, these materials are advantageous for
quantum computing, quantum cryptography, and mapping quantum informa-
tion, largely due to the long coherence lifetimes enabled by the unique properties
of RE ions [15]. The unique properties of rare earth ions, attributable to their
partially filled 4f shell and shielding effects, enable them to be used in mater-
ials with long coherence lifetimes. Coherence lifetime, an essential factor in
quantum information science, is however limited by the excited-state lifetime
[15]. To optimize the functionality of rare-earth materials in quantum informa-
tion applications, technologies such as laser sources and detectors with narrow
line widths and high stability are vital. Furthermore, RE-doped materials are
utilized for frequency and phase stabilization of laser sources in quantum in-
formation [16]. Lastly, Trivalent rare earth ions, in particular, exhibit fascin-
ating optical properties and are suitable for various applications, including the
development of luminescent materials and other specialized optical components
due to their interaction with light and potential in bio-detection [17].

The optical characteristics of these doped crystals are subject to variations and
noise stemming from numerous factors, which might potentially influence their
performance. For instance, the concentration of RE ions within the crystal may
vary its optical properties [18, 19]. Inconsistencies in these properties may arise
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Figure 2: Schematic description of excitation and emission in a RE-doped phosphor.

due to imperfections in the crystal lattice, such as impurities, vacancies, or dis-
locations, resulting in localized refractive index changes. Moreover, fluctuations
in temperature can induce alterations in the optical material’s refractive index
[20], thermal expansion [21], and thermo-optic coefficients [22]. Such thermal
changes could lead to variations in the optical path length [23] and cause wave-
front distortions. These factors collectively underscore the need for meticulous
control and management in the manufacturing and handling of these doped
crystals to ensure their optimal performance. Additionally, mechanical stress
can induce changes in the refractive index through the photoelastic effect [24],
giving rise to birefringence, polarization alterations, and other stress-related
optical phenomena that can impair the performance of the optical system. For
example, it can influence the energy levels of the ions in the crystal, and thereby
affect the absorption and emission characteristics [25].

Given these complexities, it becomes imperative to understand how doping and
mechanical stress modify the intrinsic properties of RE-doped crystals. This
understanding is crucial for optimizing their performance and maximizing their
utility across various applications.

1.2 Objectives of this work

This study aims to formulate theoretical models that predict and describe the
qualities of emerging optical materials, enhancing their role in optoelectronic
devices. These models primarily harness theoretical methodologies to deepen
comprehension of these materials’ optical traits. Such insights could potentially
foster the inception of innovative optical materials or augment the efficacy of
existing devices, emphasizing intrinsic attributes over empirical evidence.
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Our research predominantly focuses on Y2SiO5, a widely recognized optical ma-
terial often doped with RE ions for various purposes. Additionally, YVO4, which
is also a popular laser medium optical material is studied mainly due to its pop-
ularity and existing experimental data. We mainly address two attributes in
these materials: refractive index and RE-activated transitions. For the former,
we intend to monitor and forecast how the material responds to mechanical or
thermodynamical stress. Such insights can refine device optimization. Mean-
while, for the latter, our aim is to develop a model that becomes standard for
the identification of RE-doped materials, particularly in phosphor applications.
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2 Fundamentals of density functional theory

The Density Functional Theory (DFT) is widely used as the main tool in the
study of materials so much so that today there is a field of study known as
computational material science, and the key tool for this field is DFT. All the
quantum calculations in this thesis are carried out in the Vienna Ab initio Simu-
lation Package (VASP) [26] and CRYSTAL [27] packages in which VASP utilizes
plane-wave approach while the CRYSTAL is based on the expansion of Gaus-
sian type basis set to reproduce the necessary wave functions. Consequently,
this chapter is aimed to provide essential background and understanding of
such approaches.

2.1 Density Functional Theory

Since the advent of the DFT method in the early 60s, many applications and
spin-offs have been created, and it has consistently proven to be a reliable ad-
dition to the toolbox of physicists, chemists, and especially material scientists.
Here, a brief introduction about this theory is added to build a foundation of
the further methods that actually help us to conduct the necessary calculations
for this thesis.

The motion and interaction of electrons in their respective ground state in a
solid can be described by the many-body Schrödinger equation.

HΨi(r1, r2, ..., rN ) = EiΨi(r1, r2, ..., rN ) (1)

where Ψi is the wave function with energy Ei, and ri is the coordinate of electron
i. The non-relativistic many-body Hamiltonian can be decomposed into three
terms as follows

H = T + Vee + Vei (2)

where T is the kinetic energy

T = − ℏ2

2m

N∑

i=1

∇2 (3)

and Vee is the electron-electron repulsive interactions

Vee =
1

2

∑

i ̸=j

e2

|ri − rj |
(4)
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and Vei is the electron-ion attractive interactions (ZI is the ionic charge and RI

is the coordinate of ions)

Vei =
∑

i

Vion(ri) = −
∑

iI

ZIe
2

|ri −RI |
=

N∑

i=1

ν(ri) (5)

Note that in the provided Hamiltonian only the last term contains information
about interaction with the nucleus. This is mainly due to the mass difference
between electrons and nuclei, even the lightest nuclei weigh more or less 1800
times more than an electron, and the motion of the nucleus is considered to be
stationary relative to electrons. As a result, the Hamiltonian can be simplified
to only consider the terms related to electrons and the static charge between
electrons and the nucleus. This simplification is known as Born-Oppenheimer
approximation [28].

If we refer back to Equation 1, the purpose of solving many-body Schrödinger
equation is to obtain the eigenfunctions ψi and their corresponding eigenvalues
Ei. However, solving it exactly except for the Hydrogen atoms is a near im-
possible task as the complexity of such a task scales up exponentially, and the
fact that for the problems with more than one electron a many-body approach
is required. Therefore, it is necessary to employ approximation methods to
simplify the task. The most widely used approach is the independent-electron
approximation which essentially assumes that electrons move independently in
an effective potential created by all other electrons. Consequently, the many-
body problem is reduced to a single-particle problem. Although there are a few
methods to tackle single-particle problems, the main two approaches are:

• Wave function-based methods: The coroner-stone of this approach is Hartree-
Fock approximation

• Density-based methods: DFT.

Even though the main focus of this thesis is on the usage of the DFT approach,
the wave function approach is important to grasp the physical picture behind the
machinery of all quantum mechanical approaches. Thus, I will briefly introduce
the Hartree-Fock (HF) approach, which would help to better understand the
DFT method.

2.2 Hartree-Fock Approximation

According to Hartree product [29] rule, the wavefunction for a collection of
electrons, if they are individual and non-interacting electrons 1,2,...,n in the
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state i,j, ...,k, can be written as:

Ψ(r1, r2, ..., rn) = ψi(r1)ψi(r2)...ψk(rn) (6)

As a result of this assumption, the probability of finding an electron at r1 in space
is independent of the position of the electron at position r2, while in reality due
to coulomb repulsion, electrons avoid each other. So, the correlation between
pair electrons is ignored. Furthermore, in this picture, all non-interacting single
electrons are considered to be identical, which defies the antisymmetric principle
for the electrons. Hence, HF approximation [30] was born to address the issues
that were raised in the Hartree approach. The fundamental idea of the HF is
to describe the wavefunctions through a set of single particle orbitals ψn that
form a single determinant of the form,

Ψ(r1, r2, ..., rn) =
1√
n!

∣∣∣∣∣∣∣∣∣

ψi(r1) ψj(r1) · · · ψk(r1)
ψi(r2) ψj(r2) · · · ψk(r2)

...
...

. . .
...

ψi(rn) ψj(rn) · · · ψk(rn)

∣∣∣∣∣∣∣∣∣
(7)

The above determinant is known as the Slater determinant, if we change the
order of rows then a sign change appears. Hence, the Slater determinant satisfies
the requirement of the exchange antisymmetry principle; and the expectation
value of the Hamiltonian based on the wavefunction we have just created is
given as,

⟨Ψ|H|Ψ⟩ =
∑

i,σ

∫
drψσ∗

i (r)[
1

2
∇2 + Vext(r)]ψ

σ
i (r) + EII

+
1

2

∑

i,j,σi,σj

∫
drdr′ψσi∗

i (r)ψ
σ∗
j

j (r′)
1

|r − r′|ψ
σi
i (r)ψ

σj

j (r′)

− 1

2

∑

i,j,σ

∫
drdr′ψσ∗

i (r)ψσ∗
j (r′)

1

|r − r′|ψ
σ
j (r)ψσ

i (r′). (8)

Moreover, the variational principle dictates that the optimum orbitals are the
ones that minimize the energy. So to find the optimal eigenvalues of Equation
1, one has to run Equation 8 iteratively to obtain the desired eigenvalues. In
Equation 8, the first line includes the single-body terms such as kinetic energy
and the interaction energy due to electrons and the generated field by nuclei.
The third and fourth terms are the direct exchange interactions among the elec-
trons. These interactions include the terms where i=j which means an electron
interacts with itself. This anomaly is known as a self-interaction error and it
is canceled by the last term. Nevertheless, since the Slater determinant is not
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a perfect approximation for a wavefunction there is still a discrepancy between
the real ground state and the ground state obtained through HF formalism.
This difference between exact energy, ε0, and HF energy is known as correlation
energy and it is defined as:

Ec = ε0 − EHF (9)

Lastly, the HF explains that one can obtain the total wavefunction of a system
by considering the single-particle wavefunction for each electron present in the
system. However, in reality, there are 3N variables for a system with N electrons
which makes it impossible to solve a system such as a solid with millions of
electrons. Therefore, an efficient alternative method is required to bypass the
complexity of an exact system. This alternative was later introduced as DFT,
which uses electron density to solve a system instead of the wave function.
The principles of the DFT method are explained in the coming sections of this
chapter.

2.3 Hohenberg-Kohn Theorems and Kohn-Sham equations

The core concept behind DFT is two theorems that state when a quantum
system is located at the lowest possible energy state of a respective Hamiltonian,
one can retrieve all the information about the quantum system by operating on
the electron density.

n(r) = N

∫ N∏

i=2

dri|Ψ(r, r2, ..., rN )|2 (10)

These theorems are called the Hohenberg-Kohn (HK) theorems [31], and they
result in all observable properties of a ground state system being determined by
the three degrees of freedom in the real-valued electron density rather than the
3N degrees of freedom in the complex-valued wave function.

HK Theorem I: The ground state electron density for a system of interacting
electrons is uniquely determined by the external potential.
HK Theorem II: Based on theorem I, there exists a universal functional of
the density that minimizes the total energy corresponding to the full solutions
of the Schrödinger equation.

E[n] = F [n] +

∫
d3rn(r)ν(r) (11)

⟨ψi|ψj⟩ = δij (12)
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N∑

i=1

|ψi(r)|2 = n(r) (13)

Then the universal functional F[n(r)] is split into three terms:

F [n] = Ts[n] + EH [n] + Exc[n] = − ℏ2

2m

N∑

i=1

⟨ψi|∇2|ψi⟩

+
1

2

∫
d3rd3r′

n(r).n(r′)
|r − r′| + Exc[n]

(14)

Although the HK theorems are extremely powerful, they do not offer a way of
computing the ground-state density of the system in practice. Therefore, on
still requires the calculation of the many-body wave function to construct the
correct ground state density. About one year after the HK paper, Kohn and
Sham devised a simple method to conduct DFT calculations that retain the
exact nature of DFT [32]. In this paper, solving the energy of the ground state
remains exact, but it still leaves a big challenge behind that all the quantum
mechanical acting forces are pushed into one term known as the ’exchange-
correlation’ kernel or potential.

2.4 Kohn-Sham Framework

The approach that Kohn-Sham (KS) developed in their landmark paper led to
the implementation of DFT. The ansatz of KS was formulated by considering
a non-interacting system of electrons (Figure 3) in an effective potential, vKS .
The question now is whether such a vKS exists that can uniquely reproduce
the exact interacting ground state energy and density. KS showed this to be
the case, and the mapping between the non-interacting and interacting systems
defines the KS system of electrons. Since in this approach the electrons are non-
interacting, the many-body wave function takes the form of a product state:

Ψ(ri) =
N∏

i=1

ϕi(ri)

The wave functions ϕi are often referred to as ”single particle orbitals”. Since the
Pauli exclusion principle only allows one fermion per single particle eigenstate
of a Hamiltonian, there would be N single-particle orbitals in the KS system.
Such a system can be defined as:

(
−1

2
∇2 + vKS(r)

)
ϕi(r) = ϵiϕi(r), (15)
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Real Interacting System Non-Interacting KS System

Figure 3: Schematic view of the Kohn-sham system

where vKS is the effective KS potential in which the electrons move, and it is
defined as

vKS = vext + vH + vxc = −
∑

I

ZI

r −RI
+

∫
n(r′)dr′

r − r′
+
∂Exc[n(r)]

∂[n(r)]
. (16)

The KS equations are solved self-consistently (SC), since for the explicit ith

single particle orbital, the KS potential depends on all the other orbitals. As a
first step of the SC, the initial density is guessed as a perturbation of atomic
densities. Then by solving KS equations and obtaining the wave function, ϕi(r),
the true electron density for the system can be obtained through

nKS(r) =
∑

occupied

|ϕi(r)|2, (17)

if the resulting density is larger than the predefined criterion in comparison
with the initial guess, then the process gets repeated otherwise the system is
considered to be converged.

2.5 Exchange-correlation functional

In Equation, 16, the Exchange-Correlation (XC) term stands for all unknown
quantum mechanical features of the system. Although the KS equation in prin-
ciple is an exact solution for a system, it actually can not deliver an exact
solution unless the XC term is known. Therefore, XC potential is approxim-
ated.

The simplest approximation for the XC energy is the Local Density Approxima-
tion (LDA) [33], which stems from uniform electron gas. Based on this, the XC
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energy of LDA only depends on the local density of electron gas in a neutralizing
positive background, which means LDA XC energy is equal to the XC energy
per particle of the homogeneous electron gas. The corresponding relation is as
follows

ELDA
xc [n(r)] =

∫
d3rn(r)ϵxc(n(r)) (18)

where ϵLDA
xc (n(r)) is the XC energy per particle of a uniform electron gas of

density n(r). From Equation 18 it can be clearly seen that Exc only depends
upon the value of the electronic density at each point in space. Although this
simple approximation proves to be sufficiently accurate for applications such as
bond length, lattice parameters, phonon spectra, etc, it grossly underestimates
the band gap, especially in solids leading to wrong calculation of other optical
and electronic properties.

An improved approximation to the XC functional, known as the Generalized
Gradient Approximation (GGA) [34], is to include information on the gradient
of electron density. Within this approximation, the non-homogeneity of the true
electron density is taken into account. The following relation depicts the GGA
approximation to the XC energy

EGGA
xc =

∫
d3rn(r)ϵGGA

xc (n(r)|∇n(r)) (19)

where ϵGGA
xc (n(r)|∇n(r)) is the exchange-correlation energy per electron with

density n(r) and gradient ∇n(r). GGA deals with inhomogeneous electron gas
better and shows systematic improvement over LDA especially in the calcula-
tion of the cohesive and binding energies. Nevertheless, the underestimation
of band gap especially in solids remains an issue, which consequently leads
to miscalculation of properties such as absorption, dielectric properties and
etc. This underestimation issue is mainly due to an intrinsic problem in LDA
and GGA that is known as Self-Interaction Error (SIE). The SIE stems from
the inability of approximate density functionals to exactly cancel self-coulomb
and self-exchange-correlation for all one electron densities [35, 36]. To reduce
the shortcomings of the semi-empirical approaches hybrid functional were de-
veloped. Hybrid functional is a type of DFT that combines the accuracy of
a many-body method such as HF with the computational efficiency of DFT.
The idea behind hybrid functionals is to incorporate a fraction of the exact HF
exchange into the DFT exchange-correlation functional to improve the descrip-
tion of the electronic properties of the system. Among hybrid functional, the
screened hybrid functional developed by Heyd, Scuseria, and Ernzerhof (HSE)
[37, 38], has proved to be effective, especially for solids. The HSE functional has
been widely used to study the electronic properties of a wide range of materials,
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including semiconductors, insulators, and metals [39]. It has been used to study
the electronic structure of various materials, including the band structure, the
density of states, and the optical properties, and it has been found to provide
improved results over traditional DFT functionals for many systems.

Ehybrid
xc = αEHF

x + (1 − α)EGGA
x + EGGA

c (20)

Equation 21 shows the relation and mixing parameters of HSE functional. Al-
though the mixing parameter is arbitrary and variable with respect to the system
under study the most common combination is HSE06 in which α is set to 0.25.
This means the share of exchange HF energy in final XC energy is 25%.

EHSE
xc = αEHF,SR

x (ω) + (1 − α)EPBE,SR
x (ω) + EPBE,LR

x (ω) + EPBE
c (21)

In the above equation, Perdew-Burke-Ernzerhof (PBE) [34] is essentially a GGA
approximation that has a different set of parameterizations than generic GGA.
The exchange part is divided into Short-range (SR) and Long-range (LR) com-
ponents. ω is the screening parameter that indicates the range separation. This
means it identifies the distance for which the short-range interactions become
negligible. In other words, when ω goes to ∞, all the interactions that make up
the exchange energy are treated as long-range whereas when ω goes to 0 all the
interactions are considered to be short-range. In any case, HSE is a substantial
improvement over GGA and LDA in band gap calculation and consequently
in the optical and electronic properties of a system. Nevertheless, the mixing
parameter is not generic so it needs to be adjusted for the specific system to
obtain the correct band gap.

2.6 Pseudopotentials

When individual atoms come together to form a crystalline material, the highest
electronic states undergo a considerable transformation. These electrons, re-
ferred to as valence electrons, partake in the process of chemical bonding. How-
ever, the core electrons, which are inherently low in energy, largely remain unaf-
fected irrespective of their chemical surroundings. Consequently, their influence
on the properties of the material is significantly less prominent.

When it comes to representing free electrons, which are weakly bound valence
electrons, plane waves serve as the natural choice for a basis set. If we aim
to describe the nuances of chemical bonding, an intuitive approach would be
to ’freeze’ the core states. Thereafter, we can solve the KS equation for the
valence states within a plane wave basis set. This concept lies at the heart of
the Pseudopotential (PP) approximation. Why do we freeze the tightly bound

12



core states? The reason is simple: solving the atomic-orbital-like core states
would necessitate an impractically large number of plane waves in the basis. In
this context, freezing refers to the act of fixing these core states to streamline
the computational process while ensuring accuracy.

This approach is justifiable as the core states and the hard potential of the
atomic cores remain largely consistent across different calculations. Therefore,
the strong potential can be replaced with a more manageable PP that corres-
ponds to the pseudo-wavefunctions, denoted as ΨPS . The basic principles of
PPs are explained by Philips-Kleinman [40] in which they consider ψc and ψv to
be the exact core and valence states respectively. ψv then solves the Schrödinger
equation with eigenvalues Ev,

Hψv = Evψv (22)

where the pseudo wavefunctions are smooth functions expressed as expansions
of plane waves.

ψk(r) =
∑

G

ck, Ge
i(k+G).r, (23)

and the G are the reciprocal lattice vectors.

The pseudo wavefunctions are not orthogonal to the core states so the exact
valence states can be related to the pseudo wavefunctions with the part linearly
dependent on the core states subtracted,

ψv = ψPS
v −

∑

c

⟨ψc|ψPS
v ⟩ψc. (24)

substituting the above equation into a plane wave gives:

HψPS
v −

∑

c

⟨ψc|ψPS
v ⟩Hψc = Ev(ψPS

v −
∑

c

⟨ψc|ψPS
v ⟩ψc). (25)

As Hψc = Ecψc for the core states, the Equation 25 can be rewritten as,

HψPS
v = Evψ

PS
v +

∑

c

⟨ψc|ψPS
v ⟩ (Ec − Ev)ψc

(H +
∑

c

(Ev − Ec) |ψc⟩ ⟨ψc|)ψPS
v = Evψ

PS
v (26)

This way the problem of solving a Schrödinger equation in a hard potential
H = −1

2∇2 + Veff for the exact valence states ψv can be transformed into the
easier problem of solving the Schrödinger equation in a softer potential,

V PS = Veff +
∑

c

(Ev − Ec) |ψc⟩ ⟨ψc| (27)
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for the pseudo-wavefunctions ψPS
v but with the true energy eigenvalues, Ev.

This soft potential is called the PP and it is calculated once and for all, along
with the core states, for an isolated atom.

Figure 4: Schematic illustration of pseudopotential

The schematic illustration of PP is depicted in Figure 4. Here, we can observe
that within the core region, the potential adopts a soft nature. As we move
outside the core region, the PP gradually merges with the effective potential
due to the fading presence of core wavefunctions. This leads to an interesting
phenomenon - beyond a certain atomic radius rc, the pseudo wavefunctions
coincide with the exact all-electron wavefunctions.

The primary aim of PPs is to significantly minimize the computational require-
ments, hence an optimal PP should be as gentle, or ”soft,” as possible. This
translates to needing as few plane waves as feasible for the expansion of the
pseudo wavefunction [41]. Additionally, it’s imperative for a PP to possess the
characteristic of being transferable, meaning it retains its accuracy irrespective
of whether it’s applied to individual atom computations or crystal formations.
Moreover, the creation of a PP is founded on specific atomic configurations,
but its applicability extends to diverse scenarios without losing precision. The
charge density of pseudo-wavefunctions is also crucial as it should approxim-
ate the true valence density as closely as possible since it’s an integral physical
property. This is pivotal because the charge density directly influences the
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physical and chemical properties of the system under study [42]. Therefore, a
well-constructed PP is characterized by its softness, transferability, and ability
to replicate the true valence density as closely as possible.

PPs come in a few varieties, such as Ultrasoft (US) [43] and Norm-Conserving
(NC) [44] PPs. The Ultrasoft PP approach uses larger values of the core radius,
which consequently reduces the cutoff energy. This method was introduced to
perform calculations with the lowest feasible cutoff energy for the plane-wave
basis set. The technique achieves this by allowing pseudo wavefunctions to be
as soft as possible within the atom’s core region, resulting in a significant de-
crease in the cutoff energy [45]. On the other hand, Norm-Conserving PPs,
in addition to ensuring that pseudo-wavefunctions and potentials correspond
to the real valence wavefunction and the original potential beyond the core
radius rc, also mandates that the norm of the pseudo-wavefunctions and the
original wavefunctions must be equal within the core radius [45]. The Projector
Augmented WAVE (PAW) method, however, differs from the traditional PP
methods. Instead of being a traditional PP method, it serves as an all-electron
method that works between the exact all-electron wavefunction. PAW was essen-
tially constructed (Figure 5) as a hybrid of the Linear Linear Augmented-Plane-
Wave (LAPW) and the US potential methodologies. It is based on the trans-
formation between the exact all electron wavefunctions, Ψn, and the smooth
Pseudo wavefunctions, Ψ̃n,

|Ψn⟩ = ℑ |Ψ̃n⟩ (28)

This leads to an equivalent KS equation for the pseudo wavefunctions,

ℑ†Hℑ |Ψ̃n⟩ = Enℑ†ℑ |Ψ̃n⟩ (29)

when solved, the pseudo wavefunctions are transformed back to the true wave-
functions which are then used to evaluate the total energy. The ℑ is denoted as
the transformation operator, and it is expressed in terms of the solutions of the
Schrödinger equation for an isolated atom, |ϕi⟩, and the soft pseudo version of
them, |ϕ̃i⟩.

ℑ = 1 +
∑

i

(|ϕi⟩ − |ϕ̃i⟩) ⟨p̃i| . (30)

The |p̃i⟩ are the projector operators dual to the states |ϕ̃i⟩, fulfilling ⟨p̃i⟩ ϕ̃i = δij ,
if i and j belong to the same augmentation sphere.

The PAW method is noteworthy for its efficiency and accuracy. With its re-
quirement for fewer plane waves, PAW leads to a reduced energy cutoff when
opposed to NC-PP methods. This quality renders PAW less resource-intensive,
situating it closer to the computational characteristics of US-PP. One of the
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= + -

Ψ Ψ̃

∑
i

(
|ϕi⟩ ⟨p̃i| |Ψ̃⟩ − |ϕ̃i⟩ ⟨p̃i| |Ψ̃⟩

)

Figure 5: The schematic illustration of constructing PAW all-electron wavefunction.

major advantages of PAW is its ability to offer superior descriptions of ma-
terials with considerable magnetic moments, particular transition metals, and
alkali as well as alkali-earth metals. This performance supersedes that of US-
PP. However, it is important to note that for a broad range of other materials,
the results produced by PAW and US-PP show similarities. Further benefits of
the PAW method encompass its ability to provide the all-electron density and
potential, surpassing the mere provision of the valence part. It also incorporates
non-collinearity for magnetic moments and possesses the potential to navigate
beyond the frozen core approximation.
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3 Beyond density functional theory

As outlined in the introductory section, RE-doped optical materials have a broad
range of applications, including their use as phosphors. A prominent example
of this is the use of RE-doped YSO & YVO4. The luminescence properties of
these materials play a significant role in their utility, largely influencing their
application potential in various fields. The optical and luminescent properties
of these materials are largely dictated by the state of excitation they achieve.
Consequently, this section is devoted to an exploration of the methods used to
accomplish such states of excitation.

In the first part of this section, a detailed review of the applicable excitation
methods is provided. This is followed by an introduction to the constrained
DFT approach that has been utilized in the research undertaken for this thesis.
The discussion thus provides a comprehensive overview of the theoretical and
practical aspects that underpin the use and study of RE-doped optical materials.

3.1 Many-body perturbation theory

Many-body perturbation theory is a method to describe the interactions between
multiple particles in a system. It involves a systematic expansion of the energy
of the system in terms of the strength of the interactions between the particles,
allowing for the calculation of properties such as the energy levels and wave
functions of the system. These methods are based on GW (G is for one-body
Green’s function, and W for the dynamically screened Coulomb interaction)
approximation, which applies a quasi-particle correction to the ground state
eigenvalues obtained through DFT or HF methods [46]. To clarify, Green’s
function, G, is a matrix that depends on two spatial, two spins, and two-time
coordinates:

i = (ri, ξi, ti) (31)

The matrix element G(12) is defined in such a way that iℏG(12) gives the
probability amplitude for the propagation of a particle or hole that is created
at space and time coordinate (r2, ξ2, t2), where it is picked up at the point
(r1, ξ1, t1). This way a system of N-electrons ground state |ΨN

0 (t2)⟩ is brought
to a final state |ΨN

f (t1)⟩ by the successive action of operators on the initial state,

|ΨN
f (t1)⟩ = ψ̂(r1)Û(t1, t2)ψ̂

+(r2) |ΨN
0 (t2)⟩ (32)
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As the above equation explains, first an electron gets added to the system with
the creation operator, ψ+(r′), then the evolution operator propagates the N+1
particle stat in time,

Û(t1, t2) = exp(− i

ℏ
Ĥ(t1 − t2)). (33)

To complete the cycle, the annihilation operator, ψ̂(r), removes the added elec-
tron from the system. At this stage, the probability amplitude of an electron at
(2) if it is added at (1) can be obtained by the overlap of the initial state with
the final state. Therefore, the G function of an electron becomes,

Ge(12) = − i

ℏ
⟨ΨN

0 (t1)|ψ̂(r1)Û(t1, t2)ψ̂
+(r2)|ΨN

0 (t2)⟩Θ(t1 − t2)

= − i

ℏ
⟨ΨN

0,H |ψ̂H(r1, t1)ψ̂
+
H(r2, t2)|ΨN

0,H⟩Θ(t1 − t2) (34)

where the Heaviside step function,

Θ(t1 − t2) =

{
1 if t1 > t2,
0 if t1 < t2.

(35)

The Equation 34 is also applicable on hole propagation from state (2) to state
(1) that leads to,

Gh(12) = − i

ℏ
⟨ΨN

0 |ψ̂+(r1, t1)ψ̂(r2, t2)|ΨN
0 ⟩Θ(t1 − t2), (36)

so the combination of Green’s function for electron and hole propagation gives
the time-development Green’s function:

G(12) = Ge(12) −Gh(21) = − i

ℏ
⟨ΨN

0 |T̂ [ψ̂(1)ψ̂+(2)]|ΨN
0 ⟩ , (37)

where T̂ is the time-development operator that arranges a series of field oper-
ators in order of descending time arguments. To reach the final form of the
equation 37, the time-development function is considered for a stationary sys-
tem, where τ = t1 − t2, and a projection operator onto the complete set of
state vectors ΨN±1

i of the (N ±1) particles system is inserted into the equation.
Furthermore, Fourier transformation is employed to switch to the frequency-
based representation of Green’s functions. This leaves us with the Lehmann
representation of Green’s function:

G(r1, r2 : ω) =
∑

i

Ψi(r1)Ψ̄i(r2)

ℏω − ϵi + iηsgn(zi − µ)
(38)
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The µ is the chemical potential and zm = ϵm+iγm, where ϵi is the single-particle
excitation energies and γm is the lifetimes of the interacting many-body system
as, γm = 2π/τm. This shows that Green’s function can be used to directly
estimate excitation energies for a single-particle system. To build upon this and
derive Green’s function for a many-body system of interacting electrons under
the influence of an external potential one can employ Hedin equations. The full
derivation of Hedin equations and the steps that lead to GW approximation
are documented in [47, 48]. The resulting equations for GW approximation are
listed here:

G(12) = GH(12) +

∫
d(34)GH(13)Σ̂(34)G(42) (39)

Σ̂(12) = iG(12+)W (12+) (40)

W (12) = ν(12) +

∫
d(34)ν(13)P (34)W (42) (41)

P (12) = −iG(12)G(21+) (42)

The Σ̂ is the self-energy, the screened-interaction W , the Green’s function of the
non-interaction mean-field system GH , the P is the polarization function, and
the G is the full interacting many-body system.

