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Notation

The reader should be aware of notation overlap between disciplines, unless presented
in the abbreviation list, the given notation applies in the given context.

Einstein notation

Einstein notation is only uses the latin letters between i and m, and contraction ap-
plies to tensor/matrix terms over subscript to subscript or subscript to superscript.
No separation (comma/punctuation) is added to equations displayed as multiline or
ending with a variable using a comma in the subscript.

• akbk =
∑

k akbk

• akbki =
∑

k akb
k
i

• ak1k =
∑

k ak

• ai,j = ∂ai
∂xj

Pseudo function

Pseudo functions, often expressed in calligraphic font or while aggregating tensor ex-
pression into matrices, are with omitted indices

• F(ai)⇔ F : ai → bi, ai ∈ X, bi ∈ Y

• BNLTBNL ⇔ (BNL)ikTkl(BNL)lj

This also applies to the mapping functions in finite strain theory and ALE procedure.

Voigt notation

The Voigt notation allows conversion of second order symmetric tensor to be ex-
pressed as vectors, for example Caucy stress tensormσij [σxx, σrr, σzz, σxt, σzx, σyz].
In order to retain expression of governing equations involving partial derivatives,
replace the derivatives of tensor with an operator matrix such that, for example,
σij,j = Lijσj .
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Populärvetenskaplig sammanfattning på svenska

Inom beräkningskemi arbetar man mer med molekyler än atomer, studerar stökio-
metriska relationer, kinetik och geometri, interatomära eletronövergångar medan be-
räkningsfysik studerar mer atomer och dess kärnor, fasta tillståndet och intraatomära
övergångar, oftast närmast mot atomens kärna. Interaktionerna sker på en storleks-
skala på nanometer eller mindre med energiövergångar som är diskontinuerliga, kvan-
tiserade tillstånd, vilket utgör en av kvantmekanikens hörnstenar och beskriver båda
disciplinerna. Med ökat antal atomer börjar interaktionerna mellan atomerna sudda
ut identiteten av de individuella bidragen, och den fysikaliska beskrivningen övergår
till statistiska beskrivning av ensemble av atomer/molekyler, gradvist övergående till
medium av materia, tillstånd med dess lägesenergier och hastighet av materie punk-
ter, till den grad att dessa ändringar blir synliga för ögat och den statistiska partikel
beskrivningen övergår till tillstånds variabler, den klassiska mekaniken med Newtons
lagar i dess centrum med kontinuerlig variation av energi. Dessa tre discipliner, utgör
de grundstenar till vilket ingenjörskunskap vilar på, vars konstruktioner utgör grun-
den för vår moderna civilisation. Konstruktioner involverar oftast växelverkan mellan
olika material tillstånd. De fundamentala material tillstånd man oftast talar om är gas,
flytande och fasta tillståndet och energiövergångar är material punkternas ändring i
kinetik, den inre energin med dess övergångar uttryckt i ändring av antingen tryck,
värme, lägesenergi, elektricitet eller magnetism. I studie av flöde och kraftpåverkan
under normala förhållande, som påverkar vardagen och dess mekaniska tillämpning-
ar är mest centrerad kring gravitation, tryck och kinetik av kroppar. När man åtsi-
dosätter energetiska dissipationer och permanenta form ändringar av kroppar så stu-
derar man elastiska interationer. När man dessutom begränsar sig mot interaktionen
mellan fasta strukturer, dvs konstruktioner, och vätskor, hamnar man inom ämnet
fluid-struktur interaktion (FSI) med hydroelastisk tillämpning. Mer specifikt rör det
sig om vibrationer, töjningar, sträckning av strukturer, som mäts iform av frekvens
och utböjningsstorlek. Detta omfattar ett område som har rönt stort intresse under
de senaste årtiodena, från makroskopisk skala med marina tillämpningar som olje-
plattformar, rörsystem under vatten och transport av vätskor i processindustri, ned
till mikroapplikationer som t.ex. sensorsystem för mätning av tryck och flöde. Att
minimera utmattningsskador/slitage som uppstår genom strömning som inducerar
vibrationer i struktur är ett väsentlig moment i design, konstruktion och underhåll. I
många applikationer strävar man även efter att maximera interaktionen, tex vinge/ro-
tor/turbin och förbränningsmotorer. Att uppskatta effekten av FSI gör man genom
experiment där man ofta skalar ned applikationen till modellstorlek, och sedan genom
vindtunnlar/bassänger studerar kraftöverföring och mäter frekvens och amplituder på
inducerade vibrationer. Sådana experiment är ibland inte genomförbara, och därför
är oftast mätning på applikation i dess naturliga storlek det enda sättet för att förut-
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säga dessa effekter, experiment eller simulering. Detta arbete går igenom metodiken
kring hur man skapar simuleringsverktyg, undersöker dess parameterberoende och
utvärderar dess tillämpbarhet. Applikationsområdet i denna studie är gummipelare
nedsänkta i vatten i meterskala, där flöde induceras av rörelse av strukturen, eller låter
man kanalströmning generera rörelse av strukturen, varmed FSI skapas. Detta är geo-
metriskt och kinematiskt ekvivalent genom likhetstransformation med sensorsystem
i mikroskala där kiselstrukturer nedsänkta i vätska mäter t.ex. tryck/flödeshastighet.
Ett program som löser FSI problemet i helhet, både fluid och struktur samtidigt, kal-
las monolitlösare, men man kan även lösa detta genom fixpunktslösning, där in och
utdata från fristående program på struktur och fluid överförs mellan varandra genom
ett kopplingsschema tills konvergens av data uppnås. Att kombinera två existerande
program på detta sätt kan vara det enda praktiska sättet att skapa en metodik som löser
FSI problem, eftersom det oftast kräver omfattande mansarbete bakom att skapa en
monolitlösare och/eller tillgång till öppen källkod är begränsad. Detta tillvägagångs-
sätt brukar betecknas som partitioneringsmetodik och präglas av instabilitet och oftast
begränsad till aerodynamiska applikationer. Denna studie presenterar en partitione-
rad FSI lösare baserad på två avgränsade struktur och fluid källkod, deal.II respektive
OpenFOAM. Lösaren stabiliseras genom relaxationstekniker och kopplingschema.
Som resultat av detta har en lösningsmetodik utvecklats som är stabil och effektiv
för hydroelastiska applikationer som kan tillämpas på ingenjörsmässiga applikationer
men även inom grundforskning kring strömnings fenomen skapat av FSI, tex reso-
nans och vakmekanismer.
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Preface
Assuming the reader of this thesis is a quantum chemist who typically computes
the kinetics and reaction mechanics and is working with his code, a state solver for
quantum mechanical modelling, how could a solution procedure for a state solver in
macrostate be of any relevance in his line of work? Or vice versa, a computational
engineer working with the implementation of solution procedure of fluid-structure
interaction (FSI), why should he pay any attention to the work of a computational
chemist?

