
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

A Dance with Protein Assemblies

Analysis, Structure Prediction, and Design
Jeppesen, Mads

2023

Link to publication

Citation for published version (APA):
Jeppesen, M. (2023). A Dance with Protein Assemblies: Analysis, Structure Prediction, and Design. Lund
University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/63a44080-3a5d-4299-bf18-d4d9e3cee9f2


 

 

A Dance with Protein Assemblies 
Analysis, Structure Prediction, and Design 

Mads Jeppesen 

 

DOCTORAL DISSERTATION 

Doctoral dissertation for the degree of Doctor of Philosophy (PhD)  
at the Faculty of Science at Lund University to be publicly defended  

on Friday, 24th of November at 13.00 in Lecture Hall B,  
Department of Chemistry, Naturvetarvägen 14, Lund 

Faculty opponent 
Björn Wallner 

 



Organization: Lund University 

Document name: Doctoral Dissertation Date of issue: 2023-11-24 

Author(s): Mads Jeppesen Sponsoring organization: 

Title and subtitle: A Dance with Protein Assemblies: Analysis, Structure Prediction, and Design 

Abstract: 

Protein assemblies are some of the most complex molecular machines in nature. They facilitate many 
cellular functions, from DNA replication to molecular motion, energy production, and even the production 
of other proteins. In a series of 3 papers, we analyzed the structure, developed structure prediction tools, 
and design tools, for different protein assemblies. Many of the studies were centered around viral protein 
capsids. Viral capsids are protein coats found inside viruses that contain and protect the viral genome.  
 In one paper, we studied the interfaces of these capids and their energy landscapes. We found 
that they differ from regular homomers in terms of the amino acid composition and size, but not in the 
quality of interactions. This contradicts existing experimental and theoretical studies that suggest that the 
interactions are weak. We hypothesise that the occlusion by our models of electrostatic and entropic 
contributions might be at play.  
 In another paper, we developed methods to predict large cubic symmetrical protein 
assemblies, such as viral capsids, from sequence. This method is based upon AlphaFold, a new AI tool 
that has revolutionized protein structure prediction. We found that we can predict up to 50% of the 
structures of these assemblies. The method can quickly elucidate the structure of many relevant proteins 
for humans, and for understanding structures relevant to disease, such as the structures of viral capsids.  
 In the final paper, we developed tools to design capsid-like proteins called cages – structures 
that can be used for drug delivery and vaccine design. A fundamental problem in designing cage 
structures is achieving different architectures and low porosity, goals that are important for vaccine 
design and the delivery of small drug molecules. By explicitly modelling the shapes of the subunits in the 
cage and matching the shapes with proteins from structural databases, we find that we can create 
structures with many different sizes, shapes, and porosities - including low porosities. While waiting for 
experimental validation, the design strategy described in the paper must be extended, and more designs 
must be tested. 

Key words: Protein design, virus capsids, protein structure prediction, symmetry, Rosetta, protein 
assembly. 

Classification system and/or index terms: Supplementary bibliographical information: 

Language: English ISSN and key title:  

 ISBN: 978-91-7422-990-5 (print) 

  978-91-7422-991-2 (digital) 

Recipient’s notes: Number of pages: 

Price: Security classification: 

I, the undersigned, being the copyright owner of the abstract of the above-mentioned dissertation, hereby 
grant to all reference sources permission to publish and disseminate the abstract of the above-mentioned 
dissertation. 

Signature  Date 2022-10-09  
 
  



 

 

A Dance with Protein Assemblies 
Analysis, Structure Prediction, and Design 

Mads Jeppesen 

 

  



  

Coverphoto: Protein assemblies falling from the sky. Created by Gencraft. 

 

Paper 1 © by the Authors (Manuscript in review)  

Paper 2 © by the Authors (Manuscript unpublished)  

Paper 3 © by the Authors (Manuscript unpublished)  

 

Faculty of Science  

Department of Chemistry 

 

ISBN : 978-91-7422-990-5 (print), 

ISBN:  978-91-7422-991-2 (digital) 

 

Printed in Sweden by Media-Tryck, Lund University 

Lund 2022 

 

 

 



 

 

To all who’ve guided my journey 
  



 
 



i 

Table of Contents 

Table of Contents .................................................................................................... i 
List of publications ................................................................................................ iv 
Author Contributions ............................................................................................ v 
Popular summary ................................................................................................. vi 
Acknowledgments ..................................................... Error! Bookmark not defined. 
Abbreviations ......................................................................................................... x 
Introduction ............................................................................................................ 1 
1 Protein Structure ........................................................................................... 2 

1.1 Amino acids ................................................................................................... 2 
1.2 Protein Folding .............................................................................................. 3 
1.3 Structural Classification ................................................................................ 4 
1.4 Protein Symmetry .......................................................................................... 5 
1.5 Viruses ........................................................................................................... 6 
1.6 Capsid Structure ............................................................................................ 6 

2 Computational Modelling of Proteins .......................................................... 8 
2.1 Protein Representations ................................................................................. 8 

2.1.1 All-atom Models .............................................................................................. 8 
2.1.2 Coarse graining Models .................................................................................. 8 
2.1.3 Solvation Models ............................................................................................. 8 
2.1.4 Tensor Representation ..................................................................................... 9 

2.2 Score Functions ............................................................................................. 9 
2.2.1 Force Fields .................................................................................................... 9 
2.2.2 Knowledge-based or Statistical Potentials .................................................... 10 
2.2.3 The Score Function in Rosetta ...................................................................... 10 

2.3 Search Methods ........................................................................................... 10 
2.4 Gradient descent Minimization ................................................................... 10 
2.5 Monte Carlo Simulations ............................................................................. 11 
2.6 Evolutionary Algorithms ............................................................................. 11 

2.6.1 Differential Evolution .................................................................................... 12 
2.6.2 Memetic Algorithms ...................................................................................... 13 

2.7 Molecular Dynamics ................................................................................... 13 
2.8 Symmetry Approximations in Rosetta ........................................................ 13 
2.9 Deep Learning ............................................................................................. 14 

2.9.1 A Simple Neural Network .............................................................................. 14 
2.9.2 Generative Models ........................................................................................ 15 



ii 

2.9.3 Reinforcement Learning ................................................................................ 16 
3 Protein Structure Prediction ....................................................................... 17 

3.1 Pure Ab Initio Methods ................................................................................ 17 
3.2 Ab Initio Methods with Database Information. ........................................... 17 
3.3 Template-based Methods ............................................................................ 18 

3.3.1 Homology Modelling ..................................................................................... 18 
3.3.2 Fold Recognition ........................................................................................... 18 

3.4 Protein Docking ........................................................................................... 18 
3.5 EvoDOCK ................................................................................................... 19 
3.6 Structure Prediction Competitions: CASP and CAPRI ............................... 19 
3.7 Deep Learning and AlphaFold .................................................................... 20 
3.8 The Future of Protein Structure Prediction ................................................. 20 
3.9 Protein Assemblies: The next Frontier ........................................................ 21 

4 Protein Design .............................................................................................. 22 
4.1 The Protein Universe ................................................................................... 22 
4.2 Computational Protein Design .................................................................... 23 
4.3 A Brief History of De Novo Protein Design ................................................ 23 

4.3.1 The Beginnings .............................................................................................. 23 
4.3.2 After Top7 ...................................................................................................... 24 
4.3.3 Introduction of DL ......................................................................................... 25 

4.4 Old and New ................................................................................................ 25 
4.4.1 Conventional Design Strategy ....................................................................... 25 
4.4.2 DL Design Strategy ....................................................................................... 26 

4.5 Design of Protein Cages. ............................................................................. 27 
4.5.1 Oligomer-Fusion ........................................................................................... 27 
4.5.2 Coiled Coils Mediation ................................................................................. 28 
4.5.3 Metal Coordination ....................................................................................... 28 
4.5.4 PPI Design .................................................................................................... 28 
4.5.5 Rigid Hierarchical Fusion ............................................................................. 28 
4.5.6 DL-based Designs ......................................................................................... 29 

5 Summary of Research Papers ..................................................................... 30 
5.1 Paper I .......................................................................................................... 30 
5.2 Paper I: Future directions ............................................................................ 31 
5.3 Paper II ........................................................................................................ 32 
5.4 Paper II: Future directions ........................................................................... 33 
5.5 Paper III: ...................................................................................................... 33 
5.6 Paper III: Future directions .......................................................................... 34 

  



iii 

6 Additional Background ............................................................................... 36 
6.1 Comparison metrics ..................................................................................... 36 

6.1.1 RMSD ............................................................................................................ 36 
6.1.2 TM-score ....................................................................................................... 36 
6.1.3 lDDT .............................................................................................................. 36 
6.1.4 DockQ ............................................................................................................ 37 

6.2 Shape Matching ........................................................................................... 37 
7 Conclusion .................................................................................................... 39 
8 Outlook ......................................................................................................... 40 
9 References ..................................................................................................... 41 

 

  



iv 

List of publications 

The thesis is based on the following papers: 

 

Paper I:  

 Accurate prediction of protein assembly structure by combining AlphaFold and 
 symmetrical docking 

 Mads Jeppesen, Ingemar André 

 In review, Nature communications 

Paper II:  

 Encoding of T=1 virus capsid structures through the interfaces of oligomer 
 subcomponents 

 Mads Jeppesen, Ingemar André 

 Manuscript 

Paper III:  

 A method for designing protein cages based on shape. 

 Mads Jeppesen, Ingemar André 

 Manuscript 

  



v 

Author Contributions 

The authors’ contribution to the papers. 

 

Paper I:  

The conceptualization and methodology of this study was done in collaboration with I.A. I 
wrote all software extensions to EvoDOCK, ran all the simulations, and did the formal 
analysis. The writing of the original draft and editing was done in collaboration with I.A.  

Paper II:  

The conceptualization and methodology of this study was done in collaboration with I.A. I 
collected all the data, did parts of the initial analysis, and edited the manuscript in 
collaboration with I.A.  

Paper III:  

The conceptualization and methodology of this study was done in collaboration with I.A. 
The code was written in collaboration with I.A. I ran the simulations to design the protein 
structures. Evaluation of the structures was done in collaboration with I.A. I wrote the 
original draft and editing in collaboration with I.A.   

  



vi 

Popular summary 

Proteins are tiny molecules that cannot be seen with the naked eye. They might appear 
insignificant, but they have big roles to play in biology and are often dubbed the ‘molecule 
of life’. They are everywhere in nature: inside of you, inside bacteria, plants, fungi, and 
viruses. They are nature's answer to molecular machines as they can change shape, catalyze, 
signal, transport, move, and produce. They are truly remarkable molecules. 

As us humans, proteins can be either introverted and like to work alone, or extroverted, and 
like to associate with other proteins into what we call protein assemblies. This thesis is titled: 
“A Dance with Protein Assemblies: Analysis, Structure Prediction, and Design”. This is 
because we analysed, and developed structure prediction tools, and design tools, for different 
kinds of protein assemblies. We did this in a series of papers, as referenced on the previous 
pages.   

In Paper II we danced with a kind of protein assembly found inside viruses called a capsid. 
A capsid is a protein container that protects the genetic material of the virus, which it uses 
to replicate inside its host (which could be you!). We wanted to understand how they self-
assemble from single proteins into a protein assembly in one of the most complex self-
assembly processes in nature (no small feat). We did this by comparing its subcomponents 
to regular smaller assemblies found elsewhere in nature. While we saw some differences, 
our main hypothesis was that the strength of the capsid interfaces must have been weaker 
since capsids have to dissociate and associate when they deliver and repackage their genetic 
material. However, our data does not support this, and we hypothesize that this ability might 
come from other contributions not explicitly modelled, such as entropy or electrostatics. 

In Paper I we took up another dance, riding the wave of a new generation of AI tools that 
revolutionized biology. In the middle of my PhD, an AI software called AlphaFold, 
developed by Google's DeepMind group, made a breakthrough in our ability to predict 
protein structures with high resolution. This is important, as understanding the structure of 
proteins is the key to understanding their function, implications in diseases, and how we can 
develop drugs against them. However, AlphaFold struggled to predict the structure of 
protein assemblies, in particular ones with many chains (the very extroverted ones). After 
years of dancing with protein assemblies, we had developed tools for which we could build 
upon AlphaFold to predict them with high resolution. We did just that and showed we could 
predict many important classes of large protein assemblies, including virus capsids described 
previously.  

In the longest and still ongoing dance (Paper III), we developed a design software to design 
protein cages, a container-like virus capsid, that can be used to encapsulate drugs for targeted 
delivery in the body or for highly efficient vaccines. It’s built on a novel principle we call 
shape-based design. The idea is first to identify shapes that fit into such a container, followed 
by alignment of proteins with those exact shapes into the container. We designed different 
architectures, which subsequently were validated to work well computationally and have 
characteristics like natural proteins. However, experimental testing is still in an ongoing 
process, and we haven’t had the last dance yet.  
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Introduction 

Protein assemblies are some of the most complex molecular machines in nature. They 
facilitate many cellular functions from DNA replication to molecular motion, to ATP 
production, and even the production of other proteins. This thesis is titled: “A Dance with 
Protein Assemblies: Analysis, Structure Prediction, and Design”. That is because we in a 
series of different papers analyzed (Paper II), and developed structure prediction tools 
(Paper I) and design tools (Paper III) for different types of protein assemblies. Although 
different, they do however share a deeper relationship as you’ll discover. All the papers can 
be found in the back in order from I to III. 