The GW method is widely used to study the electronic structure of strongly
correlated materials such as transition metal oxides, high-temperature super-
conductors, and heavy fermion materials (Lanthanides) [49]. The GW approx-
imation combined with the Bethe-Salpeter equation (BSE) (GW+BSE) is a
state-of-the-art method for studying the electronic structure of solids with de-
fects [46]. The GW+BSE method is particularly useful for studying systems
with point defects, such as impurities or vacancies, as it can provide detailed
information about the electronic states localized at the defect site and their
effect on the optical properties of the material [49]. However, it’s important
to note that GW is an approximate method and in some cases, it is known
to provide results that deviate from experiments, especially for the low-energy
excitations of these materials. Here low-energy excitations mean an association
of the valence and conduction bands of material, and they can have a signific-
ant impact on the material’s physical properties. This is the type of excitation
we deal with in this thesis, as the transition between the valence states of the
impurity to the conduction states does not require high energy to occur. To be
precise, the required energy for such transitions to occur is in the order of 370 -
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371 nm [50]. Aside from that GW+BSE techniques are significantly limited by
the size of the material under study, namely the computational cost for larger
cells makes it not applicable for the study of defects with large supercells [51].

The most recent addition of many-body perturbation theory that in some cases
is considered as an improvement over GW+BSE is (Dynamical Mean Field The-
ory (DMFT)) GW+DMFT approximation [52], especially for the description of
the low-energy excitations of strongly correlated materials [53]. It can provide a
more accurate description of the electronic structure of the material, including
the quasiparticle energies and lifetimes. In addition, it is specifically designed
to take into account the electronic correlation effects, which are particularly
important in strongly correlated materials such as transition metal oxides and
heavy fermion materials [52]. Nevertheless, it is severely limited due to com-
putational demand and convergence problems [54]. The GW+DMFT is based
on several approximations, and it requires a careful treatment of the electronic
correlation effects. The quality of the results obtained with the GW+DMFT
method depends on the quality of the initial input (e.g. the DFT band struc-
ture, the Coulomb interaction parameter) and the choice of the impurity solver.
Aside from these, it can be difficult to converge, especially for systems with
multiple correlated orbitals, such as Lanthanides where both f-type and d-type
orbitals exist, or for systems with strong electron-electron interactions.

3.2 Multiconfigurational methods

Multiconfigurational methods are used to study systems with multiple electronic
configurations, such as molecules with several equivalent but differently occupied
orbitals or with electron correlation effects. Examples of multiconfigurational
methods include Configuration Interaction (CI) [55] and Complete Active Space
Self-Consistent Field (CASSCF) techniques [56].

Configuration Interaction

The HF method determines the best determinant wavefunction for a given basis
set, but it lacks a correlation effect. To overcome this weakness, additional
Slater determinants can be added to correct the outcome energy. The additional
determinants should be in the form of singly, doubly, triple, ..., N-tuply excited
states since an N-variables system can be exactly expanded in terms of all unique
determinants formed from a complete set of one variable wavefunction ψi [57].
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So the exact wavefunction, |Φ⟩, for any state of the system can be written as,

|Φ⟩ = c0 Ψ0︸︷︷︸
HF

+
∑

r,a

cra Ψr
a︸︷︷︸

Singles

+
∑

a<b
r<s

cr,sa,b Ψr,s
a,b︸︷︷︸

Doubles

+... (43)

In the above equation, a singly excited determinant has one electron promoted
from orbital ψa in the HF ground state to an unoccupied orbital ψr which
generates a determinant,

|Φr
a⟩ = |ψ1, ψ2, ...ψr, ψb..., ψn−1, ψn⟩ , (44)

and the same logic is applied for doubly excited determinants with two electrons
excited from orbitals ψa and ψb in the HF ground state to an unoccupied orbital
ψr and ψ − s which generates a determinant

|Φrs
ab⟩ = |ψ1, ψ2, ...ψr, ψs, ψc..., ψn−1, ψn⟩ . (45)

In Equation 43 when all possible excited Slater determinants are considered,
it becomes Full-CI. Full-CI is computationally intensive and scales as N4 or
N5 with the number of active electrons and orbitals, making it impractical for
systems with many electrons. In addition, it is sensitive to the quality of the
basis set used and requires large basis sets to accurately describe the electron
correlation. This can make the calculations computationally expensive and can
lead to large errors if a smaller basis set is used. Moreover, it is not well-suited
for open-shell systems, where electrons occupy different orbitals with different
spins. Last but not least, it has to be mentioned that is limited by the choice of
the active space, which defines the number of electrons and orbitals included in
the calculation. An incorrect choice of the active space can lead to significant
errors in the results.

Complete Active Space-SCF (CASSCF)

CASSCF is normally used for studying the electronic structure and reactiv-
ity of molecules, including energy levels, bond strengths, spectroscopic prop-
erties, and electronic transitions. In CASSCF, the active space is optimized
self-consistently. This allows for the consideration of electron correlation within
the active space. The accuracy of the CASSCF calculation can be further im-
proved by adding post-SCF methods, such as CI or Second-order perturbation
theory (MP2) [56]. This method gives very accurate results and it is espe-
cially suitable for excitation studies such as electronic transitions and excited
state dynamics, including photochemical reactions and spectroscopic proper-
ties. However, just like its other counterpart it has limited application on solids
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Active
Space

Figure 6: The schematic view of the CASSCF approach. From left to right, the figure shows the selection of
active space, where the first diagram shows the ground state, ΨHF , and the last diagram depicts
the orbitals that are selected to perform excitation.

and systems with large numbers of electrons. The main reason behind this is
computational cost and active space sensitivity.

3.3 Time-dependent density functional theory

Time-dependent density functional theory (TDDFT) is an exact reformulation
of time-dependent quantum mechanics in which instead of solving the time-
dependent Schrodinger equation by considering the many-body wave function
the density is the fundamental parameter. Thus, it is based on DFT but ex-
tends DFT to include the time dependence of the electron density [58]. TDDFT
can be used to calculate a wide range of properties, such as absorption and
emission spectra, and can be applied to a wide range of systems, including mo-
lecules, solids, and biomolecules [59]. The central theorem of TDDFT, which
is known as Runge-Gross [60] theorem proves that there is a one-to-one cor-
respondence between external potential, νext(r, t), and the electronic density,
n(r, t), for many-body systems evolving from a fixed initial state.

i
∂

∂t
Ψ(r, t) = Ĥ(r, t)Ψ(r, t) (46)

The time-dependent Schrödinger equation can be written based on KS eigenval-
ues as:

i
∂

∂t
ϕi(r, t) = ĤKS(r, t)ϕi(r, t) (47)
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ĤKS(r, t) = −∇2

2
+ νKS [n](r, t) (48)

n(r, t) =
N∑

i

|ϕi(r, t)|2 (49)

νKS [n](r, t) = νext(r, t) + νHartree[n](r, t) + νxc[n](r, t) (50)

As was the case in the ground state, here the first term is external potential,
the second term is the classical electrostatic interaction between the electrons,
and the third term is the exchange-correlation, which includes all nontrivial
many-body effects.

In general, TDDFT is considered to be a good alternative approximation for
the calculation of electronic excitation energies of a variety of systems, such
as molecules, solids, and surfaces that often provide good agreement with ex-
perimental results. Moreover, it offers a computationally more efficient way
of solving excitation compared to traditional methods for calculating excited
states, such as CI or Coupled cluster (CC) methods, and it is size-extensive in
which the results for a large system can be obtained through scaling up the res-
ult of a smaller system. However, it is less accurate for open-shell systems, such
as transition metal complexes, and for systems with strong electron correlation
[51]. The fact that in this thesis the system under study is exactly a system
with strong electron correlation makes this approach unsuitable.

3.4 Constrained density functional theory

Constrained Density Functional Theory (CDFT) is a method used in electronic
structure calculations to study the properties of a material under specific con-
straints. CDFT allows for the imposition of constraints on the electronic density,
orbital or occupancy, magnetization (H), or other properties of the material be-
ing studied. In CDFT calculations, the constraints are incorporated into the
functional used in the calculation. The method requires a self-consistent solu-
tion of the KS equations, and the resulting eigenvalues and eigenvectors can
be used to obtain the electronic structure and other properties of the material
under the imposed constraints. Essentially, CDFT takes advantage of DFT char-
acteristics that are low computational cost, and the ability to efficiently perform
atomic relaxation. These benefits are especially crucial for defect calculations
since large supercells or clusters are required to model an isolated defect and
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large numbers of calculations are typically required to characterize the atomic
and electronic structure of the defect. Therefore, there is a significant incent-
ive for devising DFT-based techniques that can provide a qualitative and even
quantitative understanding of properties connected to excited states.

The corresponding original CDFT formalism is described in the following ref-
erences [61, 62], however, a short description of this methodology is presented
here to create a base for our studies.

In Equation 51, the Lagrange multiplier, V(
∫
Ω n(r)d3r − N), is added to yield

the lowest-energy state by constraining the optimization for N electrons in the
volume Ω .

E(N) = min
n

max
V

[E[n(r)] + V (

∫

Ω
n(r)d3r −N)] (51)

For example, one could constrain the local f-charge variation in RE metals as
follows:

E(Nf ) = min
n

max
Vf

[E[n(r)] + Vf (

∫
nf (r)d3r −Nf )]. (52)

In another example, one can constrain net magnetization

E(M) = min
n

max
H

[E[(n)]+H(

∫

Ω
m(r)d3r−M)] [m(r) ≡ nα(r)−nβ(r)] (53)

It is also possible to unify all these constraints and write them in one equation
as follows,

W [n, V ;N ] ≡ E[n] + V (
∑

σ

∫
wσ(r)nσ(r)d3r −N) (54)

, where wσ(r) is a spin-dependent weight function that defines the property of
interest:

E(N) = min
n

max
V

W [n, V ;N ]. (55)

The CDFT has demonstrated its potential by generating results that align fa-
vorably with those derived from TDDFT and photoluminescence experiments,
particularly when a hybrid functional is applied [63, 64]. This technique also
exhibits performance similar to the cluster-embedded methodologies at the level
of CASSCF+MPT2 accuracy [65]. The significant advantage of the CDFT ap-
proach lies in its combination of high accuracy and lower computational cost,
making it an attractive tool for post-DFT applications [65]. In contrast, embed-
ded cluster approaches often simulate the lattice environments of the clusters by
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embedding Ab-initio model potentials (AIMPs) [66]. For instance, in the com-
putation of Ce-doped [67] and Yb-doped YSO [68], authors used the AIMPs
approach and utilized Electron Paramagnetic Resonance (EPR) data to tailor
the model to their phenomenological representation for determining the energy
levels of the impurity. However, this approach’s reliance on empirical data can
be restrictive when the objective is to predict the material’s specific behavior
under study without having any previous experimental data, which is the case
in this thesis. Considering the aforementioned benefits, the CDFT approach
has been chosen for use in this thesis. The methodology’s precision, affordable
computational expenditure, and lesser dependency on empirical data present a
compelling case for its selection in the exploration of complex material behavi-
ors.

In this study, we applied constraints on the occupancy of electrons, meaning
we controlled and maintained a constant number of electrons in specific or-
bitals throughout our calculations. This process alters the electron density,
subsequently affecting the spatial distribution of electrons within the system.
By manipulating the electron occupancy of the system, we can generate a novel
ground state for the system that effectively serves as the excited state for the
reference system. Figure 7 illustrates the sequence through which excitation is
accomplished via the constrained occupancy method.

ϵf ϵf ϵf ϵf ϵf

Ground Excited Constrained - relax Unconstrained -relax Cell relax

Figure 7: Schematic view of the constrained occupancy approach. ϵf denotes the fermi level.

Our methodology stands apart from previous constrained occupancy studies
[69, 70, 71], which employed the DFT+U approach. Instead, we opted for the
direct application of hybrid DFT to compute the energies of both ground and
excited states. This choice was guided by our primary objective: to gain insights
into the placement of 4f and, preferably, 5d within the band gap for potential
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use in phosphors. The DFT+U approach was deemed unsuitable for this study
as it necessitates prior knowledge of 4f to fine-tune the U parameter of the 4f
impurity. Since the goal of the study is to formulate a generic approach, the
DFT+U violates this. Whereas the proposal is to use the band gap modified
HSE coupled with Spin-orbit coupling (SOC) approach. In this approach, as we
just tune the HSE parameters with respect to the host band gap there would
be no requirement for knowledge of 4f shells which are variant depending on the
impurity. So it can be dubbed as one-shot tuning.
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4 Results & Discussion

In this chapter, we present a comprehensive summary of the research conducted
during this doctoral study. The results are structured in alignment with the
sequence of the research papers that are listed at the beginning of this booklet,
ensuring a logical and chronological flow of information.

4.1 Optical path length

In an optical cavity (Figure 8) the resonant frequency is a crucial aspect since
it controls the laser output [72], aids in precision measurement [73], and helps
to measure the absolute frequency of optical transition [74]. The resonance
frequency is directly dependent on the physical length of the cavity itself as well
as the dielectric properties of the medium namely the refractive index of the
material. The relation between these parameters and the resonant frequency of
the optical cavity can be written as:

mλ = 2nL (56)

, where m is the mode number, λ is the wavelength, n is the refractive index,
and L is the physical length of the cavity. The right-hand side of Equation 56,
defines the Optical path length (OPL), and it describes the total distance that
light travels through a medium, adjusted for the n of that medium. Variations
in the OPL can induce shifts in the resonance frequency of the optical cavity.
Such shifts can have multiple consequences: they may detune the laser [75],
affect the functioning of the device [76], influence the results of spectroscopic
methods [77], and impact the operation of optomechanical systems [78]. Essen-
tially, these shifts in the OPL can generate unintended noise and disturbances,
with potential ramifications on the precision and dependability of experimental
results. Therefore, understanding the variations in the L and n is critical in
mitigating such noise in our experimental outcomes. One such experiment is
laser stabilization [4]. Laser frequency can be tuned or stabilized by locking it
to an optical resonance of an optical cavity that exhibits extreme length sta-
bility [79]. This procedure enables the realization of lasers with high-frequency
stability and ultra-narrow linewidth [80]. So, the knowledge of an optical cav-
ity’s resonance frequency can be used to fine-tune the laser frequency, thereby
ensuring the stability and precision necessary for various applications in optics
and photonics.
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nR1 R2

L

Figure 8: The schematic view of an optical cavity. The light path in the cavity is indicated by circulating
arrows whereas the red arrows indicate entering and exiting light path.

As the resonance frequency is directly related to n & L, understanding and
monitoring the refractive index’s fluctuations can provide critical insight into
maintaining laser stability. By continuously monitoring these fluctuations, ap-
propriate adjustments can be made in real-time to the laser system to ensure
its frequency remains stable. This could be done by implementing feedback
mechanisms that respond to changes in the n or by controlling environmental
conditions, such as temperature or applied pressure [25], that affect the n.

Therefore, in Paper II we tried to predict the fluctuation in n and consequently
in resonance frequency through establishing photoelastic relation, where pho-
toelasticity is essentially the phenomenon where the n of a material changes in
response to stress [81]. To establish a photoelasticity relation in our desired
system the YSO, we refer back to the structure of the crystal, which is mono-
clinic. This type of symmetry in optical terms is biaxial crystals that have two
distinct optic axes, which are referred to as D1 and D2 [82] as they are depicted
in Figure 9. Moreover, due to this symmetry, there are 4 different dielectric
functions ϵ(ω) that are required to describe the material’s interaction with light
in the wavelength region where the material is transparent [83]. The principle
values of the dielectric functions are unequal and they are ordered as ϵ11 < ϵ22
< ϵ33 [83]. The off-diagonal, ϵ12, is a small value but it is non-zero.

ϵ =



ϵ11 ϵ12 0
ϵ12 ϵ22 0
0 0 ϵ33


 (57)

The relation between mechanical load namely stress and dielectric permeability
and consequently refractive index is defined in Equation 58 [84].

∆Bij = pijklekl = πijklσkl, (58)
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Figure 9: The angles and the relation between optical indicatrix axes and crystallographic axes.

where ekl, σkl are strain and stress, pijkl and πijkl are fourth-rank elasto-optic
and piezo-optic tensors, respectively. If we write the matrix form of the above
equation for the monoclinic system, it becomes as [84],

∆B =




π11 π12 π13 0 π15 0
π21 π22 π23 0 π25 0
π31 π32 π33 0 π35 0
0 0 0 π44 0 π46
π51 π52 π53 0 π55 0
0 0 0 π64 0 π66







σ11
σ12
σ13
2σ14
2σ15
2σ16



, (59)

and the left hand side of Equation 58 can be written as follows:

∆Bij = B1 −B0 (60)

where B0 and B1 are the dielectric impermeability tensor before and after the
applied stress [85]. As the principal components of the B matrix is essentially
the inverse of dielectric constants, one can reach to refractive indices that are
affected by applied stress or temperature.

B1 = [ϵ−1(σkl)]ij =



ϵ−1(0)11 ϵ−1(0)12 0
ϵ−1(0)12 ϵ−1(0)22 0

0 0 ϵ−1(0)33


+




∆B1 ∆B6 0
∆B6 ∆B2 0

0 0 ∆B3


 (61)

And after some manipulation, the stress-effected principal axes of the dielectric
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tensor can be obtained as:

nx(σkl) =
√

(1/Bx
1 )

ny(σkl) =
√

(1/By
2 )

nz(σkl) =
√

(1/Bz
3) (62)

This implies that if we possess the photoelastic constants for a particular ma-
terial we’re studying, it would enable us to evaluate variations in the refractive
index resulting from the application of a load. Therefore, to investigate the re-
fractive index variations, we have established a Finite element methods (FEM)
model, where we can apply both pressure and temperature conveniently. The
creation of this model and the calculation of the photoelasticity correlation for
both pure and doped structures necessitated first determining the mechanical
and thermodynamic properties of both. Key properties such as specific heat
and density of the unit cell in varying doping conditions, specifically the doping
concentration, were instrumental in configuring the model for photoelastic cal-
culations. Furthermore, given that the material under study exhibits anisotropic
characteristics, a comprehensive understanding of the elastic constants is essen-
tial. For these reasons, we have investigated the mechanical and thermodynamic
properties of both pure YSO and Eu-doped YSO in Paper I.

YSO, with its monoclinic symmetry, is defined by 13 unique elements within
its elastic constants matrix as it is shown in Equation 63 [86]. This complexity
emerges from the non-orthogonality of one angle in the unit cell, which engenders
a nuanced stress-strain relationship [87]. In the tensor notation of Hooke’s Law,
the fourth-order elastic stiffness tensor, denoted as C, correlates with the Cauchy
stress tensor, σ, and the infinitesimal strain tensor, ϵ, expressed by the equation
σ = Cϵ. Thus, leveraging this principle allows the derivation of the material’s
elastic constants.

Cij =




c11 c12 c13 0 c15 0
... c22 c23 0 c25 0
...

. . . c33 0 c35 0
...

...
. . . c44 0 c46

... · · · · · · . . . c55 0
· · · · · · · · · · · · · · · c66




(63)

We computed the elastic constants for four specific concentrations of Eu3+, sub-
stituting Y3+ ions in the host lattice: 6.25%, 12.5%, 18.75%, and 25%. As
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Figure 10: Relative volume, V/V0, and lattice parameters, a/a0, b/b0 and c/c0, with doping concentration.

depicted in Figure 10, our results unveil a linear correlation between the dopant
concentration and both the lattice parameters and the unit cell volume. This
observed linearity suggests that a linear polynomial could efficiently predict the
lattice parameters and volume of RE-doped YSO systems. It’s crucial to under-
stand these shifts in the lattice parameter influenced by dopant concentration,
as they directly impact the physical length (L) of an optical cavity. Given the
variability in dopant concentration across experiments, possessing a predictive
model sharpens our understanding of these influential parameters. Moreover,
grasping this linear relationship between dopant concentration and YSO lattice
parameters becomes vital when aiming for specific emission characteristics in
optical applications. For example, YSO nano phosphors doped with Eu3+ emit
a notable broad red band upon 397 nm excitation [88].

Furthermore, the linear correlation between dopant concentration and crystal
parameters shows that an uptick in Eu3+ ion concentration corresponds with a
decrease in YSO’s overall shear, bulk, and Young’s moduli, as depicted in Figure
11. This infers that augmenting dopant concentration reduces the material’s
mechanical resilience. Grasping this interrelation is imperative for estimating
the material’s robustness and endurance under mechanical pressure.

The Pugh ratio is included in Figure 12 to further investigate the physical prop-
erties of the material. The Pugh ratio gauges the ductility of materials based on
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Figure 11: Elastic moduli as a function of Eu3+ doping concentrations.

the simple ratio given as B/G. The higher the value of this ratio, the higher the
ductility of the material, and vice versa. As Figure 12 demonstrates, the ratio
gradually decreases with increasing concentration. The overall drop of the Pugh
ratio between pure and 25% doped crystal is 4.2%. Although this drop is small,
it shows that there is a decreasing trend in the Pugh ratio which indicates the
YSO becomes more brittle with higher impurity concentration.

While we observed that individual elastic constants didn’t present a consistent
trend, the thermodynamic properties derived from these constants did. Not-
ably, the minimum thermal conductivities (κmin), Grüneisen parameter (γ),
and Debye temperature (θD), exhibit a decline with concentration, in contrast
to density, as illustrated in Table 1. The Debye temperature is pivotal for con-
trasting the micro-hardness of materials, given its proportional relationship to
material hardness. Additionally, a higher Debye temperature signifies stronger
bond strength. A small increase in doping concentration appears to weaken
this bond’s strength, possibly due to intensified interatomic bonding. This phe-
nomenon might be attributed to the larger atomic radius of Eu3+ relative to
Y3+. Thermal conductivity, depicting heat flow diffusivity via phonon trans-
port, serves as an indicator of a material’s heat conduction efficacy. In context,
a greater κmin value implies superior conductivity and vice versa. As seen in
Table 1, YSO with a κmin value of 0.995 is classified as possessing exceptionally
low thermal conductivity. Lastly, as the concentration of Eu3+ grows, a drop in
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Figure 12: Pugh and Poisson’s ratio of the YSO crystal as a function of Eu3+ doping concentrations.

the anharmonic phonon scattering within the YSO crystal is observed, leading
to reduced thermal expansion due to decreased anharmonic scattering [89].

Table 1: Thermodynamic values predicted for pure YSO and Eu-doped YSO. *:This study

Compound ρ(g/cm3) νl(m/s) νt(m/s) νm(m/s) θD(K) κmin(W/mK)γ

Y2SiO
∗
5 4.3142 6550.5 3718.8 3926.4 487.88 0.9443 1.560

Eu6.25% : Y2SiO
∗
5 4.4228 6421.5 3662.0 3862.6 483.95 0.9445 1.544

Eu12.5% : Y2SiO
∗
5 4.5298 6328.7 3611.3 3808.6 481.00 0.9462 1.542

Eu18.7% : Y2SiO
∗
5 4.6381 6245.3 3570.8 3764.3 479.16 0.9501 1.535

Eu25% : Y2SiO
∗
5 4.7448 6148.8 3533.2 3720.5 477.20 0.9534 1.517

Y2SiO5 [90] - - - - 580 1.13 -
Y2SiO5 [91] 4.680 6196 3580 3975 507 1.01 1.50

Next, our key interest was to assess the variations in specific heat with respect to
concentration, denoted as Cν . We employed the Debye model which estimates
the phonon contribution to specific heat in solids, to predict heat capacities at
a constant volume. Our findings, as illustrated in Figure 13, demonstrate that
alterations in heat capacity due to concentration are essentially insignificant.
This interpretation is anchored on the observed superposition of all Cv curves,
indicating that no discernible deviation exists between different concentrations.
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Furthermore, the predicted curves abide by the Dulong-Petit law at elevated
temperatures (where T ≫ θD). According to this law, the heat capacity at con-
stant volume, Cv, for every atom approximates 3R for temperatures surpassing
the Debye temperature (which is computed as 514.35 K for YSO in this study).
The gas constant here is represented by R.

However, it’s crucial to note that when temperatures dip below the Debye tem-
perature, θD, quantum effects become increasingly significant and the Cv tends
towards zero. This is attributed to the fact that at such low temperatures, the
thermal excitation is mainly contributed by long wavelength acoustic modes,
which results in an approximate heat capacity expression Cv = 324NkB(T/θD)3

[92]. This shift in behavior underscores the dual influence of both classical and
quantum mechanics on heat capacity, as well as the intriguing complexity of the
material properties under study.

Figure 13: Heat capacity, Cv, based on Debye model for various Eu3+ concentrations. The red line with
squares indicates experimental data for the molar heat capacity, Cp, of pure YSO obtained by
Sun et al. [90].
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To evaluate the predicted heat capacity, the experimental values of heat capacity,
Cp, obtained by Sun et al. [90] are superimposed on the predicted curve. As
can be seen, except at the two extremes (300 K and 1400 K), the predicted
model agrees with the experimental data points. If corrections to Cp and Cv

were taken into consideration, the predicted curve would be in better agreement
with an experiment on the left-hand side. The correction values range between
1 and 8 K at room temperature and reach a maximum at the melting point,
where the correction value would be equal to 10% of Cv.

In the wake of examining the mechanical and thermodynamical attributes of
both YSO and Eu-doped YSO, our subsequent step encompasses the derivation
of piezo-optic constants. A detailed procedure for extracting these photoelastic
constants can be found in Paper II, and the results are available in Table 2.
The choice of functional for our calculations was based on calculated dielectric

Table 2: piezo-optic constants of Eu:Y2SiO5, πij . Unit=Brewsters, 1B = 10−12 Pa−1.

YSO π11 π12 π13 π15 π21 π22 π23 π25 π31 π32

PBE0-D3 -0.603 0.880 1.184 -1.223 0.164 0.551 0.557 -0.131 0.337 0.725

Eu:YSO π11 π12 π13 π15 π21 π22 π23 π25 π31 π32

PBE0-D3 -0.634 1.921 1.457 -1.229 0.195 1.580 0.815 -0.131 0.478 1.611

YSO π33 π35 π44 π46 π51 π52 π53 π55 π64 π66

PBE0-D3 0.313 0.365 -0.353 -0.037 -0.504 -0.073 0.459 -0.594 0.117 -1.476

Eu:YSO π33 π35 π44 π46 π51 π52 π53 π55 π64 π66

PBE0-D3 0.440 0.489 0.032 -0.268 -0.442 -0.281 0.269 -0.572 0.025 -1.526

constants, where PBE0 functional provided values closest to our experimental
observations of dielectric constants. In an ideal scenario, our methodology’s
accuracy would be confirmed by comparing our calculated photoelastic con-
stants with experimental equivalents. However, for both pure and Eu-doped
YSO, such data is currently unavailable. As a workaround, we validated our
calculated piezo-optic constants via their application in FEM simulations. In
these simulations, we applied loads and post-processed the results using the
calculated piezo-optic constants. If the refractive index resulting from these
simulations, after the load application, aligns with the available experimental
refractive index under similar conditions, we can assert that our piezo-optic con-
stants are correctly determined. To perform a comparative analysis, we utilized
the measured values of relative permittivity from the study by Carvalho et al.
[93]. These values denote the relative permittivity of pure YSO crystal against
varying temperatures. As the YSO crystal is a biaxial dielectric material with
known refractive indices at optical frequencies, its permittivity plays a crucial
role in this comparison. Following this, we commenced with the application of
thermal stress on the YSO crystal. The temperature model employed is a ther-
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Table 3: Comparison of measured and calculated refractive indices versus temperature for pure YSO. The
measured data is taken from [93].

measured calculated
Temp. (K) nD1 nb nD2 nD1 nb nD2

6 1.749(1174) 1.787(5427) 1.817(0071) 1.757(7000) 1.762(100094) 1.778(9001)
10 1.749(1174) 1.787(5427) 1.817(0071) 1.757(7001) 1.762(100156) 1.778(9002)
20 1.749(1276) 1.787(5528) 1.817(0162) 1.757(7002) 1.762(100313) 1.778(9004)
30 1.749(1687) 1.787(5952) 1.817(0529) 1.757(7004) 1.762(100469) 1.778(9007)
40 1.749(2575) 1.787(6784) 1.817(1321) 1.757(7005) 1.762(100626) 1.778(9009)
50 1.749(3836) 1.787(7965) 1.817(2445) 1.757(7006) 1.762(100782) 1.778(9011)
70 1.749(7664) 1.788(1770) 1.817(6818) 1.757(7009) 1.762(101095) 1.778(9016)
296 1.760(1088) 1.795(3696) 1.830(0966) 1.757(8983) 1.762(305584) 1.779(2097)

100 1.7(5035) 1.7(8859) 1.8(18360635) 1.7(5770) 1.7(6210) 1.7(7890)
500 1.7(8046) 1.8(0887) 1.8(5505) 1.7(5832) 1.7(6274) 1.7(7986)
1000 1.8(7438) 1.8(6975) 1.9(7115) 1.7(5933) 1.7(6366) 1.7(8127)

momechanical one, where any temperature exceeding 0 K incites a mechanical
load on the crystal, thereby inducing stress on the unit cell.

Our calculated results can be substantiated through a direct comparison with
empirical data sourced from Carvalho et al. [93]. A side-by-side representation
of the corresponding values for our measurements and calculations is presented
in Table 3, with data points spanning from 6 to 296 K. Remarkably, for the D1

orientation, the deviation in our point-to-point comparison is minimal. Addi-
tionally, the percentage of error remains unchanged across the entire temperat-
ure range as can be seen in Table 4. For the sake of specificity, the maximum
errors at D1, b, and D2 stand at 0.49, 1.84, and 2.78 respectively. With this, we
can claim that our calculated piezo-optic constants are fairly credible.

It’s noteworthy that for direction b and D2, the error appears to escalate with
rising temperature. To gain deeper insight into the error magnitude at elev-
ated temperatures, I employed a fitted curve to project the error beyond room
temperature. The final three rows in Table 3 & 4, exhibit the values of the
measured refractive indices and the projected data. A considerable surge in
error is noticeable for the 500 and 1000 K markers. It is important to note that
the operational temperature for some RE-activated phosphors is around room
temperature or slightly above. For example, the operating temperature for laser
stabilization purposes is at cryogenic levels [4, 25], while for some regular phos-
phor applications, such as LEDs, the operational temperature is closer to room
temperature or slightly above [94]. Therefore, we can confidently state that the
model’s output is consistent with experimental values and suitable for practical
applications.

Having established the model and verified its capacity to yield reasonable results,
I could now proceed to examine the variations in the refractive indices relative
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Table 4: The discrepancy between the measured and the predicted refractive indices.

