
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Learning to Control the Cloud

Heimerson, Albin

2023

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Heimerson, A. (2023). Learning to Control the Cloud. [Doctoral Thesis (monograph), Department of Automatic
Control]. Department of Automatic Control, Faculty of Engineering LTH, Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/1ef59d79-83a8-4762-a1e5-7ed9115a5d9f

Learning to Control the Cloud

Albin Heimerson

Department of Automatic Control

PhD Thesis TFRT-1142
ISBN 978-91-8039-841-1 (print)
ISBN 978-91-8039-842-8 (web)
ISSN 0280–5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2023 by Albin Heimerson. All rights reserved.
Printed in Sweden by Media-Tryck.
Lund 2023

Abstract

With the growth of the cloud industry in recent years, the energy con-
sumption of the underlying infrastructure is a major concern. The need
for energy efficient resource management and control in the cloud becomes
increasingly important as one part of the solution, where the other is to
reduce the energy consumption of the hardware itself. Resource manage-
ment in the cloud is typically done using relatively simple methods, with
either local controllers or human operators, though as the complexity of the
system increases, the need for more intelligent and automated controllers
increases as well.

The cloud is a complex environment with many individual consumers
sharing large pools of resources, scaling and moving their applications to
satisfy their own objectives and requirements, while the cloud provider
manages the underlying infrastructure to make efficient use of the hard-
ware. This creates a dynamic environment with a highly variable load, and
managing efficient resource usage while keeping the quality of service at
an acceptable level is a complex task for such unpredictable environments.
Both the consumers scaling their resources and the providers managing
their infrastructure could benefit from intelligent automation.

By creating control strategies that take a larger context into account, it
could allow for more informed decisions, and thus better control. A larger
context makes the problem space more complex, and manually designing a
controller becomes increasingly difficult. With the abundance of data avail-
able in many cloud systems, a data-driven approach seems like a natural
choice. Reinforcement learning is a type of machine learning that is well
suited for sequential decisions over time, and has been shown to be able
to learn complex control strategies in many different domains. We explore
the benefits and challenges of applying reinforcement learning methods to
control different cloud systems according to complex objectives, and what
usability concerns that show up in practice.

Starting off, we explore the combined control of cooling systems and load
balancing in a datacenter. Cooling is a major energy consumer in datacen-

3

ters, giving us a natural objective for optimization, and the load balancing
will affect the heat distribution in the datacenter, thus affecting the cool-
ing. In a simple simulated environment, we apply reinforcement learning
to control a mix of discrete and continuous control variables over both cool-
ing and load balancing, with the objective to reduce energy consumption
while adhering to temperature thresholds for the servers. We find that the
controller is able to learn how to efficiently use the cooling system, improv-
ing on a baseline implemented using standard methods. Scaling this up
and adding a more realistic air-flow simulation, we find that the gain from
perfect placement is so small that it is simply generating noise in compari-
son to other factors in the cooling system. Instead, we focus on controlling
the cooling system with the larger observational context, showing that it
outperforms existing standard methods while also being able to adapt to
changes in the system.

We then look at the problem of scaling a web services in a cloud envi-
ronment, where a service is built from many interconnected microservices.
These are typically scaled using local reactive controllers, but employing
a proactive controller should improve the performance. By providing a re-
inforcement learning agent with a view over all the services, it implicitly
learns how different jobs traverse the system, and use this to proactively
scale services, keeping less resources in reserve, and still meeting response
time requirements.

Moving from model-free control, we turn to using an existing fluid model
of a microservice to create a controller. The fluid model is used to simulate
trajectories for a load balancing controller, and using arbitrary loss functions
over the trajectory, we can optimize the parameters of the controller using
automatic differentiation. The resulting controller behaves well, though
we only take a single gradient step to ensure stable updates, since the
accuracy of the fluid model is reduced as the system moves away from the
training data. We then show how an imperfect model can be extended with
neural networks to capture unmodelled dynamics. For the fluid model, the
increased accuracy from the extended model allows for more steps and thus
faster policy convergence.

While we find that RL can indeed be used to create policies that improve
on standard control methods, there are several usability concerns that arise
when applying these methods to real systems. The main issue is the in-
stability of the whole process, from exploration during training driving the
system to bad states, to opaque function approximators making it difficult
to ensure that the controller behaves as expected when deployed. While
we discuss several methods to mitigate these issues, what actually works
is highly dependent on the specific system and the requirements on the
controller.

4

Acknowledgements

In my journey towards a PhD I have had the pleasure of being surrounded
by many wonderful people. While I cannot list everyone here, I would like
to thank all of them for providing many fond memories, and for helping me
grow as a person and researcher.

I would like to thank the department of Automatic Control at Lund Uni-
versity for providing a great workplace and for supporting me throughout
my PhD. And to Eva, Mika, Cecilia, Monica, Anders N and Anders B, thank
you for always being there to help with all the practicalities of being a PhD
student.

A special thanks go to my supervisor Johan Eker, who have been there
to discuss the ideas I pursued, helping me find motivation when I needed it,
and providing valuable feedback on my work. I have learned a lot from you,
and I am grateful for the opportunity to work with you. And I thank my co-
supervisor, Karl-Erik Årzén, for providing valuable feedback and guidance
throughout the years.

I was often a bit alone in my research, and really appreciate the times I
got to collaborate with other people at the department. Kristian and Bo, I
appreciate being invited to investigate Covid spread models with you, it was
a great experience and I learned a lot. And thank you Bagge, Mattias and
Olof for engaging me with the Julia language, it became a source of much
inspiration and even more procrastination during my PhD. And Johan R, I
really enjoyed the papers we collaborated on, and I only wish we had found
some overlap earlier.

I have also truly enjoyed the many activities organized by people at the
department. Thank you Gautham for running the board games and floorball
sessions, Felix for making the climbing sessions happen, Martin H, Martin
M and Ylva for the disc golf sessions, and Martin GN for making me run
faster than I thought I ever would. And to all other people participating
and making these activities a joy, thank you.

Nils, we started this journey together, and it has been a pleasure to have
you as a friend and colleague. And Martin H, I enjoyed sharing an office

5

with you, and I hope I get to do it again in the future.
Ericsson Research and RISE SICS North have both provided infrastruc-

ture for me to run experiments on, and I am grateful for that. I am also
grateful for the opportunity to collaborate with people at both places, and I
would like to thank all of them for the interesting discussions we have had.

I really appreciate the help I got with proofreading the thesis, so thank
you Olle, Jonas, Ahmed, Johan G, Felix, Max NC and Ylva for all valuable
feedback. And Martina, thank you for reviewing the thesis, and for giving
good advice throughout my PhD.

And finally, to my family and friends outside of work, often providing a
much needed respite from said work. Manfred, thank you for being a great
friend and for all the fun times we have had together. And thank you Algot
for taking my mind of work with games and other fun activities when I
needed it. To my parents, Anneli and Jesper, and my siblings Malte and
Alma, thank you for for supporting me throughout my life. Knowing you are
there if I need it brings me comfort, and I am grateful for having you as my
family. And finally, to Manon, for putting up with my antics and bringing
me happiness, thank you for being in my life.

Financial Support
This work has received funding from Vinnova through the AutoDC project,
from the Swedish Research Council through project VR 2017-04491, and
from the European Union’s Horizon 2020 research and innovation program
under grant agreement 871259 (ADMORPH). Additionally, the author re-
ceived a travel grant from the royal physiographic society in Lund for pre-
senting the final publication included in the thesis at the 2023 IFAC World
Congress in Japan. The author is a member of the ELLIIT Strategic Re-
search Area at Lund University and is also affiliated with the Wallenberg
AI, Autonomous Systems and Software (WASP) program.

6

Contents

Nomenclature 9
1. Introduction 12

1.1 Contributions and Outline 15
1.2 Publications . 18

2. Cloud Computing 23
2.1 Cloud Infrastructure . 24
2.2 Controlling the Cloud . 33

3. Reinforcement Learning 37
3.1 Introduction . 37
3.2 Markov Decision Processes and Dynamic Programming . . 39
3.3 Model-Free Reinforcement Learning 43
3.4 Model-Based Reinforcement Learning 56
3.5 Other Topics in Reinforcement Learning 61

4. Reinforcement Learning in Practice 64
4.1 Bag of Tricks . 65
4.2 Training . 69
4.3 Related Work . 71

5. Holistic DC Control using Deep RL 79
5.1 Thermal Model of a Datacenter 79
5.2 Combined IT and Cooling Control 84
5.3 Evaluating the RL Agent on the Simulated Model 86

6. Adaptive DC Cooling using Deep RL 92
6.1 Extending DC model with CFD 92
6.2 Context-Aware Control using RL 96
6.3 Evaluating the RL Approach 99

7. Proactive Cloud Autoscaling using RL 107
7.1 Modelling a Microservice Application 110
7.2 Proactive Control of Microservice Application 112
7.3 Evaluating Proactive Scaling Approach 114

7

Contents

8. Load Balancing via Fluid Model Differentiation 126
8.1 Microservice Application Model 130
8.2 Routing Optimization using Automatic Differentiation . . 133
8.3 Experimental Evaluation 137
8.4 Summary and Discussion 144

9. Improving Microservice Models 147
9.1 Extending a Fluid Model with Neural Networks 149
9.2 Imposing Bias on the Neural Network 151
9.3 Evaluating NN based Model Extensions 152

10. Thesis Summary 160
10.1 Discussion . 161
10.2 Future Work . 163

Bibliography 165

8

Nomenclature

Terminology Description
Action A decision made by the agent to be enacted in the

environment.
Agent The entity that interacts with the environment.
Automatic differ-
entiation

A technique for computing derivatives of functions
implemented as computer programs.

Cloud computing Computing resources provided as a service over the
internet.

Environment The system that the agent interacts with.
Experience replay A technique for storing experiences and sampling

them randomly for training.
Kubernetes A container orchestration system for automating ap-

plication deployment, scaling, and management.
Microservice A small independently deployable and scalable soft-

ware component that performs a specific, well-
defined function within a larger application or sys-
tem.

Model Used to denote a dynamics model, not used for neu-
ral networks.

Policy A mapping from states to actions.
Replicas Separate instances of a single microservice.
Reward A scalar value that the agent tries to maximize.
Scaling out/in Increasing/decreasing the number of replicas in a

microservice.
State A set of values describing the current state of the

environment.

9

Contents

Abbr. Description
CFD Computational fluid dynamics simulates fluid behavior.
CNN Convolutional neural network is a neural network with convo-

lutional layers.
CPU Central processing unit is the primary processing component in

a computer.
CRAH Computer room air-handler is a cooling system for server rooms.
DC Datacenter houses computing systems and hardware.
DE Differential equation is an equation containing derivatives.
ELU Exponential linear unit is an activation function.
FCFS First come, first served is a queuing model.
GPU Graphical processing units are designed for parallel processing.
IT Information technology is an umbrella term for computing re-

lated technology.
MDP Markov decision process is a framework for sequential decision-

making.
ML Machine learning are methods where computers learn from

data.
MPC Model-predictive control is an optimal control method.
NN Neural network is a function approximator comprised of artifi-

cial neurons.
ODE Ordinary differential equation has only one independent vari-

able.
PID Proportional-integral-derivative is a popular control method.
PPO Proximal policy optimization is a popular method for deep RL,

Section 3.3.
PS Processor sharing is when the CPU is shared between tasks.
PUE Power usage effectiveness is a measure of datacenter energy

efficiency.
RL Reinforcement learning see Chapter 3.
RNN Recurrent neural networks are NNs that contains memory.
RR Round robin is a queuing model.
SAC Soft actor-critic is a popular method for deep RL, Section 3.3.
SLA Service level agreement is a contract between a service provider

and a customer.
SLO Service level objectives are metrics for SLAs.
TD Temporal difference is class of RL methods.
TPU Tensor processing units are designed for parallel processing.
UDE Universal differential equation is a differential equation that

can fit any dynamics.
VM Virtual machine is a virtualized computer.

10

Contents

Notation Description
pX p Cardinality of the set X .
R The set of real numbers.
R+ The set of non-negative real numbers.
Rm$n The set of m$ n matrices with real entries.
X T Transpose of matrix X .
x A vector of values.
xi The i’th component of x.
fi(x) The ith component of the function f evaluated at x.
〈x1, x2, . . . 〉 A tuple of elements.
x ∈R X x is sampled uniformly at random from the elements in X .
x ∼ X x is sampled from the distribution X .
EX [f (x)] Expectation of f (x) when x is sampled from X .
1(e) Function yielding 1 if expression e is true, and 0 otherwise.
J(x) Cost function for some parameters x.
∇x f (x) Gradient of f with respect to x.
[xi . . .] A vector with all xi for existing i.
〈S, A, T 〉 State space, action space and transition probabilities of an

environment.
〈s, a, r, s′〉 An experience tuple consisting of a state and action leading

to a reward and a new state.
Gt Cumulative discounted reward from time t and onward.
π Policy for mapping states to actions, a ∼π(s).
Qπ(s, a) Action-value function for policy π taking action a from

state s.
Vπ(s) State-value function for policy π from state s.
D Training data.

11

1
Introduction

The cloud is a term most people are familiar with, though few could readily
define. Many online services we rely on in our daily lives, such as shopping,
banking, social media, etc., all build on the cloud. The cloud has enabled
much innovation by providing a flexible platform for creating and hosting
services over the internet, and has become a key part of the infrastructure
for many companies. While the cloud has become an integral part of our
digital landscape, its inner workings often remain obscured from end users,
who primarily experience the convenience and accessibility it provides.

At a basic level, every online service is running on a server, a computer
that is connected to the internet. This computer runs software that allows it
to respond to requests from other computers also connected to the internet.
A typical request could be for files that make up a website, so that the
computer sending the request can render it using a web-browser, and show
the website to the user. As the number of users increases, the server needs to
handle more requests, and at some point the server will not be able to handle
them all in a timely manner. By adding more servers, and distributing the
requests between them, we can handle more users. As the website grows,
there might be users in different regions that want to access the website.
These requests will have to travel further, resulting in a slower response for
the user. Instead, servers can be added in more regions, and the requests
can be distributed based on where the user is located.

The fundamental idea of the cloud is to abstract away the physical as-
pect of scaling and distribution of servers, providing a simple way to scale
the number of running instances for an application based on the number
of users, or move instances to anywhere in the world. This is enabled by
virtualization technology, e.g., a virtual machine that is a software imple-
mentation of a computer, that can run on a physical computer. A server
running on a virtual machine can be easily replicated, moved between
physical computers, and even between datacenters in different regions.

In Figure 1.1 we show an example of a web application that is running
in the cloud. From the user’s perspective it just exists in the cloud, though

12

Chapter 1. Introduction

Cloud

Datacenter A Datacenter B

Regional
load bal-
ancing

Deployment replicated
across datacenters

Frontend serviceFrontend serviceFrontend service

Login serviceLogin serviceLogin serviceLogin service

Instances replicated
within datacenter

Ad serviceAd service

Recommender
service

Recommender
service

Recommender
service

Etc.

User database

Content database

Figure 1.1 Example web app showing the abstractions of the cloud. The
user interacts with the web app through their web browser, and in the
background the requests will go through a complex network of services.
There can be multiple instances of each service, both in the same datacenter
and in different datacenters around the world. Selecting how many instances
that should be running in each datacenter, and how to route the requests
is a complex problem that we want to solve using data-driven methods with
access to the larger context surrounding the application.

13

Chapter 1. Introduction

there are many things going on in the background to make this possible,
and to provide a good user experience. The application could for example be
a web-shop of some kind, comprising many internal services to provide all
the functionality making up the website. As a user tries to load the main
page, the user device will send out a request for the relevant files. Based
on the IP-address of the user, the request can be sent to the datacenter
that is located closest to the user. In this datacenter, the request will be
forwarded to one out of potentially multiple instances that are running the
frontend service of the web-shop. The frontend service collects the data
required to put together the requested page by sending internal requests
to different backend services, each responsible for generating some part of
the required data. For a logged-in user the page might provide personalized
recommendations and ads, and the frontend service will need to verify the
user’s credentials by checking with a login service which in turn will check
with the user database. For an anonymous user the page might instead
show some products and ads based on what is popular right now.

In addition to all that is shown here, there are typically layers of caching
to be able to faster serve pages that are often visited as well as layers of
security to protect the services from malicious actors. There are also many
services that are not directly part of the web-shop, but are required to run
the web-shop, such as monitoring services, logging services, and services
that are responsible for the deployment of new versions of the web-shop.
All services can run in multiple instances for each datacenter, and there
might be multiple datacenters around the world. To provide a good user
experience, while also keeping costs down, we need to carefully balance
where to run the services, how many instances of each service to run, how
to route the requests, etc.

This problem is typically solved using simple control strategies based
on local information for each individual service, see Figure 1.2(a). So, for
example, when deciding if we need more or less instances to run the ad
service in a certain datacenter, it is common to look at the average utiliza-
tion over the instances for that service in that datacenter and scale based
on those values. While this works and is easy to implement, it typically
requires keeping a large safety margin to ensure that we do not run out of
capacity when there is a sudden increase in traffic.

In this thesis we take a more holistic approach, providing more context
to the controller through information about the system and the environment
it is running in. Looking at the scaling problem from this perspective, we
want to scale the ad service based on many variables, e.g., utilization of
the ad service, utilization of the frontend service, utilization of correspond-
ing services in other datacenters, electricity price in the different regions,
etc., see Figure 1.2(b). The goal is to utilize all available information that
could possibly enhance the control policy. Addressing this problem through

14

1.1 Contributions and Outline

Datacenters

Frontend serviceFrontend serviceFrontend service

Ad serviceAd service

Controller Utilization

Electricity prices

Scaling action

Ad serviceAd serviceController

Utilization

Scaling action(a) Local control

(b) Context aware control

Figure 1.2 Example of scaling the ad service in a cloud application. In
Figure 1.2(a) we show a controller that only depends on the state of the
service it controls, while Figure 1.2(b) shows a controller that also takes into
account the state of other services, and other parts of the environment.

conventional approaches becomes increasingly challenging when consider-
ing the larger context of the surrounding systems and environment. This
thesis looks at learning-based methods, focusing on reinforcement learning,
to overcome that complexity by automating the process of extracting the
important variables and crafting a successful control strategy.

1.1 Contributions and Outline
The wider scope of this thesis is to investigate the challenges in applying
learning-based methods for solving the problem of controlling the cloud and
the infrastructure supporting it. While standard approaches in industry typ-
ically employ controllers that do something good enough in a local context,
a larger context can provide more information to the controller, allowing
for more optimized decisions. However, manually synthesizing a controller
using conventional methods becomes increasingly challenging when consid-
ering the larger context of the surrounding systems and environment.

There are a few motivating factors for the learning-based approach we
take in this thesis. We look at the cloud infrastructure from the perspective
of both users and providers, and how good control of the infrastructure can

15

Chapter 1. Introduction

benefit both. This creates complex problems with multiple competing objec-
tives and constraints. We also want to utilize a wide range of information
from the surrounding system to make better decisions, creating a complex
relationship between the control variables and the objectives. Learning-
based methods can be used to extract important dependencies between the
control variables and the objectives from data, and optimize a policy with-
out requiring a prior understanding of the system. To do this well, large
datasets are required, and cloud environments are a great source for collect-
ing an abundance of data. Learning-based methods can also be adaptive to
changes in the environment, something that can be beneficial in a dynamic
environment such as the cloud.

Applying learning-based methods to these problems, our main contribu-
tions are:

• Showing that a holistic approach using a larger context can be ben-
eficial to algorithms used for controlling the cloud and surrounding
infrastructure.

• Demonstrating that reinforcement learning (RL) can learn good con-
trol policies in cloud control.

• Developing methods to impose known structure from the system onto
policies, and showing that this can improve the efficiency of learning-
based strategies.

• Demonstrating applicability of RL on both hardware and software
infrastructure, from datacenter (DC) cooling to microservice autoscal-
ing.

• Developing solutions using different learning-based methods, from
standard model-free RL, to model-based methods relying on automatic
differentiation.

We also provide open-source implementations of the algorithms used in
the papers, to allow for reproducibility and for others to build on our work.
The source code for the examples and simulations is linked in their re-
spective chapters. In addition, we have contributed to open-source software
that we used as part of the work in this thesis. The Julia packages Re-
inforcementLearning.jl and Hyperopt.jl were both extended to support
our use cases, and DistributedEnvironments.jl was created to simplify
distributed development and training in the Julia language.

Thesis Outline
Chapter 2 introduces the view of the cloud infrastructure that will be used
throughout the thesis, as well as standard methods for controlling different

16

1.1 Contributions and Outline

parts of the infrastructure. In Chapter 3 we introduce RL, going from basic
concepts to more advanced methods, focusing on methods that are used in
the rest of the thesis. Chapter 4 looks at the practical challenges of using
RL for control, discussing problems that are inherent in the field and how
they can be addressed. This chapter also provides related work on the topic
of cloud control, focusing on how RL has been used in the field. Chapter 5
applies RL to the problem of controlling both the cooling and load balancing
of a datacenter. This is extended in Chapter 6 to a more complex datacenter
model, where a context-aware RL agent provides adaptive cooling decisions.
Chapter 7 moves to the microservice application domain, where RL is used
to proactively scale service chains in cloud applications. Chapter 8 also
considers a microservice application, but look at the load balancing problem
instead. By using an existing fluid model of the microservice application,
we show how automatic differentiation can be used to easily optimize a load
balancing policy for complex objectives. Chapter 9 looks at improving the
model used in Chapter 8 by embedding a neural network in the existing
model and learning the missing dynamics from data. Finally, Chapter 10
concludes the thesis and provides some future directions for the work.

Contributions from Each Chapter
Chapter 5 sets up an environment simulating the cooling system of a dat-
acenter, relating how workload generates heat and how the cooling system
can be controlled to remove the heat. The control strategy combines control
of hardware and software infrastructure, using reinforcement learning to
control both cooling and load balancing of the workloads simultaneously.

Chapter 6 extends the model used in Chapter 5 to both use a more
complex air-flow simulation, and to include a larger number of servers and
cooling units. The neural network (NN) is enhanced to improve learning in
more complex environments, and we show how the RL agent can learn to
adapt to changes in the environment.

Chapter 7 implements a proactive scaling strategy using RL for a mi-
croservice application where the call graph is unknown, and the state is
not fully observable. This environment is challenging for a few reasons, e.g.,
many delayed effects and rewards, and required a couple of modifications
to the standard RL setup for the agent to learn well, e.g., extending the
state space to include temporally augmented state and restricting the action
space to avoid local minima.

Chapter 8 attempts to find load balancing policies to optimize between
resource usage and response time. First a fluid model is derived from log
data collected in a microservice application. A cost function is defined based
on the solution of the fluid model, taking into account transient and station-
ary queue lengths, as well as constraints on, e.g., response time percentiles.

17

Chapter 1. Introduction

Using automatic differentiation over the cost function, we can update the
parameters for the load balancing policy using, e.g., gradient descent. A pro-
cedure to do this online is presented, and the performance of the resulting
policy is evaluated in a real-world setting with an application distributed
over three different Kubernetes clusters.

Chapter 9 improves on the fluid model used in Chapter 8 by embedding
a neural network in the model. The neural network is used to learn some
of the dynamics that are not captured by the fluid model, allowing the
extended model to provide more accurate predictions, and thus improved
policy updates. Additionally, we show that imposing constraints on the
neural network based on understanding about the system behavior can in
some cases drastically improve convergence speed of the learning process.
We compare a few different ways of implementing this.

1.2 Publications
While this thesis is written as a monograph, most of the content is based on
previously published work. This section describes the author’s publications,
how they connect to the chapters and the individual contributions.

Paper I
Heimerson, A., R. Brännvall, J. Sjölund, J. Eker, and J. Gustafsson (2021).

“Towards a Holistic Controller: Reinforcement Learning for Data Center
Control”. In: Proceedings of the Twelfth ACM International Conference
on Future Energy Systems. E-Energy ’21. Association for Computing
Machinery, New York, NY, USA, pp. 424–429. doi: 10 . 1145 / 3447555 .
3466581.

This paper is the base for Chapter 5. The hypothesis is that a holistic
controller that takes both room cooling and load balancing into account can
improve the performance of the datacenter. We introduce a simulation model
of the relevant parts of a datacenter, and define an RL agent that controls
both load balancing and cooling systems simultaneously. We compare the
RL agent to a standard control method, and show that the RL agent learns
a policy that is more energy efficient.

The original idea was developed by all authors together, and all provided
valuable feedback throughout the project. R. Brännvall provided the mathe-
matical modelling of the DC, which was then implemented by A. Heimerson.
The RL agent was designed and implemented by A. Heimerson, who also set
up the experiments and collected all the data. While all authors contributed
to the manuscript, A. Heimerson lead the work and produced a majority of
the content together with R. Brännvall.

18

https://doi.org/10.1145/3447555.3466581
https://doi.org/10.1145/3447555.3466581

1.2 Publications

Paper II
Heimerson, A., J. Sjölund, R. Brännvall, J. Gustafsson, and J. Eker (2022).

“Adaptive Control of Data Center Cooling using Deep Reinforcement
Learning”. In: 2022 IEEE International Conference on Autonomic Com-
puting and Self-Organizing Systems Companion (ACSOS-C). Online,
pp. 1–6. doi: 10.1109/ACSOSC56246.2022.00018.

This paper is the base for Chapter 6, and looks at extending the work
from Paper I by creating a more realistic simulation of the air flow in
the server hall based on [Sjölund, 2018]. An RL approach is compared to
standard control methods, and is shown to be able to learn a competitive
policy to control the room cooling in a context aware manner, as well as
adapt to changes in the environment.

The idea is built on previous work and was developed by all authors. The
connection to the fluid dynamics model of the DC as well as the thermal
mass of the servers was implemented by J. Sjölund. A. Heimerson designed
and implemented the RL agent, as well as designed the experiments and
collected all the data. A. Heimerson and J. Sjölund wrote the majority of
the manuscript, though remaining authors contributed with writing and
valuable feedback.

Paper III
Heimerson, A., J. Eker, and K.-E. Årzén (2022). “A Proactive Cloud Appli-

cation Auto-Scaler using Reinforcement Learning”. In: 2022 IEEE/ACM
15th International Conference on Utility and Cloud Computing (UCC).
Vancouver, Washington, USA, pp. 213–220. doi: 10.1109/UCC56403.2022.
00040.

This paper is the base for Chapter 7, where we look at the problem of
smart scaling decisions in microservice applications consisting of multiple
interconnected services. The idea is that simple metrics such as the load on
the different services could be enough to understand the application graph,
and thus be able to create proactive scaling strategies. We explore whether
an RL agent can learn this from very simple data with no prior knowledge of
the application or workloads, and compare the performance of the proactive
RL strategy with common reactive scaling strategies.

The original idea was by J. Eker and A. Heimerson, and was further
developed by all authors. Creating the microservice model was done by
A. Heimerson with input from J. Eker, while the implementation of both
model and RL agent was done by A. Heimerson. Setting up experiments
and running them was done by A. Heimerson. The manuscript was mainly
developed by A. Heimerson, with J. Eker contributing parts of the writing,
and K.E. Årzén providing valuable feedback.

19

https://doi.org/10.1109/ACSOSC56246.2022.00018
https://doi.org/10.1109/UCC56403.2022.00040
https://doi.org/10.1109/UCC56403.2022.00040

Chapter 1. Introduction

Paper IV
Heimerson, A., J. Ruuskanen, and J. Eker (2022). “Automatic Differentia-

tion over Fluid Models for Holistic Load Balancing”. In: 2022 IEEE Inter-
national Conference on Autonomic Computing and Self-Organizing Sys-
tems Companion (ACSOS-C). Online, pp. 13–18. doi: 10.1109/ACSOSC56246.
2022.00020.

This paper is the base for Chapter 8, and looks at the problem of load
balancing in a microservice application. It introduces a general method for
finding a cost optimizing controller based on an existing fluid model. By
setting up a cost function that depends on values derived from the model,
we can use automatic differentiation to find the gradient of the cost with
respect to the controller parameters. We set up a multi-cluster microservice
application, using an existing method to create the fluid model from log data.
The load balancing parameters are then optimized using bounded gradient
descent steps, and the approach is evaluated in a real-world setting. It
is shown to reduce cost under disturbances while adhering to percentile
constraints on the round-trip time.

A. Heimerson and J. Ruuskanen are both first authors and contributed
equally to the work. J. Ruuskanen suggested the fluid model as a basis for
a control strategy, and A. Heimerson provided the idea of using automatic
differentiation. The idea was implemented by both first authors, with input
from J. Eker. The experiments were conducted by both first authors, with
A. Heimerson implementing the online controller and J. Ruuskanen setting
up the experimental environment and modifying the online fitting of the
fluid model. A. Heimerson and J. Ruuskanen contributed equally to the
writing of the manuscript, with J. Eker writing smaller parts and providing
valuable feedback.

Paper V
Heimerson, A. and J. Ruuskanen (2023). “Extending Microservice Model Va-

lidity using Universal Differential Equations”. In: IFAC World Congress
2023. Yokohama, Japan.

This paper is the base for Chapter 9, and evaluate a method for extend-
ing the fluid model from Paper IV with an NN. The goal is to improve the
accuracy of the model by learning the missing dynamics from data. Addition-
ally, we show that imposing constraints on the NN based on understanding
about the system behavior can drastically improve convergence speed of the
learning process. In the end, the extended model show improved accuracy
compared to the original fluid model, enabling better control decisions to be
taken.

20

https://doi.org/10.1109/ACSOSC56246.2022.00020
https://doi.org/10.1109/ACSOSC56246.2022.00020

1.2 Publications

A. Heimerson instigated this project with the idea to improve on the
fluid model by extending it with a NN. A. Heimerson also implemented
and ran all the experiments. A. Heimerson wrote the manuscript, with J.
Ruuskanen proofreading and providing valuable feedback.

Patent Application
Eker, J., A. Heimerson, and K.-E. Årzén (2023). “Device and method for scal-

ing microservices”. Pat. WO2023048609A1 (WO). Telefonaktiebolaget
LM Ericsson (Publ).

The work that led to Paper III, and thus Chapter 7, also resulted in
this patent application. It describes a procedure for using RL to proactively
scale microservices in a distributed application.

The original idea was from J. Eker and A. Heimerson, and was further
developed by all authors. The invention disclosure was written mainly by J.
Eker, with feedback from A. Heimerson and K.E. Årzén. The experimental
work implementing the procedure and showing the feasibility of the idea
was done by A. Heimerson.

Publications Not in the Thesis
The author of this thesis has also contributed to the following publications,
though they are not included in the thesis since they were deemed to be
off-topic.

Soltesz, K., F. Gustafsson, T. Timpka, J. Jaldén, C. Jidling, A. Heimerson,
T. B. Schön, A. Spreco, J. Ekberg, Ö. Dahlström, F. B. Carlson, A. Jöud,
and B. Bernhardsson (2020). On the sensitivity of non-pharmaceutical
intervention models for SARS-CoV-2 spread estimation. doi: 10.1101/
2020.06.10.20127324. preprint.

Soltesz, K., F. Gustafsson, T. Timpka, J. Jaldén, C. Jidling, A. Heimer-
son, T. Schön, A. Spreco, J. Ekberg, Ö. Dahlström, F. B. Carlson, A.
Jöud, and B. Bernhardsson (2020). “Sensitivity analysis of the effects of
non-pharmaceutical interventions on COVID-19 in Europe”. medRxiv,
p. 2020.06.15.20131953. doi: 10.1101/2020.06.15.20131953.

Soltesz, K., F. Gustafsson, T. Timpka, J. Jaldén, C. Jidling, A. Heimerson,
T. B. Schön, A. Spreco, J. Ekberg, Ö. Dahlström, F. Bagge Carlson,
A. Jöud, and B. Bernhardsson (2020). “The effect of interventions on
COVID-19”. Nature 588:7839 (7839), E26–E28. doi: 10.1038/s41586-020-
3025-y.

21

https://doi.org/10.1101/2020.06.10.20127324
https://doi.org/10.1101/2020.06.10.20127324
https://doi.org/10.1101/2020.06.15.20131953
https://doi.org/10.1038/s41586-020-3025-y
https://doi.org/10.1038/s41586-020-3025-y

Chapter 1. Introduction

Bagge Carlson, F., M. Fält, A. Heimerson, and O. Troeng (2021). “Control-
Systems.jl: A Control Toolbox in Julia”. In: 2021 60th IEEE Conference
on Decision and Control (CDC), pp. 4847–4853. doi: 10.1109/CDC45484.
2021.9683403.

22

https://doi.org/10.1109/CDC45484.2021.9683403
https://doi.org/10.1109/CDC45484.2021.9683403

2
Cloud Computing

Cloud computing is a broad concept, encompassing the technology and in-
frastructure that allows users to access and utilize computing resources
without the need to own or manage physical hardware. It is a transfor-
mative paradigm that enables flexibility and cost-efficiency for services
provided over the internet. For end users, the cloud is an increasingly
prominent part of their daily routine where common services are provided
online or through mobile applications.

With this increase in adoption, the energy consumption of the underlying
DCs is a significant concern. According to [Koot and Wijnhoven, 2021], the
total worldwide energy consumption from datacenters is expected to grow
from 286 TWh in 2016, meaning around 1.15% of global energy consump-
tion, to about 321 TWh or 1.86% in 2030. In parallel with this expected
growth in the IT domain, a societal push towards a green electrification
of the society is ongoing. Green electrical production from solar and wind
power plants is increasing and introducing new challenges to the electric
grid, as the production is difficult to control. Urbanization creates even
more intensified power concentration in cities, which further challenges the
power grid capacities. All in all, power availability will be an increased
challenge in most places in the world. Cloud services and the underlying
IT infrastructure need to find ways to reduce and adapt their energy and
power demand in smart ways, to avoid expensive interruption of services
and failures as well as enabling future growth. In addition to these chal-
lenges, the cloud also hosts more important infrastructure than ever before,
e.g., in the form of health care, banking, and industrial control systems.
The need for reliability and low latency is therefore added to the list of
requirements, making for a complex multi-objective optimization problem.

This chapter provides the basics for hardware and software stacks in a
cloud environment, specifically the parts that are interesting from a control
perspective. Microservices are introduced as an integral part of how many
web-based applications and services are built today to fully leverage the
elasticity of the cloud. The chapter also provides an overview of related

23

Chapter 2. Cloud Computing

work in the field of cloud control, standard methods as well as state-of-the-
art algorithms and techniques.

2.1 Cloud Infrastructure
Cloud computing has introduced a shift in how internet services are hosted,
and though “the cloud is just someone else’s computer” is a well-used adage,
there is more to the cloud than just using other peoples hardware. It pro-
vides several benefits compared to owning and managing the infrastructure
in-house, and the cloud providers have become a large industry in their
own right. Cloud providers typically run things at a larger scale, allowing
a relatively low operational cost, both since the infrastructure surrounding
the servers can be made more efficient with scale, but also since pooling
resources can allow them to be more efficiently utilized over a large user
base. The location of a large scale datacenter is also often motivated more
by access to cheap electricity, internet and cooling, further driving the cost
down. The elasticity gained from a large pool of resources that can be pro-
visioned and scaled on-demand also gives the cloud users much flexibility
compared to the much more arduous and time-consuming process of order-
ing and configuring new hardware when needing to scale. These are all
important reasons why cloud computing became popular, though the term
cloud as provided in the often cited definition from NIST [Mell and Grance,
2011] can also refer to smaller and private installations. Their definition
focus more on the flexibility provided to the cloud users, and are categorized
into five essential characteristics:

• On-demand self-service – Cloud users should be able to provision
computing resources such as servers and storage automatically.

• Broad network access – It should be possible to access the resources
using standard interfaces to allow for heterogeneous client platforms.

• Resource pooling – The different resources of the cloud provider are
pooled to be assigned to different cloud users on demand.

• Rapid elasticity – It should be possible to rapidly scale resources
according to demand at any time.

• Measured service – Cloud systems automatically collect metrics for
the different services, allowing for monitoring and control by cloud
provider and cloud user alike.

Using the services from a cloud provider, a cloud user can build their
applications by running software on the provided infrastructure. The end

24

2.1 Cloud Infrastructure

users are the consumers of the service, interacting with the cloud applica-
tion through some network interface by sending requests that are processed
by the application.

The cloud provider can offer their services at varying level of abstraction,
ranging from access to virtualized hardware resources to access to providing
a cloud application directly to the end user. A widely used categorization of
these abstraction levels was also defined in [Mell and Grance, 2011].

• Software as a Service (SaaS) – Applications are provided through
the cloud infrastructure to end users who have no part in managing
the underlying infrastructure, e.g., a web-based email service or file
synchronization service.

• Platform as a Service (PaaS) – The cloud user provides an application
to run in existing environments, which together with the underlying
infrastructure is handled by the cloud provider.

• Infrastructure as a Service (IaaS) – The cloud user provisions resources
such as processing, storage and networks from the cloud provider, and
deploys arbitrary software on the infrastructure to provide end users
with some service.

Datacenters
All the energy used for the cloud is in some way consumed by the hardware
that the cloud is running on, so considering a more energy efficient cloud
without taking the hardware aspects into account would be negligent. With
that said, this thesis is not concerned with trying to improve the hardware,
but is instead interested in hardware from the perspective of control in
conjunction with the software layers.

To describe how efficiently a DC uses energy, the power usage effective-
ness (PUE) is commonly used in industry. It is based on the ratio of the
power consumption between the full DC and only the IT equipment.

PUE = Total DC energy
IT equipment energy (2.1)

PUE has been criticized as a metric since it is not defined well enough
and can be reported with different overheads. It is also questionable that
increasing the IT energy consumption should lead to a better PUE, assuming
the cooling and other overheads are kept constant [Brady et al., 2013;
Barroso et al., 2019]. With this said, it is still the most commonly used
one and has been a driving factor in pushing the industry to improve the
efficiency of their DCs.

In [Ni and Bai, 2017], 100 DCs were examined and their PUEs were
found to range from 1.33 to 3.85, with an average of 2.13, thus showing an

25

Chapter 2. Cloud Computing

20
07

20
11

20
14

20
18

20
19

20
20

20
21

20
22

1.5

2

2.5
PU

E
Infrastructure

Network

Storage Servers

59

4
19

109

(a) Average annual PUE (b) DC energy split [TWh]

Figure 2.1 Figure 2.1(a) show average PUE based on survey results [Davis,
2022]. Figure 2.1(b) show the global energy demand in TWh from datacenters
[Kamiya and Kvarnström, 2019], where all the non-IT energy usage such
as cooling, power distribution systems and lighting, is included under the
infrastructure slice.

overhead of more than 100%. The more recent study by [Davis, 2022] gives
a slightly better outlook, though as seen in Figure 2.1(a) the improvements
have drastically slowed. The main inefficiencies in non-IT infrastructure
comes from power distribution system and cooling [Zhang et al., 2021;
Barroso et al., 2019], which still share around a third of the total energy
consumption as seen in Figure 2.1(b).

The layout of a DC can typically be divided into three parts, the server
hall (IT equipment), the mechanical yard (cooling), and the electrical yard
(power distribution). In Figure 2.2 we show an example of this layout, with
some different components that are often found in a DC. While we will not
consider all possible components and configurations in detail, it should give
a brief overview of the more common setups that are relevant for the rest
of the thesis.

The server hall contains cabinets called racks, specifically made to house
IT-equipment such as servers, storage and networking equipment. A rack
is mostly a frame with standardized slots for the different equipment, and
can normally house around 20-50 pieces of equipment.

Power distribution units are used to distribute power to the racks, and
uninterruptible power supplies are used to provide backup power from, e.g.,
diesel generators and batteries in case of power outages. Together they pro-
vide a continuous balanced supply of electricity to the DC while protecting
sensitive equipment from electrical disturbances. Traditionally the power
goes through a transformation where it is converted from alternating to
direct current to feed into the battery circuit, and then converted back to
alternating current for distribution in the datacenter. The double conversion

26

2.1 Cloud Infrastructure

Cold aisle

Hot aisle Hot aisle

Server hall

Server racks
Computer room

air handlers
(CRAH)

Pow
er

dis
tri

bu
tio

n

units
(PDU)

Mechanical
yard

Pum
ps

Chil
ler

s

Cooling
towers

Electrical
yard

Switches
Uninterruptable
power supplies

(UPS)

Generators

Fuel
tank

Indoor
Outdoor

Figure 2.2 A simple sketch showing an overview of typical components
related to a datacenter. At the top we see the hot and cold aisles with
raised floor design, used to distribute cooling air to the racks. Below is the
server hall, containing the IT equipment as well as parts of the cooling
and power distributions systems. The mechanical yard contains the cooling
systems with both chillers and free-cooling capabilities, while the electrical
yard contains the power distribution systems and backup power systems.

27

Chapter 2. Cloud Computing

of the electrical power provides stability against interruptions and distur-
bances, but comes at the cost of efficiency, and up to 15% of the energy can
be lost in the conversion [Barroso et al., 2019].

The most common way of cooling the server hall is by air, providing
simpler installation and maintenance compared to liquid cooling. In this
case the racks are placed in rows to form cold aisles and hot aisles, see
Figure 2.2. Cold air is provided from the air conditioning system, and is
blown into the cold aisles where it passes through the racks and is heated
up and circulated back. A common way to provide the cold air is through
a raised floor system, where the cold air is blown under the floor and up
through the floor tiles, and often the hot and cold aisles will use containment
walls to prevent the hot air from mixing with the cold air. The cooling units
help with both circulating the air in the server hall and cooling it, and
depending on the type of cooling unit they are either self-contained with
a built-in compressor (CRAC), or they are connected to a central cooling
system (CRAH). CRAH units are usually more complex to set up compared
to the CRAC, but provides more flexibility in how the cooling is done, and are
therefore more common in large scale DCs. A CRAH unit is designed to blow
air over chilled-water coils, where the chilled water can be supplied from
a separate chiller unit or cold water plant. A chiller is a compressor based
cooling unit that can be used to provide chilled water to the CRAH units. In
free-cooling, cooling towers use outside air to cool the water, either through
evaporation or through dry cooling. Evaporation uses an open-circuit system
able to bring down the temperature more efficiently at the cost of a complex
setup, while dry cooling use a closed-circuit heat exchanger which is simpler
but less efficient. Free-cooling is often used in conjunction with chillers, only
using the chiller to cool the water further if needed. There is also direct
free-cooling, where the outside air is drawn directly into the server hall, but
this is not so common due to the problem of contamination and humidity
[Zhang et al., 2014]. A significant portion of the energy consumption in
the cooling system comes from the chillers [Patterson, 2008], making free-
cooling an important factor in reducing the cooling energy. Liquid-cooling
is still an option used in specific cases, and can be provided either through
cold-plates or through submerging the equipment in some non-conductive
liquid. Though the heat exchange is much more efficient and require less
flow and energy, it is not commonly adopted since dealing with the liquid
makes for a complicated setup with a high maintenance burden.

Virtualization
One important factor of the cloud is the elasticity, i.e., the ability to dynam-
ically scale resources up and down as needed. Scaling is often divided up
into horizontal and vertical scaling, where horizontal scaling implies adding

28

2.1 Cloud Infrastructure

Hardware

Hypervisor

VM VM

Bins/Libs Bins/Libs

App App App

Hardware

Host OS

Container engine

Container Container

Bins/Libs Bins/Libs

App App App

Figure 2.3 Left: A VM contains a virtualized version of the physical com-
ponents, and runs a normal operating system on top of this to create a well
isolated environment. Right: Containers are a more light-weight virtualiza-
tion technology, sharing the host OS through a container engine.

or removing machines, while vertical scaling implies changing the amounts
of available resources in an existing machine. They have different benefits,
and can also be used in conjunction with each other to have the benefits
from both. Vertical scaling can be easier to implement, since it does not
require any changes to the application, but it is limited by the maximum
amount of resources that can be added to a single machine and typically
requires restarting when resized, thus causing downtime. This type of scal-
ing is referred to as scaling up or down. Horizontal scaling needs to account
for the fact that the application is running on multiple machines, requiring
load balancing and state management, but can scale to a much larger ex-
tent and can scale without affecting currently running machines and thus
requiring no downtime. This type of scaling is referred to as scaling out or
in.