Before we arrive at the three papers, we need to dive into the background and put them into 
context. There are 8 chapters in this thesis: 

• Chapter 1: Protein Structure  

• Chapter 2: Computational Modelling of Proteins (☕, ☕, ☕) 

• Chapter 3: Protein Structure Prediction (☕) 

• Chapter 4: Protein Design (☕) 

• Chapter 5: Summary of Research Papers 

• Chapter 6: Additional Background (☕, ☕) 

• Chapter 7: Conclusion 

• Chapter 8: Outlook 

In Chapter 1, I will discuss the general structure of proteins and the structure of virus capsids. 
This will lay the foundation for the rest of the thesis and give background to Paper II. In 
Chapter 2, I will discuss computational methods relevant to protein structure prediction and 
design. Similarly, to Chapter 1, it will serve as a background for the rest of the thesis. 
Chapters 3 and 4 are more specific chapters targeted at the general topics and literature for 
each paper. Chapter 3 relates to Paper I and Chapter 4 to Paper III. Chapter 5 summarizes 
the findings and future work of each paper. Chapter 6 serves as additional background 
information for Paper I and III. The final chapters, Chapters 7 and 8 will conclude the thesis 
and give an outlook on the fields and themes we have discussed. 

As you might have noticed the chapters are marked with coffees (☕). The numbers of ☕ 
indicate how much coffee is needed to be consumed to get through them. Don’t 
underestimate them, these are like the chilis you find on the menu list in a good authentic 
Chinese restaurant. 

 
Enjoy! 



2 

1 Protein Structure 

In this chapter, we will examine the structure of proteins from their constituents, the amino 
acids, to protein folding, structural classification, and symmetry. It will lay the foundation 
for the chapters to come. The chapter will end with a discussion on viruses, and one of their 
components called a capsid: a protein assembly encapsulating and protecting the viral 
genome.  

1.1 Amino acids 
Proteins are polymers that consist of amino acids linked together in a sequence like beads 
on a string. Each amino acid consists of an invariant part called the backbone and a variant 
part called the side chain. The backbone contains an amine and carboxyl group covalently 
linked to a central carbon atom. As the backbone is the same for all amino acids, the side 
chain makes them unique, and their chemical groups determine their shape and chemistry. 
Figure 1a shows all the 20 different amino acids, divided into chemical categories 
depending on their side chains. To create a protein, amino acids are linked through their 
backbone by a condensation reaction to form peptide bonds, linking one amino acid carboxyl 
group to another’s amine group with water as a by-product (Fig 1b). Amino acids can be 
synthesized by an organism itself or acquired by breaking down proteins from other 
organisms. For instance, eleven amino acids can be synthesized in humans, but nine can 
not1. The amino acid sequence of a protein is encoded by genes: three base pair segments in 
DNA called a codon, encode for either one amino acid or for a start or stop signal. To 
synthesize a protein, a gene is first transcribed into mRNA and protein factories called 
ribosomes then translate this mRNA code to produce a full protein. 

 

Figure 1: The 20 canonical amino acids and peptide bonds through condensation. 
a: The chemical structure and one-letter name of the 20 canonical amino acids that are encoded by 
codons. Each amino acid has a different side chain and is grouped into four groups based on their 
chemistry as highlighted by their adjacency to a respective color. In green, we have the hydrophobic side 
chains, and in brown the hydrophilic side chains. In blue we have the positively charged side chains and 
in red the negatively charged side chains. b: Condensation reaction covalently bonding amino acid A 
(alanine) to the amino acid S (serine) through a peptide bond. 
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1.2 Protein Folding 
Once a protein has been translated, it needs to fold up to a specific conformation, called the 
native structure to carry out its function. However, even for a very simple protein, there is 
an astronomical number of possible conformations available. How can a protein find the 
native state out of all the available states? According to the laws of thermodynamics, the 
protein will approach the state with minimal Gibbs free energy (G) which is described by: 

 𝐺 = 	𝐻 − 	𝑇𝑆 (	1.1	)	

H is the enthalpy (internal energy), S is the entropy, and T the temperature. To see how a 
protein can minimize its free energy it is helpful to visualize a simplified free energy 
landscape as in the example shown in Figure 2. 

 

Figure 2: Hypothetical simplified free energy landscape for a folding protein. 
A protein (in green) is folding from an unfolded state to its native folded state. Four snapshots of the 
folding process is captured, and the conformation (configuration in the more general case) is mapped 
onto the free energy surface. The protein randomly explores the free energy landscape but is more likely 
to visit states with lower free energy. Thus eventually, the protein will fold to its native structure, the 
conformation with the lowest free energy shown at the bottom. 

This shows the free energy as a function of all the possible conformations of the protein. The 
protein is more likely to be found in a state of lower free energy. Thus, folding can be seen 
as a diffusion-like process where the protein randomly explores different nearby states but 
with a higher likelihood of going towards states with lower free energy. Eventually, the 
protein will find itself at the bottom of the free energy landscape with the lowest free energy 
in its native conformation.  

The probability P(j) of finding a protein in a state j out of all conformations (from i to n) is 
given by the Boltzmann distribution:  

 𝑃(𝑗) = 	
1
𝑍 𝑒

(	#$!	/	&'	)														𝑍	 =0𝑒(	#$"	/	&'	)
)

*

 (	1.2	)	
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The left-side equation is the Boltzmann distribution and Z is called the partition function. Ej 
is the energy of the state j, T is the temperature and k the Boltzmann constant.  

1.3 Structural Classification 
Now that we understand the basics of protein structure and folding, we can examine their 
structural classification. Protein structures are commonly divided into four subdivisions: 
primary, secondary, tertiary, and quaternary structure (Fig. 3). The primary structure is the 
sequence of amino acids as it occurs in the protein. The secondary structure is the local 3-
dimensonal arrangement of the backbone. The hydrogen-bonding capabilities of the 
backbone allow two common secondary structure elements to form, called the alpha-helix 
(α-helix) and the beta-sheet (β-sheet). These elements are so common that they are often 
depicted as coiled ribbons and arrows respectively while other parts of the protein are not. 
The next level higher up is the structure of the whole protein chain and this is called the 
tertiary structure. If a protein binds to other proteins, we call it a protein complex, or protein 
assembly, and the structure is referred to as the quaternary structure. A single chain in a 
protein complex is called a subunit.  If a protein complex consists exclusively of proteins 
with identical sequences, we call it a homomer while if it exists of different proteins with 
different sequences, we call it a heteromer.  

 

Figure 3: The four subdivisions of protein structure.  
The primary structure is the sequence of amino acids as they occur in the protein. The secondary 
structure is the spatial organization of the backbone. Two common secondary structure elements are 
created by backbone hydrogen bonds (shown in yellow as dashed lines) and are called the α-helix and 
the β-sheet. The folding of the entire protein is called the tertiary structure. The entire structure of multiple 
proteins associated in a protein complex, or protein assembly, is called the quaternary structure. 

Many databases exist to both store and classify protein structures. The Protein Data Bank 
(PDB)2 is a database that stores most of the protein structures that have been resolved with 
a variety of techniques such as X-ray crystallography and Cryo-electron microscopy. Other 
databases store the full structures or parts of the structure based on further categorizations. 
In Paper III we use the three classification databases: CATH3, SCOPe4, and Fuzzle5. CATH 
and SCOPE are domain and fold databases. Domains are segments of protein structures that 
can fold on their own, and folds refer to the connections of secondary structure elements 
which can be either the full tertiary structure or parts of it. Fuzzle is a fragment database that 
stores protein fragments which are evolutionarily related. While the PDB consist of hundreds 
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of thousands of proteins, the three other databases mentioned consist of many millions of 
protein domains, folds, and fragments between them. 

1.4 Protein Symmetry 
Another way to classify proteins is by their symmetry. Many protein complexes display 
symmetry and almost all homomeric protein complexes are symmetrical6. A protein 
complex is said to be symmetrical if there exists one or more transformations, such as 
rotations, that can map it onto itself without changing the structure. Symmetrical protein 
complexes can be divided into symmetry groups depending on which transformations can 
be applied. The most common protein complexes seen in nature are described by rotation 
transformations around a single point. These are also said to have point symmetry. The 
simplest symmetry group of this kind is the cyclical group (Cn), which has one or more 
rotation transformations about a single axis. The dihedral group (Dn) has one or more 
rotation transformations about one axis, and another 180-degree rotation perpendicular to 
the first axis. The cubic group is the most complex class with point symmetry, as they have 
two to three distinct rotation transformations at multiple points in space (Fig. 4). Complexes 
with tetrahedral (T) symmetry have 2- and 3-fold rotation axes, complexes with octahedral 
(O) symmetry have 2-, 3- and 4-fold rotation axes, and complexes with icosahedral (I) 
symmetry have 2-, 3- and 5-fold rotation axes. Protein assemblies with cubic symmetry 
primarily have roles as containers for storage and transport7.  Examples include ferritin, a 
protein container for iron storage, found inside almost all living organisms, including 
humans8. Another example is viral capsids, which are protein containers encapsulating the 
viral genome. Viral capsids will be explored further in the next section. Outside of the point 
symmetry group are symmetries with additional translation transformations such as helical 
and crystal symmetries. 

 

Figure 4: The cubic symmetry group. 
Examples of protein assemblies with Tetrahedral (T), Octahedral (O) and Icosahedral (I) symmetry. 
Dashed lines indicate the different rotation axes, and the color indicates their rotation fold which are also 
highlighted by the box to the left of them. As an example, a 5-fold rotation means that along that axis the 
structure can be rotated 360/5 = 72 degrees and produce the same structure again. T symmetry contains: 
2- and 3-fold rotation axes, O symmetry: 2-, 3- and 4-fold rotation axes and I symmetry: 2-, 3- and 5-fold 
rotation axes. 
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1.5 Viruses 
Viruses are very small entities containing genetic material, and they infect and replicate 
inside other organisms from plants to bacteria and humans. They are responsible for a large 
number of human diseases and can cause large-scale pandemics, shutting down parts of the 
global economy and killing millions of people. The latest Covid-19 pandemic for instance 
has, as of the 28th of September 2023, killed almost 7 million people worldwide9. It is of 
significant interest to understand the structure and assembly mechanism of viruses to design 
drugs that can combat them. An important part of most viruses is a protein assembly, called 
a capsid, that encapsulates and protects its genetic material. The formation of the capsid is 
an important step in the formation of a virus, as the genetic material is either encapsulated 
inside the capsid as it forms or pumped into an empty capsid by molecular motors10. Viral 
capsids play a significant role in this thesis, as we have developed a method to predict their 
structure given their sequence in Paper I, and we analysed their structure and assembly 
mechanism in Paper II. Moreover, capsids are natural containers that could be used in many 
applications from drug delivery to vaccine design. In Paper III we developed a method to 
design capsid-like containers called cages.  

1.6 Capsid Structure 
Capsids most commonly have icosahedral symmetry and to a lesser extent helical 
symmetry10, 11. Caspar-Klug theory12 describes how icosahedral capsids can be constructed 
with varying sizes. An icosahedral capsid can be thought to exist of a combination of even-
sided hexameric triangles and pentameric triangles with 3 protein subunits inside each 
triangle. If both sides of all triangles must touch the geometry of triangles arranged in a 
hexamer is flat and the geometry of triangles arranged in a pentamer is curved (Fig 5a). To 
form an enclosed, 3-dimensional, icosahedral structure, 12 pentameric triangles must be 
connected, either directly or through any number of hexameric triangles. The size of the 
icosahedral capsid and the number of subunits (remember 3 for each triangle) then comes 
down to the spacing between the pentamers with the hexamers. In Caspar-Klug theory this 
can be more mathematically rigidified by illustrating it on a hexagonal lattice in two 
dimensions which are called k and h (Fig. 5b). The spacing between pentamers is the 
distance covered along k and h in hexagonal space. The distance is also called the 
triangulation number (T-number) and is mathematically defined as: 

 T-number:	ℎ+ + ℎ𝑘 +	𝑘+	 (	1.3	)	

Virus capsids are grouped according to their T-number and are named accordingly, such as 
T1 (T=1), T2 (T=2), T3 (T=3) etc. Figure 5c shows some examples for T1, T3 and T4 and 
how the triangulation number relates the T-number to the spacing between pentamers and 
the 3-dimensional structure. The number of subunits in an icosahedral capsid is 60 times the 
T-number. The simplest capsids, T1, thus consist of only 60 subunits while some of the 
largest, such as the capsids found inside the Mimivirus are estimated to have up to 72000 
(calculated from T=1200) subunits13. Capsids can be both homomeric and heteromeric. 
Subunits in homomeric T1 capsids can be completely symmetrical as each subunit is bound 
in a pentagonic fashion, while for larger T-numbers the same subunit has to bind both in a 
hexagonal and pentameric fashion and therefore cannot be. This principle where the same 
subunit binds in different fashions is called quasi-equivalence. Heteromeric capsids do not 
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necessarily have quasi-equivalence as different subunits can accommodate either the 
pentameric or hexameric conformation. The ability of a heteromer to arrange into an 
approximate symmetrical configuration is called pseudosymmetry.  