Error
Temp. (K) Err.D1 (%) Err.b (%) Err.D2 (%)

6 0.490 1.423 2.097
10 0.490 1.423 2.097
20 0.490 1.423 2.097
30 0.487 1.426 2.099
40 0.482 1.430 2.103
50 0.475 1.437 2.109
70 0.453 1.458 2.133
296 0.125 1.841 2.780

100 0.419 1.481 2.169
500 1.243 2.550 4.052
1000 6.083 5.610 9.543

to the temperature of Eu-doped YSO. The outcomes of these calculations are
presented in Figure 14. Consistent with observations made for the pure system,
the doped system also exhibits a linear trend in its refractive indices. Therefore,
it is reasonable to conclude that the thermo-optic coefficient (dn/dT) for both
RE-doped YSO can be approximated by a linear curve, at least within the range
of cryogenic to room temperature.

Figure 14: The variation of refractive indices in Eu-doped YSO with respect to temperature.

Using the values depicted in Figure 14 and the relation in Equation 56 as well
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as Equation 64 we would be able to observe the resonance frequency shift of the
Eu-doped YSO cavity as it is depicted in Figure 15.

f = λ/c (64)

Figure 15: Shift of resonance frequency in pure and Eu-doped YSO.

Next, we are going to investigate the effect of the direct application of a com-
pression and tensile load on the crystal to see how n is changing in different
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Table 5: The rate of change of resonance frequency (df/dP) for pure & Eu-doped YSO with respect to
applied load.

LoadAxis Doped nD1 nb nD2

D1 no -0.0869 0.0761 0.0886
D1 yes -0.0960 0.1381 0.1517
D2 no 0.1375 0.0957 0.1174
D2 yes 0.2810 0.2424 0.2465

D1D2 no 0.1318 0.0952 0.1169
D1D2 yes 0.2754 0.2402 0.2448

Hydrost. no -0.1616 -0.1071 -0.1179
Hydrost. yes -0.2818 -0.2399 -0.2399

orientations. For this, we again are going to apply pressure on the crystal in
the FE simulation in which we obtained the stress tensor. This tensor is then
further post-processed using the piezo-optic tensor to obtain the variation of the
refractive indices with respect to the applied load. Figure 16 shows the variation
of n with respect to load in D1, D2, D1D2 directions as well as the hydrostatic
pressure. The linear behavior of the trends could be probably due to the fact
that the piezo-optic constants are extracted based on Pockels’ effect. The inter-
esting points here are the slope of the hydrostatic pressure and the proximity
of the D2 and D1D2. As you can see in all figures the maximum magnitude of
change is related to hydrostatic pressure, and the curves corresponding to D2

and D1D2 are almost overlapping which might be explained due to the larger
magnitude of n in D2 direction.

The doped crystal as it is depicted in Figure 17, follows the same trend as the
pure system. To understand the difference between the pure and the doped
system, we have compared the rate of change of resonance frequencies for the
pure and doped system in Table 5. In the table, it is clear that the doping yields
a steeper slope, in terms of slope’s magnitude, in all orientations. Therefore,
one may infer that doping increases the rate of change in refractive indices, and
consequently the resonance frequency. Unfortunately, there are no such data to
confirm this for YSO, however, Soharab et al. [95] have performed an analysis of
refractive index versus Nd concentration in GdVO4, and the results agree with
the increasing trend of refractive indices with dopant concentration.

The primary significance of implementing this workflow lies in its practicality.
Conducting experiments to determine refractive indices and to measure changes
in these indices, which subsequently affect the OPL, can be a tedious and time-
consuming process. This complexity can be significantly reduced by adopting
simulations such as the one presented here. Furthermore, our demonstration of
this workflow’s effectiveness for Eu-doped YSO implies a straightforward adapt-
ation of the same process for other Ln-doped YSO systems. This adaptability
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Figure 16: The refractive indices and frequency shift of pure YSO.

significantly simplifies the investigation of a broad range of Ln-doped YSO sys-
tems.
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Figure 17: The refractive indices and frequency shift of Eu-doped YSO.

4.2 Phosphor

The luminescent properties of optical materials doped with RE elements are de-
termined by the energy transition between the 4f and 5d orbitals of the RE ions.
This transition involves the absorption and emission of light, which is the basis
of phosphors. Phosphors are materials that can convert high-frequency light to
low-frequency light through electronic transitions [96, 97]. Figure 18 shows one
of the mainstream applications of the phosphors which is wLED. A common
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example of a phosphor is YSO: Ce, which is widely used as a blue phosphor
in various applications, such as radiation detection devices [98]. Moreover, the
energy difference between the 4f and 5d orbitals directly impacts the efficiency
of light conversion in these materials. So, accurate prediction of these transition
energies is essential for the engineering of efficient light sources [99].

Blue LED Light

Red Yellow Green Phosphors

White Light

Figure 18: Schematic of a wLED using phosphor.

In the introductory section of this thesis, it was noted that due to the inherent
limitations of the DFT approach in dealing with SIE, it is suggested to incor-
porate a segment of HF calculations. The HF approach is immune to these
SIE issues and thus provides a balance, reducing the burden and high computa-
tional cost associated with highly precise methods like the GW approximation.
A prominent player in this context is the screened hybrid functional HSE, which
has demonstrated superior performance in our work and others [100]. Moreover,
the earlier studies [69, 101] of the CDFT approach have been performed with
the DFT+U approach where one has to tune the effective U parameter to adjust
the location of 4f states in the band gap whereas we employ CDFT to find the
location of 4f electrons in the band gap. Therefore, DFT+U is not applicable
and we are proposing to use HSE functional instead.

The conventional HSE parameters are not universally optimal. Specifically, the
mixing parameter, which plays a crucial role in the efficiency and accuracy of
the HSE functional, is dependent on the effective static dielectric constant, ε∞,
of the material under consideration [102]. This dependency adds an additional
layer of complexity to our computations and indicates that the choice of HSE
parameters should be tailored to the specific material to achieve reliable and
accurate results. Accordingly, the determination of specific HSE parameters
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for a given material could yield results that are comparable in quality to those
derived from more complex multi-body methods like the GW approximation.
While there are several studies [103, 104] that showcased improved results fol-
lowing the tuning of HSE parameters, we decided to test this proposition on
Ce-doped YVO4 as the aforementioned studies are mainly on semiconductors
and not insulators. The choice of the material was primarily guided by the avail-
ability of experimental data, allowing for the validation of our results. We were
also particularly interested in investigating a lanthanide-doped laser material.
Therefore, in paper III, we utilized an HSE-tuned hybrid functional to explore
the effect of Ce doping on the optical properties of YVO4.

Figure 19 displays the results of refractive indices calculations for Ce-doped
YVO4 using AM05 functionals. An observable anomaly in this figure indicates
refractive indices nearing infinity in the infrared region for Ce-doped YVO4,
evident in both xx (no (a)) and zz (ne (b)) directions. Despite the considerable
Ce3+ concentration, 25%, the refractive index should begin at a lower value.
Due to the unavailability of experimental refractive index data for Ce3+-doped
YVO4, values from Yb-doped YVO4 used as a benchmark. The refractive index
for 8% and 15% doped Yb3+ for xx- and zz-directions are 2.021, 2.023 and
2.253, 2.250, respectively [105]. However, Figure 20 shows refractive indices for
25% Ce-doped YVO4 as nxx = 2.296 and nzz = 2.409 at E=0, which is in good
agreement with the aforementioned experimental values. Therefore, it can be
claimed that the inconsistency is mostly addressed in curves determined by the
HSE0615% functional, as shown in Figure 20.

The tuned-HSE, HSE0615%, curve reveals a blue shift of nearly 1 eV in both
refractive index directions in comparison to the AM05 pure curve. While tuned-
HSE shows a steady incline towards the end of the visible spectrum followed by
a UV peak, the AM05 curve exhibits its peak at the visible spectrum’s tail. In
doped structures, a significant value spike at E = 0 is observed for refractive
indices in both directions, as illustrated in Figure 20 (a & b). Notably, the
6.25% doped system has a refractive index value of 1.95 in the xx-direction and
2.73 in the zz-direction at E = 0, the lowest and highest among doped sys-
tems, respectively. Post this surge, a decreasing trend in the infrared sector is
witnessed in both directions for doped systems, with a more evident decline in
the zz-direction. The largest discrepancy between configurations is at the in-
frared zone, precisely around E = 0, with deviations of 0.69 in the xx-direction
and 0.30 in the zz-direction. Finally, experimental values for the pure structure,
plotted between 0.92 and 2.58 eV, were recorded by Shi et al. at room temperat-
ure (20°C) [106]. The HSE0615% functionals align closely with the experimental
curve’s gradient, with a more precise match in the zz-direction.
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Figure 19: Refractive index of pure YVO4 & Ce3+-doped YVO4 with the AM05 functional in xx-direction
(a), and in zz-direction (b). The experimental values for refractive indices in both directions are
taken from Shi et. al. [106].

The result of paper III proved the applicability of tuned-HSE on RE-doped
optical material. Consequently, it was deemed suitable to use the same approach
for CDFT calculations in Paper IV. First, however, the HSE parameters must
have been tuned to the experimental band gap of the host material, YSO, just
as we did in paper III and the results of the band gap are tabulated in Table
6. It reveals that the optimal value for the fraction of HF exact exchange α is
0.40, while the screening value µ is 0.19 and the result is depicted in Figure 21.
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Figure 20: Refractive index of pure YVO4 & Ce3+-doped YVO4 with the HSE15% functional in xx-direction
(a), and in zz-direction (b). The experimental values for refractive indices in both directions are
taken from Shi et. al. [106].

Based on the CDFT approach, we manually evacuated the 4f levels and filled the
lowest-lying 5d-like band to replicate a situation where a photon has removed the
electron from valence 4f and transferred it to 5d. Later, the KS eigenvalues and
total energies for ground states and excited states are obtained. As eigenvalues
of KS can not be an alternative for optical transition levels [109, 110] only the
difference between total energies (∆SCF) of these two states can be considered
for energy transition. So, ∆SCF as it is illustrated in Figure 22, absorption=
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Table 6: Band gap of C2/c Y2SiO5. This study: *.

Material Method Band gap (eV)

Y2SiO5 Exp. 7.4 [107]
Y2SiO5 Exp. 7.4 [108]
Y2SiO5 PBE 4.82 [68]
Y2SiO5 PBE∗ 4.819
Y2SiO5 mBJ 6.14 [68]
Y2SiO5 HSE∗ 7.40

Eabs = e∗0 - g0, is used to obtain the absorption energy. Then the manual
constraint is removed and the perturbed lattice due to a change in its electronic
configuration is relaxed with fixed lattice parameters. The resultant lattice
denotes the g1 state in Figure 22, and the emission energy is calculated as
emission = e∗1 - g1. Once both absorption and emission energies are obtained
the Stokes shift is obtained simply by subtracting these two from each other.
Table 7 presents the calculated absorption and emission energies, as well as the
Stokes shift.

Table 7: Calculated total energies, absorption, and emission energies of Ce : Y2SiO5 based on cDFT ap-
proach.

Site1 (eV) Site2 (eV)

Eg0 -746.058 -745.744
Ee∗0 -741.929 -741.868

Eg1 -746.058 -745.744
Ee∗1 -742.121 -742.346

Eabs 4.130 3.876
Eabs[111] 3.41 3.30
Eems 3.938 3.398

Eems[111] 3.12 2.73
Stokes shift 0.191 0.478

The observed data indicates a higher absorption and emission at both loca-
tions when calculated, as opposed to the experimental results. The divergence
between these calculated and experimental values is roughly 0.7 eV for both
types of energy at Ce1. However, at Ce2, this difference is slightly less, approx-
imately 0.5 eV. The explanation for these disparities is the absence of SOC in
the computational models. This can be further corroborated when referencing
Figure 23, which illustrates that the SOC effect’s magnitude is roughly 1000
cm−1 (or 0.12 eV).

The separate absorption and emission processes resulted in two distinct values
for the SOC energy (Esoc). These were applied individually to account for the
observed variances. For Ce1, during absorption and emission, the calculated
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Figure 21: Tuning of HSE parameters based on the experimental band gap. The data points are extracted
from gamma point-only calculations. As can be seen in the figure, the experimental band gap
gets reproduced at α = 40% exact exchange and ω = 0.19 screening.

SOC effects are -0.65396 eV and -0.77685 eV, respectively. Similarly, for Ce2,
these values are -0.65397 eV and -0.77850 eV, respectively. The SOC-corrected
values for absorption and emission energy are presented in Table 8, obtained by
adding the corresponding Esoc energies to the absorption and emission energies
from Table 7.

Table 8: The SOC-corrected values of absorption and emission energies. The updated values are achieved
by adding Esoc to the corresponding energies in Table 7. This study: *, Exp. [111].

Site1 (eV) Site2 (eV)

Eabs* 3.47 3.22
Eabs[111] 3.41 3.30
Eems* 3.16 2.62

Eems[111] 3.12 2.73
Stokes shift 0.314 0.602

The corrected values demonstrate improved agreement between the experimental
and calculated results, especially for Ce1. For Ce1, the discrepancy in both ab-
sorption and emission is roughly 0.05 eV higher than the experimental value.
In contrast, for Ce2, the difference is approximately 0.10 eV lower than the ex-
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Figure 22: Configuration coordinate diagram. Depiction of absorption and emission energies.

perimental reading. It’s important to note that these comparisons are based on
a single experiment. However, if we compare the calculated absorption energy
with the average of experiments listed in Table 9 for Ce1, where Eavg= 3.48 eV,
then the discrepancy virtually disappears. This isn’t the case for Ce2, where
the average absorption energy from experiments at this site is 3.31 eV, while
the calculated value is 3.22 eV, indicating a difference of 0.09 eV.

The previous data was limited to the transition energy for the 4f and the lowest-
lying 5d level. For the remaining 5d levels, a different approach was used. A
neutral HSE calculation provided the ground state location of 4f states when
one of the 4f levels was occupied. Following this, a mono-positively charged su-
percell structure of Ce-doped YSO was relaxed using a modified HSE functional.
This supercell structure gave us the electronic structure of excited states at the
conduction level, along with the location of low-lying 5d states. It’s crucial to
note that atomic positions were fixed during this process in accordance with the
Frank-Condon principle [112].

The 4f → 5d transition energies were obtained by subtracting the 4f eigenval-
ues of the neutral calculation from the Valence band maximum (VBM) of the
corresponding host cell (a = 4f - VBM). The 5d eigenvalues of the Ce impurity
were determined by examining the mono-positively charged calculation. The
degeneracy of the 5d levels was removed due to the Crystal field (CF) effect, as
depicted in Figure 26. This allowed us to obtain the 4f→5di transition, where it
represents different 5d orbital orientations. However, before we could obtain the
transition energies, we subtracted the 5di eigenvalues from the corresponding
host Conduction band minimum (CBM), (b = CBM - 5di). Finally, the trans-
ition energies between 4f→5di can be obtained by subtracting a and b from the
experimental and/or modified band gap energy of the host in its primitive cell,
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Figure 23: The source and magnitude of the energy level splittings in 4fn→5d configuration.

4f→5di = Eg - a - b. The entire transition process is depicted in Figure 24.

Figure 25 illustrates the projected density of states (Partial DOS (PDOS)) for
Ce-doped YSO. The VBM and the CBM primarily consist of Op and Yd orbit-
als, respectively, a pattern similar to pure YSO. Notably, the 4f states are found
within the band gap, closer to the VBM than to the CBM at both sites. This
location differs from the DFT findings of Zhou et al. for Yb-doped YSO [68].
Zhou et al. located the 4f states 4.78 eV away from the VBM. In contrast, our
results align closely with the findings of Ning et al. [113] and experimental meas-
urements by Vedda et al. [114] for Ce: LSO. These findings suggest the VBM-4f
gap in Ce: YSO concurs with previous studies on Ln-doped orthosilicates.

To delve further into the 4f ground state’s location, it’s helpful to compare it with
the Dorenbos model [115, 116]. This empirical model is often used to estimate
the energy of 4f of trivalent and divalent Ln ions in a given host lattice based
on the lowest 4f → 5d level’s peak position. Utilizing this model along with
experimental data for Ce, and Pr-doped YSO and LSO, Kolk, and Dorenbos et
al. estimated the probable location of 4f and the lowest lying 5d levels inside
the band gap for all the Ln in YSO [117]. They estimated the 4f - VBM gap
to be approximately 3.53 eV. Notably, they did not attribute this value to a
specific site, Ce1 or Ce2, as their photocurrent experiment data did not show
any doublet structure [117]. Whereas, our results with the inclusion of SOC
have shifted the 4f ground states by 0.20 eV at both sites, reducing the 4f-VBM
gap at Ce1 to 2.73 eV, and 2.70 eV at Ce2. This adjustment improves the
agreement with the experimental work of Vedda et al. [114]. However, it is far
from the 3.53 eV that is obtained Kolk et al.

As illustrated in Figure 26, we can observe the mono-positively charged state of
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Figure 24: The transition energy: The host valence band maximum of the corresponding cell is subtracted
from occupied 4f eigenvalue (a = 4f − V BMhost). Then 5d eigenvalues that are obtained from
+1-charged supercell calculation are subtracted from the host conduction band minimum of the
corresponding cell (b = CBMhost−5d). Lastly, the two values are subtracted from the calculated
host band gap, Eg=7.4013 eV. 4f→5d= Eg - a - b.

the Ce-doped YSO. Importantly, during this phase, the atomic configuration is
carefully held constant, mirroring the neutral state of the Ce-doped YSO. This
is performed to facilitate the excitonic effect, an interaction that occurs between
the hole located at the VBM and the electron present in one of Ce’s lowest-lying
5d states. In essence, the atomic positions are maintained to comply with the
Franck-Condon principle, which states that during electronic transitions, the
nuclear configuration remains unchanged due to the significant mass difference
between electrons and nuclei. The lowest-lying 5d states in proximity to the
CBM are seen to exhibit splitting due to the CF. These CF effects are highlighted
in red for clarity. A comparative analysis of the red peaks at Ce1 and Ce2 reveals
more pronounced visibility of the peaks, or splittings, at Ce2 for both SOC
and non-SOC cases. This observation can be attributed to Ce2 being smaller
than Ce1, leading to a stronger CF splitting at Ce2. These findings align with
previous studies conducted using DFT+CASPT2 [67, 68].

In the lower portion of Figure 26, the influence of SOC is evident as it leads to the
downward shifting of the 5di levels towards the VBM at both sites. Specifically,
the shift of 5d1 at Ce1 is 0.38 eV, while it is 0.04 at Ce2. However, the direction
of shift for the remaining levels is not consistent across the two sites. This shift,
along with the presence of SOC, positions four out of the five lowest peaks within
the band gap. This phenomenon is depicted with greater detail in Figure 27
and 28, which also showcases the spacing between these peaks and their shifts
due to SOC. The 5d2−i levels are identified based on their relative position to
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Figure 25: Orbital projected DOS of Ce-doped YSO, at Ce1 and Ce2 in a 1x2x1 supercell. The blue-filled
states indicate the 4f states of the Ce3+ while they are occupied. The black dotted lines show
the position of the Fermi level.

5d1.

Table 9 describes the transition energies from 4f to 5d, observed at two unique
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Figure 26: When 4f states are unoccupied, we can observe the 5d states in the band gap that are filled in
red. The dotted lines show the position of the Fermi level.

sites in the YSO. The sixth row of the table features the computed values for
the non-SOC but HSE functional of the supercell structure. Notably, the first
transition value for Ce1 aligns closely with the experimental value. The disparity
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Figure 27: Location of 5di levels with respect to lowest lying 5d1 of the Ce atom at Ce1 with and without
SOC.

between the calculated and experimental averages for the lowest-lying 5d level
is 0.03 at Ce1 and 0.13 at Ce2. This suggests a more accurate definition of
the lowest lying 5d level in relation to both experiment and AIMPs calculations
at both impurity sites. However, the discrepancy between the calculated and
experimental values rapidly expands for the remaining 5di levels, particularly
for the last two 5d4 and 5d5 levels. These levels lack distinct sharp peaks, and
the intensity is relatively weak, as indicated by our calculated data in Figures
27 and 28. These characteristics make measurements challenging, and likely
account for the absence of data for these two levels, thereby precluding any
comparisons.

The introduction of SOC has resulted in an almost uniform reduction of the
energy of 5di levels at both sites. The energy shift is approximately 1600 cm−1

(0.2 eV) at Ce1, and 1000 cm−1 (0.1 eV) at Ce2. These findings are in alignment
with those reported by Wen et al. [67] for Ce: YSO, where the shift was around
0.12 and 0.1 eV for Ce1 and Ce2, respectively. Similarly, Ning et al. reported a
1000 cm−1 energy shift at both sites of Ce: LSO [113]. Noteworthy, however, is
the distinction between the current study and the aforementioned ones: while
the previous studies reported an increase in 5d levels due to SOC, we observed
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Figure 28: Location of 5di levels with respect to lowest lying 5d1 of the Ce atom at Ce2 with and without
SOC.

Table 9: Transition energies, 4f→5di. The procedure for the calculated value in this table is depicted in
Figure 24. This study: *.

4f→5di=1-5(eV)
Ion Site Method 1 2 3 4 5

Ce3+ Ce1 Exp.[111] 3.41 4.03 4.54 - -
Ce3+ Ce1 Exp.[118] 3.55 4.19 4.68 - -
Ce3+ Ce1 Exp.[119] 3.48 4.13 4.72 - -
Ce3+ Ce1 Expavg 3.48 4.11 4.65 - -

Ce3+ Ce1 CASPT2[67] 3.41 4.03 4.46 5.75 6.35
Ce3+ Ce1 HSE∗ 3.511 4.45 4.64 4.92 5.21

Ce3+ Ce1 HSE + SOC∗ 3.27 4.21 4.53 4.65 4.97
Ce3+ Ce1 CASPT2+SOC[67] 3.53 4.16 4.59 5.89 6.49

Ce3+ Ce2 Exp.[111] 3.30 3.80 - - -
Ce3+ Ce2 Exp.[118] 3.32 3.78 4.79 - -
Ce3+ Ce2 Exp.[119] 3.31 3.79 4.78 - -
Ce3+ Ce2 Expavg 3.31 3.79 4.78 - -

Ce3+ Ce2 CASPT2[67] 3.44 3.64 3.91 6.29 7.09
Ce3+ Ce2 HSE∗ 3.44 3.50 4.22 4.85 5.21

Ce3+ Ce2 HSE + SOC∗ 3.30 3.43 4.15 4.79 5.09
Ce3+ Ce2 CASPT2+SOC[67] 3.52 3.76 4.04 6.42 7.21

54



a decrease in 5d energy levels in our work.

As we observed earlier it is possible to find the 4f location in Ce-doped YSO
with an application using a constrained occupancy approach coupled with the
HSE+SOC method. As we mentioned earlier, however, the goal of this approach
is to provide a generic approach to find the 4f to 5d transition energies of the RE-
doped materials in a reasonable computational time in which the designation of
the 4f electrons in the band gap is a central feature. So, it is important to check
the applicability of this technique on other RE elements and host materials.
This could potentially be an alternative to locating the 4f electrons in other
host materials with any RE element. To further strengthen the applicability of
this approach we have performed similar calculations of 4f→5d energies for Pr3+-
doped YSO. The results are shown in Table 10. Further validation for the rest

Table 10: Calculated total energies, absorption, and emission energies of Pr: YSO. The SOC corrected
values are obtained via the addition of ESOC to absorption or emission energies.

Pr: YSO Site1 (eV) SOC-corr. Site2 (eV) SOC-corr.

Eg0 -755.108 - -754.414 -
Ee∗0 -749.553 -1.0 -749.021 -0.907

Eg1 -754.690 -1.05 -750.353 -0.934
Ee∗1 -749.978 - -754.414 -

Eabs 5.554 4.553 5.392 4.485
abs. Exp[120] 5.040 5.040 5.040 5.040

Eems 4.712 3.660 4.060 3.126
ems. Exp[120] 4.508 4.508 4.508 4.508

∆S 0.842 0.893 1.332 1.358
∆S [120] 0.628 0.628 0.628 0.628

of the RE-doped YSO is limited due to a lack of experimental data. However,
we managed to find experimental work on transition energies of the Pr: YSO.
The authors did not distinguish between the two sites in their measurements.
Therefore, we have used their measurement of the 4f to 5d transition energies
to compare with our calculated values for both site1 and site2, as shown in
Table 10. At site1, the discrepancies between absorption and emission are:
0.514 and 0.204 eV respectively. If we add the effect of the SOC (listed in the
Table under the column name SOC-corr.), the absorption discrepancy decreases
to 0.487 eV but the emission discrepancy increases to 0.848 eV. At site2, the
discrepancies are 0.352 and 0.448 eV for absorption and emission respectively,
while adding SOC effect widens the discrepancies to 0.555 and 1.382 eV. As the
comparison between calculated and measured data provides lower error at site1,
we have assumed the experimental data to be measured for site1. Based on this
assumption, the error for the absorption and emission are 10.19% and 4.52%,
respectively.
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Although the agreement between calculated and experimental results is not as
good as the agreement that we have observed for Ce-doped YSO where the errors
were 1.75% and 1.28% for absorption and emission energies, the approach has
provided rather qualitative results without the required hassle of the experiment.
Furthermore, the comparison is done with only one available experiment and
the indistinguishable site symmetry.

56



5 Summary and Future Work

5.1 Summary

Optical materials are substances that can manipulate light in various ways, and
they have many applications in optical instruments and devices, such as lasers,
lenses, mirrors, filters, sensors, and displays. However, the properties of optical
materials are often complex and difficult to measure or predict experimentally.
Therefore, there is a need for theoretical methods that can help understand and
optimize the performance of optical materials for different purposes. In this
thesis, we have investigated fresh approaches that could improve our existing
knowledge of these materials and hopefully aid in the discovery and design of
new materials. In particular, we have discussed the optimization of RE-doped
YSO for its application as a laser host material and phosphor.

In the initial phase, we attempted to enhance the efficiency of optical setups.
Harnessing the multi-scale modeling workflow, we have managed to calculate
the thermo-optic coefficients (dn/dT) of pure and Eu-doped YSO. To achieve
this the piezo-optic constants were extracted with the application of DFPT, and
the calculated constant was validated using the measured value of the dn/dT for
the pure YSO. For the selected temperature interval (6 - 296 K) the maximum
error between calculated and measured values was at 2.78% in D2 direction. The
main discrepancy between the developed model and the measured data is the
type of polynomials that they fit in. While the measured data follow a quadratic
equation the calculated data shows a linear behavior. This must be due to the
fact that we have extracted the piezo-optic constant based on Pockels’ effect
which is a linear approach in its origin. So, to decrease the discrepancy between
calculated and measured data non-linear effects known as Kerr’s effect should
be added to the process of piezo-optic extraction. Nevertheless, the workflow
produces reasonable results for at least the selected temperature interval. The
produced results presented in Table 3 are important as they enable the estima-
tion of thermo-optic coefficients, which is crucial for the optimization and design
of the optical cavity.

Using the piezo-optic post-processing method, we successfully observed vari-
ations in refractive indices for different applied loads and their respective fre-
quency shifts. Our observations indicate that hydrostatic pressure induces the
most significant variation in the refractive index. Furthermore, a linear rela-
tionship exists between the applied load and the change in refractive index n.
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Doping amplifies the variation magnitude, regardless of its orientation or mag-
nitude of the applied load. Thus, it can be inferred that an increase in impurity
concentration amplifies the variation in n and subsequently affects the resonance
frequency.

Rare Earth (RE) activated phosphors have gained widespread attention for dis-
play applications due to their unique luminescence mechanisms. Selecting the
ideal lattice is vital in the fabrication of these phosphors, as it directly influences
emission efficiency, stability, and a range of other properties. To enhance the
understanding and development of these phosphors, identifying potential host
candidates is of paramount importance.

In this work, we’ve proposed a theoretical approach that leans on the CDFT.
This method is distinctive as it minimizes reliance on empirical or experimental
data to predict and identify the location of the 4f and 5d energy levels in
Lanthanides. The relevance of this process lies in the fact that the energy levels
of 4f and 5d significantly affect emission characteristics. In some instances,
transitions encompassing these energy levels are the primary reasons for the
observed luminescence.

Many conventional methods, like GW and CASSCF, are not always applic-
able to larger molecules or solids. They often depend on empirical data to
accurately identify the 4f and 5d levels. In contrast, our approach, drawing its
foundations from DFT, offers a simpler yet effective alternative. As it’s been
tailored based on a singular calibration against host materials’ experimental
values, this method proves effective in examining a diverse range of RE-doped
optical materials to discern the most suitable phosphor candidates.

Due to the simplicity of the current technique with respect to wave function
approaches namely AIMPs, this technique can be a good alternative for at least
qualitative assessment of phosphors and identification of optical properties in
laser materials. Besides, since this technique does not require any prior data as
is the case with AIMPs and empirical models, it could be more promising for
applications such as high-throughput of phosphors. It should be noted that the
applicability of this approach for the rest of the Ln group, and other host ma-
terials remains to be seen, although we have tested and validated the approach
for Pr-doped YSO.

58



5.2 Future work

As you have noticed in the thesis there are two separate sections that each deal
with an application of RE-doped optical materials. Our findings were enlighten-
ing. We identified a discrepancy in the refractive index of around 2.7% between
calculated and measured values, but it’s crucial to note that this observation
was specific to a temperature spectrum ranging from cryogenic levels to room
temperature. Further insights revealed a pronounced value concerning the rate
of change of the refractive index with respect to pressure. However, a limita-
tion that became evident was our model’s linear trend assumption. This might
have its roots in our reliance on Pockel’s effect for extracting photoelastic con-
stants. As we move forward, it’s imperative to incorporate non-linear dynamics,
specifically Kerr’s effect.

In our latter approach, we’ve noted that the positioning of the 4f and 5d en-
ergy levels within the band gap holds significant importance. As highlighted
in our results section, the primary challenge remains the absence of adequate
experimental data. Hence, to validate our approach, it’s essential to apply our
framework to RE-doped materials for which comparative data exists.
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A B S T R A C T

We investigate the variation of elastic stiffness moduli and the thermodynamic properties of yttrium or-
thosilicate (Y2SiO5, YSO) under various doping concentrations of Eu3+ ions. The model is based on a low
temperature approximation (T<< 𝜃𝐷) , and the plane-wave density functional theory (DFT) is used to carry out
the calculations. The results show that the Eu3+ ions primarily occupy the Y1 site of the basic molecule for all
applied concentrations. The overall shear, bulk, and Young’s moduli exhibit a decreasing trend with increasing
Eu3+ concentration. The overall anisotropy shows a very small increase with increasing concentration. The
Debye temperature as well as the Grünesien parameter for each concentration are predicted. Lastly, the
predicted heat capacity at constant volume is calculated and compared to experimental values. Our study
reveals that there is almost linear relationship between concentration and mechanical properties of YSO. The
decrease of the Grünesien parameter with concentration increase might decrease the anharmonic effects in YSO,
although this effect is small. In addition, the change in heat capacity with concentration rise is negligible.

