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The anisotropy of water diffusion in brain tissue is affected by both disease and development. This change can be
detected using diffusionMRI and is often quantified by the fractional anisotropy (FA) derived from diffusion ten-
sor imaging (DTI). Although FA is sensitive to anisotropic cell structures, such as axons, it is also sensitive to their
orientation dispersion. This is amajor limitation to the use of FA as a biomarker for “tissue integrity”, especially in
regions of complex microarchitecture. In this work, we seek to circumvent this limitation by disentangling the
effects of microscopic diffusion anisotropy from the orientation dispersion.
Themicroscopic fractional anisotropy (μFA) and the order parameter (OP) were calculated from the contrast be-
tween signal preparedwith directional and isotropic diffusion encoding, where the latter was achieved bymagic
angle spinning of the q-vector (qMAS). These parameters were quantified in healthy volunteers and in two pa-
tients; one patient withmeningioma and onewith glioblastoma. Finally, we used simulations to elucidate the re-
lation between FA and μFA in various micro-architectures.
Generally, μFA was high in the white matter and low in the gray matter. In the white matter, the largest differ-
ences between μFA and FA were found in crossing white matter and in interfaces between large white matter
tracts, where μFA was high while FA was low. Both tumor types exhibited a low FA, in contrast to the μFA
which was high in the meningioma and low in the glioblastoma, indicating that the meningioma contained dis-
ordered anisotropic structures, while the glioblastoma did not. This interpretation was confirmed by histological
examination.
We conclude that FA from DTI reflects both the amount of diffusion anisotropy and orientation dispersion. We
suggest that the μFA and OP may complement FA by independently quantifying the microscopic anisotropy
and the level of orientation coherence.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by–nc-nd/4.0/).

Introduction

The most established technique for non-invasive investigations
of the microstructure of the central nervous system is diffusion ten-
sor imaging (DTI) (Basser et al., 1994). DTI provides a means of esti-
mating the rate of diffusion and the diffusional anisotropy in tissue,

frequently expressed in terms of the mean diffusivity (MD) and the
fractional anisotropy (FA), respectively. The diffusion anisotropy
has been shown to correlate with the progression of a wide variety
of conditions (Kubicki et al., 2002). For example, reduced FA is ob-
served during aging (Hsu et al., 2010; Sullivan and Pfefferbaum,
2006), and in neurodegenerative diseases such as dementia
(Englund et al., 2004; Santillo et al., 2013), Parkinson's disease
(Surova et al., 2013), Alzheimer's disease (Sjobeck et al., 2010), and
multiple sclerosis (Rovaris et al., 2005). By contrast, the value of FA
tends to increase during white matter (WM) maturation (Lebel
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et al., 2008; Löbel et al., 2009) and after specific forms of training,
such as juggling (Scholz et al., 2009).

While FA is clearly sensitive to microstructural alterations, such as
demyelination, it also reflects a wide variety of non-specific and possi-
bly confounding effects. One of the most prominent confounders of FA
is the partial volume effect (PVE). Partial volume effects are especially
relevant for diffusion-MRI (dMRI) where voxel volumes are typically
on the scale of ~10mm3, resulting in a high probability for theMR signal
to originate from water residing in different types of tissue. This in-
cludes voxels that are located at the interface between nerve bundles
with different orientation, and at the interface between brain tissue
and cerebrospinal fluid (CSF). Thus, the signal from individual voxels
frequently reflects an average of different diffusion profiles. This invari-
ably leads to less pronounced diffusion directionality, i.e., lower FA
(Oouchi et al., 2007; Westin et al., 2002). Consequently, FA correlates
with structure size since smaller structures include a larger fraction of
voxels that interface with surrounding tissue than larger structures
(Szczepankiewicz et al., 2013; Vos et al., 2011). Another aspect of PVE
is the presence of crossing, kissing, fanning, and other irregularWM ge-
ometries within a voxel, which reduce the FA by inducing a higher de-
gree of orientation dispersion (Alexander et al., 2001; Nilsson et al.,
2012). Thus, the utility of FA as a biomarker in regions of complex
WM architecture is impeded because it entangles multiple effects into
a single value. Although frequently overlooked, this is not an idle theo-
retical issue but has practical consequences. For example, elevated
values of FA have been found in crossing fibers in patients with
Alzheimer's disease (Douaud et al., 2011; Teipel et al., 2014). This seem-
ingly counter-intuitive result is explained by the selective damage to
oneof thefiber populations in the region (Douaud et al., 2011), resulting
in reduced orientation dispersion and thus elevated FA. It is also worth
noting that FA is an intrinsically poor biomarker in gray matter (GM)
due to the high orientation dispersion of neurites in the cortex
(Shemesh and Cohen, 2011). Thus, reliable use of FA may be confined
to regions of highly coherentWM (De Santis et al., 2013), which is esti-
mated to account for less than 10% of the total white matter of the
human brain (Vos et al., 2012). This has prompted the search for
methods that accurately model microscopic changes in complex neural
tissue.

It has been shown that the effects of orientation and restriction can
be disentangled by extending the conventional single pulsed-field-
gradient (sPFG) experiment (Stejskal and Tanner, 1965) to include dou-
ble, or multiple, pulsed-field-gradients (dPFG and mPFG, respectively)
(Mitra, 1995). In dPFG experiments information can be derived from
the dependence of the signal amplitude on the angle between two suc-
cessive encoding blocks. Several methods have been proposed for the
quantification of microscopic anisotropy from such data. To this end,
Lawrenz and Finsterbusch (2013) used a fourth-order tensor parame-
terization suggested by Lawrenz et al. (2010) to map the microscopic
diffusion anisotropy in human white matter in vivo. Jespersen et al.
(2013) developed a rotationally invariant dPFG encoding scheme and
mapped the microscopic anisotropy in an excised monkey brain in
terms of the fractional eccentricity.

Recently, Lasič et al. (2014) formulated a framework for the quanti-
fication of microscopic diffusion anisotropy and orientation dispersion
in terms of the microscopic fractional anisotropy (μFA) and order pa-
rameter (OP), respectively. These parameters were derived from the
contrast between the signal acquired in diffusion weighting (DW) ex-
periments that used conventional diffusion encoding aswell as isotropic
encoding based on magic angle spinning of the q-vector (qMAS)
(Eriksson et al., 2013). Briefly, magic angle spinning is an established
NMR spectroscopy method where a sample is rotated around its own
axis at a specific angle relative to the B0-field to minimize the influence
of chemical shift anisotropy on the observed NMR spectrum. In qMAS,
harmonic gradient modulation is used to create a q-vector that per-
forms a precession at the magic angle in order to exert equal diffusion
encoding in all spatial directions while the sample remains stationary.