 

Figure 5: Caspar-Klug theory for classification of viruses. 
a: 6 triangles arranged in a hexamer is geometrically flat. If 1 triangle is removed so the 5 triangles form 
a pentamer, the structure is geometrically curved. A hexamer is indicated by a white hexagonal center 
and pentamers are indicated by a black pentamer in the middle for all items present. b: Illustration of how 
the T-number can be calculated, and how it relates to the capsid structure. Different triangles can be 
created by moving along the k or h axis in hexagonal space. The vertices of the triangle for a given h and 
k are changed from hexamers into pentamers and 20 of those pentamers are connected to create the 
icosahedral capsid. Here and example is shown for T=1 (h=1, k=0), T=3 (h=1, k=1) and T4 (h=2, k=0). 
c: A visual representation of the figure in b. which also shows the 3-dimensional structure. Here T1, T3 
and T4 are shown and how they are created by connecting pentamers through hexamers. The colours 
used to create the triangles in b matches the colours of the capsids in c. 
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2 Computational Modelling of Proteins  

Broadly speaking there are two approaches to study proteins. The first is experimental where 
the protein of interest is measured and investigated in the lab using a plethora of different 
techniques. The protein is said to be studied in vitro (‘in glass’) or in vivo (‘In the living’) if 
it is in a test tube or in its biological context, respectively. The second approach is to simulate 
the protein of interest on the computer, which is then appropriately called in silico, as 
computer chips are made of silicon. In this chapter, we will cover some of the computational 
methods used for modelling proteins, with a focus on methods concerning the problems of 
predicting protein structures and designing them. Both problems can be phrased in terms of 
an optimization problem where the parameters of the protein (for instance the torsion angles 
of the backbone or the sequence) need to be optimized. In general, there are two broad 
approaches to finding the optimum. One is based on conventional sampling approaches 
guided by a score function and the newer deep learning (DL) methods that learn from data. 
In Paper I and III we use the macromolecular modelling software called Rosetta14 as part 
of the structure prediction and design tools we have developed. Thus, there is an additional 
focus on how these methods are implemented in Rosetta.  

2.1 Protein Representations 
First, we need to understand how proteins can be represented in silico. Protein structures can 
be represented at different levels of detail depending on the modelling scenario and the 
question at hand. The true physical description of a protein would be a quantum mechanical 
(QM) description, but such descriptions are very computationally expensive and are usually 
intractable for structure prediction and design.  

2.1.1 All-atom Models 

A common description of the protein structure is an all-atom representation where the detail 
of the electronic structure is ignored, and atoms are instead represented by van der Waals 
spheres. This description allows the forces of the protein to be described by classic 
mechanical force fields such as is commonly done in molecular mechanics (MM). The 
advantage of such a representation is that all atoms are explicitly modelled, giving a more 
accurate description of the protein, but the disadvantage is that this can in some cases be too 
computationally expensive.  

2.1.2 Coarse graining Models 

To reduce computational expense, several atoms can be combined into a single sphere, 
averaging their physical characteristic. This representation is set to be coarse-grained. In 
Rosetta, for instance, a common strategy is to average the sidechains into what is called a 
centroid and keep the backbone in all-atom mode.  

2.1.3 Solvation Models 

Proteins are often solvated in water and the effect of water is very important to model. 
Explicit solvation models represent the individual water molecules in the simulations 
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themselves. For instance, this is common in molecular dynamic (MD) simulations as 
described later. Implicit solvation models do not represent the molecules themselves but 
represent them implicitly through a continuous medium.  

2.1.4 Tensor Representation 

So far, we have described the models as used in many different simulation software 
programs. However, for DL-based methods, the protein must be represented as a tensor, 
which is an n-dimensional vector such as a 1D or 3D array. To transform the protein into a 
tensor, we extract measurable quantities of the protein called features. Some common 
features include: 

• The protein sequence. 

• Co-evolutionary information extracted from homologous sequences. 

• Structural information extracted from homologous proteins of known structures. 

• Physical contacts in the form of a contact map. 

2.2 Score Functions 
Now that we understand protein representation, we need to get back to the optimization 
problem. As we navigate the parameter landscape in search of an optimal solution, we need 
a guide that tells us how well our current parameters satisfy the solution we are looking for. 
Specifically, we need a function that takes the current values of the parameters and tells us 
if the solution is better or worse, relative to other parameter values. For structure prediction 
and design, we are interested in a function that can map the parameters onto the energy or 
free energy as described in Chapter 1. Such a function is commonly called an energy function 
or just a score function.  It often includes several terms that together approximate the real 
energy, with parameters that are trained on experimental data to recapitulate real energies.  

2.2.1 Force Fields  

Force fields describe the forces or potential energies between atoms in a system.  Molecular 
Mechanics (MM) force fields use classical mechanical, physics-based representations, 
where the energies are divided into bonded terms and non-bonded energy terms depending 
on whether they are covalently linked or not. These terms are then summed up to give the 
total energy of the system. The basic form of the bonded terms can include bond stretching, 
bending and torsion:  

 

𝑉,-)./. = 0 𝑘,(𝑏 − 𝑏-)+
,-).0

+ 0 𝑘1(𝜃 − 𝜃-)+
2)34/0

+	 0 𝑘5[1 + 𝑐𝑜𝑠(𝑛𝜙 − 𝛿)]+
6-70*-)0

	 
(	2.1	)	

The basic non-bonded terms usually include the electrostatic and van der Waals interactions 
modelled through the Coulomb force and Lennard Jones potential, respectively as: 



10 

 𝑉,-)./. =	0
𝑞*𝑞8
4𝜋𝐷𝑟*8*98

+	0[
𝐴*8
𝑟*8:+

−
𝐶*8
𝑟*8;

]	
*98

 (	2.2	)	

2.2.2 Knowledge-based or Statistical Potentials 

Observed frequencies of states of proteins, such as torsion angles of the backbone, as derived 
from the available structural databases such as the PDB, can be used to derive energies. As 
explained in Chapter 1. on protein folding, there exists a relationship between the energy of 
a particular state, and its probability of observing it given by the Boltzmann equation (eq. 
1.2). Inverting this relationship means you can derive energies from these probabilities, and 
these energies are referred to as knowledge-based or statistical potentials. 

2.2.3 The Score Function in Rosetta 

The score function in Rosetta is derived from a combination of knowledge-based terms and 
physics-based terms. The physics-based terms include variants of the Coulomb and Lennard 
Jones energies described earlier, and the statistical terms include energies for rotamers and 
backbones. It furthermore uses an implicit solvation model.  

2.3 Search Methods 
If we could enumerate all possible parameter combinations and calculate their associated 
score, we could just pick out the best and we would be done. However, there’s an 
astronomically large number of parameters to sift through, and such brute-force methods are 
rarely useful. Instead, we need to utilize search algorithms that can smartly navigate the 
energy landscape to avoid the need to visit every single point. If we were to map the energy 
function onto the parameters to visualize the energy landscape as was done in Figure 2,  it’s 
usually much more complicated and filled with peaks and valleys. When trying out different 
parameter configurations, it’s easy to think you’ve found the best solution, as there are no 
other better solutions in its vicinity. We refer to these false best solutions as a local minimum, 
and the true best solution as the global minimum. The goal of search algorithms is to find 
the global minimum in the most efficient way possible. In practice, however, it is often very 
hard to find the actual global minimum, and therefore we often content ourselves with a 
satisfactory solution. In the following sections, we will explore some of these search 
methods 

2.4 Gradient descent Minimization  
As the parameter search is ongoing, it is often useful to find the local minima around the 
current parameter configurations. Gradient descent minimization is a method with many 
flavours that can be used to find a local minimum. The general idea is to calculate the first 
partial derivative or gradient ∇𝐸(𝛩!) of the energy function at the current point (𝛩!), and 
then take a step of a given size 𝜀 along the gradient to go a new point (𝛩!"#). This can be 
expressed as:  

 𝛩*<: =	𝛩* − 	𝜀∇𝐸(𝛩*)			 (	2.3	)	



11 

When we have reached 𝛩!"#	a new gradient is calculated (∇𝐸!"#) and a new step is taken 
along the gradient. The search iteratively continues until the gradient is changing very little, 
aka we have reached a local minimum. The approach can be improved by utilizing the 
second partial derivate, called the Hessian, as it gives more information about the curvature 
at 𝛩!. Quasi-Newton methods use parts of the Hessian, as it is computationally expensive to 
calculate, and these methods are very popular gradient descent algorithms.  Rosetta uses the 
quasi-newton-based gradient descent Broyden-Fletcher-Goldfarb-Shanno (BFGS)15 
implementation by default. 

2.5 Monte Carlo Simulations 
The problem with gradient descent is that it ends once a minimum has been found. It’s 
unlikely that the first minimum we find is the global one, and therefore we need algorithms 
that can ‘jump’ out of local minima and explore different parts of the search space. Monte 
Carlo16 (MC) simulation is one such approach to do so. It relies on making a stochastic jump 
in the parameter space and evaluate if such a move should be accepted or reverted to the 
previous state. How do we decide when to accept a move? As discussed in Chapter 1. about 
protein folding, the probability of seeing a particular protein state is proportional to the 
Boltzmann factor (eq. 1.2). We therefore choose to accept a move based on the Boltzmann 
factor, by calculating the energy of the two states. If the energy is lowered, the Boltzmann 
factor says it is a more likely state and we accept it. If the energy is higher, we sometimes 
still want to accept. Remember, we want to be able to ‘jump’ out of local minima and 
discover new areas of parameter space.  If the energy is higher when going from state i with 
energy 𝐸! to state j with energy 𝐸$ the probability of accepting the move is proportional to 
the difference in the Boltzmann factor between the two states: 

 𝑃(𝑗) 	= 	 𝑒#=	$!#$"	>/&'	 (	2.4	)	

Where k is the Boltzmann constant and T the temperature per usual. This algorithm is also 
called the Metropolis-Hasting algorithm17 and the accept criterion the Metropolis criterion. 
MC simulation is often combined with simulated annealing18. Notice the temperature factor 
in eq. 2.4. In simulated annealing, the temperature starts high and is subsequently lowered 
(annealed) as time goes on. At a high temperature it is more likely higher energy states will 
be selected while for lower temperature it is the opposite. Thus, using simulated annealing, 
a larger space can be initially explored while later exploration focusses on lower energy or 
more probable parameters. MC methods are used in many modelling software packages and 
many protocols inside Rosetta uses the MC simulated annealing method. 

2.6 Evolutionary Algorithms 
MC simulations are often run independently but it can be advantageous to have different 
trajectories learn from each other to collectively home in on the global minimum. 
Evolutionary algorithms (EA) are a class of algorithms that simulates a population of 
different trajectories (called individuals) that share information during the search. They do 
this by different biological evolution inspired operators such as mutations and selection. The 
score function in an EA algorithm is often referred to as a fitness function as it evaluates the 
fitness of each individual to determine which ones continue in the population.  
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2.6.1 Differential Evolution 

EAs have many variants, and one variant called differential evolution (DE) is particularly 
useful when solutions are real-value numbers. The basics of the DE algorithm are explained 
in the following.  

Let us define a population to contain L individuals and operate over G generations. Each 
individual i in the population contains an n-dimensional vector of size N. Let us call this 
vector 𝑥!,&. We thus have the following definitions for an individual i with the vector 𝑥!,& as:  

 𝑥*,3 = [𝑛:, 𝑛+, 𝑛@…	𝑛A], 𝑖 = 1,2,3…𝐿, 𝑔 = 1,2,3…𝐺	 (	2.5	)	

The elements in the 𝑥!,& vector can represent many things such as the degrees of freedom of 
the protein being modelled.  

The DE algorithm progresses iteratively over G generations, applying two operators, 
mutation, and crossover, to each individual i at every generation g to produce a trial vector. 
This trial vector is then either accepted or rejected based on a selection criterion. 

2.6.1.1 Mutation 

A mutation vector (𝑚!,&"#) is generated by combing 3 other individuals in the population 
that does not include 𝑥!,&: 

 𝑚*,3<: =	𝑥7:,3 + 𝐹 × (𝑥7+,3 −	𝑥7@,3) (	2.6	)	

Where F > 0 (called the differential weight), and r1, r2, r3 being randomly chosen vectors 
from the population (not including i).  

2.6.1.2 Crossover 

The trial vector (𝑡!,&"#) is created by randomly combing the elements 𝑚!,&"# and 𝑥!,& based 
on the crossover probability (CR), where CR ∈ [0,1]. For each element j in 𝑚!$,&"#, a 
random number is calculated between 0 and 1 and the jth element is taken from either 𝑚!$,&"# 
or 𝑥!$,& depending on the condition: 

 𝑡*8,3<: =	 a
𝑚*8,3<:		𝑖𝑓	𝑟𝑛𝑑[0,1] 	≤ 𝐶𝑅	
𝑥*8,3																						𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (	2.7	)	

One random element however is always picked from 𝑚!$,&"# regardless of the value of 
𝑟𝑛𝑑[0,1].  

2.6.1.3 Selection 

Finally, a selection criterion is used to pick either the trial vector 𝑡!,&"# or 𝑥!,& to continue 
into the next generation g+1. A common selection criterion to use is the greedy criterion, 
which means that the best out of the two, according to the fitness function, is the one that is 
picked.  
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This process of mutation, crossover and selection happens to all individuals in the population 
over G generations. The final solution is the individual with the best fitness value. 