To be able to take advantage of the elasticity provided through the cloud,
virtualization is a key technology used in both virtual machines (VMs) and
containers to create isolated units of software that are agnostic to where
they are running.

Virtual machines contain virtualized versions of the physical components
such as CPU, memory and storage, and run a normal operating system on
top of this to create a well isolated environment. This is visualized as the
left stack in Figure 2.3, where the hypervisor is a layer between the VMs and
the hardware. There are two types of hypervisors, type 1 running directly on
the hardware, and type 2 running on top of an existing OS. The hypervisor
provides an interface for VMs to interact with the hardware, and handles
resource sharing between the VMs, allowing multiple VMs to run on the
same physical machine. Since the physical components are virtual, they can

29

Chapter 2. Cloud Computing

be configured to only use a sub-set of the available resources, and also be
reconfigured over time to change the vertical scaling of the VM.

A container is a more light-weight virtualization technology, sharing the
host operating systems (OS) through a container engine as seen to the right
in Figure 2.3. The container engine helps keeping separate file systems,
process spaces and networks stacks for each container, while leaving the
host OS to handle systems calls. Thus, containers still have good isolation,
though not as good as VMs, while having a smaller size. This makes them
a good versioning tool for reproducible software deployments. These two
technologies can also often be used together, where a VM is used to deploy
the container engine to create a well managed and isolated environment
for a cloud user, and the containers are used within the VM for deploying
individual applications. Virtualized environments allow IT workloads to
be moved between servers within, or sometimes even across, datacenters,
allowing for flexibility in power and energy optimization.

Edge Computing
In recent years the number interconnected devices that communicate over
the internet has grown tremendously, and connectivity seems to be added
to all kinds of small devices and sensors making them part of the Internet-
of-Things (IoT). These generate data which is often sent to some cloud for
processing and storage [Naveen and Kounte, 2019], leading to large amounts
of data being sent over the network.

While the cloud is typically based on large centralized datacenters, to
fully be able to utilize the scalability and cost efficiencies that can be gained
there, edge computing or fog computing are paradigms where the focus is
to move computations closer to the user. Instead of sending all the data for
storage and processing in the cloud, one could keep sensitive data locally,
or pre-process data locally to send a reduced or anonymized set of it to the
cloud. The computations can happen on smaller local DCs, just to reduce
the latency and amount of data sent, or it can be done on private devices
such as a phone or router to keep the data on devices that the user controls.

Low and predictable latency is also a driving factor in new use cases such
as cloud based automation, IoT, XR (eXtended Reality), and VR (Virtual
Reality), and edge computing has gained traction as a means of reducing
this by bringing compute resources closer to the user. A combination of
centralized cloud and edge compute nodes offers a distributed compute
platform which allows for trade-offs between latency, cost, etc., and makes
it possible to configure a cloud service to deliver solutions at the right
service level at the right cost.

30

2.1 Cloud Infrastructure

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

Po
pu

la
ri

ty

cloud computing
microservice

Figure 2.4 Google trends popularity [Google Trends 2023] for terms cloud
computing and microservices. Both proportional to their own highest value,
i.e., not showing relative popularity but rather how interest evolved over
time.

Microservice Architecture
As the cloud keeps gaining in popularity and usage, the interest in cloud
native applications, where microservices are the basic building blocks, have
shown a rise in interest over recent years, see Figure 2.4.

Microservices [Cerny et al., 2018] are becoming a popular choice as the
paradigm for cloud applications, as shown in the survey by [Swoyer and
Loukides, 2020]. Microservices are a modern way of designing applications
in the cloud, where small independent services are each responsible for some
objective within a larger application. They are often built using containers,
and can be deployed, tested and scaled individually of other parts of the
application. This gives a large flexibility in the orchestration of individual
services as well as some resiliency to failures, as a failure in one service
does not necessarily affect the others. Scaling a microservice typically means
deploying more instances, or replicas, of the service, and balancing the
load between them. Microservices also mesh well with edge computing,
where some parts of the application can be deployed on the edge, while
others are deployed in the cloud depending on the needs of the application.
Replicas of the same service can also be deployed in different locations,
and the service can be configured to use the instance closest to the user.
With this flexibility comes the complexity of control, and while doing local
control on the individual services often suffice and can be relatively simple,
looking to optimize the controllers in the global context still requires us
to consider how the services interact as a whole. Software companies who
employ a microservice architecture to build their applications have seen
them explode in complexity, leading to a complicated interconnected system
known as a microservice death star [Gan et al., 2019]. A small version of
this is illustrated in Figure 2.5, though, real systems can have many more

31

Chapter 2. Cloud Computing

API endpoints

Compute nodes

Storage nodes

Figure 2.5 A simple illustration of why microservice applications can lead
to an explosion in complexity that is known as a microservice death star.
As the set of microservices providing API endpoints, data storage, login
service, ad service, etc., continues to grow, the full system quickly becomes a
complex mesh of connected services. Real examples of this from large cloud-
based organizations can look much worse than this example.

services and connections.
Keeping track of all instances of services in a flexible environment where

they are constantly being spawned and terminated is a challenge, and a ser-
vice mesh can help with that. It is a dedicated infrastructure layer that pro-
vides communication and coordination capabilities for microservices within
distributed applications. A service mesh is often implemented as a set of
proxies alongside each microservice replica, and can be used to provide log-
ging, service discovery, load balancing, security, routing, and more [Khatri
and Khatri, 2020]. It complements the capabilities of microservices by han-
dling networking concerns, and simplifies the management of distributed
applications while improving reliability, scalability, and observability.

Common Tools
Kubernetes [Kubernetes 2023] (sometimes abbreviated as K8s) is a portable,
extensible, open-source platform for managing containerized workloads and
microservices at scale. One deployment unit in Kubernetes is called a pod,
which is a group of one or more containers that share storage and net-

32

2.2 Controlling the Cloud

work resources. Kubernetes can easily be deployed on top of most cloud
providers, as well as on-premise setups, creating a simple interface to man-
age cloud applications over different environments. In addition to container
orchestration, Kubernetes provides some basic service-mesh features such
as service discovery, load balancing, logging and autoscaling, to help with
common tasks when deploying a cloud application. For more advanced fea-
tures there are tools dedicated to specific tasks, such as Istio [Istio 2023]
for service meshes and Prometheus [Prometheus 2023] for monitoring.

2.2 Controlling the Cloud
Applying control to the cloud is a broad topic, and there are many aspects
that can be controlled, as well as many competing objectives when doing
so. For a cloud provider it might be about managing the existing load
on the datacenters to minimize hardware wear and energy consumption,
while meeting the performance requirements of the cloud user. For a cloud
user it might be about reducing how many resources are allocated to a
service while still providing a service with acceptable performance to the
end users. In both cases, there is a cost to providing the service, and there
are performance requirements that need to be met.

Performance metrics. To quantify performance, is common to set up
the requirements on the cloud service as a service level agreement (SLA)
between cloud provider and user. The SLA is a contract that defines the
expected performance of the service, and what happens when the service
does not meet the requirements [Wieder et al., 2011]. The SLA can include
multiple service level objectives (SLOs), each defining constraints on some
metric that needs to be met. Which metrics are used depends on the service,
but common ones include response time, throughput, uptime, etc.

Running costs. As a precaution against violating the SLOs, the service
provider will typically over-provision resources. In the case of cooling control
this might mean running the cooling systems at a higher capacity than what
is needed to handle the current load, while for resource allocation in the
cloud it might mean running more replicas than is needed to handle the
current load. It will create a buffer to handle fluctuations in the workload,
but it will also lead to higher costs for the service provider since they are
paying for the resources. The ideal controller should be able to handle the
fluctuations in the workload without violating the SLOs, while minimizing
the amount of over-provisioning needed.

33

Chapter 2. Cloud Computing

Cooling Control
Controlling the cooling equipment in a DC involves a number of different
components, and the control strategies can vary greatly. In addition to
control strategies, there are also many considerations regarding the physical
infrastructure, such as the placement of the cooling equipment, the layout
of the server hall, how to restrict the airflow and remove leaks.

The airflow in the server hall is mainly managed by the CRAH units,
where the flow is often controlled by simple feedback loops based on keeping
a constant temperature or pressure in the cold aisle. The temperature of
the cooling water that is supplied to the CRAH units is typically controlled
by the chillers, often using simple feedback loops to supply a constant
temperature tuned to the expected load.

Operating conditions for the cooling systems can have a large impact
on energy, as noted in [Barroso et al., 2019]. One example provided is that
increasing the cold aisle temperature can drastically reduce the cooling
energy, since the CRAH units can operate at higher temperatures and thus
use less energy. Managing the airflow is also an important factor for energy
efficiency, and here it can be something as simple as hot and cold aisle
containment to reduce the mixing of hot and cold air. Cooling systems that
are supported with free cooling capabilities also play a large role, since
taking advantage of the lower outside temperatures can drastically reduce
the use of chillers, and thus save a lot of energy.

While many DC operators do implement some of these improvements,
others still use older strategies, where the main objective is to keep the
servers cool enough to not overheat. Such strategies often resulted in simple
control methods involving running the cooling systems at a constant high
capacity that could handle the worst case scenario, leading to large amounts
of wasted energy.

Resource Allocation
As demand comes and goes, the amount of resources allocated to a service
should be adjusted accordingly. Scaling resources is not instant, and looking
at horizontal scaling, adding a new container or VM typically take from a few
seconds to a few minutes. If scaling happens fast in relation to the workload
fluctuations, using a reactive approach, where resources are added when
we notice that we are running close to capacity, is sufficient. However, if the
workload changes quickly, or scaling is slow, a reactive approach will lead to
either over-provisioning or under-provisioning as seen in Figure 2.6. During
over-provisioning there are unused resources, wasting energy or costing
money, while under-provisioning can lead to performance degradation or
even service failure. For dynamic workloads, such as a stochastic behavior
of users accessing some web service, the required resources can change

34

2.2 Controlling the Cloud

T

Under-provisioned

Over-provisioned

Time

R
es

ou
rc

es

Required resources
Available resources

Figure 2.6 A visualization of scaling resources based on current require-
ments when the environment has a dynamic workload and scaling decisions
take some time T to implement. It would lead to either over-provisioning
(blue) or under-provisioning (red).

drastically over time.
Big cloud providers, such as Amazon Web Services, Google Cloud and

Microsoft Azure, all provide some kind of autoscaling functionality for cloud
resources. While vertical scaling do exist, it is typically horizontal scaling
that is used, where the number of instances of a service is increased or
decreased. While the implementation of automatic scaling will vary, the
general idea typically comes down to following some target metric, e.g., CPU
utilization, network traffic or other metrics, by reactively scaling resources
based on manually defined thresholds of the metric. On top of this there
might be a hysteresis mechanism to avoid jitter, since scaling decisions are
not instant and thus typically incur a cost on the system. In some cases,
predictive scaling methods using time-series forecasting are also offered,
where the scaling decisions are based on predictions of the future workload.

Kubernetes also comes with a built-in horizontal pod autoscaler (HPA)
[Kubernetes HPA 2023], implementing a simple and configurable solution for
reactive scaling of resources. First it calculates a target number of replicas
r̂t based on the utilization metric value ut, the target utilization value ū
and the current number of replicas rt. If the relative change between the
current and target replicas is less than some ε, it is discarded in favor of
the old value to help to avoid jitter in the signal.

r̂t =

{⌈
rt

ut
ū

⌉
if

∣∣1− ut
ū

∣∣ > ε
r̂t−1 else

(2.2)

To avoid scaling in too fast, the maximum over a time-window W of previous
target replica amounts is selected as the new replica amount.

rt+1 = max
k∈[0,W]

r̂t−k (2.3)

35

Chapter 2. Cloud Computing

Load Balancing and Scheduling
Load balancing and scheduling are closely related concepts, and in the
context of managing workloads in a distributed environment, load balancing
can be seen as a sub-problem of scheduling. While scheduling can entail
decisions about both when and where to execute different tasks and what
resources they should be assigned, load balancing focus mostly on the where,
aiming to distribute the incoming load over existing resources according to
some strategy. With the emergence of flexible cloud resources that are
resized and moved around on the fly, these problems have become more
complex and important than ever before.

Load balancing is a well studied problem, and the choice of strategy
depends on the characteristics of the workload and the system as well as
the desired outcome [Wang and Morris, 1985]. Some of the more common
ones are round-robin (RR), random and join-shortest-queue (JSQ), as well
as their weighted counterparts [Sharma et al., 2008; Lee and Jeng, 2011].
JSQ has in general better performance than the other two, and it can be
near optimal in minimizing the total mean response time depending on the
queue type [Gupta et al., 2007]. The problem, however, is that it requires
knowledge about the current state in each instance at each decision, and
is thus cumbersome to implement at scale. To handle this state knowledge
drawback, improvements such as power-of-d [Azar et al., 1994; Bramson et
al., 2010], join-idle-queue [Lu et al., 2011] and join-the-best-queue [Spicuglia
et al., 2013] have been suggested.

While research in scheduling has traditionally been more tied to the op-
erating system, the emergence of cloud computing made for a new domain
with a slightly different set of challenges. The scheduling problem in the
cloud is more complex since the resources are highly dynamic, and decisions
are made on a higher level, though many of the same strategies can still
be used. Some of the more common ones are first-come-first-serve (FCFS),
shortest-job-first (SJF) and shortest-remaining-processing-time (SRPT) [Le-
ung, 2004]. How to choose between these depend on what the objective is,
where FCFS might be considered more fair, and SRPT typically provide a
lower mean response time. The problem is similar to load balancing in that
the more informed decisions require more information, where information
such as remaining processing time is not always available.

36

3
Reinforcement Learning

“Reinforcement learning
empowers autonomous agents to
learn, optimize, and decide,
driving intelligent
decision-making in complex
environments”

ChatGPT by OpenAI

This chapter is meant to give the reader a small introduction into the ba-
sics of learning-based control, specifically methods related to reinforcement
learning (RL). While this should cover the concepts required to understand
the rest of the thesis, it is by no means a complete coverage of the field, and
many topics are only briefly touched upon or omitted entirely.

Starting with a small historical view of the top level concepts, it shows
where RL fits in a larger picture of different methods for control. The ideas
are then presented in approximately chronological order, describing impor-
tant advancements and what each of them contributed to the field. Then
Chapter 4 presents practical challenges that one is faced with when using
RL, and how RL has previously been applied in the context of controlling
cloud infrastructure.

3.1 Introduction
The idea of learning by trial-and-error is something most of us are familiar
with, and it is something we do throughout our lives. By observing the effect
of our actions, we can improve our future decisions. What we today know
as reinforcement learning stems from a few different fields, where some
of the earlier work comes from psychology with trial-and-error learning in
animals [Sutton and Barto, 2018].

37

Chapter 3. Reinforcement Learning

Another strong connection is found in the theoretically justified field of
optimal control, with methods such as dynamic programming (DP) [Bell-
man, 1954] giving general strategies for solving problems containing cer-
tain structure. The Markov Decision Process (MDP) [Bellman, 1957] came
around the same time, defining a general framework to model sequen-
tial decision-making problems with full information. Full information is
not always feasible, and [Åström, 1965] describes an extension in the case
of incomplete information, later to be called Partially Observable MDPs
(POMDPs) and used in a variety of planning and machine learning (ML)
applications.

Reinforcement learning as a field emerged a little while after that, and it
was soon realized that the framework for optimal control, such as MDPs and
DP, could be used in the context of RL as well. Optimal control is commonly
considered when both model and cost function are known, though if either of
them are not available the problem grows considerably harder. RL does not
assume knowledge of either model or cost function in general, though there
are certainly methods that incorporate more knowledge when available.
[Sutton et al., 1992] frames RL as a computationally inexpensive approach
for direct adaptive optimal control. Direct meaning that it is learning the
policy by interacting with the actual environment instead of indirect which
would be optimizing through a model.

Another discipline that shares similarities with RL is the field of adap-
tive control. [Åström and Wittenmark, 2008] defines an adaptive controller
as “a controller with adjustable parameters and a mechanism for adjusting
the parameters”, a rather broad definition that could incorporate RL as
well. Adaptive control tends to take a more structured approach, where the
controller is designed to have certain properties and the parameters are
adjusted to keep those properties as the environment changes. RL, on the
other hand, does not really have adaptivity as its main goal, but rather
achieve it as a byproduct of continuously learning while interacting with
the environment.

While supervised learning is a popular learning-based approach, it is
targeted for tasks where the desired output is known, and the learning
process simply fits a function from input to output. This is not the case in
RL, where the desired output is unknown, and the learning process must
both figure out what the desired output is and learn a function to produce
it.

Top level view. Figure 3.1 shows the typical interaction model used in RL.
An agent observes the state of the environment, and decides on what action
to take using some internal policy. The goal of the agent is to maximize
the reward it receives from the environment, and it does so by updating its
policy to try to improve the actions it takes.

38

3.2 Markov Decision Processes and Dynamic Programming

Environment

Agent

st+1

rt+1

state
st

reward
rt

action
at

Figure 3.1 The interaction model commonly used in RL.

To make this more concrete, imagine a person trying to learn to juggle
some balls. The agent is the person, or more accurately their mind, while
the environment is the world around them, including the balls and the
gravity, as well as their body. The goal is to keep juggling without dropping
balls, which the reward should reflect by being positive when it is going well
and negative if a ball is dropped. Each step involves the person observing
the position and velocity of the balls and their own hands, and trying to
choose how to best move their hands to avoid dropping the balls. If a ball
is dropped, the person will likely try to adjust their policy to avoid making
the same mistake again. Assuming they observed that there was little time
to catch and throw the balls, a change in policy could be to try and throw
the balls a bit higher to give them more time to react.

3.2 Markov Decision Processes and Dynamic
Programming

A Markov decision process is a classical mathematical framework used
to model sequential decision-making problems in uncertain environments,
and is the standard formalization of the interaction between an agent and
environment in the field of reinforcement learning (RL).

An MDP is a stochastic model that can be represented by the tuple
〈S, A, T 〉, where

• S is the set of states;

• A is the set of actions; and

• T : S$A RS → [0, 1] defines the transition probabilities of the
environment as T (s, a, r, s′) = P(st+1 = s′, rt+1 = r p st = s, at = a),
giving the conditional probability of ending up in state s′ with reward
r after taking action a from state s.

39

Chapter 3. Reinforcement Learning

MDPs follow the Markov property, stating that the future is independent
of the past given the present. This requires that the state space is fully
observable, and that the transition probabilities only depend on the current
state and action. So based on a state, the action can be selected to affect the
next state and reward, and through affecting the next state it also affects
future states and rewards. Selecting an action to maximize the expected
future reward thus involves dealing with a trade-off; taking an immediate
reward, or taking actions that might lead to higher rewards in the future.

A trajectory τ = 〈s0, a0, r1, s1, a1, . . . , sN , rN〉 is a sequence of states, ac-
tions and rewards acquired from consecutive interactions between an agent
and the environment. Sequences of values related to a single transition are
denoted as experiences, 〈s, a, r, s′, a′〉 = 〈st, at, rt+1, st+1, at+1〉. The goal of
the agent is to maximize the return Gt, the discounted sum of the received
rewards, starting at the state st and following some policy π .

Gt =
∞∑

k=t
γ k−trk+1 (3.1)

The discount factor γ ∈ (0, 1] is used to weigh future rewards against
immediate rewards. For episodic environments, i.e., where the environment
terminates after a finite number of steps, the rewards are equal to zero after
the terminating step. For continuing environments, i.e., where the agent
continues to interact with the environment indefinitely, the discount factor
must be less than one to ensure that the return is finite. Using γ < 1 will
affect the optimal policy, creating a more greedy approach that prioritizes
immediate rewards over future rewards, and the implications of this should
be considered based on the problem at hand.

As an example we introduce the MDP in Figure 3.2, which defines a
simple environment with states S = {S1, S2} and actions A = {A1, A2}.
A1 is deterministic and will always stay in the current state, while A2
will attempt to switch state, and randomly succeed based on the transition
probabilities. Some transitions give a reward, we have a reward of 10 for
taking action A2 from state S1 and ending up in S2 and a reward of
1 for taking action A1 from state S2. The optimal policy of this simple
environment is not hard to calculate since there are only two possible non-
zero rewards, each requiring different actions to be taken. So for the smaller
reward of 1 we should take action A1 from state S2, resulting in a reward
of 1 for each step. For the larger reward of 10 we should take action A2
from state S1. This action has two possible outcomes, either we succeed in
switching state and receive a reward of 10 but are not in S1 anymore, or
we fail and stay in the same state with a reward of 0. The expected number
of steps between each reward is given by the sum of the expectations for
the two required transitions, S1 → S2 and S2 → S1, where individual

40

3.2 Markov Decision Processes and Dynamic Programming

S1 S2

A1

A2

0.8

0.2

+10

A1

+1
A2

0.5

0.5

Figure 3.2 A simple MDP with states S = {S1, S2} and actions A =
{A1, A2}. A1 is deterministic and will always stay in the current state,
while A2 will attempt to switch state, and randomly succeed based on the
transition probabilities. Some transitions give a reward, we have a reward
of 10 for taking action A2 from state S1 and ending up in S2 and a reward
of 1 for taking action A1 from state S2.

expectations are given by the inverse of the transition probabilities.

E[S1 → S2 → S1] =
1

0.2 +
1

0.5 = 7

As this gives an average reward per step of 10/7 (1.43, which is higher
than the average reward per step of 1 for taking action A1 from state S2,
action A2 is the optimal action for accumulating the largest reward over
time.

For a more structured approach to solve this we can instead turn to dy-
namic programming (DP) to find the optimal policy. Dynamic programming
is a group of algorithms designed to find optimal policies given a perfect
model of the environment in the form of an MDP. The key idea of DP is to
structure the search for policies around the notion of value functions [Sut-
ton and Barto, 2018]. A state-value function represents the expected future
reward from some state s following some policy π , and is denoted Vπ(s). It
can be defined based on the expectation of the return from (3.1), or equiv-
alently by forming the Bellman equation, a recurrent relationship between

41

Chapter 3. Reinforcement Learning

the value of the current state and a future state.
Vπ(st) = Eπ,T [Gt]

= Eπ,T

[
∞∑

i=0
γ irt+i+1

]

= Eπ,T

[
rt+1 +γ

∞∑

i=1
γ i−1rt+i+1

]

= Eπ,T [rt+1 +γ Vπ(st+1)] (3.2)

The notation Eπ,T indicates that the expectation is over the action distri-
bution at ∼π(st), and the transition distribution (st+1, rt+1) ∼ T (st, at).

If the transition distribution T is known, we can use it to create an
estimate V̂ of the value function using a method called iterative policy
evaluation. It works by iteratively updating the estimated values using the
Bellman equation as an update rule, and can be shown to converge as long
as 0 < γ < 1 [Sutton and Barto, 2018].

V̂k+1(s) = Eπ,T
[
r+γ V̂k(s′)

]
,

Turning to policy improvement, we instead update the policy based on
the optimal actions for the current value function.

π(s) = arg max
a

ET
[
r+γ V̂(s′)

]
(3.3)

The process of iteratively doing evaluation and improvement is called policy
iteration [Sutton and Barto, 2018].

The optimal value function V∗, i.e., the value function assuming the
optimal actions are taken, can be stated using the Bellman optimality
equation.

V∗(s) = max
a
ET [r+γ Vπ(s′)]

The optimal policy π∗ can then be found according to (3.3).
A related value function is the action-value function Qπ(s, a), denoting

the expected value based on starting in state st and taking action at, and
after that following policy π . It can easily be defined in terms of the state-
value function, where the only difference from (3.2) is that the expectation
is not over the action since it is already given.

Qπ(s, a) = ET [r+γ Vπ(s′)]

The optimal action-value function is then defined as

Q∗(s, a) = ET

[
r+γ max

a′
Q∗(s′, a′)

]
,

42

3.3 Model-Free Reinforcement Learning

and can for finite actions spaces be used to find the optimal policy as

π(s) = max
a

Q∗(s, a). (3.4)

When the state and action spaces are finite, it allows for the use of
tabular methods, where the value functions store individual values for each
possible state, or state-action pair. Much of the theory of RL is built around
these tabular methods, but for real-world problems it is often not feasible
as state and action space are either just large, or infinite in the case of
continuous variables. Dealing with infinite state and action spaces is often
done by approximating the value function using a function approximator,
and is covered in Section 3.3.

The MDPs also only treat the fully observable case, also something that
does not hold for many real-world scenarios. To extend the definition to hold
for partially observable problems, we need to include a latent observation
of the state by creating the new tuple 〈S, A, T , Ω, O〉 where

• S, A, T are the same as for the MDP;

• Ω is the set of possible observations; and

• O : Ω $ S → R is the observation function where O(o, s) = P(ot = o p
st = s) is the probability of observing o when the agent is in state s.

This complicates the problem since the agent does not know which state it is
in, and can only generate a belief distribution based on the observation. This
belief is a distribution over S, and using the belief as the state, the POMDP
can be reformulated as an MDP with infinite state and action spaces. Thus,
it can be approached using the same methods as for MDPs with infinite
state and action spaces, typically involving function approximation which is
covered in Section 3.3.

3.3 Model-Free Reinforcement Learning
Methods that require the transition probabilities T are not always applica-
ble, since in many cases there is no good model of the environment readily
available. Instead, we can learn the value or policy function directly from
collected experiences, making the function fit the observed data.

Monte Carlo Methods
Monte Carlo methods are a class of methods that learn directly from
episodes of experience without any prior knowledge of the environment.
It is one of the easiest ways to learn from experience, and is based on the
idea of averaging sample returns to estimate the value function. One way

43

Chapter 3. Reinforcement Learning

to make sure the returns are well-defined based on a finite trajectory is to
assume that the environment is episodic, i.e., that the environment termi-
nates in a finite number of steps. Given a trajectory τ of data collected up to
the termination of the environment, the value function can be estimated for
some state s as the average over returns Gt for t where st = s. This creates
a noisy learner, though as the number of sample trajectories increase the
estimate will converge to the true value function [Sutton and Barto, 2018].

Temporal Difference Learning
Temporal-difference (TD) learning is a class of incremental learning pro-
cedures that was introduced and analyzed in [Sutton, 1988]. Instead of
learning by minimizing the error between the prediction and the observed
outcome, e.g., Monte Carlo methods, TD methods use the error between the
current and temporally successive predictions. This allows for estimating
the expected return, the learning target, without needing the full trajec-
tory, thus enabling the method to be used in both episodic and continuing
environments. The simplest and most prevalent TD method is known as
one-step TD, using the one-step return as the target for the value function.

Gt:t+1 = rt+1 +γ V̂π(st+1)

= r+γ V̂π(s′)

The TD-error is defined as the difference between the target and the current
estimate of the value function,

δ = r+γ V̂π(s′) − V̂π(s), (3.5)

and is used to update the value estimate, weighted by the learning rate α.

V̂π(s) ← V̂π(s) +αδ

While (3.2) show that r + Vπ(s′) is an unbiased estimate for Vπ(s), boot-
strapping the estimates with V̂π(s′) introduces bias in the updates, and the
target values will not be stationary as they depend on the current estimate
of the value function. Though, with enough steps it will still converge to the
true value function for π , and is in general faster than equivalent Monte
Carlo methods [Sutton and Barto, 2018].

Instead of bootstrapping on a single step, we can generalize the return
by taking n steps before using the value function estimate, thus getting
an estimate that depends on n actual observations of the reward. This is
known as the n-step return, and is defined as

Gt:t+n = rt+1 +γrt+2 + · · ·+γ n−1rt+n +γ nV̂π(st+n).

44

3.3 Model-Free Reinforcement Learning

For n = 1 we have the biased one-step returns method described above,
while as n is increased the updates become less biased though having
higher variance, approaching the return Gt used in Monte Carlo methods.

To balance the bias and variance of the possible returns, Gλ
t defines the

return as a weighted average over all n-step returns.

Gλ
t = (1− λ)

∞∑

n=1
λn−1Gt:t+n

Using Gλ
t for updating the value function creates a spectrum of methods

called TD(λ). As λ is varied between 0 and 1, the methods range from TD(0)
being biased by bootstrapping on a single step, to TD(1) being unbiased by
using the full return Gt as the target.

Some well known methods based on TD-learning are SARSA [Sutton and
Barto, 2018] and Q-learning [Watkins, 1989], both learning the action-value
function rather than the state-value function. SARSA learns on-policy, and
as such learns the action-value function for the policy used to collect the
data for training. Q-learning is an off-policy algorithm, and the policy used
to collect data does not really matter since it learns the optimal action-value
function Q∗. Both are based on TD(0), though both can also be extended by
using TD(λ) instead, providing a more complex estimate of the return.

Q-Learning
As an off-policy TD based algorithm, Q-learning [Watkins, 1989] became
one of the early breakthrough in RL. Each update of the Q-table uses an
experience tuple 〈s, a, r, s′〉, and is done similarly to TD(0).

Q(s, a) ← Q(s, a) +α
[
r+γ max

a′
Q(s′, a′) − Q(s, a)

]
,

This algorithm directly tries to approximate the optimal action-value func-
tion Q∗, independent of which policy is being followed. To guarantee con-
vergence we need to fulfill two criteria, (i) all state-action pairs are visited
infinitely often, and (ii) the learning rate αt decreases with time, but not
too quickly. The formal definition of not too quickly is that the sum of all
αt is infinite, but the squared sum is finite [Watkins and Dayan, 1992].
A common approach to enforcing enough exploration is the epsilon-greedy
policy, where the agent selects the action that provides the highest action-
value estimate with probability 1 − ε, and selects a random action with
probability ε.

π(s) =
{

arg maxa Q(s, a) with probability 1− ε
a ∈R A with probability ε

(3.6)

45

Chapter 3. Reinforcement Learning

To show how Q-learning works in detail we look at the system in Fig-
ure 3.2, where there are two states and two actions, resulting in a Q-table
with four entries. Starting with the initial value estimates as zero, learning
rate α = 0.1, discount factor γ = 0.9 and exploration factor ε = 0.05, we can
see how the table is updated as the agent interacts with the environment.

Q(s, a) =
A1 A2

S1 0 0
S2 0 0

Starting in state S1, the policy goes the greedy route, though since both
values are the same we randomize between the actions and take A2. We are
lucky and end up in S2 with a reward of 10, leading to the table update

Q(S1, A2) ← 0+ 0.1 ∗ (10+ 0.9 ∗ 0− 0) = 1 [
A1 A2

S1 0 1
S2 0 0

The policy acts greedily, but with the same value it randomly picks A1,
ending up in S2 with a reward of 1.

Q(S2, A1) ← 0+ 0.1 ∗ (1+ 0.9 ∗ 0− 0) = 0.1 [
A1 A2

S1 0 1
S2 0.1 0

The policy acts greedily and picks A1, ending up in S2 with a reward of 1.

Q(S2, A1) ← 0.1+ 0.1 ∗ (1+ 0.9 ∗ 0.1− 0.1) = 0.199 [
A1 A2

S1 0 1
S2 0.199 0

The policy explores and randomly picks A2, ending up in S1 with no reward.

Q(S2, A1) ← 0+ 0.1 ∗ (0+ 0.9 ∗ 1− 0) = 0.09 [
A1 A2

S1 0.09 1
S2 0.199 0

With more updates the estimates will improve, though since both policy and
transitions are stochastic, the estimates will not converge to the optimal
action-value function Q∗ with this constant learning rate. We need the
learning rate to approach zero, and using, e.g., αt = α/t it will converge as
t →∞, approaching the optimal action-value function Q∗.

Q∗(s, a) (
A1 A2

S1 13.56 15.07
S2 12.10 12.33

46

3.3 Model-Free Reinforcement Learning

Here we see that the optimal action is always to pick A2, since it has the
highest value in both states.

This makes for a simple learning algorithm that is easy to implement
and understand. However, it is not very efficient as it requires many samples
to converge, and it does not scale well to larger state spaces.

Function Approximation
Up until now the value functions have been simple lookup tables, with a
value for each state, or state-action pair. Storing the table and visiting all
the states becomes infeasible as the state space grows large, or impossible
if there are continuous states. Instead of using a table, we want a func-
tion approximator that provides a continuous approximation of the function
based on sparse observations. This will provide an approximate representa-
tion that is more space efficient, and that allows generalizing about unseen
states.

The results from the tabular case for finite MDPs are no longer valid
when using function approximators, and we can no longer expect to con-
verge to the real value function or the optimal policy in general. Extending
the theory to function approximation is an active field of research, and
while there are some results for specific algorithms and settings [He et al.,
2021; Dann et al., 2022], there is no general theory yet. Function approxi-
mation can still work in practice, but without any guarantees of converging
to the true value function, and with a much less stable learning process
that requires careful tuning of hyperparameters. Introducing function ap-
proximation also has the benefit of making RL more applicable to partially
observable problems [Sutton and Barto, 2018].

Neural Networks
Though there are many approaches to function approximation, the most pop-
ular one in recent years is the artificial neural network (NN), driving many
recent successes in deep learning. NNs are popular because they are very
flexible function approximators, able to fit complex and high-dimensional
functions with a relatively low amount of parameters thanks to the hierar-
chical learning structure in NNs [Goodfellow et al., 2016; Bengio, 2009].

In Figure 3.3 we see an NN with the input layer as well as two of the
hidden layers drawn out. For each layer zi, the value from the previous layer
zi−1 is propagated as a combination of an affine transform, and a non-linear
activation function σ . The affine transform consists of a matrix Wi defining
a linear map, and a vector bi defining a translation. So for an input z0 we
can define zi for i > 0 as

zi = σ (Wizi−1 + bi). (3.7)

47

Chapter 3. Reinforcement Learning

...In
pu

ts

z0

...

z1

...

O
ut

pu
ts

z2

Figure 3.3 A layer consists of a number of values zi in gray. The links
between the layers consists of weights Wi (from gray nodes) and biases bi
(from blue nodes). The input propagates through the network according to
(3.7).

The universal approximation theorem [Hornik et al., 1989] tells us that NNs
can approximate any function to a given precision with enough parameters,
though this is also true for many other types of function approximators.
This even holds for a single layer, though stacking multiple layers after
each other is where the real power of deep NNs comes out. In [Poggio et al.,
2017] they discuss why deep NNs can deal with the curse of dimensionality
for compositional functions, meaning the numbers of parameters needed to
approximate higher dimensional functions grows at a reasonable pace.

To make notation easier, all the trainable parameters of a NN are typ-
ically collected into a single vector, e.g., θ = [Wi, bi]

L
i=1 for an NN with L

layers. The parameters θ for the NN are updated by optimizing over a loss
function J, which can, e.g., relate the current value function V̂θ to the real
value function Vπ , evaluated over some data D.

J(θ) = 1
2pDp

∑

s∈D

(
Vπ(s) − V̂θ (s)

)2 , (3.8)

For NNs it is common to use first order methods for optimization, since
the number of parameters is typically large, and second order methods
are computationally expensive. Using standard gradient based updates, the
parameters are updated proportionally to the negative gradient using some
learning rate α.

θk+1 = θk −α∇θk J(θk), (3.9)

The update based on (3.8) then becomes

θk+1 = θk −α 1
pDp

∑

s∈D

(
Vπ(s) − V̂θk(s)

)
∇θk V̂θk(s). (3.10)

48

3.3 Model-Free Reinforcement Learning

The true function Vπ that we aim to learn can in turn be estimated from
data using different methods, e.g., based on Monte Carlo or temporal differ-
ence techniques.

Optimization algorithms. To make the gradient updates more efficient,
it is common to use some variant of stochastic gradient descent. Standard
stochastic gradient descent implies that each gradient update is based on
a single data point, resulting in a stochastic approximation of the true
gradient. What is more common is the case of mini-batch gradient descent,
where each update is based on a subset D of the data, and the size of D is
a hyperparameter. The benefit of both these methods are however similar.
Using a smaller subset of the data can create more computationally efficient
updates, and the stochasticity introduced can improve the learning process
by both not getting stuck in local minima, and by adding some noise to the
gradient, which can help in reducing overfitting. One of the more popular
optimization algorithms based on stochastic first order gradients is Adam
(Adaptive Moment Estimation) [Kingma and Ba, 2017], an adaptive method
that adjusts the learning rate for each parameter based on the history of
the gradient updates.

Activation functions. The choice of activation function σ is important
for the performance of the NN [Sharma et al., 2020], where a few common
options are shown in Figure 3.4. The choice of activation function can have a
large impact on training, and common functions such sigmoid and tanh can
have the problem of vanishing gradients, resulting in very slow learning. It
happens since the functions have a small derivative for values not close to
zero, and the gradient of a deep network will contain the product of many of
these derivatives, resulting in a very small gradient. Rectified Linear Unit
(ReLU) effectively avoids this problem through having one side be linear,
though it can instead cause dying neurons from having exactly zero gradient
for negative values, causing the neuron to never activate again. Leaky ReLU
and exponential linear unit (ELU) [Clevert et al., 2016] are two approaches
aiming to mitigate both these problems by having a non-zero gradient for
negative values, while keeping the linear behavior for positive values.

TD-Gammon
In [Tesauro, 1992], TD(λ) is used to create a backgammon playing agent
called TD-Gammon. From the board state, as well as some hand-crafted
features based on expert knowledge, it uses an NN to estimate the ex-
pected value. Evaluating all possible actions and states two steps forwards,
it selects the optimal action based on the value function estimate of all
these states. Training by self-play allowed it to find unorthodox strategies
that had a large impact on the backgammon community of the time, and

49

Chapter 3. Reinforcement Learning

−4 −2 0 2

−1

0

1

2 ReLU max(0, x)
sigmoid 1

1+e−x

tanh(x)
Leaky ReLU max(0.1x, x)

ELU
{

ex − 1 if x < 0
x else

Figure 3.4 Common activation functions for NNs.

it substantially outperformed previous attempts at backgammon playing
agents.

The success of TD-Gammon led to an increased interest in using NNs
in RL, leading to further research in this area.

Deep Q-Learning
Another breakthrough came with Deep Q-learning in [Mnih et al., 2013;
Mnih et al., 2015], where deep convolutional networks were used to learn
the optimal action-value functions of different Atari games from high-
dimensional pixel data. This was an influential paper which showed the
viability of deep neural networks for difficult control tasks in environments
with large and complex state and popularizing methods such as experience
replay and target networks.

The approach is based on Q-learning as an off-policy method, allowing
for learning from any recorded data, not necessarily recorded by the current
policy. From this they employ experience replay, taking tuples of experiences
〈s, a, r, s′〉 from recorded data in randomized batches when training. This
reduces the variance of updates since successive updates are not correlated
anymore, improving the learning process.

Training the action-value function is done using updates similar to
(3.10), with the gradient

∇θ J(θ) =
∑

s,a,r,s′∈D

(
r+γ max

a′
Q̂θ̄ (s′, a′) − Q̂θ (s, a)

)
∇θ Q̂θ (s, a).

Here θ̄ is a copy of the parameters that are only updated every few steps
to follow θ , i.e., they will not affect the gradient, and the target value
r+ Qθ̂ (s′, a′) is constant for the same data. This is used in many following

50

3.3 Model-Free Reinforcement Learning

works and known as target networks, keeping the target stationary in an
effort to make the updates more stable.

They use an ε-greedy (3.6) policy to balance the exploration and exploita-
tion of the agent, where ε is annealed over time to reduce the exploration
as the agent learns.

Policy Optimization
So far the methods for control have been based on either action-value func-
tions with a finite number of actions, or state-value functions where we
know the dynamics of the system. Policy optimization allows us to learn a
parameterized policy, that can output either discrete or continuous values,
or probability distributions, and select actions without relying on a value
function.

The basic idea is to have some performance measure J(θ) with respect
to the parameters of the policy, e.g.

J(θ) = E [Vπθ (s0)] , (3.11)
where increasing the value of J means we have improved the parameters
of the policy. This assumes an episodic environment, with some starting
position s0, and a finite episode length.

The policy gradient theorem [Sutton and Barto, 2018] states that the
gradient of (3.11) is proportional to

∇θ J(θ) ∝
∑

s
µ(s)

∑

a
Qπ(s, a)∇θπθ (a p s)

= Eµ

[∑

a
Qπ(s, a)∇θπθ (a p s)

]
(3.12)

where µ(s) is the on-policy state distribution.
In [Williams, 1992] REINFORCE is introduced, a policy gradient method

using the Monte Carlo estimate for the episodic return.

∇θ J(θ) ∝ Eµ

[∑

a
πθ (a p s)Qπ(s, a)∇θπθ (a p s)

πθ (a p s)

]

= Eµ

[∑

a
πθ (a p s)Qπ(s, a)∇θπθ (a p s)

πθ (a p s)

]

= Eµ,π

[
Qπ(s, a)∇θπθ (a p s)

πθ (a p s)

]

With Gt as the episodic Monte Carlo return estimate, the gradient update
becomes

θ t+1 = θ t +αGt
∇θπθ (at p st)

πθ (at p st)
.

51

Chapter 3. Reinforcement Learning

The gradient of the policy,∇θπθ (at p st), denotes the direction in θ for which
we increase the probability of action at from state st. Then this is scaled by
Gt, i.e., the better the return the more we increase the probability, as well
as inversely scaled by the probability of the action, so if it is an action that
have low probability of happening we give the update more weight. As a
Monte Carlo method, REINFORCE has good theoretical properties, but in
practice the high variance of the episode returns can be detrimental to the
learning [Sutton and Barto, 2018].

An extension to this adds a baseline to the value estimate, i.e., Qπ(s, a)−
b(s), so instead of the return Gt we replace it by Gt − b(st).

θ t+1 = θ t +α(Gt − b(st))
∇θπθ (at p st)

πθ (at p st)
(3.13)

Here, b(st) can be any function, though in practice the value function is often
used to produce an advantage estimate, i.e., how much better the return
was compared to the current expectation. This results in less variance in
the learning since we reduce the size of the values in the return, i.e., the
value we scale the gradient by.

While we assumed an episodic environment here, policy gradients can be
shown to work in continuing environments as well, i.e., where the episode
never terminates. Though the proof for continuing environments is more
involved and requires the return to be zero in expectation [Sutton and
Barto, 2018]. This can be done by defining value functions in relation to the
average reward r̄(π), e.g., Vπ(s) = Eπ,p [r− r̄(π) + Vπ(s′)], thus learning
how much value we gain in relation to the average for each reward and
having zero reward in expectation.

Actor-Critic
As we saw in the previous section, policy optimization has a quite natural
dependency on value functions, and policy optimization and TD-learning
actually work well together. Algorithms that combine the two are called
Actor-Critics, and in using the combination they offer a trade-off between the
different strengths of the two techniques. The actor is trained to find a policy
using policy optimization, allowing for automatically learning appropriate
probabilities for action distributions to balance exploration and exploitation
as well as allowing for continuous actions. The critic is trained to provide a
value estimate for the policy updates, creating a biased but lower-variance
option of the episode returns from Monte Carlo methods. A standard way
to do the updates is to, similarly to (3.13), use an advantage estimate, e.g.,
the TD-error (3.5) δ t.

θ t+1 = θ t +αδ t
∇θπθ (at p st)

πθ (at p st)
(3.14)

52

3.3 Model-Free Reinforcement Learning

One difficulty that is introduced with actor-critics is that we have two
function approximations whose updates are separate, but not independent
of each other. This can introduce instabilities in the updates since they both
update towards a non-stationary target, created by the other network.

In the end, choosing the best approach for a problem is not always ob-
vious, but there are some rules of thumb [Grondman et al., 2012] when
selecting between actor-only, critic-only and actor-critic methods. For dis-
crete action spaces, critic-only methods can be faster and more stable. For
environments with continuous action spaces it is beneficial to have an actor,
where if the problem is well estimated as a stationary MDP, we would use
an actor-critic method, while if not, an actor-only method can be faster at
keeping up with a changing environment.

Many popular model-free algorithms are based on the actor-critic ap-
proach, each with their own small modifications trying to make the learning
process faster or more stable. We will cover a few of the more common ones,
especially ones that are relevant for this thesis.

Natural Gradients
Looking at the simple gradient update presented in (3.9), we have a first
order update

∆θ = α∇θ J(θ),
which has the problem of under- or over-shooting the optimal θ since the
step size is not adapted to the curvature of parameter space.