Although isotropic encoding can be achieved by combining multiple
trapezoidal encoding blocks (Butts et al., 1997; Wong et al., 1995), the
qMAS technique offers a time efficient gradient modulation scheme
(Topgaard, 2013). The qMAS-encoded signal attenuation becomes inde-
pendent of contributions from anisotropic diffusion, and is sensitive
only to the rate of isotropic diffusion (Eriksson et al., 2013). As a
proof-of-principle, Lasič et al. (2014) implemented the qMAS technique
on a NMR spectrometer and a clinical scanner, showing that microscop-
ic anisotropy could be detected in phantoms that contained ordered and
disordered anisotropic micro-domains.

In this work we performed the first in vivo experiments using qMAS
diffusion encoding, and we parameterize the microscopic anisotropy of
the human brain based on the framework presented by Lasič et al.
(2014).We also demonstrated the feasibility of quantifyingmicroscopic
anisotropy in a clinical setting by using it to infer information on tissue
structure in two types of brain tumors. Finally, we compared the results
to simulated data to elucidate how the measures of anisotropy respond
to various changes inmicro-architecture, and expanded on the possibil-
ities to use this novel method in clinical research to access information
that is unavailable when using conventional methods.

Theory

In conventional DTI, the diffusion on the voxel scale is assumed to be
Gaussian and is described by a rank-2 tensor (D) (Basser et al., 1994).
The same description can be employed at a sub-voxel scale; meaning
that each coherent segment of the underlying microgeometry can be
considered as a domain in which the diffusion is Gaussian and de-
scribed by a domain diffusion tensor (Dk). The voxel scale tensor
can be described as the average of all domain tensors, according to
Eq. (1)

D ¼ Dkh i; ð1Þ

where D = Dk only when the voxel contains identical domains that
are perfectly aligned. In all other cases Dwill depend on the distribu-
tion of domain tensor eigenvalues, and their orientation (Fig. 1).
Here, we denote objects pertaining to microscopic domains by a sub-
script ‘k’. Consider three common parameterizations of D: the mean
diffusivity (MD), the variance of the diffusion tensor eigenvalues
(Vλ), and the fractional anisotropy (FA), defined in Eqs. (2), (3),
and (4) respectively (Basser and Pierpaoli, 1996)

ð2Þ

ð3Þ

ð4Þ

Note that , and yield the correspond-
ing parameters for a single domain, denoted MDk, Vλ,k and FAk, re-
spectively. From Eq. (1) to Eq. (4), it is clear that the FA represents
the amount of microscopic anisotropy that persists to the voxel
scale and is determined by the coherence of the domain orientations
(Westin et al., 2002). To circumvent this dependency, Lasič et al.
(2014) suggested a method to measure the microscopic anisotropy
in terms of the microscopic fractional anisotropy (μFA). Conceptual-
ly, in a system of identical and parallel domains the diffusion
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anisotropy of each domain will persists to the voxel scale, rendering
FA = μFA = FAk (Fig. 1A). By contrast, randomly oriented domains
exhibit isotropic voxel scale diffusion, rendering FA = 0, however,
the microscopic anisotropy is unaffected by the orientation disper-
sion and thus μFA = FAk (Fig. 1C).

It should be clear that individual domains cannot be probed directly
using conventional DTI. Instead, the microscopic anisotropy can be in-
ferred from the amount bywhich the diffusionweighted signal deviates
from monoexponential attenuation, commonly referred to as the diffu-
sional kurtosis (Jensen et al., 2005). However, kurtosis is not specific to
microscopic anisotropy since it is also sensitive to the presence of mul-
tiple diffusion coefficients. Further, Mitra (1995) showed that these two
effects cannot be distinguished in a conventional sPFG experiment, but
that it could be done using dPFG experiments. Here, we separate the
two effects by using the contrast between conventional and isotropic
diffusion encoding (Lasič et al., 2014). The concept is understood by
considering theMR signal (S) as a function of themagnitude of diffusion
encoding (b), and the distribution of diffusion coefficients (P), according
to Eq. (5)

SN bð Þ ¼ S0

Z∞

0

P DjNð Þ � e−bDdD; ð5Þ

where P(D|N) reads as the probability distribution of diffusion coeffi-
cients when employing the encoding tensor N, and D = N : D, where ‘:’
denotes the double inner product. The encoding tensor is introduced
to facilitate the analysis of both conventional and isotropic encoding
(Westin et al., 2014). Conventional diffusion encoding is anisotropic,
i.e., the diffusion sensitizing gradient is employed in one specific direc-
tion n, where n = [nx ny nz]T and |n| = 1. The corresponding encoding
tensor is defined asN=nnT (3 × 3matrixwith a single non-zero eigen-
value), and the b-matrix is given by B = b ⋅ N (Basser et al., 1994).

For low to moderately high b-values, the signal described in
Eq. (5) mainly depends on the expected value and the variance of
the distribution of diffusion coefficients. The expected value, or
first moment, of P is reflected in the initial slope of the signal atten-
uation, and is equal to the apparent diffusion coefficient in the

direction defined by N, according to ADC = E[P(D|N)]. The variance,
or second centralmoment, of P is reflected in the departure of the signal
attenuation from monoexponentiality, and is related to the apparent
diffusional kurtosis (K) mapped in DKI, such that Var(P(D|N)) =
K ⋅ ADC2/3 (Jensen et al., 2005).

The dependence of the distribution of diffusion coefficients on N is
essential to understanding the calculation of the microscopic anisotro-
py. We highlight this dependence by considering an ideal system that
contains an ensemble of anisotropic domains that are randomly orient-
ed and axially symmetric, i.e., the system is rotationally invariant and all
domain tensors are defined by two eigenvalues. This system is aniso-
tropic on the microscopic scale, but isotropic on the voxel scale, hence
FA = 0. However, the microscopic anisotropy can be recovered from
the variance of the distribution of diffusion coefficients reflected in the
departure from monoexponential signal attenuation. In the ideal sys-
tem, the average variance of the domain tensor eigenvalues (〈Vλ,k〉) is
related to the variance of the distribution of diffusion coefficients (Va)
according to Eq. (6)(Lasič et al., 2014)

Vλ;k

D E
¼ 5

2
Va; ð6Þ

where Va = Var(P(D|N)). The subscript ‘a’ indicates that the variance is
induced only by the presence of anisotropy. The microscopic fractional
anisotropy is defined by substituting Vλ in Eq. (4) with the right hand
side of Eq. (6), according to Eq. (7)(Lasič et al., 2014; Topgaard and
Lasič, 2013)

ð7Þ

The definition in Eq. (7) was originally suggested by Topgaard and
Lasič (2013), but an analogous parameter, the fractional eccentricity
(FE), was independently developed by Jespersen et al. (2013). Note
that the μFA and FE differ only by a constant factor such that μ FA ¼ffiffiffiffiffiffiffiffi
3=2

p � FE (Jespersen et al., 2014a,b; Lasič et al., 2014).