2.6.2 Memetic Algorithms 

Memetic algorithms are an extension of EAs that apply a local search strategy to improve 
the results of the solutions imposed at each generation. A local search strategy is any strategy 
that improves upon the current solution by finding a nearby one in the parameter space that 
is better. Such a strategy can be for instance be a MC algorithm or gradient descent. Imagine 
once again a free energy landscape such as in Figure 2 with many peaks and valleys. A trial 
vector created by the DE mutation and crossover operators is not guaranteed to produce the 
best result in its vicinity. Potentially good solutions can be missed if the surroundings are 
not explored, and therefore memetic algorithms are powerful hybrid approaches, that take 
advantage of both exploiting the local landscape and exploring the global landscape. 

2.7 Molecular Dynamics 
Molecular dynamics (MD) methods use a force field to evolve a system over time in discrete 
time steps. At every time step, the atoms are moved according to the forces that act on them as 
described by the force field. The time step is chosen to be shorter than the fastest molecular 
motions in the system, which is usually the bond vibrations (which are in the order of pico- to 
femto-seconds). While MD is extremely useful for many different modelling scenarios it can 
be very computationally expensive to model proteins for structure prediction and design 
objectives. 

2.8 Symmetry Approximations in Rosetta 
In general, the more amino acids that are modelled, the more computationally expensive the 
calculations of the total score will be. As discussed in Chapter 1. on protein symmetry, many 
protein complexes are symmetrical. Using this feature explicitly in the energy calculations 
can help reduce the computational expenditure when modelling large systems. There are two 
reasons for this: 

1. Only unique interactions need to be calculated. 

2. Only atoms with unique interactions need to be represented. 

Consider a symmetrical tetramer (a protein complex of 4 chains) in Figures 6a and 6b. In 
Fig 6a, without considering symmetry, to calculate the total energy one needs to consider 
the internal energy of all four chains, as well as all interactions between all chains. In Fig 
6b, with symmetry considerations, to calculate the total energy one needs to only consider 
the internal energy of one chain and its unique interactions only, significantly reducing the 
computational complexity. The full energy can be calculated by multiplying the unique 
energies in appropriate ratios. For the example in Fig 6b the full energy is 4 x the internal 
energy of chain 1 plus 4 x 1:2 interaction plus 2 x 1:3 interaction. If symmetry is not 
considered, the problem is only exacerbated for larger systems. For an icosahedral protein 
capsid as shown in Fig 6c, calculating the total energy, without modelling symmetry, would 
mean calculating the internal energy of at least 60 chains, as well as all their interactions - 
clearly an intractable computational problem. However, considering only the unique chain 
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and its unique partners (see Fig 6c) makes modelling of such large systems possible. This 
symmetry representation is possible in Rosetta19. 

 

Figure 6: Modelling protein complexes with and without symmetry  
a: A symmetric tetramer without explicit symmetry modelling. Proteins are shown as circles. Internal 
energies that need to be considered within the chains are highlighted with bold circumference and 
interactions between chains that need consideration are highlighted with arrows. The total set of 
considered chains and interactions is shown below the figure. b: The same tetramer as in a, but modelled 
with symmetry. The computational complexity of calculating the total energy is reduced, as only 1 internal 
energy (chain 1) needs to be calculated, as well as only 2 unique interactions. c) Modelling of an 
icosahedral T=1 capsid containing 60 chains with symmetry. The case is similar for the tetramer in b but 
more unique interactions are present. 

2.9 Deep Learning 
Deep learning (DL) is a branch of machine learning and artificial intelligence (AI) that 
utilizes artificial neural networks (NN) to learn from data to accomplish various tasks. DL-
based methods have been behind the recent success of AI in the previous years: from image, 
video and audio processing20, to powering advanced language models such as ChatGPT21 
and gaming AIs capable of defeating world-class players22.  Recently, they also started to 
outcompete previous methods in both protein structure prediction and protein design, but 
this discussion is saved for the upcoming chapters. Here we explain some of the basics 
behind DL as it pertains to protein structure prediction and protein design. 

2.9.1 A Simple Neural Network 

The artificial NN of DL models are inspired by the brain’s neural circuitry, where 
information is transferred from neuron to neuron through the firing of chemical signals. A 
simple NN is shown in Figure 7a. The nodes represent neurons, and the connections 
between nodes are neural connections. Data in the form of a tensor is fed into the NN from 
the left, and information travels through the NN to the right. The NN contains layers of 
connected nodes, and each node contains weights, a bias and an activation function. The 
weights and biases are the parameters of the DL model and the values of these are learned 
during training. A node combines the activation function, the learned weight, and its input 
values, to produce a new value that is then fed into the next nodes. In this way the nodes 
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learn to fire (produce an output value), akin to the way biological neurons fire through 
chemical signals.  

 

Figure 7: Deep learning models.  
a: A simple neural network, also called a multilayer perceptron (MLP), consisting of 3 layers. The input data, 
in the form of a tensor, is connected to a 3-layer neural network (shown in different colours). b: An example 
of a generative model in the form of a variational autoencoder (VAE). An encoder encodes training data into 
a low-dimensional vector called the latent space, consisting of probability distributions that represent the 
data. A decoder learns to sample this probability distribution to reproduce the data. After training, the 
encoder can be removed and the latent space plus the decoder can be used to generate (or mimic) new 
data. c: A general reinforcement learning loop. An agent in a state (St) and associated reward (Rt) takes an 
action (At) in an environment that changes its state (St+1) and gives it an associated reward (Rt+1). The model 
ultimately learns a policy: the actions to take to maximize its total reward. 

A DL model can learn its parameters (weights and biases) in different ways. In supervised 
and unsupervised learning, training happens through either labelled or unlabelled training 
data. In the former, the DL model is trained to predict the correct label from the training set. 
The model is presented with a labelled training set and adjusts the weights and biases until 
it can predict the labels as well as possible.  

The adjustment of the weights happens through a process called backpropagation. The error 
in the prediction is expressed mathematically in terms of a loss function. The goal of 
backpropagation is to minimize the error in the loss function, by updating the weights and 
biases in the model through a gradient descent algorithm23.  

Supervised learning has become important in fields such as protein structure prediction, 
where the model can be fed datasets of sequences and proteins of known structures to learn 
to predict from. 

2.9.2 Generative Models  

In unsupervised learning, we also present a large dataset to the model, but this time it is not 
labelled, and the model must find meaning on its own. Note, that the distribution of layers, 
connections, choice of activation functions, loss functions and so on are referred to as the 
architecture. The simple architecture in Figure 7a is also called a multilayer perceptron 
(MLP). Figure 7b shows another DL architecture called a variational autoencoder (VAE). 
It looks different, but the underlying layout is still a NN. It consists of an encoder and a 
decoder. The encoder (a NN) learns to encode the training data into a lower dimensional 
vector space called the latent space. The latent space consists of probability distributions, 
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specifically encoded into 2 numbers: a mean and standard deviation. A decoder (also an NN) 
learns to decode samples from the latent space to reconstruct what was encoded. The loss 
function for this architecture is two-fold: one that ensures as little reconstruction loss as 
possible between the encoded and decoded data and one that ensures the probability 
distributions are smooth and regular. Since VAEs just learn to reconstruct the training data, 
it is considered an unsupervised or self-supervised model. 

Importantly, VAEs are part of a larger class of generative models that can mimic new 
versions of the training data. VAEs can do this by sampling from the learned encoded latent 
space. Generative models have become important for protein designs for instance, as 
variants and even unnatural proteins can be generated from such models. 

2.9.3 Reinforcement Learning 

Another way that DL models can learn is through reinforcement learning as shown in Figure 
7c. In reinforcement learning (RL), an agent (which could be a protein) takes an action in an 
environment (which could be 3D space). The action changes the agent’s state and given the 
agent’s new state, a reward, good or bad, is received. By learning which actions maximize 
its total reward, the agent can learn to accomplish its task as well as possible. The decision-
making in what actions to take to maximize its reward is called its policy, and the policy is 
what is continually updated during training. This way of learning is akin to how humans 
learn, as we also make decisions based on what has rewarded us (in general of course.) 
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3 Protein Structure Prediction 

Protein structures can be determined experimentally by techniques such as X-ray 
crystallography, Nuclear Magnetic Resonance (NMR) spectroscopy and Cryo-electron 
microscopy (Cryo-EM) but the process can often be laborious, time-consuming, expensive, 
or impossible owing to the difficulty of expressing and solubilizing certain proteins or in the 
various ways they need to be prepared. Computational structure prediction offers a less 
laborious, faster, and less expensive route to predicting protein structures but has remained 
a long-standing challenge of science24 owning to its inherit difficulty25 and its great potential 
for transforming the medicinal and biotech industry26. Recently, the problem of protein 
folding has been claimed to be solved with the advent of the deep learning model 
AlphaFold27 from Google's DeepMind group. In this chapter, I will describe different 
methods for protein structure prediction, starting from ab initio methods, and work our way 
up to the new DL-based models such as AlphaFold. A brief account of the history of 
structure prediction will be given through the CASP and CAPRI competitions. I will discuss 
the current limitations of AlphaFold and its protein complex prediction counterpart 
AlphaFold-Multimer28 in detail. Finally, I will discuss the prediction of protein assemblies 
and how we overcome some of the challenges of predicting large protein assemblies, as is 
done in Paper I. 

3.1 Pure Ab Initio Methods 
Ab initio is Latin and means “from first principles” and originally refers to modelling 
approaches where only the physical laws of nature are used. Nevertheless, nowadays, ab 
initio methods are used as an umbrella term that refers to methods that predict structure from 
sequence without starting from templates (template modelling is described later). In this 
section I will describe pure physics-based ab initio methods, and in the following section, 
ab initio methods that rely on database information. Pure ab initio methods commonly use 
an energy function in an all-atom representation, where the parameters are sampled by either 
MC or MD methods. The main advantage of pure ab initio methods is their ability to 
discover new folds and simulate folding without assuming knowledge of the underlying 
structure29. Nonetheless, while ab initio method has had success in predicting the structure 
of small proteins30, their extension to larger proteins remains challenging because of the 
large conformational space available29, 31. All-atom and energetic-based methods are 
however still important for local optimization, which occurs in the latter stages of prediction, 
where the model must be refined.  

3.2 Ab Initio Methods with Database Information. 
Data-driven models that build on existing sequence or structural database information have 
been a key driving factor in the field. This has been facilitated by the growing numbers of 
experimentally determined protein structures and available genome sequences over the 
years. Pure physics-based ab initio methods as described previously, can be improved by 
utilizing database information. Such database-based ab initio methods are often 
interchangeably called de novo methods, meaning ‘from the beginning’.  
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Major improvements in predicting protein structures have come from assembling them from 
smaller backbone fragments, usually 3-15 residues long. Using fragments in the modelling, 
a strategy also referred to as fragment assembly, is a strategy that has helped reduce the 
conformational space to search through. The concept is based upon the connection between 
the local structure of the backbone (𝜓, 𝜑) and the local sequence32. Instead of sampling the 
backbone coordinates directly, a library of fragments, based on the local sequence, can be 
inserted directly into the backbone.  

Major improvements derived from sequence databases have come from using 
coevolutionary information33. The concept is based on the idea that amino acids that are 
close in 3D space and interact are likely to mutate together. To find information on these 
covarying mutation patterns, the sequence of the protein of interest is matched to other 
similar sequences in a multiple sequence alignment (MSA), and the pattern can be extracted 
by looking for these changes in the MSA. A contact map is usually created from this which 
can then either be used for constraints or features in a DL model for instance.  

3.3 Template-based Methods 
With the growing number of experimentally determined protein structures over the years, of 
which are now in the hundreds of thousands, it has become more and more common to use 
existing templates to aid modelling. These approaches are called template-based methods of 
which there are two main approaches.  

3.3.1 Homology Modelling 

In the case where there is enough sequence homology (usually 30%) of the query sequence 
to another sequence with a known structure, homology modelling has traditionally been 
used34. Homology modelling is based on the idea that proteins that have similar sequences 
and are evolutionary related have similar structures. In homology modelling, a sequence 
alignment is created to find matching sequences to a query sequence. Aligned regions are 
then used to create an initial backbone structure, and unaligned regions, loops, and 
sidechains are then modelled, followed by a final energy refinement26, 29.  

3.3.2 Fold Recognition  

In the case where there are no homologous templates available, another approach called fold 
recognition (or threading)  can be used35. Fold recognition is based on the idea that that 
structure is more conserved than sequence, and that there are a limited number of protein 
folds in nature36, 37. In fold recognition, the query sequence is threaded onto a library of folds 
and the best match is found by evaluating it in the context of a knowledge-based score 
function26, 29, 38.  