Trying to bound the size of the update can help, but selecting a good
bound is not straightforward. Bounding the parameter updates by a eu-
clidean norm can seem like a simple and reasonable choice at first, i.e.,

∆θ = arg max
q∆θq<ε

J(θ + ∆θ),

but the problem is that the euclidean distance in parameter space might
not create a meaningful bound on the policy distribution.

The natural gradient [Amari, 1998] considers the curvature of the pa-
rameter space when calculating the update, resulting in more efficient and
stable updates in many cases. In [Kakade, 2001] the natural gradient is
applied to policy optimization to show how it can guarantee monotonic
improvements of the policy, creating a more stable learning process.

To put a bound on the difference of two policies, we need to evaluate the
difference in their distributions. The Kullback-Leibler (KL) divergence is a
commonly used measure of the difference between two distributions, and is
defined as

DK L(πθ ,πθ+∆θ) =
∑

x
πθ (x) log

(
πθ (x)

πθ+∆θ (x)

)

53

Chapter 3. Reinforcement Learning

leading to the update rule

∆θ = arg max
DK L(πθ ,πθ+∆θ)<ε

J(θ + ∆θ).

The general approach for implementing this is to use the Fisher information
matrix F(θ), which is the Hessian of the KL-divergence, to calculate the
update [van Heeswijk, 2022]. This creates a second order method, which is
computationally expensive, but also stable and efficient. Several RL algo-
rithms build their update rule on this idea, though the exact implementation
can differ, and often the Fisher information matrix is approximated instead
of calculated exactly.

Proximal Policy Optimization
Proximal policy optimization (PPO) [Schulman et al., 2017b] came as a
follow-up to trust region policy optimization (TRPO) [Schulman et al.,
2017a], a method based on ideas from natural gradients, but solving a
constrained optimization problem instead of calculating the exact natural
gradient. TRPO has some nice theoretical properties, e.g., the constrained
policy updates generate monotonic improvements to the policy, thus creating
a stable learning process. However, the updates are still costly to calculate,
and the method is complex to implement. PPO has similar stability proper-
ties as TRPO for the gradient updates, but is much simpler to implement
and more resource efficient when it comes to calculating the updates.

PPO is an on-policy algorithm, meaning it can only use data collected by
the current version of the policy. Instead of putting constraints directly on
the policy updates, it is implemented by adding a term that penalizes policy
divergence directly to the loss function. The ratio of the action probabilities
between the updated policy and the old policy are defined as

kθ =
πθ (a p s)
πθ̄ (a p s) ,

where θ̄ is the parameters used to collect the most recent training data,
and are kept stationary while updating the policy. The basic objective of the
policy is to increase the probability of taking good actions while decreas-
ing the probability of bad ones. Doing this without any penalty could be
implemented with

J1(θ) = kθ Â,
where Â is an estimate of the advantage function. Using the TD-error (3.5)
as the basic advantage estimate, we create the n-step advantage estimate
as

Ân
t =

n∑

k=1
γ k−1δ t+k

54

3.3 Model-Free Reinforcement Learning

which can then, analogously to TD(λ), be combined using an exponentially
weighted estimate over different horizons, creating the Generalized Advan-
tage Estimation (GAE) [Schulman et al., 2018] which is used in PPO.

ÂG AE
t = (1− λ)

∞∑

n=1
λn−1 Ân

t

To also implement a penalty on the policy updates, a second objective is
defined to enforce 1− ε ≤ kθ ≤ 1+ ε, for some value of ε.

J2(θ) = max(1− ε, min(kθ , 1+ ε)) Â

The optimization objective for PPO is the minimum of these two objectives,

J(θ) = min
(
J1(θ), J2(θ)

)
, (3.15)

creating a gradient that will be restricted to zero if

• the policy has changed too much, i.e., kθ /∈ [1− ε, 1+ ε]; and

• the change has improved the advantage estimate, i.e., J1(θ) > J2(θ).

Updating the policy using a stochastic gradient method means that we have
two cases, batches of training data that was made worse by recent updates,
i.e., for which J1(θ) < J2(θ), that will never be zeroed out, and batches of
data that was improved by the recent updates, i.e., for which J1(θ) > J2(θ),
that will be zeroed out if the policy has changed too much. This results in
a larger effort towards improving the policy where it has become worse due
to recent updates, in an effort to make sure that the policy always improves
for all situations, but does not change too much before the updated policy
has been verified in the environment.

The loss is then the combined optimization objective (3.15) with two ad-
ditional terms for the value function loss and an entropy term, a measure of
the randomness of the policy. The value function loss is needed if the policy
and the value function share parameters, and the entropy term is added to
encourage exploration. Both these terms are weighted by hyperparameters,
and with a smaller entropy term the policy will be more deterministic, while
a larger entropy term will encourage more exploration.

PPO is the algorithm used in Chapters 5 and 6, based on the supposed
stability in the learning process as well as good implementations being
available for the tools we were using.

Soft Actor-Critic
Soft Actor-Critic (SAC) [Haarnoja et al., 2018a; Haarnoja et al., 2018b]
is an off-policy algorithm, allowing for a replay buffer D storing previous

55

Chapter 3. Reinforcement Learning

experiences for reuse as training data. This makes for a more interaction
efficient agent and also allows for learning from data collected by other
algorithms. This can be beneficial in many real applications, since it might
be easier and safer to collect initial data using standard algorithms, allowing
the RL agent to train offline and reach some basic level of proficiency before
starting to interact with the real environment.

SAC relies on something called a soft state-action value estimate, a
modification of the standard state-action value function that estimates the
expectation of the discounted future reward. The soft state-action value
additionally takes entropy into account, and is defined as

Qθ (s, a) = r+γE [Vθ̄ (s′)]

where Vθ̄ in turn is the soft state value function

Vθ̄ (s) = Eπφ

[
Qθ̄ (s, a) −α log

(
πφ(a p s)

)]
.

Here θ and φ are parameterizations of the value and policy networks respec-
tively, and θ̄ is a target network to help stabilize the training. In addition
to this, SAC implements the idea of double Q networks introduced in [van
Hasselt, 2010], where the overestimation bias is reduced by training two
Q networks and using the minimum when estimating the value function
error.

The policy optimization in SAC combines the state-action value function
driving the policy to take actions with high expected reward, with an entropy
regularization term [Yves and Yoshua, 2006] that drives the policy to be
more stochastic. The objective function is the expectation over these two,
and is defined as

J(φ) = Eπφ

[
α log(πφ(a p s)) − Qθ (s, a)

]
where α controls the balance between the entropy and reward objectives. In
their second paper [Haarnoja et al., 2018b], they implement an automated
tuning algorithm for α to automatically achieve a specific target entropy
that can be set as a hyperparameter.

SAC is the algorithm used in Chapter 7, where, based on initial exper-
iments it showed more stable learning, without much tuning of hyperpa-
rameters, compared to alternatives such as PPO and DDPG.

3.4 Model-Based Reinforcement Learning
There are many things that make RL difficult, and one of the main bot-
tlenecks in the learning process is typically the credit assignment prob-
lem [Minsky, 1961]. It refers to the problem of assigning credit to actions

56

3.4 Model-Based Reinforcement Learning

that led to a reward, when the reward is received after a long sequence of
actions. The consequence is that it is very time-consuming to train large net-
works with many parameters using traditional model-free RL methods, and
much of the literature typically employ relatively small NNs, that are faster
and easier to train but limited in their capabilities [Ha and Schmidhuber,
2018b]. With a model of the environment, the agent can use the model to
simulate the outcome of actions, and thereby quicker gain an understanding
of the reward structure of the environment. The phrase “a model is worth a
thousand datasets” from [Rackauckas et al., 2020] emphasizes that a robust
model can provide immense value, and achieving equivalent generalization
and sample efficiency without one can be challenging.

In model-based RL, the agent has an internal representation of the
transition function T that defines the dynamics of the MDP. This is what
we will call a model, and it can be learned or pre-existing, and is used to
aid in creating a good policy. It can be used in different ways by the agent
where one typical distinction is between using the model for planning or
for data generation [Moerland et al., 2022]. Planning means the model is
used by the policy to simulate possible outcomes of potentially interesting
actions, allowing the policy to see what consequences to expect from different
actions. When used for data generation, the agent use the model to generate
synthetic data, which is then used to train a value or policy function in a
model-free manner.

In Figure 3.5 we see a simple layout of a typical model-based RL agent,
where the model can be trained on collected data to predict dynamics, and
the policy and value functions can then be trained on some real data, as
well as being supported by the model through either planning or synthetic
data.

Learning a Model
In the control community, learning a dynamics model is known as system
identification [Ljung et al., 2021], and essentially comes down to differ-
ent methods of minimizing the prediction error of the model. In the ML
community this problem would be part of the well-developed field of super-
vised learning. The benefit of supervised learning is that the target value
to predict is often static, or at least from a static distribution. Compared
to learning a value function with temporal difference updates, where the
target value is not going to be stationary since it is also approximated by
the value function, supervised methods give for more stable and directed
gradient updates.

There are several important considerations when creating a model, some
that are selected based on what environment that should be modelled, and
some that depend more on how the model should be used [Moerland et al.,

57

Chapter 3. Reinforcement Learning

Replay buffer

Model

Value/Policy
rt

st

at

Figure 3.5 An example of a model-based RL agent. Real data is collected
and used to train the model. The policy and value functions can learn from
real data while also using the model for support, either for planning to
generate better estimates or to generate synthetic data through simulated
interactions.

2022]. In a stochastic environment it can be a large difference between a
model that can predict the actual state distributions, compared to a model
that just finds some type of mean related to the type of loss that is used.
Uncertainty in the model due to limited data (epistemic uncertainty) is an
important aspect, and is different from the uncertainty coming from the
stochasticity of the environment (aleatoric uncertainty). A model that can
capture information about uncertainty, both epistemic and aleatoric, can be
very useful. Allowing for estimates of how certain the model is of a predicted
state in the future when planning, as well as helping in driving exploration
by identifying areas of uncertainty in the environment. Partially observable
environments are also difficult to handle, and is different from stochasticity
in that it can somewhat be mitigated by incorporating ways of accessing
previous states. Examples of how to do this could be creating a super state
that combines the states from a window of time, or using recurrent NNs
(RNNs) as the model, where the networks have a type of short-term memory
that can keep some data from previous interactions.

In [Ha and Schmidhuber, 2018b; Ha and Schmidhuber, 2018a] the au-
thors present a method of learning motivated by our own cognitive system.
Their simplified view is that first we compress the visual data to some effi-
cient representation that is sent to a memory model able to predict future
states based on historical ones, and based on the current state and our
expectation of the future we can make an informed decision. The world
model they present consists of the first two parts, the compression and
memory, and are represented by a variational auto-encoder (VAE) and an
RNN respectively. The VAE is trained on a dataset of images from the en-
vironment, while the RNN is trained on the latent representation from the

58

3.4 Model-Based Reinforcement Learning

VAE, and both are trained in a supervised manner based on collected data.
The efficiency of supervised learning enables the use of larger networks in
the world model to fully capture the complex behavior of the environment.
By offloading the extraction of important features to supervised learning,
the RL part of the agent can focus on learning a small policy based on the
extracted features, making for a more efficient learning process. In [Hafner
et al., 2023] they use world models together with an actor-critic approach
to learn state-of-the-art control for diverse tasks across multiple domains.

As mentioned, models can provide additional benefits by incorporating
uncertainty in the predictions. This approach is taken by [Deisenroth and
Rasmussen, 2011], where they use Gaussian processes to create a dynamics
model, and [Chua et al., 2018] that implement ensembles of probabilistic
NNs to capture both aleatoric and epistemic uncertainty. By embedding
uncertainty about the dynamics in the model, the uncertainty can be prop-
agated when planning to make more informed decisions, and making for
sample-efficient learning. [Deisenroth and Rasmussen, 2011] show the im-
pact uncertainty can have in driving exploration and learning by comparing
the same models with and without the uncertainty, and without uncertainty
performed significantly worse in terms of both learning efficiency and final
performance.

Another important consideration is how we can use what we already
know, or already have modelled for a related environment, when making
a new policy. In [Moerland et al., 2022], transfer learning is promoted as
one possible benefit of model-based RL. It refers to the ability to transfer
knowledge learned in one task to another related task, and can be easier to
do with a model compared to a policy or value function,

Using knowledge about the environment to impose structure on the
model can also be beneficial for both the learning process and the resulting
model. One example is to impose the structure of an ordinary differential
equation (ODE) if we are looking for solutions to systems we expect to
behave according to an ODE, and by letting the NN learn the dynamics of
the system, we can use well established ODE solvers to simulate forward in
time to find the solution. In [Chen et al., 2018] this idea is used to construct
the neural ODE, where they learn the continuous dynamics function of an
environment.

Embedding knowledge about the environment can also be beneficial for
the learning process, and can be easy in some model-based approaches. The
models created in [Rackauckas et al., 2020] extends scientific models with
machine learning, allowing us to speed up the learning by providing known
dynamics and only learning the residuals. This is used in chapter Chapter 9
to improve on the models used in Chapter 8, and doing so in a more sample
efficient manner.

59

Chapter 3. Reinforcement Learning

Using a Model
One way of using a model is to increase the sample efficiency of model-free
algorithms by learning a policy or value function in part through simulated
experiences from the model. This can be compared to experience replay,
where the agent learns from a collection of previous experiences, where the
collection of experiences can be seen as a non-parametric model. Dyna [Sut-
ton, 1991] was one of the first model-based RL methods, implementing a
model for synthetic data generation and learning the policy from both real
and simulated interaction. In [Alvarez et al., 2020] they use neural ODEs
to build a base model for use in RL, and show how they can use this to
improve upon model-free performance by using it to generate extra data.
A discussion of when a model could give a benefit compared to experience
replay, and how it in some part comes down to the ability to generalize
between experiences through using a model and planning, can be found in
[Young et al., 2023].

For this thesis we will focus more on the case where the model is used
for planning, an important part of decision-making that can provide insight
into the consequences of different actions before they are done. To optimize
the control action over a finite time horizon, in relation to some desired
trajectory, is called trajectory optimization. It provides the ability to also put
constraints on the state, which can be important especially in safety critical
applications. If only the first step of the trajectory is executed, after which
the optimization procedure is repeated with a receding horizon, it would
lead to what is known as model predictive control (MPC), a method widely
used in, e.g., robotics and control engineering among other fields. Learning-
based MPC encompasses methods that extend MPC with learning in some
manner, e.g., learning the model used for predictions in MPC, or use MPC
for constraint satisfaction while using RL for optimizing hyperparameters
for the objective [Hewing et al., 2020]. This can be considered model-based
RL, and the method has been used in, e.g., [Kamthe and Deisenroth, 2018]
where they create uncertainty-aware models for use in MPC, allowing for
sample efficient learning that can account for constraints in a risk-averse
manner.

Policy optimization algorithms come in many forms, and some can ben-
efit from using a model for planning. Guided policy search [Levine and
Koltun, 2013] uses a model for trajectory optimization, and then uses the
resulting trajectory to train a policy network. Model-based value expansion
(MVE) [Feinberg et al., 2018] is another method that uses a learned dynam-
ics model for simulating the rewards over multiple steps forward, and using
this to improve the value function estimates for policy gradient updates.
Chapter 8 contains a type of model-based policy optimization, where gradi-
ents are calculated over the accumulated reward of simulated trajectories,

60

3.5 Other Topics in Reinforcement Learning

and used to update a simple policy.
When mixing with model-free methods, the ability to plan ahead can

significantly increase the strength of the model-free policy, as long as the
model provides good enough multistep predictions. In AlphaGo [Silver et al.,
2016] the model is known, and they use both policy and value functions ap-
proximated by convolutional neural networks. And while the agent can play
based on only them, it becomes many times stronger when used with Monte
Carlo tree search to iteratively expand the search tree in collaboration with
the policy and value functions, creating stronger value predictions for the
actions that are likely to be of interest. Training this with both expert games
and self-play resulted in the agent that beat the human world champion
Lee Sedol in the game of Go.

Different environments might also be suited for different learners, and
in [Young et al., 2023] they describe a few properties that can make environ-
ments more suited for model-based RL. For one, the environment should be
easy to learn, e.g., have a simple factored structure that is easy to capture
for a model. Environments where the return has a sharp dependence on the
policy can make for a very uninformative signal under random exploration,
while model-based RL can plan ahead and find good actions, as long as the
model captures the dynamics well enough.

Using a model also introduces some challenges [Moerland et al., 2022].
For example, even if model-based RL is typically more sample efficient
than model-free RL, it can be slower to train since each step can involve
planning using the model and training of the model. If the model is learned,
inaccuracies and uncertainties in the model are important to handle well.
Model-based RL typically does not reach the same asymptotic performance
as model-free methods, and the learning process can be sensitive to the
quality of the model.

3.5 Other Topics in Reinforcement Learning
There are several other RL methodologies that, while not used in the thesis,
would serve as interesting topics for further research. As will be discussed
later, we do notice some shortcomings with many of the solutions we have
used, and the ideas presented below could potentially serve as solutions to
some of these issues.

Safe Reinforcement Learning
Safe RL [Garcıa and Fernandez, 2015; Gu et al., 2023] focus on ensuring
safety, i.e., not taking any dangerous actions, neither during training nor
execution of the agent. This is typically approached by creating optimization
criteria and exploration procedures to make the agent avoid actions that

61

Chapter 3. Reinforcement Learning

are deemed unsafe. While these bounds are typically more probabilistic in
nature, and thus not as strict as the ones found in control theory, the agents
also have the benefit of being able to learn from data and can thus be used
in more complex environments and learn more optimal policies.

Robust Reinforcement Learning
Robust RL is a set of methods focused on creating policies that are robust
to disturbances, perturbations and uncertainties in the environment [Moos
et al., 2022]. The optimization criterion for robust RL is typically not to
maximize the expected reward, but to penalize the worst-case reward under
some uncertainty assumptions. This will create a more conservative policy,
but one that can perform consistently over varying conditions and distur-
bances. There are many possible approaches to robust RL, one simple being
to train an agent on a set of environments with slightly perturbed parame-
ters, leaving the agent to learn a policy that is robust to these variations.

Offline Reinforcement Learning
Offline RL [Levine et al., 2020] focuses on the problem of learning from a
dataset of experiences, without the ability to interact with the environment.
One of the main reasons for offline RL is that exploration can be costly in a
real environment, and learning only from data that is collected by a known
safe algorithm, or even a human expert, can then provide an avenue for
learning an agent fully offline. The key challenge is how to learn a good
policy despite not being able to collect new data to correct potential errors
or explore unseen states, as well as how to deal with the distribution shift
between the data and the policy.

Hierarchical Reinforcement Learning
In hierarchical RL [Hutsebaut-Buysse et al., 2022] the goal is to decompose
a complex task into smaller subtasks, which can then be solved individually.
This makes the state and actions spaces smaller for each individual agent,
and also makes it easier to transfer knowledge between tasks. On top of all
these simple agent there can be a meta controller selecting some high level
optimization goals which affect the behavior of the lower level agents.

Causal Reinforcement Learning
Causal ML [Kaddour et al., 2022] is the combination of causal inference
and ML, giving more power to the ML algorithms by allowing them to
reason about the causal structure of the data. In RL, credit assignment
problem captures the importance of finding the causal relationship between
action and reward, and while RL can be considered to have some causal
features, the focus in the fields tend to be slightly different. While RL

62

3.5 Other Topics in Reinforcement Learning

focus on maximizing the cumulative reward, which will require an implicit
understanding of the causal structure, causal inference typically focus on
identifiability and inference based on the causal structure of the data. By
making the causal inference more explicit in the model, we could potentially
create RL algorithms that are more sample efficient and interpretable.

63

4
Reinforcement Learning in
Practice

There are many practical challenges with RL that are not as prevalent
in other ML methods. Many interesting achievements in RL come from
games, e.g., Go and DotA 2, where simulations and self-play help drive
massively parallelized learning. There are real world applications where
RL has been applied successfully, such as stock trading, ad placement and
protein folding. Physical systems such as robotics and heating systems are
also an area of interest, often being trained in simulated environments
before being deployed in the real world.

However, RL is notoriously difficult to train even in simulation, and there
are multiple factors that make it a hard problem. One main factor is the
sample inefficiency, requiring many interactions to properly learn a policy.
This inefficiency is tied to many of the other reasons that makes RL difficult,
among them the credit assignment problem, the exploration-exploitation
trade-off and the non-stationary targets during training. In addition to this,
RL using NNs suffer the same challenges as most other ML methods using
NNs. The opaque representation creates a black-box structure for which the
inner reasoning is hard to interpret, and it has plenty of hyperparameters
to tune. Specifying a good reward function can also be a complicated task,
where environments might have multiple objectives and constraints that
are not obvious how they can be well incorporated.

When it comes to real world tasks, there are also a new range of problems
that are not as prevalent, or present at all, in the simulated environments
that are often used in RL [Dulac-Arnold et al., 2021]. For real systems
there are often limited samples, it is not possible to quickly generate many
interactions or running many environments in parallel to speed up the
training. With this in mind, sample efficiency becomes a much more im-
portant factor. Unknown delays from sensors and actuators are likely to be
more common in real systems, increasing the noise in the credit assignment

64

4.1 Bag of Tricks

problem. Physical systems can often have safety constraints, where if the
constraints are violated the system could be damaged or cause other prob-
lems. So learning while keeping safe must include some safety zone which
can be hard to reason about well and embed in the reward function in a
good way. Explainable policies also become more of an important question
if the policy is going to be used to control anything that can actually cause
damage or incur large costs if something goes wrong.

Conceptually, most basic RL algorithms are rather simple, and their
state-of-the-art implementations take a number of design decisions to im-
prove the performance of the agent. Not all of these decisions are theoret-
ically motivated, or even well discussed in the publications, leading to an
iterative process of trial-and-error as the user of these algorithms, when
trying to figure out which configurations to use. Some of the more popular
ideas are summarized in Section 4.1, while Section 4.2 covers some practical
considerations for setting up training infrastructure and pipelines. Related
work in learning for cloud infrastructure control is covered in Section 4.3.

4.1 Bag of Tricks
A bag of tricks is an expression denoting a set of techniques that can be
used to try to reach our goal, in this case to make the RL agent learn well.
As there are many sources of problems that show up in practice, making the
learning process difficult and unstable, there are also many techniques that
can be used to try to counter these problems. We will discuss some of the
more common techniques to aid the learning process, and how they relate to
the problems we have encountered in our work. While calling some of these
tricks might be a bit unfair, as they are well known and theoretically sound
techniques, it is a collection of techniques that are not directly related to the
core of RL, but rather to the practicalities of applying it to real problems. For
a more thorough discussion of some of these techniques and a comparison of
their effect when applied to on-policy algorithms, see [Andrychowicz et al.,
2020].

Inductive bias on NN structure. As previously mentioned, NNs are
very versatile function approximators that scale well for high-dimensional
data, though they can be difficult to train due to their black-box nature
and sensitivity to hyperparameters. Some difficulties with training NNs
can be countered by introducing good inductive biases into the network, or
through the learning process. This can be seen clearly in the deep learning
community, where large breakthroughs typically came from an insight that
led to a specialized network structure that was very good at a type of
problem. The most typical case is convolutional neural networks, where the
insight that extracting important features using filters over adjacent values

65

Chapter 4. Reinforcement Learning in Practice

leads to more efficient learning, and also leads to translational equivariance
in the network. There are also RNNs that implement a memory in the
network to improve learning of sequential data, and transformers that use
attention to learn dependencies between different parts of the input. In
Chapter 6, a simple structure is imposed on the NN based on the layout of
the DC, aiming to reduce the number of parameters and make the learning
problem easier. Chapter 9 introduces some novel structures for the output of
the NN, and compares how the efficiency of the learning process is affected
by the different structures.

Optimization. The optimization procedure can have a large impact on
learning in NNs, and though the most common are first order stochastic
gradient methods, there are many other interesting alternatives [Bottou
et al., 2018]. Using parameter schedules such as learning rate decay can be
important to achieve good convergence, and is often used in RL. While we
have mainly relied on Adam [Kingma and Ba, 2017] for optimization, we
have explored the effect of more complex methods. An interesting approach
is to start with a first order method such as Adam, and switching to a
second order method such as L-BFGS [Liu and Nocedal, 1989] as Adam
starts to converge. This produces a fast and efficient initial phase of the
learning, while pushing the loss down in the ed using a slower but more
precise method. For the right problem, this can significantly improve the
final loss without increasing the training time too much.

Target networks. An already mentioned concept that is commonly ap-
plied is target networks, where a separate version of the main value network
is slowly following the real one. This will reduce the correlation between the
estimates and the target values in the updates, by letting the target network
be a separate and less noisy estimate of the target. The target parameters
are updated to slowly follow the main network, either by periodically copy-
ing them or by using a soft update rule such as Polyak averaging [Polyak
and Juditsky, 1992], where the target parameters take small steps towards
the main network parameters at each update. These are used in Chapters 5
to 7, as part of the PPO and SAC agents.

Double Q networks. Double Q networks is a technique to reduce the
overestimation bias in Q-learning by using two separate networks, one to
estimate the best action and the other to estimate the target value from that
action [van Hasselt et al., 2016]. By decoupling the action selection from
the value estimation, the overestimation bias is reduced, and the agent
can learn faster. This is a problem that becomes more prevalent in large-
scale problems, where the value estimates can be more uncertain and thus
more likely to overestimate the true value. Double Q networks are used in
Chapter 7 for the SAC agent.

66

4.1 Bag of Tricks

Gradient clipping. Gradient clipping is a way to constrain the size of
the gradient steps in order to make the optimization parameters not change
too much with each update, where too large steps could have a larger risk of
accidentally destabilizing the learning process. It is commonly implemented
using a norm on the gradient step, where it is clipped to a maximum size.
In Chapters 5 and 6 this is used as part of the PPO agent, imposing the
constraint on the probability ratio instead of directly on the gradient. And in
Chapter 8 it is used to constrain how much the load balancing parameters
can change in each step.

Normalization. Normalization techniques are shown in [Andrychowicz
et al., 2020] to have larger impact on learning than gradient clipping. Most
important was observation normalization, where the observations are nor-
malized to provide approximately zero mean and unit variance. In addition
to this they also found value function normalization quite beneficial, i.e., to
allow the value function output to be zero mean and unit variance. Related
to this is reward scaling, where just scaling the rewards to make the values
be in a reasonable range for the value function can have a large impact
on learning [Schaul et al., 2021]. All this relates to the idea of how NNs
learn faster with well distributed data, and is something not only observed
in RL. Normalization was used in Chapters 5 to 7, for both states, actions
and rewards.

Reward shaping. Reward shaping [Hu et al., 2020; Grzes, 2017] on the
other hand, is a process where the reward function is modified to better
facilitate the learning process and can be a way to incorporate domain
knowledge in the learning process. It can help to speed up learning and
improve the quality of the final agent if it is embedded with the right values,
though it can be tricky to reason about exactly what such changes do to the
value function. Different problems will have different quirks when it comes
to the reward, and one has to be careful not to accidentally change the
reward in ways making the agent learn something that was not desired. We
tried to use simple rewards, mapping as directly as possible to the business
objective the agent should optimize. But Chapters 5 to 7 all implement some
shaping decisions when it comes to how constraints should be implemented,
or how multiple objectives should be combined.

Extending the state. Similar to providing a good reward function, it is
important to make sure that the state observations give the agent enough
information to learn the task. This is especially important in partially
observable environments, where the agent only observe a subset of the
state. In these cases, providing a way to access the evolution of the state
by, e.g., stacking previous observations into a new state, or using RNNs to
give the agent some memory of previous states, can be beneficial. Stacking

67

Chapter 4. Reinforcement Learning in Practice

the state is used in Chapter 7, and was found to be important for the agent
to learn the task.

Discretizing a space. A discrete space can come in different flavors,
where the different values can have no inherent order, i.e., a categorical
space, or where the values have an order, i.e., an ordinal or interval space.
A categorical space could for example be the type of request, while an ordinal
space could be the type of server to use, small, medium or large. An interval
space would, in addition to order, have an equally spaced distance between
values, e.g., the number of replicas of a microservice.

By learning a categorical policy for an action space based on ordinal or
interval values, the inherent knowledge about the ordering of the actions
are neglected, and the policy will have to learn this from scratch. Instead,
we can learn a continuous policy, then the ordering of the actions are
automatically there, and we just need to discretize the actions in some
way. This is explored in [van Hasselt and Wiering, 2009], showing that
continuous action that are rounded to the nearest integer can have benefits
over learning a categorical policy. In Chapter 7 we use this idea for deciding
the number of replicas in a microservice, also generating a continuous action
that is simply rounded to the nearest valid integer in the interval action
space.

Experience replay. Experience replay is used in many off-policy algo-
rithms, keeping a history of experiences in a replay buffer. This allows for
each experience to be used in many updates, and removes the correlation be-
tween successive experiences used in training, thus improving the efficiency.
It can also help with stability since it decouples the current policy from the
experience used in training, thus avoiding a too tight feedback loop which
can cause instabilities in training [Mnih et al., 2013]. Experience replay is
used in Chapter 7 for the SAC agent.

Prioritized experience replay [Schaul et al., 2016] makes the sampling
happen with a probability proportional to the absolute TD-error, i.e., expe-
riences that the current network is bad at predicting have larger chance
of being included in the training, thus further improving the learning effi-
ciency.

Policy initialization. Policy initialization, where the NN for the policy is
initialized to have a “neutral” distribution, can significantly increase train-
ing speed [Andrychowicz et al., 2020]. Other ways of providing a good initial
structure for the networks can also be found in the study, e.g., balancing
the size between value and policy network where the value network should
typically be bigger. A different approach to initializing the policy is through
supervised learning on expert knowledge, where state-action pairs are used
to train the policy to simply mimic the expert. Pre-training is another ap-

68

4.2 Training

proach, where an agent can be trained in a simulated environment, or on
offline data, after which it is transferred to the real environment where
it can then already be proficient and can be further fine-tuned [Xie et al.,
2022].

Hyperparameter tuning. Many of these improvements contain or intro-
duce new parameters, which together with all hyperparameters that already
exist for NNs make for a very high-dimensional space. These hyperparam-
eters can have a large impact on the performance of the algorithm, and it
is important to find good values for them. Grid search is one of the simpler
methods to hyperparameter tuning, but in high dimensions can become inef-
ficient and, e.g., Bayesian optimization [Hutter et al., 2019] or evolutionary
algorithms [Kiran and Ozyildirim, 2022] will likely be more efficient. Chap-
ters 5 to 9 all use hyperparameter tuning to some degree, and we found
grid search and manual tuning to be sufficient in those cases.

4.2 Training
Training an RL algorithm is also a practical consideration that can present
many challenges, both in terms of implementing the algorithmic details,
but also in terms of setting up a good pipeline for running experiments.

When the agent does not train well it can be due to one of many reasons,
and with the black-box nature of NNs together with RL being hard to inter-
pret, it can be difficult to pinpoint the exact cause of a problem. It might be
a problem with the implementation of the algorithm, or the implementation
of the environment. The reward function might be incorrect, or just ineffi-
cient in the sense that it is not providing enough information to the agent.
The state representation might be too complex, or not complex enough, and
the same goes for the action space. It might simply be hyperparameters
that are not tuned well, or that the agent needs to train for a little longer.
Any of the tricks explained above, as well as many not mentioned, could
be beneficial to make the agent train well. Creating a good pipeline to be
able to run many experiments efficiently becomes very important, as well
as having good tools to analyze the results.

With all these potential sources of problems, it is often a good idea to
start as simple as possible, and gradually add complexity to the problem
as we see that the agent is able to learn. For the work in this thesis, we
often resorted to simplifying the algorithms and environments we wanted
to use, to allow us to iteratively add complexity and have an easier time of
finding the source of problems when they arose. In publications the focus is
often on the final results, and with limited space it is not always possible
to include all the details of how we got there.

69

Chapter 4. Reinforcement Learning in Practice

One other practical problem that is often overlooked in academic work
is the complexity of setting up a good training pipeline. With an algorithm
and environment in mind for our RL problem, there are still choices both in
terms of language and framework for the implementations, as well as what
hardware to run it on.

At the time of writing, Python is by far the most common language for
deep learning. And though there are other options, as in this thesis where
we also use Julia [Bezanson et al., 2017] for parts of the work, there are
vastly more tools and libraries available for Python. When it comes to RL
algorithms they still rely on much of the same infrastructure as other deep
learning algorithms, such as PyTorch [Paszke et al., 2019], TensorFlow
[Abadi et al., 2016] and JAX [Bradbury et al., 2018] in Python, or Flux.jl
[Innes et al., 2018] in Julia. RL specific frameworks are then built on top of
these, such as stable baselines [Raffin et al., 2021] and RLlib [Liang et al.,
2018] in Python, or ReinforcementLearning.jl [Tian, 2020] in Julia. Running
RL workloads is typically time-consuming, and specialized hardware such as
GPUs or TPUs, as well as large clusters of machines, are commonly used to
help parallelize and speed up training. RLlib is part of the larger ecosystem
Ray [Moritz et al., 2018], which is a collection of Python libraries providing
different tools for handling distributed computations such as training and
tuning of ML workloads.

For this thesis we began by looking at RLlib and Ray, which seemed like
modern tools with good support for distributing work and a large collection
of standard algorithms. While this was true, there were also some things
that were not as good as we had hoped. The documentation was not always
up to par, and the code was not always easy to follow. So when doing the
standard things, and following their recipe for how to do it, everything
was nice. But straying slightly from the standard use case, it could be quite
difficult to figure out how to fit a different workflow into the framework. This
was one of the reasons we decided to switch, moving to a much more basic
framework, and trading some convenience and efficiency for the flexibility
and control of doing things ourselves.

Deploying the clusters of machines that run the workloads can involve
anything from configuring the hardware yourself, to provisioning virtual
machines from a cloud platform. On top of these machines, there are often
additional tools needed to orchestrate the infrastructure, where Kubernetes
[Kubernetes 2023] is a popular choice with many tools that work with it.
For example, Ray provide their own Kubernetes operator, which simplifies
setting up a cluster of machines for running Ray workloads.

The effort required to set up an efficient pipeline for experimentation can
vary a lot, depending on what tools are used in what part of the pipeline,
and how well they work together. In this thesis we spent quite some time on
setting up custom pipelines to learn about the different parts of the process,

70

4.3 Related Work

and to be able to experiment with different setups.
Chapter 5 and Chapter 6 both use a similar software stack with RL-

lib and Ray on the top to handle parallel tuning of hyperparameters in
the algorithms, though the hardware requirements were slightly different.
In Chapter 5 we used a simple environment and small networks, and ran
training on CPUs, while in Chapter 6 we used a more complex environment,
requiring a GPU to execute. The networks were still relatively small, and
kept on the CPU to maximize GPU time for the environment. A tool like
Ray is very useful for this kind of work, as it handles the parallelization of
training and tuning, while providing easy controls for resource scheduling
and sharing. It also provides a convenient interface for logging and mon-
itoring the basic metrics of the training, such as the reward and loss, as
well as the hyperparameters used. The downside of using a tool like Ray, a
full framework for distributed computing and RL, is that it can be hard to
understand what is going on under the hood, and to customize parts of the
training process.

In Chapter 7 we set up a cluster of machines on an OpenStack [Open-
Stack 2023] cloud, using Terraform [HashiCorp, 2023] and Ansible [Red
Hat, 2023] to provision the machines and install the necessary software.
The software implementation was done in Julia, using RL algorithms from
ReinforcementLearning.jl, and parameter tuning using Hyperopt.jl [Bagge
Carlson, 2018]. Training is then run from a single machine that acts as the
control node, syncing the required code and data to the worker nodes, dis-
tributing the work over them, and collecting the results. A small package
was built to support easier syncing of development code that frequently
changed during experimentation, and additional functionality was con-
tributed to both ReinforcementLearning.jl and Hyperopt.jl to better support
our use case.

For Chapters 8 and 9 the implementation of the algorithm took most of
the time rather than tuning parameters and training, so there was no need
for a complex pipeline, and we manually parallelized the few experiments
we had over local servers, running on CPU.

4.3 Related Work
While many of the widely applied methods in industry are based on simple
heuristics and local information, there are also benefits to more complex
methods that take a larger context into account. As manually crafting con-
trol strategies that take a larger context into account can quickly become in-
feasible as the complexity of the system grows, this is where learning-based
methods can be useful. Cloud systems also provide easy data-collection,
lending themselves well to data-driven methods that can automatically ex-

71

Chapter 4. Reinforcement Learning in Practice

tract complex dynamics from the system. High level performance measures,
often related to business goals such as minimizing energy consumption
while adhering to different SLOs, are also often difficult to translate into
low level control strategies, and learning-based methods can be used to
optimize over these goals to find novel control strategies.

This thesis is mainly focused on how RL can fit this role, and what
challenges are encountered when applying RL to the domain of cloud control.
We will look at different control objectives related to what is explored in
the thesis, such as DC cooling control, automatic resource scaling and load
balancing. The rest of this section gives an overview of the current state-of-
the-art in these areas, focusing on how RL fits into the picture.

Cooling Control
While there are many important tasks that can be achieved using the
simple approaches mentioned in Section 2.2, there are also many benefits
to methods that can incorporate more information and take a larger context
into account.

A common method from the field of automatic control is LQR (lin-
ear quadratic regulator), a linear state-feedback controller minimizing a
quadratic cost function. In [Garcia-Gabin et al., 2018] they create a lin-
earized model of a DC and a cost function incorporating both total energy
and maximum server temperatures to create a CRAH controller. While the
traditional approach to find the optimal LQR controller rely on having a
linear (or locally linearized) model of the system, [Yaghmaie et al., 2023]
evaluate both model-free and model-building approaches for learning an
LQR controller without having an initial model. Evaluating this on an ide-
alized DC cooling scenario they conclude that both approaches learn stable
policies quicker than standard RL methods, and find a feedback controller
closer to the optimum. The drawback of LQR is that is assumes the sys-
tem dynamics are accurately modelled by linear differential equations, and
when that does not hold it might not perform well. By allowing non-linear
policies using, e.g., NNs, we loose some interpretability and stability, but
can create policies that are more flexible to a wide range of systems.

Many algorithms are developed and tested in simulation, since real
systems can be difficult and expensive to test on. EnergyPlus [Crawley
et al., 2001] is one simulation tool that can be used to simulate HVAC
(Heating, Ventilation, and Air-Conditioning) systems in buildings, but has
also been used to simulate DCs for training RL agents, minimizing cooling
energy by finding optimal facilities setpoints [Li et al., 2020]. In [Lundin,
2021] they instead train an NN to model the dynamics of a datacenter,
and use that as a model to train and validate RL agents against standard
control strategies. In this thesis, the hardware experiments in Chapters 5

72

4.3 Related Work

and 6 are done in simulation due to the risk, cost and complexity of running
experiments on real hardware. The cloud experiment in Chapter 7 was also
simulated for simplicity, but in Chapters 8 and 9 the experiments were done
on real log-data from Kubernetes clusters running a simple service.

[Zhang et al., 2021] provides an overview of current research in DC
cooling control, dividing it up between different ways of modelling power
consumption of, e.g., CRAH units and chillers, as well as MPC and RL
as the modern control strategies capable of dealing with these complex
systems. The conclusion is, as was already discussed in Chapter 3, there
is no optimal one size fits all solution, and it depends on the specifics of
the problem at hand. Using ML to control a DC can often incur risks, since
these are large and expensive systems where a malfunction can be costly. An
important consideration is therefore how to create learning-based strategies
that avoid problematic actions, which is the topic of Safe RL mentioned in
Section 3.5.

One approach to ensure safety is to have a supervisor that approves any
actions before they are enacted, assuming the supervisor is trusted to make
the right decision. In [Gao, 2014] they take this approach, using a human
operator to approve and enact the actions selected by the agent. By training
an NN to predict future PUE in a supervised manner, this becomes similar
to learning a Q-function, but with easier training since the target values are
provided in the data. It is implemented for a Google DC, and the predictions
are based on different features such as IT load, temperatures, humidity, as
well as operational parameters. The trained NN can then be evaluated over
different operational parameters to find which combination would provide
the best PUE, and the operator implements the best one that is deemed
safe. In [Gasparik et al., 2018] they describe how this was automated by
both creating a better model with uncertainty, and by creating an automated
supervisor that used the model and a number of safety constraints to decide
if the action was safe or not.

Providing more energy efficient climate control using learning-based
methods is not specific to DCs, and, e.g., [Li and Xia, 2015] successfully
apply RL to a building HVAC system to balance energy consumption with
thermal comfort. By using table based Q-learning with different levels of
discretization, they balance the trade-off between performance and com-
putational complexity, and improve on their control objective compared to
constant temperature control.

In [Van Le et al., 2019] the authors focus on how to optimally utilize the
free-cooling capabilities of an air-cooled DC. Using both MPC and RL, they
control the air supplied to the servers by setting flows, temperatures and
how outside air is mixed with recirculated air. A model of the gas-vapour
mixtures is extended with an NN that is trained to estimate the power
consumption based on system states involving mostly properties of the air,

73

Chapter 4. Reinforcement Learning in Practice

which in part comes from the gas-vapour model, while also including the
total IT-load in the state. Based on this model they compare the performance
of an MPC approach and an RL agent controlling the temperature and
humidity of the air supplied to the servers. Though both seem to improve
on the performance of a simple hysteresis controller, the MPC approach has
much higher computational cost for evaluating which action to take each
step. In [Van Le et al., 2020] they further investigate RL for this problem,
using different types of DQN to train RL agents on discretized subsets of
the action space, outperforming simple baselines.

Active ventilation tiles are floor tiles that can be opened and closed to
control the airflow in a DC with raised floor design. In [Hua et al., 2021] they
implement both central algorithms, and multi-agent algorithms to control
these tiles to minimize the cooling energy. For the multi-agent algorithm,
they found that sharing a reward, e.g., the average reward of all agents,
improved performance compared to independent rewards.

[Ran et al., 2019] combine the control of IT and cooling systems, using
a variant of DQN to jointly optimize job scheduling and air flow in the
DC. Similarly, [Chi et al., 2020] explore multi-agent RL is explored as a
venue for joint optimization of workload scheduling and cooling, and propose
an asynchronous optimization strategy to improve stability with different
interaction frequencies of the agents. While we also do joint IT and cooling
optimization using RL in Chapter 5, we consider a more complex cooling
system with both free-cooling and chillers, making for a more complex
problem. In [Wang et al., 2022] they model a more complex cooling chain,
and create a reward function that drives the agent to minimize the energy
consumption while keeping a constant temperature inside the IT-space.
Compared to this, Chapter 5 allows for the temperature in the IT-space
to vary, and include the energy from the server fans in the total energy,
allowing the RL agent to find a better trade-off between energy consumption
and temperature. Another difference is that the DC we model did not have
containment, so there is recirculation to consider which add additional
complications. Chapter 6 considers a similar problem as Chapter 5, just
using a more realistic simulation model.

In [Lazic et al., 2018] they learn a coarse linear model of a DC cooling
system from data, with the goal of controlling the air and water flow for
the CRAHs to maintain a good temperature and differential air pressure,
while minimizing energy consumption. The model is only based on different
properties of the air, and they consider the IT-load as a disturbance. Using
this simple model for MPC, the authors show how this strategy can improve
on the performance of standard PID controllers when implemented on a
large scale DC.

[Wan et al., 2023] develop an interesting model-based RL approach
where they create a data-driven model, use MPC with this model to find

74

4.3 Related Work

trajectories that are safe and energy efficient, and then use behavior cloning
to train a policy that mimics the MPC controller. The model-based approach
allows them to learn quicker, and also develop a risk model in conjunction
to the transition model, allowing them to avoid actions that are deemed
unsafe.

Automatic Resource Scaling
The simple algorithms presented in Section 2.2, based on local information
and thresholding, work well enough in many cases. Though, in a large dy-
namic cloud environment, with complex objectives combining both resource
costs and adhering to SLOs, it will generally be possible to improve on these
simple algorithms.

To overcome the restriction of a local controller, work such as [Hasan
et al., 2012; Borgetto et al., 2012] design their algorithms to take a larger
context in consideration. In the first paper they do so by considering how
compute, storage and network metrics correlate, to provide better scaling
decisions over all those resources, while the second paper considers VM
placement and migration in conjunction with turning physical servers on
or off to save energy.