Fig. 1. Schematic examples showing the effects of tensor averaging. The top row shows individual domain tensors (Dk) in the voxel volume, and the bottom row shows the corresponding
voxel tensors (D) in tissue containing coherent, bending, random and isotropic domains. In this example, the domains in panels A, B and C have FAk = 0.8, while FAk = 0.0 in panel D.
Effects of averaging across multiple orientations are seen in the shape of the voxel scale tensors. Note that FA cannot distinguish between randomly oriented anisotropic domains
(C) and isotropic domains (D) since it is zero in both cases.
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Applying Eq. (7) to an ideal system is able to perfectly describe the
μFA as an analog to FA that is not sensitive to the effects of orientation
dispersion (Fig. 1). However, assumptions made in the ideal system
may not be valid in biological tissue. In such cases, the μFA can still be
quantified by relaxing the demands of the ideal system and compensat-
ing for the introduced error. Here we consider departure from rotation
invariance, and the presence of multiple sources of variance.

Rotation invariance can be achieved by constructing the powder av-
erage of the signal and is required in systems that exhibit residual an-
isotropy (FA N 0). The powder average is the arithmetic average of the
signal across multiple rotations of the diffusion encoding gradients,
and will render a signal that is insensitive to rotations of the object.
Here we denote the powder averaged signal and distribution function
as S and P, respectively. Note that the expected value of the powder av-
eraged distribution yields the mean diffusivity, i.e., P DjNð Þ� � ¼ MD.

Variance in the distribution of diffusion coefficients can be a conse-
quence of both anisotropy and presence of multiple isotropic compo-
nents. This is relevant for the evaluation of Eq. (7) where only the
variance arisingdue to thepresence ofmicroscopic anisotropy is consid-
ered. Thus, in cases where all domains cannot be assumed to have equal
isotropic diffusivity, i.e., the domains have different MDk, the contribu-
tion to total variance (Vt) from isotropic components (Vi) must be quan-
tified and removed, according to Eq. (8)

Va ¼ V t−V i: ð8Þ

To calculate Va according to Eq. (8) we must find an independent
means of measuring Vt and Vi. We know from DKI that Vt can be quan-
tified by performing a conventional diffusion experiment, according to
V t ¼ Var P DjNð Þ� �

. Since P is affected not only by the underlying micro-
environment, but also by the shape of the encoding tensor, Vi can be
quantified by employing isotropic diffusion encoding that is designed
to exert equal encoding strength in all spatial directions in a single prep-
aration of the signal. We define the isotropic encoding tensor (I, 3 × 3
matrix) as one-third of the identity matrix so that all its eigenvalues
are equal, and Tr(I) = 1. This mode of encoding is insensitive to the do-
main orientations, and if the diffusion is approximately Gaussian, it is
rotationally invariant and independent of microscopic anisotropy.
Note that when isotropic encoding is used, P and P are interchangeable
since I has no defined direction. For isotropic encoding the signal in
Eq. (5) is a function of P(D|I) which denotes the distribution of domain
mean diffusivities since I:Dk = MDk. The remaining variance is due to
heterogeneous domain mean diffusivities, and is defined as Vi =

Var(P(D|I)). In summary, anisotropic and isotropic diffusion encoding
at sufficiently high b-values can be used to quantifyVt andVi, respective-
ly. The μFA can then be calculated according to Eqs. (7) and (8).

Finally, we note that the interpretation of Va in Eq. (8) is valid if the
two probability distribution functions are related in terms of a convolu-
tion, according to P DjNð Þ ¼ R Dð Þ⊗P DjIð Þ (see Fig. 2), where R(D) is the
anisotropy response function and Va = Var(R(D)), according to proba-
bility theory and the arithmetic of random variables. Thus, the analysis
assumes that the variance of the anisotropy response function is equal
for all domains. This assumption may be invalid, for example, in mix-
tures of WM and CSF where the anisotropy response functions are ex-
pected to be markedly different. The effects of such unfavorable
conditions on the validity of μFA calculations are investigated in the
Simulation experiments.

Methods

Imaging protocols

Data was acquired using a Philips Achieva 3T system, equipped with
80mT/mgradients with amaximum slew rate of 100 mT/m/ms on axis,
and an eight channel head coil.

The in vivo experiment was designed to evaluate the validity of
the μFA model and was therefore acquired using a high b-value sam-
pling rate, employing ten equidistant b-values between 100 and
2800 s/mm2. Thereby, the sequence was limited to five image slices.
Each set of data (one set per subject) contained images prepared with
both the isotropic qMAS and harmonically modulated anisotropic
encoding (Fig. 3). Harmonic modulation is preferred to trapezoidal
encoding to ensure equal diffusion times for both types of encoding
(Eriksson et al., 2013). All DW data were acquired using an echo time
of 160 ms, repetition time of 2000 ms, 96 × 96 acquisition matrix, spa-
tial resolution of 3 × 3×3mm3, partial Fourier factor of 0.8, and a SENSE
factor of 2. Regardless of encoding technique, each encoding block, be-
fore and after the 180°-pulse, lasted 62.5 ms. Anisotropic encoding
was performed in 15 directions for each b-value using harmonically
modulated gradients according to Lasič et al. (2014). The directions
were distributed using an electrostatic repulsion scheme (Jones et al.,
1999). The isotropic encoding was repeated 15 times per b-value. This
resulted in equal amounts of images and scan time for both techniques.
The combined scan time for the isotropic and anisotropic encoding se-
quences was 10:12 min.