3.4 Protein Docking 
So far, we have discussed the prediction of single-chain proteins and protein complexes 
under the same umbrella. However, protein complex prediction comes with additional 
challenges as one must not only predict the structure of the individual subunits but also the 
relative position of the subunits with respect to each other. Given this challenge, the subunits 
of the complex are often considered rigid bodies, and the main challenge is to find the best 
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6-dimensional parameters (3 translations and 3 rotations) of the subunits. The most 
successful strategies have been the use of Fast Fourier Transform (FFT)-based methods39. 
In FFT methods, the complex is sampled on a grid and docking models with good metrics 
such as shape complementarity and energetics are found40. Commonly visited FFT-based 
docking programs include for instance ClusPro41 and ZDOCK42. The advantage of FFT-
based methods is their speed, and they are often the first line of attack for complex prediction 
to find putative binding sites43. The main problem with FFT-based methods however is their 
lack of accountability for backbone and side chain flexibility44. By allowing some atomic 
overlap, also called soft docking, in conjunction with energetic refinement (such as with 
CHARMM45 in ClusPro) this can be mitigated to some extent40. Other methods allow 
flexible backbones throughout the protocol or for last-stage refinement through MD, MC or 
normal mode analysis (NMA)43. One way to incorporate flexible backbones, inspired by the 
conformer selection model46 is ensemble docking. In ensemble docking, different backbones 
are used throughout the sampling with the goal of the native being selected in the end. One 
example of this is RosettaDock which compiles backbones based on NMA, Backrup and 
Relax47, 48. Flexible backbone docking is still largely an unsolved field, and proteins 
undergoing large flexible changes remain challenging. Most docking protocols use coarse-
graining in the first part of the protocol. Coarse-graining has the advantage of mitigating 
some of the computational complexity, and smoothing out the landscape, but can in some 
cases miss the native state, as it could be hidden by the coarse-graining model. The real 
docking landscape is more accurately represented by an all-atom model, but this has not 
previously been computationally tractable before the later stages of docking.  

3.5 EvoDOCK 
EvoDOCK is a protein docking software that only uses an all-atom representation of the 
protein. It uses a memetic algorithm, which combines a differential evolution algorithm for 
global exploration, and a local search based on MC and gradient descent optimization49 (see 
also section 2.6 on evolutionary algorithms). EvoDOCK uses an ensemble docking-based 
strategy to sample different backbones, which are swapped out throughout the protocol, 
while it optimizes the 6 degrees of freedom describing the rigid body. In benchmarks, it 
showed improved accuracy and up to 35 times speed improvements over the most similar 
docking protocol RosettaDock 4.0 (However without the added motif dock score). It also 
showed similar accuracy to ClusPro, with better performance for some targets, albeit about 
twice as slow in general. Nonetheless, compared to ClusPro, it incorporates side chain and 
backbone flexibility in an all-atom mode throughout the protocol. We have extended 
EvoDOCK to model symmetrical protein complexes, to carry out the studies done in Paper 
I-III, and changes to EvoDOCK are highlighted in Paper I.  

3.6 Structure Prediction Competitions: CASP and CAPRI 
CASP (Critical Assessment of Structure Prediction) is a biannual protein structure prediction 
completion where research groups around the world attempt to make the best prediction for 
soon-to-be experimentally determined protein structures. The competition falls into two 
categories: groups that have three weeks to complete their predictions and online servers that 
must return their submissions within 72 hours. The competition started back in 1994 
(CASP1) with 35 participating groups but has in 2022 (CASP15) grown to approximately 
100 research groups. CASP divides its methods into mainly two categories; those that use 
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templates, called Template-Based Models (TBM) and those that are template-free, called 
template Free Models (FM). 

CASP has historically focused on the prediction of monomeric proteins and therefore 
CAPRI (Critical Assessment of Predicted Interactions) was initiated in 2001 for the 
prediction of protein complexes, with a similar competition setup to CASP. It runs its own 
competitions on a rolling basis but has merged its predictions into CASP when it rolls around 
biannually. Both CASP and CAPRI serve as the benchmark of the best-performing protein 
prediction models out there and are important events that gauge the current state of the field. 

3.7 Deep Learning and AlphaFold 
The account of the CASP competitions given here is based on the review by Wodak et al40. 
The first competitions CASP1 and CASP2 highlighted the challenge of using template-free 
models, with the only meaningful predictions coming from template-based methods for 
models with high homology to known structures. CASP3 and CASP4 saw improvements 
from better alignment tools, template usage and fragment assembly, but predicting structures 
with low homology remained challenging. In the following two decades, from CASP5 to 
CASP12, only moderate improvements were made, even with the introduction of co-
evolutionary data in CASP10. However, in CASP13 DL models had matured to the point 
where a breakthrough occurred. The initial implementation of the DL model AlphaFold 
(AF), and other similar DL models, showed significant improvements in the ability to model 
targets in the FM category. AlphaFold also fared well in the TBM category even though it 
did not use templates50. AF in CASP13 used a NN architecture, that relied on using co-
evolutionary data from MSAs, to build torsion-based constraints that could then be 
minimized with gradient descent to produce a final model. In the following competition 
CASP14, an even bigger breakthrough occurred as the successor of AlphaFold, AlphaFold2 
(AF2), blew the competition out of the water in all categories, as it achieved close to 
experimental level prediction accuracy for many targets. Differing from its predecessor, it 
now included templates, an improved transformer-based NN architecture, and an end-to-end 
implementation. After the results of the competition were revealed, AlphaFold2 was hailed 
as the AI breakthrough in science, and many considered the long-standing challenge of 
predicting protein structure from sequence to be solved.  

3.8 The Future of Protein Structure Prediction 
Even though AF2 was a quantum leap in our ability to predict protein structures, the problem 
is far from solved. After the initial hype of AF2 and its implementation into the scientific 
community, it became apparent that many issues were still there. AF2 cannot predict all 
structures correctly. Most of the human proteome (98.5%) has now been predicted with AF2 
but only about 36% of it can be predicted with high confidence51, 52. AF2 has not replaced 
experiments either, as they still serve as the gold standard for structure determination, while 
AF2 models mostly serve as hypothesis building53. It struggles to predict many classes of 
proteins such as proteins containing disordered regions such as loops32 or intrinsically 
disordered proteins54 and membrane proteins55. It is unable to predict non-protein 
interactions such as proteins with ligands, cofactors, metal ions, DNA/RNA and post-
translational modifications such as glycosylation, phosphorylation and methylation56. It only 
predicts a single conformer and it struggles to distinguish between apo and holo forms57 and 
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the effect of point mutations58. Finally, it requires quite extensive resources both in terms of 
storage for the sequence and template libraries but also for hardware.  

However, AF2 is continually being improved and its shortcomings are addressed, both 
internally by DeepMind (AF2 is now at v. 2.3) and externally by other researchers59, 60, 61, 62. 
It is still to date the state-of-the-art in structure prediction as no other method has so far 
matched its accuracy. In the most recent CASP (CASP15) all the best-performing models 
were based on AF263 (DeepMind did not participate). Nonetheless, other methods such as 
RoseTTAFold264 are catching up to AF2, and a new wave of exciting natural language 
processing (NLP) based methods such as ESMFold65 are faster and can predict structures 
from single sequences.   

So far in this history recap, I have left the very important discussion of protein complex 
prediction out of the picture. Predicting protein complexes is extremely important as most 
of protein functions are mediated either by transient or stable protein complexes66. 
DeepMind has recently launched AlphaFold-Multimer28 (AFM) which to date is also the 
state-of-the-art in protein complex prediction. However, there is still room for improvement 
in particular for larger protein complexes as performance rapidly declines after complexes 
with more than two chains67. 

3.9 Protein Assemblies: The Next Frontier 
Protein assemblies of multiple chains carry out many of the fundamental tasks of cellular 
functions. However, they are notoriously hard to predict because of their multiple subunits 
and their complexity. Advances have been made to address AFM's inability to predict larger 
protein structures. One approach is using sequential or combinatorial assembly approaches 
where subcomponents are predicted with AFM, and then sequentially connected by 
superposition (MolPC67) or transformations (CombFold68). MolPC for instance has proven 
to predict structures of up to 30 chains. ESMFold, RoseTTAFold2 and OpenFold69 are other 
examples of protein complex predictors, but their current ability to predict larger assemblies 
has to the author’s knowledge not been demonstrated. 

As addressed in Paper I, larger protein assemblies rely heavily on utilizing symmetry. A 
survey carried out in Paper I of protein assemblies in the PDB above 10 chains, revealed 
that 72% have global symmetry, 16% have local or pseudo symmetry, and only 12% are 
asymmetrical. Employing symmetry directly in the modelling of large protein assemblies is 
therefore very desirable. Efforts to model symmetry directly into AFM are being 
addressed70, but currently with poorer accuracy compared to AFM. In Paper I, we show 
how large assemblies of the most complex symmetry types can be predicted with high 
accuracy. These constitute, to the author's knowledge, the method that can predict some of 
the largest assemblies from sequence, or ab initio, to date.  
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4 Protein Design  

Natural proteins have evolved through biological evolution to carry out a particular function 
associated with the fitness of the organism. Humans have for a long time used these natural 
proteins, and repurposed them for our own benefit, for instance, to brew beer (thank you 
enzymes!). Nevertheless, repurposing natural proteins has its limits as evolution has only 
explored a fraction of the potential sequences and their usages. Protein design is a field that 
explores the realm beyond natural evolution, by either modifying existing proteins or 
creating new proteins from scratch. We already use modified proteins in our everyday lives. 
For instance, in our laundry detergents, we have enzymes that have been modified to work 
at different temperatures and pH, and in the textile industry, they are used to make our blue 
jeans look nice. Nonetheless, these are classic examples of modifying natural proteins. The 
design of completely new proteins, a field that is rapidly evolving, promises to completely 
revolutionize our lives through new medicines and novel applications.  

4.1 The Protein Universe 
It is helpful (and fun) to think about the vast space of different sequences we can explore for 
protein design as illustrated in Figure 8. Because evolution occurs by random mutation and 
natural selection, sequences tend to cluster around protein families (shown in brown), and 
this leaves a vast unexplored space of sequences available (shown in black). These 
unexplored regions of the protein sequence space have also been referred to as the ‘the dark 
matter’71 of proteins or the ‘never born proteins’72.  

 

Figure 8: The protein universe. 
The dark regions represent unexplored sequences and the clusters (brown) of existing native protein 
families. Native proteins, as evolved from evolution tend to cluster around protein families with similar 
sequences, folds and functions. Directed evolution starts from native proteins and can probe the 
surrounding universe (shown in pink). De novo protein design however does not need to start from 
existing protein sequences and can therefore explore any sequence in the protein universe. This 
illustration has been inspired by Huang et al73. 
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As we gaze into the darkness, we can ask ourselves how many proteins can we possibly 
design? Well, a simple protein with a length of 100 residues can have 20100 different 
sequences, a number that is vastly more than the number of atoms in the observable 
universe74. So that is a lot. However, most designed sequences are not able to fold into the 
intended structure, express, or even be soluble which is why designing proteins is really 
challenging.  

From humble beginnings, the field of protein design has come a long way, akin to the 
evolution of astronomy from rudimentary telescopes to sophisticated space missions. Today, 
the capacity to engineer an extensive array of new proteins stands as a testament to the 
monumental progress achieved as we will explore briefly. 

4.2 Computational Protein Design  
There are two ways to go about designing new proteins: experimental and computational. 
The most powerful experimental method for protein design is directed evolution75. Based 
upon the principles of natural evolution, a library of protein sequences goes through iterative 
rounds of mutation and screening for a particular desired trait. After several generations, this 
process can improve the performance of the initial protein, or even new functions can be 
obtained76, 77. Nonetheless, directed evolution requires starting with initial protein sequences 
and sequence exploration is often limited to the starting point (Fig. 8). Computational protein 
design (CPD) is done in silico, through smart algorithms and in some cases with the usage 
of high-performance computing. As the protein is designed in silico it doesn’t require initial 
starting sequences and we are free to explore any sequence of our imagination. Regardless, 
directed evolution is still a very important technique, and is often combined with CPD to 
address its shortcomings, in particular for downstream optimization.  

Before moving on, I will make two common distinctions between CPD methods. The first is 
perhaps better called protein redesign, as it deals with the modification of naturally existing 
proteins. A common goal is to either stabilize or increase the natural activity of a protein, but 
at the end of the day, the function of the protein is the same i.e., a better shovel is still a shovel. 
The second is de novo protein design. De novo is Latin and means ‘a new’ or ‘from the 
beginning’ and usually refers to the design of proteins with sequences, structures or functions 
not seen in nature before. The rest of the chapter will focus on CPD of proteins that have been 
designed de novo.  

4.3 A Brief History of De Novo Protein Design 

4.3.1 The Beginnings 

Before the efforts of designing new proteins could begin the stage needed to be set. From 
the late 50s and onwards, high resolution structures of proteins were achieved78 and in the 
70’s started to be catalogued in the PDB79. The ability to synthesize novel proteins came 
with the development of solid-state synthesis and later with gene synthesis. Computer 
power, along with the development of MM, MC and MD also needed to mature, as well as 
the understanding of protein folding and kinetics. Starting around the 80’s the scene was set 
for the first attempts at designing new proteins.  
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Initial efforts were focused on using simple physiochemical principles combined with either 
bioinformatical knowledge and/or rudimentary computational algorithms. One early 
pioneering example is the design of the 4-helical bundle, α4, by Regan, Ho and Degrado et 
al80, 81, 82, 83. In a series of studies starting in 1987, the 4-helical bundle was designed using 
simple chemical heuristics of packing hydrophobic residues on the inside, and polar residues 
on the outside. Additionally, they utilized bioinformatically derived helix-promoting 
residues, and very simple algorithms that were limited to only a few polar/apolar residues. 
The simple structure of the helical bundle was used as a model system for protein design in 
the early years. Coiled coils, a subtype of helical bundles, were particularly studied, and still 
are to this day. The simple sequence-to-structure relationship (such as the design of 
hydrophobic (h) and polar (p) hpphppp-heptad repeats and packing of the highly defined 
knobs-into-holes interactions) means that they are very amenable to be designed. The 
massive effort into studying coiled coils means that the sequence-to-structure relationship is 
now largely understood84. 