1. Introduction

There has been substantial interest in the use of rare-earth (RE)
ion-doped crystal materials as high-performance luminescent devices,
light-emitting diodes, plasma panels, solid-state lasers, and use in laser
frequency stabilization (Ricci et al., 2011; Thorpe et al., 2011). In
order to improve the performance and efficiency of current devices
and to develop new devices with higher brightness and resolution,
researchers have been investigating numerous inorganic materials as a
host for RE ions. A few candidates such as aluminum garnet (Y3Al5O12

),
RE-orthovanadates (REVO4) and yttrium silicates (Y2SiO5

) have been
examined in more detail due to their promising intrinsic properties.
In particular, Y2SiO5

(YSO) crystals have been found to have high
chemical and thermal stability that is desirable for cathode luminescent
phosphors (Saha et al., 2005). They also have negligible magnetic
moment, which has made them appealing for quantum information and
laser stabilization applications (Thorpe et al., 2011). YSO doped with
RE ions such as Ce3+ and Eu3+ is used in applications for blue phosphor,
Cr-doped YSO is used as a saturable absorber, and Tb-doped YSO is an
efficient candidate for UV light-emitting-diodes (Ricci et al., 2011).

Although YSO is doped with RE ions in nearly in all its applications,
little is known about the effects of doping on the properties of YSO. A
few experimental studies on doping effects have indicated the need for
further studies in this regard. For instance, Saha et al. (2005) report that

∗ Corresponding author.
E-mail address: amin.mirzai@mek.lth.se (A. Mirzai).

doping not only has direct effects on the structural and the mechanical
properties of YSO, but also affects the luminescent centers of Ghosh
et al. (2006) noted that interband transitions depend on the phase of the
crystal as well as the doping concentration percentage, which affects
the emission intensity at the luminescent centers.

A few experimental and theoretical studies have been focused on the
intrinsic properties of YSO crystals. For example, Ching et al. (2003)
calculated the dielectric constants and band gap of YSO using the ab
initio orthogonalized linear combination of atomic orbitals (OLCAO)
method. The physical properties of YSO were later investigated exper-
imentally for application as thermal barrier coatings (TBC) (Sun et al.,
2009, 2008). To examine the selection of YSO as TBC in more detail,
Luo et al. (2014) calculated the elastic stiffness and thermal properties
of YSO using plane-wave DFT. Mock et al. (2018) also used the plane-
wave DFT method to investigate anisotropy and phonon modes of pure
YSO crystals by analyzing the dielectric tensor.

However, at present there is a lack of knowledge in the effects
of doping on the mechanical and thermodynamic properties of YSO
crystals. This knowledge is important in laser materials such as YSO
since the residual heat from laser may affects the refractive index. This
in turn causes stress-induced birefringence (or, in the case of YSO, trire-
fringence). Moreover, mechanical stress, for example from mounting
the crystal, may also introduce photoelastic effects in the crystal, which

https://doi.org/10.1016/j.mechmat.2020.103739
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Fig. 1. Schematic of a YSO standard unit cell with 64 atoms and with (𝐵2∕𝑏, 15) crystal
structure. The constituents of basic molecules are Y, Si, and O, that are represented by
gray, blue and red spheres, respectively. Lattice parameters are denoted as a, b, and
c. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

may slightly alter the polarization of the laser beam (Yoder, 2008).
Therefore, it is important to have deeper knowledge about the physical
properties of laser materials such as doped YSO so that the performance
of practical laser systems can be improved. In this paper, we examine
the effect of Eu3+ doping on the mechanical and thermodynamic prop-
erties of YSO to provide more accurate information for its application
in the field of laser stabilization and luminescence. The main reason for
the selection of Eu3+, aside from its well-known coherence time (Thorpe
et al., 2011) is its high sensitivity to crystal symmetry and the bond
length of the lattice sites (Ghosh et al., 2006; Saha et al., 2005). The
values of thermodynamic properties such as the Debye temperature,
heat capacity, and mechanical properties such as bulk modulus, and
Young’s modulus as well as their directional components with respect to
orientation might be beneficial in minimizing stress-induced trirefrin-
gence. We will provide the mechanical and thermodynamic properties
of Eu-doped YSO crystal over a doping concentration range from 0% to
25%.

2. Crystal structure of 𝐘𝟐𝐒𝐢𝐎𝟓

YSO is a polymorphic crystal, forming two distinct crystal struc-
tures, denoted as X1 and X2. The X1 type is known as the low tem-
perature phase since it forms at 1100◦C, whereas the X2 type, known
as the high temperature phase, forms at 1300◦C (Ghosh et al., 2006).

In each phase, two unique C1 coordination sites for yttrium ions ex-
ist, which will be referred to as Y1 and Y2, with coordination numbers
of seven and nine for X1-YSO, and seven and six in X2-YSO, respec-
tively. Both of these phases form a monoclinic crystal system. Fig. 1
shows a schematic of a YSO standard unit cell with basic constituents
Y, Si and O. The unit cell has 64 atoms in total, which corresponds to 8
basic molecules of yttrium silicate, Y2SiO5

. In standardized monoclinic
crystals, only the b crystallographic axis is an axis of symmetry (Fig. 2).
The relation between the Cartesian coordinate axes (x, y, z) and the
crystallographic axes (a, b, c) of a monoclinic crystal is seen in Fig. 2.

There are 18 different groups of structures describing monoclinic
systems in tables of crystallography (Mock et al., 2018). The specific
group number of YSO is 15. The symmetry of a crystal structure is
defined through space groups; X1 holds the space group 𝑃 21∕𝑏 whereas
X2 holds the 𝐵2∕𝑏 space group according to the international notation
system (Sun et al., 2009; Luo et al., 2014).

The standard unit cell with the 𝐵2∕𝑏 space group has been chosen by
many researchers along with several other alternatives in experimental
as well as in theoretical studies. For example, Mock et al. (2018)
used the 𝐼2∕𝑏 space group, while many researchers in the quantum
information field (Wen et al., 2014) have focused on the standard

Fig. 2. Relation between the Cartesian coordinate axes (x, y, z) and the crystallographic
axes (a, b, c) of a standard monoclinic YSO crystal.

alternative, that is, the 𝐵2∕𝑏 space group. In this study we will use the
space group 𝐵2∕𝑏 too, since it has been found to be a good host for
luminescent ions, and has numerous applications within photonics and
bio-photonics (Ghosh et al., 2006).

In a monoclinic crystal system, the conventional unit cell is defined
by primitive vectors a, b, and c of arbitrary length, with one of the
vectors perpendicular to the other two. In addition, 𝐵2∕𝑏 is base-
centered, and its unique axis b has a 2-fold rotation symmetry; hence,
it is denoted 𝐵2∕𝑏.

3. Theory & method

3.1. Elastic properties

Elastic constants are fundamental properties that determine the
response of a crystal to an externally applied load. They provide
information on the nature of the chemical bonding as well as mechan-
ical and structural stability of the solid. They are not only directly
related to the equations of state and the phonon spectra, but also to
the thermodynamic properties of solids such as specific heat, thermal
conductivity, the Grüneisen parameter, and the Debye temperature.
Since in standardized monoclinic crystals the crystallographic axis, b,
is an axis of binary symmetry, there are 13 independent elements in
the elastic stiffness matrix 𝐶𝑖𝑗 , given by Eq. (1) (Nye et al., 1985).

There are two main approaches to determine the elements 𝑐𝑖𝑗 . In
the first approach, the stiffness matrix is determined by applying six
finite distortions of the lattice, from which the elastic constants can
be derived using the stress–strain relation. In the second approach, a
distortion matrix is applied to find the strain–energy curve in order to
obtain the elastic constants through a second-order expansion of the
total energy with respect to the lattice strain components. It should be
noted that the strain tensor has specific components for each crystal
symmetry. The distortion matrix 𝐴 for monoclinic systems is described
by Söderlind (2002). The matrices 𝐴𝑖, 𝑖 = 1, 13, are given in Appendix.

𝐶𝑖𝑗 =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝑐11 𝑐12 𝑐13 0 𝑐15 0
⋮ 𝑐22 𝑐23 0 𝑐25 0
⋮ ⋱ 𝑐33 0 𝑐35 0
⋮ ⋮ ⋱ 𝑐44 0 𝑐46
⋮ ⋯ ⋯ ⋱ 𝑐55 0
⋯ ⋯ ⋯ ⋯ ⋱ 𝑐66

⎞
⎟⎟⎟⎟⎟⎟⎠

(1)

Next, the elastic constants are checked to assess the stability of the
doped crystals. This requires that the strain–energy must be positive
for any homogeneous elastic deformation. The set of stability criteria
for monoclinic structures are given in Eq. (2) (Nye et al., 1985)

𝑐11 > 0, 𝑐22 > 0, 𝑐33 > 0, 𝑐44 > 0, 𝑐55 > 0, 𝑐66 > 0,
[𝑐11 + 𝑐22 + 𝑐33 + 2(𝑐12 + 𝑐13 + 𝑐23)] > 0,
(𝑐33𝑐55 − 𝑐235) > 0, (𝑐44𝑐66 − 𝑐246) > 0,
(𝑐22 + 𝑐33 − 2𝑐23) > 0,
[𝑐22(𝑐33𝑐55 − 𝑐235) + 2𝑐23𝑐25𝑐35 − 𝑐223𝑐55 − 𝑐225𝑐33] > 0,
2[𝑐15𝑐25(𝑐33𝑐12 − 𝑐13𝑐23) + 𝑐15𝑐35(𝑐22𝑐13 − 𝑐12𝑐23)
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+𝑐25𝑐35(𝑐11𝑐23 − 𝑐12𝑐13)] − [𝑐215(𝑐22𝑐33 − 𝑐223)
+𝑐225(𝑐11𝑐33 − 𝑐213) + 𝑐235(𝑐11𝑐22 − 𝑐212) + 𝑐55𝑑] > 0,

𝑑 = 𝑐11𝑐22𝑐33 − 𝑐11𝑐
2
23 − 𝑐22𝑐

2
13 − 𝑐33𝑐

2
12 + 2𝑐12𝑐13𝑐23. (2)

The values of the elastic moduli of the crystal can also be defined from
the elastic constants 𝑐𝑖𝑗 , as suggested by Voigt et al. (Voigt et al., 1928),
where 𝐵𝑉 and 𝐺𝑉 denote the bulk and the shear modulus, respectively.

𝐵𝑉 = 1
9
(𝑐11 + 𝑐22 + 𝑐33 + 2(𝑐12 + 𝑐13 + 𝑐23)) (3)

𝐺𝑉 = 1
15

(𝑐11 + 𝑐22 + 𝑐33 + 3(𝑐44 + 𝑐55 + 𝑐66))

− 1
15

(𝑐12 + 𝑐13 + 𝑐23) (4)

Analogously, Reuß (1929) derived the bulk modulus 𝐵𝑅 and the shear
modulus 𝐺𝑅 in terms of the elements of the compliance matrix 𝑆𝑖𝑗 as
stated in following relations:

𝐵𝑅 = 1
𝑠11 + 𝑠22 + 𝑠33 + 2(𝑠12 + 𝑠13 + 𝑠23)

(5)

𝐺𝑅 = 15
4(𝑠11 + 𝑠22 + 𝑠33) − 4(𝑠12 + 𝑠13 + 𝑠23) + 3(𝑠44 + 𝑠55 + 𝑠66)

(6)

where the compliance matrix is the inverse of the stiffness matrix:

𝑆𝑖𝑗 = (𝐶−1)𝑖𝑗 . (7)

Hill (1952) proved that the Voigt and the Reuss approaches are lower
and upper bounds, respectively, of any crystalline structure. Therefore,
it is common to use the arithmetic mean of the Voigt and the Reuss
approximations to define 𝐵𝐻 and 𝐺𝐻 , known as the Voigt–Reuss–Hill
(VRH) approximation or, simply, the Hill approximation.

𝐵 = 𝐵𝐻 =
𝐵𝑉 + 𝐵𝑅

2
, (8)

𝐺 = 𝐺𝐻 =
𝐺𝑉 + 𝐺𝑅

2
. (9)

Finally Young’s modulus 𝐸 and the Poisson’s ratio 𝜈 are obtained
using the following relationships (Hill, 1952)

𝐸 = 9𝐵𝐺
3𝐵 + 𝐺

, (10)

𝜈 = 3𝐵 − 2𝐺
2(3𝐵 + 𝐺)

. (11)

3.2. Thermodynamic properties

The Debye temperature 𝜃𝐷 is one of the fundamental parameters
used to link the physical properties of solids such as specific heat, elas-
tic constants, melting temperature, heat capacity, and bond strength. It
is also used to distinguish between high and low temperature regimes.
At low temperatures (T << 𝜃𝐷), only the acoustic vibrations cause
transverse vibration excitation. Therefore, calculation of the Debye
temperature from elastic constants is equivalent to the values obtained
using specific heat measurements (Ravindran et al., 1998). The Debye
temperature can be calculated from the elastic constants using the
Anderson relation (Anderson, 1963) given as

𝜃𝐷 = ℎ
𝑘𝐵

[ 3𝑛
4𝜋

(
𝑁𝐴𝜌
𝑀

)]1∕3𝜈𝑚 (12)

where ℎ is Planck’s constant, 𝑘𝐵 is Boltzmann’s constant, 𝑛 is the
number of atoms per formula unit, 𝑁𝐴 is Avogadro’s number, 𝜌 is
the density of the unit cell, and 𝑀 is the molecular weight. The
average sound velocity 𝜈𝑚 can be obtained from the longitudinal wave
velocity 𝜈𝑙 and the transverse wave velocity 𝜈𝑡 through the following
relationships (Anderson, 1963)

𝜈𝑚 = [1
3
( 2
𝜈3𝑡

+ 1
𝜈3𝑙

)]−1∕3, (13)

𝜈𝑡 =
√

𝐺
𝜌
, (14)

Table 1
Calculated bond length values of X2-YSO configuration.

Bond Length (Å) Bond Length (Å) Bond Length (Å)

Y1-O1 2.239 Y2-O1 2.325 Si-O1 1.641
Y1-O2 2.589 Y2-O2 2.358 Si-O2 1.633
Y1-O3 2.334 Y2-O3 2.392 Si-O3 1.661
Y1-O4 2.379 Y2-O4 2.394 Si-O4 1.645
Y1-O5 2.367 Y2-O5 2.296 – –
Y1-O6 2.337 Y2-O6 2.209 – –
Y1-O7 2.329 – – – –

𝜈𝑙 =

√√√√𝐵 + 4𝐺
3

𝜌
. (15)

At temperatures above 𝜃𝐷 the thermal conductivity approaches a mini-
mum value denoted as the minimum thermal conductivity, 𝜅𝑚𝑖𝑛. The
calculated values of the minimum thermal conductivity are derived
from the following relation given by Clarke (2003)

𝜅𝑚𝑖𝑛 → 0.87𝐾𝐵𝑁
2∕3
𝐴

𝑛1∕3𝐸1∕2

𝑀1∕3𝜌1∕6
→ 𝑘𝐵𝜈𝑚(

𝑀
𝑛𝜌𝑁𝐴

)(−2∕3). (16)

The Grüneisen parameter 𝛾 is a dimensionless parameter that links
properties such as the expansion coefficient, bulk modulus, and spe-
cific heat in solids. The normal thermal expansion of solids due to
anharmonicity of interatomic forces is often based on the Grüneisen
constant as well. Thus the Grüneisen parameter basically provides a
quantitative link between thermal and mechanical properties. It is also
used to describe the change in vibration properties with respect to
volume variation. Belomestnykh and Tesleva (2004) derived a simpli-
fied relation for the Grüneisen parameter using the Poisson ratio 𝜈 as
follows:

𝛾 = 3
2

1 + 𝜈
2 − 3𝜈

. (17)

Although there are several methods such as phonon calculation with
DFT, and machine learning analysis of interatomic potentials to obtain
the heat capacity, in low temperature cases one can compute the heat
capacity, 𝐶𝑣, using the Debye model as follows (Ashcroft et al., 1976),

𝐶𝑣 = 3𝑛𝑘𝐵[4𝐷(
𝜃𝐷
𝑇

) −
3(𝜃𝐷∕𝑇 )

𝑒𝑥𝑝(𝜃𝐷∕𝑇 ) − 1
]. (18)

In Eq. (18), 𝑇 is the temperature and 𝐷(𝑥) is the Debye function
given as

𝐷(𝑥) = 3
𝑥3 ∫

𝑥

0

𝑡3

𝑒𝑡 − 1
𝑑𝑡. (19)

3.3. Computational details

A standard unit cell of YSO as depicted in Fig. 1 is chosen for the
calculations. The initial atomic positions are taken from the Materials
Project. The calculations are carried out by employing pseudopotential
plane-wave DFT methodology as implemented in the Vienna Ab-initio
Software Package (VASP) (Kresse and Furthmüller, 1996). The Eu:
4𝑓 75𝑑06𝑠2, Y: 4𝑠24𝑝64𝑑15𝑠2, Si: 3𝑠23𝑝2, and O: 2𝑠22𝑝4 electrons are
treated as valence electrons, whereas the core electrons and electron–
ion interactions are determined using the projected augmented wave
(PAW) method (Blöchl, 1994). The contribution due to exchange and
correlation is expressed by the generalized gradient approximation
(GGA) theory as described by Perdew–Burke–Ernzerhof (PBE) (Perdew
et al., 1996).

The unit cell was optimized by setting the cut-off energy to 500
eV. The conjugate gradient algorithm is used to relax the system. The
sampling of the Brillouin zone was done by implementing an automati-
cally generated 𝛤 -centered Monkhorst–Pack grid. In order to minimize
the total energy, a 4 × 8 × 6 mesh was adopted for all calculations. A
convergence threshold of 1×10−8 eV was used to reach self-consistency.
The partial occupancy of orbitals was determined using the tetrahedron
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Table 2
Volume and lattice parameters for YSO. *:This study .
Material Method Space group V (Å3) a (Å) b (Å) c (Å) 𝛽 (◦)

𝑌2𝑆𝑖𝑂∗
5 calc. 𝐵2∕𝑏 880.52 14.51 6.81 10.51 122.08

𝑌2𝑆𝑖𝑂5 Ching et al. (2003) calc. 𝐵2∕𝑏 895.95 14.09 6.80 10.72 119.46
𝑌2𝑆𝑖𝑂5 Luo et al. (2014) calc. 𝐵2∕𝑏 812.51 14.25 6.59 10.23 122.30
𝑌2𝑆𝑖𝑂5 SpringerMaterials (2016) exper. 𝐵2∕𝑏 852.00 14.41 6.72 10.41 122.20
𝑌2𝑆𝑖𝑂5 O’Bryan et al. (1988) exper. 𝐵2∕𝑏 848.65 14.37 6.71 10.40 122.19

Table 3
Bond length values of site Y1 as a function of Eu3+ concentration: 6.25%, 12.5%,
18.75%, 25%.

Bond Length (Å)

Bond 6.25(%) 12.5(%) 18.75(%) 25(%)

Eu1-O1 2.263 2.255 2.254 2.377
Eu1-O2 2.672 2.649 2.672 2.383
Eu1-O3 2.336 2.341 2.338 2.435
Eu1-O4 2.434 2.437 2.418 2.418
Eu1-O5 2.434 2.440 2.441 2.338
Eu1-O6 2.386 2.390 2.381 2.668
Eu1-O7 2.369 2.371 2.375 2.255
Aver. 2.414 2.412 2.411 2.411

method with Blöchl corrections. Further convergence criteria were set
by restricting the maximum force per atom to below 0.0016 eV/Å
and the maximum stress to below 0.034 GPa. Once the relaxed cell is
obtained it is used for subsequent elastic constant calculations.

4. Results and discussion

4.1. Crystal structure of YSO

Table 1 shows the bond lengths between constituents of a pure
YSO molecule in the X2-YSO configuration. The table shows that Y1
is surrounded by seven oxygen atoms whereas Y2 is surrounded by six.

Table 2 compares the volume, 𝑉 , the lattice parameters, a, b, c and
𝛽 of a pure YSO unit cell obtained in this study (marked by *), with
the theoretical results of Luo et al. (2014) and Ching et al. (2003). The
experimental values are also included in the table. As the table shows,
the general agreement between the results is good, which confirms the
reliability of the present study.

Fig. 3 shows that the volume of the crystal increases with percentage
doping due to the difference in atomic radii of Y and Eu, which are
2.27 Å and 2.56 Å, respectively. Fig. 3 shows there is an almost linear
relation between concentration percentage and volume. The same holds
for the relative change in the lattice parameters.

It is important to note that the doping process occurs through a
substitution in the host crystal, that is, Eu3+ ions replace Y3+ ions.
The substitution of Y3+ is done randomly, that is, any of 16 existing
Y3+ in the unit cell can be replaced. The ionic relaxation of the doped
structures shown in Table 3 shows that substitution occurs primarily
at the site of Y1, which agrees with the result obtained by Wen et al.
(2014). This means that even if Eu3+ is substituted into a Y2 site,
optimization of the cell rearranges the relaxed cell so that Eu3+ ends
up at the Y1 site. This could be due to the larger polyhedron volume
surrounding the Y1 site compared to the Y2 site. The Y1 site also
corresponds to the site where a higher emission can be observed as the
concentration of Eu3+ increases (Ghosh et al., 2006). It should be noted
that the concentration is defined by the number of the existing Eu3+

ions in a standard unit cell with 16 Y3+ ions. As a result, substituting
one, two, three, and four Eu3+ ions corresponds to 6.25%, 12.5%,
18.75%, and 25% concentration values, respectively.

Since the impurity ions occupy the Y1 site, it can be inferred that
the main luminescent activity is associated with the Y1 site. Table 3
compares the average bond lengths at different concentrations. The

Fig. 3. Relative volume, 𝑉 ∕𝑉0, and lattice parameters, 𝑎∕𝑎0, 𝑏∕𝑏0 and 𝑐∕𝑐0, with doping
concentration.

Fig. 4. Bond length variation for doping sites Y1 and Y2 as functions of doping
concentration..

table shows that an increase in concentration is associated with a gentle
decrease in average bond length at the Y1 site.

Fig. 4 shows the average bond lengths surrounding the possible
doping positions Y1 and Y2 for different doping concentrations. For
the Y1 case, there is initially a considerable increase in the average
bond length compared to the pure crystal bond length. As the doping
concentration further increases, a slight decrease in the average bond
length is observed. At the site of Y2, after a slight jump to the first
data point, the curve reaches a plateau and then descends for the 25%
concentration. This decrease could be caused by both the larger atomic
radius of Eu compared to Y, and by the higher electronegativity of Eu
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Fig. 5. Components of elastic stiffness matrix for different doping concentrations.

compared to Y which now, due to the higher concentration of Eu, can
act more efficiently.

According to Wang et al. (2017), as the bond length of the lumi-
nescent center ligand becomes shorter, the emission spectrum shifts to-
wards longer wavelengths, and crystal field splitting becomes stronger
due to the change in the local crystal field environment. Thus, consider-
ing Fig. 4, the rise in doping concentration should shift the wavelength
of the Y1 site towards red, with the exception of first section of the Y1
curve where the sudden jump should be interpreted as a shorter wave-
length. In other words, a doped YSO always emits shorter wavelengths
for the doping site Y1 compared to the host crystal. Fig. 4 also suggests
that at doping site Y2, doping increases the average bond length and
consequently shortens the wavelength. The value of the average bond
length between 6.25% and 18.75% remains almost constant, with a

small drop at 12.5%. When the doping concentration exceeds 18.75%,
the bond length drops dramatically and is less than that of the host
crystal. This drop can be related to the higher electronegativity of the
Eu3+ ion. The reason this phenomenon only occurs at site Y2 is probably
due to the lower number of ligands at this site.

4.2. Elastic properties

The elastic constants were calculated using both the stress–strain
and the strain–energy relationships. First, a few diagonal elements of
the stiffness matrix 𝐶𝑖𝑗 , in Eq. (1) were calculated using Eqs. 𝐴1, 𝐴2,
𝐴3 & 𝐴4 given in Appendix. These values were compared to the
results calculated using the stress–strain curve. Since the discrepancies
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Fig. 6. Elastic moduli and Pugh ratio of the YSO crystal as a function of Eu3+ doping concentrations.

Table 4
Elastic constants (GPa). *: This study .

Material Functional 𝑐11 𝑐22 𝑐33 𝑐44 𝑐55 𝑐66 𝑐12 𝑐13 𝑐15 𝑐23 𝑐25 𝑐35 𝑐46
𝑌2𝑆𝑖𝑂∗

5 PBE 212.21 197 173.21 61.42 48.41 69.25 62.78 78.65 11.64 49.50 −13.56 −21.07 10.08
𝑌2𝑆𝑖𝑂5 Luo et al. (2014) PBE 226 201 156 44 67 63 88 59 5 27 −0.3 −0.2 10

were small, all other elements of 𝐶𝑖𝑗 were calculated using the stress–
strain relation method, which is an automated scheme within the VASP
code and requires less computation time than using the strain–energy
relation. Table 4 shows the resulting elastic constants with the values
from this study marked with *. The theoretical results of Luo et al.
(2014) are also included in Table 4.

The stability of the results was checked using Eq. (2) in Section 3.1.
The stability criteria were met for all concentrations, implying that the
𝐵2∕𝑏 structure remains mechanically stable up to at least 25%. Plots of
elastic constants as a function of doping concentration are depicted in
Fig. 5.

In Eq. (1), 𝑐11, 𝑐22, and 𝑐33 represent the stiffness vs. principal strains
while 𝑐44, 𝑐55, and 𝑐66 correspond to resistance to shear deformations.
Overall, the largest changes occur in the diagonal components, whereas
the off-diagonal terms show small changes. To clarify, the largest
change occurs at 𝑐22, where the value drops from 197 GPa to 184 GPa.
The smallest change takes place at 𝑐46, where the value increases from
10.09 GPa to 10.53 GPa.

The elastic moduli were calculated using the expressions in Sec-
tion 3.1. A summary of all elastic moduli for the pure crystal is
presented in Table 5, together with previous results for comparison and
validation. The variations in 𝐵, 𝐺, 𝐸, and 𝜈 with doping concentration
are presented in Fig. 6. All elastic moduli show a decreasing trend with
increasing doping concentration, where the relative decrease is less in
𝐵 and 𝐸 compared to 𝐺 and 𝜈.

The Pugh ratio is included in Fig. 6 to further investigate the phys-
ical properties of the material. The Pugh ratio gauges the ductility of
materials based on the simple ratio given as 𝐵∕𝐺. The higher the value
of this ratio, the higher the ductility of the material, and vice versa.
As Fig. 6 demonstrates, the ratio gradually decreases with increasing
concentration. The overall drop of the Pugh ratio between pure and
25% doped crystal is 4.2%. Although this drop is small, it shows that
there is a decreasing trend in the Pugh ratio which indicates the YSO
becomes more brittle with higher impurity concentration.

4.3. Elastic anisotropy

The knowledge of the anisotropic properties of YSO might help to
reduce the effects of induced birefrengence by identifying the elastic

Table 5
Calculated elastic moduli for the pure YSO. *: This study .

Type 𝐵 (GPa) 𝐺(GPa) 𝐸(GPa) 𝜈

𝑌2𝑆𝑖𝑂∗
5 105.56 59.66 150.61 0.262

𝑌2𝑆𝑖𝑂5 Sun et al. (2008) 108 47 124 0.31
𝑌2𝑆𝑖𝑂5 Luo et al. (2014) 100 60 150 0.25

moduli in the chosen orientation in applications that are sensitive
to thermo-mechanical noise. One such application is laser stabiliza-
tion (Thorpe et al., 2011), for which YSO is considered a promising
host crystal. However, due to its low symmetry and the misalignment
of its crystallographic axes with Cartesian coordinate axes, the crystal
suffers from high anisotropy.

Therefore we have determined the anisotropy of this crystal with re-
spect to doping concentration. The anisotropy of the moduli are gauged
using anisotropy indices defined by Chung and Buessem (1967) where,
for polycrystalline materials, the bulk modulus anisotropy factor, 𝐴𝐵 ,
and the shear anisotropy factor, 𝐴𝐺, are defined as

𝐴𝐵 =
𝐵𝑉 − 𝐵𝑅
𝐵𝑉 + 𝐵𝑅

, (20)

𝐴𝐺 =
𝐺𝑉 − 𝐺𝑅
𝐺𝑉 + 𝐺𝑅

(21)

where 𝑉 and 𝑅 refer to the Voigt and Reuss limiting bounds according
to Eqs. (8)–(11). The anisotropy factors for both moduli are zero
for elastic isotropy when 𝐵𝑉 = 𝐵𝑅 and 𝐺𝑉 = 𝐺𝑅, and +1 at the
largest possible anisotropy, when the upper bounds of 𝐵𝑅 and 𝐺𝑅
both approach zero. Fig. 7 shows 𝐴𝐵 and 𝐴𝐺 as functions of doping
concentration. Although the change is minuscule for both 𝐴𝐵 and 𝐴𝐺,
there is a downward trend in both 𝐴𝐵 and 𝐴𝐺 that indicates that higher
concentrations will lead to lower anisotropy of the material.