Another idea would be to aim for a proactive approach, where instead
of just reacting to what resources would have been needed now, we pre-
dict what will be needed in the future. If these predictions can be made
well enough it should allow for much more aggressive scaling, since we can
start scaling before the resources are needed, and avoid under-provisioning.
LSTMs (long short-term memory networks) is a popular type of NN used
for time-series modelling. They work by having a memory state that is
propagated to future predictions, so the NN can choose to keep information
from previous states. This is used in [Kumar et al., 2018; Shahin, 2016] to
model the CPU utilization, so they could predict future utilization based
on historical values. In [Toka et al., 2020] they combine multiple predictive
methods based on different techniques, including autoregressive methods
and LSTMs, to predict the future workload. They show how running mul-
tiple methods that work in very different ways, and implementing scaling
decisions based on the prediction from the one that performed best in the
recent past, can improve the predictions.

In [Różańska and Horn, 2022] they use data-driven predictions to scale
cloud resources proactively for compute intensive tasks with hard deadlines.
They divide metrics into two categories, those that are influenced by the
way the application is configured, and those without any strong relation to
the configuration. Predictions of the future expected values are estimated
separately for the two categories, with methods specific to the type of metric.

While predicting future workload can provide valuable information, it

75

Chapter 4. Reinforcement Learning in Practice

is often not possible to accurately capture all behavior of the system, such
as stochastic behavior of the users. And even though predictions often cap-
ture some average behavior, some over-provisioning will still be required to
account for this variability.

Methods based on RL could ideally implement control that both take a
larger context into account, and optimizes proactively to consider possible
and expected future states. While RL does not necessarily model the dy-
namics to predict the future like an LSTM, the agent will learn to optimize
over future reward according to the underlying MDP, and thus implicitly
take future states and disturbances into account if possible.

One early method using Q-learning for automatic configuration of web
services was proposed in [Bu et al., 2009], deciding parameters such as the
number of servers and threads, and max number of concurrent clients. In
[Xu et al., 2012] they use deep Q-networks to do vertical scaling to optimize
a web system. Similar to the Dyna architecture mentioned in Section 3.4
they extend it with a model to improve data efficiency.

Horizontal scaling seems more common in the literature with, e.g., [Bar-
rett et al., 2013; Ghobaei-Arani et al., 2018] using Q-learning scale a service
horizontally based on information local to that service. Both craft a reward
function that takes both resource costs and SLA violations into account.

While table-based Q methods can prove simpler in some ways, they
are hard to scale, and they only handle discrete states. To alleviate this,
[Bitsakos et al., 2018] explore deep Q-learning for horizontal scaling of
a single service in a simple simulated scenario. Similarly, [Bibal Benifa
and Dejey, 2019] use NNs with SARSA to scale slightly more complex
services, though still only considering a single service but for heterogeneous
workloads.

[Rossi et al., 2019] consider both vertical and horizontal scaling with
the same agent, and bring forth the benefits of model-based approaches by
comparing Q-learning, Dyna-Q and Q-based value iteration, showing that
the model-based approaches can be more data efficient.

Microservice architectures today can consist of many services used to
create a single application, where services depend on each other to provide
the full functionality. This gives better opportunities for coordinated scaling,
and specifically for scaling proactively in a more well-informed manner,
since loads that propagate through the system create a temporal dependency
between the services. This is considered in, e.g., [Millnert et al., 2018] where
automatic scaling and admission control of time-sensitive service chains is
done using techniques based in control theory and network calculus. The
focus of the work was to determine the lowest upper bound on computing
resources, to support workload variations without missing deadlines. [Yu
et al., 2022] consider an unknown cloud application using multiple different
services. By correlating request flows between services they extract the

76

4.3 Related Work

service graph, and using Bayesian optimization they find optimal scaling
decisions, minimizing cost and latency at the same time.

In Chapter 7 we similarly consider an unknown system of multiple
services, and workloads that traverse over some chain of services. This
makes for a hard RL problem since there is a sequence of decisions needed
to be made for a job to succeed, and the reward is not known until the job has
finished, creating delayed effects from the actions. We train an RL agent to
implicitly learn the dependencies between the services, and use this to make
proactive scaling decisions. While the user-facing service might still require
a buffer since the random workload dictates the arrivals there, it should
give a more stable approximation for the remaining services, allowing for
smaller buffers without risking missing deadlines.

Load Balancing and Scheduling
The algorithms presented in Section 2.2 work well enough in many cases,
but there are also benefits to more complex methods that can incorporate
information that is typically not easy to include in the simple algorithms.

A common consideration for these problems is to maximize throughput
or minimize response time by balancing or scheduling the tasks over a set
of available resources. [Mao et al., 2016; Dong et al., 2020] apply RL to min-
imize response time using task scheduling, and use simulated scenarios for
training and evaluation. To combine multiple competing objectives, [Wang
et al., 2019] apply a multi-agent DQN approach. In [Shahab Samani and
Stadler, 2022] the authors train an RL agent to do admission control and
routing, showing that initial training on a simulated environment can be
used to bootstrap the agent before deploying it in the real system.

By including energy consumption in the objective function we create a
trade-off between energy and performance, creating a more complex prob-
lem. Here energy could just refer to some running cost, where heterogeneous
hardware can have different properties. Similar to doing cooling control with
awareness of the IT-systems, there are work on load balancing and schedul-
ing with awareness of the non-IT systems such as cooling and power. An
early attempt at this was [Liu et al., 2012] that do workload scheduling with
awareness of the cooling and power systems. Using traditional modelling
and optimization schemes, they schedule workloads when cooling is more
efficient and electricity is cheaper, to reduce the energy cost of the datacen-
ter. In [Townend et al., 2019] the authors present a scheduler that takes
both physical and software layers into account when distributing contain-
ers on a Kubernetes cluster. They argue that improved models and metrics
are needed to better understand the relationship between the two layers,
in order to make energy efficient scheduling decisions. Another interesting
approach is to look at the optimal load regime for servers, and try to keep as

77

Chapter 4. Reinforcement Learning in Practice

many servers as possible in that regime by balancing the load appropriately,
allowing servers with low load to enter a sleep state [Paya and Marinescu,
2017]. In [Xu et al., 2017] they authors apply geographical load balancing
that takes electricity and delay into account. They assume that short-term
estimates of workload and renewable energy production are available, and
use this to make decisions on where to place the workload using standard
optimization techniques. In [Cheng et al., 2018] the authors use DQN to
do energy aware resource provisioning and workload scheduling in a large
scale DC setting.

Taking heterogeneous hardware into account makes the problem more
complex, and in [Baek et al., 2019] they use RL to automatically learn the
best load balancing strategy for optimizing response time and energy usage
in an edge cloud consisting of heterogeneous devices. [Kanbar and Faraj,
2022] combine scheduling and load balancing over multiple clouds, using
NNs for classifying the workload, multi-criteria optimization for scheduling,
and RL for load balancing. In Chapter 8 we approach a similar problem
where we try to optimize the load balancing over servers located on the cloud
and the edge, considering both cost of running the workload in different
settings and the response time. We use a model-based method that regularly
reevaluates the recent data, and try to come up with the optimal strategy
for the current situation, rather than trying to learn a general strategy that
works for all situations. In Chapter 9 we improve on the model to better
capture some system dynamics, allowing for better predictions outside the
training data, leading to faster convergence of the policy.

78

5
Holistic DC Control using
Deep RL

The distribution of IT workload within a datacenter will affect where heat is
generated from the physical equipment. As generated heat will in turn affect
the cooling systems, it could be beneficial to have this information when
controlling the cooling systems. Similarly, it could be beneficial to know
the existing temperature distribution when distributing the IT workload. If
more load is placed in areas that, by the layout of the DC, receives more
cold air, the cooling systems could operate more efficiently.

While these systems clearly affect each other, the exact relationship
is not as obvious, and controlling them in a coordinated manner is not
trivial. We explore this holistic control problem using RL, deploying an RL
agent to control both systems simultaneously. A simulated environment is
also introduced, recreating the problematic aspects of a DC that we want
to make sure our controller can handle. In Chapter 6 we develop a more
complex environment to further explore the problem of holistic control using
RL.

5.1 Thermal Model of a Datacenter
To train and evaluate the proposed RL agent, a thermal model of a DC is
developed to capture the dynamics of the cooling system and the thermal
interactions between the IT equipment and the environment. [VanGilder
et al., 2018] provides a compact model of a DC cooling system, idealizing
the system as a heat exchanger in series with a thermal mass. This compact
model is developed further in [Healey et al., 2018], where components for
the room, plenum, walls, floor, and ceiling are added to better represent the
complete thermal mass of a DC.

The model created here, and later extended in Chapter 6, is based on a
small DC pod seen in Figure 5.1, operated by RISE SICS North in Luleå,

79

Chapter 5. Holistic DC Control using Deep RL

Figure 5.1 Small DC pod at RISE SICS North in Luleå, Sweden.

Figure 5.2 Conceptual heat rejection schematic of the physical model. “IT
space” refers to the server hall in Figure 2.2, containing servers and CRAH
units.

Sweden. It consists of 12 racks and 4 CRAHs, and is well instrumented to
be usable for research purposes. The DC is cooled using a chiller with free-
cooling capability, and the cooling system is designed to be able to operate
in free-cooling mode for most of the year. Figure 5.2 shows a diagram of
the infrastructure of interest, where CRAH units are transferring the heat
generated in the server hall, into a water loop which in turn is connected to
a chiller with free-cooling capability. The free-cooling functionality can be
applied when the outdoor temperature is low enough to enable the dry-cooler
to reject the heat from the IT equipment without using the compression-
cycle. In compressor mode, a vapor-compressor cycle lowers the temperature
obtained from the dry-cooler to chill the water loop connected to the CRAH
so that the generated heat can be rejected. Operating the compressor in the
chiller consumes a lot more power than operating the chiller in free cooling
mode while also increasing the risk of a failure, and should be avoided if
possible.

The simplified model presented in this section ignores the thermal mass
and dynamics of equipment, facilities and cooling system, and only considers

80

5.1 Thermal Model of a Datacenter

Table 5.1 Variables used in the model.

Name Description

ps IT-load on server s, pidle/max
S = [50, 400] W

p f an Total power used by fans
pcomp Power used by compressor
Qs Air flow through server s, Qmin/max

S = [0.001, 0.04] m3/s
Qc Air flow through CRAH c, Qmin/max

C = [0.1, 2.1] m3/s
K f an

S Server fan power coefficient K f an
S = 7.9 · 105 W/(m3/s)3

K f an
C CRAH fan power coefficient K f an

C = 143 W/(m3/s)3

T in/out
s Air temperature into/out from server s in degrees Celsius

T in/out
c Air temperature into/out from CRAH c, the outlet is a control

variable that is restricted to Tmin/max
C = [18, 27]°C

Tamb Ambient (outdoor) temperature in degrees Celsius
Tcpu

s CPU temperature in server s in degrees Celsius
Tcpu CPU target temperature Tcpu = 60°C
Cv Estimated volumetric heat capacity from [Sjölund et al., 2018]

Cv = 1183 J/(Km3)
R CPU heat loss resistance R = 0.33
Ki Integral action control coefficient Ki = −8 · 10−5 m3/(s·K)

the heat and mass transfer associated with the cooling airflows.

Simple Model
Based on the conceptual heat rejection schematic in Figure 5.2, we create a
model of the DC, aimed at capturing a few interesting dynamic properties
of the cooling system. Each server generates heat based on the current load,
which is picked up by the air and transported to the CRAH. The CRAH is
connected to a chiller that can reject heat from the CRAH using either a
compressor or free-cooling.

Recirculation and bypass flows are inefficiencies caused by hot air flowing
back into the cold aisle or cold air bypassing the servers. While recircula-
tion and bypass flows are avoided in most modern DCs using containment
solutions, e.g., where cold and hot air are separated by lightweight walls,
we choose to include these flows. One reason is that we specifically want
to look at the problem of control in the context of complex air flows, which
are more prevalent in DCs without containment. Though the main reason
is that the DC the model is based on did not have any containment, and
keeping the model close would simplify a potential future transfer to the
real system.

81

Chapter 5. Holistic DC Control using Deep RL

The variables and constants used in the model are listed in Table 5.1,
and will be further explained in the following sections. Generally, s and c
will be used to index individual servers and CRAH units, while S and C
will be used to denote common values over all servers and CRAH units.

Servers. The model contains 40 servers assumed to be identical. Heat
generated by each server is modelled as proportional to the load ps(t) on
the server, and the CPU temperature Tcpu

s depends on the generated heat
as well as the inlet temperature T in

s and air flow Qs through the server.

Tcpu
s (t+ 1) = T in

s (t) +
1
R

ps(t)
CvQs(t)

(5.1)

Here R captures the CPUs resistance to give off heat to the air, while Cv is
the volumetric heat capacity of the air.

The servers contain an internal fan that we do not control, and we model
it as an integral action controller that tries to keep the CPU temperature
at a target temperature Tcpu. The target control action Q̂s is calculated as

Q̂s(t+ 1) = Qs(t) + Ki(Tcpu − Tcpu
s (t)), (5.2)

with the actual flow Qs being the value of Q̂s constrained to the interval
[Qmin

S , Qmax
S]. This creates a dynamically changing flow depending on both

inlets and load that is not directly controllable, but can be influenced by
changing the inlet temperature and the load on the servers.

Each outlet temperature from the servers are then modelled as capturing
all the heat generated by the server under the previous step,

Tout
s (t+ 1) = T in

s (t) +
pc(t)

CvQs(t)
,

which is assumed to mix over all outlets, and create a single homogenous
flow with temperature

Tout
S (t) =

∑
s Qs(t)Tout

s (t)∑
s Qs(t)

.

CRAH, chiller and dry-cooler. This model only uses a single CRAH with
two control variables, the flow Qc(t) and the outlet temperature Tout

c (t).
With this we have two ways of providing more cooling capacity, either by
increasing the flow or by lowering the outlet temperature, affecting the
surrounding systems in different ways, and consuming different amounts
of power. The outlet temperature of the CRAH is assumed to be controlled
directly, though in practice it is controlled by adjusting the temperature and
flow of the water in the CRAH. This makes the model easier to implement,

82

5.1 Thermal Model of a Datacenter

not explicitly needing the water loop, and should not make much difference
for the higher level objectives we have of holistic control.

The compressor is modelled to turn on depending on the relative tem-
perature change needed in the CRAH. When turned on, it uses power
proportional to the heat removed from the air in the CRAH.

pcomp(t) =
{

0 if Tamb(t) < Tout
c (t)

CvQc(t)
(
Tamb(t) − Tout

c (t)
)

otherwise

This introduces a non-linearity such that power consumption increases by
a large factor for CRAH temperature setpoints below the ambient temper-
ature.

The dry-cooler is modelled to remove all heat down to the ambient
temperature. This is a simplification that gives us the main effect of the
dry-cooler that we were after, where we have a form of free cooling which
works for a limited range of temperatures.

Fan power. Fan power from the servers are typically included in the IT
power when calculating the PUE. As we can select where in our model to
include it, we choose to put it with the cooling power instead, as it is used
to move air around in the DC. This is not important for the results, and
is actually going to give a worse PUE, but it makes more sense to us to
include it in the cooling power.

The total cooling power is then composed of both the fan power from
servers and CRAH units and the compressor power. The fan power follows
affinity laws derived from dimensional analysis [Buckingham, 1914],

p f an(t) = K f an
C Qc(t)3 + K f an

S
∑

s
Qs(t)3, (5.3)

where the constants K f an
C and K f an

S are calculated as maximum power
over the cube of the maximum flow for both server and CRAH fans. These
numbers are specified by the manufacturer.

While model simplifies many parts of the system, it captures interesting
dynamics in how the cooling system interacts with the servers and how the
power consumption is affected by this.

Server hall. Simulating the air flow in the server hall is done using a
model where the flow between CRAH and servers can either recirculate into
the servers or bypass the servers depending on the flow difference between
the CRAH and the servers. Recirculation means that a fraction η of the hot
air from the servers flows back into the servers, and bypass means that
a fraction µ of the cold air from the CRAHs flows directly back into the

83

Chapter 5. Holistic DC Control using Deep RL

CRAH.

η(t) = max
(

0, 1− Qc(t)∑
i Qs(t)

)

µ(t) = max
(

0, 1−
∑

i Qs(t)
Qc(t)

)
(5.4)

By assuming a constant air pressure and good mixing, we approximate the
temperatures of the server and CRAH inlets as

T in
s (t+ 1) = (1− η(t))Tout

c (t) + η(t)Tout
S (t)

T in
c (t+ 1) = (1− µ(t))Tout

s (t) + µ(t)Tout
c (t)

which is simply the weighted average of the temperatures of the air from
the CRAH and the servers, where the weights are corresponding volumetric
flows.

The assumption of constant air pressure does not hold precisely for
the CRAH and servers, where the flow is assumed to be the same in and
out while the temperature changes. This will result in slightly unrealistic
dynamics where small amounts of mass are being created and removed in
the servers and CRAH. We assume these effects are negligible compared to
other dynamics, and that in regard to the RL agents ability to learn, the
reduced complexity is worth the trade-off of having a slightly less realistic
model.

5.2 Combined IT and Cooling Control
To control the presented model in a holistic manner, we need an algorithm
that can handle a mix of discrete and continuous control variables, and that
can learn from complex state variables without any initial understanding
of the underlying dynamics. For this we develop an RL agent, controlling
CRAH setpoints and load balancing decisions simultaneously based on the
current state of the DC.

Reinforcement Learning Agent
We decide to use PPO [Schulman et al., 2017b], a state-of-the-art RL al-
gorithm that performs well on many complex control problems, and has
implementations that handle a mix of discrete and continuous control vari-
ables. While a few other algorithms were considered, e.g., DDPG and SAC,
we found PPO to be well suited for this problem.

We use dense neural networks for both the policy function and value
function, with no layers are shared between them. Each network takes

84

5.2 Combined IT and Cooling Control

Server loads

Server outlet

Outdoor temp
...

...

Server index

CRAH flow

CRAH temp

Figure 5.3 The policy network used for the RL agent. The value network
has the same structure for the input and hidden layers, but a single output.

the state as input and feeds it through two hidden layers with 256 units
each, and uses the tanh activation function. The value network has a single
output with no activation, while the policy has three sets of outputs, see
Figure 5.3.

State space. The state s is a vector consisting of the current server outlet
temperatures and load, as well as load p job and duration D job of the incoming
job.

s =
([

Tout
s . . .

]
,
[
ps . . .

]
, p job, D job)

This is actually only a partial observation of the state, as, e.g., the current
flows and temperatures inside the datacenter are unknown. As are the
durations of the loads already distributed in the datacenter. To improve
learning, the states are mapped using affine transformations between their
estimated ranges and the range [−1, 1], before being fed to the agent. The
server outlet temperature is estimated to stay within the range [15, 85]°C,
and the load is given in Table 5.1.

Action space. The action a consists of setting the CRAH temperature
and flow setpoints, as well as the target server s for a potential job.

a =
([

Tout
c . . .

]
,
[
Qc . . .

]
, s
)

.

Each action is sampled from a set of distributions generated by the output
of the policy network. The policy network has 4 outputs for the CRAH
setpoints, and an additional one output per server for the load balancing.
The 4 outputs are used as mean and logarithm of standard deviation for
two Gaussian distributions, to sample the temperature and flow setpoints
of the CRAH. The temperature and flow setpoints are sampled from the
distribution, and constrained to the range [−1, 1] before an affine transform
is applied to map them to their respective ranges given in Table 5.1. The load
balancing distribution uses the remaining outputs to generate a categorical
distribution through the softmax function, which is then sampled to select
a server.

85

Chapter 5. Holistic DC Control using Deep RL

Reward function. The reward r is designed to capture the energy cost of
the cooling process, while penalizing the agent for the number of dropped
jobs Jdrop and for not adhering to the cold aisle server inlet threshold of
27°C, a common standard from industry [ASHRAE TC9.9, 2016]. The cold
aisle temperature threshold is needed since our model does not capture the
problems that appear as the servers run too warm, such as increased failure
rates and reduced lifetime.

r = −
(

C1
(
p f an + pcomp)∆t+ C2Jdrop + C3

∑

s
1(T in

s > 27)
)

(5.5)

The reward is the negation of these three costs, weighted by C1 = 0.00001,
C2 = 10 and C3 = 0.1. The weights are tuned both for scaling the reward to
a reasonable range to improve learning, and to punish overstepping the cold
aisle temperature threshold or dropping jobs harder than the using energy,
incentivizing the agent to prioritize those constraints.

5.3 Evaluating the RL Agent on the Simulated Model
Using the simulated model, we can evaluate the performance of the RL
agent in a controlled environment. The code for both the model simulation
and RL agent training is available on GitHub1.

Training and Simulation Setup
We use Ray RLlib [Liang et al., 2018] to handle the training of the RL agent.
The environment is implemented in Python using the OpenAI gym interface
[Brockman et al., 2016], allowing RLlib to use it as a training environment.
The PPO implementation in RLlib is adapted to fit with our environment,
allowing for parallel training and hyperparameter search through Ray Tune
[Liaw et al., 2018].

Each step in the environment, i.e., the time between an action and the
subsequent observation, is 1 second. The data is logged through Ray to
Tensorboard [Abadi et al., 2016] using callbacks that track the minimum,
mean and maximum over a soft horizon. The soft horizon is used since
the environment is continuing, meaning that there is no natural end to an
episode. We run with a batch size of 200, and horizon length of 100, meaning
that we collect 200 steps of data between each time we train and collect data
over each 100 steps. Each batch is used to train the agent over 30 epochs
using mini-batches of size 128. We effectively disabled the value function
clipping parameter by setting it to a large number. Remaining training-
parameters are left at their default values, e.g., using the optimization

1 https://github.com/albheim/rldc-flowsim

86

https://github.com/albheim/rldc-flowsim

5.3 Evaluating the RL Agent on the Simulated Model

algorithm Adam with learning rate 0.0004, a discount factor of 0.99 and
a GAE parameter of 1.0. The entropy coefficient is left at zero to converge
towards a more deterministic policy.

For the presented results we use the collected mean values, which we
then further downsample by a factor 50 to make for a more readable plot.

Workload. The simulated IT workload is modelled to represent a simple
1-tier compute service, which could for example be an on-demand image
recognition or inference task service. The service time and load of incoming
jobs are assumed to be known, a simplification motivated by previous work
showing how these types of values can be estimated [Ahmad et al., 2011].
Each job adds a load of 20 W and has a duration of 500 s with an arrival rate
of one job per second, leading to an average load of 250 kW per server. Job
queues or processor sharing are not modelled, and a job that is scheduled on
a fully loaded server is simply dropped. This captures the essence of a more
elaborate system where placing loads on full servers should be avoided.

Ambient temperature. We keep the outside temperature set to a constant
value of Tamb(t) = 20°C, creating less learning obstacles for the RL agent.
This also allows the baseline agent to be efficient over the whole sequence,
setting a good performance measure for the RL agent to improve upon.

Baseline controller. We implement a baseline comparison using a load
balancer placing incoming jobs on the server with the lowest load, and a
cooling controller with a fixed setpoint for the CRAH temperature and flow
of 22°C and 80% max flow respectively. These are both standard controllers
found in industry, and provide a baseline that is easy to implement and
interpret. The cooling temperature was selected to make the baseline agent
not use the compressor, providing a good baseline for the RL agent to
improve upon. For this simple setting the selected load balancer will actually
be optimal when looking purely at the energy consumption of the server fans,
as the inlet temperature is homogenous and an uneven in load will simply
increase the required flow for one server while it is reduced for another,
making for a higher power consumption since the power is proportional to
the flow cubed (5.3).

We could compare to a more advanced controller, e.g., other RL al-
gorithms, but it becomes difficult to compare the results as the baseline
controller itself will be more complex with more parameters to tune, and
also harder to know if we compare them fairly with both equally tuned and
trained. Therefore, we choose to instead ensure that this simple controller
is sufficiently competitive to make for an interesting comparison.

87

Chapter 5. Holistic DC Control using Deep RL

−2

−1

0

RL
Baseline

0 10 20 30 40 50

1

1.5

2

[Days]

(a
)

R
ew

ar
d

(b
)

PU
E

Figure 5.4 The reward Figure 5.4(a) and the PUE Figure 5.4(b) for both
RL agent and baseline algorithm. The reward is what the RL agent will
explicitly optimize for, while the PUE is what we want to indirectly minimize.
The average PUE over the last 10 days is 1.059 for the RL agent and 1.082
for the baseline algorithm.

Results
Figure 5.4 shows the reward defined in (5.5) and PUE defined in (2.1), where
the reward is what the RL agent will explicitly optimize for and the PUE
is the metric we indirectly want to minimize. While the agent does seem
to learn and really close in on the baseline algorithm for the reward in
Figure 5.4(a), it does not quite reach the same level of performance. What
we do see though is that the PUE in Figure 5.4(b) is on average lower for the
RL agent than for the baseline algorithms. Averaging over the last 10 days,
the baseline algorithm has a PUE of 1.082 while the RL agent has 1.059.
It should be noted that these PUEs are very good, both due to assumptions
made in the model, but also that the actual DC we model is developed to
be very energy efficient. And though the absolute difference is small, the
relative improvement in PUE is around 28% for the RL agent.

The main reason that the RL agent does not reach the same reward is
because the baseline algorithm does not use the compressor which comprise
a substantial amount of the cooling energy when activated. It also does not

88

5.3 Evaluating the RL Agent on the Simulated Model

0 10 20 30 40 50

0

0.5

1

1.5

[Days]

RL costs

Cooling
Dropped jobs
Cold aisle threshold

Figure 5.5 The three contributors to the total cost (negated reward) for the
RL agent. Both dropped jobs and cold aisle constraints contribute a sparse
but large cost, while the cooling power is a more continuous cost. Cooling
power has a significant bump in the start coming from the compressor,
though similar to the other costs the agent manages to reduce this over
time. The baseline is not too interesting to look at, as it only has a small
cooling power cost.

drop any jobs, and it keeps the cold aisle temperature threshold. So while
the RL agent has to learn how to best balance all these different costs,
the baseline algorithm already avoids all but the relatively small fan power
cost. In Figure 5.5 the three individual cost terms from (5.5) are shown for
the RL agent. While they all decrease over time as the agent learns, they
still occasionally incur a cost.

Based on the frequency of the incurred costs, the load balancing seems
to be more difficult to learn. This seems reasonable since the action is not as
statically dependent on the input as the other two costs. There, compressor
and cold aisle costs are quite directly dependent on the relationship between
the CRAH temperature setpoint and either the ambient temperature or the
threshold temperature respectively. For the RL agent it drops around 0.3%
of the jobs over the last 20 days, a significant improvement from the first
part, showing that it does learn some load balancing. The optimal load
distribution for this simple case is to have it as even as possible, which the
baseline algorithm achieves. Looking at the load distribution over the last
20 days, the mean and standard deviation over all the servers are 250± 83
W for the RL agent, and 250 ± 3.6 W for the baseline algorithm. So while
the RL agent does manage to do load balancing well enough to mostly avoid
dropping jobs, it does not yet manage to keep the load as even, and thus as
good, as the baseline algorithm.

In Figure 5.6 we see the power distribution over the different components

89

Chapter 5. Holistic DC Control using Deep RL

0 10 20 30 40 50
0

5

10

15

20

[Days]

[k
W

]

0 10 20 30 40 50

[Days]

Compressor power
Fan power
IT power

(a) RL power consumption (b) Baseline power consumption

Figure 5.6 Power consumption distribution for the RL agent and baseline
algorithm.

for the two algorithms. The baseline algorithm only uses the fans, while the
RL agent also uses the compressor in the start, thus incurring a large energy
cost. Over time the RL agent learns to control the temperature setpoints
to keep the compressor mostly off. It only sparsely turns it on, likely due
to exploration in the learning process. The RL algorithm also finds a lower
fan power level, though as seen in Figure 5.5 this will occasionally incur a
penalty on the cold aisle temperature. We also see that while the RL agent
do miss a few jobs in the beginning, the total IT load is later on similar to
the baseline. The shape of the RL power curve is (as expected) similar to
the PUE curve in Figure 5.4(b), where the peak in the start comes from the
compressor usage.

One more inefficiency to investigate is the recirculation and bypass flows.
In Figure 5.7 we plot the difference of the CRAH flow and total flow through
the servers, which is enough to decide whether we have recirculation or
bypass flow according to (5.4). Both algorithms have mostly bypass-flows,
though the RL agent evens out the flow a little more compared to the
baseline algorithm. In our model it would seem like having neither bypass
nor recirculation flow should be the best, since under free-cooling the inlet
temperature does not affect energy usage, and only the fan speed will add
to that from the CRAHs side. So reducing the fan speed while giving the
same volume and temperature of air to the servers should always be better.
A likely reason for this is that if the flow is too low the servers will start
to recirculate air which will make for warmer inlet air and thus require
higher server fan speeds. Since the load varies slightly, and the RL agent is
not doing perfect load balancing, it is likely worth keeping a small buffer of
extra flow on the side of the CRAH to avoid the servers having to increase
their fan speed.

90

5.3 Evaluating the RL Agent on the Simulated Model

0 10 20 30 40 50

−0.5

0

0.5

1

[Days]

[m
3 /

s]

Flow difference, CRAH - servers

RL
Baseline
Bypass
Recirculation

Figure 5.7 The difference between the CRAH flow and total flow through
the servers, showing us whether we have recirculation or bypass flows. Both
algorithms have bypass flows, meaning the CRAH flow is larger so some air
flows directly back to the CRAH inlet.

Remarks on the Results
The RL agent showed that it could learn multiple disparate tasks, and
while it did not improve on the reward compared to the baseline algorithm,
it did manage to reduce the PUE of an already very efficient DC by 28%.
The reward is a more complex objective, where multiple discontinuous parts
make for a hard optimization problem for the RL agent.

We would like to see that a good policy in this environment could transfer
to a more realistic environment. We do this to some extent in Chapter 6,
where we transfer some structure and hyperparameters we found to work
well in this environment, though we do not do any direct transfer learning.

With more complex flow dynamics and a varying outdoor temperature,
the environment provides a more complex optimization task. An RL agent
has the potential to learn all the complex dynamics and find an adaptive
policy that can handle the varying conditions. A simple baseline like the
one used here will likely not perform as well, leaving more room for the RL
agent to improve.

It is also possible that the dense neural network model can be improved
upon, something we look at in Chapter 6 by implementing features into the
network that are based on the DC structure.

91

6
Adaptive DC Cooling using
Deep RL

Based on the results from Chapter 5, we want to improve the model and
scale it up, making for a much more complex environment. Here the RL
agent has more opportunity to benefit from the learning-based approach
in relation to standard control procedures. By adding a more realistic flow
between the CRAH units and the racks we can now have hotspots among
the server inlets, e.g., most of the warmer recirculated air ends up at
a few server inlets, requiring them to have a larger flow to achieve the
same cooling. Our hypothesis is that a controller that is aware of these
conditions could utilize the knowledge to improve the cooling performance
of the datacenter.

In this chapter we design an RL agent that outperforms common control
procedures in a complex environment, showing the benefit of a data-driven
approach that can adapt to changing circumstances.

6.1 Extending DC model with CFD
The model used in this chapter is based on much of the same ideas as in
Section 5.1, though the model for air flow in the server hall is replaced with
a more advanced algorithm based on computational fluid dynamics (CFD),
originally presented in [Sjölund, 2018]. In addition to this, the model is
scaled up to capture the full size of the DC pod it is based on. The layout
can be seen in Figure 6.1, with 360 servers distributed over 12 racks in a
hot aisle configuration with 2 CRAH units on each side of the room.

The proposed CFD method can be efficiently parallelized on GPUs, allow-
ing the simulations to be run faster than real-time and be parallelized over
many environments, making it feasible for use in an RL training scenario.

92

6.1 Extending DC model with CFD

3.0 m

4.9 m

7.0 m

From Heat

Exchangers

To Heat

Exchangers

Figure 6.1 Left: Idealized hot and cold flows in the server hall, i.e., the “IT
space” in Figure 5.2. Right: Slice of the CFD simulation of the server hall.

Server, CRAH, Chiller and Dry-Cooler
While the largest change is using CFD for simulating the flow of air in
the server hall, there are also some changes to the other parts of the
model. The variables and values from Table 5.1 are still used, though some
equations and values are updated to better reflect the real system, and will
be presented here.

Servers. For the servers, the main change is that they are extended with
a model of their thermal mass based on the work in [VanGilder et al., 2013],
creating a more dynamic temperature response to changes in load and inlet
temperature. The air is assumed to flow across some heat source, raising
the temperature based on the current load, and then across a thermal mass
that can absorb or release heat depending on the relative temperatures.
The temperature rise across the heat source, which is the CPU in this case,
is calculated in the same way as in Section 5.1, though we present it in a
slightly different way here.

∆Tcpu
s = T in

s
ps

CvQs

The model for CPU temperature and air flow is also the same, given by
(5.1) and (5.2). A new state for the temperature of the thermal mass is
introduced as

T it
s =

τ1
τ1 + ∆t T itold

s +
∆t

τ1 + ∆t
(
T in

s + ∆Tcpu
s

)
,

where τ1 is a time constant deciding the heat uptake, ∆t is the time step
of the CFD simulation, and T itold

s is the previous internal temperature. The

93

Chapter 6. Adaptive DC Cooling using Deep RL

outlet temperature is then defined as

Tout
s = T in

s + ∆Tcpu
s +

τ2
τ1 + ∆t

(
T itold

s − T in
s − ∆Tcpu

s
)

, (6.1)

where τ2 is a time constant deciding the heat release from the servers
thermal mass. The time constants τ1 and τ2 are approximated to be around
10 minutes with τ2 < τ1 from the specification in [VanGilder et al., 2013],
and measurements on the servers in the DC. This model is consistent with
the one in Section 5.1 since setting τ1 = τ2 = 0, i.e., removing the effect of
the thermal mass, will lead to the same equation for the outlet temperature.
Compressor and dry-cooler. The dry-cooler is modelled the same as in
Section 5.1, where it removes all heat down to the ambient temperature,
and then the compressor needs to remove the rest. The compressor will thus
need to remove the energy corresponding to reducing the temperature from
Tamb to the setpoint temperature Tout

c of the current volume flowing through
the CRAH, and will do so with a coefficient of performance K comp (3. The
total power used in the compressor is then a sum over the power used to
reduce each CRAH to the corresponding setpoint temperature.

pcomp =
Cv

K comp

4∑

c=1
max(0, Qc(Tamb − TS Pc)) (6.2)

Fan power. The power to the fans are derived in the same way as in
Section 5.1,

p f an = K f an
S

∑

s
Q3

s + K f an
C

∑

c
Q3

c, (6.3)

though the coefficient for the CRAH units is updated to K f an
C =

648 W/(m3/s)3 to cover all flows in the CRAH and chiller, estimated to
give us reasonable power consumption according to data.

Server Hall CFD Model
The CFD model that is used in this work was presented in [Sjölund, 2018]
and defines three-dimensional boundary conditions for the room, servers,
and CRAH units. The flows in the server hall seen in Figure 6.1 are modelled
using the lattice Boltzmann methods, a class of CFD methods for fluid
simulation, using the single relaxation time algorithm [Delbosc, 2015].
Lattice Boltzmann method. The lattice Boltzmann method in its sim-
plest form is based on a uniform grid of statistical distribution functions,
called lattice sites, representing density and velocity of fluid particle groups
affected by different forces. Evolution of fluid flow over time is computed
using the discrete lattice Boltzmann equation

fi(x+ ei∆t, t+ ∆t) = fi(x, t) + Γ(fi(x, t)) + F∆t, (6.4)

94

6.1 Extending DC model with CFD

~e5

~e1

~e3

~e0
~e2

~e4

~e6
~e14

~e15
~e5

~e18

~e11

~e7
~e1

~e3

~e0~e10
~e2

~e8

~e4

~e12
~e16

~e6
~e17

~e13

~e9

z
y
x

Figure 6.2 The lattice sites use either D3Q7 (left) or D3Q19 (right) dis-
cretizations for the lattice velocities ei.

where f is the distribution function of density, x is position, e is the flow
directions given in Figure 6.2, ∆t is the time step, Γ is the collision operator
and F is a body force perturbation [Sjölund, 2018].

The collision operator Γ in (6.4) is implemented according to the
Bhatnagar-Gross-Krook model, employing a single relaxation time τ to
capture kinematic viscosity and return the perturbed system into a local
equilibrium f eq

i [Sukop and Thorne, 2006].

Γ(fi(x, t)) = −∆t
τ

(
fi(x, t) − f eq

i (x, t)
)

(6.5)

The macroscopic fluid density is the sum of all distribution functions,

ρ(x, t) =
Q∑

i=0
fi(x, t),

while the macroscopic velocity is the lattice velocities weighted by the dis-
tribution functions,

u(x, t) =
1
ρ

Q∑

i=0
fi(x, t)ei.

Buoyancy effects from natural convection are implemented using the Boussi-
nesq approximation [COMSOL, 2023],

Fi = ±
�β(T − T0)

2 ,

where the thermal expansion coefficient β is constant at reference tem-
perature T0 and � is gravitational acceleration. This force works along
the directions aligned with gravity, i.e., e5 for D3Q7 and e6 for D3Q19 in
Figure 6.2.

For simulating thermal evolution, a separate lattice Ti is used. The
velocity lattice affects the temperature lattice through advection, while the

95

Chapter 6. Adaptive DC Cooling using Deep RL

temperature affects velocity through buoyancy. Its evolution is described
as [Delbosc, 2015]

Ti(x+ ei∆t, t+ ∆t) = Ti(x, t) − ∆t
τT

(
Ti(x, t) − T eq

i (x, t)
)

,

where T eq
i (x, t) is the equilibrium distribution function and τT the relax-

ation time.

Turbulence modelling. Turbulence was modelled by large eddy simula-
tion and the turbulent eddy viscosity is calculated as

ν t =
1
6

√
ν2

0 + 18C2
s ∆2

√
Sαβ Sαβ

where ν0 is the kinematic viscosity for no turbulence model, Cs = 0.1 was
chosen as the Smagorinsky constant, filter cutoff length ∆ is set to unity
and Sαβ is the local stress tensor [Delbosc, 2015].

The relaxation time in (6.5) is then replaced with

τ = 3ν + 0.5 = 3(ν0 + ν t) + 0.5.

Boundary conditions. There are three different types of boundary con-
ditions used for the three-dimensional model.

Solid surfaces are defined using a no-slip condition that imposes zero
velocity. This is implemented by reverting particles leaving the domain in
the opposite directions.

Inlet/outlet conditions specify a constant flow velocity u0 and tempera-
ture T0 in the direction of the surface normal n. For the servers, the flow
velocity is set based on the fan speed (5.2), and the temperature is set
to (6.1). For the CRAH, the flow and temperature are part of the control
variables.

Finally, the airflow into CRAHs and frontal server air intakes were mod-
elled using a zero-gradient boundary condition, where the air was effectively
removed from the simulation by setting the velocity and temperature gra-
dients to zero.

6.2 Context-Aware Control using RL
Compared to the simulation model in Chapter 5, this experiment is a lot
more complex. Both due to the more realistic model of the airflow in the DC,
but also from having more servers which increases the size of the state and
action spaces. While the agent is still an implementation of PPO [Schulman
et al., 2017b], this environment required some modifications to the agent to
make it more suitable for this environment.

96

6.2 Context-Aware Control using RL

Potential Design Modifications
Initial tests showed that the agent from Chapter 5 did not perform well. We
therefore developed some different approaches, both to improve the learning
experience for the agent, and to make the learning problem a little easier.

Convolutional Neural Networks. The first idea was to use a 2D con-
volutional neural network (CNN) over the front-panel layout of the server
states. The assumption is that extracting the important features from a
server can be done by just looking at the parameters from it and the im-
mediate neighbors, and that this extraction looks similar for all servers.
This should reduce the number of parameters needed in the network, and
also make it easier for the network to learn how to extract the important
features. The CNN output can then be joined with the other input states
that do not belong to the server, and fed through a smaller dense network.

This idea can also be applied with a convolutional filter that only depends
on a single server, since the most relevant information is probably available
there.

Both these avenues were explored, and though it seemed to do a little
better than the approach with dense networks, it was still unpredictable and
inconsistent in learning. It was especially the load balancing that seemed
difficult, and with poor load balancing the state and reward signal becomes
very noisy. Thus, it also becomes more difficult for the RL agent to learn
the CRAH setpoints, since the state and reward are less informative.

Manual feature extraction. Instead of using CNNs, we can create man-
ual features based on the server layout. A simple feature is to simply average
over a rack, and provide that as an additional signal which provides a more
compressed and less noisy signal over server features. The problem is that
this might not give enough information to do good load balancing, so it
would either need to be used in combination with the server features, or we
need to solve the load balancing problem differently.

Standard load balancing. As we noted in Chapter 5, the load balancing
was harder to learn than the CRAH setpoints, and increasing the size of both
state space and action space will only make it harder. Initial experiments
showed that the load balancing was still problematic, not providing much
benefit and mostly creating a noisy state for the RL agent to learn from. If
we instead use a standard load balancing algorithm, we can remove the load
balancing from the RL agent and let it focus on the CRAH setpoints. While
this would remove the potential benefit of holistic control, we can still allow
the RL agent to see the load distribution. This would allow the RL agent to
learn how to control the CRAH setpoints in a context-aware manner, i.e.,
learning to adjust the CRAH setpoints based on the load distribution.

97

Chapter 6. Adaptive DC Cooling using Deep RL

Server loads

Server outlet

Outdoor temp

Rack mean
Server mean

...

CRAH flow

CRAH temp

Figure 6.3 The network structure used for the policy. The policy has two
layers, the first one with transformations to reduce the space and then a
single dense layer before the output layer. The outputs of the policy network
are used as mean and standard deviation for normal distributions, which
are then sampled to get the CRAH setpoints.

Minimum flow load balancing. Based on the idea that having an even
flow among the servers will provide the same cooling for less energy, we try
load balancing based on the flow of the servers. Some simple experiments
with either helping the RL agent to find this structure, or directly doing load
balancing based on the minimum flow, showed no significant improvement.
The minimum flow load balancing does reduce the variance in the flow, but
it has no real effect on the total flow and energy consumption.

Reinforcement Learning Agent
To figure out what worked, and what hyperparameters to use, we did some
initial testing and tuning on the simpler environment from Chapter 5. This
provided significantly faster training times compared to running experi-
ments on the full CFD based model, allowing for faster iteration when
trying different approaches.

The best agent used a simple load balancer that places jobs on the least
loaded server, and then a RL agent that controls the CRAH setpoints. The
policy network is embedded with an initial layer doing some simple feature
extraction, namely averaging the server metrics over each rack and over all
servers. These features as well as the non-server states are then fed through
a dense network with one hidden layer and the output layer, see Figure 6.3.
The value network is just a normal dense network with 2 hidden layers
acting on the full state. Both networks have dense layers with 64 units each
using ELU activation functions, see Figure 3.4. For the value function, we
use a clipping parameter of 1000 and a discount factor of 0.99.

The sizes of the policy and value network were established through
hyperparameter tuning. One possible explanation to the difference in size
is simply that the loss landscape is different for the two networks. The loss of
the value function can be more complex, needing the increased flexibility of
a larger network. Larger networks can also be more stable during learning,
leaving a more robust target for the policy network to learn from. These are

98

6.3 Evaluating the RL Approach

just speculations based on observations from the hyperparameter tuning,
and we have not done any additional experiments to validate them.

State space. The state s consists of room measurements of the server
outlet temperatures Tout

s , the loads ps for all servers, as well as the outdoor
temperature Tamb.

s =
([

Tout
s . . .

]
,
[
ps . . .

]
, Tamb) (6.6)

Similar to Chapter 5 we apply feature scaling to the states, using min-max
normalization to the range [−1, 1]. The ambient temperature is approxi-
mated to stay in the range [0, 30] in this experiment.

Action space. The actions are continuous flow and temperature setpoints
for each of the 4 CRAH.

a =
([

Tout
c . . .

]
,
[
Qc . . .