Now in the 90s. Following Morse's law, computer power kept increasing and algorithmic 
design kept evolving, such as through the dead-end-elimination85 and genetic algorithms86 
in combination with MC simulations. This meant that by 1997, the first complete redesign 
of a naturally existing protein, the 28-residue the Zn(II) finger was achieved by Dahiyat and 
Mayo87. In 2003, the first novel protein fold, an alpha-beta protein called Top7, was designed 
by Brian Kuhlman and David Baker et al. who used fragment assembly (see also Chapter 3) 
to sample the novel backbone88. They utilized Rosetta, created in 1998, for this purpose and 
Rosetta arguably became the most influential software for protein design in the following 
two decades.  

4.3.2 After Top7 

After Top7, the protein design field expanded rapidly and here is an account up until the 
recent introduction of DL-based design methods. With increased computer power, lowering 
cost of gene synthesis, testing of design principles, perhaps combined with increased interest 
and funding, meant more advanced design could be pursued. In this period, particularly 
through Rosetta, we saw the development of many kinds of de novo proteins. Many different 
assemblies were designed, from fibers89, 2D-arrays90, cages (reviewed in detail later), 3D-
crystals91 to recent examples of mechanical rotors92. Enzymes93 and ligand binding 
proteins94,  even ones that can imitate the functional properties of GFP95. Proteins with 
different folds from pure alpha96, to alpha-beta97 and purely beta98. Protein binders that can 
bind the stem of the influenza virus99, interleukins involved in cancer100 and more recently 
the corona spike protein101. Membrane proteins102, hyper stable mini proteins103, repeat 
proteins104, and recently protein switches105. In these last two decades de novo protein design 
came of age and CPD has proven to be a versatile technique for designing novel proteins.  

An attempt to enumerate all the great designs and breakthroughs made by a multitude of 
different scientists while keeping it brief (as promised in the title) will surely only do 
injustice. For excellent reviews on the de novo protein design field up until recent DL 
methods, I can refer the reader to reviews by Woolfson106, Huang73, Korendovych107 and 
Pan108. 
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4.3.3 Introduction of DL 

Protein structure prediction and protein design have always been tightly interwoven fields, 
with many groups dipping their toes in both (ours included). With DeepMind’s success in 
structure prediction in CASP14, the research into DL methods accelerated in the protein 
design field. After AlphaFold, many different DL-based methods for backbone and sequence 
design started to appear (see Ferruz et al.109 for an excellent review) based on many different 
architectures such as CNNs, VAEs, GANs, GNNs and Transformers. Initially, however, 
experimental validation was lagging. Experimental validation has always been a cornerstone 
of the protein design field as it is the ultimate test of the method. Experimental testing allows 
us to assess the real-world behaviour of the designed protein, such as solubility and 
expression levels, and we can check if the experimental structure matches our design. Many 
DL-based sequence design algorithms, for instance, are often benchmarked on their native 
sequence recovery (NSR) capabilities. However, the ability to recapitulate native sequences, 
which is usually not better than ~50%, does not necessarily translate into real-world success 
when the proteins are made in the lab. Therefore, it has not been until recently that the new 
DL-based methods, which have been tested and validated in the lab, have started to be widely 
adopted.  

Recently, the DL-based structure prediction network trRosetta was essentially trained to run 
in reverse to ‘hallucinate’ new proteins110. The method was experimentally tested to produce 
accurately predicted structures. Later, RoseTTAFold, trRosetta’s predecessor, was similarly 
run in reverse to design proteins to scaffold functional sites using methods called constrained 
hallucination and inpainting with designs also being experimentally validated111. The most 
recent example is the development of RFdiffusion112. RFdiffusion is essentially a general 
design DL-software that can be used for a wide range of different protein targets. It uses a 
diffusion model, where RoseTTAFold is used to iteratively denoise a noisy signal to finally 
produce a protein. It can design proteins with de novo folds and has shown significant 
improvements to previous methods such as hallucination. While the authors of RFdiffusion, 
experimented with both backbone and sequence design, better sequence design performance 
was achieved through another DL-based method called ProteinMPNN113. Both RFdiffusion 
and ProteinMPNN have been experimentally validated and are the current state-of-the-art in 
backbone generation and sequence design, respectively.  

4.4 Old and New 
The last couple of years have been a transition period where DL-based methods have slowly 
started to take over the protein design methodology. However, the conventional strategy is 
still relevant and is being used alongside the current DL-based methods. Here I think it is 
useful to juxtapose the pure conventional design methodology with the newer pure DL-based 
methodology to highlight how they differ. The two methodologies are shown in Figure 9 
and are divided into three in silico stages of protein design: backbone design, sequence 
design and evaluation. 

4.4.1 Conventional Design Strategy 

In conventional protein design, a backbone is generated either using backbone templates 
from the PDB, or de novo by fragment assembly utilizing a blueprint114. Once a satisfactory 
backbone has been acquired, a sequence is designed onto the backbone using a score 
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function that optimizes the combination of amino acids and rotamers given the backbone. 
The most widely used design algorithm before ProteinMPNN was the FastDesign115 
algorithm, implemented in Rosetta, which combines an iterative sequence search with a 
backbone search. Finally, the evaluation of the designed models involves a combination of 
structure prediction, filters, and human intuition. For smaller proteins, the structure of the 
designs can be predicted using ab initio predictions, with the goal of the predictions 
matching the designs. This is also called forward folding. Filters are also extensively applied 
depending on the design targets. In Figure 9, common filters for designing assemblies are 
highlighted, which include the bound-unbound energy difference (∆G), change in Solvent 
Accessible Surface Area (∆SASA) and Shape Complementarity (SC). At the very end, 
human intuition is applied by manually looking at the structures through graphical software, 
to assess which proteins should be tested experimentally. 

4.4.2 DL Design Strategy 

In comparison, DL methods generally start out with an NN that generates a backbone, with 
the current state-of-the-art being RFdiffusion. This is then followed by another NN that 
generates the sequence, with the current state-of-the-art being the message passing NN 
ProteinMPNN. Finally, AF/AFM is used to predict the structure and the design is compared 
to the prediction through RMSD, predicted LDDT (pLDDT) and predicted TM (pTM). 

 

Figure 9: Design methodology for conventional and DL-based protein design.  
a: Pure conventional design (blue) and pure DL-based design (green) methodologies juxtaposed. The 
three stages of protein design are shown in brown. In parenthesis, the state-of-the-art methods are 
highlighted. The components are discussed in the text. b: Examples of design heuristics. Negative design 
heuristics are measures that disfavour other states than the design target, while positive design heuristics 
are measures that favour the design state. Other design heuristics include physiochemical and 
bioinformatical measures and more specialized ones that relate to the target being designed. In the 
conventional design strategy, these are explicitly modelled, while in the DL methods, these are implicitly 
learned. 
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Protein design has always been a bit of an art form, where several design heuristics, gathered 
over decades of experimentation, had to be explicitly implemented in the design procedure 
(Figure 9). A good example of this is the Rosetta XML-scripts116 which easily could be 
several pages long, specifying which heuristic should be applied where and when. 

In contrast, the DL-based methods can learn at least some of these heuristics during training, 
and most likely, extract information beyond what we currently can understand. 

4.5 Design of Protein Cages. 
Now that we have reviewed the field at large it is time to be specific. In paper III we 
designed protein assemblies which are part of a larger class of proteins that are commonly 
called polyhedral assemblies or cages. Cages are roughly spherical protein assemblies with 
a hollow container and at least 2 unique interfaces117, 118. Natural examples include viral 
capsids (see also Chapter 1), ferritin119, clathrin120 and bacterial microcompartments121. 
There has been considerable interest in de novo designing protein cages as their architecture 
lends itself to many different applications. Their surface can be used as a display scaffold 
for applications such as antigen presentation for vaccines122 and their interior used as a 
delivery vehicle in drug delivery122 or as nanoreactors123. Here I will review the literature 
for the de novo design of protein cages.  

I have divided cage design into 6 main strategies that are employed. Two based on a genetic 
strategy: Oligomer-fusion and Coiled coils mediation. Two based on designing the interface 
between building blocks: Metal coordination and Protein-Protein-Interface (PPI) design. 
One intermediary between the fusion and interface design: Rigid hierarchical fusion. The 
last of the 6 categories is the new versions of cage designs that are based on DL frameworks: 
DL-based design.  

As I go along, I will discuss their advantages and limitations. At the end of the review, I will 
come back to how Paper III fits into the picture.  

4.5.1 Oligomer-Fusion 

The simplest strategy in cage design is to genetically fuse natural protein oligomers together 
through a semi-rigid linker such as an alpha-helix124. In this case, the natural protein 
oligomer constitutes one of the interfaces and the fusion interface the other, and the semi-
rigid linker helps preserve the structural integrity to some degree. The main advantage of 
this strategy is its straightforwardness and simplicity. However, as rigidity is only partly 
preserved, one of the limitations of oligomeric fusion strategies is their structural 
polymorphism. This makes it difficult to control the final shape and can make the cage 
difficult to characterize structurally. Any small flexibility will propagate throughout the 
assembly making it difficult to design larger assemblies125, 126, 127. 

Recently, it was shown that by fusing 3 independent domains together, it was possible to 
create an icosahedral cage consisting of 60 subunits128. Nevertheless, it still showed 
substantial flexibility and asymmetric deformation. Another limitation is that the linkers 
used should end in a helical conformation and the connection point should be accessible for 
the oligomers to be connected. 
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4.5.2 Coiled Coils Mediation 

Another strategy, akin to the oligomer-fusion strategy, is to use coiled coils, either using 
orthogonal pairs129 or non-orthogonal pairs130, 131. This approach has been combined with 
disulphide bonds to create very large (100 nm) protein cages132 similar to how DNA origami 
structures133  are assembled to create cage structures.134  Coiled coils are well-studied and 
their amenability for designability, orthogonality and varying oligomerization states make 
them attractive building blocks. Nevertheless, as a fusion strategy, they can suffer from 
similar flexibility problems as the oligomer-fusion strategies.  

4.5.3 Metal Coordination 

One non-genetic fusion strategy, but an interface design strategy, is to mediate the interfaces 
between protein scaffolds through metal sites.135 Examples include coordination through 
Zn2+ and Cu2+ to create a tetrahedral cage136, Zn2+ and Fe3+ to create octahedral cages137 and 
Au2+  and Hg2+ to create even higher order symmetries138. Metal-coordinated cages are 
particularly interesting because the interface design only requires designing around the 
binding motif.  

Metal coordination lends itself very well for switching mechanics as the metal can easily be 
removed via different mechanisms such as by chelation136. Nevertheless, metal coordination 
does have limitations. First, the protein backbone scaffolds need to have specific orientations 
to accommodate the metal ions. Second, there is only a limited amount of metal ions that 
can be used, limiting the total structural design space.   

4.5.4 PPI Design 

Protein-protein interface design relies on computationally designing the interface between 
existing oligomers. This has been a very successful strategy and many kinds of different 
symmetrical cages have been designed, from single component structures139, 140 to two-
component structures141, 142, to more recent structures incorporating quasi and pseudo 
symmetry143. Two steps are employed: First, a symmetrical docking step followed by a 
design step. Docking strategies have evolved from TCDock142, to sicdock144, to recently 
RPXDock145. Sequence design has evolved from versions of FastDesign but is now 
switching to ProteinMPNN. PPI design has proven to be a very powerful approach, creating 
very stable assemblies, with applications that are now being explored in areas such as drug 
delivery146 and vaccine design147. Traditionally, natural protein oligomers have been used to 
form one interface while the other has been designed. Multiple interfaces can be designed in 
a 2-step process by first designing 1 oligomer (with C5 symmetry for instance), followed by 
then designing it into a cage143. While PPI design is versatile, they are perhaps the most 
complicated to design with a success rate of about 10% per design148. 

4.5.5 Rigid Hierarchical Fusion   

Rigid hierarchical fusion is an approach that rigidly fuses (HelixFuse) or docks (HelixDock) 
together a combination of designed helical repeat proteins (DHRs)149 and helical bundles 
(HBs)96, 150, 151, 152 using a computational search and sequence design strategy called 
WORMS153. These designs have been used to create cages with different symmetries153, 154, 
and recently combined with antibodies to create functional cages155. These designs are 
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generally more rigid than previous linker-based designs but also involves more 
computational design, which makes them less straightforward. As the linkages are designed 
and fused on the computer, they do offer flexibility in their designability of shape and 
structure, but as connections must be made by helical fusion it limits the total structural 
design space. Nonetheless, these systems are very modular, particularly with the new wave 
of designs that show very high modularity156 and the possibility to incorporate 
pseudosymmetry157. 