Fig. 2. Schematic exampleof thedistribution of diffusion coefficientswhenemploying encoding that is isotropic (left,P DjIð Þ) and anisotropic (right,P DjNð Þ). The convolution visualizes how
the variance of P DjIð Þ is added to the variance of the anisotropy response function R(D), rendering the total variance in P DjNð Þ. This example depicts a system that contains axially sym-
metric and randomly oriented domainswhereMDk= 0.70± 0.05 μm2/ms, and the axial and radial domain diffusion is ADk=MDk+ 1.0 μm2/ms and RDk=MDk− 0.5 μm2/ms, respec-
tively (middle panel). Thus, the variance of the anisotropy response function is equal for all domains. The fact that the systemcontains anisotropic domains is reflected in thewidth ofR(D),
indicating that there is a difference between the eigenvalues of the domain tensors. The prolate symmetry of the domain tensors can be discerned from the shape of R(D), where the slow
diffusion (RDk) is themost probable while the fast diffusion (ADk) is the least probable (Eriksson et al., 2013). Note that the area under each distribution equals unity, and that the y-axes
have been adjusted to improve legibility.
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Additionally, two whole-brain morphological sequences were ac-
quired. One T1-weighted (T1W) 3D turbo-field-echo, reconstructed at
a spatial resolution of 1 × 1 × 1 mm3; and one T2-weighted (T2W)
FLAIR, reconstructed at a spatial resolution of 0.5 × 0.5 × 6 mm3. The
scan time for the T1W and T2W images was 6:28 and 4:48 min,
respectively.

Post-processing and parameterization

Motion correction and eddy-current correction was applied to DWI
data using ElastiX (Klein et al., 2010). The first moment, and the second
central moment of the distribution of diffusion coefficients was estimat-
ed by regressing the inverse Laplace transform of the gamma distribu-
tion function onto the acquired signal (Lasič et al., 2014; Roding et al.,
2012). The signal was modeled, according to Eq. (9)

S bð Þ ¼ S0 1þ b � V
MD

� �−MD2
V

; ð9Þ

whereMD and Vwere the fitting variables representing the initial slope
and curvature of the signal attenuation function, respectively. Note that
V in Eq. (9) corresponds to Vt and Vi when the model is regressed onto
data from the powder averaged anisotropic and isotropic diffusion
encoding experiments, respectively. Three constraints were introduced
in the fitting procedure to eliminate non-physical results. First, the MD
was constrained to be equal in the two acquisitions by assuming that
P DjNð Þ� � ¼ P DjIð Þ� � ¼ MD. This assumption is reasonable since the
choice of encoding technique should not affect themean diffusivity un-
less the diffusion time and the time required for the diffusingmedium to
probe the relevant restrictions are at the same scale, which is rarely the
case for DWI in vivo (Nilsson et al., 2009, 2013). Second, Vi was
constrained to the range between the total variance and zero
(Vt ≥ Vi ≥ 0). Finally, signal that was attenuated below 5%
�S bð Þ b 0:05 � S0
� �

was excluded from the fitting procedure. This was
done to avoid detection of false variance in regions where a strong dif-
fusion weighting rendered a signal that was elevated due to the noise
floor. This is expected to affect only voxels where MD N 1.1 μm2/ms.

FA was calculated through conventional DTI analysis from the
data employing anisotropic encoding for encoding strengths
b ≤ 1000 s/mm2. The μFA was calculated according to Eq. (8). Finally,
the orientation coherence of the domains was quantified by the order

parameter which is a well-established parameter for describing the
order in liquid crystals. It is defined as OP = 〈(3 cos2(θk) − 1)/2〉,
where θk is the angle between the domain and voxel scale symmetry
axes. Thus, the OP provides a measure of orientation dispersion that
has a simple geometric interpretation where OP= 1 indicates perfectly
coherent alignment and OP = 0 indicates randomly oriented domain
orientations. The OP can also be calculated from the microscopic and
voxel scale variance, according to Eq. (10)(Lasič et al., 2014)

OP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vλ

Vλ;k

D E
vuut : ð10Þ

Note that OP is not equivalent to the orientation dispersion index
used in NODDI (Zhang et al., 2012), and that it can be calculated for
any given orientation distribution function.

In vivo experiments

Imaging was performed on eight healthy volunteers (age 32 ±
4 years, all male) and two patients with brain tumors (one female,
62 years, with meningioma, WHO grade I; and one male, 46 years,
with glioblastoma, WHO grade IV). Written consent was obtained
fromall subjects and the studywas approved by theRegional Ethical Re-
view Board at Lund University.

Analysis of diffusion parameters was performed at the group level, as
well as in a single representative subject. Three regions of interest (ROI)
were selected in the WM; the splenium of the corpus callosum (CC), the
corticospinal tract (CST), and the anterior crossing region (CR) where
frontal projection fibers from the genu of the corpus callosum and tha-
lamic radiation of the internal capsule intersect (see Assaf and
Pasternak,2008). One ROI was also placed in the superior part of the thal-
amus (THA),which contains amixture ofWMandGM. The ROIswere de-
lineatedmanually, usingMD, FA and μFAmaps for guidance; the operator
was instructed to avoid voxels that contained GM or CSF.

The healthy individual was investigated with respect to the signal
parameterization and parameter distribution in all four ROIs. One addi-
tional ROI was placed in the lateral ventricles to investigate the signal
attenuation in the isotropic and rapidly diffusing CSF. The analysis of
the parameter distribution was based on the ROIs while the signal and
model fit was inspected in a single voxel in each ROI. Further, the
voxel-wise correlation between combinations of FA, μFA and OP were

Fig. 3. Schematic comparison of sequences (left) and qMASq-vector trajectory (right). The sequences showa spin-echo experimentwhere different types of diffusion encodingblocks (red
lines) have been inserted on both sides of the 180°-pulse. The first two rows show examples of anisotropic diffusion encoding that use trapezoidal and harmonic gradient modulation,
respectively. The bottom row shows the harmonic gradient modulation in isotropic qMAS. The q-vector trajectory in the qMAS experiment (right) follows the surface of a cone with
an aperture of twice themagic angle resulting in the same encoding strength in all directions for each encoding block. Note that the speed of the qMAS q-vector along the trajectory varies
as a function of its magnitude (low magnitude entails low speed), and that the magnitude of the qMAS encoding is zero during the 180°-pulse.

245F. Szczepankiewicz et al. / NeuroImage 104 (2015) 241–252

image of Fig.�3


evaluated. This analysis was performed in one axial slice of the image
volume and the parameter maps were masked to remove interference
from irrelevant regions of the head. The strength of the association
was quantified by the coefficient of determination (r2, Pearson's linear
correlation coefficient squared).

The healthy volunteer group was investigated with respect to the
parameter distribution in the CC, CST, CR and THA. In order to elucidate
if the threeWM regions were different with respect to parameter mean
values, F-tests (one-way ANOVA, assuming independent samples) were
performed on the distributions of MD, FA, μFA, OP, Vi and Va in the CC,
CST and CR. The threshold for significance was set at α = 0.05/6
(Bonferroni correction for six tests).