The answer to this, despite the difference in the application area, is that both may
require the use of the same platform, especially while dealing with highly costly com-
putations, High-Performance Computer Centre (HPCC) and thus requiring paral-
lelisation. Further, the methodologies to solve state equations, namely, solving fixed-
point problems and applying relaxation techniques, are mostly the same. This chapter
works through the motivation for changing the subject, the connecting dots between
the microstate and macrostate, and the layout of the thesis. This preface is a caveat for
presenting the subject of FSI in the discipline of computational chemistry using an
application of a cantilever immersed in channel flow, the multiscale ladder picture.

Figure 1: Multiscale ladder. The handshake between the Licentiate and PhD thesis. The PLM is the
Production Life Management cycle: a design, construction, and maintenance process cycle in which
vibrational analysis for fatigue and stress cycles plays a central role in the estimation of the lifespan

of an application.[Google search: Corpus ID: 133876590 (reworked)]
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Previous work as part of the thesis work

By tradition, the midterm of the PhD candidature is marked with writing a Licen-
tiate, which was on the subject of computational chemistry. For the remaining part
of the PhD, the work was shifted towards computational multiphysics. The articles
covered in this licentiate concern electronic spectra of aromatic molecules and atmo-
spheric chemistry. With computational chemistry, one, for example, could compute
reaction kinetics, which can be used in combustion chemistry, to which continuum
theory can be applied to compute flame propagation, see for example Lic IV. The
solving of Schrödinger equation often comes down to fixed-point formulation, using
relaxation/stabilisation techniques. Here the perturbation methodology and relax-
ation techniques, applied in Lic I to Lic III has been most useful in the approach to
stabilise the FSI procedure. The chosen application, the cantilever, can be applied
from macrostate to microstate, and while used together, it is often phrased as a multi-
scale ladder approach; see Figure 1. It should be noted, however not the topic in this
work, that material description, for properly handling fatigue, may require modelling
at the mesoscopic range. The incitement for changing the subject was twofold: firstly,
the author’s interest in parallelisation, and secondly, the authors’s interest in solving
partial differential equations (PDE) by different methodologies, finite element (FE),
and finite volume (FV) methods.