])
(6.7)

The actions are sampled from different normal distribution, where the mean
and standard deviation for each action distribution is given as outputs from
the policy network. That means a total of 16 outputs from the policy network,
values for the mean and standard deviation for both temperature and flow
control for each of the 4 CRAHs. The actions are, similar to the states, also
scaled using min-max normalization from the range [−1, 1] to the range of
viable temperature and flow choices for the CRAHs.

Reward function. The reward r is designed to capture the energy cost of
the cooling systems, as well as penalizing the server inlets for being above
27°C, similar to Chapter 5.

r = −
(

C1
(
p f an + pcomp)+ C2

∑

s
max(0, T in

s − 27)
)

(6.8)

Compared to (5.5), the cold aisle cost is proportional to how much the
temperature is above 27°C, instead of a binary penalty. This makes for a
smoother reward function, which is easier to learn from, as well as being
more in-line with a realistic objective. The weights C1 = 10−5 W−1 and
C2 = 1 K−1 are calibrated to put a relatively large penalty on the cold aisle
temperature, while also scaling the reward to a reasonable range.

6.3 Evaluating the RL Approach
The RL agent is evaluated using the simulated environment in a few dif-
ferent scenarios, and the performance is compared to two baseline algo-
rithms. The environment is parameterized to show interesting behavior.
In particular, an outdoor temperature where it is not always possible to

99

Chapter 6. Adaptive DC Cooling using Deep RL

use free-cooling to uphold the cold aisle thresholds, and a workload that
is not always so high that the cooling system would be best of running at
maximum capacity. We run both a scenario under normal operation, and a
scenario where equipment malfunctions. The failure scenario involves a re-
duced cooling efficiency, exploring how the RL agent adapts to the changing
circumstances.

All code except for the CFD simulation are publicly available and can be
found on GitHub1.

Training and Simulation Setup
The actual training was done using a set of Nvidia V100 GPU clusters
running Ray [Moritz et al., 2018]. The GPUs were mainly used to power the
CFD simulations, since that was the most computationally expensive part
of the training, though they were also used for the RL training. Ray has
excellent support for running large numbers of parallel jobs on distributed
platforms, as well as managing resources such as GPUs and assigning how
they should be used. With this said, Ray can be cumbersome to work with,
and is not easy to adapt to non-standard workflows.

We use the PPO implementation from Ray RLlib [Liang et al., 2018],
and train it using eight parallel environments. Parallel environments al-
low on-policy algorithms to collect a more varied batch of data, since each
environment can have slightly different initial conditions, reducing the vari-
ance in the gradient estimates. Each step in the environment is 1 second,
faster than many other works on similar problems. While these faster in-
teractions does bring the risk of creating noisy actions, the problem with
slower sampling is that can take a full time step to react to changes in the
environment.

We collect 200 steps of data in each of our 8 environments between
each time we train, creating a batch of 1600 samples to train on. This is
used to train the agent using mini-batches of size 128 over 30 epochs. We
only visualize the interactions from the first environment, and the data is
averaged over 200 steps.

Ambient temperature. The outdoor temperature is based on historical
weather data from Luleå, Sweden, where the DC pod is located. Figure 6.4
shows a linear interpolation over an hourly average of the temperature,
retrieved from the local weather forecast SMHI [SMHI 2021], and is used
as the outdoor temperature in the simulation.

Workload. The workload is similar to the one used in Chapter 5, though
with slightly different parameters. In the simulation, each job adds a con-
stant load of 20 W for 1.5 hours, and in each step of the simulation there

1 https://github.com/albheim/rldc_rafsine

100

https://github.com/albheim/rldc_rafsine

6.3 Evaluating the RL Approach

0 1 2 3

15

20

25

[Days]

[°C
]

Outdoor temperature

Figure 6.4 Temperature data for Luleå from SMHI [SMHI 2021] used in
simulation.

is a 50% probability of a job arriving. The values were chosen to create a
good average load for the DC, while still having enough variability to make
the decisions interesting.

This workload can represent different kinds of services found in a dat-
acenter, such as cloud services that start up for a while when the demand
increases, as well as batch style jobs typical to high-performance computing
environments. The static duration and energy requirement are trivial to
extend to a more realistic workload, as is the arrival rate. In the current
setup this would only affect the variability of the load that the RL agent
sees, since load balancing is treated separately.

In Chapter 5 the agent dropped jobs when the server was at maximum
capacity, but here we instead move those jobs to the server with the lowest
load. Misplaced jobs will still incur a penalty, but it will not affect the
total load of the system. By keeping the load constant between the different
algorithms, we can more fairly compare the energy consumption of the
cooling system.

Baseline controllers. We use the same type of baseline algorithm as
in Chapter 5, but implementing two instances with different temperature
setpoints for the CRAH units.

The baseline with 18°C setpoint is good at keeping the cold aisle tem-
perature down, but will run the compressor more often.

The baseline with 22°C setpoint is much more energy-efficient, but will
sometimes fail to adhere to the cold aisle threshold.

Using both as benchmarks for the RL agent should give a good compar-
ison of how well it fares in each objective.

Normal Operation
Running the DC under normal conditions the three algorithms generate the
reward in Figure 6.5, where the RL agent achieves the highest reward on

101

Chapter 6. Adaptive DC Cooling using Deep RL

average. When the outdoor temperature in Figure 6.4 is below 18°C it allows
for running the CRAH at minimum temperature with no compressor, and
the 18°C baseline algorithm is more efficient here. With additional training,
the RL agent might also learn to reduce the CRAH temperature to 18°C in
these cases, but it is not unexpected that it is somewhat careful since lower
temperatures can suddenly incur a large energy cost from the compressor.

While it can seem unfair to use an objective for which the RL agent is
optimized as the measure of performance, it does show that the RL agent
does learn what we asked it for, a policy that performs well according to the
objective. And given that the RL agent could learn this, it would likely also
be able to learn to optimize other objectives that are not too different.

0 1 2 3

−0.2

−0.1

0

[Days]

Reward
B18
B22
RL

Figure 6.5 The reward (6.8) of the RL agent and the two baselines, B18 and
B22. While the RL agent achieves a higher reward than the baselines most
of the time, the performance varies a little with the outdoor temperature.

The total reward is based on both the cooling energy and the adherence
to the cold aisle threshold, both of which are shown in Figure 6.6. The RL
agent matches up quite well with the 22°C baseline when it comes to energy
consumption, both outperforming the 18°C baseline. However, looking at the
cold aisle loss in it is apparent that the 22°C baseline does not keep the cold
aisle below the threshold, while the 18°C baseline incurs no loss and thus
perfectly avoids the threshold. The RL agent balances the two objectives,
keeping the cold aisle cost low after an initial learning period, while also
keeping the energy cost low.

One thing to note is that the peaks in cooling energy cost happen in
conjunction with the peaks in outdoor temperature, see Figure 6.4. These
peaks are the same as in Figure 6.7, since the compressor runs more

102

6.3 Evaluating the RL Approach

0 1 2 3
0

0.1

0.2

[Days]

Cooling energy cost

0 1 2 3

[Days]

Cold aisle threshold cost

B18
B22
RL

Figure 6.6 The costs that make up the reward (6.8), stemming from cooling
power and the cold aisle threshold. In relation to the cost, the RL agent
performs similar to each of the better agent in both cases, while the worse
agent is showing a much higher cost.

when the outdoor temperature is high relative to the CRAH setpoint, thus
adding a substantial energy cost. This shows how one of the most important
problems is to learn to minimize the compressor usage, though this problem
interacts with the problem of providing enough cooling to the DC.

In Figure 6.8 the inlet temperatures for all 360 servers are plotted
for the three algorithms. Here we see how the RL agent tries to optimize
against the boundary that was set, and while the 22°C baseline keeps
many of the states around the same values as the RL agent, it violates
the threshold by a couple of degrees on a few servers. The servers with
higher inlet temperatures turn out to be in the upper parts of the rack.
This is reasonable since the hot air flowing back to the CRAH goes above
the servers, and re-circulation will thus come from above. The RL agent
manages to balance the CRAH setpoints better to avoid these effects, and
make the server inlet temperatures stay under the threshold.

As the workload maintains a relatively stable average load, it is no
surprise that the PUE in Figure 6.9 replicates the shape of the cooling cost
in Figure 6.6. It is clear that the 18°C baseline is worse when it comes to
power consumption, and while the other two strategies are similar in power,
the RL agent is better at adhering to the cold aisle temperature thresholds.

Adaptation to Disturbances
In addition to running the DC under normal conditions, we also conducted
experiments to show how the agent continuously adapts to changes. We

103

Chapter 6. Adaptive DC Cooling using Deep RL

0 1 2 3

0

10

20

[Days]

[k
W

]

Total compressor power

B18
B22
RL

Figure 6.7 The energy used in the compressor for cooling (6.2) is a major
part of the energy cost, and the RL agent learns to keep this low.

0 1 2 3

20

25

30

In
le

t
te

m
pe

ra
tu

re
[◦

C
]

B18

0 1 2 3

[Days]

B22

0 1 2 3

RL

Figure 6.8 Temperature distribution of server inlets over the three algo-
rithms. The red line is the 27°C threshold used in the loss calculations. The
inlets that actually do go above the threshold tend to be in the upper part
of the rack, which is reasonable since any re-circulation of hot air from the
server will come from above.

104

6.3 Evaluating the RL Approach

0 1 2 3

1

1.1

1.2

1.3

[Days]

PU
E

B18
B22
RL

Figure 6.9 PUE for the RL agent and the two baselines.

do this by introducing an inefficiency in CRAH0, resulting in the CRAH
operating with only 80% of the original airflow, but using the same power.

The left figure in Figure 6.10 shows how the cold aisle threshold is
temporarily broken by the RL agent when the inefficiency is introduced at
day one, and how it manages to come back to a similar state as before within
half a day. The right figure in Figure 6.10 shows how CRAH0 loses efficiency,
and how the flow setpoint is increased to make up for parts of the lost flow.
There is also the neighboring CRAH1, sharing the same cold aisle, which
also increases its flow a bit to support the slightly broken CRAH0. This is
done without the RL agent getting any information that these CRAH units
are in the same aisle and can support each other, and can be done since the
agent is able to adapt over time and is aware of the shared context.

Summary and Discussion
We train an RL agent to control a DC cooling system in a more realistic
environment, and show that it can learn to outperform standard control
strategies. Compared to the baseline algorithms, it is able to adapt to
changing circumstances, and is able to optimize for a more complex objective.
Compared to manually designing the controllers, it is easy to give the RL
agent more context that is not directly related to the objective, and let
it learn how to use the information in a useful way. What might make
RL less that optimal for these types of environments is that the learning
process is typically very unstable, and the agent needs to explore to gain an
understanding of the environment. This means that the agent might take
actions that cause the system to go into dangerous states, possibly causing
expensive failures to the physical systems.

105

Chapter 6. Adaptive DC Cooling using Deep RL

0 0.5 1 1.5 2

0

0.2

0.4

[Days]

Cold aisle threshold loss

B18
B22
RL

0 0.5 1 1.5 2

[Days]

[m
3 /

s]

CRAH flow

CRAH0

CRAH1

Broken CRAH

Figure 6.10 An experiment where one of the CRAH units (CRAH0) expe-
riences a problem that reduces its efficiency by 20%. The RL agent adapts to
this change, pushing the loss from the cold aisle threshold back to a similar
level as before the change. One noteworthy detail is that we also see an
increased flow in CRAH1, the CRAH unit that is next to the broken one.

Another problem is the scalability of the approach, where increasing the
size of the DC will make both state space and action space grow, making it
much harder to learn. Approaching the scalability problem, there are a few
interesting techniques that could be used. One approach that we touched
upon in this work is the idea of embedding knowledge in the network
structure by, e.g., using convolutional layers for the server inputs. This
could likely be extended further, making for more specialized structures
that provide a good structure for learning this type of information. Another
approach is to look at hierarchical RL, creating a disentangled controller
structure that is more modular and scalable.

A future consideration is also to train an RL agent with only local
knowledge to give a better insight into how much the RL agent actually
gains from the larger context, and how much of the improvement is just
from being able to optimize against the objective. This is not trivial, since it
would entail multiple smaller agents that need to coordinate their actions,
but it would give a better understanding of the benefit of the RL approach.

106

7
Proactive Cloud Autoscaling
using RL

With the cloud becoming a more mature technology, and with 5G and edge
computing becoming a reality, running timing-sensitive systems in the cloud
is becoming a realistic possibility. One example is the digitalization of in-
dustrial automation systems, see Figure 7.1, which holds the promise of
improving efficiency and resource utilization through data-driven innova-
tions. Providing reliable and efficient computing resources with low latency
is a key enabler for these systems to move to the cloud, though providing
end-to-end timing guarantees with state-of-the-art technologies is typically
not possible. There are numerous challenges when it comes to deterministic
virtualization technologies, virtualized real-time networking, etc., as well
as control plane issues related to how resources are allocated in a timely
fashion. The focus of this chapter is time-sensitive services where each re-
quest is associated with a deadline, which is typically the case for, e.g.,
cloud-based control systems [Millnert et al., 2018; Skarin, 2021].

Problem Description
Microservice architecture is the predominant style for modern cloud applica-
tions, where a single microservice can typically be part of many applications,
e.g., an authentication service which may be needed by different applica-
tions all parts of a larger system. Figure 7.2 shows a network of connected
microservices that together form different applications in the cloud. Each
cloud application handles different types of workloads and has a call graph
spanning over a subset of the microservices, i.e., a path that the workload
traverses as it is being processed. These graphs can easily grow quite com-
plex, as the microservice death star example in Chapter 2 demonstrates.
They can also be dynamic and data-dependent, making it even harder to
infer behavior.

107

Chapter 7. Proactive Cloud Autoscaling using RL

Figure 7.1 Connecting factories and other critical infrastructure to the
cloud holds promises for optimal resource utilization and increased efficiency.

M1M1M1

M1M1M2

M1M3

M1M4

M1M1M1M1M5

M1M1M6

M1M7M7M7

M1M8

M1M9M9

W1
W2

W3

W4

Figure 7.2 A set of microservices forming four cloud applications that
receives different types of workloads, W1 to W4. Each application requires
a different set of microservices, and though there is some overlap, the call
graphs are different, i.e., the paths the workloads go through differ. Each
microservice can be scaled independently, adding or removing replicas of the
service.

108

Chapter 7. Proactive Cloud Autoscaling using RL

Given the system in Figure 7.2, we consider how a simple reactive scaling
strategy would work for it. The workload W1 enters at M1 and causes further
calls to M2, M5, M8, and M7. If there is a rapid increase in demand, a
reactive autoscaler would simply detect an increase in utilization at each
of the involved microservices, one at a time. This means that the scaling of
M7 does not occur until the traffic reaches it, although it could have easily
been predicted if the call graph was known ahead of time, leading to an
unnecessary and unwanted delay in scaling.

A proactive scaling strategy could instead have the understanding that
when workload W1 increases, the capacity of microservices M2, M5, M8,
and M7 can increase proactively.

Related Work
Automatic resource scaling has traditionally been done using reactive ap-
proaches based on utilization thresholds, though there are some more ad-
vanced techniques emerging in modern tools, see Section 2.2. There will
always be a trade-off between the ability to serve a rapid increase in load
while minimizing the buffer of unused allocated resources on standby; the
tighter the resource allocation, the more cost-efficient the system will be.

Previous works on learning-based methods for automatic resource scal-
ing are presented in Section 4.3, and although many of the methods are
interesting, they typically simplify the problem in different ways we want
to avoid, or they solve a slightly different problem. An example is simplify-
ing the state space by considering a single microservice in isolation, which
removes the possibility to scale based on the state of other microservices.
Or scaling over long timescales to reduce noise from the actions, which also
reduces the ability to be proactive since any reaction to a change will be
delayed. Works such as [Bitsakos et al., 2018; Bibal Benifa and Dejey, 2019]
use RL, but reduce the size of the action space by only allowing the algo-
rithm to add or remove a single instance each step. This might be enough
in many cases, but is certainly restricting the ability of the policy. RL is
also applied in [Cheng et al., 2018; Dong et al., 2020], though they assume
knowledge about the structure of the call graph. This can be extracted in
some cases, but might not always be easily available, and there are benefits
to be able to dynamically adapt to a changing structure. In [Kumar et al.,
2018; Toka et al., 2020] they instead aim to model the future workload,
and scale the system based on the model predictions. Given the inherent
uncertainty in estimating future workload, we aim to instead rely on the
fact that there are certain temporal dependencies in the internal service
chains. These dependencies can be a more reliable source for predicting
future load over the internal nodes, and can thus be used to make more
informed scaling decisions.

109

Chapter 7. Proactive Cloud Autoscaling using RL

M1M1M1

M1M1M1M1M2 M1M3W1

s1

s1

s2

s2

s3

s3

l1 l2 l3

Running request Queued request Empty instance

Figure 7.3 A single workload W1 spanning 3 microservices Mi. The scale
si denotes the number of replicas of each microservice, while li denotes how
many requests are currently being processed or waiting to be processed. The
workload W1 has a path P1 = [M1, M2, M3] associated with it, a service time
on each microservice on the path t j,i and a deadline Td j for each request’s
total allowed execution time.

Our approach. Instead of explicitly modelling the call graph, and all
the intricacies that come with that, we explore how well an RL agent can
learn an implicit model given minimal data from the microservices. Some
implicit representation of the underlying call graph will need to be learned
in order to be able to act proactively, but this will be embedded in the
agent’s internal neural networks. This will effectively enable the policy to
create feed-forward connections between the load of one microservice to the
desired state of another based on how it estimates the workload behavior.
For time-sensitive workloads with real-time constraints, the idea is that we
should be able to reduce the spare capacity while still hitting the deadlines.

This requires an RL agent that acts on a short timescale and takes the
whole service chain into account to be able to do proactive scaling. We do
not assume knowledge about the workloads and do not try to predict the
incoming loads, nor do we have any information on the call graphs. We
also consider the latency, for example from boot time, when adding new
resources.

7.1 Modelling a Microservice Application
We aim to create a simple simulated model that captures the important
aspects of the microservice architecture described in Section 2.1. The envi-
ronment and how it works should capture the scenario in Figure 7.2, though
Figure 7.3 provides a better overview of the details of the model.

Each microservice Mi processes requests from an arrival queue in a
first-in-first-out (FIFO) manner. The queue has a max length of qmax, and if
the queue is full on a request’s arrival, the request is dropped. The scale si
denotes the number of replicas of Mi, and can take on any integer inside the

110

7.1 Modelling a Microservice Application

interval [smin, smax] by booting or closing instances. Booting a new instance
takes Tboot time, while closing takes Tclose time. The total number of requests
on Mi is li, representing both requests being worked on and requests in the
queue. The utilization of Mi is then the load over available resources,

ui = li/si. (7.1)

Each workload Wj is assumed to traverse the graph one microservice
at a time. They follow a service chain, defined by a path P j, the order in
which the microservices should be visited by requests from Wj. A deadline
D j defines the total time allowed for the request to traverse the path, while
the service time t j,i is the time required to process a request from Wj on
the microservice Mi.

Proactive Parameterization of the Simulation Model
Not all parameterizations of this type of environment will lend themselves to
the problem we set out to solve. We specifically want to look at environments
that, like Figure 7.2, has chains where it could be possible to scale quicker
if scaling is done with respect to the full set of microservices.

Taking a simple scenario with a single workload running over three
microservices as in Figure 7.3. The entry point M1 will not be able to
scale proactively without making guesses about random changes in arrivals,
which is not the goal of this work. But for Mi>1, it is possible to start scaling
before the workload reaches the microservice. To fully boot an instance Mi>1
proactively would require that

i−1∑

k=1
t1,k ≥ Tboot for i ∈ [2, 3], (7.2)

i.e., that the total service time over the previous microservices is at least
as long as the time to boot a new instance.

We also need to make sure the deadline is met to gain any value from
finishing the request. If each microservice can immediately process the
request, the response time will be t1,1 + t1,2 + t1,3. However, if either of the
microservices are fully utilized and scales reactively, it will instead take at
least t1,1+ t1,2+ t1,3+Tboot time to finish. By setting this as the upper limit
for our deadline, we can ensure that proactive scaling is required in order
to avoid buffers on M2 and M3.

t1,1 + t1,2 + t1,3 + Tboot > D1 (7.3)

To also make sure it is actually possible to meet deadlines we want that the
total work time is less than the deadline.

∑

i
t1,i < D1 (7.4)

111

Chapter 7. Proactive Cloud Autoscaling using RL

Selecting t j,i = Tboot = 1 fulfills (7.2) for M2 and M3 allowing them to
scale proactively, and (7.3) and (7.4) then gives that 3 < D1 < 4. Choosing,
e.g., D1 = 3.5 will thus make any reactive approach have to choose between
either keeping a large enough buffer on all microservices or miss deadlines
as the workload fluctuates. A proactive approach could instead scale M2
and M3 based on the state of microservices earlier in the service chain,
allowing it to meet deadlines while not keeping a buffer anywhere but on
the first microservice.

7.2 Proactive Control of Microservice Application
Proactive control entails some form of prediction of how the system will
evolve, and then using this to make decisions. While there are proactive
controllers that solely rely on time-series predictions, we want to give the
controller more context, allowing it to make more reliable predictions and
thus better decisions.

One way to achieve this is to model the system dynamics explicitly, and
use that to predict how the system evolves. This is the approach used in
Chapters 8 and 9, and while it can be efficient if possible, the creation
of accurate enough models can present many challenges. We look at using
model-free RL to implicitly capture the required understanding of the model
dynamics. This does require a bit more data to train, but allows us to not
assume any knowledge about the structure of the microservice application
or underlying infrastructure, and can thus be more flexible.

Reinforcement Learning Agent
We used the Soft Actor-Critic (SAC) algorithm from [Haarnoja et al., 2018b],
the version with automatic tuning of the entropy parameter α to match a
given target entropy H. It was chosen based on some initial testing of
different algorithms, also including DDPG and PPO, where it seemed to
perform well and be a little more robust to hyperparameters than the other
algorithms.

State. The state observation consists of the current scale si and the uti-
lization ui for each microservice. What the agent actually observes is the
state stacked with the previous state in time, to alleviate the problem of the
state not being fully observable, and to allow for information about changes
in state to be incorporated. This can also help in learning when there are
delays in the environment, so that the agent can easier deduce what action
led to what change in state, and ultimately which reward it should associate
with the action.

s =
(
[si(t) . . .], [ui(t) . . .], [si(t− 1) . . .], [ui(t− 1) . . .]

)
112

7.2 Proactive Control of Microservice Application

M1M1M1

M1M1M1M1M2 M1M3

scale, utilization
Cloud Environment

Actor Network

Critic Network

desired scale

expected
future
reward

RL Agent

st+1

st
rt+1

rt
at

Figure 7.4 The RL agent contains both actor and critic networks, and
interacts with the cloud environment by scaling the microservices and ob-
serving utilization and reward.

The state is normalized to the range [−1, 1] before being fed to the neural
networks.

Action. The controlled variable is the target scale si for each N microser-
vices, and is an integer in the range between smin = 1 and smax = 10. The
upper bound is simply set to something a little above what we expect to
need. And though lower bound of zero could also be reasonable, experimen-
tal observations showed it made the RL agent more likely to get stuck in
the local optimum of scaling in as much as possible.

While there are SAC implementations that handle discrete action spaces
[Christodoulou, 2019], this environment provides an actions space with
interval values. This means there is an inherent order and spacing, i.e., if
the agent is in a state where it predicts scaling si = 2 is the best action,
si = 3 is likely also a decent action, while si = 10 is probably not. For
a categorical action space this knowledge is neglected, leaving the policy
to learn this from scratch. Thus, we opt to use the original SAC with
continuous actions, rounding the actions to the nearest valid integer. This
is done to preserve the inherent ordering that exist in the action space,
which can help the learning process. As an off-policy method it should also
not affect the learning step that we round the actions, since the learning
does not assume that the experiences used for training is from the current
policy.

With continuous actions, the policy network outputs two values for each

113

Chapter 7. Proactive Cloud Autoscaling using RL

action dimension µ, σ = π(s), the mean and logarithm of the standard
deviation for a normal distribution. Each continuous action is then deter-
mined by individually sampling each distribution âi ∼ N (µi, exp(σi)), and
scaling to the desired range. By rounding to the nearest valid integer we
get an action in the space

a ∈ [smin, smin + 1, . . . , smax]
N .

Reward. There is a value Uj to finishing a request of type Wj before the
deadline D j, and a cost Ci to running instances of type Mi. The number
of requests that finished within the deadline during this step is denoted f j,
giving

r =
pWp∑

j
Uj f j −

N∑

i
Cisi. (7.5)

The coefficients Uj and Ci should be selected so that the values outweigh the
costs for a single request, incentivizing the RL agent to finish requests. The
coefficients are also used to scale the size of the reward to be manageable
for the NN training.

7.3 Evaluating Proactive Scaling Approach
To evaluate the proactive RL approach we simply run it in the simulated
environment and compare against a few other approaches. Both the environ-
ment and the RL agent were implemented in the Julia language, selected
for its performance and ease of use for scientific computing. It was also a
distinction compared to Ray which was used in Chapters 5 and 6, allowing
for much more flexibility in the implementation.

The code for the RL agent and microservice simulation used to generate
the results here is all published on GitHub1.

Training Cluster Setup
We set up a cluster of virtual machines to run the experiments and hyper-
parameter tuning. Since the neural networks used are quite small, and the
environment was not computationally heavy, we could run the training on
CPUs.

We use the SAC algorithm provided in ReinforcementLearning.jl [Tian,
2020]. The original implementation only supported action spaces with a
single dimension, so we extend the implementation according to [Haarnoja
et al., 2018b] to support multidimensional action spaces.

1 https://github.com/albheim/ServiceMeshControl/tree/thesis

114

https://github.com/albheim/ServiceMeshControl/tree/thesis

7.3 Evaluating Proactive Scaling Approach

M1M1M1

M2M2M2M2M2

M3M3

M4M4M4M4
W1
W2

Figure 7.5 An environment with two workload chains traversing four mi-
croservices, some shared and some individual. Each microservice has a num-
ber of replicas and can be individually scaled.

To simplify the distributed workflow we created the package Distribut-
edEnvironments.jl2, automating the distribution of local development envi-
ronments to remote workers.

Environment
To evaluate the algorithm we employ a slightly more complex version of
Section 7.1, with multiple workload chains traversing four microservices,
see Figure 7.5. Parameters are selected to accommodate proactive scaling
as described in Section 7.1, and are the same to a large extent with service
time ti, j = 1 s, deadline D j = 3.5 s, and boot time Tboot = 1 s. The scaling
range is set to smin = 1 and smax = 10, and the max length of the queue
is set to qmax = 5. Having a queue can make the problem a little harder,
since it allows for some buffered requests to build up. With our setup, a
single buffered request can make the system miss the deadline, making it
problematic for the RL agent to catch up with queued work since it will
not receive any reward for it. Given that Tclose does not really introduce
any interesting new dynamics, since the interesting delays were already
introduced with Tboot, we simply set it to zero in these simulations. We
assume that all microservices have the same cost Ci = 0.5.

Workload. We create a simple synthetic workload that generates requests
according to a random walk over integers in a constrained range. This could
for example be a set of control applications turning on and off randomly,
adding a constant load while they turn on, removing it when they turn off,
see Figure 7.6. It should create enough variation in the states to both make
the problem interesting, and allow for robust and efficient learning.

So assuming we currently have an arrival rate of x j new requests every
step, then the workload will with a probability p j pick a new random arrival

2 https://github.com/albheim/DistributedEnvironments.jl

115

https://github.com/albheim/DistributedEnvironments.jl

Chapter 7. Proactive Cloud Autoscaling using RL

Time

Ar
ri

va
ls

Figure 7.6 A visualization of a synthetic workload representing randomly
arriving constant loads that are active over some duration.

0.85 0.9 0.95 1

0

1

Learning rate γ

R
el

at
iv

e
re

w
ar

d

50 100 150 200 250

Batch size

Figure 7.7 Hyperparameter optimization over many parameters, of which
two are shown here. Each dot corresponds to a random set of values for
multiple parameters, that had the specific value for the displayed parame-
ter. The relative reward indicates the ratio of the average reward received
compared to the simple agent presented in Section 7.3.

rate in the range [max(xmin
j , x − 1), min(xmax

j , x + 1)]. We assign the same
value Uj = 8 to finishing requests from both workloads.

Hyperparameter Tuning
Though SAC is supposed to be robust to hyperparameters, some tuning
still played an important role in making successful agents. We based our
hyperparameter optimization on Hyperopt.jl [Bagge Carlson, 2018], though
contributed some work to improve the functionality for distributed systems.

An example of the tuning is visualized in Figure 7.7, showing a scatter
plot of how well different values of a parameter performed. The relative
reward is the ratio of the average reward received compared to the simple
agent presented in Section 7.3, and was used to make the results depend
less on the random seed for the environment.

For the parameter γ we can see that γ = 0.85 neither shows a good
average nor achieves the maximum value, and even though γ = 0.9 achieved

116

7.3 Evaluating Proactive Scaling Approach

Table 7.1 Hyperparameters for RL agent using SAC.

Parameter Value
optimizer Adam
learning rate for optimizer 0.003
activation function ELU
discount factor γ 0.93
target network smoothing τ 0.01
target entropy H 10
value net hidden layers 4
value net hidden units 120
policy net hidden layers 2
policy net hidden units 20
mini-batch size 100
learning rate for α 5 · 10−5

update frequency 8
replay buffer size 5 · 105

start algorithm random action
steps with start algorithm 50000

the highest scores, it still has a large spread and most trials seem to end up
with a reward of 0, so assuming we want a little robustness it is likely not
the best choice either. The agents receiving zero reward indicates that they
got stuck in a local optimum corresponding to scaling in all microservices
to smin to reduce the cost, and as the queues grow it will not receive any
reward since all requests will miss their deadline. Exploration is difficult
in this situation, where scaling out on a single service will not help since
the reward is only given when a request finishes in time. For the agent to
get out of this situation, it would require simultaneously scaling out on all
services in a chain for long enough to empty all queues enough to finish a
request in time, all while seeing a negative trend in the reward from the
increased cost. Lower γ means a lower horizon over which the cumulative
reward is considered, and it makes sense that this will prioritize minimizing
the immediate costs over maximizing uncertain future rewards, thus easier
ending up in this optimum. For the batch size parameter, something in the
middle seem better in all ways, both best value and higher value for the
main cluster of results.

The parameters used in the experiments presented here are shown in
Table 7.1. Similar to in Section 6.2 we note that the network for the policy
is smaller than the value functions network. It is difficult to know why, but
one possibility is that the value function not as nicely behaved as the policy,
and thus requires more parameters to model well.

Using random actions for the initial data collection seems to provide

117

Chapter 7. Proactive Cloud Autoscaling using RL

slightly better results than using the simple agent, though it is not a large
difference. It probably provides a bit more exploration, and as long as it
provides small amounts of positive rewards, i.e., finishing requests in time,
it might give a better dataset for the initial training.

Using ELU instead of the more common ReLU as activation function
seems to provide better results in our experiments, though it is a minor
difference. It is also a slower function, so if training time is a large problem
it could be worth trying ReLU instead.

Baseline Algorithms
We compare the RL agent to a few baseline algorithms, both standard
reactive ones and a proactive one that is as close to optimal as we can get
with a simple method that does not know the future.

Simple. A basic reactive strategy is to look at the average utilization ui
over all machines for microservice Mi and if this is larger than some umax a
machine is added, if it is lower than some umin a machine is removed. This
only looks at utilization and can only scale by one machine per step, but
it manages well with reasonably chosen limits and is simple to implement
and understand. For these experiments (umin, umax) = (0.5, 0.8) is used.

Kubernetes. The horizontal pod autoscaler in Kubernetes (2.2) and (2.3)
is a slightly more advanced reactive strategy also based on thresholding,
implementing some extra functionality to avoid jitter in the signal and
erring on the side of caution when it comes to scaling in. We use the
current utilization (7.1) as the scaling metric with a target utilization of
ū = 0.8, and implement jitter reduction using ε = 0.1 and a window length
W = 60 s.

Oracle. We also introduce a scaling method which has more information
about the state of the microservices than the other methods, though still no
information about the future, i.e., the incoming load. It is called oracle to
indicate that it has knowledge not available to the other algorithms.

The extra information help with proactively scaling the later microser-
vices in the chain, and consists of the distribution of request types on a
certain microservice, the structure of all the workload chains, the service
times, and the boot times. With this, the oracle can calculate exactly when
a request will arrive at a certain microservice, and how long before that it
should start booting a new instance to process it. The first microservice in
a request chain will still have to be reactive, and here the strategy is to
always keep one extra instance running per request type.

For the oracle to work well there are some specific conditions which must
be fulfilled, though the environments used for evaluation are designed to
allow for the oracle to be optimal in the sense of proactive scaling for all

118

7.3 Evaluating Proactive Scaling Approach

nodes but the first in a request chain. So while it will likely not be optimal
in regard to (7.5), it is still a good benchmark for how well it is possible to
scale proactively.

Results
The results from the two environments in Figure 7.3 and Figure 7.5 are
presented here.

All data presented is sampled and smoothed to make it possible to
visualize what is going on. The simulation environment logs data every
simulated minute, which is then processed through a moving average over
1000 data points and downsampled by a factor of 1000 for nicer plotting.

The experiments presented use different random seeds from the ones
used for hyperparameter optimization, ensuring that the agent was not
overfitting the hyperparameters to the specific seed.

We show 50 days of data in the plots to give a view both of the initial
learning phase and how well the agent stabilizes with time. The simulations
are run over a longer time than shown here to verify that the RL agent
does not enter catastrophic forgetting, a well-known phenomenon for neural
networks learning in a sequential manner.

Two simple workload chains. For the two workload chains visualized
in Figure 7.5, we have W1 producing requests in the static range [0, 4], and
W2 producing requests in the static range [0, 2]. Each have a probability 0.1
of changing each step.

The reward in Figure 7.8(a) shows how the different strategies perform
over time. The RL agent quickly learns a good enough strategy to reach a
reward close to the oracle scaler, though with a bit more noise. Much of the
noise in the reward comes from the stochasticity of the workloads, and it
can also be seen for the other strategies. However, the RL agent has some
larger spikes in its reward which can be connected to failed requests, as
seen in Figure 7.8(b). The failed requests are from either finishing after
the deadline for the request, or from the request being dropped due to full
queues. The larger spikes are a likely due to a combination of the RL agent
having a stochastic policy and continuously learning and exploring how to
improve the policy, and when trying to improve utilization it scales in a bit
too much, leading to queues filling up and many following requests missing
their deadline.

The RL agent does consistently fail a small part of requests, which can
in part be attributed to the reward (7.5) that does not explicitly tell the
agent to not miss any requests. So by keeping a higher utilization, the RL
agent can earn enough reward that it might be worth failing a few requests.
It might be possible that with more training, and reducing the stochasticity
of the policy, the RL agent could learn to keep a high utilization while

119

Chapter 7. Proactive Cloud Autoscaling using RL

0 10 20 30 40 50

20

30

40

[Days]
0 10 20 30 40 50

0

0.1

0.2

0.3

[Days]

[F
ai

le
d

re
qu

es
ts

/s
]

Kubernetes
Oracle
RL agent
Simple

(a) Reward (b) Failed request rate

Figure 7.8 Figure 7.8(a) show the reward for the double chain environment
in Figure 7.5. The larger dips in the RL agent reward can be connected to
the failed requests in Figure 7.8(b) stemming from continually learning and
exploring.

reducing the failed request rate. While the simple strategy also fails a few
(barely visible) requests, this could be solved by changing the thresholds,
though it would lead to a larger buffer on average. Neither the oracle nor
the Kubernetes scaler fail a single request. This is expected since the oracle
was designed to keep the lowest scale, while still guaranteeing no misses
for this type of workload. The Kubernetes scaler looks at the maximally
needed number of instances over a period, and as such will tend to have a
larger buffer in favor of missing requests. This also leads to a lower reward
for the Kubernetes scaler, and is the trade-off for being a safe strategy in
that it promotes keeping a large buffer over risking scaling in too much
and missing a request. The environment is certainly not optimal for the
Kubernetes scaler, and we are not trying to claim it is a bad strategy, it is
simply not optimal for the environment and objective we selected to be able
to show the benefit of proactive scaling.

In Figure 7.9 the request rate for the different workloads as well as
scale and utilization for the microservices are shown. The oracle scaler has
a utilization around one on the microservices where it can scale proactively,
while the utilization for the RL agent is not far behind in some cases,
but it is significantly noisier. This is both due to continually learning and
exploring, but also that the oracle scaler has information about the request
distribution on each microservice, information that is not available to the
other scaling strategies. The Kubernetes scaler is cautious about scaling in
and tends to keep a larger buffer on average for this type of noisy loads,
and will as such have quite low utilization.

120

7.3 Evaluating Proactive Scaling Approach

0

2

4

[r
eq

ue
st

s/
s]

Workloads
Avg. arrival workload 1
Avg. arrival workload 2

4

6

Sc
al

e

Microservice 1

0.2
0.4
0.6
0.8

1

U
til

iz
at

io
n

2

4

6
Microservice 2

Kubernetes Oracle
RL agent Simple

0.2
0.4
0.6
0.8

1

2

4

6

Sc
al

e

Microservice 3

0 20 40
0.2
0.4
0.6
0.8

1

Time [days]

U
til

iz
at

io
n

2
4
6
8

10
Microservice 4

0 20 40
0.2
0.4
0.6
0.8

1

Time [days]

Figure 7.9 The double chain has two workloads (W1 and W2) with different
average loads (top left) going through both shared microservices (M1 and M4)
as well as individual ones (M2 and M3).

121

Chapter 7. Proactive Cloud Autoscaling using RL

Looking at the utilization for the RL agent we see similar spikes for
the first microservice as we see in Figure 7.8(b), showing how much of
the failed requests likely stem from pushing the utilization a bit high for
the entry point of the service chain. For microservice 2 and 3 we see that
the utilization is quite high, but still contains some stochasticity. This
is since the total load of microservice 1 is known to the agent, not the
individual distributions of requests from workload 1 and 2. Microservice 4
has the highest utilization for the RL agent, stabilizing quite close to one.
This should be expected since it has knowledge of the incoming load from
microservice 2 and 3.

Adapting to new or changing workloads. Still based on Figure 7.5,
we introduce workloads where the range of possible arrival rates change
over time, thus changing the average load. A third workload W3 is also
introduced, with path P3 = [M1, M2, M3]. W1 produces requests in the
range [0, 8] for the first third of the duration, and then [0, 4] for the rest of
the duration. W2 produces requests in the range [0, 2] for the full duration.
W3 produces no requests for the first two thirds of the duration, and then
[0, 2] for the rest of the duration. Each workload still have a probability 0.1
of changing each step.

The reward for this environment is shown in Figure 7.10(a), and we
see that the RL agent quickly adapts to the change in workload as well as
the new workload, keeping a reward on par with the oracle scaler. While
the reward for the RL agent is a bit noisy for the same reason as before,
stochastic workload and continual learning and exploring, it still manages
to keep the reward high on average. There are some spikes from failed
requests in Figure 7.10(b), and more failed requests in general compared to
the other scaling strategies, but as discussed before this can be tuned with
the objective function, and is not the main focus of this work.

Figure 7.11 shows the incoming requests for the different workloads, as
well as the scale and utilization for the microservices. We see that the RL
agent scales out and in as needed, and that the utilization is quite high for
the microservices where it can scale proactively. Why it is not higher is due
to the stochasticity of the workload, and the fact that the agent does not have
information about the distribution of requests on the microservices. We also
note that microservice 3 has quite low utilization until the new workload is
introduced, then it increases. This is due to the fact that workload 2 will
generate zero requests a significant amount of the time, and microservice
3 is not allowed to scale in that far leading to a lower utilization. When the
new workload is introduced, the utilization increases since zero requests
will happen less often.

Other experiments. While these two experiments help show that the RL
agent can learn to scale proactively, and do so in a dynamic and changing

122

7.3 Evaluating Proactive Scaling Approach

0 10 20 30 40 50

20

40

60

[Days]
0 10 20 30 40 50

0

0.1

0.2

0.3

[Days]

[F
ai

le
d

re
qu

es
ts

/s
]

Kubernetes
Oracle
RL agent
Simple

(a) Reward (b) Failed request rate

Figure 7.10 The reward under changing workloads. After a third of the
time the average request rate for W1 is halved, and after two thirds the new
workload W3 is introduced. The RL agent has no problems adapting to the
changes, and thought the reward is a bit noisier, it is on par with the oracle
scaler.

environment, we do have some additional results that we will just touch
upon briefly as they do not particularly add to the main points of this work.

In an effort to reduce the failed requests, we increased the reward of a
finished request compared to the cost of running an instance. This will shift
the value function towards keeping a larger buffer, and should thus reduce
the failed request rate. While the higher value for finished jobs did push the
RL agent to be more careful by keeping a larger buffer, slightly reducing
the rate of failed requests, it also made for a less pronounced proactive
component in the strategy.

We also explore more complex workload paths with varying execution
times, where proactive scaling was not always possible. The RL agent man-
ages to learn a competitive policy, though, as expected, with less pronounced
proactive scaling and thus fewer benefits compared to the reactive strate-
gies.

Summary and Discussion
The environment presented here is difficult from a learning perspective in a
few different ways. One is that it is not fully observable; so while we can see
the utilization for a microservice, that does not tell us how much work there
is left on the current requests, or what different types of requests populate a
microservice. This makes it harder to understand the value of states, since
the same state could have different values based on some hidden internal
state. There are also delays, e.g., when booting new instances it takes time

123

Chapter 7. Proactive Cloud Autoscaling using RL

0
2
4
6
8

[r
eq

ue
st

s/
s]

Workloads
Avg. arrival workload 1
Avg. arrival workload 2
Avg. arrival workload 3

4

6

8

Sc
al

e

Microservice 1

0.2
0.4
0.6
0.8

1

U
til

iz
at

io
n

2
4
6
8

Microservice 2

Kubernetes Oracle
RL agent Simple

0.2
0.4
0.6
0.8

1

2

4

6

Sc
al

e

Microservice 3

0 20 40
0.2
0.4
0.6
0.8

1

Time [days]

U
til

iz
at

io
n

4
6
8

10
Microservice 4

0 20 40
0.2
0.4
0.6
0.8

1

Time [days]

Figure 7.11 We now have three workloads with, two with changing aver-
age loads. The requests all have different paths through the set of shared
microservices.

124

7.3 Evaluating Proactive Scaling Approach

between the decision to scale before the state actually changes, and there
is a delay between a change in the state that will lead to a request passing
through and the request actually passing through to generate a reward.

In addition to the partial observability, the RL agent also has the
stochasticity from the learning process and exploration, leading to much
noisier actions. This is especially problematic when the environment, as in
this case, has modes of operation where the distance between a good state
and bad state can be small. This means a small change in the action can
lead to a large change in the outcome. One way to make the RL policy more
stable could be to reduce the target entropy over time, or simply acting
based on the mean of the distribution instead of sampling from it. This
would provide worse data for continuous learning, but if we assume that
the environment is not changing and that we can stop training at some
point, it could provide a more stable policy.

The reward also contain dynamics with different delays, where reducing
the scale immediately reduces the running costs, but it can take time to
get a request through to generate a positive reward. This especially holds
true if the queues are backed up, and the RL agent will have to scale out
multiple microservices for a while before seeing a reward. The tendency
seemed much stronger when the environment was allowed to scale in to
zero instances, and instead setting the minimum to one made it much less
prevalent. The problem with backed up queues was also the reason the
maximum for the queues was set rather low, introducing the problem of the
buffer, but keeping it small to not let too much accumulate.

In the end, the aim was to create a proactive cloud scaler using rein-
forcement learning, achieving feed-forward scaling for service chains. We
show how the RL agent is keeping utilization higher on microservices later
in a service chain, indicating that the RL agent embedded some knowledge
of the graph structure and learned the forward connection needed to do
proactive scaling on the later microservices in the chain. We also show how
the RL agent quickly adapts to changing or new workloads. The RL agent
achieves a higher utilization than the reactive scaling strategies, but not
really reaching the utilization of the oracle scaler for the nodes where it
can scale proactively. This was done without giving the RL agent any prior
knowledge of the environment or workload, learning only based on utiliza-
tion values, which can often be easily extracted in a real system, as well as
the reward function.