Another tool that can assist in measuring the overall anisotropy of
crystals is the universal anisotropy index 𝐴𝑈 defined by Ranganathan
and Ostoja-Starzewski (2008). This index is ‘‘universal’’ since it is
applicable to all crystal symmetries and defined as

𝐴𝑈 = 5
𝐺𝑉
𝐺𝑅

+
𝐵𝑉
𝐵𝑅

− 6. (22)

82



Mechanics of Materials 154 (2021) 103739

7

A. Mirzai et al.

Table 6
Thermodynamic values predicted for pure YSO and Eu-doped YSO. *:This study .
Compound 𝜌 (g∕cm3) 𝜈𝑙 (m∕s) 𝜈𝑡 (m∕s) 𝜈𝑚 (m∕s) 𝜃𝐷(𝐾) 𝜅𝑚𝑖𝑛 (W∕mK) 𝛾

𝑌2𝑆𝑖𝑂∗
5 4.3142 9583.8 3718.8 4139.4 514.35 0.9955 1.560

𝐸𝑢6.25% ∶ 𝑌2𝑆𝑖𝑂∗
5 4.4228 9378.0 3662.0 4074.1 510.45 0.9962 1.544

𝐸𝑢12.5% ∶ 𝑌2𝑆𝑖𝑂∗
5 4.5298 9240.2 3611.3 4017.4 507.37 0.9981 1.542

𝐸𝑢18.75% ∶ 𝑌2𝑆𝑖𝑂∗
5 4.6381 9111.0 3570.8 3971.4 505.53 1.0023 1.535

𝐸𝑢25% ∶ 𝑌2𝑆𝑖𝑂∗
5 4.7448 8951.8 3533.2 3927.3 503.71 1.0063 1.517

𝑌2𝑆𝑖𝑂5 Sun et al. (2009) – – – – 580 1.13 –
𝑌2𝑆𝑖𝑂5 Luo et al. (2014) 4.680 6196 3580 3975 507 1.01 1.50

Fig. 7. Elastic anisotropy indices of YSO versus doping concentration.

The value of anisotropy using the universal index 𝐴𝑈 starts at zero,
meaning isotropy, and increases towards +∞ as the anisotropy in-
creases. The universal anisotropy index is also included in Fig. 7. As
can be seen, the minimum value of 𝐴𝑈 is obtained for pure YSO (𝐴𝑈 =
0.4138), and the maximum is obtained for 𝐸𝑢12.25% ∶ 𝑌 𝑆𝑂. The largest
difference in 𝐴𝑈 is 𝛥𝐴𝑈 = 0.0112. The overall trend also agrees with 𝐴𝐵
and 𝐴𝐺. The same discrepancy at 𝐸𝑢12.25% ∶ 𝑌 𝑆𝑂, where there is jump
in value of anisotropy, occurs in 𝐴𝑈 . So in general, 𝐴𝑈 reveals that
increasing concentration of impurity increases the overall anisotropy
of the crystal.

A convenient way to illustrate the elastic anisotropy is through
a three-dimensional surface representation showing the variation of
the Young’s modulus with crystallographic direction. The direction-
dependence of the YSO Young’s modulus is determined as follows (Nye
et al., 1985):
1
𝐸

= 𝑙41𝑠11 + 2𝑙21𝑙
2
2𝑠12 + 2𝑙21𝑙

2
3𝑠13 + 2𝑙31𝑙

2
3𝑠15 + 𝑙42𝑠22

+2𝑙22𝑙
2
3𝑠23 + 2𝑙1𝑙22𝑙3𝑠25 + 𝑙43𝑠33 + 2𝑙1𝑙33𝑠35 + 𝑙22𝑙

2
3𝑠44

+2𝑙1𝑙22𝑙3𝑠46 + 𝑙21𝑙
2
3𝑠55 + 𝑙21𝑙

2
2𝑠66 (23)

where 𝑙1, 𝑙2, and 𝑙3 are the direction cosines in relation to the Cartesian
(x, y, z) system. Figs. 8–9(c) show the directional dependence of the
Young’s modulus of pure YSO in Cartesian coordinates (x, y, z), where
the 𝑧-axis coincides with the crystallographic direction b. As the shape
of the 3D representation of Young’s modulus for an isotropic material
would be a perfect sphere, the degree of deviation from a sphere
indicates the degree of anisotropy in the system.

Figs. 9(a)–9(c) show 2D projections of the surface. In the 2D image,
the deviation from a circular shape is an indicator of anisotropy. As
Fig. 9(c) shows, the yz plane exhibits the highest level of deviation.
The anisotropy can be explained by the low symmetry of the crys-
tal, as well as misalignment between the crystallographic axes and
the Cartesian coordinates. Nevertheless, the figures show that YSO is
highly anisotropic and, consequently, the resulting Young’s modulus
depends strongly on orientation. The directional dependence of Young’s

Fig. 8. 3D representation of Young’s modulus (GPa) in Cartesian coordinates..

modulus in corresponding orientations as a function of concentration
is calculated and plotted in Fig. 10. The values along the Cartesian
axes and their variations with doping concentration are denoted as 𝐸𝑖,
𝑖 = 𝑥, 𝑦, 𝑧. As the figure shows, while both 𝐸𝑥 and 𝐸𝑧 almost remain the
same, 𝐸𝑦 decreases slightly with an increase in concentration.

4.4. Thermodynamic properties

Table 6 shows the Debye temperatures and velocities for each
concentration based on Eqs. (12)–(15). There is a slight decrease in the
Debye temperature as the concentration of dopants increases in the host
material. All other properties listed in the table follow the same trend,
which also follows the same descending trend as the elastic moduli
shown in Fig. 6.

The Debye temperature is a suitable parameter to compare the
micro-hardness of materials because it increases with the hardness of
the material. There is also a correlation between the Debye temperature
and bond strength; the higher the Debye temperature, the stronger
the bond. The table shows that the increase in doping concentration
reduces the bond strength, which may be caused by an increase in
interatomic bonding. This may stem from the larger atomic radius of
Eu3+ in comparison with Y3+.

The minimum thermal conductivities, 𝜅𝑚𝑖𝑛, and the Grüneisen pa-
rameters, 𝛾, were calculated for different concentrations and inserted
in Table 6 to further investigate the thermodynamic effects stemming
from impurities. The thermal conductivity of a material describes the
diffusivity of heat flow on the temperature gradient through phonon
transport. In this context, it can be interpreted as an index to measure
how well a material conducts heat. Thus, a higher value of 𝜅𝑚𝑖𝑛 can
be directly interpreted as a higher conductivity, and vice versa. In
Table 6, YSO with 𝜅𝑚𝑖𝑛 = 0.995 is categorized as having very low
thermal conductivity.

The calculated values of 𝛾 with respect to different concentra-
tions are listed in Table 6, which suggests a gradual decrease in 𝛾
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Fig. 9. 2D projections of the Young’s modulus (GPa) surface in the xy (a), the xz (b),
and the yz (c) planes.

with increasing Eu3+ concentration. This means a higher degree of
impurity would cause less anharmonic phonon scattering in the YSO
crystal (Ashcroft et al., 1976). As anharmonic scattering of phonons is
the reason for finite thermal expansion, a lower degree of anharmonic
scattering should decrease thermal expansion (Ashcroft et al., 1976).

The predicted heat capacities in a constant volume based on the
Debye model as described in Eq. (18) are presented in Fig. 11. The

Fig. 10. The components of the Young’s modulus 𝐸𝑖, 𝑖 = x, y, z.

Fig. 11. Heat capacity, 𝐶𝑣, based on Debye model for various Eu3+ concentrations.
The red line with squares indicates experimental data for the molar heat capacity, 𝐶𝑝,
of pure YSO obtained by Sun et al. (2009). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

figure shows that the change in heat capacity due to concentration is
negligible. This interpretation is based on the fact that all 𝐶𝑣 curves
coincide, and no deviation between different concentrations is visible.
In addition, the predicted curves approach the Dulong–Petit limit at
high temperatures (T >> 𝜃𝐷). According to this law, the heat capacity
at constant volume, 𝐶𝑣, for each atom approaches 3R for temperature
values above the Debye temperature (calculated 𝜃𝐷 for YSO is 514.35
K). Here R is the gas constant (Kittel et al., 1976), whereas for temper-
atures below 𝜃𝐷, quantum effects gain importance and 𝐶𝑣 approaches
zero.

To evaluate the predicted heat capacity, the experimental values
of heat capacity, 𝐶𝑝, obtained by Sun et al. (2009) are superimposed
on the predicted curve. As can be seen, except at the two extremes
(300 K and 1400 K), the predicted model agrees with the experimental

84



Mechanics of Materials 154 (2021) 103739

9

A. Mirzai et al.

data points. If corrections to 𝐶𝑝 and 𝐶𝑣 were taken into consideration,
the predicted curve would be in better agreement with experiment on
the left-hand side. The correction values range between 1 and 8 K at
room temperature and reach a maximum at melting point, where the
correction value would be equal to 10% of 𝐶𝑣 (Sun et al., 2009).

5. Conclusions

In this study the DFT plane-waves method is used to investigate
the effect of doping on the mechanical and thermodynamic properties
of the YSO crystal, which is a popular host for photonic and laser
stabilization applications. The results show that the impurity ions prefer
to occupy the Y1 site over the Y2 site of X2-Y2SiO5

. The resulting
emission spectrum of this site would initially be shifted towards shorter
wavelengths, and then towards longer wavelengths as the doping con-
centration gradually increases. The overall trend of the mechanical
properties decreases due to doping. Thus the bulk, Young’s, and shear
moduli of the host drop with increasing doping concentration. The
crystal becomes more brittle as a consequence of the decrease in
the Pugh ratio. The overall anisotropy of the crystal increases with
increasing concentration.

Lastly, the thermodynamic parameters reveal that increasing dop-
ing concentration weakens the bond strength, and reduces the anhar-
monic effects in the crystal, which may in turn decrease the thermal
expansion.
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Appendix

The matrix A for monoclinic systems is described by Söderlind
(2002). The applied strain is denoted by 𝛿.

𝐴1 =
⎛⎜⎜⎝

1 + 𝛿 0 0
0 1 0
0 0 1

⎞⎟⎟⎠

𝐴2 =
⎛⎜⎜⎝

1 0 0
0 𝛿 + 1 0
0 0 1

⎞⎟⎟⎠

𝐴3 =
⎛⎜⎜⎝

1 0 0
0 1 0
0 0 1 + 𝛿

⎞⎟⎟⎠

𝐴4 =
1

1 − 𝛿2

⎛⎜⎜⎝

1 0 0
0 1 𝛿
0 𝛿 1

⎞⎟⎟⎠

𝐴5 =
1

1 − 𝛿2

⎛⎜⎜⎝

1 0 𝛿
0 1 0
𝛿 0 1

⎞⎟⎟⎠

𝐴6 =
1

1 − 𝛿2

⎛⎜⎜⎝

1 𝛿 0
𝛿 1 0
0 0 1

⎞⎟⎟⎠

𝐴7 =
1

1 − 𝛿2

⎛⎜⎜⎝

1 + 𝛿 0 0
0 1 − 𝛿 0
0 0 1

⎞⎟⎟⎠

𝐴8 =
1

1 − 𝛿2

⎛⎜⎜⎝

1 + 𝛿 0 0
0 1 0
0 0 1 − 𝛿

⎞⎟⎟⎠

𝐴9 =
1

1 − 𝛿2

⎛⎜⎜⎝

1 0 0
0 1 + 𝛿 0
0 0 1 − 𝛿

⎞⎟⎟⎠

𝐴10 =
1

1 − 𝛿2

⎛⎜⎜⎝

1 + 𝛿 0 𝛿
0 1 − 𝛿 0
0 0 1

⎞⎟⎟⎠

𝐴11 =
1

1 − 𝛿2

⎛⎜⎜⎝

1 + 𝛿 0 𝛿
0 1 0
0 0 1 − 𝛿

⎞⎟⎟⎠

𝐴12 =
⎛⎜⎜⎝

1 𝛿 0
0 1 𝛿
0 0 1

⎞⎟⎟⎠

𝐴13 =
1

1 + 𝛿

⎛⎜⎜⎝

1 + 𝛿 0 𝛿
0 1 0
0 0 1

⎞⎟⎟⎠
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Abstract: The laser host materials undergo relatively small changes in their intrinsic properties
due to various sources during an experiment. These sources are often related to temperature
change or applied stress, which may cause stress-induced birefringence. Consequently, the
crystal experiences an optical anisotropy, which may affect the final outcome of the experiments.
One way to reduce probable noises is to predict the change in optical properties with respect
to load. To predict the changing pattern of the refractive index in a crystal, one needs to know
both the elastic and photoelastic constants of the material. In this study, We utilized density
functional perturbation theory (DFPT) to extract the photoelastic tensor of Y2SiO5 and Eu-doped
Y2SiO5 crystals. Using the photoelastic and elastic constants calculated, a Finite Element (FE)
model was developed, which allowed us to apply load and then post-process the results. This
methodology enabled us to observe the variation in refractive index (n), and consequently, the
shift in the resonance frequency of the cavity. The results obtained were in agreement with
experimental measurements, falling within a 2% discrepancy across a temperature range spanning
from cryogenic to room temperature. This correlation suggests the feasibility of using the
current workflow as a predictive tool for evaluating variations in refractive indices over a specific
interval.

1. Introduction

An optical cavity, like a laser resonator, has certain frequencies at which it resonantly enhances
the electromagnetic field. These resonant frequencies are determined by the condition that the
optical path length of the cavity (the distance that light travels inside the cavity) be an integer
multiple of the wavelength of the light. This is necessary for the light wave to constructively
interfere with itself after each round trip in the cavity, and it’s what allows a laser, for example, to
generate a strong, coherent beam of light. Mathematically, the condition for resonance is given
by [1]:

𝑚𝜆 = 2𝑛𝐿 (1)

, where m the mode number (number of round trips in the cavity) is an integer, 𝜆 is the wavelength,
L is the physical length of the cavity and n is the refractive index. Now, if the optical path length
changes - either because the physical length of the cavity changes, or because the refractive index
of the medium changes ( due to a change in temperature) - then the other side of the equation
above changes. To maintain equality, the wavelength of the light must also change. But the
frequency (f) and wavelength of light are related by the speed of light (c):

𝑐 = 𝑓 𝜆 (2)

So if the wavelength changes while the speed of light remains constant, the frequency must also
change. Hence, a change in the optical path length of a cavity results in a shift in the resonant
frequencies of the cavity.

In practical terms, this concept implies that by exercising meticulous control over the length
of an optical cavity, for instance, by delicately adjusting the position of one of the mirrors in
a laser system, we gain the ability to fine-tune the frequency at which the cavity resonates.
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𝑛𝑅1 𝑅2

𝐿

Fig. 1. The schematic view of an optical cavity. The light path in the cavity is indicated
by circulating arrows whereas the red arrows indicate entering and exiting light path.

A crucial outcome of this mechanism is the potential to optimize the signal-to-noise ratio.
This essentially entails boosting the desired information, or the signal, in the output, while
simultaneously minimizing any undesired interference or noise, thereby enhancing the overall
quality and accuracy of the laser’s performance.

For instance, the resonance frequency of a cavity is used to stabilize a laser’s frequency [2].
This is achieved by aligning the laser’s frequency to the resonance frequency of the cavity, which
means transferring the stability of the cavity to the laser [3]. Hence, the reference cavity acts as
an optical resonator that serves as a frequency reference in optical frequency standards [4]. In
turn, an ultra-high frequency stability laser is an essential part of an optical atomic clocks [5],
and a myriad of optical precision measurements [6, 7].

Given the importance of understanding the factors influencing the physical length of a cavity
or the refractive index of a medium, it is essential to examine the phenomena that contribute
to these variations. In this work, however, the analysis will primarily concentrate on changes
in the refractive index as a result of an external load. The photoelastic effect, which describes
changes in the optical properties of a material under mechanical deformation, is employed to
examine this alteration. Nevertheless, the applicability of the photoelastic effect is dependent on
the availability of the elasto-optic tensor elements. These elements are instrumental in discerning
the optical path difference across the crystal.

Furthermore, since the photoelastic properties of a material can be significantly influenced
by its electronic structure, and the fact that impurities within a crystal lattice can modify the
distribution of stress across the material that can subsequently lead to shifts in the material’s
photoelastic behavior. We investigate two cases: a pure case and a doped case.

We start by determining the photoelastic constants for both pure Y2SiO5 (YSO) and Eu-doped
YSO, utilizing the Density Functional Perturbation Theory (DFPT) [8]. Subsequently, leveraging
the elastic constants calculated in our previous study [9], we have developed a Finite Element (FE)
model. This model allows us to examine the impact of mechanical loads, specifically temperature
and stress, on the refractive index of both pure and Eu-doped YSO, which in turn allows us to
observe the shift in resonance frequency of the cavity.

1.1. Y2SiO5

Yttrium Orthosilicate (YSO), is a dielectric material with biaxial anisotropy, and its refractive
index at various frequencies is well-documented [10]. It is a monoclinic biaxial crystal that
belongs to the C2/c (𝐶2ℎ

6 ) space group [11], where RE ions can substitute for the Y3+ ions. It
is a well-known host material for RE ions, and it’s used extensively in optical research. Since
the crystal is monoclinic, there are 4 different dielectric functions 𝜖 (𝜔) that are required to
describe the material’s interaction with light in the wavelength region where the material is
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transparent [12, 13]. The principle values of the dielectric functions are unequal and they are
ordered as 𝜖11 < 𝜖22 < 𝜖33 [12]. The off-diagonal, 𝜖12, is a small value but it is non-zero.

𝜖 =



𝜖11 𝜖12 0

𝜖12 𝜖22 0

0 0 𝜖33


=



3.0897 0.0135 0

0.0135 3.1051 0

0 0 3.1645


(3)

The YSO crystal structure is characterized by three distinct, unequal crystallographic axes, labeled
as a, b, and c. These axes have respective lengths of 14.51 Å, 6.81 Å, and 10.51 Å. Notably, axis
b is perpendicular to both a and c, while the angle between axes a and c is denoted by 𝛽 [14].
Apart from the primary crystallographic axes, YSO is further defined by its optical axes: D1,
D2, and b [14,15]. The relationship between these optical axes and the crystallographic axes is
captured in Figure 2 [14].

In experiments involving YSO crystal, the optical beam is typically directed to propagate along
the crystallographic b-axis of the crystal and polarized along the D1 axis since this setup provides
the largest absorption [16]. Moreover, the b-axis aligns with the optic axis of the crystal, thereby
making it an axis of symmetry. This property can contribute to more predictable and desirable
outcomes in optical experiments.

b

6.81
Å

a

14.51 Å

c

10
.51

Å

D1

D2

D1

D2

·

a

c

𝛽

𝛼

𝛾
𝛽 = 122.08◦

𝛼 = 20.60◦
𝛾 = 11.48◦

Fig. 2. The angles and the relation between optical indicatrix axes and crystallographic
axes.

2. Theory & method

2.1. Theoretical background

The elasto-optic effect illustrates the change in the optical properties of a material under the
influence of stress. The indices of refraction due to the birefringence of an unstressed material
can be described by Maxwell’s equations, but it will lead to impractical long equations. To
simplify, an ellipsoid as an analogy is used to express the variation of refractive indices. This
ellipsoid is known as indicatrix [17], and it is identified by the following relation:

𝑥2
1

𝑛2
1
+ 𝑥2

2

𝑛2
2
+ 𝑥2

3

𝑛2
3
= 1 (4)

where 𝑥1, 𝑥2, 𝑥3 are the the principal axes, and 𝑛1, 𝑛2, and 𝑛3 are their corresponding refractive
indices. The coefficients of this ellipsoid are the components of the relative dielectric imper-
meability tensor, B𝑖 𝑗 , at optical frequencies, so the general form of indicatrix can be written
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as:
𝐵𝑖 𝑗𝑥𝑖𝑥 𝑗 = 1 (5)

This way the small change of refractive index produced by stress can be traced by a change in the
shape, size, and orientation of the indicatrix [11], and the changes in the coefficients of indicatrix,
Δ𝐵𝑖 𝑗 , under applied stress, 𝜎𝑘𝑙 or strain 𝑒𝑘𝑙 , is given as:

Δ𝐵𝑖 𝑗 = 𝑝𝑖 𝑗𝑘𝑙𝑒𝑘𝑙 = 𝜋𝑖 𝑗𝑘𝑙𝜎𝑘𝑙 (6)

where 𝑝𝑖 𝑗𝑘𝑙 , and 𝜋𝑖 𝑗𝑘𝑙 are fourth-rank elasto-optic and piezo-optic tensors. The left-hand side
of the above equation can be rewritten as: Δ𝐵𝑖 𝑗 = 𝐵1 - 𝐵0, where B0 and B1 are the dielectric
impermeability tensor before and after the applied stress [11]. Moreover, as the principal
components of B tensor are simply the inverse of the dielectric tensor [11] and the relation
between refractive index and dielectric tensor is 𝜖 = 𝑛2, Equation 6 can be rewritten as,

Δ𝐵𝑖𝑖 = [𝜖−1 (𝜎𝑘𝑙)]𝑖𝑖 − [𝜖−1 (0)]𝑖𝑖 = 1
𝑛2

1
− 1
𝑛2

0
(7)

This means the knowledge of applied stress along with piezo-optic coefficients would show us
how much the refractive index would change with respect to applied stress.

The B is actually a 3x3 matrix in which it can be reduced with respect to the symmetry of the
crystal, and take the form that is similar to the dielectric tensor in Equation 3.

𝐵 =



𝐵11 𝐵12 0

𝐵21 𝐵22 0

0 0 𝐵33


(8)

In the same way, the 𝜋𝑖 𝑗𝑘𝑙 which is normally a 6x6 matrix can be reduced to its corresponding
monoclinic form [18], which allows us to rewrite the Equation 6 as:

Δ𝐵 =

©­­­­­­­­­­­­­
«

𝜋11 𝜋12 𝜋13 0 𝜋15 0

𝜋21 𝜋22 𝜋23 0 𝜋25 0

𝜋31 𝜋32 𝜋33 0 𝜋35 0

0 0 0 𝜋44 0 𝜋46

𝜋51 𝜋52 𝜋53 0 𝜋55 0

0 0 0 𝜋64 0 𝜋66

ª®®®®®®®®®®®®®
¬

©­­­­­­­­­­­­­«

𝜎1

𝜎2

𝜎3

2𝜎4

2𝜎5

2𝜎6

ª®®®®®®®®®®®®®
¬

(9)

The resultant matrix multiplication becomes:

©­­­­­­­­­­­­­«

Δ𝐵1

Δ𝐵2

Δ𝐵3

Δ𝐵4

Δ𝐵5

Δ𝐵6

ª®®®®®®®®®®®®®¬

=

©­­­­­­­­­­­­­«

𝜋11𝜎1 + 𝜋12𝜎2 + 𝜋13𝜎3 + 2𝜋15𝜎5

𝜋21𝜎11 + 𝜋22𝜎12 + 𝜋23𝜎3 + 2𝜋25𝜎5

𝜋31𝜎3 + 𝜋32𝜎2 + 𝜋33𝜎3 + 2𝜋35𝜎5

2𝜋44𝜎4 + 2𝜋46𝜎6

𝜋51𝜎1 + 𝜋52𝜎2 + 𝜋53𝜎3 + 2𝜋55𝜎5

2𝜋64𝜎4 + 2𝜋66𝜎6

ª®®®®®®®®®®®®®¬

(10)
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The Δ𝐵 matrix on the left-hand side of the above equation can be rewritten to its original matrix
form using index change notation as 23 and 32 → 4, 31 and 13 → 5, 12 and 21 → 6 [11]. Finally,
the monoclinic symmetry of the Δ𝐵 matrix was considered to attain its final form.

©­­­­­­­­­­­­­«

Δ𝐵1

Δ𝐵2

Δ𝐵3

Δ𝐵4

Δ𝐵5

Δ𝐵6

ª®®®®®®®®®®®®®
¬

→
©­­­­
«

Δ𝐵1 Δ𝐵6 Δ𝐵5

Δ𝐵6 Δ𝐵2 Δ𝐵4

Δ𝐵5 Δ𝐵4 Δ𝐵3

ª®®®®
¬
𝑠𝑦𝑚.−−−→

©­­­­
«

Δ𝐵1 Δ𝐵6 0

Δ𝐵6 Δ𝐵2 0

0 0 Δ𝐵3

ª®®®®¬

we can now obtain the resultant 𝐵1 matrix, which contains the refractive index after applied
pressure.

[𝜖−1 (𝜎𝑘𝑙)]𝑖 𝑗 =
©­­­­«

𝜖−1 (0)11 𝜖−1 (0)12 0

𝜖−1 (0)12 𝜖−1 (0)22 0

0 0 𝜖−1 (0)33

ª®®®®¬
+

©­­­­«

Δ𝐵1 Δ𝐵6 0

Δ𝐵6 Δ𝐵2 0

0 0 Δ𝐵3

ª®®®®¬
(11)

©­­­­«

𝜖−1 (𝜎𝑘𝑙)11 𝐵6 0

𝐵6 𝜖−1 (𝜎𝑘𝑙)22 0

0 0 𝜖−1 (𝜎𝑘𝑙)33

ª®®®®
¬
=

©­­­­«

Δ𝐵1 + 𝜖−1 (0)11 Δ𝐵6 + 𝜖−1 (0)12 0

. Δ𝐵2 + 𝜖−1 (0)22 0

. . Δ𝐵3 + 𝜖−1 (0)33

ª®®®®¬
(12)

And finally, we reach the elements that correspond to the principle axes of dielectric impermeability
tensor,

𝐵𝑥
1 = Δ𝐵1 + 𝐵𝑥

0 = 𝜋11𝜎1 + 𝜋12𝜎2+
𝜋13𝜎3 + 𝜋152𝜎5 + 𝜖−1 (0)11

𝐵
𝑦
1 = Δ𝐵2 + 𝐵

𝑦
0 = 𝜋21𝜎1 + 𝜋222𝜎6+

𝜋23𝜎3 + 𝜋252𝜎5 + 𝜖−1 (0)22

𝐵𝑧
1 = Δ𝐵3 + 𝐵𝑧

0 = 𝜋31𝜎3 + 𝜋32𝜎2+
𝜋33𝜎3 + 𝜋352𝜎5 + 𝜖−1 (0)33

(13)
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in which the corresponding refractive indices of the principle axes after the applied pressure is:

𝑛𝑥 (𝜎𝑘𝑙) =
√︃
(1/𝐵𝑥

1 )

𝑛𝑦 (𝜎𝑘𝑙) =
√︃
(1/𝐵𝑦

2 )

𝑛𝑧 (𝜎𝑘𝑙) =
√︃
(1/𝐵𝑧

3) (14)

2.2. Computational method

The ab-initio calculations are carried out using the CRYSTAL [19], and VASP [20]. The
CRYSTAL code uses linear combinations of Gaussian Type Functions (GTF) as basis sets to
construct the fictitious wave functions. The exchange and correlation part of Hamiltonian were
treated based on PBE0 [21] method, and PBE [22]. An effective core potential atom-centered
GTF basis set of triple-𝜁 valence quality, augmented by a polarization function (TZVP), is
adopted for each element in the system. The truncation criteria for electronic integrals are
controlled by five thresholds, which are set to 8, 8, 8, 10, and 20. Last but not least, the sampling
of the reciprocal space was conducted using a shrinking factor of 4, and the convergence criterion
on total energy was set to 10−8 Hartree.

The VASP calculations were conducted with the following setup. The cut-off energy was set
to, 520 eV, while the 𝑘-point set for the unit cell was selected to be 4×8×6. The convergence
threshold was set to 1× 10−8 eV, and the force criterion for geometry optimization was 0.00001
eV/Å.

The extraction of piezo-optic and elasto-optic elements is conducted by applying a sequence
of deformation matrices to the relaxed standard unit cell of YSO. These deformation matrices
can be found in the Appendix. Following each deformation, we calculate the dielectric constant
of the deformed unit cell. Subsequently, by employing a manipulated version of Equation 6, the
piezo-optic and elasto-optic elements are derived.

𝜋𝑖 𝑗𝑘𝑙 = Δ𝐵𝑖 𝑗𝜎
−1
𝑘𝑙 (15)

For the finite element analysis, a 3D model was created and four pressure loads and a thermal
load were analyzed – uniaxial load in two different directions, biaxial load and hydrostatic
pressure. This is achieved by utilizing the pre-calculated elastic constants from our previous
study [9], as well as thermal coefficient constants courtesy of Sun et al [23] and Marion et al. [24].
The schematic view of the crystal setup in ABAQUS is shown in Figure 3, a rectangular crystal
with dimensions length of 5 mm, height of 4 mm, and depth of 1 mm. Due to the symmetry

b
D1

D2

Fig. 3. Schematic view of the crystal geometry employed in FE model

of the crystal, only one-fourth of the geometry was modeled and symmetry conditions were
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imposed into the two symmetry axes D1 and D2 assumed. The mesh is refined to 0.5 mm in order
to describe a reliable stress profile. The element type used in the crystal is an 8-node thermally
coupled linear brick element.

Following the application of temperature and stress to the model, we extract the resulting stress
matrices for further post-processing. This entails multiplying by the piezo-optic tensor to obtain
the affected impermeability matrix. The refractive index influenced by stress is then obtained by
performing the manipulations that were detailed in the preceding section.

3. Result & Discussion

The data presented in Table 1 illustrates both the experimentally obtained and the computationally
determined values for pure YSO. It also includes the refractive index values for YSO doped with
Eu. Upon a preliminary comparison of the experimental and calculated values using the PBE
functional, an overestimation was observed. In response to this discrepancy, the hybrid PBE0
approach was employed, resulting in improved congruity between experimental and theoretical
results for pure YSO. Our results have the largest discrepancy with results provided by Weber [25].
So, we made a comparison with those results. The discrepancies for n𝑥 , n𝑦 , and n𝑧 are 1.25%,
1.22%, and 1.77%, respectively, which shows the overall agreement between our experimental
and theoretical findings suggests a reasonable level of accuracy and reliability.

When comparing the refractive indices of doped and undoped materials, a small but noticeable
increase is observed across all principal axes. The largest divergence occurs in the D1-direction,
with a relative increase of 0.0114. In contrast, the smallest change is detected along the b-axis,
with a discrepancy of only 0.0071. While it is difficult to draw definitive conclusions from a
single data point, this trend suggests that impurities may increase the relative permittivity, leading
to an increase in the refractive index. This is consistent with the previous findings [26, 27], who
reported that RE-doping can increase the dielectric constant of the host material, although their
study did not focus on YSO.

Table 1. Refractive indices for principle axes of pure YSO and Eu-doped YSO: this
work:*. Note: the exp. values are obtained at 632.8 nm

source 𝑛𝑥 ≈ 𝑛𝐷1 𝑛𝑦 ≈ 𝑛𝑏 𝑛𝑧 ≈ 𝑛𝐷2

YSO-Exp. [25] 1.780 1.784 1.811

Exp. [28] 1.769 1.770 1.789

YSO-PBE* 1.8569 1.8578 1.8822

YSO-PBE0-D3* 1.7577 1.7621 1.7789

Eu:YSO-PE0-D3* 1.7691 1.7692 1.7892

Table 2 demonstrates the elastic constants calculated in our previous work. This table is
introduced with dual objectives. Firstly, these values contribute to establishing the Finite Element
(FE) model in ABAQUS. Secondly, these values help evaluate the accuracy of the photoelastic
constants, which represent changes in the optical properties of a material under mechanical
deformation. There is a lack of experimental data for both pure and doped versions of the
YSO compound. However, the accuracy of the photoelastic constants can still be probed by
comparing the difference between the elastic constants and refractive indices of the pure and
doped compounds.