The layout of the thesis

It will begin with the introduction of the problem, the scientific goals, and the motiva-
tion of the subject. Then the chapter on methodology covers FSI boundary conditions
and the governing equations, the applied partition techniques, and the stabilisation.
The chapter on methodology thus defines the scope and the terminology/abbrevia-
tions used for the coming chapters. To set the work in context with other research, an
overview of the FSI is given, the literature study, the background on the subject, and
what challenges are expected, with a focus on the application, the cantilever. Then
the solution procedure for solving the FSI is presented, followed by a chapter on the
implementation and validation of the FSI solver. The reason for separating these two
is that implementing a procedure often has sharing concepts with different solution
procedures. With the FSI solver verified, and methodology explained, a chapter is
dedicated for the summary of the results from the enclosed articles together with con-
necting the dots between the articles, focusing on the research goals of interest. An
outlook for future and ongoing work for the papers that are in progress but yet not
to be presented here.
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Chapter 1

Introduction
Fluid-structure interaction (FSI) is a multidisciplinary field that covers a large field of
engineering applications, ranging in size from macroscopic down to microscopic. The
FSI induces vibrations and fatigue to the structure, and the redirected flow around the
structure generates a flow pattern that may destabilise the structure by coherency over
a large distance. Designing applications subjected to FSI requires quantifying these
effects, and experimental input may be limited. Simulation tools can aid the engineer
in pursuing this agenda. However, software development and computer architecture
requirements to achieve this are costly, and continuous research is ongoing to increase
efficiency and application range. This introduction covers the background of the FSI
subject, the keywords used in later sections to place it into context, and a description of
the application. The problem description of the FSI and the goals are also formulated.

1.1 Background and scope

The redirected flow around a structure may generate a beating with a specific fre-
quency that changes linearly with the incident flow speed and causes deformation of
the structure normal to the flow direction. Assuming starting from low flow speed and
increasing, an immersed structure with the flow may respond with a resonance motion
with a locked-in structural frequency or galloping/fluttering with increasing ampli-
tude with no lock-in frequency response. The difference between galloping/fluttering
is mainly the choice of application. Both types begin at the onset of a critical flow ve-
locity. Some typical applications are wings, blades, and immersed cables/frameworks.
The resonance often occurs in regimes of reduced flow speed that generate a beating
near the immersed structural frequency, characterised by the width and mass ratio
between fluid and structure. The frequency of oscillatory motion and the amplitude
define the fatigue cycles to which the material stability and endurance relate. In addi-
tion, a turbulent flow induces fatigue stress commonly seen in turbines/hulls caused by
buffeting/cavitation. A complexity with FSI is the added mass effect of fluid moving
coherently with the structure, which induces shift in the frequency of the structures,
usually lowering it. Also, the structure’s damping normally increases but may also re-
duce even to negative damping, typical for galloping/fluttering. The influence of FSI
can thus be measured by the structural deformation relative to an equivalent force
magnitude in quasi-static (gain factor), the damping and the frequency shift.
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By design, one seeks to minimise/maximise the gain factor by either passive or active
FSI, depending on the application. Passive FSI is often achieved by optimising the
shape of e.g. a ship hull, an aeroplane body, or a blade of a turbine/propeller/wing,
or by modifying the flow pattern of submerged pipelines by twisting or tapering, or
counteracting triggered mode shapes in vessels, bridges and buildings by reinforce-
ment over nodal points of higher order vibrational modes. Adaptively changing the
gain factor of structure, the active FSI, often refers to dynamically altering the stiff-
ness/shape, such as blade twisting in turbine/helicopter blades and actuators/dampers
in bridges/buildings. In pursuing shape optimisation, one often resorts to cyclic it-
erative procedures by experiments, where the state variable’s response is measured by
varying structural parameters one at a time. From these inputs, one forms a func-
tional expression of the dependency between structural and flow parameters. These
empirical expressions often rely upon dimensional similarity analysis, providing the
engineer with diagrams and formulas to be used in the design. For example, statistics
of mechanical failure are related to fatigue, which relates to the size of the induced
motion and its frequency, or a diagram of hull shape for a ship/aeroplane as a func-
tion of load capacity/cruiser speed. However, experimental input may not be feasi-
ble or not provide sufficient data for various reasons; therefore, simulation tools are
the only viable option. FSI methodology specially adapted to these challenges has