While we went with the approach of stacking previous states to miti-
gate the problems from the partially observable environment, a different
approach could be to use a recurrent neural network to allow the agent to
remember previous states. Comparing the effect and performance of these
two approaches would have been interesting to explore, but was not the
main focus of this work.

125

8
Load Balancing via Fluid
Model Differentiation

One of the large benefits with the cloud is the flexible run-time management
of applications, allowing for dynamic scaling and migration of resources
for individual microservices in the application. These tools give us fine-
grained control when balancing resource usage against the performance
constraints from SLOs. With the current advances in edge computing, we
also have the choice of whether to run the microservices in the cloud or at
the edge. These options provide differences in, e.g., communication delays,
resource availability, resource cost, and will thus affect the performance and
cost of the application. Creating a run-time management system that can
take these differences into account could therefore provide better routing
strategies between the microservice replicas, i.e. replicated instances of a
microservice, and thus better performance and cost for the application.

Introduction
In this chapter, we demonstrate how automatic differentiation can be used
to learn load balancing parameters for a cloud application. We look at an
application that consists of multiple microservices, where each microservice
has a set of replicas that can be placed over multiple different sites. Fig-
ure 8.1 shows a distributed microservice where the incoming workload is
distributed over replicas according to a weighted random scheme with prob-
abilities pi. Due to differences in communication delays, available capacity,
etc., the access latency and the cost vary among each site. The incoming
workload is constantly changing, meaning that any strategy must be able
to adapt to variations in traffic.

Our method requires a model of the application from which performance
metrics can be extracted, and a cost function and constraints that can be
evaluated from these metrics. Using the fluid model introduced in [Ruuska-
nen et al., 2021a], the model parameters are fit to tracing data from an

126

Chapter 8. Load Balancing via Fluid Model Differentiation

Edge node Local DC Centralized
cloud

r1 r2 r3

Load balancer

Distributed
microservice

p1 p2 p3

Figure 8.1 A distributed microservice with replica sets spanning multiple
different sites. The load balancer distributes the incoming load randomly
with probabilities pi over the available replica sets. The microservice can
also be part of a larger application of multiple communicating microservices.

application running live in a Kubernetes cluster. Every few minutes we
extract a new model and calculate how the system is expected to evolve
under current load balancing parameters. The evolved state is used to ex-
tract performance metrics, from which the cost function is evaluated. We
then use automatic differentiation to calculate gradients of the cost with
respect to the load balancing parameters, and update the parameters with
a step that is bounded in the probability space. As both model extraction
and automatic differentiation is relatively cheap we can do this in an online
fashion, interacting with the application in real-time. This allows the model
to adapt to changes in the application, and to changes in the environment,
such as the edge cloud becoming more or less available. In an experimental
evaluation, we show that this approach can improve the performance of
the application and adapt to changes in the environment, all while sup-
porting complex costs and constraints. We specifically focus on adapting the
load balancer probabilities in order to minimize some cost function, but the
technique itself is more general.

Queuing Networks
The fluid model used in this chapter is an approximative solution to the
flows in a queuing network model of the application. We will here give a
brief introduction to queuing networks and their use in modelling cloud
systems, and compare our approach to previous work in this field.

Queuing theory is a popular method for modelling cloud systems, es-
pecially considering the queuing disciplines first-come first-serve (FCFS),
processor sharing (PS) and delay (INF) [Balter, 2013; Ardagna et al., 2014].

127

Chapter 8. Load Balancing via Fluid Model Differentiation

qm1

qm2 qm3

q1,2
d q1,3

d

Figure 8.2 Multiclass PS queues qmi connected by INF queues q j,k
d . Each

arrow displays a class-to-class transition and is marked with the downstream
class it connects to.

Dependencies between resources and servers can be modelled by joining
multiple queues, forming a queuing network, see Figure 8.2. Each queue
can also contain multiple classes of requests, e.g., different types of re-
quests or different processing stages of the same request.

Unfortunately, queuing networks seldom have closed-form solutions, and
evaluation by simulation is often prohibitively computationally expensive for
real-time usage. Instead, important performance metrics are often approx-
imated using different methods. For stationary solutions of product-form
networks there is the mean-value analysis (MVA) and its extensions [Bolch
et al., 2006]. Fluid models can produce transient solutions that do not re-
quire the assumptions of product-form networks, and they are fast to solve
using modern methods. This makes them suitable for our online optimiza-
tion approach.

Although join-shortest-queue (JSQ) and its extensions promises a good
mean response time in a load balancing scenario, they are difficult to an-
alyze under more general settings and costs. We thus restrict ourselves to
study the weighted random strategy, which allows us to express the appli-
cation as a queuing network with probabilistic routing and subsequently
the optimization problem as finding the probabilities that minimizes our
cost. This problem has been extensively studied in the queuing theory com-
munity, but in order to make it feasible only simple cost functions and
performance metric constraints (if any) are typically considered for specific
types of queues and networks. We will here state some notable results, and
refer to the references within for a more encompassing description of this
field.

Regarding open networks, response time minimization has been studied
in, e.g., [Fratta et al., 1973] considering FCFS queues with link constraints
using flow deviation, [Borst, 1995] considering FCFS queues over a weighted
sum of response times, and [Guo et al., 2004] considering queues of either
FCFS and PS discipline with constraints on response time variance. For

128

Chapter 8. Load Balancing via Fluid Model Differentiation

closed networks, throughput maximization has been studied for product-
form networks in, e.g., [Kobayashi and Gerla, 1983] using gradient stepping
as the gradient is readily obtained from the MVA algorithm [Bolch et al.,
2006], and [Anselmi and Casale, 2013] using closed-form heuristics based
on heavy-traffic limits which were later explored in [Wang and Casale,
2014] for heuristic weighting of the RR strategy. In [Hordijk and Loeve,
2000] it is shown that for product-form networks with general cost function
and constraints on queue states, a Nash equilibrium can be obtained via
deterministic routing. Further, in [Incerto et al., 2017; Incerto et al., 2018]
model-predictive control (MPC) over the mean-field fluid model for a closed
network was studied in order to minimize response time by tuning both
routing probabilities and autoscaling.

Compared to these results, our approach of gradient stepping using au-
tomatic differentiation is more general. It allows for a very general class of
cost functions and constraints, with the main requirement that all perfor-
mance metrics used are obtainable from the fluid model. Further, the fluid
model allows us to consider both transient and stationary metrics in the
system, providing more flexibility in the cost function. However, in adopt-
ing such a general approach, we forgo any theoretical results on optimality
bounds, feasibility, and convergence speed.

Automatic Differentiation
Automatic differentiation is a technique to evaluate the derivatives of func-
tions defined by computer programs. The basic idea is to apply the chain
rule to the code in order to reduce it to simpler expressions where the
derivative of each individual operation is easily defined. There are a few
different methods for automating this process, but for this work we choose
an implementation using a type of dual numbers [Eastham, 1961].

Dual numbers provide a convenient way to propagate information about
the value of an expression in conjunction with the derivative of the expres-
sion. So if we have a language where the higher level code is agnostic to type,
and the lower level operations are defined for dual numbers, both the value
and the derivative can be calculated in one go by supplying parameters as
dual numbers.

Automatic differentiation distinguishes itself from numerical differenti-
ation by being exact in the mathematical sense. While numerical differen-
tiation approximates derivatives using finite differences, and thus suffers
from the inaccuracies coming from those techniques, automatic differentia-
tion will do a calculation corresponding to the exact mathematical expres-
sion. Numerical differentiation also has the disadvantage that higher order
derivatives become computationally complex and involve larger errors, while
gradients over multiple variables can cause an unnecessary overhead if the

129

Chapter 8. Load Balancing via Fluid Model Differentiation

primal evaluation of the function is expensive [Rall, 1981].

8.1 Microservice Application Model

Fluid Model
We adopt the fluid model for microservice applications introduced in [Ru-
uskanen et al., 2021a]. The model is based on a mean-field approximation
of a simplistic queuing network representation of the application. In short,
the queuing network models each replica to every service as a multiclass
PS queue and each replica-to-replica delay as a multiclass INF queue. Each
processing stage of a request across the entire microservice application is
then modelled as a path over the classes in the network. Poisson arrivals
are assumed, and the service time in each class is allowed to follow a phase-
type distribution [Asmussen et al., 1996], representing the service time as
the time-to-absorption in an internal Markov chain. The transient states of
this chain are referred to as phase states. Although the individual replica
models are simple, this fluid model can capture quite general graphs of
microservices, and be completely extracted at run-time from commonly col-
lected tracing data such as, e.g., arrival and service time for each request.
However, due to the simplicity of the model, there can be signs of modelling
errors when predicting too far from the operating point it was fit to.

For the fluid model we let Q be the set of queues, C the set of classes and
S the set of phase states in the network. Each queue q represents a replica
of some microservice, and has a unique set of classes Cq. Each class within
a queue represents different types of requests, or just different processing
stages of the same request. And each queue/class pair (q, c) ∈ (Q, Cq)
is then assumed to have a unique set of phase states Sq,c to model the
distribution of the service time for that class in that queue. Further, let kq
be the number of parallel processes working on requests in queue q. Let λ ∈
R
pCp$1
+ be the Poisson arrival rates to each class and P ∈ RpCp$pCp the class-to-

class routing probability matrix. Finally, let Ψ ∈ RpSp$pSp, B ∈ RpSp$pCp, A ∈
RpSp$pCp be the parameter matrices for the phase type distributions of each
class, stacked into block diagonals in an appropriate order.

The smoothed mean-field fluid model from [Ruuskanen et al., 2021a]
can then be introduced. It approximates the mean request population in
each phase state E [X(t)] ∈ RpSp$1 with the solution x(t) ∈ RpSp$1 to the
following system of ODEs.

dx
dt = WTθ (x, z) + Aλ (8.1)

The initial condition is x(0) = X(0), and W = Ψ + BPAT . The processor

130

8.1 Microservice Application Model

sharing function
θi(x, z) = xi�Q(i) (x, z) ∀i ∈ S

defines a soft constraint on the evolution of the phase states. Q(i) is a
function mapping a phase state to its parent queue and

�q (x, z) = 1(
1+

(
k−1

q
∑

i∈Sq
xi

)zq)1/zq
q ∈ Q (8.2)

is the smoothing function, where Sq is the set of phase states in queue q.
The smoothing parameter zq can be individually tuned for each queue q to
improve accuracy in the model.

Microservice Application
We consider a cloud application subjected to requests from external users
with an exponential inter-arrival time, i.e., Poisson arrivals, and where
there are constraints on certain performance metrics, e.g., response time
percentiles, via SLOs. The application consists of multiple microservices,
each consisting of a set of replicas. The replicas can span multiple placement
possibilities, e.g., machines, clusters or even different sites, each associated
with their own communication delay and resource cost. The cost depends on
things such as the cost of electricity, availability, required hardware, etc.,
and will be highly specific to the application and deployment. What we will
assume, is that the cost is tied to where the requests are executed among
the placement possibilities.

The end goal is to tune application management parameters to minimize
the total cost of running the application, while not violating the constraints.
In order to effectively determine such parameters, a model can be used to
estimate the impact of them on both cost and constraints. Moreover, given
such a model, it is possible to use automatic differentiation to differentiate
the cost derived through this model with respect to these parameters. By
updating the parameters using a gradient stepping scheme, we get a con-
trol strategy that drives the system towards a region of lower cost while
avoiding constraint violations. In this chapter, we exemplify such a proce-
dure by considering load balancing between the different replica sets in the
application. Thus, our parameters to tune, or control variables, will be the
set of all load balancing parameters.

An illustration of this kind of environment is presented in Figure 8.3.
The load balancer is placed outside any site for conceptual understanding,
but for a practical implementation, the load balancer would exist on all sites
of the microservice to reduce unnecessary network traffic. This would also
allow a more general approach where each individual replica set has its
own parameters for load balancing, which could further reduce redundant
traffic between sites.

131

Chapter 8. Load Balancing via Fluid Model Differentiation

r1,1

r1,2

r1,3

p1,1

p1,2

p1,3

Distributed
Microservice 1

r2,1

r2,2

r2,3

p2,1

p2,2

p2,3

Distributed
Microservice 2

Edge node

Local DC

Centralized
cloud

Figure 8.3 An application consisting of two distributed microservices, each
with an internal load balancer and replicas ri, j spread over different sites.
The control variables are the set of all routing probabilities for the load
balancers, where pi = [pi,1, pi,2, pi,3] is the distribution for microservice i.

Control variables. Using the smoothed mean-field fluid model described
in (8.1), the routing between the services is fully determined by the class-to-
class transitions described in the routing probability matrix P. As the model
captures different request types as stand-alone classes, multiple non-zero
values in the rows of P only occurs for load balancing purposes. Let pi be a
vector of the non-zero probabilities of a row in P which corresponds to a load
balancer i. Let P = {p1, p2, . . . } be the set of all load balancing probability
vectors in the system. The elements of P are our control variables, and by
changing them we can affect the solution of (8.1). We denote this dependence
as x(t p P).

Obtaining Desired Metrics
The cost and constraints for the application are based on different perfor-
mance metrics. These metrics need to be derived from our model in order
to create a differentiable mapping from control variables to costs and con-
straints. We base the cost on the mean number of requests present in each
replica, and have a single constraint on a response time percentile.

Mean requests in replicas. As each replica is modelled by a single queue,
the mean request present at time t can be approximated from the fluid model
(8.1) by summing over all the phase states present in that queue.

xq (t p P) =
∑

i∈Sq

xi (t p P) q ∈ Q (8.3)

132

8.2 Routing Optimization using Automatic Differentiation

Further, let xQ(t) ∈ R
pQp$1
+ be the vector of all modelled mean requests

populations in each queue q in the network.

Response time percentiles. As shown in [Ruuskanen et al., 2021a], it is
possible to obtain an approximation of the cumulative distribution function
(CDF) of the response time given our fluid model. Let π(t) ∈ RpSp$1

+ be the
probability vector of finding a request in the corresponding phase state at
time t, and β ∈ R

pCp$1
+ the probability vector of the request entering the

corresponding class at t = 0. The probability of remaining in the queuing
network at time t can then be approximated with the following ODE,

dπ
dt = WT D�(x∗,z)π(t), π(0) = Aβ (8.4)

where D�(x∗,z) ∈ R
pSp$pSp
+ is a diagonal matrix with elements D�(x∗,z)

ii =
�Q(i)(x∗, z), i.e., (8.2) evaluated at the stationary solution x∗ given some z.
As (8.4) is a linear system, it has a closed form solution. An approximation
of the percentile φα can then be obtained by either bisection search over
this closed-form solution, or by evaluating (8.4) and finding the t such that∑

π (t = φα) = 1−α. As the percentile and its approximation depends on
x∗, they also depend on the choice of P which we denote as φα (P).

8.2 Routing Optimization using Automatic Differentiation
The fluid model allows us to pose an idealized optimal control version of
the original cost minimization problem, assuming a set of load balancing
probability trajectories P(t) and some cost function Jo(·), as follows

min
P(t)

∫
0
∞Jo (t, xQ(t), P(t)) dt

subject to dx/dt = (8.1)
∑

p(t) = 1 ∀t, p ∈ P
φα (P(t)) ≤ φ lim ∀t

(8.5)

By minimizing over all P(t), we try to directly find the optimal load dis-
tribution that over time minimizes the selected cost. Although possible, the
model will become less accurate the further P(t) is from what it was when
recording the data used to fit the model, and thus the predicted optimum is
also less accurate. Further, as cloud systems are inherently dynamic due to
resource contentions, workload changes, migrations, or even malfunctions,
the optimal P(t) will generally not be convergent as the system is subjected
to both slow and abrupt changes over time. This necessitates an optimiza-
tion scheme where we perform simultaneous online optimization and model

133

Chapter 8. Load Balancing via Fluid Model Differentiation

tuning in order to both update P(t) in a robust manner and adapt to
changes in the system. To create such an algorithm, some adjustments to
(8.5) are first needed.

Iterative model refitting & optimization. Using the model to predict
the system behavior far from the operating point it was fit to will likely
result in less accurate predictions. Less accurate predictions can lead to the
system being driven into regions of high cost or constraint violations.

This can be remedied by continuously updating the model. But due to
the fast timescale of the system dynamics compared to the time needed to
gather enough data for an accurate model fitting using the scheme from
[Ruuskanen and Cervin, 2022], robust online model tracking at the nec-
essary speed becomes a non-trivial problem. Instead, one possible simple
solution is to update P in discrete steps, where between each step the sys-
tem is monitored in order to gather enough data to refit the model before
deciding the next Pk. By bounding how far Pk can move from Pk−1, it is
then possible to assure that the system moves within some vicinity of the
current operating condition where the model is accurate, increasing robust-
ness against accidentally violating the constraints. We denote step k as the
period between tk−1 and tk, the sample time as h = tk − tk−1, the data
gathered during step k as Dk, and the model re-fitted on Dk as ẋ = Fk(x),
where Fk(x) = WTθ(x, z) + Aλ according to (8.1).

This iterative scheme will result in a slower control action, and thus a
potentially slower convergence of the cost function minimization, than fully
relying on the model to decide some trajectory P(t) in a single step. In fact,
the system will reach a stationary operating condition before deciding the
next Pk as this is required to reliably re-fit the model. But as the overall
goal is to minimize cost of a running system over a potentially very long
time horizon, this slowdown is acceptable as long as the system does not
change too quickly.

Optimizing over weights. Optimizing directly over the probabilities be-
comes cumbersome, as we need to adhere to

∑
p = 1 ∀p ∈ Pk. Instead,

it is possible to optimize over weight vectors w which can be converted to
categorical distributions via the softmax function S(w) [Goodfellow et al.,
2016]. The softmax function maps vectors defined on Rn, to vectors whose
elements are allowed to take values in the interval [0, 1] and that fulfills∑

i Si(w) = 1. The i’th element of S(w) is defined as

Si(w) =
exp (wi)∑
j exp (w j)

. (8.6)

Further, the softmax function preserves the order of the vector element
quantities, i.e., if wi ≥ w j, then Si(w) ≥ S j(w). We introduce the notation

134

8.2 Routing Optimization using Automatic Differentiation

P (Wk) to convert the set of all weight vectors to a set of categorical
distributions for load balancing, where Wk = {w1, w2, . . . } is the set of
all weight vectors at time step k+ 1.

P (Wk) := {S(w) ∀w ∈ Wk} (8.7)

The set Wk will be decided based on data Dk that is gathered during step
k, i.e., between {tk−1, tk}, using P(Wk−1) for load balancing.

Limiting the step size. A natural way of managing the step sizes would
be to introduce some cost on the difference between Wk and Wk−1. However,
certain disturbances such as an increase in the load would increase the
overall cost of the system, and thus change the relative step sizes if care
is not taken. Instead, we will manage the step size limits by introducing
the following constraint on the 2-norm on the change in probability over all
weight vectors √ ∑

w∈Wk−1

ppS(w) − S (w+)pp22 ≤ dWlim (8.8)

where w+ is the corresponding updated w in Wk, and dWlim is the maxi-
mum allowed step size.

Reworking the percentile constraint. Due to the dynamic nature of
cloud systems, we cannot guarantee that any constraints based on perfor-
mance metrics can actually be fulfilled at any time step. A disturbance
might arise that pushes the system to an operating region where a con-
straint is violated. A constraint violation can also occur after a parameter
update, as neither the model nor the robust stepping scheme is perfect.

The optimization algorithm must thus be able to handle such cases, and
quickly drive the system back to a viable operating region. To do this, we
can substitute the constraint by penalizing the cost function in the case of
violation by, e.g., an additive cost function term Jφ (P (Wk)) using a penalty
function. The important thing is that the penalization should be negligible
as long as the constraint is not violated, and quickly grow as we approach
and cross the constraint boundary. This will ensure that the gradient of the
cost function points the parameters towards viable operating regions.

New cost function. At time step k, the refitted model Fk(x) can then be
used to determine the next Wk using the following new cost function

Jk (W) =

∫ t f

0
Jq (t, xQ(tk + t), P (W)) dt+ Jφ (P (W)) (8.9)

subjected to ẋ = Fk(x) where x(tk) is set to the stationary solution of
x (t p P (Wk−1)), and the step size constraint (8.8). As we obtain transient

135

Chapter 8. Load Balancing via Fluid Model Differentiation

values from the fluid model, we can minimize over these given some arbi-
trary cost function Jq(·) from current time tk over some time horizon t f . In
general, as the system will reach a stationary state before the next action
is taken, we should let t f be large enough to capture the stationary values
of xQ(t).

Further, the cost function only takes the next Wk into consideration,
even if t f would span multiple steps. This is done for simplicity, and since
we are simply unsure how the model behaves when leaving the vicinity
of Wk−1. A prediction horizon could potentially be added together with a
decreasing trust the further from Wk−1 we move, to create an MPC-like
problem formulation similar to [Incerto et al., 2017; Incerto et al., 2018].
But the resulting optimization problem would be problematic, as it would
become quite intricate with no guarantees on convexity.

Cost-Optimizing Controller
In each step, we will use the cost function (8.9) to decide the next Wk.
As we consider no prediction horizon, and since the optimization problem
is not convex with potentially multiple local minima, we will not try to
optimize (8.9) until convergence in each time step. This would become un-
necessarily costly, and only result in generating an optimal Wk given the
step length constraint with no guarantees that it would actually move the
system towards its global minimum.

Instead, a more direct approach is suitable. For demonstrative purposes,
we use a simple single gradient step to decide Wk, based on the gradient
of (8.9). Using automatic differentiation, this gradient ∇Jk can be directly
obtained, despite the dependence on the two ODEs (8.1) and (8.4). Together
with some constant scaling factor α and a step size limiter c, we can then
calculate the next Wk with the following gradient step update

w+ = w− cα∇wJk (Wk−1) ∀w ∈ Wk−1 (8.10)

where ∇w is the gradient with respect to the elements in w, and w+ is
the corresponding weight vector in Wk. If (8.8) is not violated, then c = 1,
otherwise it can be obtained as

c = arg min
c∈[0,1]

√ ∑

w∈Wk−1

qS(w) − S (w+ p c)q2
2 = dWlim (8.11)

using, e.g., bisection search.
The complete algorithm can thus be seen as an adaptable gradient

descent scheme, where we after each step re-evaluate the model before
calculating the gradient and deciding the next step to take. The result-
ing algorithm is summarized by the block diagram in Figure 8.4, and the
pseudocode in Algorithm 1.

136

8.3 Experimental Evaluation

Controller Application

Model es-
timation

D

F

φα

W
Jq λ

Figure 8.4 The controller sets some weights W for the application to run
with. Data D is collected and used to fit model F as well as estimate the
response time φα. These are then used by the controller to simulate the
environment and update the old weights based on the gradient of the cost
on the simulated state. Disturbances can act on both the controller, in the
form of, e.g., changes in the cost Jq, and on the application, in the form of,
e.g., changing workload λ.

8.3 Experimental Evaluation
To test and showcase the online optimization algorithm, two experiments
were performed on a small distributed microservice application.

The application, alongside the implementation of our online optimization
algorithm, is publicly available on GitHub1.

Experimental Setup
A similar setup to the one studied in [Ruuskanen and Cervin, 2022] was
considered, consisting of a simple microservice application deployed on a
testbed of multiple Kubernetes clusters.

Kubernetes testbed. The federated application sandbox described in [Ru-
uskanen et al., 2021b] was used as a testbed for the application. The sandbox
consists of clusters of virtual machines deployed on OpenStack [OpenStack
2023] in the Ericsson Research datacenter. To each cluster, 4 virtual ma-
chines, each with 4 virtual CPUs and 4 GB of RAM, were assigned. All
virtual machines in each cluster are further connected via a cluster-specific
isolated network. These networks are then connected to each other via a
gateway, which enables network characteristics between clusters to be eas-
ily emulated using Tc-Netem [Tc-Netem 2023]. On each cluster, Kubernetes
is then deployed along with the service mesh Istio [Istio 2023] to handle the
application and to emulate a realistic cluster software stack. Istio further
allows for easy extraction of the required tracing data for model fitting, and
handling of cluster-to-cluster communication between microservices.

1 https://github.com/JohanRuuskanen/ACSOS2022_code

137

https://github.com/JohanRuuskanen/ACSOS2022_code

Chapter 8. Load Balancing via Fluid Model Differentiation

Algorithm 1 Cost optimization procedure.

Algorithm 1a Control loop running N iterations of data collection and
parameter updates. Data collection is run for a duration h.

Initialize W0
for k ← 1 to N do

Set P(Wk−1) as load balancing strategy
Dk ← collect_data(h)
Fk,φ .95 ← fit(Dk)
Wk ← update(Wk−1, Fk,φ .95)

end for

Algorithm 1b Controller calculating Wk based on Wk−1 and data Dk.

function update(Wk−1, Fk,φ .95)
Wk ← ;
for w ∈ Wk−1 do
∇wJk ← gradient(Jk(w p Fk,φ .95), w)
w+ ← limited_step(w,∇wJk)
Wk ← Wk ∪ {w+}

end for
return Wk

end function

Application. A simplified version of the facedetection-as-a-service appli-
cation shown in [Ruuskanen and Cervin, 2022] was used as an example
application. It consists of two services, a frontend implementing a user
interface and image preprocessing, and a backend implementing a face-
detection algorithm. Both services are implemented in Python using Flask
[Flask 2023] and Gunicorn [Gunicorn 2023]. We assume a structure as in
Figure 8.5 where the user-facing frontend only exists on the edge close to its
users, and the backend is distributed across multiple sites, emulated by our
different clusters. Each frontend-to-backend connection is associated with a
delay di, and each backend is also associated with a computation cost Ci. We
will assume that the higher costs are associated with lower delays, in order
to create a trade-off between cost and latency. Such scenarios could occur in,
e.g., edge computing, where low-latency computations can be performed on
the device or at geographically close edge datacenters, but at an increased
cost, while off-loading computations to larger sites is cheaper but subjected
to longer communication delays.

Cost-optimizing controller. Using the load generator from [Ruuskanen
and Cervin, 2022], images are fed to the application as Poisson arrivals with

138

8.3 Experimental Evaluation

f

frontend

b1

b2

b3

p1

p2

p3

backend

Edge node

Local DC

Centralized
cloud

d2

d3

Figure 8.5 The incoming load passes through the frontend and is balanced
over the replicas bi in the backend based on the probabilities pi. The delay
between the frontend and the replicas in the backend are di on average. The
backends with lower delays are assumed to be more expensive to run, so a
small edge node will be closer to the user, but will likely have higher relative
costs. This creates an optimization problem where delay and cost has to be
balanced.

rate λ. At every time step k, tracing data from Istio is collected to generate
Dk. The model Fk is fit to Dk, after which the cost function Jk (W) can be
calculated. We do this using the Julia programming language, allowing us
to take advantage of packages such as DifferentialEquations.jl [Rackauckas
and Nie, 2017] for simulating the model, and ForwardDiff.jl [Revels et al.,
2016] for automatic differentiation. With this the gradient ∇Jk of the cost
function, as well as the next Wk can be effortlessly calculated.

Two Backends — Fixed Steps in an Offline Experiment
In a first experiment, we consider the example application with only two
replica sets of the backend: b1 that is deployed on the same cluster as the
frontend, and b2 that is deployed on a different cluster. All connections be-
tween the two clusters are given a Pareto-distributed additive delay with a
25ms mean, 5ms jitter (a Tc-Netem term roughly equating standard devia-
tion) and 25% correlation between samples. Hence, requests load balanced
to b2 will experience an additive delay.

The probability constraint enables us to determine the load balancing
probabilities directly by using a single parameter p1, and then determining
p2 = 1− p1, removing the need for the weights and softmax function. This
makes it feasible to collect data in a grid over p1 ∈ [0, 1], allowing us to run
the agent offline against the recorded data with a fixed size step according
to the grid that is in the direction of the gradient.

139

Chapter 8. Load Balancing via Fluid Model Differentiation

For the cost function, we let it be conditional on φα violating φ lim for
selecting either Jφ or Jq. Jφ is simply a scaled estimate of φα at stationarity,
whereas Jq is 0 everywhere except at time t f where it is a linear function
of the state. We choose to look at the stationary values to make it easier to
compare data.

Jk(p1) =

{
Cφφ̂α (p1) if φα > φ lim

CT xQ (tk + t f p p1) otherwise
(8.12)

We use recorded data φα to decide if the constraint is broken. The actual
cost is then implemented using a prediction from the model, φ̂α, so it can be
differentiated. We let α = 0.95 to consider the 95th percentile of response
times to the application and set φ lim = 0.55 ms to create a scenario where
it can be too slow under bad load balancing. C is set to zero for all queues
except those related to either backend, where it is Cb = [3, 1] for the first
and second backend respectively. While Cφ does not affect the gradient,
since the loss is conditional and the step is fixed, we set Cφ = 8 to scale the
two losses to be of similar magnitude for the visualization. For the model,
we give each class in the queuing network 3 phase states, for a total size of
pSp = 24.

We record data for the offline experiment by creating a grid over p1 with
steps of 0.05 between 0 and 1. For each value of p1, data is recorded for
h = 300s using an arrival rate λ = 14. The optimization algorithm is then
run against the recorded data, starting from p1 = 1, stepping along the
grid in the gradient direction. The results are depicted in Figure 8.6, where
Figure 8.6(a) shows the total mean requests present in the application,
Figure 8.6(b) shows the response time percentiles, and Figure 8.6(c) shows
the cost based on (8.12). The dashed red line shows the model prediction,
while the blue (and green) lines represent values from recorded data. The
cost in Figure 8.6(c) is conditional on (8.12), where the recorded values are
plotted for both individual costs, while the model prediction is only plotted
for the combined function. The apparent noisiness can be attributed to the
noisy data used for refitting the model.

As can be seen, the algorithm manages to step in the direction of a
decreasing cost and ultimately find the minimum. Starting at p1 = 1, the
system is passing all load to b1 resulting in φ .95 > φ lim and the cost is then
based on the response time curve. Moving in the direction of −dφ .95/dp1
the response time as well as the total queue length is decreasing since we
offload b1 by routing some load to b2 instead. Crossing the threshold φ lim,
the cost switch to Jq. Even though we see that the total queue length starts
growing as p1 goes below 0.65, the cost for b1 is higher than b2 and thus
the queue based cost is still decreasing with decreasing p1. Before reaching
p1 = 0 though, we cross the φ lim threshold again, finding the optimal value

140

8.3 Experimental Evaluation

4

5

6
∑

x∗ Q
true data
model

0.5

0.6

0.7

φ
.9

5
[s

]

real
model
φ lim

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

5

10

p1

J k
(p

1)

real model
Jq Jk

Jφ

(a) Total mean requests in application

(b) 95th percentile of the response times

(c) Cost function

Figure 8.6 Results from the offline experiment with two backends. The
values are plotted over the probability p1. In Figures 8.6(a) and 8.6(b) the
blue lines show the value from recorded data D, while the red dashed line
shows the corresponding prediction from the fitted model. In Figure 8.6(b)
φ lim shows when the cost (8.12) switches mode. The cost in turn can be seen
in Figure 8.6(c), where the blue and green lines correspond to the queue cost
respective to the cost on overstepping the response time threshold. The lines
are filled where each cost is active, and dotted where they are inactive. The
red dashed line shows the model’s estimate of the full cost from both parts
of the cost function.

141

Chapter 8. Load Balancing via Fluid Model Differentiation

of p1 to be around 0.35.

Three Backends — Online Optimization Experiment
For the second experiment, we run everything live on the real application.
We consider the same setup as in the first experiment, but also introduce
a third backend replica (b3) deployed on a third cluster. All connections
between the first and third clusters are given a Pareto distributed additive
delay with a 50ms mean, 10ms jitter and 25% correlation between samples.
As we now have more than one parameter to optimize over, we will resort
to using the weight vectors in W as described in (8.7).

For the cost function, we again let Jq be a linear function of state at t f
and 0 for other times, to only consider stationary values and simplifying
comparisons. However, the response time constraint is included by setting
Jφ as an exponential penalty function based on the difference between φα
and φ lim. Again, we base the activation of the constraint on recorded data,
as we would like it to be active when the real φα is near or above its limit.
The cost itself is based on the predicted φ̂α to make it differentiable. The
resulting cost function becomes

Jk(W) = CT xQ (tk + t f p S (W)) + Cφ eµ(φ .95−φ lim)φ̂ .95 (S (W)) (8.13)

where we set α = 0.95, φ lim = 0.6ms, µ = 10, Cφ = 5, t f = 5ms and C to a
zero vector except for the backend replicas where it is set to Cb = [3, 2, 1].
Further, the gradient step is given α = 0.5 and dWlim = 0.15. For the
model, we give each class in the queuing network 3 phase states, for a total
size of pSp = 33.

The system is loaded with Poisson arrivals at λ = 15 for a total of 40
time steps, with the initial weight vector is set to w0 = [2, 0, 0], giving
p0 ([0.78, 0.11, 0.11]. Each time step is given a duration of h = 300s. We
further let the running system be influenced by two disturbances. The first
disturbance is introduced at time step 14, where the arrival rate is suddenly
increase by 50% to λ = 22.5. The second disturbance is introduced at time
step 27, where the costs to the backend replicas are changed to Cb = [1, 2, 3].

The results from this experiment can be seen in Figure 8.7. The blue
shaded area shows where the first disturbance is active, and the red area
shows where both the first and second disturbances are active. Figure 8.7(a)
shows the total mean requests present in the application, Figure 8.7(b)
shows the response time percentiles, and Figure 8.7(c) shows the cost based
on (8.13). Both values from data (blue) and the corresponding fitted model
(dashed red) are shown. Finally, Figure 8.7(d) shows the three load balanc-
ing probabilities from the frontend to b1 (p1, blue), to b2 (p2, dashed red)
and to b3 (p3, dotted green).

As can be seen, the online optimization algorithm manages to drive the
system towards a load balancing setting of less cost and counteract the

142

8.3 Experimental Evaluation

0

2

4

6

8

10
∑

x∗ Q
real model

0

0.2

0.4

0.6

0.8

1

φ
.9

5
[s

]

real model φ lim

0

5

10

15

J k
(W

)

real model

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Steps [5 minutes/step]

p
=

S(
w
)

p1 p2 p3

(a) Total mean requests in application

(b) 95th percentile of the response times

(c) Cost function

(d) Load balancing probabilities

Figure 8.7 Results from the online experiment with three backends. The
values are plotted over the simulated time steps, each being one sampling
period of 300 seconds. In Figures 8.7(a) to 8.7(c) the blue lines shows the
value from recorded data D, while the dashed red line shows the corre-
sponding value from the fitted model. Further, in Figure 8.7(d) the three
lines corresponds to the three load balancing probabilities. Finally, the blue
shaded area shows where the first disturbance is active on the arrival rate,
while the shaded red area shows where the first and second disturbance is
active on both arrival rate and queue length costs. A one time step lag can be
seen on Figure 8.7(a), Figure 8.7(b), Figure 8.7(c) compared to Figure 8.7(d)
as Dk is recorded using Wk−1.

143

Chapter 8. Load Balancing via Fluid Model Differentiation

disturbances in quite a few steps. At a few steps, it seems as the algorithm
steps upwards in cost, but this can be attributed to noise. At first, the sys-
tem shifts load from b1 to b2 and b3 where costs are smaller. This decreases
the cost, but also increases the total queue length and response time per-
centile, as b2 and b3 are associated with a higher site-to-site delay. The shift
is mostly stopped when the percentile constraint is reached, but due to the
simplicity of the gradient descent approach, the system experiences a slow
final convergence. When the first disturbance in the form of a 50% increase
in load is introduced, both the queue length and percentiles immediately
increases. As the percentile constraint is now violated, the cost function
spikes, which results in the gradient step aggressively moving the system
back into a parameter configuration where the constraint is no longer vi-
olated. After the constraint is once again fulfilled, the cost function slowly
settles to a minimum. At the activation of the second disturbance, in the
form of shifting the costs of b1 and b3, the cost function increases while the
queue length and percentile stays the same. The system then quickly shifts
the load probabilities and reduce the cost until the effects of the penalty
function becomes too large, and it settles to a slow final convergence. As
can be seen in Figure 8.7(b), there are at times rather large gaps remaining
between the percentile and its limit. This has to do with the values assigned
to the penalty function. Increasing Cφ and µ would lead to more aggressive
handling of violations and a tighter gap, but they were kept fairly low to
yield a more presentable cost function.

8.4 Summary and Discussion
In this chapter, we have demonstrated how automatic differentiation can be
used to optimize the load balancing parameters of a distributed microservice
application. This is done by deriving an online optimization scheme to
minimize some holistic cost by tuning the probabilities of random load
balancers between replica sets. Although not guaranteed to find the global
cost minimum, the algorithm is shown to reduce cost while adhering to
constraints on the response time percentile in an experimental evaluation.
The assumed microservice fluid model is fairly general, and the cost function
can be arbitrarily defined as long as it depends only on metrics that the
model can approximate. This enables our online optimization scheme to be
quickly adapted for a multitude of different load balancing scenarios.

Automatic differentiation allows us to differentiate functions whose
derivatives would be too difficult to explicitly derive. In our case, it is used to
differentiate through an arbitrary cost function L based on the solution of
two dependent ODEs from our fluid model. Other models, e.g., the common
mean-value analysis, could be used as well, but we chose the fluid model

144

8.4 Summary and Discussion

due to its transient values, validity for non-product-form networks and as
it is quick to evaluate and differentiate using the Julia ecosystem. In our
experiments, the model fitting and parameter update in Algorithm 1 takes
about 10s, where the majority of the time goes to fitting the phase-type
distributions using the expectation maximization algorithm, which can be
made quicker by, e.g., moment matching. The differentiation step itself is
quick, in the range of 100ms.

Further, the generality of automatic differentiation allows us to consider
a whole range of other ways of optimizing an application, e.g. scaling and
migration, as long as such an action can be represented in the used model.
Also, given an expression for the gradient and higher order partial deriva-
tives, more advanced optimization methods can be used to decide how to
update the control variables. In this chapter we however chose to focus on
optimizing load balancing using simple gradient stepping, to exemplify the
procedure with a problem whose fluid model representation is simple, a
comprehensible control variable update and a relatively easy experimental
validation.

The approach however has some drawbacks. First, we provide no con-
vergence guarantees as the performance is inherently dependent on the
accuracy of the model. Identifying when a model is performing poorly is
thus important to avoid driving the system into regions of high cost or con-
straint violations. A poorly chosen model can drive the system to regions of
increasing cost and even constraint violations. It is thus important to keep
track of model performance, in order to identify these situations before the
system is driven out of bounds. Further, the generality of the approach is
not only a strength since deriving a suitable cost function can require both
time and expert knowledge.

We can compare this to Chapter 7, which while they are quite different
in some sense, they both consider the same problem of optimizing a mi-
croservice application. In Chapter 7, we considered a model-free approach,
where we used reinforcement learning to learn a policy for scaling the appli-
cation. This approach is more general in the sense that it does not require
a model of the system, but it is also more complex and requires more data
to learn a good policy. Here we had a much easier process of creating a
decent controller, but it is also more limited in the sense that it requires
a model of the system, and that the control variables are limited to the
probabilities of the load balancers. The restricted control policy is not an
inherent limitation of the approach, but rather a consequence of the model
used.

The dependence on a model is both a strength and a weakness, as it
makes the approach more efficient but more limited. By combining a model
with learning, we could potentially get the best of both worlds. This will
be explored in Chapter 9, where we use the fluid model as a base with a

145

Chapter 8. Load Balancing via Fluid Model Differentiation

learned correction term to improve the accuracy of the model.
Restricting ourselves to selecting static load balancing parameters was

both since the fluid model assumes the probabilistic routing, but also since
it is interpretable, making for a controller which we can understand. By
updating it often enough, it should provide both good performance and a
good understanding of the system. The automatic differentiation approach
is not limited to static load balancing parameters, and with a more flexible
model we could potentially optimize over more complex policies. An NN
could provide a more advanced policy able to update the load balancing
parameters dynamically, but it would also bring in all the other problems of
NN-based policies such as sample efficiency, interpretability and stability.
While we did not explore that path in this chapter, it is a natural extension
of the work presented here.

146

9
Improving Microservice
Models

When modelling a system we want to capture the dynamics of the system
as accurately as possible. Using hand-crafted models, we can often capture
some dynamics of the system quite well, but it can be difficult to capture
all the dynamics of the system. It typically creates models that generalize
well since they are based on the underlying dynamics of the system, and
are often easy to interpret. Using machine learning to fit a model, we
have less control over what dynamics are captured, but it is possible to
capture dynamics without fully understanding them. This creates models
that are harder to interpret, and that might not generalize well outside the
seen data, but can capture complex dynamics that are difficult to model by
hand. By combining the two, taking known scientific models and embedding
machine learning into them, we can have the flexibility from learning while
not disregarding existing knowledge.

In this chapter we further explore the benefits of general automatic dif-
ferentiation, and how we can use it to improve on the fluid model presented
in Chapter 8. While the fluid model does a good job at representing the un-
derlying system for the system parameters it was trained on, it does have
a tendency to diverge from the true system dynamics as the system pa-
rameters change. This means that control parameter optimization, as done
in Chapter 8, can be problematic if not retraining the model often enough.
Using the same fluid model as a base, Section 9.1 show how to extend it
by adding an NN that captures the dynamics related to the load balancing
parameters that the fluid model is missing. In Section 9.2 we additionally
discuss the how to impose bias on the network based on features of the
model. These two approaches are then evaluated to see how they affect data
efficiency and final performance in Section 9.3.

147

Chapter 9. Improving Microservice Models

Data-Driven Discovery of Differential Equations
The success of deep learning is often accredited to a few different things.
Top among those are the generality of neural networks (NNs) as efficient
function approximators, as well as large amounts of data for training and
the resources to run large scale training. Though, in addition to this, many
of the large breakthroughs in deep learning community come from new ways
of imposing inductive bias onto the model. One example being convolutional
neural networks for image classification, with the idea that pixels close to
each other were more likely to be related, or recurrent networks for time-
series where the networks propagate information in one direction through
time. Another idea is to impose the structure of an ODE when looking for
solutions to systems that should behave as one, i.e., letting the NN model
the dynamics of the system, and extracting the solution of the system using
ODE solvers.

Using NNs to identify dynamics within an ODE has been done since
the early 1990s, e.g. [Rico-Martínez et al., 1992; González-García et al.,
1998; Long et al., 2018], as well as other function approximators such as
Gaussian processes [Schober et al., 2014; Raissi and Karniadakis, 2018;
Heinonen et al., 2018] or sparse regression methods [Brunton et al., 2016;
Rudy et al., 2017].

All of this can be unified under the term Universal Differential Equa-
tions (UDEs), where the dynamics of the DEs are modelled using universal
function approximators of some form, allowing them to capture arbitrary
dynamics.

dx
dt = f (x, t, η) (9.1)

Here we assume some function f parameterized by η defining the dynamics
of the system, though we can easily say that f (x, t, η) = F(x) + N Nη(x),
to both introduce a good bias with the known dynamics in F, and capture
whatever is missing with N Nη.

Recent interest in combining ODEs and NNs has led to work such as
[Chen et al., 2018; Hasani et al., 2020; Rackauckas et al., 2020], showing
that this approach can be used to efficiently solve a wide range of problems.

Similar techniques have previously been used to model microservice
applications, e.g., [Yang et al., 2019] use pure NN models to capture the
discrete dynamics of a microservice mesh and predict future states to opti-
mize resource allocations.

In this chapter we attempt to keep the knowledge from an existing model,
and only add a tiny NN modelling the missing dynamics. We specifically
want to keep the existing microservice model from [Ruuskanen and Cervin,
2022], where the original model is good in most scenarios. There are however
cases where it can have drastically reduced accuracy, for example when the

148

9.1 Extending a Fluid Model with Neural Networks

system parameter differs from where the model was fitted. This could be
approached by training multiple versions of the original model, one model
per parameter value, but as the system increase in size this can quickly
become infeasible. Instead, we use a single base model extended by an
NN, where the NN is trained to model how the dynamics change from
these parameters by training on data collected from a small amount of the
parameter space.