Table 3 displays the piezo-optic constants for both pure and Eu-doped YSO. The choice of
functional for our calculations was based on the values of refractive indices presented in Table 1.
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Table 2. Elastic constants of YSO, and Eu:YSO, 𝐶𝑖 𝑗 in GPa.

𝑐11 𝑐12 𝑐13 𝑐15 𝑐22 𝑐23 𝑐24 𝑐33 𝑐34 𝑐44 𝑐46 𝑐55 𝑐66

YSO-Exp. [25] 65.8 - - ±70.6 185 - - 83.5 ±33.0 46.5 ±0.14 187 65.6

YSO-PBE [9] 212.21 62.78 78.65 11.64 197 49.50 -13.56 173.21 -21.07 61.42 10.08 48.41 69.25

YSO-PBE [29] 226 88 59 5 201 27 -0.3 156 -0.2 44 10 67 63

Eu:YSO-PBE [9] 209.35 60.17 77.59 11.47 190.82 47.39 -13.62 173.15 -20.99 61.21 10.03 47.70 69.24

Specifically, we continued with the same type of functional, PBE0 since functional provided
values closest to the experimental observations. In an ideal scenario, our methodology’s accuracy
would be confirmed by comparing our calculated photoelastic constants with experimental
equivalents. However, for both pure and Eu-doped YSO, such data is currently unavailable. As a
workaround, we validated our calculated piezo-optic and inherent elasto-optic constants via their
application in FEM simulations. In these simulations, we applied loads and post-processed the
results using the calculated piezo-optic constants. If the refractive index resulting from these
simulations, after the load application, aligns with the available experimental refractive index
under similar conditions, we can assert that our piezo-optic constants are correctly determined.

Table 3. Piezo-optic constants of Eu:Y2SiO5, 𝜋𝑖 𝑗 . Unit=Brewsters, 1B = 10−12 𝑃𝑎−1.

YSO 𝜋11 𝜋12 𝜋13 𝜋15 𝜋21 𝜋22 𝜋23 𝜋25 𝜋31 𝜋32

PBE0-D3 -0.603 0.880 1.184 -1.223 0.164 0.551 0.557 -0.131 0.337 0.725

Eu:YSO 𝜋11 𝜋12 𝜋13 𝜋15 𝜋21 𝜋22 𝜋23 𝜋25 𝜋31 𝜋32

PBE0-D3 -0.634 1.921 1.457 -1.229 0.195 1.580 0.815 -0.131 0.478 1.611

YSO 𝜋33 𝜋35 𝜋44 𝜋46 𝜋51 𝜋52 𝜋53 𝜋55 𝜋64 𝜋66

PBE0-D3 0.313 0.365 -0.353 -0.037 -0.504 -0.073 0.459 -0.594 0.117 -1.476

Eu:YSO 𝜋33 𝜋35 𝜋44 𝜋46 𝜋51 𝜋52 𝜋53 𝜋55 𝜋64 𝜋66

PBE0-D3 0.440 0.489 0.032 -0.268 -0.442 -0.281 0.269 -0.572 0.025 -1.526

Table 4. elasto-optic constants of Y2SiO5, 𝑝𝑖 𝑗 .

YSO 𝑝11 𝑝12 𝑝13 𝑝15 𝑝21 𝑝22 𝑝23 𝑝25 𝑝31 𝑝32

PBE0-D3 0.41 0.147 0.158 -0.058 0.118 0.124 0.124 0.002 0.140 0.162

Eu:YSO 𝑝11 𝑝12 𝑝13 𝑝15 𝑝21 𝑝22 𝑝23 𝑝25 𝑝31 𝑝32

PBE0-D3 0.110 0.189 0.195 -0.055 0.149 0.182 0.150 -0.000 0.172 0.197

YSO 𝑝33 𝑝35 𝑝44 𝑝46 𝑝51 𝑝52 𝑝53 𝑝55 𝑝64 𝑝66

PBE0-D3 0.109 0.032 -0.022 -0.006 -0.067 -0.037 0.028 -0.028 -0.011 -0.071

Eu:YSO 𝑝33 𝑝35 𝑝44 𝑝46 𝑝51 𝑝52 𝑝53 𝑝55 𝑝64 𝑝66

PBE0-D3 0.110 0.032 -0.003 -0.010 -0.071 -0.049 0.014 -0.028 -0.024 -0.062

To perform a comparative analysis, we utilized the measured values of relative permittivity from
the study by Carvalho et al. [10]. These values denote the real permittivity of pure YSO crystal
against varying temperatures with uncertainty of below 0.26% [10]. As the YSO crystal is a
biaxial dielectric material with known refractive indices at optical frequencies, its permittivity
plays a crucial role in this comparison. Following this, we commenced with the application of
thermal stress on the YSO crystal. The temperature model employed is a thermomechanical one,

96



where any temperature exceeding 0 K incites a mechanical load on the crystal, thereby inducing
stress on the unit cell. This stress is then post-processed via the application of piezo-optic
constants. This step assists in obtaining the refractive indices influenced by the stress, thereby
allowing us to perform an analysis of the material’s behavior under thermal conditions.

The plot illustrated in Figure 4, and 5 present the variations in both measured and calculated
refractive indices as a function of temperature changes. The measured values are represented by
a blue curve, while the calculated values are designated by a red curve. Upon initial observation,
a divergence in the patterns of these curves becomes apparent. The blue curve seems to follow
a quadratic equation, whereas the red curve appears to possess a linear trait. The main reason
behind the linearity of the calculated result may be the extracted photoelastic constants that are
actually a result of Pockel’s effect [30], which is intrinsically a linear effect. It should be added
that Pockels’ effect is essentially a term allocated to linear electro-optic effect [11]. Since there is
no specific term for linear elasto-optic effect, we have extended the definition of Pockels’ effect
to linear elasto-optic effect. Therefore, the quadratic trait of the calculated curve can be achieved
if the extracted photoelastic constants were obtained with nonlinear traits. To do this, one has to
include the non-linear effect known as Kerr effect [11]. Again, the Kerr effect is a term coined for
non-linear electro-optic effect but we extend its definition to cover nonlinear elasto-optic effects
as well.

Fig. 4. The comparison between measured and calculated value of the refractive index
along D1 direction.

To observe the orientation-dependent of the n versus temperature, we can refer to Figure 6.
Here we have plotted the variation of n in principle axes for both measured and calculated data.
In all directions, we observe the quadratic type curve for the measured data and the linear type
curve for the calculated data. It is clear that the calculated model follows the right trend with
increasing temperature. However, a direct comparison of the curves may not accurately represent
the relationship between the data. A closer examination of the relative difference between each
data point on the blue curve and its corresponding point on the red curve reveals a very small
disparity of only 0.0024. This indicates that, despite their differing patterns, the measured and
calculated data are in close agreement. Additionally, it is worth noting that the quadratic behavior
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Fig. 5. The comparison between measured and calculated value of the refractive index
along b, and D2 direction.

of thermo-optic coefficients appears to be specific to YSO. Other monoclinic systems, such as
Ga2O3, have exhibited linear thermo-optic coefficients [31]. Additionally, considering the fitted
polynomials for the measured and calculated curves, we find the corresponding coefficients are
as follows: a = 1.3×10−7, b = 2.4×10−7, c = 1.7(4908) for the measured curve and a = 3.1×10−9,
b = -2.712×10−7, c = 1.7(5770) for the calculated curve. These findings further reinforce the
linearity of the calculated data as the coefficient of x2 being a, is in order of 10−9 while the a for
the measured data is in order of 10−7.
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Fig. 6. The measured and calculated values of n in all three optic directions of pure
YSO are between 6 to 296 Kelvin.
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Our calculated results can be further substantiated through a direct comparison with empirical
data sourced from Carvalho et al. [10]. A side-by-side representation of the corresponding values
for our measurements and calculations is presented in Table 5, with data points spanning from 6
to 296 K. Remarkably, for the D1 orientation, the deviation in our point-to-point comparison is
minimal. Additionally, the percentage of error remains unchanged across the entire temperature
range. For the sake of specificity, the maximum errors at D1, b, and D2 stand at 0.49, 1.84,
and 2.78 respectively. The parentheses around the value of n after the decimal point are only
added to help the reader see how n changes along the temperature interval. It’s important to

Table 5. Comparison of measured and calculated refractive indices versus temperature
for pure YSO. The measured data is taken from [10].

measured calculated Error
Temp. (K) n𝐷1 n𝑏 n𝐷2 n𝐷1 n𝑏 n𝐷2 Err.𝐷1 (%) Err.𝑏 (%) Err.𝐷2 (%)

6 1.749(1174) 1.787(5427) 1.817(0071) 1.757(7000) 1.762(100094) 1.778(9001) 0.490 1.423 2.097

10 1.749(1174) 1.787(5427) 1.817(0071) 1.757(7001) 1.762(100156) 1.778(9002) 0.490 1.423 2.097

20 1.749(1276) 1.787(5528) 1.817(0162) 1.757(7002) 1.762(100313) 1.778(9004) 0.490 1.423 2.097

30 1.749(1687) 1.787(5952) 1.817(0529) 1.757(7004) 1.762(100469) 1.778(9007) 0.487 1.426 2.099

40 1.749(2575) 1.787(6784) 1.817(1321) 1.757(7005) 1.762(100626) 1.778(9009) 0.482 1.430 2.103

50 1.749(3836) 1.787(7965) 1.817(2445) 1.757(7006) 1.762(100782) 1.778(9011) 0.475 1.437 2.109

70 1.749(7664) 1.788(1770) 1.817(6818) 1.757(7009) 1.762(101095) 1.778(9016) 0.453 1.458 2.133

296 1.760(1088) 1.795(3696) 1.830(0966) 1.757(8983) 1.762(305584) 1.779(2097) 0.125 1.841 2.780

100 1.7(5035) 1.7(8859) 1.8(18360635) 1.7(5770) 1.7(6210) 1.7(7890) 0.419 1.481 2.169

500 1.7(8046) 1.8(0887) 1.8(5505) 1.7(5832) 1.7(6274) 1.7(7986) 1.243 2.550 4.052

1000 1.8(7438) 1.8(6975) 1.9(7115) 1.7(5933) 1.7(6366) 1.7(8127) 6.083 5.610 9.543

highlight that for direction b and D2, the error seems to amplify faster as temperature increases.
To better understand the magnitude of error at higher temperatures, we utilize a curve that has
been fitted to predict the error beyond room temperature. The last three rows of Table 5 display
the measured values of the refractive indices—calculated using the fitted curves—in comparison
with the computed data. A significant rise in error is discernible at the 500 and 1000 K points. It
is crucial to recognize that the operating temperature for some rare-earth activated phosphors
is typically at or slightly above room temperature. For instance, the temperature required for
laser stabilization is at cryogenic levels [2, 4], while for common phosphor applications, like
lighting LEDs, the operating temperature tends to be near or just above room temperature [32].
Thus, we can assert that the predictions of the model align with experimental findings and are
applicable for practical uses. At least, this is the case for applications up to and smaller than
room temperature.

After constructing and verifying the ability of the model to produce reasonable results, we
proceeded to investigate the changes in refractive indices with respect to the temperature of
Eu-doped YSO. The Eu concentration for the doped system was maintained at 6.25% to remain
consistent with our previous study [9], and it should be mentioned that the doping is performed
only for site 1 of YSO. The results of these computations are detailed in Table 6. Consistent
with the findings for the undoped system, the doped system also exhibits a linear pattern in its
refractive indices.

Based on these calculated refractive indices, one can track the shift of resonance frequency for
pure YSO and Eu-doped YSO medium. Figure 7 shows the shift of the frequency with respect
to temperature. As the figure shows, the trend of the curves in both cases (pure and doped) are
linear and have an increasing trend in which the value of the principle axes keeps the same order
of magnitude D2>b>D1.

Next, our study involves assessing the impact of applying compressive and tensile loads directly

100



Table 6. Calculated refractive indices for Eu-doped YSO with respect to temperature.

Temp. (K) n𝐷1 = 1.7691 n𝑏=1.7692 n𝐷2=1.7892

2 n𝐷1+6.6e-8 n𝑏+7.9e-8 n𝐷2+9.4e-8

4 n𝐷1+1.33e-7 n𝑏+1.58e-7 n𝐷2+1.87e-7

6 n𝐷1+1.99e-7 n𝑏+2.37e-7 n𝐷2+2.81e-7

10 n𝐷1+3.32e-7 n𝑏+3.95e-7 n𝐷2+4.68e-7

20 n𝐷1+6.64e-7 n𝑏+7.9e-7 n𝐷2+9.35e-7

30 n𝐷1+9.96e-7 n𝑏+1.185e-6 n𝐷2+1.403e-6

40 n𝐷1+1.328e-6 n𝑏+1.58e-6 n𝐷2+1.871e-6

50 n𝐷1+1.66e-6 n𝑏+1.975e-6 n𝐷2+2.339e-6

70 n𝐷1+2.324e-6 n𝑏+2.766e-6 n𝐷2+3.274e-6

100 n𝐷1+3.211e-6 n𝑏+3.821e-6 n𝐷2+4.524e-6

296 n𝐷1+4.46e-4 n𝑏+5.17e-4 n𝐷2+6.16e-4

Fig. 7. The variation of resonance frequency with respect to temperature.

to the crystal, specifically focusing on the variation of n in different orientations. We will reapply
pressure to the crystal during the FE simulation, which previously provided us with the stress
tensor. This tensor will then be subjected to further post-processing via the piezo-optic tensor to
derive the fluctuation of refractive indices in relation to the applied load.

Figure 8 illustrates how n changes in relation to the applied load in D1, D2, and D1D2 directions,
as well as hydrostatic pressure. From previous observations, we can anticipate a linear trend, as
the piezo-optic constants were derived based on Pockels’ effect. The focal points in this instance
are the slope of the hydrostatic pressure and the close approximation of the D2 and D1D2. As
you can see in all figures the maximum magnitude of change is related to hydrostatic pressure,
and the curves corresponding to D2 and D1D2 are almost overlapping which might be explained
due to the larger magnitude of n in D2 direction.

Interestingly, the doped crystal (Figure 9) exhibits similar behavior to the pure system. To
discern the differences between the pure and doped systems, we have contrasted the rates of
change in resonance frequencies for both systems, as tabulated in Table 7. The table demonstrates
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Fig. 8. The change in refractive indices and frequency shift of pure YSO with respect
to the applied load.
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Fig. 9. The change in refractive indices and frequency shift of Eu-doped YSO with
respect to applied load.

that doping results in a steeper slope - as far as the magnitude of the slope is concerned - across all
orientations. Therefore, one could deduce that doping accelerates the rate of change in refractive
indices, and by extension, the resonance frequency. Regrettably, there are no such data available
to corroborate this for YSO, although a study conducted by Soharab et al. [33] analyzed the
refractive index versus Nd concentration in GdVO4, which seems to support the increasing trend
of refractive indices with dopant concentration.

4. conclusion

In this study, a multi-scale modeling workflow was developed and we have managed to calculate
the thermo-optic coefficients (dn/dT) of pure and Eu-doped YSO. To achieve this the piezo-optic
constants were extracted with the application of DFPT, and the calculated constant was validated
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Table 7. The rate of change of resonance frequency (d 𝑓 /dP) for pure & Eu-doped YSO
with respect to applied load.

LoadAxis Doped n𝐷1 n𝑏 n𝐷2

D1 no -0.0869 0.0761 0.0886

D1 yes -0.0960 0.1381 0.1517

D2 no 0.1375 0.0957 0.1174

D2 yes 0.2810 0.2424 0.2465

D1D2 no 0.1318 0.0952 0.1169

D1D2 yes 0.2754 0.2402 0.2448

Hydrost. no -0.1616 -0.1071 -0.1179

Hydrost. yes -0.2818 -0.2399 -0.2399

using the measured value of the dn/dT for the pure YSO. For the selected temperature interval
(6 - 296 K) the maximum error between calculated and measured values was at 2.78% in D2
direction. The main discrepancy between the developed model and the measured data is the
type of polynomials that they fit in. While the measured data follow a quadratic equation the
calculated data shows a linear behavior. As we mentioned in the result section, this must be due to
the fact that we have extracted the piezo-optic constant based on Pockels’ effect which is a linear
approach in its origin. So, to decrease the discrepancy between calculated and measured data
non-linear effects known as Kerr’s effect must be added to the process of piezo-optic extraction.
Nevertheless, the workflow produces reasonable results for at least the selected temperature
interval. The produced results presented in Table 5 are important as they enable the estimation of
thermo-optic coefficients, which is crucial for the optimization and design of the optical cavity.

Using the piezo-optic post-processing method, we successfully observed variations in refractive
indices for different applied loads and their respective frequency shifts. Our observations indicate
that hydrostatic pressure induces the most significant variation in the refractive index. Furthermore,
a linear relationship exists between the applied load and the change in refractive index n. Doping
amplifies the variation magnitude, regardless of its orientation or magnitude of the applied load.
Thus, it can be inferred that an increase in impurity concentration amplifies the variation in n and
subsequently affects the resonance frequency.

The accuracy of the results with respect to experimental and the applicability of this approach
for other host materials and dopants and the ease of the workflow suggest that the current approach
has the potential to be a straightforward alternative for the tedious experimental measurement.
This is especially the case for low-symmetry materials such as YSO. Nevertheless, the main
purpose of this work was to propose an approach to examine variation of the refractive indices
for RE-doped YSO in which we believe we have shown it is possible to do so to a large degree.
Except for the high-temperature cases, where the operating temperatures of the experiments
exceed the room temperature.
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A B S T R A C T

We investigate the impact of impurity configuration on electronic and optical properties of YVO4 through
application of plane-wave DFT. Since this crystal is a common host material for optical devices and it has been
widely used as a phosphor and a laser host material, it is important to identify a correlation between impurity
location and the intrinsic properties of the material. To further improve the accuracy of the results several
semi-local and a hybrid functional are tested. To find the most stable structure among possible configurations
of doping, the electronic structures and formation energies of the available configurations are calculated and
compared. We report that while the valence is formed by O-2p orbitals and conduction is made of V-3d orbitals
in all configurations, the band width varies with the impurity configuration. Additionally, the formation energy
is changing depending on where the dopant is located. Then the absorption coefficient and the refractive index
are obtained using a modified HSE functional.

1. Introduction

Yttrium Orthovanadate (YVO4) belongs to the tetragonal point
group D19

4h(𝐼41∕𝑎𝑚𝑑) and forms a crystal in a zircon-type structure [1]. It
is an excellent birefringence crystal and has a broad transparency spec-
trum (400−5000 nm). Thus, it is suitable for laser host applications,
and the YVO4 doped with Rare Earth (RE) ions is widely used in opto-
electronic devices [2]. For example, Nd3+-doped YVO4 is commonly
used in diode-pumped solid lasers, while Eu3+-doped YVO4 powder is
considered as a prominent red phosphor that has application in plasma
display panels, and image detectors [3,4]. In general, the attractiveness
of RE ions stems from the 4f shell in which it has a direct effect on
the luminescence of these ions and their corresponding host materi-
als. However, Ce3+ ion’s luminescence originates from the transition
between 4f and 5d states. Since the 5d shell falls outside the 5s and
5p shells, it strongly interacts with the host lattice [5]. As a result, the
5d state gets broadened. This is why the Ce3+ spectrum covers a broad
wavelength region from the UV to the visible light spectrum [6], and
the surrounding crystalline environment has a substantial impact on
5d energy levels of Ce3+. Hence the application of Ce3+-doped crystals
specifically as a laser host, calls for higher accuracy to diminish the gap
between theoretical and experimental results.

There have been a few studies that have looked into the properties
of both zircon and scheelite structures of YVO4. For example, the phase
transition of YVO4 under pressure, from zircon type to scheelite type
structure is investigated by Raman et al. and Panchal et al. [7,8], while

∗ Corresponding author.
E-mail address: amin.mirzai@mek.lth.se (A. Mirzai).

others have studied the photoluminescence properties of Ce3+-doped
YVO4, experimentally [6,9–11]. In addition, Huang et al. has inves-
tigated the physical properties of the YVO4 using Density Functional
Theory (DFT) [12].

Yet, the application of YVO4 as a laser host and a phosphor requires
reducing the source of uncertainties as much as possible. As discussed
earlier, this gains more significance in Ce3+-doped YVO4 since the con-
duction layer of Ce3+ is highly sensitive with respect to the surrounding
crystalline environment. Consequently, the location of impurities in
the crystal can affect the intrinsic properties of the host material. This
means that identification of a relation between impurity configuration
and concentration may assist the increase of the signal to noise ratio.
Hence, we look into the low pressure phase of YVO4, which is a zircon-
type structure, to identify the most stable impurity configuration with
the aid of several semi-local and a hybrid functionals. We use the low
pressure structure since the applied pressure in experimental condi-
tions, for laser host applications, will not exceed the phase transition
threshold, 8.5 GPa [13].

One of the main factors in accuracy of DFT results is the choice
of functionals, which gain importance when the main objective is
to reduce discrepancies. In DFT, local density approximation (LDA)
and semi-local general gradient approximations (GGA) are the most
common functionals, although the LDA and the GGA underestimate
the band gap due to their vanishing derivative discontinuity [14]. To
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Fig. 1. Zircon-type structure of pure YVO4 & Ce3+-doped YVO4 at Y1, Y2, Y3, and Y4 with 25% concentration, and Y3 with 6.25% concentration, respectively. While the pure
structure is in a unit cell, the doped structures are in a 2 × 1 × 2 supercell. Note: To simplify, the Oxygen atoms are removed from the figures.

Fig. 2. Band gap values predicted for YVO4 through variation of the HF contribution.
The green dashed lines indicate the point at which the exchange tuning theoretically
reproduces the experimental band gap.

explain this term, we must refer to the definition of fundamental band
gap (𝐸𝐺) for a system of N electrons, which is the difference between
ionization potential (I) and its electron affinity (A) [15]:

𝐸𝐺 = 𝐼 − 𝐴. (1)

Although these two terms are accessible in the main definition of DFT,
the Khon–Sham (KS) band gap is based on the difference between the

eigenvalues of the conduction band minimum (CBM) and the valence
band maximum (VBM):

𝐸𝐾𝑆
𝐺 = 𝜀𝐶𝐵𝑀 − 𝜀𝑉 𝐵𝑀 . (2)

Therefore, these two band gaps are not equal, and the difference
between them is known as derivative discontinuity 𝛥𝑥𝑐 [16,17]:

𝐸𝐺 = 𝐸𝐾𝑆
𝑔 + 𝛥𝑥𝑐 . (3)

The derivative discontinuity of LDA and GGA for solids is zero [14].
Consequently, the band gap obtained by LDA and GGA is underesti-
mated, which may affect the accuracy of optical properties such as
refractive index and absorption coefficient. To solve this issue, many-
body approximations such as GW [18,19] and dynamical mean field
theory (DMFT) [20] are employed. However, the computational cost of
these techniques still remains the main obstacle in their application in
more complex compounds such as YVO4. Another option is to adopt
a one shot GW approach, 𝐺0𝑊0, which is less expensive. However,
the perturbative nature of this approach makes it unsuited for total
energy and structural optimization, which are valuable for treating
systems with defects [21]. One other alternative that is applicable
on solids with defects is the DFT+U method [22]. This technique is
especially attractive since it is computationally more efficient with
respect to hybrid functional. This is of course if we ignore the required
calculation for finding the optimal U value. However, the problem
with this technique is that it is often effective on only one aspect of
the material under study and highly dependent on the type of the
applied DFT method [23]. To clarify, the optimized U value found for
optical properties of a material could not be ideal for other intrinsic
properties of the material under study. It means while the optimal U
value could lead to attaining the experimental band gap, it often could
lead to miscalculation of structural properties such as lattice parameters
and elastic constants [23]. Consequently, the application of DFT+U as
a generic method may not be appropriate. Thus, a screened hybrid
functional with plane-wave DFT is used to trade off the accuracy versus
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speed, and to include the effect of localized electrons. In addition, we
have tuned the portion of exact exchange in HSE06 [24] functional to
increase the accuracy.

In this paper, we specifically examine the electronic and optical
properties of the crystal in the linear response regime. In addition,
the structural and elastic properties of the crystal are also checked to
provide the most stable structure for the doped system. To summarize,
the objectives of this work are to; (a) evaluate semi-local functionals,
PBE, PBEsol, and AM05 with screened hybrid functional HSE06, (b)
study the effects of impurity configuration on electronic and optical
properties, and (c) observe the effect of impurity concentration on
electronic and optical properties.

2. Theory & method

2.1. Computational method

The calculations are carried out by employing pseudopotential
plane-wave DFT methodology as it is implemented in Vienna ab-initio
Software Package (VASP) [25]. The Y: 4𝑠24𝑝64𝑑15𝑠2, Si: 3𝑠23𝑝2, O:
2𝑠22𝑝4, and Ce: 4𝑓 15𝑑16𝑠2 electrons are treated as valence electrons
whereas the core electrons and electron-ion interactions are treated by
the projected augmented wave (PAW) method [26].

The optimization of unit cells, Fig. 1(a), in the case of PBE [27],
AM05 [28], PBEsol [29] were carried out by setting the cut-off energy
to 550 eV and selecting the conjugate gradient as relaxing algorithm.
The main reason behind this selection is to test the latter two func-
tionals that are specifically designed for solid materials, and to find the
most suitable functional for this compound for follow-up studies. The
sampling of the Brillouin zone was done through implementation of
an automatically generated 𝛤 -centered Monkhorst–Pack grid [30]. In
order to minimize total energy, a 12 × 12 × 13 mesh is adopted for
all calculations, and a convergence threshold of 1 × 10−8 eV was used
to reach self-consistency. The force criterion for geometry optimization
was 0.00001 eV/Å.

Once the standard unit cell of the YVO4 was converged, the elastic
constants of the pure system were calculated using the same cut-off
energy and 𝑘-points. Moreover, a 2 × 1 × 2 supercell Fig. 1(b–f), was
constructed to calculate the formation energy and the optical properties
of the system. This is done to control the impurity concentration in the
system. Besides, four different doping configurations, Fig. 1(b–f), were
considered to observe the effects of impurity configuration. The cut-
off energy was kept constant, 550 eV, whereas the 𝑘-point set for the
supercell was selected to be 3 × 5 × 4. The convergence threshold was
set to 1× 10−6 eV, and the force criterion for geometry optimization
was 0.01 eV/Å.

As the general purpose exchange correlation potentials of LDA
and GGA methods underestimate the band gap of the material, the
hybrid functional is more suitable option to compute properties of a
solid. Among those, screened hybrid functional HSE06 [24] happens
to be performing the best [14]. Nevertheless, the standard HSE06
parameters are not optimal for general purpose as the so called mixing
parameter is dependent on effective static dielectric constant, 𝜀∞, of a
material [31]. Hence, finding the specific values for HSE parameters
could lead to results comparable to multi-body approaches such as the
GW approximation. The general form of the HSE06 functional is given
as,

𝐸𝐻𝑆𝐸
𝑥𝑐 = 𝑎𝐸𝐻𝐹,𝑆𝑅

𝑥 (𝜔) + (1 − 𝑎)𝐸𝑃𝐵𝐸,𝑆𝑅
𝑥 (𝜔) + 𝐸𝑃𝐵𝐸,𝐿𝑅

𝑥 (𝜔) + 𝐸𝑃𝐵𝐸
𝑐 , (4)

where 𝜔 is the screening parameter and specifies the separation range,
𝐸𝐻𝐹,𝑆𝑅
𝑥 is the short-range HF exchange, 𝐸𝑃𝐵𝐸,𝐿𝑅

𝑥 and 𝐸𝑃𝐵𝐸,𝑆𝑅
𝑥 are the

long-range and the short-range components of the PBE functional, and
𝐸𝑃𝐵𝐸
𝑐 is the PBE correlation energy. The parameter 𝑎 is the HF mixing

constant derived from perturbation theory [32]. This parameter, 𝑎, is
the primary tool to obtain our desired accuracy. To fulfill this, the value
of 𝑎 is tuned with respect to experimental band gap (Fig. 2). All the

subsequent HSE06 calculations are carried out using the tuned value
of the 𝑎 parameter.

Although hybrid functionals are computationally more efficient
than many-body approximations, they are still more expensive to run
in comparison with LDA and PBE functionals. To compensate for higher
computational cost of the hybrid HSE06 functional 1 × 3 × 2 and
2 × 2 × 3 meshes are selected for supercell and unit cell, respectively.
In addition, the cut-off energy is set to 10−6 eV from the previous value
of 10−8 eV.

2.2. Defect formation energy

The formation energy is a suitable scale to gauge the thermody-
namic stability of a system since it describes the amount of energy
that leaves or enters the chemical reaction. It can be affected not only
by the Fermi level due to electron potential but also the crystalline
environment that is also related to electron potential. In this work,
we have four different doping configurations in the standard zircon
type unit cell of YVO4 as they are depicted in Fig. 1. Therefore, the
formation energy of each configuration is calculated using Eq. (5),
as it is described in [33]. The four different doping configurations
are represented with the total energy of the doped system in each
configuration.

𝐸𝑓𝑜𝑟𝑚 = 𝐸𝑑𝑜𝑝𝑒𝑑 − 𝐸𝑝𝑢𝑟𝑒 + 𝑛𝑌 𝜇𝑌 − 𝑛𝐶𝑒𝜇𝐶𝑒 (5)

In Eq. (5), the 𝐸𝑑𝑜𝑝𝑒𝑑 is the total energy of Ce3+-doped supercell,
analogously the 𝐸𝑝𝑢𝑟𝑒 is the total energy of the pure system. 𝜇𝑌 and
𝜇𝐶𝑒 are the chemical potential of Y and Ce, respectively. Finally, 𝑛𝐶𝑒
and 𝑛𝑌 are the number of substituted Ce and removed Y, respectively.
The respective chemical potentials are obtained from bulk structure
unit cells with the assumption that the system resides in vacuum
condition. In the rich Y condition the chemical potential of the Yttrium
is extracted from the bulk energy of the element per atom. Similarly,
the Ce chemical potential is extracted from the bulk energy of the
element per atom.