The tumorswere comparedwith respect to their FA and μFA by plac-
ing ROIs in one axial slice through each tumor. The ROIs were defined
manually and the inclusion of WM, GM and CSF was avoided. Both tu-
mors were resected one day after the MRI procedure and histological
evaluation of the tumors was performed, in accordance with local clin-
ical routine. Each tumor specimen was fixed in 4% buffered formalde-
hyde solution, embedded in paraffin, and sectioned at 4 μm. The
sections were stained with hematoxylin–eosin in order to visualize
the tissue structure and cell morphology. Microscopy was performed
on an Olympus BX50. The cell shape and presence of tissue fascicles
was investigated qualitatively and compared to corresponding diffusion
parameters. Finally, structure tensor analysis (Peyré, 2011) was per-
formed on the microphotos to enhance the visibility of cell structure
orientations.

Simulation experiments

Simulation experiments were performed to investigate the qualita-
tive behavior of FA and μFA in scenarios where the underlying system
contained complex diffusion profiles. These scenarios were designed
to mimic a range of effects that may be found in experimental data.
The results were evaluated in terms of the value, effect size, effect direc-
tion, and accuracy of the FA and μFA.

The simulations included three types of model components (C) with
varying water fractions (f). The first component was designed to repre-
sent the anisotropic diffusion in WM (Ca). For simplicity, all anisotropic
domains were assumed to be axially symmetric and were described by
their radial (RDk) and axial diffusivity (ADk). These were set to ADk =
1.7 and RDk = 0.2 μm2/ms. The orientation dispersion was modeled
with the Watson distribution (Sra and Karp, 2013; Zhang et al., 2011)
where the concentration parameter (κ) is related to the order parame-
ter according to Eq. (11)

ð11Þ

where is the confluent hypergeometric function. The order parame-
ter could be varied to produce geometries between fully coherent

(OP= 1) and fully dispersed (OP= 0) orientations. The two remaining
environments were designed to represent diffusion in damaged neural
tissue (Ci) and CSF (CCSF). The diffusion in these environments was as-
sumed to be isotropic, with a domain mean diffusivity of MDk = 1.7
and 3.0 μm2/ms in Ci and CCSF, respectively.

DamagedWMwas simulated by gradually replacing Ca with Ci. This
was done in four geometries; thefirst three included one, two and three
coherent (OP = 1) and orthogonal Ca components, and the last
contained one Ca component with randomly oriented domains (OP =
0). The isotropic component replaced one anisotropic component
while the remaining anisotropic componentswere unaltered. For exam-
ple, in the case of two crossing fibers (Ca1 and Ca2), the damaged aniso-
tropic component Ca1, had a volume fraction fa1. Initially, fa1 made up
half the volume, but was gradually reduced to zero, and the fraction
lost in Ca1 was replaced by Ci, i.e., fa1= 1/2→ 0, and fi = 1/2− fa1. Dur-
ing this process the fraction of Ca2 was constant (fa2 = 1/2).

The response to increasing radial diffusivity, mimicking demyelin-
ation, was simulated in a coherent Ca component (OP = 1), where the
radial diffusivity was increased from its starting value until it exhibited
no anisotropy (RDk = 0.2→ 1.7 μm2/ms). Effects of orientation disper-
sion were investigated using a single Ca component with variable
amount of dispersion, from dispersed to coherent (OP=0→ 1). The ef-
fect of the crossing angle between two coherent Ca components was
simulated by varying the angle from a parallel to a perpendicular geom-
etry (φ=0→ 90°). Finally, the effects of CSF contamination were sim-
ulated by gradually replacing a coherent Ca component (OP = 1) with
CCSF (fa = 1 → 0, and fCSF = 1 − fa). In all cases, the effects of noise
were simulated for five equidistant points along each process by adding
Rice-distributed noise to the signal (Sijbers and den Dekker, 2004). The
signalwas generated in accordancewith the imaging protocol, i.e., using
the same b-values, number of directions and parameterization, at a S0
signal-to-noise ratio (SNR) of 20. The model was regressed onto 1000
realizations of the noisy signal to render a reliable median and inter-
quartile range of the parameters.

Results

In vivo experiments

Maps of FA, μFA andOP for one healthy volunteer are shown in Fig. 4.
As expected, the μFA is high in regions comprised of WM and lower in
GM. Most notably, the FA and μFA maps differ in regions where a high
orientation dispersion is expected, for example, in crossing WM and
the interface between WM pathways, in accordance with Lawrenz and
Finsterbusch (2014). Another prominent difference can be seen in the
GM where FA is close to zero, whereas μFA indicates that the GM con-
tains detectablemicroscopic anisotropy. Fig. 5 shows the parameter dis-
tribution in the CC, CST, CR, THA and CSF, and the powder averaged
signal originating from a single voxel in each region. As expected for
WM tissue, the departure from monoexponential attenuation was

Fig. 4. T1W, μFA, FA and OP maps from one healthy volunteer. The μFA is similar to the FA map in that it highlights the WM of the brain, but does so regardless of the local orientation
dispersion. The μFA exhibits high values in areaswhere FA values are low due to crossing, bending and fanning fibers. Thus, the μFAmap exhibits strong resemblance to theWMmorphol-
ogy in the T1W image, although the latter is not quantitative. The GM is visible in the μFA-map at a slightly lower intensity, indicating that the microscopic anisotropy is lower in GM as
compared to WM. The OP displays similar contrast to the FA, in regions of WM.
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smaller for the isotropic encoding than the anisotropic encoding. The
THA exhibited a relatively high isotropic variance, but the presence of
microscopic anisotropy is clearly visible from the separation of the
two signal curves. In the CSF, the signal was attenuated below 5% of its
initial value, and it is apparent that the fitting would detect a false
variance if high b-value data was not excluded. The resulting param-
eterization of the signal seen in Fig. 5 was: μFA = 0.98, 1.03, 0.96,
0.76, and 0.00; MD = 0.91, 0.84, 0.89, 1.60, and 2.95 μm2/m; Vi =
0.07, 0.00, 0.01, 1.66, and 0.01 μm4/ms2; and Va = 0.57, 0.66, 0.51,
0.65, and 0.00 μm4/ms2 in the CC, CST, CR, THA and CSF, respectively.