4.5.6 DL-based Designs 

Hallucination is currently not able to produce high-order symmetries112, 158, but mainly two 
other strategies have been applied to cage design. The first is RFdiffusion, which can 
generate structures from scratch. The second is a top-down method that combines 
reinforcement-based learning with a Monte Carlo Tree Search (MCTS)159. Interestingly, in 
the MCTS strategy, different architecture constraints can be implemented in the loss 
function, such as shape and porosity of the capsid. The method can design small novel cages 
with very low porosity. While RFdiffusion and the MCTS method can design novel 
structures, the success rate is much lower than previously PPI designed structures. Another 
interesting diffusion-based model that is worth mentioning is Chroma160, developed by 
Generate Biomedicines.  It can generate very large, virus-like structures but lacks current 
experimental testing and has not yet been peer-reviewed. 

 

Many different methodologies have been applied to design cage structures with varying 
levels of benefits and limitations. It is paramount that if we want to make cages that can be 
used for a myriad of different applications, we need to develop techniques that can better 
control the overall structure. A main feature of most of the cages designed to date, is that 
they are very porous, which doesn’t lend itself to applications, such as in drug delivery of 
small molecules, where the interior need to be sealed. To date, the MCTS has been the best 
strategy to address this problem, but the success rate is very low, which currently makes it 
not very generalizable.  

One of the reasons for the higher success rate of the PPI design strategy is the use of pre-
existing protein structures. Nevertheless, using pre-existing protein structures to design low 
porous cages has not been demonstrated, as it requires designing multiple interfaces and 
exquisite control of the protein shape. In Paper III we demonstrate how using existing 
natural protein scaffolds, combined with a shape-based protein design strategy, can yield 
structures with a wide range of shapes, sizes, and low porous assemblies.  
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5 Summary of Research Papers 

Here I report the findings, and future directions of the Papers I, II, and III. Additional 
background for the papers can be found in Chapter 6. This includes the scoring metrics that 
are commonly used in docking benchmarks (such as in Paper I) and a mathematical 
description of the geometric shape matching in Paper III. 

5.1 Paper I 
In the last couple of years, we have seen a revolution in the protein structure prediction field 
with the introduction of the deep learning models AlphaFold (AF) and AlphaFold-Multimer 
(AFM). They both serve as state-of-the-art in monomeric and multimeric protein structure 
prediction respectively. Nonetheless, AFM shows declining performance the more chains 
that are modelled, and it has not been trained on structures above 9 chains and 1536 residues. 
Advances have been made to extend the performance of AFM by predicting subcomponents 
of larger assemblies. For instance, by predicting dimers and trimers, and then connecting 
them in various ways as discussed in Chapter 3. for MolPC and CombFold. This has meant 
that now up to 30 chains can be predicted in some cases. Nonetheless, prior to Paper I, the 
subcomponent assembly strategy had 2 major limitations. First, unrefined errors in the AFM 
predictions can lead to error propagation and mean the prediction of larger and larger 
assemblies can become difficult. Second, for protein complexes with multiple interfaces, 
one needs to rely on predicting more than 1 interface, which can be hard to extract from 
AlphaFold-Multimer.  

In this study, we focus on some of the most complex protein assemblies in nature: cubic 
symmetrical assemblies (see Chapter 1.). We show how assemblies of up to 60 chains, 
including viral capsids, can be predicted with high accuracy. We predict monomeric and 
multimeric subcomponents from AF/AFM and arrange them and dock them symmetrically 
using SymEvoDOCK, a symmetrical extension to EvoDOCK (see Chapters 2 and 3) which 
features improvements in several areas for docking symmetrical protein assemblies. 

Iteratively docking the assembly can reduce error propagation introduced by AFM, which 
combats the first problem of the subcomponent strategy. Additionally, utilizing symmetry 
for large assemblies is widely applicable for large protein assemblies as most protein 
complexes over 10 chains are symmetrical as discussed in Paper I. 

We describe 3 areas of applications: local recapitulation, local assembly, and global 
assembly. Local recapitulation can be used to study energy landscapes by re-docking crystal 
structures or the like (as is done in Paper II for viral capsids). Local assembly can be used 
to refine protein structural models, for instance, Cryo-EM models, which have become a go-
to method for large protein assemblies.  Lastly, with global assembly, we show how large 
protein assemblies can be predicted ab initio, directly from sequence, without using 
structural templates. We also show that this can be accomplished by utilizing only 1 AFM 
prediction, combatting the second problem of the subcomponent strategy. 

On a benchmark of 27 cubic symmetrical structures, we show that 22 out of 27 can be 
predicted below 2.0 Å RMSD with local recapitulation, with the remaining structures being 
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between 3.6-9.4 Å RMSD. For local and global assembly, we cluster the results based on 
the 6 rigid body degrees of freedom into 5 clusters and output the best models in those 
clusters according to the interface score (Iscore). The Iscore is the Rosetta energy term 
between the bound and unbound state. We present both the best ranked model of the 5 
according to the Iscore, and the best model of the 5 according to the metric we are looking 
at: TM-score, RMSD, and DockQ (see the additional background for how they are 
calculated). We write both the value of the metric as the best ranked model with regards to 
the Iscore, and the value of the best cluster model according to the metric separated by a 
dash (“/”). For local assembly, we find that we could predict structures with a median TM-
score of 0.99/0.99, median DockQ score of 0.76/0.82, and median RMSD of 1.5/1.2 Å on 
the set of benchmark structures described previously. For global assembly, we find a median 
TM-Score of 0.99/0.99, DockQ score of 0.72/0.80, and RMSD of 1.6/1.5Å. 

We also predict the subcomponents, consisting of the monomer, the 2-, 3- and 5-fold 
interfaces of 111 different cubic protein structures with AF/AFM. We find that AF/AFM 
can predict the subcomponents of cubic structures very well. In 78% of the cases, monomers 
can be predicted well (≤ 2 Å RMSD) to the native and in 72% of the cases, at least 1 interface 
can be predicted with AFM (≤ 2 Å RMSD). 

Since our method is built on top of AF/AFM, we selected benchmark structures based on 
the ability of AF/AFM to predict them well, according to their quality metrics (pLDDT ≥ 90 
and ipTM + pTM ≥ 0.9). However, not all sequences can be predicted with AF/AFM, but 
we find that 57% of cubic structures can be predicted to the level required for our benchmark 
set.  

With everything taken together, we expect that 44%-50% of cubic structures can be 
predicted ab initio with the method presented here. However, while the benchmarked 
structures are themselves not in the AFM training set, they can share sequence homology 
with structures in the training set. However, the list of PDB depositions in the AFM training 
set has not been released so we cannot control for that. We calculated the sequence identity 
to all PDB files that could potentially be in the AFM training and focusing on the success 
rate for low homology structures (≤ 30%) yields a success rate of 22% - but this is largely 
due to poorer AFM predictions.  

5.2 Paper I: Future directions  
The most obvious next steps would be to generalize this method to other symmetrical 
assemblies such as assemblies with cyclical, dihedral, helical and crystal symmetry. The 
assemblies predicted here are also the simplest kind of cubic assemblies as they consist of 1 
single homomeric subunit. Larger cubic structures or other symmetrical structures can have 
multiple subunits and be heteromeric as well. It would be possible to extend the method to 
larger assemblies, either by introducing more degrees of freedom, or perhaps better by 
treating parts of the structure as a single component, and then dock them as described here. 
For instance, a heteromeric capsid consisting of 2 unique subunits can be predicted with 
AFM and treated as a single subunit during docking. 

Some symmetrical systems, in particular larger capsids, also utilize pseudo- or quasi-
symmetry (see Chapter 1.). The symmetry machinery described here is built on Rosetta. 
While the ability to model quasi/pseudo symmetry has not previously been implemented in 



32 

Rosetta, efforts are underway to design pseudo- and quasi-symmetrical structures by Rosetta 
community members143.  

One thing that is not mentioned in the paper is that in practical use cases, the stoichiometry 
and symmetry type need to be known beforehand, as these are fixed in the simulation. The 
user can, however attempt different symmetries and stoichiometries and pick the best model 
from that (for instance, through the Iscore). The stoichiometry can be determined by many 
different experimental techniques such as mass spectroscopy, analytical ultra-centrifugation, 
or size exclusion chromatography. The identification of stoichiometry and symmetry can be 
aided by sequence searches to homologous structures. I expect that the determination of 
symmetry or stoichiometry in advance is an area where DL-based methods can aid the 
method in the future. 

The method described here could be benchmarked against existing tools such as CombFold 
and MolPC, which are described in Chapter 3. For instance, MolPC showed good 
performance on symmetrical structures. Symmetrical structures can be easier to predict than 
larger asymmetrical structures since they have, in general fewer unique interfaces. 

Some modifications to the code would also be beneficial. For instance, while it is useful to be 
able to predict from single subcomponents alone, being able to additionally utilise multiple 
subcomponents will surely be beneficial. These could be used to start the search around those 
predicted interfaces and constrain and limit the search space. The ‘termini-cutting’ method 
described in Figure 3 in Paper I is a bit rudimentary and can be improved. It only considers 
the monomer, even in a complex. This is a disadvantage if the terminus forms significant 
interactions with its neighbours. 

Developing a metric to pick out the best models based on more than just Iscore alone would 
also be beneficial. A confidence metric such as AF’s pLDDT would also be desirable.  

5.3 Paper II 
Virus capsids exhibit some of the most complex self-assembly and disassembly mechanisms 
in nature. The assembly/disassembly mechanism is ultimately encoded in the protein 
interfaces, which for the simplest T1 virus capsid (see Chapter 1.) are the 5-, 3- and 2-fold 
interfaces. In this study, we carried out a comparison analysis of these interfaces in T1 
capsids and compared them to regular homomeric structures with C5, C3 and C2 symmetry. 
We wanted to see how they differ in order to get insight into the evolution of capsid 
structures and the assembly mechanisms. We analysed the binding energy, shape 
complementarity, interface size, number of contacts and amino acid compositions.  

We found that viral interfaces are larger than their non-viral counterparts (especially the 3-
fold). We also found differences in the amino acid compositions: capsid interfaces have more 
hydrophilic interfaces and are more proline enriched. Previous studies have suggested that 
larger interfaces in assemblies are more likely to be conserved161, which in this case could 
indicate that the 3-fold interface is the driving block for evolution. The enrichment of proline 
could help the capsomers to conform to its many interfaces since it can drastically change the 
direction of the backbone. 

We did not find any evidence for the quality of the interfaces being different in terms of 
binding energy or in their shape complementarity. This was surprising since experimental 
data and theoretical considerations10, 162 have indicated that these interactions are weak. We 
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hypothesise that the reason behind this could be due to two things unaccounted for in our 
free energy models: First, the long-range electrostatic forces, which we have used to model 
the binding energy. Second, the large conformational change and entropic cost of binding. 

Furthermore, we analysed the energy landscapes by running SymEvoDOCK simulations 
(developed in Paper I) and found that capsids have deeply funnelled energy landscapes. 

5.4 Paper II: Future directions 
In general, some of the calculations could be improved. For the amino acid composition, we 
only considered amino acids with CB atoms in the interface, ignoring glycine. Glycine 
should be added to the discussion on polar/apolar interface differences, and it would be 
interesting to see if viral capsids are more glycine-rich than their non-viral counterparts. 
Glycine is the most flexible amino acid. If we saw an enrichment in capsid interfaces, it 
could be a contributing factor to the hypothesis raised that capsids use particular residues in 
the backbone, such as proline, to conform to the backbone.  

The computational models used to model the binding energies could also be improved to 
give more insight into the two hypotheses raised about the electrostatic and entropic 
contributions of binding. Backbone relaxation can be added to the energy landscape analysis 
to assess what effect it would have on the assembly process. 

5.5 Paper III: 
Protein encapsulation systems, such as virus capsids, can be used for many applications (q.v. 
Chapter 4.). This includes uses as drug delivery systems or as scaffolds for powerful 
vaccines. Natural protein capsids can be used for these purposes, but evolution has optimized 
them for the fitness of the virus, and their usages are inherently limited. We wish to design 
them for new purposes with new architectures and functions. A fundamental challenge in 
protein design is to create encapsulation systems (also referred to as cages) with low 
porosity. This is a requirement for many applications, such as the delivery of small-molecule 
drugs. The problem with the design of cages is that you need to design multiple interfaces 
to achieve low porosity. This requires exquisite control over the shape of the subunit as it 
needs to fit into place with its many neighbours. 

In Paper III, we describe a method to design cages with low porosity based on a principle 
we call shape-based protein design. The idea is based on geometric shape matching, for 
which the principle is first: to define what kinds of shapes can fit into a protein cage structure, 
and second: to find proteins with those shapes. The shape matching needs to be fast, and to 
this end, we use Zernike-Canterakis shape Descriptors (ZCD). In the additional background 
section in Chapter 6. this is described in further detail. 

In the paper, we describe three approaches to designing protein cages based on shape. The 
first strategy is to use shapes of native capsids, as they often have shapes that are compatible 
with low porosities. The other two are based on 2D or 3D shapes, which can be simulated to 
achieve any characteristic desired, including low porosity.  

In this paper, we explore the first strategy: creating new cage structures based on the shapes 
of native protein capsids. We designed 358 structures with a variety of shapes, sizes, 
porosities, and with different folds. We compared them to native capsids and found they 
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have similar binding energies, shape complementarity and other structural properties. 
Furthermore, we discover that they have porosities similar to native capsids.  