9.1 Extending a Fluid Model with Neural Networks
The fluid model is extracted from the system in the same way as in Chap-
ter 8. The extracted model is then used to simulate the load in the system
using (8.3), and to estimate the expected 95th percentile response time us-
ing (8.4). To predict outside the current parameter settings, the P matrix
can be updated with desired load balancing values, and λ can be changed
to reflect expected incoming load. And though we will not try to predict
incoming load, and rather just use the most recent data as a good estimate
when predicting, for verifying the models we will use the actual λ from the
recorded data.

This updated model can now be simulated to generate expected loads
and response time percentiles for a different parameter setting. Though the
model does generalize quite well around the parameter setting where it was
fitted, it will have an increased tendency for prediction errors as we move
further away from the parameters used for the data collection.

To decrease these prediction errors, we add two parts to the model. An
NN modelling the missing dynamics in the class population from the fluid
model, and an NN modelling the error of the response time prediction.

Modelling the Missing Dynamics from the Fluid Model
We set up the extended model as an ordinary differential equation with two
separate terms.

dx
dt = F(x, λ, p) + N Nη(x, λ, p) (9.2)

The first term is given by the fluid model dynamics from (8.1),

F(x, λ, p) = WTθ (x) + Aλ, (9.3)

while the second term is a universal function approximator, in this case an
NN parameterized by η. Both terms depend on the same inputs, the phase
states x, the arrival rate λ and the load balancing parameter p. We define a
loss function, over some data D, using the mean squared error between the

149

Chapter 9. Improving Microservice Models

predicted steady-state class population x̂C and the recorded average class
population x∗

C.
JC(η) =

1
pDp

∑

p,λ,x̂c∈D
(x∗

C(λ, p) − x̂C)
2 (9.4)

The recorded class population x∗
C(λ, p) is estimated similarly to the queue

population in (8.3).
The steady state population x̂C is estimated by simulating the ODE

for some time t f that is large enough that the system normally will have
reached steady state, for this system t f = 2 s was found to be sufficient.
We use λ from recorded data when training, since this will allow a better
training fit and will likely create a more accurate model since there will be
less noise affecting the training loss.

When we instead use our models to estimate future behavior for different
load balancing parameters, the actual λ is a stochastic variable and the
value is not known. We can estimate it by the most recently recorded value,
as that is likely a good approximation of the future value.

Modelling Response Time Prediction Error
The improvements to the fluid model will already make the estimate of
the response time percentile (8.4) better, since we now have more accurate
predictions for the class populations. But the main error source for the re-
sponse time percentiles is the assumption made in the fluid model that each
request receives the mean processor share, as mentioned in [Ruuskanen et
al., 2021a], and this still remains. This assumption tends to be less true for
larger utilization, due to increased variability in queue lengths, and results
in the error of the estimate being correlated with the utilization.

Having the predicted x∗, the phase state population in steady state, we
can estimate the response time percentiles φα from (8.4) and set up the
error of the estimate in relation to the actual response time percentiles
from data, φ̂α.

φ err = φ̂α −φα(x∗(λ, p))
Since this error depends on the solution of (9.2), we can train an NN
outside the ODE to estimate the prediction error based on utilization. We
use a small NN, parameterized by µ and using L2 regularization to avoid
overfitting, and train it using the mean squared error over some data D.

Jφα(µ) =
1
pDp

∑

p,λ,φ̂α∈D
(φ err − N Nµ(x∗

Q(λ, p)))2 +α
∑

µ∈µ
µ2

When using the model to predict the future behavior, we add the error
estimate to the response time percentile estimate, φα(x∗(λ, p)) + φ err, to
create a more accurate estimate.

150

9.2 Imposing Bias on the Neural Network

9.2 Imposing Bias on the Neural Network
As discussed in Chapter 4, the design of the neural network can have a large
impact on the learning efficiency and accuracy of the model, and imposing
an inductive bias on the NN can be beneficial for learning. In this section
we will look at ways of imposing bias on the NN structure, and how they
can be combined with the fluid model.

Dense neural network. A simple baseline to capture the missing dynam-
ics is to use a dense NN with no extra structure or constraints, just a few
hidden layers with an output of size pSp using linear activations. Extending
the fluid model described in Section 9.1 with an NN, we can see F, the
already known dynamics from the model, as a type of bias on the network.
Thus, it can be interesting to see how it performs without this bias, i.e., the
NN by itself. We will refer to the fluid model extend by an NN as F+NN,
and also compare it to both fluid model and NN by themselves, referred to
as F and NN respectively.

Flow conservation. While a dense NN should be able to fit the error, it
could be beneficial to give it some guidance by imposing certain structure on
the NN. For example, a structure that enforces internal flow conservation
could be beneficial since the fluid model is based on this assumption.

For this purpose we introduce

f c(z) = z− 1
pSp

pSp∑

i=1
zi, (9.5)

which translates a vector so that it sums to zero. Applying f c to the output
of the NN we can ensure that the internal flows sum to zero, i.e., no requests
are created or destroyed by the NN, just rerouted.

dx
dt = F(x, λ, p) + f c (N Nη(x, λ, p))

We will refer to this method as F+NNmean.

Flow patterns from fluid model. An even more involved approach could
constrain the NN to follow the flow pattern defined by the fluid model.
With this we mean that the NN should only be able to alter flows between
phase-states in the fluid model, and not create new ones. This is a stronger
constraint than flow conservation, and could simplify learning even more
since we enforce the structure that has already been proven good for the
fluid model. Though if the fluid model is not general enough, this could also
limit the accuracy of the model.

To do this we look at the flow pattern that is defined by the matrix WT

in (9.3). The column k of this matrix represent how the processed load from

151

Chapter 9. Improving Microservice Models

phase-state k affects the system. The sum of the column is zero, where the
only negative value is for row k since each replica will process requests
based on the current load, and remaining non-zero values are positive and
signify where the requests are sent. This holds for all but the columns that
have flows that exit the system, where requests are simply disappearing
from the system.

Assuming that the WT is extracted from data recorded for a load bal-
ancing parameterization where all paths are relatively well-used, we should
have all possible flows represented by some non-zero value in WT . If we as-
sign a weight wk

i, j for each possible combination of source i (negative value)
and sink j (positive value) within a column k in WT , as well as a weight
wk

i,0 for each source i that has no corresponding sink, the set of all these
weights W = {wk

i, j} then contains one parameter for each possible flow in
the fluid model. We can then design the NN to have a final layer of size pWp,
where each output is mapped to a weight in W. The effect on a phase-state
i of the DE is then calculated by considering all flows in W that are either
in to or out from i, consisting of w·

i,· flowing out and w·
·,i flowing in. Since

the output of the NN is not constrained, the weights can both increase and
reduce the flows. By defining any wk

i, j that is not in W to be zero, we can
define the effect on the dynamics of phase-state i to be

zi =

pSp∑

k=1

pSp∑

j=1
wk

j,i − wk
i, j

where z can then be added to the dynamics of the fluid model. We will refer
to this method as F+NNW .

When running the experiments, WT typically have a few values near
zero, likely stemming from numerical errors or other noise. Assuming as
above that W is extracted from a load balancing parameterization where
all paths are relatively well-used, we can find a threshold ε such that all
values in WT that have an absolute value smaller than ε are set to zero.

9.3 Evaluating NN based Model Extensions
We evaluate the different methods by comparing the sample efficiency when
training the NN, and the accuracy of the resulting model. We then compare
the performance metric predictions between a couple of the more interesting
models to evaluate how well the dynamics are actually captured, and how
well this achieves the goal of predicting outside the training data. Using
the improved model we also train a load balancing policy using gradient
descent, showing how the improved model can converge to a value close to
the optimal without needing to refit the model.

152

9.3 Evaluating NN based Model Extensions

f

frontend

b1

b2

p1

p2

Edge node

Local DC

backend

d

Figure 9.1 A simple distributed application with two microservices. The
frontend only exists close to the user on the edge nodes, and the backend has
replicas on both the edge nodes and the cloud. The backend has a weighted
random load balancer with routing probabilities p1 = p and p2 = 1 − p.
There is a delay d between the edge and the cloud.

Data and Training
The application visualized in Figure 9.1 is the same as was used for the
offline experiments in Chapter 8. We use the same dataset as was collected
for those experiments, so the parameters for the applications are the same.

The class populations are extracted from 5-minute recordings of arrival
and departure logs for each request, and this data is collected for all p ∈
[0, 0.05, . . . , 1]. We use p = 0.6 as the current load balancing parameter, i.e.,
the data the fluid model is trained on. The NN can additionally use data
collected at p ∈ [0.1, 0.3, . . . , 0.9], which we see as some historical data from
previous experiences. This data together with data from p = 0.6 forms the
training data D for the NN. The remaining data is only used to visualize
how well the model captures the parameters in general. The historical data
was selected in a sparse grid over the interval to have a chance of finding
a good model for the missing dynamics.

While in this work, the cluster was only used for recording real data
for the experiments, and all training and verification was done offline us-
ing the recorded data. This is not a restriction of the method in general,
but was more convenient for experimentation. In Chapter 8 we show that
the corresponding methods transfer well from offline evaluation to the live
application.

The training is done using the SciML (Scientific Machine Learning)
ecosystem in Julia, which has differential equation (DE) solvers that sup-
port automatic differentiation. This means that defining functions such as
(9.4) which depend on the solution of a DE, and then using automatic differ-
entiation to calculate the gradient of the loss with respect to the parameters,
is possible. The NN optimization is done using the Adam algorithm, a stan-
dard first order method commonly used in deep learning. All code is publicly

153

Chapter 9. Improving Microservice Models

available on GitHub1.

Evaluating Model Designs
We compare the different extensions to the fluid model, presented in Sec-
tion 9.2, to see how imposing bias on the NN affects the learning speed as
well as the accuracy of the learned model. The objective is to capture the
dynamics of the system better than the fluid model, and to be able to predict
the system dynamics for a wider range of parameters than the fluid model
was trained on. We have the metric defined in (9.4), which evaluates the
prediction of the model on the training data D defined above, consisting of
a range values for different load balancing parameters p. We also show the
performance of the fluid model by itself for comparison, as well as a purely
NN based model using the same amount of states in the UDE as for the
fluid model.

For all models involving an NN, the networks are densely connected with
three hidden layers of 20 units each, and exponential linear units for acti-
vation. While standard model has pSp outputs with linear activation from
the NN, this is where the other models impose restrictions. The flow conser-
vation model also has pSp outputs, but adds an additional layer subtracting
the mean according to (9.5). The network using the structure of fluid model
flows has pWp outputs, which are then used to calculate the final output as
described in Section 9.2.

The different models are first evaluated on how the training loss evolves
over time according to (9.4), and is shown in Figure 9.2. Each loss curve
is an average over 5 trials with different seeds, though the 5 seeds are the
same for all models.

The noisy training is likely due to the gradient flowing through the
solution of the ODE, where a small change of the parameters might have a
large effect on the solution, but the size of the gradient steps are based on
the parameter space and not the solution space.

The NN model had some problems learning the dynamics and would
sometimes produce an unstable system, sometimes crash the ODE solver, or
not finding a good relationship between the dynamics and the load balancing
parameter p, as can be seen in Figure 9.3. If trained for even longer and
with larger networks, the NN model did improve the fit, though showing a
larger tendency to overfit to data instead of capturing the dynamics.

Turning to the models that extend the fluid model, we see that they all
start around the same loss as the fluid model by itself, and then improve
from there. While F+NN and F+NNmean show similar performance, F+NNW
is able to improve the loss significantly faster, and also reaches a lower loss
than the other two.

1 https://github.com/albheim/IFAC2023_code/tree/thesis

154

https://github.com/albheim/IFAC2023_code/tree/thesis

9.3 Evaluating NN based Model Extensions

0 100 200 300 400 500
10−5

10−3

10−1

101

Iterations

J C

Training loss for xC

F+NNmean F+NN
NN F+NNW

F

Figure 9.2 Training loss for the different models defined in Section 9.2,
and the loss of the fluid model as reference.

To make sure this was consistent we ran additional experiments, both
for larger networks and more training epochs. The inductive bias of both
fluid model and constraints on the NN output still seems to be good, and
significantly improves both sample efficiency and final loss for the time-
horizons we trained over. In general, increasing the size of the networks did
improve the models a little, though it also increased the training time by
quite a lot. By training time we mean wall time per training step, and we do
expect that this scales poorly with size since we currently use forward mode
automatic differentiation, which is not very efficient for large networks. The
sample efficiency might actually be slightly better for the larger NNs, up to
some limit.

The high sample efficiency of F+NNW seems reasonable since we have
embedded the flow structure already, so the NN does not need to learn
that, which likely provides a loss landscape that is easier to navigate. That
it also has similar, or slightly better, performance than F+NN shows that
the constraints are not restricting the model too much.

As the F+NNmean model performs similar to F+NN, we can conclude
that the mean constraints are likely not restrictive enough to provide any
additional benefit to the model.

Seeing this, we will evaluate the performance in more detail using only
F+NNW out of the extended models, and keeping both NN and F to compare
against.

155

Chapter 9. Improving Microservice Models

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

3

4

5

p

∑
x∗

Total requests in application, real λ

data F
NN F+NNW

Figure 9.3 Predicted number of requests in the application using recorded
λ for each evaluated p. Using the real λ allows for a better comparison of
how well we fit the model dynamics instead of estimating the predictive
capability on the stochastic workload. Given that F+NNW seems to model
the real data well, the model seems to have captured the dynamics well.

Evaluating Performance Metric Predictions
To start with, we look at how well the extended model predicts the total
requests in the application by supplying the λ recorded for each p, see
Figure 9.3. Basing the predictions on the real λ for each p makes for more
accurate predictions, where the model can capture the actual dynamics of
the application instead of noise from the input data.

The fluid model captures the real data well around p = 0.6 where it was
trained, though as we move further away by updating p and λ in the model,
we see the prediction accuracy decline. The NN model does not do too well,
and seems to not have captured much of the dynamics in relation to p. The
extended model is a lot more accurate and actually matches the data quite
well, though we still see some artifacts, e.g., at p = 0.95 where the data
decrease but the models increase. Since this can also be seen in the fluid
model, it is likely an artifact from building upon it.

A use-case for these improvements is to find the load balancing param-
eters that optimize a cost function for the distributed application, as done
in Chapter 8. We use the same cost function as was used for the offline
experiments there, and evaluate the performance of the different models in
Figure 9.4.

J(p) =
{

Cφφα (x∗(λ, p)) if φα > φ lim

CT x∗
Q (λ, p) otherwise

(9.6)

156

9.3 Evaluating NN based Model Extensions

In Figure 9.4 we evaluate the fluid model, the NN model, and the
F+NNW model. They are evaluated on the predicted request population, the
predicted response time percentile and the predicted cost, and compared
to the real data. The requests are based on a Poisson process, and the
load balancer is random, so the real data show some stochastic behavior
that the model does not predict. This is mainly from λ not being known
for the values we predict, and instead estimated based on the most recent
data, here being the arrival data recorded for p = 0.6. We can clearly
see this difference when comparing the predictions for the total requests in
Figure 9.3, using the individual estimates of λ for each p, and Figure 9.4(a),
using the λ estimated for p = 0.6.

To estimate the cost function well the response time percentile plays
a big role, as crossing it results in the cost function changing. As seen in
Figure 9.4(b), neither the fluid model nor the NN model predicts crossing
the response time threshold for low p, resulting in Figure 9.4(c) predicting
a minimal cost for p = 0. This is the reason we retrained the model between
each small change in p in Chapter 8, as predicting outside the training
data could not be done reliably, and might push the system to a state
where the constraints are broken. Collecting enough data to fit the fluid
model takes at least a few minutes, so this method adds a large overhead to
the optimization process. The extended fluid model F+NNW can, however,
correctly predict crossing the response time threshold, and thus identifies a
minimal cost that is similar to the real data. This allows for optimizing the
control parameters over multiple steps without retraining the model, while
still maintaining a good prediction accuracy.

Evaluating Control
To visualize this in a control scenario, Figure 9.5 shows how the control
parameter is optimized using the model prediction. Using the model from
Figure 9.4, we run gradient descent starting at p = 0.6 on the predicted
values from the model. Exactly where the real minimum is will vary since
the load is stochastic, but we can see that the found p ends up reasonably
close to an optimal setting for the real data, instead of finding p = 0 as the
fluid model would predict.

Summary and Discussion
By extending the models used in Chapter 8 with a small NN capturing
the missing dynamics, the model’s accuracy outside the current parameter
settings is improved. This allows for updating the control parameters over
more steps without retraining the model, while still maintaining a good
prediction accuracy.

157

Chapter 9. Improving Microservice Models

4

5

∑
x∗

0.4

0.6

0.8

1

φ
.9

5

data F
NN F+NNW
φ lim

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

4

6

8

10

p

J(
p)

(a) Total mean requests in application

(b) 95th percentile of the response time

(c) Cost function

Figure 9.4 Here we see the recorded data in blue, together with predictions
from a few different models. Predictions are based on λ for p = 0.6, and
will thus not match the stochasticity of the varying load as was done in
Figure 9.3. From the top we have the total number of requests, the 95th
percentile response time and the cost function.

158

9.3 Evaluating NN based Model Extensions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

6

8

10

p

J(
p)

Control parameter optimization

data
F+NNW

optimization path

Figure 9.5 Gradient descent on p based on the loss of the trained F+NNW
model. Starting at p = 0.6, it steps towards the minimum of the estimated
loss. While it does overshoot the minimum a bit, it turns back and ends up
at p = 0.33.

The act of embedding an NN in a DE can be seen as a type of inductive
bias for the NN, and we also introduce additional ways of introducing
inductive bias intro the network structure of the NN to compare with. The
experiments show how the efficiency of training can increase by providing
good inductive biases to the model, and how these models can perform
better when it comes to capture correct dynamics.

Using the improved models, we do see that the control parameters can
be more reliably optimized over multiple steps, ending up close to the actual
optimal value with a single trained model. The fluid model would instead
require many smaller steps where new data was collected and trained on
in-between, resulting in slower convergence to good control parameters.

The method itself is more general than the specific use-case presented
here, and both model improvement and control could similarly be done for
a wide variety of systems that can be modelled using DEs.

159

10
Thesis Summary

This thesis has investigated the use of learning-based methods for control of
datacenters and cloud infrastructure. The emphasis has been on reinforce-
ment learning as a general framework for learning control policies, and how
to approach the subject considering the many challenges that arise when
applying RL to anything but small toy problems. In particular the thesis
has presented the following contributions in each chapter.

• In Chapter 5 we apply a holistic strategy, controlling both cooling
and load balancing using an RL agent, in a simulated datacenter. We
show that the agent can learn to combine the control of both systems,
and that it can improve on the PUE compared to a standard control
system.

• In Chapter 6 we continue with context aware cooling control of a
datacenter using RL, showing how the adaptive nature of RL can be
beneficial in a changing environment.

• In Chapter 7 we show how microservice applications can benefit from
proactive control, and how to design and implement an RL agent that
can learn both an implicit representation of the service chains, and
how to use that information to scale proactively.

• In Chapter 8 we apply automatic differentiation over a microservice
fluid model to optimize load balancing parameters in a cloud applica-
tion for some arbitrary costs and constraints.

• In Chapter 9 we look at improving an existing model by embedding
NNs in the underlying ODE. We show how imposing structure on the
NN can give additional benefits, and how the improved model can
provide faster convergence when used for learning control policies.

160

10.1 Discussion

10.1 Discussion
While we initially were optimistic about the potential of deep RL, trying to
leave as much as possible to the agent to learn, we quickly realized that
there are several practical complications with this approach. One problem
is that RL is not sample efficient. Implementing the agent using black-
box methods, while also trying to extend the context for the agent, quickly
leads to a situation where the agent needs large volumes of data to learn
anything. A second problem is that when the agent does learn, and performs
well on average according to the given reward, it is often not robust and can
randomly fail in ways that are difficult to predict. These two problems are
related, since the agent needs to explore to learn, and the more it explores,
the more likely it is to fail. Complex environments also present problems
where, besides being more difficult to learn, they also make it harder for
the one implementing the algorithm to evaluate what is going on and what
is not working. As RL typically requires a lot of tuning and tweaking, this
process is made more complicated when there is less insight into why and
how certain things are happening.

With these problems in mind, we looked for ways of improving the
agent’s ability to learn. We did this by either applying common tricks as
discussed in Chapter 4, or by embedding more information into the policy
and the learning process. We explored different ways of embedding useful
information, e.g., by imposing structure on the NN that makes up the policy,
or by manually designing state transformations to provide more useful
information. Both these approaches make use of our knowledge about the
environment to reduce the load on the agent and the learning process. We
also applied models as a means of providing more direct policy updates,
aiding the learning process by providing more informative gradients.

Weaknesses and potential criticism. While we do believe that the meth-
ods presented in this thesis are interesting and useful, there are certainly
many things that we might have done differently today with the knowledge
we have now. Time and resource constraints have also limited what we have
been able to do, as RL is a computationally intensive field, and all possible
axes to explore create a combinatorial explosion of possible experiments.

We have shown that the RL methods can learn for the given objectives,
often also outperforming some standard methods. However, one can argue
that using the reward as a metric is unfair when one of the methods are
explicitly optimizing for the reward. While we could come up with a different
metric to compare the performance, that seems a bit unfair in the other
direction, since part of the appeal of RL is that it can learn to optimize for
arbitrary metrics as long as they can be expressed as a reward.

While there are other state-of-the-art RL methods published for similar

161

Chapter 10. Thesis Summary

tasks, we mostly compare to simpler methods that are more standard in
industry. One motivation for this is that it is not easy to make the compari-
son meaningful. For one, there is no real consensus on standard benchmark
problems or datasets, making it difficult to directly compare one method to
another. Using an agent that is not suited for the problem is not interesting,
since it is unlikely to perform well, making for an unfair comparison that
does not really say much. But when adapting an RL agent to a different
problem, it can be unclear how much of the performance is due to the orig-
inal agent and how much is due to adapting the agent well. The specific
method from literature does not always make their code publicly available,
and while the method might be described well, without the code there are of-
ten some implementation details that are not well-defined. So with slightly
varying environments and objectives, and not always fully defined agents,
it can be difficult to do a meaningful comparison. We saw more benefit in
comparing to simpler methods that are standard in industry, providing a
more stable baseline with a clear interpretation.

Some of our experiments could have benefitted from counterfactuals, e.g.,
what would have happened if we had not used a larger context for the RL
agent. In some cases it was simply that we were focused on other objectives,
while at other times it was not obvious how to do create a comparison that
was fair and meaningful. For example, in Chapter 6 it would have been
interesting to provide a comparison on how the agent performed without
the larger context, but we were focused on the improvement compared to
the baseline agents.

The problem of RL being opaque and compute-bound also forced us
into iterative development. We repeatedly make small changes to the agent
and train it, leaving us with large volumes of data that are not always
comparable. While we have data convincing us that the methods work, we
could have put more effort into making a convincing presentation of the
results. Training an RL agent can generate very different policies, and it
can be beneficial to present the results from multiple agents trained under
slightly different circumstances, e.g., with different random seeds. While we
did this in some experiments, presenting data from multiple agents can be
difficult to do in a clear and concise way. Showing an average over many runs
will likely show a much smoother learning experience, making the agent
seem more stable than it actually is. And showing variance or individual
runs can quickly become cluttered and hard to interpret when comparing
multiple methods. We tend to show a single run, and try to explain the
results based on our understanding of the agent and the environment. We
also provide code to allow anyone to reproduce the results and draw their
own conclusions.

Scalability is also a problem we could have addressed better, as it is
not clear how well the methods used would scale to larger systems. For

162

10.2 Future Work

example, we noted the increase in difficulty when moving from the smaller
environment in Chapter 5 to the larger one in Chapter 6, not only from the
larger scale but also from the increased complexity. Here we observed the
benefit of hand-crafted features that reduce the size of the state. Reducing
the complexity of the action space by removing the load balancing also had a
large effect on the learning efficiency. Even though we did draft some ideas
for how to create a more modular approach to learning in large systems, it
was not further explored for this thesis.

10.2 Future Work
In this section we discuss some possible directions for future work. Apart
from addressing the weaknesses mentioned above, there are also many
other interesting topics that could be explored.

When it comes to deep RL methods, one of our main problems has been
that neither the training process nor the final agent is very robust, and
it is hard to know when something will fail unpredictably. As such, some
methods mentioned in Section 3.5 could be of interest for a safer and more
robust learning experience.

Another problem with deep RL is the lack of interpretability and guar-
antees on the policy. One possible approach to counter this is to create a
parameterization of the policy function that is easier to understand and an-
alyze. The work in [Lawrence et al., 2023] is an example of this, where the
authors use the Youla-Kučera parameterization to refine the search space
to be only stable policies, and optimize over them using RL.

Below we present a few interesting directions for future work connected
to the different chapters.

Combining cooling and IT control in a DC. We still believe there
can be a benefit to control cooling and load balancing together as done in
Chapter 5, as these two systems do affect each other. Finding a method
to control both aspects in a way that is scalable, and does not only result
in the two parts creating noise for each other, could prove to be useful.
Hierarchical RL could be interesting for this, allowing for some separation
of concerns while still having a holistic top-level view.

Context aware cooling control in a DC. While we do improve on the
target objective in Chapter 6, using an RL agent that is continuously learn-
ing and is aware of the IT load, this might not be the most interesting
problem to solve. From discussions with industrial partners, one key fac-
tor that has been brought up is long term stability and autonomy. While
autonomy could be achieved through continuous learning, stability is not
really what RL is known for. With this in mind, it would be interesting to

163

Chapter 10. Thesis Summary

look into robustness in RL, trying methods that create safer online learning
and more robust policies. It would also be interesting to evaluate different
methods on real world systems over longer periods of time, as the results
from our short simulations might not be representative of the real world.

Proactive scaling of microservices. Similar to the previous chapters,
the performance in Chapter 7 is good but rather stochastic, and it would be
interesting to see if it is possible to create more robust policies. Another area
we wanted to investigate was how to make the agent scale better to larger
systems. One approach for better scaling is to make it modular, e.g., using
a hierarchical RL approach. Another idea would be to assume the service
graph can be extracted from system logs as is considered in Chapter 8,
and use graph neural networks to process inputs from the extracted service
graph in a more structured way. This would reduce the complexity of the
problem for the agent, and thus scale better to larger systems.

Optimizing microservice load balancing parameters. The load bal-
ancing example in Chapter 8 was chosen to provide a simple model where
the control variables were straightforward to understand, and which we
could validate on a real system. However, the same method could equally
well be used to optimize other control variables in a microservice applica-
tion, e.g., the number of replicas for a service, as long as these variables
can be represented in the model. The same method could also be used to
optimize more complex controllers than a simple random load balancer, e.g.,
the parameters of a PID controller, or the weights of an NN-based policy.

One problem in Chapter 8 is that we only trust the model to make small
gradient updates to the load balancing parameters between each update of
the model. This makes for slow but safe updates, but it does not scale very
well as the system grows. One approach could be to update the model more
frequently, allowing for smaller steps but more often. Another solution is to
make a better model that we can trust to take larger steps, and is part of
what we attempt to do in Chapter 9.

Embedding NNs in an existing model. The techniques presented in
Chapter 9 show how the efficiency and performance of NNs can be improved
by providing part of the solution, or by imposing structural knowledge from
the solution onto the NNs. One potential extension of these ideas could
be to apply the same methods to a controller, where a known controller
structure is extended with a small NN to further optimize the reward in
an RL setting. There are also techniques that constrain the NN to be,
e.g., Lipschitz continuous, which could provide further tools to reduce the
variability and instability of an RL loop involving NNs, and maybe even
provide some guarantees on the performance of the controller.

164

Bibliography

Abadi, M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Cor-
rado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Leven-
berg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J.
Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V.
Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng (2016). TensorFlow: Large-Scale Machine Learning
on Heterogeneous Distributed Systems. doi: 10.48550/arXiv.1603.04467.
preprint.

Ahmad, M., S. Duan, A. Aboulnaga, and S. Babu (2011). “Predicting com-
pletion times of batch query workloads using interaction-aware models
and simulation”. In: Proceedings of the 14th International Conference on
Extending Database Technology - EDBT/ICDT ’11. ACM Press, Uppsala,
Sweden, p. 449. doi: 10.1145/1951365.1951419.

Alvarez, V. M. M., R. Roşca, and C. G. Fălcuţescu (2020). “DyNODE: Neural
Ordinary Differential Equations for Dynamics Modeling in Continuous
Control”. arXiv e-prints, arXiv–2009. arXiv: 2009.04278 [cs, eess, stat].

Amari, S. (1998). “Natural Gradient Works Efficiently in Learning”. Neural
Computation 10:2, pp. 251–276. doi: 10.1162/089976698300017746.

Andrychowicz, M., A. Raichuk, P. Stańczyk, M. Orsini, S. Girgin, R.
Marinier, L. Hussenot, M. Geist, O. Pietquin, M. Michalski, S. Gelly, and
O. Bachem (2020). What Matters In On-Policy Reinforcement Learning?
A Large-Scale Empirical Study. arXiv: 2006.05990 [cs, stat]. preprint.

Anselmi, J. and G. Casale (2013). “Heavy-traffic revenue maximization in
parallel multiclass queues”. Performance Evaluation 70:10, pp. 806–821.
doi: 10.1016/j.peva.2013.08.008.

Ardagna, D., G. Casale, M. Ciavotta, J. F. Pérez, and W. Wang (2014).
“Quality-of-service in cloud computing: modeling techniques and their
applications”. Journal of Internet Services and Applications 5:1, p. 11.
doi: 10.1186/s13174-014-0011-3.

165

https://doi.org/10.48550/arXiv.1603.04467
https://doi.org/10.1145/1951365.1951419
https://arxiv.org/abs/2009.04278
https://doi.org/10.1162/089976698300017746
https://arxiv.org/abs/2006.05990
https://doi.org/10.1016/j.peva.2013.08.008
https://doi.org/10.1186/s13174-014-0011-3

Bibliography

ASHRAE TC9.9 (2016). Data Center Power Equipment Thermal Guide-
lines and Best Practices. url: https://www.ashrae.org/File%20Library/
Technical%20Resources/Bookstore/ASHRAE_TC0909_Power_White_Paper_22_June_
2016_REVISED.pdf (visited on 2023-05-22).

Asmussen, S., O. Nerman, and M. Olsson (1996). “Fitting phase-type distri-
butions via the EM algorithm”. Scandinavian J. Statistics 23:4, pp. 419–
441. issn: 03036898, 14679469. JSTOR: 4616418.

Åström, K. (1965). “Optimal control of Markov processes with incomplete
state information”. Journal of Mathematical Analysis and Applications
10:1, pp. 174–205. doi: 10.1016/0022-247X(65)90154-X.

Åström, K. J. and B. Wittenmark (2008). Adaptive Control: Second Edition.
Dover publications. isbn: 978-0-486-46278-3.

Azar, Y., A. Z. Broder, A. R. Karlin, and E. Upfal (1994). “Balanced alloca-
tions”. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on
Theory of Computing, pp. 593–602.

Baek, J.-Y., G. Kaddoum, S. Garg, K. Kaur, and V. Gravel (2019). “Manag-
ing Fog Networks using Reinforcement Learning Based Load Balancing
Algorithm”. In: 2019 IEEE Wireless Communications and Networking
Conference (WCNC), pp. 1–7. doi: 10.1109/WCNC.2019.8885745.

Bagge Carlson, F. (2018). Hyperopt.jl : Hyperparameter optimization in Ju-
lia. github. url: https://github.com/baggepinnen/Hyperopt.jl.

Balter, M. (2013). Performance Modeling and Design of Computer Systems
: Queueing Theory in Action. Cambridge University Press, Cambridge.
isbn: 978-1-107-02750-3.

Barrett, E., E. Howley, and J. Duggan (2013). “Applying reinforcement learn-
ing towards automating resource allocation and application scalability
in the cloud”. Concurrency and Computation: Practice and Experience
25:12, pp. 1656–1674. doi: 10.1002/cpe.2864.

Barroso, L. A., U. Hölzle, and P. Ranganathan (2019). The Datacenter
as a Computer: Designing Warehouse-Scale Machines, Third Edition.
Springer Nature. doi: 10.1007/978-3-031-01761-2.

Bellman, R. (1954). “The theory of dynamic programming”. Bulletin of the
American Mathematical Society 60:6, pp. 503–515. doi: 10.1090/S0002-
9904-1954-09848-8.

Bellman, R. (1957). “A Markovian Decision Process”. Journal of Mathemat-
ics and Mechanics 6:5, pp. 679–684. issn: 0095-9057.

Bengio, Y. (2009). “Learning Deep Architectures for AI”. Foundations and
Trends® in Machine Learning 2:1, pp. 1–127. doi: 10.1561/2200000006.

166

https://www.ashrae.org/File%20Library/Technical%20Resources/Bookstore/ASHRAE_TC0909_Power_White_Paper_22_June_2016_REVISED.pdf
https://www.ashrae.org/File%20Library/Technical%20Resources/Bookstore/ASHRAE_TC0909_Power_White_Paper_22_June_2016_REVISED.pdf
https://www.ashrae.org/File%20Library/Technical%20Resources/Bookstore/ASHRAE_TC0909_Power_White_Paper_22_June_2016_REVISED.pdf
http://www.jstor.org/stable/4616418
https://doi.org/10.1016/0022-247X(65)90154-X
https://doi.org/10.1109/WCNC.2019.8885745
https://github.com/baggepinnen/Hyperopt.jl
https://doi.org/10.1002/cpe.2864
https://doi.org/10.1007/978-3-031-01761-2
https://doi.org/10.1090/S0002-9904-1954-09848-8
https://doi.org/10.1090/S0002-9904-1954-09848-8
https://doi.org/10.1561/2200000006

Bibliography

Bezanson, J., A. Edelman, S. Karpinski, and V. B. Shah (2017). “Julia: A
Fresh Approach to Numerical Computing”. SIAM Review 59:1, pp. 65–
98. doi: 10.1137/141000671.

Bibal Benifa, J. V. and D. Dejey (2019). “RLPAS: Reinforcement Learning-
based Proactive Auto-Scaler for Resource Provisioning in Cloud Envi-
ronment”. Mobile Networks and Applications 24:4, pp. 1348–1363. doi:
10.1007/s11036-018-0996-0.

Bitsakos, C., I. Konstantinou, and N. Koziris (2018). “DERP: A Deep Re-
inforcement Learning Cloud System for Elastic Resource Provisioning”.
In: 2018 IEEE International Conference on Cloud Computing Technology
and Science (CloudCom), pp. 21–29. doi: 10.1109/CloudCom2018.2018.00020.

Bolch, G., S. Greiner, H. de Meer, and K. S. Trivedi (2006). Queueing
Networks and Markov Chains. John Wiley & Sons, Inc., Hoboken, N.J.
doi: 10.1002/0471791571.

Borgetto, D., M. Maurer, G. Da-Costa, J.-M. Pierson, and I. Brandic (2012).
“Energy-efficient and SLA-aware management of IaaS clouds”. In: Pro-
ceedings of the 3rd International Conference on Future Energy Systems:
Where Energy, Computing and Communication Meet, pp. 1–10.

Borst, S. C. (1995). “Optimal probabilistic allocation of customer types
to servers”. ACM SIGMETRICS Performance Evaluation Review 23:1,
pp. 116–125.

Bottou, L., F. E. Curtis, and J. Nocedal (2018). “Optimization Methods for
Large-Scale Machine Learning”. SIAM Review 60:2, pp. 223–311. doi:
10.1137/16M1080173.

Bradbury, J., R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin,
G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang
(2018). JAX: composable transformations of Python+NumPy programs.
Version 0.3.13. url: http://github.com/google/jax.

Brady, G. A., N. Kapur, J. L. Summers, and H. M. Thompson (2013). “A case
study and critical assessment in calculating power usage effectiveness
for a data centre”. Energy Conversion and Management 76, pp. 155–161.
doi: 10.1016/j.enconman.2013.07.035.

Bramson, M., Y. Lu, and B. Prabhakar (2010). “Randomized load balancing
with general service time distributions”. In: SIGMETRICS ’10. Associ-
ation for Computing Machinery, New York, NY, USA, pp. 275–286. doi:
10.1145/1811039.1811071.

Brockman, G., V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba (2016). OpenAI Gym. arXiv: 1606.01540 [cs]. preprint.

167

https://doi.org/10.1137/141000671
https://doi.org/10.1007/s11036-018-0996-0
https://doi.org/10.1109/CloudCom2018.2018.00020
https://doi.org/10.1002/0471791571
https://doi.org/10.1137/16M1080173
http://github.com/google/jax
https://doi.org/10.1016/j.enconman.2013.07.035
https://doi.org/10.1145/1811039.1811071
https://arxiv.org/abs/1606.01540

Bibliography

Brunton, S. L., J. L. Proctor, and J. N. Kutz (2016). “Discovering governing
equations from data by sparse identification of nonlinear dynamical sys-
tems”. Proceedings of the national academy of sciences 113:15, pp. 3932–
3937.

Bu, X., J. Rao, and C.-Z. Xu (2009). “A Reinforcement Learning Approach to
Online Web Systems Auto-configuration”. In: 2009 29th IEEE Interna-
tional Conference on Distributed Computing Systems. IEEE, Montreal,
Quebec, Canada, pp. 2–11. doi: 10.1109/ICDCS.2009.76.

Buckingham, E. (1914). “On physically similar systems’ illustrations of the
use of dimensional equations”. Physical Review 4:4, pp. 345–376. doi:
10.1103/physrev.4.345.

Cerny, T., M. J. Donahoo, and M. Trnka (2018). “Contextual understand-
ing of microservice architecture: Current and future directions”. ACM
SIGAPP Applied Computing Review 17:4, pp. 29–45. doi: 10.1145/3183628.
3183631.

Chen, T. Q., Y. Rubanova, J. Bettencourt, and D. Duvenaud (2018). “Neu-
ral ordinary differential equations”. CoRR abs/1806.07366. arXiv: 1806.
07366.

Cheng, M., J. Li, and S. Nazarian (2018). “DRL-cloud: Deep reinforcement
learning-based resource provisioning and task scheduling for cloud ser-
vice providers”. In: 2018 23rd Asia and South Pacific Design Automation
Conference (ASP-DAC), pp. 129–134. doi: 10.1109/ASPDAC.2018.8297294.

Chi, C., K. Ji, A. Marahatta, P. Song, F. Zhang, and Z. Liu (2020). “Jointly
Optimizing the IT and Cooling Systems for Data Center Energy Effi-
ciency based on Multi-Agent Deep Reinforcement Learning”. In: Pro-
ceedings of the Eleventh ACM International Conference on Future En-
ergy Systems. ACM, Virtual Event Australia, pp. 489–495. doi: 10.1145/
3396851.3402658.

Christodoulou, P. (2019). Soft Actor-Critic for Discrete Action Settings. doi:
10.48550/arXiv.1910.07207. preprint.

Chua, K., R. Calandra, R. McAllister, and S. Levine (2018). Deep Rein-
forcement Learning in a Handful of Trials using Probabilistic Dynamics
Models. doi: 10.48550/arXiv.1805.12114. preprint.

Clevert, D.-A., T. Unterthiner, and S. Hochreiter (2016). Fast and Accurate
Deep Network Learning by Exponential Linear Units (ELUs). Version 5.
doi: 10.48550/arXiv.1511.07289. preprint.

COMSOL (2023). The Boussinesq Approximation. url: https://www.comsol.
com/multiphysics/boussinesq-approximation (visited on 2023-08-08).

168

https://doi.org/10.1109/ICDCS.2009.76
https://doi.org/10.1103/physrev.4.345
https://doi.org/10.1145/3183628.3183631
https://doi.org/10.1145/3183628.3183631
https://arxiv.org/abs/1806.07366
https://arxiv.org/abs/1806.07366
https://doi.org/10.1109/ASPDAC.2018.8297294
https://doi.org/10.1145/3396851.3402658
https://doi.org/10.1145/3396851.3402658
https://doi.org/10.48550/arXiv.1910.07207
https://doi.org/10.48550/arXiv.1805.12114
https://doi.org/10.48550/arXiv.1511.07289
https://www.comsol.com/multiphysics/boussinesq-approximation
https://www.comsol.com/multiphysics/boussinesq-approximation

Bibliography

Crawley, D. B., L. K. Lawrie, F. C. Winkelmann, W. F. Buhl, Y. J. Huang,
C. O. Pedersen, R. K. Strand, R. J. Liesen, D. E. Fisher, M. J. Witte,
and J. Glazer (2001). “EnergyPlus: Creating a new-generation build-
ing energy simulation program”. Energy and Buildings. Special Issue:
BUILDING SIMULATION’99 33:4, pp. 319–331. doi: 10 . 1016 / S0378 -
7788(00)00114-6.

Dann, C., Y. Mansour, M. Mohri, A. Sekhari, and K. Sridharan (2022).
“Guarantees for Epsilon-Greedy Reinforcement Learning with Function
Approximation”. In: Proceedings of the 39th International Conference on
Machine Learning. PMLR, pp. 4666–4689.

Davis, J. (2022). “Uptime Institute Global Data Center Survey 2022”.
Deisenroth, M. P. and C. E. Rasmussen (2011). “PILCO: A Model-Based

and Data-Efficient Approach to Policy Search”. Proceedings of the 28th
International Conference on machine learning (ICML-11), pp. 465–472.

Delbosc, N. (2015). Real-Time Simulation of Indoor Air Flow Using the
Lattice Boltzmann Method on Graphics Processing Unit. PhD thesis.
University of Leeds.

Dong, T., F. Xue, C. Xiao, and J. Li (2020). “Task scheduling based on
deep reinforcement learning in a cloud manufacturing environment”.
Concurrency and Computation: Practice and Experience 32:11, e5654.
doi: 10.1002/cpe.5654.

Dulac-Arnold, G., N. Levine, D. J. Mankowitz, J. Li, C. Paduraru, S. Gowal,
and T. Hester (2021). “Challenges of real-world reinforcement learn-
ing: definitions, benchmarks and analysis”. Machine Learning 110:9,
pp. 2419–2468. doi: 10.1007/s10994-021-05961-4.

Eastham, M. S. P. (1961). “2968. On the Definition of Dual Numbers”. The
Mathematical Gazette 45:353, pp. 232–233. doi: 10.2307/3612794.

Feinberg, V., A. Wan, I. Stoica, M. I. Jordan, J. E. Gonzalez, and S. Levine
(2018). Model-Based Value Estimation for Efficient Model-Free Reinforce-
ment Learning. doi: 10.48550/arXiv.1803.00101. preprint.

Flask (2023). url: https://flask.palletsprojects.com/en/2.3.x/ (visited on
2023-06-30).

Fratta, L., M. Gerla, and L. Kleinrock (1973). “The flow deviation method:
An approach to store-and-forward communication network design”. Net-
works. An International Journal 3:2, pp. 97–133.

Gan, Y., Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno, J. Hu,
B. Ritchken, B. Jackson, K. Hu, M. Pancholi, Y. He, B. Clancy, C. Colen,
F. Wen, C. Leung, S. Wang, L. Zaruvinsky, M. Espinosa, R. Lin, Z. Liu,
J. Padilla, and C. Delimitrou (2019). “An open-source benchmark suite
for microservices and their hardware-software implications for cloud

169

https://doi.org/10.1016/S0378-7788(00)00114-6
https://doi.org/10.1016/S0378-7788(00)00114-6
https://doi.org/10.1002/cpe.5654
https://doi.org/10.1007/s10994-021-05961-4
https://doi.org/10.2307/3612794
https://doi.org/10.48550/arXiv.1803.00101
https://flask.palletsprojects.com/en/2.3.x/

Bibliography

& edge systems”. In: Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems. ASPLOS ’19. Association for Computing Machinery,
Providence, RI, USA, pp. 3–18. doi: 10.1145/3297858.3304013.

Gao, J. (2014). Machine Learning Applications for Data Center Optimization.
url: https://static.googleusercontent.com/media/research.google.com/en/
/pubs/archive/42542.pdf (visited on 2023-05-23).

Garcia-Gabin, W., K. Mishchenko, and E. Berglund (2018). “Cooling Control
of Data Centers Using Linear Quadratic Regulators”. In: 2018 26th
Mediterranean Conference on Control and Automation (MED), pp. 1–6.
doi: 10.1109/MED.2018.8442429.