The voxel-wise correlation between μFA, OP and FA is presented in
Fig. 6. The relation between FA and μFA resembles the relation between
the corresponding parameters reported by Jespersen et al. (2013) in

that high FA entails high μFA, although not vice versa. The correlation
between μFA and FA was found to exhibit two distinct modes, which
were separated by introducing an arbitrary threshold at the shoulder
of the distribution (μFA = 0.8). The interval containing high values of
μFAwas found to correspondwell to regions ofWM (μFA N 0.8, red out-
line in Fig. 6) and the low μFAwas found in amixture of peripheralWM,
GM and CSF (μFA b 0.8, white outline in Fig. 6). In the WM region, a
strong correlation was found between OP and FA (r2 = 0.9), while
only weak correlations were found between μFA and OP (r2 = 0.1),
and between μFA and FA (r2 = 0.4). No relevant correlations were
found in the peripheral region (all r2 b 0.3).

The investigation of the parameter distribution in the group of
healthy volunteers is summarized in Table 1. All parameter mean
values, except the MD and Vi, were found to have significantly different
mean values in the three WM ROIs. This was expected for the FA since
the ROIs include both coherent and crossing WM tissue. The μFA was
also found to differ significantly between the three regions, albeit at a
much smaller effect size compared to the FA. The group level variability
detected inMD and Vi indicated that the absence of significance is likely
due to a small effect size and large variance, respectively.

The anisotropy parameters measured in the two tumor types are
presented in Fig. 7, and corresponding microphotos of the excised tu-
mors are presented in Fig. 8. The meningioma tissue exhibited a low
voxel scale anisotropy (mean ± standard deviation, FA = 0.19 ±
0.06) and high microscopic anisotropy (μFA = 0.88 ± 0.08). Likewise,
the glioblastoma tissue exhibited low voxel scale anisotropy (FA =

Fig. 5. Signal vs. b curves and parameter distributions in the corpus callosum(CC), corticospinal tract (CST), anterior crossing region (CR), thalamus (THA) and the cerebrospinalfluid in the
lateral ventricles (CSF) in one healthy volunteer. The ROIs are shown in the FA map (right, black–white outline). The signal plots show the powder averaged signal from a single voxel in
each region as measured with isotropic and anisotropic diffusion encoding (white and black circles), as well as the model fit (dashed and solid lines). The red lines are a visual reference
showingmonoexponential attenuation at the estimatedmeandiffusivity. The signal attenuation in all threeWMregions is similar,where the isotropic encoding shows little deviation from
monoexponential attenuation,while the anisotropic encoding exhibits a curvature in the signal attenuation, indicating that all regions containmicroscopic anisotropy. In the THA, both the
isotropic and anisotropic encoding shows a strong deviation from monoexponential attenuation, although the presence of microscopic anisotropy is made clear by the separation of the
two curves. Note that the signal from the CSF was fitted only for signal values above 5% of the signal at b= 0 s/mm2, and that the y-axis in the CSF plot has a larger range than the other
plots. The inserted histograms show the parameter distribution in each ROI where black and white bars represent FA and μFA, respectively. The histograms show that the μFA is similar in
the three WM ROIs and that the largest difference between FA and μFA can be found in the CR and THA.

Fig. 6. Voxel-wise parameter dependency between FA, μFA and OP in one healthy volun-
teer. The strongest correlation was found for the OP and FA (top left, see text for details).
Separating the distribution at a threshold of μFA=0.8 (red and black dots show μFA above
and below 0.8, respectively) revealed a clear spatial dependencywhere high values of μFA
are associated with the WM of the brain (voxels within red outline). The correlation be-
tween OP and FA in the WM indicates that FA is strongly dependent on the OP, i.e., the
FA is strongly dependent on the coherence of WM fibers.

Table 1
Diffusion parameters (group mean ± standard deviation) in four ROIs in the group of
healthy volunteers (n = 8). The ANOVA indicated significantly different mean values in
the CC, CST and CR for all parameters except MD and Vi. Note that the number of voxels
in each ROI (#Vox) is shown but was not included in any tests.

THA CC CST CR

MD [μm2/ms] 1.09 ± 0.20 0.98 ± 0.11 0.96 ± 0.05 1.00 ± 0.06
FA 0.31 ± 0.04 0.86 ± 0.03 0.64 ± 0.04 0.38 ± 0.04 †

μFA 0.82 ± 0.09 1.02 ± 0.02 0.97 ± 0.01 0.93 ± 0.01 †

OP 0.26 ± 0.02 0.64 ± 0.04 0.47 ± 0.03 0.27 ± 0.03 †

Va [μm4/ms2] 0.50 ± 0.12 0.96 ± 0.19 0.65 ± 0.07 0.57 ± 0.07 †

Vi [μm4/ms2] 0.54 ± 0.40 0.30 ± 0.21 0.17 ± 0.05 0.22 ± 0.11
#Vox 12 ± 3 5 ± 3 32 ± 5 24 ± 5

† ANOVA shows significant difference between parametermean values (p ≪ 0.05/6) in
the CC, CST and CR.
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0.07± 0.05). However, it exhibitedmarkedly lowermicroscopic anisot-
ropy compared to themeningioma (μFA=0.39± 0.22). Although both
tumors exhibited low FA values, the FA in themeningiomawas elevated
compared to the glioblastoma, indicating that the tissue is organized
enough to create a weak but detectable diffusion anisotropy on the
voxel scale. The high vs. lowmicroscopic anisotropy in themeningioma
and glioblastoma was corroborated by the histological examination of
the two tumors, shown in Fig. 8. The histological examination of theme-
ningioma demonstrated a dense fascicular pattern of growth with elon-
gated tumor cells, consistent with low FA and high μFA; and a more

loose assemblage of rounded cells of variable size along with patchy
areas of necrosis in the glioma, consistentwith both low FAand low μFA.

Simulation experiment

Figs. 9 and 10 showcase how the FA and μFA are altered when the
underlying diffusion profiles are manipulated.

When a coherent anisotropic componentwas replaced by an isotropic
component (Fig. 9A), the FA decreased approximately linearly as a func-
tion of the isotropic tissue fraction. In the same system, the μFA followed

Fig. 7. Parameter maps from the meningioma (top row) and glioblastoma (bottom row). The ROIs used for quantitative evaluation of diffusion parameters are shown in the FA maps
(white–black outline). Both tumors exhibited low FA, while the μFA was high in the meningioma and low in the glioblastoma (histogram).