In the paper, we selected eight designs to analyse in detail based on their properties for being 
experimentally testable. One of the designs can be recapitulated in silico from AFM and 
forward docking using SymEvoDOCK. While it is not discussed in detail in the paper, these 
eight designs have been experimentally tested, and the results are under consideration (see 
next section).  

5.6 Paper III: Future directions 
The direction moving forward is two-fold. First, the computational protocol needs to be 
optimized. Second, we need to test more designs experimentally. When I left the project to 
focus on Paper I and III, the usage of DL-based tools for protein design and prediction of 
multimers was limited. Now, ProteinMPNN has become the state-of-the-art protein design 
method, and AFM has emerged as a useful tool to predict the structures of protein 
complexes. Implementing these two tools in the pipeline is going to be crucial. AF and AFM 
can be used for in silico screening. Only designs with a well-predicted monomer and at least 
one correct interface prediction should pass. One downside of AFM is that it can be time-
consuming when screening many designs. As a first screen, ESMfold could perhaps be used. 
It is not quite as good as AFM, but it is very quick. A potential issue with AF/AFM in our 
pipeline is that we use building blocks from known protein structures, which could be 
available in the AF/AFM template library. Thus, AF/AFM could, to some degree, just report 
what it finds in the template library if the sequence has not been changed sufficiently.  

How ProteinMPNN should be implemented in the protocol is under consideration. It can be 
used while docking before and/or after. The D1/D2 design strategy described in the paper is 
a little crude and will likely change completely in the future. ProteinMPNN is a fixed-
backbone design algorithm and can be combined with a relax protocol, which has been 
reported elsewhere163. This might be crucial for our goal of designing cages as the backbone 
taken from existing structures (the PBBs described in the paper) needs to conform to the 
multiple interfaces. Another consideration is that, unfortunately, there’s no good correlation 
between the shape descriptor used, the shape alignment score from ZEAL, and the metrics 
used for design validation (binding energy, etc.) for the designs, as shown in Figure 10. One 
caveat is that we did not restrict the docking space locally around the shape alignment, which 
could obscure the results here as the structures can move away from the shape they were 
aligned into. 

This problem can also be intrinsic to ZCD itself. ZCD is just one of many shape descriptors, 
and we might consider using other ones in the future. Nonetheless, the resolution of ZCD 
can be increased in various ways. In the paper, we have used a low shape resolution, and 
increasing the resolution could potentially help to correlate the metrics better. 

The other next challenge is experimental testing. The eight designs that are considered ready 
for experimental testing in the paper have been tested in the lab. The design called d2qeya2 
was synthesized but was not very soluble. Two of the other designs show soluble expression, 
but the results need to be re-tested. ProteinMPNN has shown improved solubilization, which 
surely will be important in our case. Outside the designs discussed in the paper, we have 
tested the redesign of native capsids, where the interface was redesigned. 4/10 redesigns 
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show soluble expression. Thus, we do have initial data that these could work in the lab and 
that our design methodology is sound.  

 

Figure 10: Zeal score and ZCD distance vs design quality metrics. 
The top row shows the ZEAL score vs the Rosetta score, the total binding energy (∆𝐺), and shape 
complementarity (for the 5-fold interface only) for the D1 designs (see paper). The bottom row shows the 
shape match ZCD distance (see additional background) between the same metrics for D1 designs. The 
darker line shows the linear fit, and the shadow is the confidence interval. 
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6 Additional Background 

6.1 Comparison metrics 
When predicting the structures of proteins, it is important to evaluate how well the predicted 
models fit the experimentally validated structure. Usually, a form of distance metric or 
similarity metric is used. Here, I present 4 of such metrics.  

6.1.1 RMSD  
The most common distance-based metric is the Root Mean Square Deviation (RMSD). 
RMSD can be calculated over all atoms or a given subset of atoms, most commonly the C𝛼. 
The model and native coordinate atom pairs are superimposed on each other according to 
the atom selection of size n, and the RMSD is calculated as: 

 𝑅𝑀𝑆𝐷 =	j
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Where 𝑑! is the distance between the atom pairs. In structure prediction, it is common to plot 
the energy against the RMSD of all predictions to confirm that the energy function correlates 
with native structure similarity and to check that the energy function can pick out the most 
similar models.   

6.1.2 TM-score 

RMSD is a very crude measure of similarity, as local dis-similarity can affect the global 
similarity 164. This is often the case for the termini, which are often very flexible and, 
therefore do not have a fixed orientation. TM-score165 (template modelling score) is a metric 
that attempts to alleviate this issue by calculating 𝑑! as an inverse square. It uses a set of 
residues called a template to match the model onto the native structure. It is defined as:  

 𝑇𝑀𝑠𝑐𝑜𝑟𝑒 = Max

⎣
⎢
⎢
⎡ 1
𝐿A
	0

1

1 + q𝑑*𝑑C
r
+

D#

*B: ⎦
⎥
⎥
⎤
 (	6.2	)	

Where 𝐿' is the sequence length of the native structure and 𝐿( the length of the aligned 
residues (the template) of the model. 𝑑! is again the distance between the native and the 
aligned residues, and 𝑑) is a scaling factor that depends on 𝐿'. “Max” refers to the procedure 
of identifying the best superposition of the native structure and the model. The TM-score 
ranges between (0, 1], where 1 is the best score. TM-align166 – an alignment software based 
on the TM-score, is often used to find the best template to match the model onto the native.  

6.1.3 lDDT 
Instead of considering the global similarity, one can also consider local similarity. The local 
Distance Difference Test (lDDT)166 is one such metric. It measures how well local atom pair 
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distances are preserved in a model compared to the native structure. Each pairwise atom 
distance is calculated in the model within four different radius thresholds (called the 
inclusion radii). If the atom distances are preserved compared to the native structure within 
a distance threshold, the distance is set to be preserved else non-preserved. The average 
fraction of preserved to non-preserved atom pair distances for the four different radii 
thresholds is the final lDDT score.  

6.1.4 DockQ  
So far, we have discussed metrics for both monomeric and multimeric protein structures. 
The most widely accepted score for docked protein models is the DockQ score167. It 
considers the interaction between a dimer where the largest chain is referred to as the 
receptor and the smaller the ligand.  It uses inverse square scaling, similar to the TM-score, 
of the RMSD, which is here called RMS (as in the original article) given by: 

 𝑅𝑀𝑆0E24/.(𝑅𝑀𝑆, 𝑑*) =
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Where 𝑑! is a scaling parameter that determines how quickly the RMS approaches zero. The 
DockQ score is calculated as:  
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𝐹*+, is the fraction of native contacts that are preserved in the predicted interface defined by 
any heavy atoms within 5 Å. LRMS and iRMS are the RMSD of the ligand and of the 
interface, respectively, which in this case is defined by contacts within 10 Å. 

6.2 Shape Matching 
The idea behind shape matching is that a shape, such as the molecular surface of a protein, 
can be represented with a simple shape descriptor format, which can be quickly compared 
to other shapes. In Paper III, we use Zernike-Canterakis (ZC) shape descriptors168, which 
have many desirable features for protein shape matching169: 

Descriptive power: The descriptor can describe the shape well. 

Compactness: It is easy to store computationally and quick to compare. 

Rotational invariance: It does not depend on the orientation of the object.  

The idea is to project a shape function: f(r), into a linear combination of ZC polynomials 
Z*-.(𝑟) weighted by ZC moments Ω*-.  which can be written as: 
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The ZC polynomials ( Z*-.(𝑟) )  are themselves functions that represent a shape and are often 
called 3D Zernike functions. The above equation approximates the real shape, and the higher 
the value of N, the better the shape is described.  
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Since the ZC moments Ω*-.  are the weights, the values of those are what we can use to 
describe and compare shapes. However, the ZC moments are not rotationally invariant, so 
we need another step to make them so. The ZC moments are collected into 2l + 1-
dimensional vectors: 

 Ω)4 = {
{

Ω)44

Ω)44#:

Ω)44#+
⋮
Ω)4#:

{
{
 (	6.6	)	

By taking the norm of them, we can define a rotationally invariant feature vector F*-: 

 F)4 = ~
~

Ω)44

Ω)44#:

Ω)44#+
⋮
Ω)4#:

~
~

 (	6.7	)	

These feature vectors: F*- , are collected into our final ZC shape descriptor (ZCD) vector: 

 ZCD = [FCC, F+C, F++, F@:, F@@, … ] (	6.8	)	

The number of elements in a ZCD vector is described by its order: n, which is given by 
(n+1)/(n+4)/4 for odd n and (n/2+1)2 for even n. In Paper III, we use n = 20, an even 
number, which results in 121 elements. The more alike the numbers in the ZCD vector of 
two shapes are, the more alike these shapes are. The simplest comparison metric of two ZCD 
vectors is the Euclidian distance, which is also the distance metric used in Paper III. 
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7 Conclusion 

In Paper I, we developed a method to predict large cubic symmetrical protein structures 
such as virus capsids from sequence. The method highlights how combining classical 
methods with deep learning approaches can be synergistic. Furthermore, the method 
described here can readily be extended to other symmetries and larger structures. New 
viruses emerge every year and give rise to a large number of human diseases. Being able to 
quickly predict their structure can help us to rapidly develop drugs to respond to them.  

It is also important to understand the assembly mechanisms, which was done in Paper II. 
While the paper might have raised more questions than it answered, it gives an insight into 
the energy landscapes and differences between their interfaces compared to regular 
homomers.  

While most people are horrified by viruses, we must not forget they are marvellous feats of 
natural engineering. They are small nanocontainers which can be used to deliver drugs or as 
vaccine scaffolds. While nature has evolved them for a limited range of uses, we wish to 
design them for new purposes with different architectures and functionality. In Paper III, 
we did just that. By explicitly modelling the shapes of the proteins in the capsid, we were 
able to create a range of different structures with different shapes, porosities, and sizes. 
These have characteristics similar to native capsids. We selected eight designs from our 
design pipeline, which are currently being experimentally tested in our lab.  

While Paper I is a finished project that is currently in review, Paper II and, in particular, 
Paper III are still ongoing projects. While Paper II needs some finer adjustment before 
submission, Paper III need further work. As mentioned in Chapter 4., computational protein 
design is crucially linked to experimental testing. As described in Chapter 5. on future work 
for Paper III, we still want to improve upon the computational pipeline and incorporate 
many of the new DL-based tools into the pipeline. Also, more designs need to be tested.  
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8 Outlook 

In this thesis, we have explored different fields. In Paper I, we developed tools for predicting 
protein structures. The protein structure prediction field is moving incredibly fast. It is even 
too fast for peer review, and to be at the forefront, you must be able to discern the validity 
of preprints on bioRvix. For instance, AlphaFold-Multimer has, as of writing, not been peer-
reviewed but is currently in routine use by many research groups around the world.  

The field has also entered a new era. Big Tech companies such as Google (AlphaFold) and 
Meta/Facebook (ESMfold) have entered the arena and are pushing it to new horizons. These 
companies have the capacity to put many top scientists and engineers together for a single 
purpose. By contrast, scientists in academia often work alone or in smaller groups, and this 
might be one of the reasons academia is lagging behind in the field. To truly accomplish big 
goals and push the frontier of science, I think it is necessary to work together as teams.  

While it is great that Big Tech companies are pushing the field forward, the flip side of the 
coin is that the science can be hidden behind closed doors. If we are not able to use it, 
scrutinize it, and repeat it, is it really science? So far, there have been some hiccups. For 
instance, AlphaFold 1 could not be used to predict proteins beyond CASP13, and recently, 
AlphaMissense170 has been released without the trained weights, which means no new 
predictions can be made. While I have no doubts that great and passionate scientists are 
working behind the scenes, the nature of companies is to make money, which, unfortunately, 
can hurt science. We will see what the future holds. Luckily, much has been made available 
to the public and implementations are still released to a large degree.   

Another field we explored was protein design (qv. Paper III). While most of the state-of-
the-art tools are now DL-based (RFdiffusion, ProteinMPNN), the field hasn’t seen its big 
quantum leap, as we saw for structure prediction. While the new DL models are amazing 
achievements, most of the proteins tested in the lab still fail to express, solubilize, or fold. If 
you take another look, you will also notice that most of the designs are solid structures 
(jokingly often referred to as ‘rocks’). Proteins are dynamic and functional molecular 
machines, and ultimately, this is what we want to engineer as protein designers. 
Nevertheless, more and more proteins are being designed with functions by amazing 
scientists around the world. A recent trip to a Rosetta conference – attended by a large 
community of protein designers, revealed that functions and conformational changes are the 
next big frontier researchers are working on. 

In all the excitement about DL, we might forget that there are fundamental scientific 
questions it does not directly address. While DL models have become great at predicting 
protein structures, we should not forget the grand-old challenge of protein folding - which 
was not one-fold but multi-fold (pun intended). Predicting the structure was just one of the 
challenges raised; the ‘how’ questions, such as the mechanisms of protein folding, are still 
not fully understood171. Similarly, one of the main goals of doing protein design has been to 
test our understanding of proteins, as often championed through Richard Feynman’s famous 
quote: “What I cannot create, I do not understand”. However, current DL methods do not 
tell us about the physical principles being applied, which leaves us nowhere closer to the 
goal of truly understanding proteins. 
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