2.3. Optical properties

The determination of optical properties helps us to understand the
absorption spectra and the energy storage capacity of the system under
study. These properties are directly related to a more fundamental
property of the system known as the complex dielectric function. From
the viewpoint of quantum mechanics, the interaction of a phonon with
an electron in the system is described in terms of time-dependent per-
turbations of the ground electronic state, and the transitions between
occupied and unoccupied states are caused by the phonon absorption
or emission. The spectra resulting from excitation can be thought of as
a joint density of states between the conduction and the valence band.
This means the complex dielectric function reflects the relationship be-
tween dielectric function and band structure, and in the linear response
range, the general form of dielectric function is described as below:

𝜖(𝜔) = 𝜖1(𝜔) + 𝑖𝜖2(𝜔), (6)

where 𝜖1 and 𝜖2 are the real and imaginary parts of the complex
dielectric function, respectively. The imaginary is directly related to
the electronic band structure and it can be obtained through the
momentum matrix elements as it follows:

𝜖2(𝜔) = ( 4𝜋
2𝑒2

𝑚2𝜔2 )
∑
𝑖,𝑗 ∫𝐵𝑍 ⟨𝑖|𝑀|𝑗⟩2 𝐹𝑖(1 − 𝐹𝑗 )𝛿(𝐸𝐹 − 𝐸𝑖 − 𝜔)𝑑3𝑘 (7)

where 𝑚 is the free electron mass, 𝜔 is the frequency, i and j are the
initial and final states respectively, 𝑀 is the dipole matrix, and 𝐹𝑖 is
the Fermi distribution function for the 𝑖th state. The real part can be
obtained through the Kramer–Kronig relation,

𝜖1(𝜔) = 1 + 2
𝜋 ∫

∞

0

𝜔′2𝜖2(𝜔′)
𝜔′2 − 𝜔2 𝑑𝜔′. (8)
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Table 1
Lattice parameters.

Type a = b (Å) c (Å) Vol. (Å3) Dev. (%)

Exp. [34] 7.11 6.28 318.68 0
Exp. [13] 7.12 6.29 319.15 0
Exp. [6] 7.12 6.29 320 0
GGA [12] 7.18 6.31 325.50 1.94
LDA [12] 7.04 6.19 306.78 3.91
PBE 7.18 6.31 326.63 2.30
AM05 7.12 6.24 317.25 0.63
PBEsol 7.10 6.24 315.38 1.22
HSE06 7.22 6.36 332.68 4.19
HSE0615% 7.14 6.28 320.97 0.53

Once 𝜖1 and 𝜖2 are identified, other optical parameters, such as
absorption coefficient, and refractive index can be obtained as it has
shown below.

𝛼(𝜔) =
√
2𝜔
𝑐

√√
𝜖21 (𝜔) + 𝜖22 (𝜔) − 𝜖1(𝜔) (9)

𝑛(𝜔) = 1√
2
(
√

𝜖21 (𝜔) + 𝜖22 (𝜔) + 𝜖1(𝜔))0.5 (10)

3. Results

The results of geometric structural optimizations of zircon type
YVO4 unit cell are listed in Table 1. As it can be seen the optimizations
are carried out for several XC functionals. It is worth mentioning that
the experimental data provided in the first 3 rows of the table is used as
the reference to compare the accuracy of the implemented functionals.
The final column of the table dubbed as deviation shows how much
the calculated results deviated from the provided experimental data.
It should be added that deviations are calculated based on volume,
and not on individual lattice parameters. The reference value of the
volume is the average of the three experimental values, which is equal
to 319.27 Å3. The overall agreement of the results with respect to ex-
perimental data is satisfactory. This is especially true for the AM05 and
modified version of the HSE06 [24] (HSE0615%), where the deviation
percentages are 0.63% and 0.53%, respectively. On the other hand, the
highest deviation belongs to the screened hybrid functional HSE06, and
the PBE functional which is one of the most widely used functional.
The deviation of HSE06 might probably be reduced by increasing 𝑘-
points as it is reduced to 2 × 4 × 3. However, the deviation related
to PBE may not be improved as both 𝑘-points and cutoff energy are
set to high values. Hence, the error refers to the fundamental shortage
of PBE, which is the lack of localization in the PBE wavefunction. The
noticeable result in Table 1 belongs to the AM05 that has reproduced
the experimental data with high accuracy and close to hybrid functional
value while it is computationally comparable to LDA and PBE.

In the quest to find the appropriate functional to determine the
optical properties we have also tested the band gap of the YVO4
using all the aforementioned functionals. The results for band gap
calculations are listed in Table 2. Analogous to Table 1, experimental
values are included and their average is chosen as the reference point
to measure the accuracy of the functionals. Additionally, the theoretical
results of the study conducted by Shwetha et al. were also included to
reinforce the reference point [35]. The last row of Table 2 belongs to
HSE0615% functional that is tuned with respect to the average of the
experimental band gap (𝐸𝑔 = 3.75 eV). Fig. 2 shows the steps that
have led to the appropriate portion of HF exact exchange in HSE06
functional. This is the reason the deviation of this functional is set
to zero. As for the rest of the functionals, the absolute value of the
difference between the average of the experimental band gap and the
corresponding functional band gap is calculated and listed in Table 2.
As the results indicate, all semi-local functionals underestimate the
band gap. Among those, the PBE has the highest deviation. Although

Table 2
Band gap of zircon-type YVO4 (the reference value would be the average of
experimental values 𝛥𝐸𝑔 = 3.75).

Band gap (eV) Dev. (eV) Dev. (%)

Exp. [37] 3.7 0 0
Exp. [38] 3.8 0 0
PBE 2.85 0.89 24
AM05 2.91 0.83 22.4
PBEsol 2.88 0.86 23.2
HSE06 4.37 0.62 16.53
TB-mBJ [35] 3.67 0.08 2.13
HSE0615% 3.75 0 0

Table 3
Formation energy of defect, in Y-rich environment.
𝐸𝑓𝑜𝑟𝑚 (eV) Site Dopant Concentration

−1.156 Y1 Ce 25%
−1.146 Y2 Ce 25%
−1.189 Y3 Ce 25%
−1.138 Y4 Ce 25%
−3.437 Y3 Ce 6.25%

Table 4
Elastic constant of zircon-type YVO4.

Type 𝐶11 𝐶33 𝐶44 𝐶66 𝐶12 𝐶13

PBE 221.56 286.81 18.16 44.02 45.30 80.31
PBEsol 245.77 315.60 17.94 45.19 51.16 86.05
AM05 234.10 307.82 15.79 44.54 45.25 83.25
HSE0615% 231.27 301.98 15.71 45.19 44.89 81.91
GGA [12] 216.10 284.80 21.90 45.50 44.30 78.80

the PBEsol and the AM05 show improvement over the PBE, they are
still far from the average experimental band gap value. On the other
hand, the HSE06 overestimates the band gap value just like it did
with lattice parameters. Thus, it reinforces the idea that the HSE06
results can be improved with increasing cutoff and 𝑘-points. In addition,
it must be mentioned that the band gap calculated from Kohn–Sham
equations is the single particle band gap, which is an overestimation
compared to room temperature experimental band gap [36]. It means
the experimental band gap known as optical band gap is normally
smaller in value with respect to single-particle band gap that is cal-
culated at 0 K. Therefore, the calculated band gap with the standard
HSE06 is not necessarily wrong, but it is not calculated for the right
conditions.

The results of the formation energies are listed in Table 3. As it
can be seen, the formation energy for Y3 shows the lowest energy that
implies the ease with which a dopant can be incorporated within the
host lattice. The last row of Table 3 indicates that the concentration
of impurity has a significant impact on the final value of the formation
energy. The concentration of the Ce3+ in the last system is reduced from
25% to 6.25% in the last row. A comparison between those two values
of concentration implies that the higher the concentration the lower
the stability of the compound.

To further reinforce the validity of our calculations, elastic constants
were also calculated and compared in Table 4. The last row of this
table exhibits the theoretical calculation of elastic constants, which can
be used as a reference point. Overall, the calculated constants in this
work are standing slightly higher than the reference with exception
of 𝐶44 and 𝐶66. The calculated values of constants in this work are in
good agreement with each other, especially the values for AM05 and
HSE0615% as it was the case for lattice parameters in Table 1.

3.1. Electronic properties

As electronic structure is the main property that gets affected by
shortcomings of semi-local XC functionals, we ignored the inclusion of
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Fig. 3. Partial density of states of the pure (a), and doped configurations (b–f) based on HSE0615% functional. The (f) is a 2 × 1 × 2 supercell.

semi-local functionals in this section. Fig. 3 depicts partial density states
(PDOS) of all four configurations calculated using only HSE0615% XC
functional. In this figure, except Fig. 3(f) that is a 2 × 1 × 2 supercell,
all other structures are basic unit cells of the YVO4 (Fig. 1(a)). This
is done to keep the computational cost as minimal as possible, and
the fact that increasing cell size only increases the number of states
at the corresponding energy level without affecting the peak locations
and band width.

The Fig. 3 shows that the O-2p is the sole constituent of VBM and V-
3d orbitals lies at the conduction CBM, and the localized Ce-4f states lie
between aforementioned orbitals. Of course the localized behavior of 4f
electrons can be related to its position according to Aufbau rule. The 4f
orbital is shielded by 5s & 5p from the nucleus’s side and 5d & 6s from
the outer side. This position makes 4f electrons to act like an atomic
orbital, and this is why 4f orbitals form an almost identical structure in
all configurations. Nevertheless, the narrower shape and higher peak of
the 4f in Fig. 3(f) is due to lower concentration of impurity and larger
size of the cell. Moreover, since the overall composition of VBM and
CBM remains unchanged during doping one can deduce that the doping
does not affect the overall contribution of atoms to electronic structure.
On the contrary, doping does affect the band width. A quick comparison
between pure structure (Fig. 3(a)) and the doped structures prove the
reduction of O-2p → V-3d band width. In the figure, the smallest band
width belongs to Y1 configuration with the value of 2.61 eV, while
the largest band width belongs to Y4 configuration that is 3.61 eV. In
any case there is a clear reduction of band width in doped structures
compared to pure structure where the band width was 3.75 eV. The
average band width reduction is 0.76 eV and the closest value to it
belongs to Y3 configuration (0.73 eV).

Aside from the band width reduction, the figure also shows the
shift of VBM to lower energies when doping occurs. This behavior
can be explained by comparing elemental PDOS of pure structure with
doped ones in Fig. 4. The appearance of Ce-p around −15 eV and
broadening of Y-p around −17 eV in doped structures are the main
cause of the down shifting of VBM. To clarify, as there are more
states in lower energies at Ce-p, electrons tend to fill them up first.
Moreover, the broadness of Y-p creates even more states to be filled
around −17 eVs that shift down the VBM even further. This explanation
can be reinforced through comparison of Y1 VBM (Fig. 4(b)) with
other doped systems. The VBM states stay at higher energy level in
Y1, (∼ −0.6089 eV), because the Y-p states has not been broadened
as much as others. As the VBM shifts down to lower energies the CBM
states also shift down. The amount in which the CBM states shift is
comparable to downward shift of VBM as it can be seen in all unit
cell doped structures. Nonetheless, the largest CBM shift belongs to
6.25% doped structure (Fig. 4(f)), which is mainly caused due to bigger
size of supercell. The higher number of ions in each supercell can be

Table 5
Static dielectric constants.

𝜖𝑥𝑥 = 𝜖𝑦𝑦 𝜖𝑧𝑧
Exp. (15 ◦C) [40] 3.7818 4.6164
PBE 3.9357 4.8122
AM05 3.9831 4.8643
PBEsol 4.023856 4.909342
HSE0615% 3.9760 4.7346

interpreted as higher number of charge carrier which in turn pushes
the VBM to higher energies; in addition, lower Ce3+ concentration leads
to less number states of Ce-p at −15 eV which may lead to lesser pull
effect on Fermi level. The same is true about CBM level in this structure,
since there are higher number of states available for Vd the CBM is
pushed slightly toward Ce-4f states. Adding this shift with total shift
of band width due to existence of Ce-p and broadness of Y-p, results
in large shift of CBM in this structure toward VBM. This is the main
reason this structure has the shortest band width (2.6256 eV) after Y1
configuration despite the fact that Y-p is well broadened (Fig. 4(f)).

3.2. Optical properties

Table 5 shows the static dielectric constant values for several XC
functionals. The table shows close results, except for PBEsol. If we
consider the experimental results as the reference, both the AM05 and
the HSE0615% are in good agreement. This is important since the AM05
functional in terms of computational expense is comparable to the LDA
and the PBE while it has produced close results both to HSE06 and
experimental. It should be added that the static dielectric constant for
the hybrid functional cannot be directly calculated in VASP. As a result,
the values shown in Table 5 are actually derived from the frequency
dependant dielectric function of HSE0615%, where the static dielectric
constant considered to be 𝜖(0).

The optical properties of the Ce3+-doped YVO4 with different XCs
and the pure host are compared in Fig. 5. In the figure, the main
two properties under study are absorption coefficient, 𝛼, and refractive
index, 𝑛. Both of these properties are relevant in laser host applications
as both are directly related to the luminescence and birefringence of
a crystal. It should be added that the AM05 functional is employed to
carry out all the optical calculations for this figure, and the number of
bands for dielectric function calculations were set to 540. Finally, both
doped and pure systems have the 2 × 1 × 2 supercell structure to ease
the comparison. The available configurations are shown in the legend
of Fig. 5 as Y1 to Y4. The naming convention is associated with the
position of Ce3+ ion in the host material as it is shown in Fig. 1(a). As
we can see in Fig. 5(a), the refractive index undergoes a sudden drop
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Fig. 4. Elemental partial density of states of the pure (a), and doped configurations (b–f) based on HSE0615% functional. The (f) is a 2 × 1 × 2 supercell.

Fig. 5. Absorption coefficient & refractive index of pure YVO4 & Ce3+-doped YVO4 for 2 × 1 × 2 supercell with the AM05 functional. The experimental values for refractive
indices in both directions are taken from Shi et al. [39].

in the infrared region in both directions. The appearance of the well is
only visible in doped structures, which suggests it is due to existence
of impurity. At the 𝑥𝑥-direction, from the deepest to the shallowest the
order of the well is Y2, Y4, Y1, and Y3, respectively. While the order in
the 𝑧𝑧-direction organized as Y4, Y3, Y1, and Y2. Then in visible light
region onward, the curves of all configurations follow the same pattern
as pure structure curve with Y3 configuration curve being the closest
in 𝑥𝑥-direction and to some extent in 𝑧𝑧-direction. It should be added
that the curves of doped structures are blue shifted with 0.2–0.4 eV in
𝑥𝑥 and with 0.4–0.6 eV in 𝑧𝑧 direction. In absorption coefficient curves
(Fig. 5(c & d)) however, no blue shift occurs in the infrared and in the
visible light region. However, we do see a peak at infrared region, the
order of peaks from the highest to lowest in 𝑥𝑥-direction is Y2, Y1, Y4,

Y3 and in 𝑧𝑧-direction is Y4, Y3, Y1, Y2. In case of Y2 we observe a
second peak in visible region in 𝑥𝑥-direction and a rapid upward trend
in 𝑧𝑧-direction. One other anomaly that exists in doped structure curves
is the starting value for the refractive indices. This can be seen in the
infrared region of Fig. 5(a & b), where the value of doped systems
asymptotically increases as we approach zero on the 𝑥-axis. The blue
dashed lines in Fig. 5 belongs to pure crystal, and it is the only curve
in the figure that starts from a reasonable value.

To overcome the observed anomaly in the previous figures, the
HSE0615% calculations are presented in Fig. 6. Additionally, two dif-
ferent doping concentrations are presented to visualize the effect of
concentration. The AM05 curve of the pure system is also included
in the same figure to compare the results between the AM05 and
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Fig. 6. Absorption coefficient & refractive index of pure YVO4 & Ce3+-doped YVO4 with the AM05 and the HSE0615% functionals. The experimental values for refractive indices
in both directions are taken from Shi et al. [39]. Note: The plots of the full spectrum between 0–50 eV is available in Appendix A.

the HSE0615% functional. In this figure, the pure systems and 6.25%
concentration system are in 2 × 1 × 2 supercell with 540 number of
bands, and the rest of the doped systems are kept in a basic unit cell
with 180 number of bands. The pure curve of HSE0615% is blue shifted
close to 1 eV in both refractive indices and absorption coefficients.
Nevertheless, the HSE0615% pure system follow a gradual almost linear
upward trend up until the end of visible region and then experience
a peak in UV region while the same peak occurs right at the end of
visible region for AM05 curve. In doped structures, there is a sudden
jump of value with respect to pure structures at 𝐸 = 0 for refractive
indices in both directions, Fig. 6(a & b). It should be also mentioned
that the system with 6.25% doping has the lowest value ( = 1.95)
among the doped systems of refractive index at 𝐸 = 0 in 𝑥𝑥-direction
while it possess the highest value in 𝑧𝑧-direction ( = 2.73). Right
after this sudden jump we observe a downward trend in the infrared
region of both directions of n in doped systems, although the trend
is more pronounced in 𝑧𝑧-direction. The highest deviation between
configuration also occurs at the infrared region, and specifically at
around 𝐸 = 0. While the deviation in 𝑥𝑥-direction is 𝛥𝑛𝑥𝑥 = 0.69, the
value for 𝛥𝑛𝑧𝑧 = 0.30. The last point here is the experimental values
of the pure structure that are plotted in the range of 0.92 to 2.58
eV. The measurement is carried out by Shi et al. at room temperature
(20 ◦C) [39]. As we see in both directions the slope of the experimental
curve agrees with both AM05 and HSE0615% functionals in the desig-
nated range, although the agreement is more accurate in 𝑧𝑧-direction.
Moreover, it should be added that the experimental curve is much
closer to the AM05 curve in both directions. However, towards the end
of the experimental curve the AM05 curve starts to gain an upward
momentum while the HSE0615% curve remains more or less parallel
with the experimental curve throughout the designated range, which
may suggest further deviation of the AM05 curve from experimental
curve if the range was larger. In case of absorption coefficients, there is
no absorption in the infrared and visible region for the pure structures.
However, the absorption occurs in all doped structures in the infrared

region and visible regimes of 𝑥𝑥-, and 𝑧𝑧-directions (Fig. 6(c & d)).
The absorption peaks occur specifically in the infrared region in both
directions with the exception of the Y4 configuration in 𝑧𝑧-direction,
where it has broadened between the infrared and the visible regions.
The peaks do not follow any specific order, hence, it is different in
each direction. However, just like the refractive indices the curves
follow the same pattern in 𝑥𝑥-direction with Y1 having the lowest
peak as it had the smallest O-2p → V-3d gap. Right after Y1, the Y3
with 6.25% concentration has the lowest peak as it had the smallest
gap after Y1 as well. The remaining configurations do not follow the
band width order. In 𝑧𝑧-direction the peaks are more prominent and
broader, and the peak order does not follow the band width order
with the exception of the Y1 and Y3 with 6.25% concentration as
we have seen in 𝑥𝑥-direction. Hence, the absorption figures suggest
that the band width of related configuration has greater effect on
absorption than concentration of the impurity. We can see this in the
infrared region of both directions, where the peak of Y1 with 25%
concentration is lower than the 6.25% concentration structure. Since
the band width variation is due to impurity configuration, one can infer
that configuration selection can be effective in absorption tuning.

4. Discussion

Based on the results in this work we have observed that not only
concentration percentage and cell size change the band width but also
the location of the impurity changes the band width. As we discussed
earlier this is mainly due to configuration dependent broadness of Y-
p. The most notable effect of this, is the shrinkage of band width at
Y1 configuration where the band width shrunk 1.14 eV. At the same
time the Y2, Y3 and Y4 configuration each shrunk 0.70, 0.73 eV and
0.17 eV, respectively. One other effect of impurity configuration was on
formation energy, where we found a maximum variation, |𝛥𝐸𝑓𝑜𝑟𝑚| =
0.051 eV, among Y3 and Y4 configurations. Nevertheless, the effect
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of impurity concentration is recorded to be much higher in which
the formation energy dropped to −3.43 eV. The overall effects of
configuration on optical properties are more visible in 𝑧𝑧-direction than
𝑥𝑥-direction. The refractive index curve in 𝑧𝑧-direction follow the same
pattern from the infrared to near UV region and then starts to deviate
from each other. Moreover, the absorption coefficient peaks are more
prominent and deviated from each other in this direction (Fig. 6(d)).
The difference in peaks between four configurations with 25% concen-
tration is, 𝛥𝛼𝑧𝑧 = 0.61 cm−1. Aside from the peaks, there is a clear
difference between broadness of these configurations. According to the
𝛼𝑥𝑥 and 𝛼𝑧𝑧 curves the range of the broadness has direct association
with concentration of the impurity than the configuration. As we can
see in Fig. 6(c & d) the 6.25% concentration has a range of (0, ≈2) in
𝑥𝑥- and (0, ≈2.6) in 𝑧𝑧-direction. This is while the broadness difference
in 𝛼𝑥𝑥 between the 25% configurations is negligible and the broadness
in 𝛼𝑧𝑧 is as low as ≈0.16 eV.

It should be mentioned that the AM05 proved to yield results
with good agreement either with previous calculation or experiment
while keeping the same computational cost as PBE. Even though this
work is not a generic study on efficiency and accuracy of AM05, it
is recommendable instead of PBE functional for future studies of pure
and maybe doped YVO4, and might be applicable for other insulators
as well. The areas where the AM05 failed were the electronic and
the optical properties of the doped YVO4. The anomaly in refractive
index and absorption coefficient in the infrared region and possible
misleading trends in the visible light region begs for application of
hybrid or post-DFT calculations. This can be seen through a comparison
of doped systems of the AM05 and the HSE0615% calculations. Even
at a high Ce3+ concentration, 25%, the refractive index should begin
at lower value. To better gauge the estimated value of Ce3+-doped
YVO4, and because experimental data for Ce3+-doped YVO4 refractive
index is not available, the Yb-doped YVO4 values are taken as the
reference. The refractive index for 8% and 15% doped Yb3+ for 𝑥𝑥-
and 𝑧𝑧-directions are 2.021, 2.023 and 2.253, 2.250, respectively [41].
Therefore, the AM05 functional obviously miscalculate the refractive
index of Ce3+-doped crystal with a large margin, which reinforces the
usage of the HSE0615% functional specifically in calculation of optical
and electronic properties of systems with defect. On the other hand,
finding the optimal HSE06 parameter proved to be effective as we have
demonstrated here (Fig. 6), thus, in case higher accuracy is needed the
tightening of convergence threshold would be sufficient to obtain more
accurate results.

5. Conclusion

In summary, it was found that the configuration of impurity has
indeed impact on the electronic structure, formation energy, and opti-
cal properties of the host crystal. The most notables are the variation
of the band width and broadness of the absorption coefficient curve.
The Y3 configuration is identified as the most stable configuration
since it possesses the lowest formation energy and the closest value to
average shrinkage of the band width. In the case of optical properties,
the results demonstrate that doping is most effective in the infrared
and the ultraviolet regions for both absorption and refractive index
as compared to the visible region. Last but not least, doping concen-
tration increases the absorption, specifically in the infrared region.
In addition, we showed that the AM05 functional fail to capture the
optical properties of the doped system as well as band gap value in
the host system. However, the application of AM05 on YVO4 and other
Orthovanadate and maybe for other wide band gap materials seems to
be an appropriate choice as both structural and optical properties of the
host material are captured with good accuracy. Nonetheless, it is shown
that a HSE0615% solves the issue of the anomaly in refractive index
and absorption coefficient while obtaining high accuracy results for
structural properties. Additionally, further improvement of the results
is achievable by selecting tighter convergence thresholds for the hybrid
calculations.
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The transition of energy from the 4f to the 5d state is a fundamental element driving various
applications, such as phosphors and optoelectronic devices. The positioning of the 4f ground states
and the 5d excited states significantly influences this energy shift. In our research, we delve into
the placement of these states utilizing a hybrid DFT combined with spin-orbit coupling (SOC) via
the supercell method. Additionally, we scrutinize the transition energy, applying the constrained
density functional theory (cDFT) approach in conjunction with the ∆SCF method. Our study
illustrates that the synergy of cDFT and SOC generates a discrepancy of about 2% for Ce1 and 4%
for Ce2 when comparing the calculated results to experimental data. Moreover, We have determined
the positions of the 4f ground states to be 2.73 eV above the Valence Band Maximum (VBM) for
Ce1 and 2.70 eV for Ce2. We also note a tight correlation between the 5d levels identified in the
experimental data and the theoretical outcomes derived from wave function calculations at the
CASPT2 (Complete Active Space with Second-order Perturbation Theory) accuracy level.

I. INTRODUCTION

The performance of optoelectronic devices and phos-
phors hinges on the optical and electronic attributes of
both host materials and activators. Numerous applica-
tions, including displays [1], white LEDs [2], depend on
the effectiveness of these phosphors and activators. Lan-
thanides (Ln) stand out as preferred activators, owing
to their distinctive electronic structure and the transi-
tion from 4f to 5d levels. This specific transition gen-
erates a notable yet broad peak in both absorption and
emission spectra. The form and intensity of these peaks
heavily rely on the host lattice, affecting the energy dif-
ference between the Ln dopants’ lowest 4fn level and the
first 4fn−15d level, as reported by Qin et al. [3] Con-
sequently, the precise positioning of the Ln 4f and 5d
levels is crucial, influencing intensity, energy transitions,
Ln valence, luminescence, and charge carrier trapping
properties [4, 5]. This underlines the importance of ac-
curately understanding the 4f and 5d levels’ locations in
Ln ions for the creation of efficient optoelectronic devices
and phosphors.

A prominent optical material is Y2SiO5 (YSO) doped
with Rare-Earth (RE) ions, particularly Ce-doped YSO,
recognized for its scintillation properties. Its lumines-
cence has been thoroughly probed, both experimentally
[6, 7] and theoretically[8]. However, previous theoreti-
cal investigations into Ce-doped YSO using the ab initio
model potentials (AIMPs) method encounter limitations
due to their dependence on empirical data and the accom-
panying computational expenses [9, 10]. This reliance
restricts the AIMP model’s adaptability to various host
materials and RE ions. Given YSO doped with RE’s sig-
nificant potential as an optical material, it is essential to

∗ Corresponding author
† Department of Mechanical Engineering Sciences, Division of Me-
chanics, Materials, and Component Design, Lund University
P.O. Box 118, SE-221 00, Sweden; amin.mirzai@mek.lth.se

delve into fresh theoretical avenues. Such strategies must
efficiently and precisely discern luminescent characteris-
tics, ensuring their broad material applicability without
compromise.

RE ions in inorganic compounds are typically excited
from 4f → 5d using either quantum chemistry meth-
ods or solid-state methods. Quantum chemical tech-
niques, such as coupled-cluster (CC) [11] and complete
active space self-consistent field (CASSCF) [12], are
highly accurate but are often used for finite-sized solids
and molecules due to their computational cost. Time-
dependent density functional theory (TDDFT [13]), de-
spite its success in closed-shell molecules, is still not well-
tested for larger molecules and solids, especially those
with open shells [14]. Furthermore, TDDFT has only
been applied to systems with defects using clusters to
approximate infinite solids [14]. Many-body perturbation
theory (MBPT) based on GW approximation is another
solid-state technique that corrects the Kohn-Sham eigen-
values of a traditional DFT with quasi-particle correc-
tions [15]. GW + BSE correction of MBPT is currently
the best approach for studying the optical properties of
solids [16]. However, its application is limited to small
molecules and high-symmetry solids due to its compu-
tational cost. Therefore, running calculations for defect
studies using supercell sizes is not feasible [17]. Addi-
tionally, it is not possible to calculate forces on atoms in
solids using this approach.

To address the limitations of DFT for calculating ex-
citation processes and to overcome the limitations that
are offered by the aforementioned excitation approaches,
we employ the constrained DFT (cDFT) [18, 19]. This
method is an adaptation of generic DFT that partially
mitigates its shortcomings, enabling the calculation of
excitation processes [18]. Although cDFT does not offer
excitonic effects by itself, it has proven to be an effective
approach for simulating neutral excitation in molecular
and solid systems [17, 20]. It has also been used in high-
throughput studies of Ln scintillators, as demonstrated
in the works of Canning et al. [19] and Jia et al. [16, 17].
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In this paper, we aim to determine the energy transi-
tions of the Ce3+ ion doped in YSO host through a com-
plete ab initio technique. To enhance the accuracy of our
calculations, we include the Heyd–Scuseria–Ernzerhof
(HSE [21]) functional with the Spin-Orbit Coupling
(SOC) effect. It has been demonstrated that electronic
property predictions with the screened hybrid functional
can be comparable to GW0@LDA+ U calculations [22].
Additionally, we construct a supercell of 1x2x1 relative
to the host unit cell to minimize impurity-impurity in-
teractions. The relative energy levels of the 4f and 5d
states of Ce3+ are identified through a combination of
cDFT and hybrid functional calculations. Once the en-
ergy levels are determined, we employ the ∆SCF method
to obtain the 4f→5d transition in the Ce3+ ion.

II. THEORY & METHOD

The initial atomic positions used in this study were
obtained from our previous work [23], in which we char-
acterized the two distinct spectroscopic sites present in
YSO. These sites, known as site1 (Y/Ce1) and site2
(Y/Ce2), are each surrounded by 7 and 6 oxygen atoms
(Figure 1), respectively. These sites with the afore-
mentioned coordination number (CN) belong to X2-YSO
crystallographic form, the other form being X1-YSO has
CN numbers of 9 and 7 [23]. The X2-YSO has a stronger
luminescent intensity in comparison with X1-phase, and
thus it is more crucial for practical application and lumi-
nescent efficiency [24]. The calculations are carried out
by employing pseudopotential plane-wave DFT method-
ology as implemented in the Vienna Ab initio Software
Package (VASP) [25]. The Ce: 5d14f1, Y: 4s24p64d15s2,
Si: 3s23p2, and O:2s22p4 electrons are treated as valence
electrons, whereas the core electrons and electron-ion in-
teractions are determined using the projected augmented
wave (PAW) method [26]. The contribution due to ex-
change and correlation is expressed by the generalized
gradient approximation (GGA) theory as described by
Perdew-Burke-Ernzerhof (PBE) [27], and the partial oc-
cupancy of orbitals was determined using the tetrahedron
method with Blöchl corrections [28]. The cut-off energy
was set to, 520 eV, while the k-point set for the unit
cell was selected to be 4×8×6. The convergence thresh-
old was set to 1× 10−8 eV, and the force criterion for
geometry optimization was 0.00001 eV/Å.