Fig. 8.Microphotos of excisedmeningioma (top row) and glioblastoma (bottom row) tissue. Themeningioma exhibited a dense fascicular pattern of growthwith elongated tumor cells in
a mostly monomorph structure. As seen in the upper left image, the fascicles in the meningioma could stretch for distances comparable to the voxel size (~1 mm). The glioblastoma ex-
hibited a loose assemblage of rounded cells of variable size, along with patchy areas of necrosis. Blood vessels had thickened walls with endothelial cell proliferation and multiple small
bleedingswere included. The images on the right showmagnified areas of the tumor tissue as well as structure tensors (black ellipses) that illustrate the local orientation of the tissue. The
structure tensors in the meningioma showcase the presence of locally ordered structures, while few such structures are appear in the glioblastoma.
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a similar pattern, but had a less pronounced initial slope indicating that
the μFA is overestimated when the distribution of diffusion coefficients
contains both isotropic and anisotropic components. In the absence of
noise, both parameters approached zero for purely isotropic systems. In
the crossing geometry, where one anisotropic component was replaced
by an isotropic component (Fig. 9B), the FA first decreased due to the rel-
atively rapid increase of the isotropic component. However, when a ma-
jority of the receding component had been removed (fi N 1/2), the FA
instead increaseddue to the dominance of the remaining anisotropic com-
ponent. By contrast, μFA decreased strictly. This demonstrates a case
where μFA may exhibit superior sensitivity and specificity over FA, since
the direction of the effect is constant. Further, the effect size is larger for
μFA since it is not confounded by the same counteracting mechanisms.
Similar results are shown for a triple crossing geometry (Fig. 9C). In this
case the FA started at a low value because the tissue was macroscopically
isotropicwith its three orthogonal fiber populations, and increased as one
of the fiber populations was replaced by isotropic tissue. Again, the posi-
tive direction of the effect, caused by the reduction in orientation disper-
sion, may be confounding. By contrast, μFA reflected only the presence of
microscopic anisotropy and responded as expected to the simulated

damage. In the case of damage in randomly oriented microdomains
(Fig. 9D), the macroscopic anisotropy is zero, rendering FA insensitive to
any changes in tissue microstructure while the μFA reflects the amount
of microscopic anisotropy that is lost.

The effect of gradually increasing domain radial diffusivity, resulted
in similar effects for FA and μFA (Fig. 10A). However, as the system ap-
proaches isotropic conditions, the uncertainty in the μFA increases con-
siderably. Fig. 10B shows how dispersion influences the FA, while the
μFA is constant. A similar pattern is seenwhen simulating crossingfibers
with varying crossing angles (Fig. 10C). As expected the FA was highest
when the two fiber structures were parallel and had its lowest value
when they were perpendicular. These results show the potential bene-
fits of quantifying a measure for anisotropy that is not sensitive to con-
founds such as crossing, bending, fanning, and kissing fiber geometries.
Finally, the effects of CSF contamination exhibit similar effects as the
simulated damage in a single coherent WM system (compare Figs. 9A
and 10D). This simulation highlights the overestimation of μFA due to
multiple isotropic components. Generally, the μFA is increasingly sus-
ceptible to noise as the simulated systems approach zero microscopic
anisotropy, resulting in reduced accuracy.

Fig. 9. Response in FA and μFA in four geometries where one anisotropic component is replaced by an isotropic component to mimic tissue damage. The solid and broken lines show the
noise free FA and μFA, respectively. The circular markers show themedian parameter value when the SNR is 20, using the imaging protocol and parameterization detailed in theMethods
section. The error bars show the influence of noise as the interquartile range. The geometries and processes are illustrated with graphics below the plots showing the anisotropic (black
lines) and isotropic components (circles). Generally, the FA and μFA differ in all processes. In the single damagedWMcomponent (A), the FA and μFA should be equal, but a positive bias in
the μFA is induced due to the increasing presence of the isotropic component. In the double crossing (B), the FA can both increase and decrease due to the selective removal of anisotropic
domains, whereas the μFA is strictly decreasing as a function of the reduction of anisotropy. In the triple crossing (C), the FA and μFA exhibit opposing effects, where FA increases and μFA
decreases. The randomly oriented domains (D) illustrate that FA has no sensitivity to any changes in this case, while the μFA still reflects the presence of microscopic anisotropy.

Fig. 10. Response in FA and μFA due to changes inmicrostructure geometry. The plot objects are described in the caption of Fig. 9. The response to increasing radial diffusivity (A) is equiv-
alent for FA and μFA, however, the quantification of μFA displays a higher uncertainty. Both the effects of dispersion (B) and angle of crossing (C) have no effect on the μFA, while the FA is
stronglymodulated. The effect of CSF contamination (D) shows a positive bias in μFA compared to FA, similar to that found in Fig. 9A. Note that the values of FA and μFA in the simulation of
CSF contamination are expected to be lower than the corresponding values in Fig. 9A. The similarity arises from themodelfitting,where the bias is positive in both cases, butmore so in the
case of CSF since the model violation is larger. The varying degree of bias works to counteract the underlying difference between the two environments. Generally, in environments with
low levels of microscopic anisotropy, μFA exhibits a higher level of statistical uncertainty as compared to FA. Note that the noise prevents both FA and μFA from assuming values close to
zero.
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Discussion

In this study we present the first implementation of qMAS for the
purpose of probing the microscopic anisotropy in vivo on a clinical
MRI system. The parameters μFA and OP, as well as conventional DTI
parameters FA and MD, were quantified in healthy subjects and in
two different types of tumor tissue. Unlike the voxel scale anisotropy,
measured in terms of the FA, the microscopic anisotropy measured by
μFAwas relatively homogeneous in large portions of theWM. This find-
ing is in agreementwith other studies that have aimed to remove effects
of orientation dispersion from the quantification of local anisotropy
(Jensen et al., 2014; Jespersen et al., 2013; Lawrenz and Finsterbusch,
2013, 2014). The notion that FA is sensitive to local orientation disper-
sion is supported by the strong correlation found between the FA and
OP (Fig. 6). However, the threeWM regions chosen for analysis exhibit-
ed small but statistically significant differences also in μFA (Table 1), in-
dicating that orientation dispersion is not the only difference between
these regions. This could possibly be explained by varying levels of do-
main anisotropy, for example, caused by variable axonal packing
density.

In the tumor tissue, FA was generally low, which indicated that the
meningioma and the glioblastoma were approximately isotropic on
the voxel scale. By contrast, the μFAwas able to reliably differentiate be-
tween the two tumors, and indicated that microscopic diffusion anisot-
ropy was more pronounced in the meningioma than the glioblastoma.
Thus, the information provided by both FA and μFA was instrumental
in predicting the tumor cell structures which were later confirmed by
the histological exam (Fig. 8).