Garcıa, J. and F. Fernandez (2015). “A Comprehensive Survey on Safe
Reinforcement Learning”. Journal of Machine Learning Research 16:1,
pp. 1437–1480.

Gasparik, A., C. Gamble, and J. Gao (2018). Safety-first AI for autonomous
data center cooling and industrial control. Google. url: https://blog.
google / inside - google / infrastructure / safety - first - ai - autonomous - data -
center-cooling-and-industrial-control/ (visited on 2023-04-27).

Ghobaei-Arani, M., S. Jabbehdari, and M. A. Pourmina (2018). “An au-
tonomic resource provisioning approach for service-based cloud appli-
cations: A hybrid approach”. Future Generation Computer Systems 78,
pp. 191–210. doi: 10.1016/j.future.2017.02.022.

González-García, R., R. Rico-Martìnez, and I. G. Kevrekidis (1998). “Identi-
fication of distributed parameter systems: A neural net based approach”.
Computers & chemical engineering 22, S965–S968.

Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep Learning. MIT Press.
url: http://www.deeplearningbook.org.

Google Trends (2023). url: https://trends.google.com/trends/ (visited on
2023-01-15).

Grondman, I., L. Busoniu, G. A. D. Lopes, and R. Babuska (2012). “A Survey
of Actor-Critic Reinforcement Learning: Standard and Natural Policy
Gradients”. IEEE Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews) 42:6, pp. 1291–1307. doi: 10.1109/TSMCC.
2012.2218595.

Grzes, M. (2017). “Reward Shaping in Episodic Reinforcement Learning”.
ACM.

Gu, S., L. Yang, Y. Du, G. Chen, F. Walter, J. Wang, Y. Yang, and A. Knoll
(2023). A Review of Safe Reinforcement Learning: Methods, Theory and
Applications. doi: 10.48550/arXiv.2205.10330. preprint.

Gunicorn (2023). url: https://gunicorn.org/ (visited on 2023-06-30).

170

https://doi.org/10.1145/3297858.3304013
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42542.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42542.pdf
https://doi.org/10.1109/MED.2018.8442429
https://blog.google/inside-google/infrastructure/safety-first-ai-autonomous-data-center-cooling-and-industrial-control/
https://blog.google/inside-google/infrastructure/safety-first-ai-autonomous-data-center-cooling-and-industrial-control/
https://blog.google/inside-google/infrastructure/safety-first-ai-autonomous-data-center-cooling-and-industrial-control/
https://doi.org/10.1016/j.future.2017.02.022
http://www.deeplearningbook.org
https://trends.google.com/trends/
https://doi.org/10.1109/TSMCC.2012.2218595
https://doi.org/10.1109/TSMCC.2012.2218595
https://doi.org/10.48550/arXiv.2205.10330
https://gunicorn.org/

Bibliography

Guo, X., Y. Lu, and M. S. Squillante (2004). “Optimal probabilistic routing in
distributed parallel queues”. PERFORMANCE EVALUATION REVIEW
32:2, pp. 53–54.

Gupta, V., M. Harchol Balter, K. Sigman, and W. Whitt (2007). “Analysis
of join-the-shortest-queue routing for web server farms”. Performance
Evaluation 64:9, pp. 1062–1081. doi: 10.1016/j.peva.2007.06.012.

Ha, D. and J. Schmidhuber (2018a). Recurrent World Models Facilitate
Policy Evolution. doi: 10.48550/arXiv.1809.01999. preprint.

Ha, D. and J. Schmidhuber (2018b). “World Models”. doi: 10.5281/zenodo.
1207631.

Haarnoja, T., A. Zhou, P. Abbeel, and S. Levine (2018a). “Soft Actor-
Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with
a Stochastic Actor”. arXiv: 1801.01290 [cs, stat].

Haarnoja, T., A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar,
H. Zhu, A. Gupta, P. Abbeel, and S. Levine (2018b). “Soft Actor-Critic
Algorithms and Applications”. arXiv: 1812.05905 [cs, stat].

Hafner, D., J. Pasukonis, J. Ba, and T. Lillicrap (2023). Mastering Diverse
Domains through World Models. doi: 10.48550/arXiv.2301.04104. preprint.

Hasan, M. Z., E. Magana, A. Clemm, L. Tucker, and S. L. D. Gudreddi
(2012). “Integrated and autonomic cloud resource scaling”. In: 2012
IEEE Network Operations and Management Symposium, pp. 1327–1334.
doi: 10.1109/NOMS.2012.6212070.

Hasani, R., M. Lechner, A. Amini, D. Rus, and R. Grosu (2020). Liquid
Time-constant Networks. arXiv: 2006.04439 [cs, stat]. preprint.

HashiCorp (2023). Terraform. Terraform by HashiCorp. url: https://www.
terraform.io/ (visited on 2023-05-19).

He, J., D. Zhou, and Q. Gu (2021). “Uniform-PAC Bounds for Reinforce-
ment Learning with Linear Function Approximation”. In: Advances in
Neural Information Processing Systems. Vol. 34. Curran Associates, Inc.,
pp. 14188–14199.

Healey, C., J. VanGilder, M. Condor, and W. Tian (2018). “Transient data
center temperatures after a primary power outage”. In: Proceedings of
the 17th InterSociety Conference on Thermal and Thermomechanical
Phenomena in Electronic Systems, ITherm 2018, pp. 865–870. doi: 10.
1109/ITHERM.2018.8419583.

Heinonen, M., C. Yildiz, H. Mannerström, J. Intosalmi, and H. Lähdesmäki
(2018). “Learning unknown ODE models with Gaussian processes”. In:
Dy, J. et al. (Eds.). Proceedings of the 35th International Conference on
Machine Learning. Vol. 80. Proceedings of Machine Learning Research.
PMLR, pp. 1959–1968.

171

https://doi.org/10.1016/j.peva.2007.06.012
https://doi.org/10.48550/arXiv.1809.01999
https://doi.org/10.5281/zenodo.1207631
https://doi.org/10.5281/zenodo.1207631
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1812.05905
https://doi.org/10.48550/arXiv.2301.04104
https://doi.org/10.1109/NOMS.2012.6212070
https://arxiv.org/abs/2006.04439
https://www.terraform.io/
https://www.terraform.io/
https://doi.org/10.1109/ITHERM.2018.8419583
https://doi.org/10.1109/ITHERM.2018.8419583

Bibliography

Hewing, L., K. P. Wabersich, M. Menner, and M. N. Zeilinger (2020).
“Learning-Based Model Predictive Control: Toward Safe Learning in
Control”. Annual Review of Control, Robotics, and Autonomous Systems
3:1, pp. 269–296. doi: 10.1146/annurev-control-090419-075625.

Hordijk, A. and J. A. Loeve (2000). “Optimal static customer routing in a
closed queuing network”. Statistica Neerlandica 54:2, pp. 148–159.

Hornik, K., M. Stinchcombe, and H. White (1989). “Multilayer feedforward
networks are universal approximators”. Neural Networks 2:5, pp. 359–
366. doi: 10.1016/0893-6080(89)90020-8.

Hu, Y., W. Wang, H. Jia, Y. Wang, Y. Chen, J. Hao, F. Wu, and C. Fan
(2020). “Learning to Utilize Shaping Rewards: A New Approach of Re-
ward Shaping”. Advances in Neural Information Processing Systems 33,
pp. 15931–15941.

Hua, T., J. Wan, S. Jaffry, Z. Rasheed, L. Li, and Z. Ma (2021). “Comparison
of Deep Reinforcement Learning Algorithms in Data Center Cooling
Management: A Case Study”. In: 2021 IEEE International Conference
on Systems, Man, and Cybernetics (SMC), pp. 392–397. doi: 10.1109/
SMC52423.2021.9659100.

Hutsebaut-Buysse, M., K. Mets, and S. Latré (2022). “Hierarchical Rein-
forcement Learning: A Survey and Open Research Challenges”. Ma-
chine Learning and Knowledge Extraction 4:1 (1), pp. 172–221. doi:
10.3390/make4010009.

Hutter, F., L. Kotthoff, and J. Vanschoren, (Eds.) (2019). Automated Machine
Learning: Methods, Systems, Challenges. The Springer Series on Chal-
lenges in Machine Learning. Springer International Publishing, Cham.
doi: 10.1007/978-3-030-05318-5.

Incerto, E., M. Tribastone, and C. Trubiani (2017). “Software performance
self-adaptation through efficient model predictive control”. In: 2017 32nd
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), pp. 485–496. doi: 10.1109/ASE.2017.8115660.

Incerto, E., M. Tribastone, and C. Trubiani (2018). “Combined vertical and
horizontal autoscaling through model predictive control”. In: Aldinucci,
M. et al. (Eds.). Euro-Par 2018: Parallel Processing. Springer Interna-
tional Publishing, Cham, pp. 147–159. isbn: 978-3-319-96983-1.

Innes, M., E. Saba, K. Fischer, D. Gandhi, M. C. Rudilosso, N. M. Joy, T.
Karmali, A. Pal, and V. Shah (2018). Fashionable Modelling with Flux.
doi: 10.48550/arXiv.1811.01457. preprint.

Istio (2023). Istio. url: https://istio.io/ (visited on 2023-05-23).
Kaddour, J., A. Lynch, Q. Liu, M. J. Kusner, and R. Silva (2022). Causal

Machine Learning: A Survey and Open Problems. arXiv: 2206.15475 [cs,
stat]. preprint.

172

https://doi.org/10.1146/annurev-control-090419-075625
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1109/SMC52423.2021.9659100
https://doi.org/10.1109/SMC52423.2021.9659100
https://doi.org/10.3390/make4010009
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.1109/ASE.2017.8115660
https://doi.org/10.48550/arXiv.1811.01457
https://istio.io/
https://arxiv.org/abs/2206.15475
https://arxiv.org/abs/2206.15475

Bibliography

Kakade, S. M. (2001). “A Natural Policy Gradient”. In: Advances in Neural
Information Processing Systems. Vol. 14. MIT Press.

Kamiya, G. and O. Kvarnström (2019). Data Centres and Energy – from
Global Headlines to Local Headaches? IEA. url: https://www.iea.org/
commentaries/data- centres- and- energy- from- global- headlines- to- local-
headaches (visited on 2023-04-19).

Kamthe, S. and M. Deisenroth (2018). “Data-Efficient Reinforcement Learn-
ing with Probabilistic Model Predictive Control”. In: Proceedings of
the Twenty-First International Conference on Artificial Intelligence and
Statistics. PMLR, pp. 1701–1710.

Kanbar, A. B. and K. Faraj (2022). “Region aware dynamic task scheduling
and resource virtualization for load balancing in IoT–fog multi-cloud
environment”. Future Generation Computer Systems 137, pp. 70–86. doi:
10.1016/j.future.2022.06.005.

Khatri, A. and V. Khatri (2020). Mastering Service Mesh: Enhance, Secure,
and Observe Cloud-Native Applications with Istio, Linkerd, and Consul.
Packt Publishing Ltd. 606 pp. isbn: 978-1-78961-194-6.

Kingma, D. P. and J. Ba (2017). Adam: A Method for Stochastic Optimiza-
tion. doi: 10.48550/arXiv.1412.6980. preprint.

Kiran, M. and M. Ozyildirim (2022). Hyperparameter Tuning for Deep Re-
inforcement Learning Applications. arXiv: 2201.11182 [cs]. preprint.

Kobayashi, H. and M. Gerla (1983). “Optimal routing in closed queuing net-
works”. ACM Transactions on Computer Systems (TOCS) 1:4, pp. 294–
310.

Koot, M. and F. Wijnhoven (2021). “Usage impact on data center electric-
ity needs: A system dynamic forecasting model”. Applied Energy 291,
p. 116798. issn: 0306-2619.

Kubernetes (2023). Kubernetes. url: https://kubernetes.io/ (visited on 2023-
05-19).

Kubernetes HPA (2023). Kubernetes. url: https://kubernetes.io/docs/tasks/
run-application/horizontal-pod-autoscale/ (visited on 2023-05-26).

Kumar, J., R. Goomer, and A. K. Singh (2018). “Long Short Term Memory
Recurrent Neural Network (LSTM-RNN) Based Workload Forecasting
Model For Cloud Datacenters”. Procedia Computer Science. The 6th
International Conference on Smart Computing and Communications
125, pp. 676–682. doi: 10.1016/j.procs.2017.12.087.

Lawrence, N. P., P. D. Loewen, S. Wang, M. G. Forbes, and R. B. Gopaluni
(2023). A modular framework for stabilizing deep reinforcement learning
control. arXiv: 2304.03422 [cs, eess]. preprint.

173

https://www.iea.org/commentaries/data-centres-and-energy-from-global-headlines-to-local-headaches
https://www.iea.org/commentaries/data-centres-and-energy-from-global-headlines-to-local-headaches
https://www.iea.org/commentaries/data-centres-and-energy-from-global-headlines-to-local-headaches
https://doi.org/10.1016/j.future.2022.06.005
https://doi.org/10.48550/arXiv.1412.6980
https://arxiv.org/abs/2201.11182
https://kubernetes.io/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://doi.org/10.1016/j.procs.2017.12.087
https://arxiv.org/abs/2304.03422

Bibliography

Lazic, N., T. Lu, C. Boutilier, M. K. Ryu, E. J. Wong, B. Roy, and G.
Imwalle (2018). “Data Center Cooling using Model-predictive Control”.
In: Proceedings of the Thirty-second Conference on Neural Information
Processing Systems (NeurIPS-18). Montreal, QC, pp. 3818–3827.

Lee, R. and B. Jeng (2011). “Load-balancing tactics in cloud”. In: 2011
International Conference on Cyber-Enabled Distributed Computing and
Knowledge Discovery. IEEE, pp. 447–454.

Leung, J. Y.-T. (2004). Handbook of Scheduling: Algorithms, Models, and
Performance Analysis. CRC Press. 1215 pp. isbn: 978-0-203-48980-2.

Levine, S. and V. Koltun (2013). “Guided Policy Search”. In: Proceedings of
the 30th International Conference on Machine Learning. PMLR, pp. 1–9.

Levine, S., A. Kumar, G. Tucker, and J. Fu (2020). Offline Reinforcement
Learning: Tutorial, Review, and Perspectives on Open Problems. doi:
10.48550/arXiv.2005.01643. preprint.

Li, B. and L. Xia (2015). “A multi-grid reinforcement learning method for en-
ergy conservation and comfort of HVAC in buildings”. In: 2015 IEEE In-
ternational Conference on Automation Science and Engineering (CASE),
pp. 444–449. doi: 10.1109/CoASE.2015.7294119.

Li, Y., Y. Wen, D. Tao, and K. Guan (2020). “Transforming Cooling Op-
timization for Green Data Center via Deep Reinforcement Learning”.
IEEE Transactions on Cybernetics 50:5, pp. 2002–2013. doi: 10.1109/
TCYB.2019.2927410.

Liang, E., R. Liaw, P. Moritz, R. Nishihara, R. Fox, K. Goldberg, J. E.
Gonzalez, M. I. Jordan, and I. Stoica (2018). “RLlib: Abstractions for
Distributed Reinforcement Learning”. In: International Conference on
Machine Learning, pp. 3053–3062. doi: 10.48550/arXiv.1712.09381.

Liaw, R., E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I. Stoica
(2018). Tune: A Research Platform for Distributed Model Selection and
Training. doi: 10.48550/arXiv.1807.05118. preprint.

Liu, D. C. and J. Nocedal (1989). “On the limited memory BFGS method for
large scale optimization”. Mathematical programming 45:1-3, pp. 503–
528.

Liu, Z., Y. Chen, C. Bash, A. Wierman, D. Gmach, Z. Wang, M. Marwah, and
C. Hyser (2012). “Renewable and cooling aware workload management
for sustainable data centers”. In: Proceedings of the 12th ACM SIG-
METRICS/PERFORMANCE Joint International Conference on Mea-
surement and Modeling of Computer Systems. SIGMETRICS ’12. Associ-
ation for Computing Machinery, New York, NY, USA, pp. 175–186. doi:
10.1145/2254756.2254779.

Ljung, L., T. Glad, and A. Hansson (2021). Modeling and Identification of
Dynamic Systems. Studentlitteratur. isbn: 978-91-44-15345-2.

174

https://doi.org/10.48550/arXiv.2005.01643
https://doi.org/10.1109/CoASE.2015.7294119
https://doi.org/10.1109/TCYB.2019.2927410
https://doi.org/10.1109/TCYB.2019.2927410
https://doi.org/10.48550/arXiv.1712.09381
https://doi.org/10.48550/arXiv.1807.05118
https://doi.org/10.1145/2254756.2254779

Bibliography

Long, Z., Y. Lu, X. Ma, and B. Dong (2018). “PDE-Net: Learning PDEs from
data”. In: Dy, J. et al. (Eds.). Proceedings of the 35th International Con-
ference on Machine Learning. Vol. 80. Proceedings of Machine Learning
Research. PMLR, pp. 3208–3216.

Lu, Y., Q. Xie, G. Kliot, A. Geller, J. R. Larus, and A. Greenberg (2011).
“Join-Idle-Queue: A novel load balancing algorithm for dynamically scal-
able web services”. Performance Evaluation 68:11, pp. 1056–1071. doi:
10.1016/j.peva.2011.07.015.

Lundin, L. (2021). Artificial Intelligence for Data Center Power Consumption
Optimisation. MA thesis. Uppsala University.

Mao, H., M. Alizadeh, I. Menache, and S. Kandula (2016). “Resource Man-
agement with Deep Reinforcement Learning”. In: Proceedings of the
15th ACM Workshop on Hot Topics in Networks. ACM, Atlanta GA USA,
pp. 50–56. doi: 10.1145/3005745.3005750.

Mell, P. and T. Grance (2011). The NIST Definition of Cloud Computing.
NIST Special Publication 800-145. National Institute of Standards and
Technology. url: https://doi.org/10.6028/NIST.SP.800-145.

Millnert, V., E. Bini, and J. Eker (2018). “AutoSAC: automatic scaling and
admission control of forwarding graphs”. Annals of Telecommunications
73:3, pp. 193–204. doi: 10.1007/s12243-017-0597-0.

Minsky, M. (1961). “Steps toward Artificial Intelligence”. Proceedings of the
IRE 49:1, pp. 8–30. doi: 10.1109/JRPROC.1961.287775.

Mnih, V., K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller (2013). “Playing Atari with Deep Reinforcement
Learning”. arXiv: 1312.5602.

Mnih, V., K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C.
Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra,
S. Legg, and D. Hassabis (2015). “Human-level control through deep
reinforcement learning”. Nature 518:7540, pp. 529–533. doi: 10.1038/
nature14236.

Moerland, T. M., J. Broekens, A. Plaat, and C. M. Jonker (2022). Model-
based Reinforcement Learning: A Survey. doi: 10.48550/arXiv.2006.16712.
preprint.

Moos, J., K. Hansel, H. Abdulsamad, S. Stark, D. Clever, and J. Peters
(2022). “Robust Reinforcement Learning: A Review of Foundations and
Recent Advances”. Machine Learning and Knowledge Extraction 4:1 (1),
pp. 276–315. doi: 10.3390/make4010013.

Moritz, P., R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Elibol,
Z. Yang, W. Paul, M. I. Jordan, and I. Stoica (2018). “Ray: A Distributed
Framework for Emerging AI Applications”. arXiv: 1712.05889 [cs, stat].

175

https://doi.org/10.1016/j.peva.2011.07.015
https://doi.org/10.1145/3005745.3005750
https://doi.org/10.6028/NIST.SP.800-145
https://doi.org/10.1007/s12243-017-0597-0
https://doi.org/10.1109/JRPROC.1961.287775
https://arxiv.org/abs/1312.5602
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.48550/arXiv.2006.16712
https://doi.org/10.3390/make4010013
https://arxiv.org/abs/1712.05889

Bibliography

Naveen, S. and M. R. Kounte (2019). “Key Technologies and challenges
in IoT Edge Computing”. In: 2019 Third International Conference on I-
SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), pp. 61–65.
doi: 10.1109/I-SMAC47947.2019.9032541.

Ni, J. and X. Bai (2017). “A review of air conditioning energy performance in
data centers”. Renewable and Sustainable Energy Reviews 67, pp. 625–
640. issn: 1364-0321.

OpenStack (2023). OpenStack. url: https://www.openstack.org/ (visited on
2023-05-19).

Paszke, A., S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z.
DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang,
J. Bai, and S. Chintala (2019). PyTorch: An Imperative Style, High-
Performance Deep Learning Library. doi: 10 . 48550 / arXiv . 1912 . 01703.
preprint.

Patterson, M. K. (2008). “The effect of data center temperature on energy
efficiency”. In: 2008 11th Intersociety Conference on Thermal and Ther-
momechanical Phenomena in Electronic Systems, pp. 1167–1174. doi:
10.1109/ITHERM.2008.4544393.

Paya, A. and D. C. Marinescu (2017). “Energy-Aware Load Balancing and
Application Scaling for the Cloud Ecosystem”. IEEE Transactions on
Cloud Computing 5:1, pp. 15–27. doi: 10.1109/TCC.2015.2396059.

Poggio, T., H. Mhaskar, L. Rosasco, B. Miranda, and Q. Liao (2017). Why
and When Can Deep – but Not Shallow – Networks Avoid the Curse of
Dimensionality: a Review. doi: 10.48550/arXiv.1611.00740. preprint.

Polyak, B. T. and A. B. Juditsky (1992). “Acceleration of Stochastic Approxi-
mation by Averaging”. SIAM Journal on Control and Optimization 30:4,
pp. 838–855. doi: 10.1137/0330046.

Prometheus (2023). Prometheus - Monitoring system & time series database.
url: https://prometheus.io/ (visited on 2023-05-24).

Rackauckas, C., Y. Ma, J. Martensen, C. Warner, K. Zubov, R. Supekar, D.
Skinner, and A. J. Ramadhan (2020). “Universal differential equations
for scientific machine learning”. CoRR abs/2001.04385. arXiv: 2001 .
04385.

Rackauckas, C. and Q. Nie (2017). “Differentialequations.jl–a performant
and feature-rich ecosystem for solving differential equations in julia”.
Journal of Open Research Software 5:1, p.15.

Raffin, A., A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann
(2021). “Stable-Baselines3: Reliable Reinforcement Learning Implemen-
tations”. Journal of Machine Learning Research 22:268, pp. 1–8. issn:
1533-7928.

176

https://doi.org/10.1109/I-SMAC47947.2019.9032541
https://www.openstack.org/
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.1109/ITHERM.2008.4544393
https://doi.org/10.1109/TCC.2015.2396059
https://doi.org/10.48550/arXiv.1611.00740
https://doi.org/10.1137/0330046
https://prometheus.io/
https://arxiv.org/abs/2001.04385
https://arxiv.org/abs/2001.04385

Bibliography

Raissi, M. and G. E. Karniadakis (2018). “Hidden physics models: Machine
learning of nonlinear partial differential equations”. Journal of Compu-
tational Physics 357, pp. 125–141.

Rall, L. B. (1981). Automatic Differentiation: Techniques and Applications.
Springer.

Ran, Y., H. Hu, X. Zhou, and Y. Wen (2019). “DeepEE: Joint Optimization of
Job Scheduling and Cooling Control for Data Center Energy Efficiency
Using Deep Reinforcement Learning”. In: 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS), pp. 645–655.
doi: 10.1109/ICDCS.2019.00070.

Red Hat (2023). Ansible. url: https://www.ansible.com (visited on 2023-05-19).
Revels, J., M. Lubin, and T. Papamarkou (2016). “Forward-Mode Automatic

Differentiation in Julia”. arXiv: 1607.07892 [cs].
Rico-Martínez, R., K. Krischer, I. Kevrekidis, M. Kube, and J. Hud-

son (1992). “DISCRETE- vs. CONTINUOUS-TIME NONLINEAR SIG-
NAL PROCESSING OF Cu ELECTRODISSOLUTION DATA”. Chem-
ical Engineering Communications 118:1, pp. 25–48. doi: 10 . 1080 /
00986449208936084.

Rossi, F., M. Nardelli, and V. Cardellini (2019). “Horizontal and Vertical
Scaling of Container-Based Applications Using Reinforcement Learn-
ing”. In: 2019 IEEE 12th International Conference on Cloud Computing
(CLOUD), pp. 329–338. doi: 10.1109/CLOUD.2019.00061.

Różańska, M. and G. Horn (2022). “Proactive Autonomic Cloud Application
Management”. In: 2022 IEEE/ACM 15th International Conference on
Utility and Cloud Computing (UCC), pp. 102–111. doi: 10.1109/UCC56403.
2022.00021.

Rudy, S. H., S. L. Brunton, J. L. Proctor, and J. N. Kutz (2017). “Data-
driven discovery of partial differential equations”. Science advances 3:4,
e1602614.

Ruuskanen, J., T. Berner, K.-E. Årzén, and A. Cervin (2021a). “Improving
the mean-field fluid model of processor sharing queueing networks for
dynamic performance models in cloud computing”. Performance Evalu-
ation 151, p. 102231. doi: 10.1016/j.peva.2021.102231.

Ruuskanen, J. and A. Cervin (2022). “Distributed online extraction of a fluid
model for microservice applications using local tracing data”. In: 2022
IEEE 15th International Conference on Cloud Computing (CLOUD).
IEEE, pp. 179–190.

Ruuskanen, J., H. Peng, A. Åkesson, L. Larsson, and M. Kihl (2021b).
FedApp: a research sandbox for application orchestration in federated
clouds using OpenStack. arXiv: 2109.01480 [cs.DC].

177

https://doi.org/10.1109/ICDCS.2019.00070
https://www.ansible.com
https://arxiv.org/abs/1607.07892
https://doi.org/10.1080/00986449208936084
https://doi.org/10.1080/00986449208936084
https://doi.org/10.1109/CLOUD.2019.00061
https://doi.org/10.1109/UCC56403.2022.00021
https://doi.org/10.1109/UCC56403.2022.00021
https://doi.org/10.1016/j.peva.2021.102231
https://arxiv.org/abs/2109.01480

Bibliography

Schaul, T., G. Ostrovski, I. Kemaev, and D. Borsa (2021). Return-based
Scaling: Yet Another Normalisation Trick for Deep RL. arXiv: 2105.05347
[cs, stat]. preprint.

Schaul, T., J. Quan, I. Antonoglou, and D. Silver (2016). Prioritized Experi-
ence Replay. doi: 10.48550/arXiv.1511.05952. preprint.

Schober, M., D. K. Duvenaud, and P. Hennig (2014). “Probabilistic ODE
solvers with runge-kutta means”. Advances in neural information pro-
cessing systems 27.

Schulman, J., S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel (2017a). Trust
Region Policy Optimization. doi: 10.48550/arXiv.1502.05477. preprint.

Schulman, J., P. Moritz, S. Levine, M. Jordan, and P. Abbeel (2018). High-
Dimensional Continuous Control Using Generalized Advantage Estima-
tion. doi: 10.48550/arXiv.1506.02438. preprint.

Schulman, J., F. Wolski, P. Dhariwal, A. Radford, and O. Klimov (2017b).
Proximal Policy Optimization Algorithms. arXiv: 1707 . 06347 [cs].
preprint.

Shahab Samani, F. and R. Stadler (2022). “Dynamically meeting perfor-
mance objectives for multiple services on a service mesh”. In: 2022 18th
International Conference on Network and Service Management (CNSM).
IEEE, Thessaloniki, Greece, pp. 219–225. doi: 10.23919/CNSM55787.2022.
9965074.

Shahin, A. A. (2016). “Automatic Cloud Resource Scaling Algorithm based
on Long Short-Term Memory Recurrent Neural Network”. International
Journal of Advanced Computer Science and Applications 7:12. doi: 10.
14569/IJACSA.2016.071236.

Sharma, S., S. Singh, and M. Sharma (2008). “Performance Analysis of
Load Balancing Algorithms”. International Journal of Civil and Envi-
ronmental Engineering 2:2, pp. 367–370.

Sharma, S., S. Sharma, and A. Athaiya (2020). “ACTIVATION FUNCTIONS
IN NEURAL NETWORKS”. International Journal of Engineering Ap-
plied Sciences and Technology 04:12, pp. 310–316. doi: 10.33564/IJEAST.
2020.v04i12.054.

Silver, D., A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driess-
che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S.
Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lill-
icrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis (2016).
“Mastering the game of Go with deep neural networks and tree search”.
Nature 529:7587, pp. 484–489. doi: 10.1038/nature16961.

178

https://arxiv.org/abs/2105.05347
https://arxiv.org/abs/2105.05347
https://doi.org/10.48550/arXiv.1511.05952
https://doi.org/10.48550/arXiv.1502.05477
https://doi.org/10.48550/arXiv.1506.02438
https://arxiv.org/abs/1707.06347
https://doi.org/10.23919/CNSM55787.2022.9965074
https://doi.org/10.23919/CNSM55787.2022.9965074
https://doi.org/10.14569/IJACSA.2016.071236
https://doi.org/10.14569/IJACSA.2016.071236
https://doi.org/10.33564/IJEAST.2020.v04i12.054
https://doi.org/10.33564/IJEAST.2020.v04i12.054
https://doi.org/10.1038/nature16961

Bibliography

Sjölund, J. (2018). Real-Time Thermal Flow Predictions for Data Centers :
Using the Lattice Boltzmann Method on Graphics Processing Units for
Predicting Thermal Flow in Data Centers. MA thesis. Luleå University
of Technology.

Sjölund, J., M. Vesterlund, N. Delbosc, A. Khan, and J. Summers (2018).
“Validated Thermal Air Management Simulations of Data Centers Using
Remote Graphics Processing Units”. In: IECON 2018 - 44th Annual
Conference of the IEEE Industrial Electronics Society, pp. 4920–4925.
doi: 10.1109/IECON.2018.8591192.

Skarin, P. (2021). Control over the Cloud: Offloading, Elastic Computing, and
Predictive Control. Department of Automatic Control, Lund University /
Department of Automatic Control, Lund University. isbn: 978-91-8039-
093-4.

SMHI (2021). SMHI - Sveriges meteorologiska och hydrologiska institut.
url: https : / / www . smhi . se / data / meteorologi / ladda - ner - meteorologiska -
observationer#param=airtemperatureInstant, stations=all, stationid=162870
(visited on 2021-09-28).

Spicuglia, S., L. Y. Chen, and W. Binder (2013). “Join the best queue: Reduc-
ing performance variability in heterogeneous systems”. In: 2013 IEEE
Sixth International Conference on Cloud Computing. IEEE, pp. 139–146.

Sukop, M. C. and D. T. Thorne (2006). Lattice Boltzmann Modeling: An In-
troduction for Geoscientists and Engineers. Springer, Berlin, Heidelberg.
doi: 10.1007/978-3-540-27982-2.

Sutton, R., A. Barto, and R. Williams (1992). “Reinforcement learning is
direct adaptive optimal control”. IEEE Control Systems Magazine 12:2,
pp. 19–22. doi: 10.1109/37.126844.

Sutton, R. S. (1988). “Learning to predict by the methods of temporal dif-
ferences”. Machine Learning 3:1, pp. 9–44. doi: 10.1007/BF00115009.

Sutton, R. S. (1991). “Dyna, an integrated architecture for learning, plan-
ning, and reacting”. ACM SIGART Bulletin 2:4, pp. 160–163. doi: 10.
1145/122344.122377.

Sutton, R. S. and A. G. Barto (2018). Reinforcement Learning: An Intro-
duction. Second edition. Adaptive Computation and Machine Learning
Series. The MIT Press, Cambridge, Massachusetts. 526 pp. isbn: 978-0-
262-03924-6.

Swoyer, S. and M. Loukides (2020). Microservices adoption in 2020. url:
https://www.oreilly.com/radar/microservices-adoption-in-2020/.

Tc-Netem (2023). url: https://www.man7.org/linux/man-pages/man8/tc-netem.8.
html (visited on 2023-06-30).

179

https://doi.org/10.1109/IECON.2018.8591192
https://www.smhi.se/data/meteorologi/ladda-ner-meteorologiska-observationer#param=airtemperatureInstant,stations=all,stationid=162870
https://www.smhi.se/data/meteorologi/ladda-ner-meteorologiska-observationer#param=airtemperatureInstant,stations=all,stationid=162870
https://doi.org/10.1007/978-3-540-27982-2
https://doi.org/10.1109/37.126844
https://doi.org/10.1007/BF00115009
https://doi.org/10.1145/122344.122377
https://doi.org/10.1145/122344.122377
https://www.oreilly.com/radar/microservices-adoption-in-2020/
https://www.man7.org/linux/man-pages/man8/tc-netem.8.html
https://www.man7.org/linux/man-pages/man8/tc-netem.8.html

Bibliography

Tesauro, G. (1992). “Temporal Difference Learning of Backgammon Strat-
egy”. In: Sleeman, D. et al. (Eds.). Machine Learning Proceedings 1992.
Morgan Kaufmann, San Francisco (CA), pp. 451–457. doi: 10.1016/B978-
1-55860-247-2.50063-2.

Tian, J. et al. (2020). ReinforcementLearning.jl: A reinforcement learn-
ing package for the julia language. url: https : / / github . com /
JuliaReinforcementLearning/ReinforcementLearning.jl.

Toka, L., G. Dobreff, B. Fodor, and B. Sonkoly (2020). “Adaptive AI-
based auto-scaling for Kubernetes”. In: 2020 20th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Internet Computing (CCGRID),
pp. 599–608. doi: 10.1109/CCGrid49817.2020.00-33.

Townend, P., S. Clement, D. Burdett, R. Yang, J. Shaw, B. Slater, and J. Xu
(2019). “Improving Data Center Efficiency Through Holistic Scheduling
In Kubernetes”. In: 2019 IEEE International Conference on Service-
Oriented System Engineering (SOSE), pp. 156–15610. doi: 10.1109/SOSE.
2019.00030.

Van Le, D., Y. Liu, R. Wang, R. Tan, Y.-W. Wong, and Y. Wen (2019).
“Control of Air Free-Cooled Data Centers in Tropics via Deep Reinforce-
ment Learning”. In: Proceedings of the 6th ACM International Confer-
ence on Systems for Energy-Efficient Buildings, Cities, and Transporta-
tion. BuildSys ’19. Association for Computing Machinery, New York, NY,
USA, pp. 306–315. doi: 10.1145/3360322.3360845.

Van Le, D., R. Wang, Y. Liu, R. Tan, Y.-W. Wong, and Y. Wen (2020).
“Deep Reinforcement Learning for Tropical Air Free-Cooled Data Center
Control”. arXiv: 2012.06834 [cs, eess].

VanGilder, J., C. Healey, Z. Pardey, and X. Zhang (2013). “A compact server
model for transient data center simulations”. In: vol. 119. ASHRAE
Transactions PART 2, pp. 358–370.

VanGilder, J. W., C. M. Healey, M. Condor, W. Tian, and Q. Menusier (2018).
“A Compact Cooling-System Model for Transient Data Center Simula-
tions”. In: 2018 17th IEEE Intersociety Conference on Thermal and Ther-
momechanical Phenomena in Electronic Systems (ITherm), pp. 707–715.
doi: 10.1109/ITHERM.2018.8419515.

Van Hasselt, H. (2010). “Double Q-learning”. In: Advances in Neural Infor-
mation Processing Systems. Vol. 23. Curran Associates, Inc.

Van Hasselt, H., A. Guez, and D. Silver (2016). “Deep Reinforcement Learn-
ing with Double Q-learning”. Proceedings of the AAAI conference on ar-
tificial intelligence 30:1.

180

https://doi.org/10.1016/B978-1-55860-247-2.50063-2
https://doi.org/10.1016/B978-1-55860-247-2.50063-2
https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl
https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl
https://doi.org/10.1109/CCGrid49817.2020.00-33
https://doi.org/10.1109/SOSE.2019.00030
https://doi.org/10.1109/SOSE.2019.00030
https://doi.org/10.1145/3360322.3360845
https://arxiv.org/abs/2012.06834
https://doi.org/10.1109/ITHERM.2018.8419515

Bibliography

Van Hasselt, H. and M. A. Wiering (2009). “Using continuous action spaces
to solve discrete problems”. In: 2009 International Joint Conference on
Neural Networks. IEEE, Atlanta, Ga, USA, pp. 1149–1156. doi: 10.1109/
IJCNN.2009.5178745.

Van Heeswijk, W. J. A. (2022). Natural Policy Gradients In Reinforcement
Learning Explained. arXiv: 2209.01820 [cs, math]. preprint.

Wan, J., Y. Duan, X. Gui, C. Liu, L. Li, and Z. Ma (2023). “SafeCool: Safe
and Energy-Efficient Cooling Management in Data Centers With Model-
Based Reinforcement Learning”. IEEE Transactions on Emerging Topics
in Computational Intelligence, pp. 1–15. doi: 10.1109/TETCI.2023.3234545.

Wang, R., X. Zhang, X. Zhou, Y. Wen, and R. Tan (2022). “Toward Physics-
Guided Safe Deep Reinforcement Learning for Green Data Center Cool-
ing Control”. In: 2022 ACM/IEEE 13th International Conference on
Cyber-Physical Systems (ICCPS). IEEE, Milano, Italy, pp. 159–169. doi:
10.1109/ICCPS54341.2022.00021.

Wang, W. and G. Casale (2014). “Evaluating weighted round robin load bal-
ancing for cloud web services”. In: 2014 16th International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing, pp. 393–
400. doi: 10.1109/SYNASC.2014.59.

Wang, Y., H. Liu, W. Zheng, Y. Xia, Y. Li, P. Chen, K. Guo, and H. Xie
(2019). “Multi-Objective Workflow Scheduling With Deep-Q-Network-
Based Multi-Agent Reinforcement Learning”. IEEE Access 7, pp. 39974–
39982. doi: 10.1109/ACCESS.2019.2902846.

Wang, Y.-T. and Morris (1985). “Load sharing in distributed systems”. IEEE
Transactions on Computers C-34:3, pp. 204–217. doi: 10.1109/TC.1985.
1676564.

Watkins, C. J. C. H. and P. Dayan (1992). “Q-learning”. Machine Learning
8:3, pp. 279–292. doi: 10.1007/BF00992698.

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. PhD thesis.
King’s College, Cambridge United Kingdom.

Wieder, P., J. M. Butler, W. Theilmann, and R. Yahyapour (2011). Service
Level Agreements for Cloud Computing. Springer Science & Business
Media. 368 pp. isbn: 978-1-4614-1614-2.

Williams, R. J. (1992). “Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning”. Machine learning 8, pp. 229–
256.

Xie, Z., Z. Lin, J. Li, S. Li, and D. Ye (2022). Pretraining in Deep Reinforce-
ment Learning: A Survey. doi: 10.48550/arXiv.2211.03959. preprint.

Xu, C.-Z., J. Rao, and X. Bu (2012). “URL: A unified reinforcement learning
approach for autonomic cloud management”. Journal of Parallel and
Distributed Computing 72:2, pp. 95–105. doi: 10.1016/j.jpdc.2011.10.003.

181

https://doi.org/10.1109/IJCNN.2009.5178745
https://doi.org/10.1109/IJCNN.2009.5178745
https://arxiv.org/abs/2209.01820
https://doi.org/10.1109/TETCI.2023.3234545
https://doi.org/10.1109/ICCPS54341.2022.00021
https://doi.org/10.1109/SYNASC.2014.59
https://doi.org/10.1109/ACCESS.2019.2902846
https://doi.org/10.1109/TC.1985.1676564
https://doi.org/10.1109/TC.1985.1676564
https://doi.org/10.1007/BF00992698
https://doi.org/10.48550/arXiv.2211.03959
https://doi.org/10.1016/j.jpdc.2011.10.003

Bibliography

Xu, Y., Y. Zhan, and D. Xu (2017). “Building cost efficient cloud data centers
via geographical load balancing”. In: 2017 IEEE Symposium on Com-
puters and Communications (ISCC), pp. 826–831. doi: 10.1109/ISCC.2017.
8024629.

Yaghmaie, F. A., F. Gustafsson, and L. Ljung (2023). “Linear Quadratic
Control Using Model-Free Reinforcement Learning”. IEEE Transactions
on Automatic Control 68:2, pp. 737–752. doi: 10.1109/TAC.2022.3145632.

Yang, Z., P. Nguyen, H. Jin, and K. Nahrstedt (2019). “MIRAS: Model-
based Reinforcement Learning for Microservice Resource Allocation over
Scientific Workflows”. In: 2019 IEEE 39th International Conference on
Distributed Computing Systems (ICDCS), pp. 122–132. doi: 10 . 1109 /
ICDCS.2019.00021.

Young, K., A. Ramesh, L. Kirsch, and J. Schmidhuber (2023). The Benefits
of Model-Based Generalization in Reinforcement Learning. arXiv: 2211.
02222 [cs]. preprint.

Yu, G., P. Chen, and Z. Zheng (2022). “Microscaler: Cost-Effective Scaling
for Microservice Applications in the Cloud With an Online Learning
Approach”. IEEE Transactions on Cloud Computing 10:2, pp. 1100–
1116. doi: 10.1109/TCC.2020.2985352.

Yves, G. and B. Yoshua (2006). “Entropy Regularization”. In: Chapelle, O.
et al. (Eds.). Semi-Supervised Learning. The MIT Press, pp. 151–168.
doi: 10.7551/mitpress/9780262033589.003.0009.

Zhang, H., S. Shao, H. Xu, H. Zou, and C. Tian (2014). “Free cooling of
data centers: A review”. Renewable and Sustainable Energy Reviews 35,
pp. 171–182. doi: 10.1016/j.rser.2014.04.017.

Zhang, Q., Z. Meng, X. Hong, Y. Zhan, J. Liu, J. Dong, T. Bai, J. Niu, and
M. J. Deen (2021). “A survey on data center cooling systems: Technology,
power consumption modeling and control strategy optimization”. Journal
of Systems Architecture 119, p. 102253. doi: 10.1016/j.sysarc.2021.102253.

182

https://doi.org/10.1109/ISCC.2017.8024629
https://doi.org/10.1109/ISCC.2017.8024629
https://doi.org/10.1109/TAC.2022.3145632
https://doi.org/10.1109/ICDCS.2019.00021
https://doi.org/10.1109/ICDCS.2019.00021
https://arxiv.org/abs/2211.02222
https://arxiv.org/abs/2211.02222
https://doi.org/10.1109/TCC.2020.2985352
https://doi.org/10.7551/mitpress/9780262033589.003.0009
https://doi.org/10.1016/j.rser.2014.04.017
https://doi.org/10.1016/j.sysarc.2021.102253

	Title Page
	Contents
	Nomenclature
	1 Introduction
	1.1 Contributions and Outline
	1.2 Publications

	2 Cloud Computing
	2.1 Cloud Infrastructure
	2.2 Controlling the Cloud

	3 Reinforcement Learning
	3.1 Introduction
	3.2 Markov Decision Processes and Dynamic Programming
	3.3 Model-Free Reinforcement Learning
	3.4 Model-Based Reinforcement Learning
	3.5 Other Topics in Reinforcement Learning

	4 Reinforcement Learning in Practice
	4.1 Bag of Tricks
	4.2 Training
	4.3 Related Work

	5 Holistic DC Control using Deep RL
	5.1 Thermal Model of a Datacenter
	5.2 Combined IT and Cooling Control
	5.3 Evaluating the RL Agent on the Simulated Model

	6 Adaptive DC Cooling using Deep RL
	6.1 Extending DC model with CFD
	6.2 Context-Aware Control using RL
	6.3 Evaluating the RL Approach

	7 Proactive Cloud Autoscaling using RL
	7.1 Modelling a Microservice Application
	7.2 Proactive Control of Microservice Application
	7.3 Evaluating Proactive Scaling Approach

	8 Load Balancing via Fluid Model Differentiation
	8.1 Microservice Application Model
	8.2 Routing Optimization using Automatic Differentiation
	8.3 Experimental Evaluation
	8.4 Summary and Discussion

	9 Improving Microservice Models
	9.1 Extending a Fluid Model with Neural Networks
	9.2 Imposing Bias on the Neural Network
	9.3 Evaluating NN based Model Extensions

	10 Thesis Summary
	10.1 Discussion
	10.2 Future Work

	Bibliography