In order to tune the HSE parameters a series of
Gamma-point only calculations were performed. These
calculations are based on the PBE pre-optimized unit cell
of the pure system. First, the percentage of exact ex-
change α, according to Equation 1, was varied to reach
the optimal level, which in this case means obtaining a
band gap value similar to the experimental band gap.
Once, the approximate percentage of exact exchange is
set, the screening parameter ω is tuned. In the end, an
HSE calculation with sufficiently dense k-mesh was cho-
sen to validate the band gap result and tuned parameters.

The subsequent HSE calculations are conducted based on
the tuned parameters.

EHSE
xc = αEHF,SR

x (ω) + (1 − α)EPBE,SR
x (ω)

+EPBE,LR
x (ω) + EPBE

c

(1)

As Figure 2 shows the SOC plays an important role in
the identification of the energy levels especially if we are
dealing with heavy elements such as Ln, due to this fact
we have included the SOC effect. The SOC effect is doc-
umented here using the implemented method in VASP.
The SOC is most effective in the vicinity of the core re-
gion, so the implementation of SOC in VASP is only con-
sidered within the PAW spheres [30]. So, the contribu-
tion of SOC is included using the following perturbed
Hamiltonian (zeroth-order-regular approximation):

H̃SO =
∑

ij

|pi⟩ ⟨ϕi|HSO|ϕj⟩ ⟨pj |, (2)

and the HSO is given below according to the zeroth-
order-regular approximation:

Hαβ
SO =

ℏ2

(2mec)2
K(r)

r

dV (r)

dr
−→σ αβ−→L . (3)

The α and β denote spin up and spin down, and the angu-

lar momentum operators
−→
L are defined as

−→
L = −→r ×−→p .

The V (r) is the spherical part of the effective all elec-
tronic potential within the PAW sphere, and its relation
with K(r) is

K(r) = (1 − V (r)

2mec2
)−2, (4)

where me is the effective mass of the particle and c is
the speed of light. Besides, in VASP inclusion of SOC
effects coincides with the inclusion of relativistic effects.
The core electrons are treated fully relativistic and the
effect for valence electrons is considered through scalar
relativistic approximation [31].

A. Ground State

To simulate a dopant in a periodic lattice, we use
the supercell approach with periodic boundary condi-
tions. We construct a 1×2×1 supercell based on the
pre-optimized unit cell of the host crystal and then re-
place one of the Y3+ sites by a Ce3+ ion. Such supercell
contains 128 atoms, and a Ce3+ doping concentration of
3.125%. This doping concentration of Ce3+ is usually
higher than the experiments. However, the distance be-
tween these Ce3+ ions in the periodic cells are greater
than 12 Å, which is sufficiently large to reduce the pos-
sibility of interaction between impurities. We then relax
the atomic positions while keeping the cell dimensions
fixed. Once the supercell is relaxed, we perform a ground-
state calculation to determine the position of the Ce-4f
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FIG. 1. Schematic view of impurity sites in X2-YSO. Site1 with coordination number 7, and site2 with coordination number 6.
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FIG. 2. The source and magnitude of the energy level split-
tings in 4fn→5d configuration. The figure is adapted from
reference [29].

level relative to the valence band maximum (VBM) of
the host material. The occupied 4f level is typically very
localized and atomic in nature and has almost no band-
width, so the VBM-4f gap is well-defined. Nevertheless,
a modified HSE calculation was performed to improve
the positioning of levels. The cut-off energy is kept at
520 eV, and the conjugate gradient algorithm is used to
relax the system. The sampling of the Brillouin zone was
done by implementing the Γ-point only kpoint grid. A
convergence threshold of 1 × 10−6 eV was used to reach
self-consistency.

B. Excited State

Two distinct methods are employed for calculating ex-
cited states. The first is the constrained occupancy ap-
proach. This method begins by calculating the ground
states. The energy eigenvalues are then analyzed to iden-

Configuration Coordinate

Etot

4f

5d

g0

g1

e∗0

e∗1

FIG. 3. Configuration coordinate diagram

tify levels with 4f and 5d character. To mimic the effect of
a photon removing an electron from valence 4f and trans-
ferring it to 5d, the 4f levels are manually emptied, and
the lowest-lying 5d-like band is filled. Kohn-Sham (KS)
eigenvalues and total energies for ground and excited
states are subsequently determined. Since KS eigenval-
ues cannot replace optical transition levels [32, 33], only
the difference between total energies (∆SCF) of these
two states is considered for energy transition. Absorp-
tion energy is obtained using ∆SCF, represented as Eabs

= e∗0 - g0 in Figure 3. Later, the constraint on occu-
pancy is lifted, allowing the perturbed lattice to relax
due to a change in its electronic configuration. This re-
laxation pertains only to atomic positions, leaving the
lattice vectors unaltered. This state, depicted in Figure
3, is denoted as g1, and the emission energy is calculated
as Eems = e∗1 - g1 . The Stokes shift is determined by sub-
tracting the absorption energy from the emission energy.

In the latter approach, a relaxed Ce-doped 1x2x1 su-
percell, acquired during ground state calculations, un-

123



4

VBM

CBM

a

4f

b
5di

Eg

FIG. 4. The transition energy: The host valence band max-
imum of the corresponding cell is subtracted from occupied
4f eigenvalue (a = 4f −V BMhost). Then 5d eigenvalues that
are obtained from +1-charged supercell calculation are sub-
tracted from the host conduction band minimum of the cor-
responding cell (b = CBMhost − 5d). Lastly, the two values
are subtracted from the calculated host band gap, Eg=7.4013
eV. 4f→5d= Eg - a - b.

dergoes two separate HSE calculations for each Ce site.
Initially, a neutral HSE calculation is conducted to deter-
mine the ground state location of 4f states when a 4f level
is occupied. Additionally, a modified HSE functional re-
laxes a mono-positively charged supercell structure of Ce-
doped YSO. This process, which adheres to the Frank-
Condon principle [34], reveals the electronic structure of
excited states at the conduction level and ascertains the
location of low-lying 5d states. The next step involves ob-
taining the 4f → 5d transition energies by analyzing the
4f eigenvalues from a neutral calculation and subtracting
them from the valence band edge of the corresponding
host cell, expressed as a = 4f - VBMhost. Additionally,
the 5d eigenvalues of the Ce impurity are identified by
evaluating the mono-positively charged calculation. The
crystal field effect eliminates the degeneracy of the 5d
levels, as depicted in Figure 7 (b & d), allowing the de-
termination 4f to 5di where i is the indices for different
5d orbital orientations.

Before determining the transition energies, the 5di
eigenvalues are subtracted from the corresponding host
conduction band minimum (CBM), expressed as b =
CBMhost - 5di. Finally, the transition energies between
4f→5di are computed by subtracting a and b from the
experimental or modified band gap energy of the host in
its primitive cell, expressed as 4f→5di = Eg - a - b. This
entire process is visually outlined in Figure 4.

As we mentioned earlier the KS eigenvalues are not
considered true states of the system, however, since we
only consider their energy difference and we subtract
these energy differences from the KS band gap, one
should end up with a true value that can be considered
as true transition energy between 4f & 5d states.

FIG. 5. Tuning of HSE parameters based on the experimental
band gap. The data points are extracted from Gamma-point
only calculations. As can be seen in the figure, the experi-
mental band gap gets reproduced at α = 40% exact exchange
and ω = 0.19 screening.

TABLE I. Band gap of C2/c Y2SiO5. This study: *.

Material Method Band gap (eV)

Y2SiO5 Exp. 7.4 [35]
Y2SiO5 Exp. 7.4 [36]
Y2SiO5 PBE 4.82 [10]
Y2SiO5 PBE∗ 4.819
Y2SiO5 mBJ 6.14 [10]
Y2SiO5 HSE∗ 7.40

III. RESULTS & DISCUSSION

In the initial stage of our study, we diligently fine-
tuned the parameters of the HSE functional to match
the experimental band gap, which are tabulated in Ta-
ble I. Our parameter optimization process is presented
in Figure 5, which reveals that the optimal value for the
fraction of HF exact exchange α is 0.40, while the screen-
ing value µ is 0.19. Notably, these values were derived
from a Gamma-point only HSE calculation, and we sub-
sequently validated them using a kpoint mesh of 1×3×2.

The information provided in Table II illustrates the
variation in bond lengths at site1 and site2. This change
in bond length during excitation can be understood
through the Franck-Condon Principle [37, 38], which ex-
plains that during an electronic transition such as ioniza-
tion, the nuclear arrangement of the molecule initially re-
mains largely unchanged due to the nuclei’s significantly
greater mass compared to electrons. This results in the
electronic transition happening quicker than the nuclei’s
response. However, post-transition, the nucleus has to
realign itself to the new electronic configuration, a pro-
cess that involves vibration, and a rhythmic motion of the
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atoms in the molecule relative to each other. This motion
can bring about a change in the bond length. Moreover,

TABLE II. Bond lengths (in Å) of Ce3+ at site1 & site2 in
ground and excited states.

Bond length site1 - gr. site1-exc. site2-gr. site2-exc.
Ce-O1 2.32 2.29 2.297 2.219
Ce-O2 2.49 2.46 2.411 2.368
Ce-O3 2.71 2.70 2.373 2.307
Ce-O4 2.38 2.32 2.390 2.335
Ce-O5 2.49 2.50 2.385 2.326
Ce-O6 2.44 2.40 2.391 2.337
Ce-O7 2.45 2.28

when a transition from the 4f to the 5d states occurs,
electrons are moved from the inner 4f shell to the more
external 5d shell in an atom’s electronic configuration.
In such a scenario, bond length generally decreases. The
underpinning reason for this decrease is the alterations in
the orbital overlap’s nature and magnitude, along with
the differences in shielding and penetration abilities be-
tween 4f and 5d electrons [39]. This explanation supports
the data in Table II, where the bond length has almost
decreased in all cases in both sites except for the Ce-O5

at the site1.
Figure 6 displays the projected density states of pure

YSO using the modified HSE functional, which results in
a band gap value that is identical to experimental mea-
surements. The dominant states at the VBM are Op

orbitals, whereas Yd orbitals are the main constituents of
the CBM.

In the lower section of Figure 6, we observe the effects
of SOC on the electronic structure of YSO. The band gap
calculated without SOC yields a value of 7.40130, while
the inclusion of the SOC effect slightly enlarges the band
gap to 7.42130. This difference corresponds to an in-
crease of 20 meV. Notwithstanding the small alteration
in the band gap energy, the constitution of the VBM and
CBM remains essentially invariant, with a minor shift
ascribed to SOC effects. This limited shift is predom-
inantly attributable to the constituent elements of the
system. Neither silicon nor oxygen, being lightweight el-
ements, produce a significant SOC effect. Concurrently,
the heaviest atom in the system, Yttrium (Y), doesn’t
have a noticeable impact on the SOC effect since it is
still categorized as a light element according to Russell-
Saunders coupling theory, where it states elements with
Z < 40 is considered as light [40]. Consequently, the cu-
mulative effect of SOC on the physical properties of pure
YSO is deemed insignificant.

Table III presents the calculated absorption and emis-
sion energies, as well as the Stokes shift. The calcula-
tions were performed on a YSO standard unit cell with
64 atoms, as it has been demonstrated by Jia et al. [41]
that the energy difference between cells with 64 atoms
and 128 atoms is negligible. Even though the compound
studied by Jia et al. is Lu2SiO5 (LSO), the structure

TABLE III. Calculated total energies, absorption, and emis-
sion energies of Ce : Y2SiO5 based on cDFT approach.

Site1 (eV) Site2 (eV)

Eg0 -746.058 -745.744
Ee∗0 -741.929 -741.868
Eg1 -746.058 -745.744
Ee∗1 -742.121 -742.346
Eabs 4.130 3.876

Eabs[6] 3.41 3.30
Eems 3.938 3.398

Eems[6] 3.12 2.73
Stokes shift 0.191 0.478

of the cell is identical (C2/c). Thus, we opted to use
the 64 atoms cell for the cDFT approach as it is a more
cost-effective option.

The results show larger calculated values for absorp-
tion and emission at both sites, compared to the exper-
imental values. The discrepancy between the calculated
and experimental values is approximately 0.7 eV for both
energies at Ce1, while at Ce2, the difference is slightly
smaller, around 0.5 eV. A possible reason for this mis-
match is the lack of consideration of SOC in the calcula-
tions. This connection can be inferred easier by referring
to Figure 2, which shows that the magnitude of the SOC
effect is on the order of 1000 cm−1 (0.12 eV), comparable
to the observed discrepancy.

It is worth noting that SOC is a relativistic correction
that affects heavier atoms more significantly, and since
Ce has unpaired electrons, the SOC effect on this atom
is likely to be more pronounced. Hence, it is reasonable
to focus on the SOC correction that corresponds to Ce,
represented by Esoc.

In VASP, Esoc is defined as the energy difference be-
tween two collinear spin configurations, where the spins
are oriented parallel and anti-parallel to the quantization
axis. The quantization axis is defined by the direction of
the external magnetic field or the preferred orientation
of the magnetic moments in the system. Thus, by calcu-
lating Esoc, we can account for the effect of SOC on the
electronic and magnetic properties of the system, and it
is defined as follows:

Esoc =
∑

ij

Eij
soc, (5)

Eij
soc can be expanded as,

Eij
soc = δRiRj

δlilj
∑

nk

ωkfnk
∑

αβ

⟨ψ̃α
nk|p̃i⟩

⟨ϕi|Hαβ
soc|ϕj⟩ ⟨p̃j |ψ̃β

nk⟩ , (6)

where, ωk is k-point weights, fnk is the Fermi weights, ϕi
are the partial waves of an atom centered at Ri, ψ̃

α
nk is

the α Spinor-component of the pseudo-orbital where its
band-index is n and Bloch-vector is k [30].
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We observed two distinct values of Esoc for the absorp-
tion and emission processes. So, we applied them sepa-
rately to account for the differences. The calculated SOC
effects for Ce1 during absorption and emission processes
are Esoc=-0.65396 and Esoc=-0.77685 eV, respectively.
Similarly, the Esoc for Ce2 during absorption and emis-
sion processes are Esoc=-0.65397 and Esoc=-0.77850
eV, respectively. The SOC-corrected values of absorp-
tion and emission energy are listed in Table IV, and they
are obtained by adding the corresponding Esoc energy to
the absorption and emission energies presented in Table
III.

The corrected values exhibit an excellent agreement
between experimental and calculated results, particularly
at Ce1. For Ce1, the discrepancy for both absorption and
emission is around 0.05 eV higher than the experiment,
whereas for Ce2, we observe a larger difference at the
order of 0.10 eV lower than the experiment. It is worth
mentioning that these comparisons are made with one
experiment only, and if we compare the calculated ab-
sorption energy with the average of experiments listed
in Table V for Ce1, Eg=3.48 eV, then the discrepancy
becomes almost zero. However, this is not the case for
Ce2, as the average absorption energy for experiments at
this site is 3.31 eV, while the calculated value is 3.22 eV,
indicating a difference of 0.09 eV.

TABLE IV. The SOC-corrected values of absorption and
emission energies. The updated values are achieved by adding
Esoc to the corresponding energies in Table III. This study:
*, Exp. [6].

Site1 (eV) Site2 (eV)

Eabs* 3.47 3.22
Eabs[6] 3.41 3.30
Eems* 3.16 2.62
Eems[6] 3.12 2.73

Stokes shift 0.314 0.602

Figure 7, shows the Density of States (DOS) for the
Ce-doped YSO. The main composition of the VBM and
the CBM is constituted of Op and Yd orbitals, respec-
tively, a configuration similar to that of pure YSO. The
Partial DOS (PDOS) at ground state for Ce-doped YSO
is depicted in subfigures (a) and (b) of Figure 7.

The location of the 4f states within the band gap, as
indicated by Zhou et al. [10], contrasts with our obser-
vations. Zhou et al. reported the 4f states to be 4.78 eV
away from the VBM, a different finding compared to our
analysis. However, the current results align closely with
the findings of Ning et al. [42], who utilized the AIMPs
approach on Ce: LSO. Their research identified the 4f -
VBM gap as 2.81 and 3.07 for Ce1 and Ce2, respectively.
In a related study, Vedda et al. [43] conducted exper-
iments on Ce: LSO, ascertaining the 4f - VBM gap to
be within the range of 2.6 - 2.9 eV. Despite the differ-
ence in the chemical compound of the host, the host still
shares similar crystal (C2/c) and site (C1) symmetries

FIG. 6. PDOS of pure YSO with and without SOC.

for the Ce dopant. These consistent findings across dif-
ferent studies suggest that the VBM-4f gap in Ce: YSO
aligns well with previous studies.

For more comprehensive comparison, the Dorenbos
model can be employed. [4, 44]. The Dorenbos relation is
an empirical model that is widely used to estimate the en-
ergy of 4f of trivalent and divalent Ln ions in a given host
lattice based on the peak position of the lowest 4f→5d
level of at least one of the Ln ions in that host. Based
on this empirical approach and with the use of experi-
mental data for Ce, and Pr-doped YSO and LSO, Kolk
together with Dorenbos et al. have produced the prob-
able location of 4f and the lowest lying 5d levels inside
the band gap for all the Ln in YSO [45]. The estimated
value that they have obtained for the 4f - VBM gap is
around 3.53 eV. It should be added that they have not
identified this value to a specific site, Ce1 or Ce2, as they
mention their data for the photocurrent experiment do
not show any doublet structure [45]. Lastly, the inclu-
sion of SOC has shifted the 4f ground states by 0.20 eV
at both sites. This has reduced the 4f-VBM gap down at
Ce1 to 2.73 eV, and to 2.70 eV at Ce2. With this shift,
the agreement with the experimental work of Vedda et
al. has improved [43].

Figure 7(c & d) illustrates the mono-positively charged
state of Ce-doped YSO. At this phase, all atomic posi-
tions are held consistent with the neutral Ce-doped YSO
to generate an excitonic effect. This effect occurs be-
tween the hole at the VBM and an electron in one of Ce’s
lower 5d states, adhering to the Franck-Condon principle.
These low 5d states, close to the CBM, display notable
splitting due to the crystal field (CF), marked in red. A
comparison of the red peaks at Ce1 and Ce2 highlights
more prominent peaks or splittings at Ce2 in both SOC
and non-SOC scenarios. This observation is attributed to
the smaller size of Ce2 compared to Ce1. Therefore, the
CF splitting is stronger at Ce2 than Ce1, which agrees
with previous studies conducted using DFT+CASPT2
[8, 10].
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FIG. 7. Orbital projected DOS of Ce-doped YSO, at Ce1 and Ce2 in a 1x2x1 supercell. The blue-filled states indicate the 4f
orbitals of the Ce3+ while they are occupied: (a) & (b). When 4f states are unoccupied, we can observe the 5d states in the
band gap that are filled in red. The black dotted lines show the position of the Fermi level: (c) & (d).

The significant impact of SOC is evident in Figure 7 c
& d, particularly in the lower section where the 5di lev-
els undergo a downward shift towards the VBM at both
sites. This shift measures 0.38 eV at Ce1 and 0.04 eV
at Ce2. Interestingly, the direction of the shift for the
remaining levels is not uniform at both sites. This shift,
combined with the presence of SOC, results in four out
of the five lowest peaks falling within the band gap. A
clearer illustration of the gap between these peaks and
their shifts due to SOC incorporation is provided in Fig-
ure 8. Here, the 5d2−i levels are marked based on their
relative positions to 5d1.

Table V outlines the transition energies from 4f to 5d
in two unique sites of the YSO. Details about the calcula-
tion and methodology used for determining these energy
transitions are elaborated in section II.

The table’s sixth row reveals the computed value of the
non-SOC but HSE functional of the supercell structure.
The initial transition value at Ce1 closely aligns with
the experimental value, with calculated values showing
a minor difference from the experimental average for the
lowest lying 5d: 0.03 at Ce1 and 0.13 at Ce2. This in-
dicates a more precise definition of the lowest lying 5d

level in both experiment and AIMPs calculation at both
impurity sites.

However, the disparity between the experimental and
calculated values grows for the other 5di levels, notably
for the last two, 5d4 and 5d5. Here, the absence of clear,
sharp peaks and the low intensity, as observed in Figure
8, complicate the measurement process. This difficulty
likely accounts for the data deficiency for these two levels,
precluding any comparison.

Incorporating SOC has uniformly reduced the energy
of 5di levels at both sites. At Ce1, the energy shift is ap-
proximately 1600 cm−1 (0.2 eV), and at Ce2, it is about
1000 cm−1 (0.1 eV). These observations align with Wen
et al.’s findings for Ce: YSO, where the shift was around
0.12 eV and 0.1 eV for Ce1 and Ce2, respectively [8].
Moreover, Ning et al. reported a similar 1000 cm−1 shift
for both Ce: LSO sites [42]. However, a distinctive differ-
ence is noted in this study: while previous works reported
an increase in 5d levels with SOC, a decline is observed
here.

Overall, it is hard to state the SOC has uniformly im-
proved all the levels as we observed in the result of cDFT
approach. However, it has certainly improved the agree-
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FIG. 8. Location of 5di levels with respect to lowest lying 5d1 of the Ce atom at Ce1 & Ce2 with and without SOC.

ment with the experimental average at 5d2 Ce1, and at
5d1, 5d3 Ce2.

IV. CONCLUSION

In this study, we investigated the electronic and optical
properties of Ce-doped YSO, with a focus on the 4f→5d
transition. We used a band gap-modified HSE functional
with Gamma-point only and found that the results were
in good agreement with experimental data, particularly
when the SOC effect was included. Although the effect
of SOC was not consistent for all 5di levels, it improved
the transition energies overall, especially when using the
cDFT approach. We observed a consistent overshoot in
the cDFT results compared to experimental data, but
this deviation was reduced with the inclusion of SOC.
Specifically, the deviations between calculated values and
experiments for absorption and emission were 1.75% &
1.28% at Ce1, and 2.42% and 4.02% at Ce2, respectively.

Computational time often hinders SOC+HSE calcula-
tions. Despite this, our research reveals that using the
Gamma-point calculations yield results accurate enough
for comparison with experimental data. Moreover, our
study was conducted on a sufficiently large supercell,
making it useful for large materials without compromis-
ing the environmental effect surrounding the impurity as
is the case with the AIMPs approach. This approach
does not require any assumptions to be made, thereby
reducing one source of uncertainty.

Another constraint is the need for data to fine-tune
parameters. Fore example, the DFT+U approach, which
requires tuning the U parameter for each lanthanide to
accurately simulate the location of 4f electrons in the
band gap. Instead, we employed the HSE+SOC method
combined with a supercell approach. This approach
helped us pinpoint the location of the 4f ground states
within the band gap, taking into account only the asso-
ciated band gap of the host material. Consequently, we
were able to simulate the doped system entirely using first

principles, eliminating the need for any pre-existing data.
Our findings were closely aligned with prior calculations
and experimental data for Ce-doped LSO, despite the
comparatively larger deviation (around 0.7 eV) from the
empirical model developed through the Dorenbos model
for Ce-doped YSO and LSO. Notably, our methodology
showed the most consistent agreement with two distinct
studies on Ce-doped LSO, both theoretically and exper-
imentally. This outcome implies that our approach may
be applicable to other lanthanides and host materials,
even in the absence of significant prior knowledge.

In conclusion, our simpler approach, compared to wave
function methods like AIMPs, could be considered as a
reliable alternative for evaluating phosphors and identi-
fying optical properties in laser materials, even without
prior data. It holds promise for high-throughput phos-
phors applications, though its applicability to other Ln
groups and host materials still awaits confirmation.
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TABLE V. Transition energies, 4f→5di. The procedure for the calculated value in this table is depicted in Figure 4. This
study: *.

4f→5di=1-5(eV)
Ion Site Method 1 2 3 4 5
Ce3+ Ce1 Exp.[6] 3.41 4.03 4.54 - -
Ce3+ Ce1 Exp.[46] 3.55 4.19 4.68 - -
Ce3+ Ce1 Exp.[47] 3.48 4.13 4.72 - -
Ce3+ Ce1 Expavg 3.48 4.11 4.65 - -
Ce3+ Ce1 CASPT2[8] 3.41 4.03 4.46 5.75 6.35
Ce3+ Ce1 HSE∗ 3.511 4.45 4.64 4.92 5.21
Ce3+ Ce1 HSE + SOC∗ 3.27 4.21 4.53 4.65 4.97
Ce3+ Ce1 CASPT2+SOC[8] 3.53 4.16 4.59 5.89 6.49

Ce3+ Ce2 Exp.[6] 3.30 3.80 - - -
Ce3+ Ce2 Exp.[46] 3.32 3.78 4.79 - -
Ce3+ Ce2 Exp.[47] 3.31 3.79 4.78 - -
Ce3+ Ce2 Expavg 3.31 3.79 4.78 - -
Ce3+ Ce2 CASPT2[8] 3.44 3.64 3.91 6.29 7.09
Ce3+ Ce2 HSE∗ 3.44 3.50 4.22 4.85 5.21
Ce3+ Ce2 HSE + SOC∗ 3.30 3.43 4.15 4.79 5.09
Ce3+ Ce2 CASPT2+SOC[8] 3.52 3.76 4.04 6.42 7.21
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[28] P. E. Blöchl, O. Jepsen, and O. K. Andersen, Phys. Rev.

B 49, 16223 (1994).
[29] M. Weissbluth, Atoms and molecules (Elsevier, 2012).

129



10

[30] S. Steiner, S. Khmelevskyi, M. Marsmann, and
G. Kresse, Phys. Rev. B 93, 224425 (2016).

[31] J. Hafner, Journal of Computa-
tional Chemistry 29, 2044 (2008),
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.21057.

[32] R. Stowasser and R. Hoffmann, Journal of the
American Chemical Society 121, 3414 (1999),
https://doi.org/10.1021/ja9826892.

[33] A. Savin, C. Umrigar, and X. Gonze, Chemical Physics
Letters 288, 391 (1998).

[34] J. Coon, R. DeWames, and C. Loyd, Journal of Molecular
Spectroscopy 8, 285 (1962).

[35] L. Muresan, Y. Karabulut, A. Cadis, I. Perhaita, A. Can-
imoglu, J. Garcia Guinea, L. Barbu Tudoran, D. Silipas,
M. Ayvacikli, and N. Can, Journal of Alloys and Com-
pounds 658, 356 (2016).

[36] X. Zhang, L. Zhou, Q. Pang, J. Shi, and M. Gong,
The Journal of Physical Chemistry C 118, 7591 (2014),
https://doi.org/10.1021/jp412702g.

[37] J. Franck and E. G. Dymond, Trans. Faraday Soc. 21,
536 (1926).

[38] E. Condon, Phys. Rev. 28, 1182 (1926).

[39] J. Su, F. Wei, W. H. E. Schwarz, and J. Li, The Jour-
nal of Physical Chemistry A 116, 12299 (2012), pMID:
23148711, https://doi.org/10.1021/jp305035y.

[40] H. N. Russell and F. A. Saunders, The Astrophysical
Journal 61, 38 (1925).

[41] Y. Jia, A. Miglio, M. Mikami, and X. Gonze, Phys. Rev.
Mater. 2, 125202 (2018).

[42] L. Ning, L. Lin, L. Li, C. Wu, C.-k. Duan, Y. Zhang, and
L. Seijo, J. Mater. Chem. 22, 13723 (2012).

[43] A. Vedda, M. Nikl, M. Fasoli, E. Mihokova, J. Pejchal,
M. Dusek, G. Ren, C. R. Stanek, K. J. McClellan, and
D. D. Byler, Phys. Rev. B 78, 195123 (2008).

[44] P. Dorenbos, Phys. Rev. B 85, 165107 (2012).
[45] E. van der Kolk, P. Dorenbos, C. W. E. van Eijk, S. A.

Basun, G. F. Imbusch, and W. M. Yen, Phys. Rev. B 71,
165120 (2005).

[46] V. Jary, A. Krasnikov, M. Nikl, and S. Za-
zubovich, physica status solidi (b) 252, 274 (2015),
https://onlinelibrary.wiley.com/doi/pdf/10.1002/pssb.201451234.

[47] V. Babin, V. Laguta, M. Nikl, J. Pejchal, A. Yoshikawa,
and S. Zazubovich, Optical Materials 103, 109832 (2020).

130


	List of publications
	List of Acronyms
	List of Symbols
	Acknowledgements
	Popular summary in English
	Populärvetenskaplig sammanfattning på svenska
	Introduction
	Optical materials
	Objectives of this work

	Fundamentals of density functional theory
	Density Functional Theory
	Hartree-Fock Approximation
	Hohenberg-Kohn Theorems and Kohn-Sham equations
	Kohn-Sham Framework
	Exchange-correlation functional
	Pseudopotentials

	Beyond density functional theory
	Many-body perturbation theory
	Multiconfigurational methods
	Configuration Interaction
	Complete Active Space-SCF (CASSCF)

	Time-dependent density functional theory
	Constrained density functional theory

	Results & Discussion
	Optical path length
	Phosphor

	Summary and Future Work
	Summary
	Future work

	References
	Scientific publications
	Author contributions
	Paper I: First-principle investigation of doping effects on mechanical and thermodynamic properties of Y2SiO5
	Paper II: A theoretical investigation of optical path length variation of Eu:Y2SiO5 (Submitted)
	Paper III: Influence of impurity configuration on electronic and optical properties of Ce-doped YVO4: Semi-local & Hybrid functionals
	Paper IV: First-principles study of luminescence and electronic properties of Ce-doped Y2SiO5

	Paper I: First-principle investigation of doping effects on mechanical and thermodynamic properties of Y2SiO5
	Paper II: A theoretical investigation of optical path length variation of Eu:Y2SiO5 (Submitted)
	Paper III: Influence of impurity configuration on electronic and optical properties of Ce-doped YVO4: Semi-local & Hybrid functionals
	Paper IV: First-principles study of luminescence and electronic properties of Ce-doped Y2SiO5