To elucidate some of the underlying mechanisms that affect FA and
μFA, simulations of different micro-environments visualized the param-
eters as a function of several relevant processes. For example, in the case
of increased radial diffusivity of parallel fibers, the responses in FA and
μFA are approximately equal, meaning that the two representations of
anisotropy share a common interpretation. On the other hand, scenarios
that include any form of orientation dispersion demonstrate prominent
differences between FA and μFA. For example, the combination of two
and three orthogonal anisotropic components (Figs. 9B and C) were
used to reproduce the effects of selective atrophy in a crossingWM ge-
ometry, as reported by Douaud et al. (2011), where the effect direction
in FAwas found to be positive in a damaged region of crossingWM. The
simulations also illuminated the bias that arises when μFA is quantified
in systems that violate the assumptions used in the parameterization,
e.g., in complex mixtures of anisotropic and isotropic tissue. Although
these scenarios invalidate the μFA as a direct metric of the microscopic
anisotropy, it is worth noting that it retains sensitivity to the relevant ef-
fect and does so in a more consistent manner than the FA.

Although the comparison between FA and μFA showcases the effects
of orientation dispersion as a confounder for FA, it does not invalidate
previous studies that employ FA as a biomarker. Instead, the origin of
the effect can be better understood, possibly allowing an improved in-
terpretation of the FA and its relation to the microstructural integrity.
We expect that μFAmay not only contribute to the investigation of com-
plex WM geometries, but also in detecting microscopic anisotropy in
tissues that are approximately isotropic on the voxel scale, for example,
in GM (McNab et al., 2013; Truong et al., 2014). Further, the μFA and OP
may provide complementing information to the FA and tensor shape
analysis previously used in the differentiation of classic and atypicalme-
ningioma (Toh et al., 2008), detection of fibroblastic meningioma
(Tropine et al., 2007), and in the preoperative estimation of tumor con-
sistency (Kashimura et al., 2007), by removing the confounding effects
of orientation dispersion which are otherwise ignored.

It is important to stress that the signal acquired with conventional
anisotropic encoding used in this study is identical to that needed for
DKI analysis. However, because DKI makes no effort to distinguish be-
tween the origins of the diffusional kurtosis (herein referred to as vari-
ance in diffusion coefficients) it is not directly associated to microscopic

anisotropy. The framework presented here is also related to the dPFG-
methods employed by Jespersen et al. (2013) and Lawrenz and
Finsterbusch (2014). In terms of the analysis presented here, dPFG
encoding can be describedwith an encoding tensorwhich renders a sig-
nal that is sensitive to aweighted sumof Vi and Va, where theweighting
depends on the direction of the encoding blocks (Westin et al., 2014). It
appears that the framework based on qMAS combined with anisotropic
encoding probes the μFA more directly and may therefore provide a
faster technique for measuring microscopic anisotropy compared to
the dPFG methods. Finally, we note that the implementation and use
of qMAS is nomore complicated than a similar DKI protocol. Other tech-
niques that take orientation dispersion into account include, for exam-
ple, NODDI which quantifies the magnitude of fiber dispersion and the
neurite density (Zhang et al., 2012). From this information it is possible
to calculate a parameter analogous to the μFA. However, like DTI and
DKI, theNODDI technique cannot distinguish between randomly orient-
ed anisotropic domains and multiple isotropic components. Another
drawback of model-based approaches, such as NODDI, is the demand
for a priori assumptions about the tissue that is investigated, which
may limit their use in abnormal tissues such as tumors.

In the present study, several factors affected the accuracy, i.e., the
trueness and precision, of the estimated μFA. The imaging protocol fea-
tures a long echo time which impacted the SNR and thus also the preci-
sion of μFA. Sufficient SNR for a robust signal parameterization was
achieved by increasing the voxel size. Consequently, this increased the
amount of PVE, especially in tissue interfacing with CSF, thereby reduc-
ing the trueness in such regions. Note that the present protocol was de-
signed to test the validity of the suggestedmodel by acquiring a densely
sampled signal. However, the experimental design can be adjusted to
allow whole brain coverage at feasible acquisition times by optimizing
the acquisition protocol (Alexander, 2008). Further, a relatively low
number of encoding directionswere acquired, whichmay have reduced
the trueness by introducing a weak directional dependency in the pow-
der averaged signal, although simulations (data not shown) indicate a
negligible μFA bias even for highly anisotropic tissue. A further limita-
tion of μFA is that it may suffer from low accuracy when the model as-
sumptions are violated or when investigating tissue with little or no
microscopic anisotropy. The effects of such unfavorable conditions are
demonstrated in the simulations (Figs. 9 and 10). The reduced accuracy
in tissue with low anisotropy (μFA b 0.4) can be understood by consid-
ering Eq. (7) for Va approaching zero; where the restriction on Va to be
positive may reduce trueness, and low levels of variance in Va will ren-
der a poor precision in μFA. Thus, it is likely that the μFA calculated in the
glioblastoma exhibited a positive bias since the histological exam of the
glioblastoma found few anisotropic structures (Fig. 8). Although the ac-
curacy of the estimated μFA in the glioblastomamay bepoor, the tumors
could be reliably differentiated based on the difference in their micro-
scopic anisotropy. Finally, a limitation may be that the assumption of
Gaussian diffusion is not valid, i.e., that the signal attenuation may be
dependent on diffusion time. We do not expect this to be the case in
white matter for the current diffusion time regime (Nilsson et al.,
2009, 2013). However, tumor tissue may contain larger cell structures,
which could make μFA dependent on experimental parameters. This is
a topic that deserves further attention, especially since qMAS exhibits
an anisotropic time dependency due to the varying speed of the q-
vector through q-space (Fig. 3).

Conclusion

This study demonstrates the feasibility of mapping the microscopic
anisotropy of the brain in vivo in terms of the μFA. The Results suggest
that the contrast found in conventional FA maps is strongly modulated
by the orientation dispersion of the anisotropic domains contained
within each imaging voxel. By contrast, our analysis quantifies the mi-
croscopic anisotropy and orientation dispersion separately in terms of
the μFA and OP. Unlike the conventional FA derived from DTI, μFA may
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therefore provide a robust biomarker that probes the relevant diffusion
anisotropy even in complexWMconfigurations. The potential benefit of
μFA was demonstrated in two brain tumors. Although both tumors ap-
peared isotropic on the voxel scale, the μFA could be used to distinguish
between thembased on theirmicroscopic anisotropy. Additionally, sim-
ulations of complex tissuemicrostructures suggested that μFA exhibits a
more intuitive interpretation than FA.

We predict that the combination of FA, μFA and OP can be useful
in clinical and research applications, by enabling detection of micro-
structural degeneration in complex neural tissue, detection of fi-
brous tissue in tumors for pre-surgical classification of consistency,
and quantification of microscopic anisotropy in macroscopically iso-
tropic tissue.
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