Figure 1.1: Left: Modelling tanker under rough sea condition in a basin. Right: The corresponding ship type
in voyage with cargo. [Wikimedia Commons search: maersk basin]

been developed, such as immersed boundary method for simulation of a heart valve⁴,
space-time discretisation⁵ with unique adaption for the description of a parachute, a
smooth particle model for astrophysical problems⁶, and Lattice Boltzmann to handle
the complex transition between phase transition/complex media such as porous media
or droplets⁷. Other examples are the volume of fluid method for handling multiphase
flow, such as in the mixing of fluids and sloshing tanks⁸, the added mass methodology
for steady-state analysis of stress over hulls of ships/storage tanks⁹, and the Method
of characteristics to analyse water hammer in pipework¹⁰. A similar approach, the
Morison equation¹¹, has been developed for wave interaction with immersed frame-
works in ocean applications. All these methods have the common ground of solving
FSI within continuum theory and elasticity.
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Despite having simulation tools that handle specific design problems, implementing
them for each program is demanding; therefore, having an FSI methodology that al-
lows handling each program as a black-box is an attractive feature, where the state
variables are provided in a cyclic fashion as alternate input/output. However, such
a partitioned approach suffers from severe limitations from instability, especially for
hydroelastic problems (i.e. FSI where the fluid is liquid); this is because the mass ra-
tio between the fluid and the structure affects the load that is transferred with respect
to momentum; the larger the momentum, the larger excitation of the cyclic loading,
leading to larger fatigue. Hydroelasticity often occurs in offshore applications, such as
oil-rig platforms, ships, bridges, submerged pipelines, pipeworks transporting liquids,
and storage facilities of liquids in containers. Here one distinguishes between quies-
cence flow and channel flow. A quiescence flow often occurs in servo-pumps, storage
tanks under mechanical stress or sensor arrays at the microscale (MEMS). Channel
flow is the transport of fluid, often pipes.

This thesis focuses on developing a partitioned FSI methodology that is applicable
to turbulent flow with hydroelasticity using a cantilever immersed in quiescence and
channel flow as the primary technical application. Challenges that come with such
partitioned methodology are investigated and characterised.

1.2 The application

In most engineering structures, there is an interaction between fluid and solid matter
to be considered. To analyse FSI effects, one often begins with identifying critical
components in the structure subjected to FSI. One such is the cantilever, which acts
as a support element in engineering frameworks, from moving mechanical machin-
ery on land, in/on water, or in the air, or likewise stationary applications, such as oil
platforms, large-scale buildings, plants with large pipe structures, and so forth. View-
ing a landscape of a city or industrial plant, most structures are cantilever-supported
structures, a reminder of how this component has such widespread usage. In the op-
posite size range, at the microscopic level, mechanical devices measure temperature,
flow speed, or pressure, or act as transducers, actuators, gears, pumps, and switches.
Another aspect of the cantilever/beam is its simplicity in providing analytical expres-
sion to model more complex structures, mechanical ones such as ships (free beam)
and wings/buildings/tails (cantilever), biological structures such as grass, seaweed or
trees (cantilever), and so forth. The application is a cantilever immersed in a rectangu-
lar domain of fluid which is either in motion (channel flow) or still tank (quiescence
flow). This can be related to numerous engineering problems, as exemplified above,
and thus serves as a suitable ground for a thorough investigation of FSI methodology.
Also, with cantilever, a well-defined theory upon FSI and beam theory is another
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Figure 1.2: Cantilever applications from nanoscale, left most, AFM cantilever, most used for taking pictures of
material structure, MEMS resonance for the purpose of measuring, up to macroscale - laboratory
scale (cm), studying deflection of thin beam foam immersed in channel flow. By similitude, results
at the macroscale can be brought to be similar to case settings at the microscale. [Wikimedia

Commons search: AFM, MEMS] and rightmost Luhar ¹]

attractive point in the chosen application. Choosing a rectangular cantilever cross-
section creates the point of separation of shear layer located at the edges, making the
immersed cantilever in a fluid domain cost-efficient for extensive parameter studies.

A hyperelastic model of the solid is chosen, since the aim is for medium-sized defor-
mations, with a material Lamé parameter setting similar to rubber. As turbulence is
an important aspect, the focus is set on the transition regime, moderate turbulence
mixed with the laminar flow by further setting uniform/parabolic laminar flow set-
tings, leading to turbulence generated by the flow separation around the bluff-body,
which further scales down the computational efforts. The focus on the hydroelastic
problems is provided by setting the density and viscosity of the fluid similar to wa-
ter. The domain is in meter scale; however, by similitude, the chosen application and
settings are equivalent to silicon/water for micro-scaled applications (µm), such as
sensor systems, or laboratory scale (cm) using glycerine/water mixtures.

Consequently, the Mach number is low, this makes incompressible fluid condition
the most sensible choice since the stability of the solver decreases as the Mach number
decreases for a compressible medium. On the contrary, an incompressible solid would
cause problems for its solver, making a compressible condition on the solid the most
suitable for the current material setting.

1.3 Problem description of FSI

In the design of an application/control/investigation of a physical process, one has to
choose the governing variables for a given physical state. In this choice of variables,
conditions, and kinematics follow since implicit dependencies apply as a consequence
of physical laws.

Most physical laws revolve around mass, momentum and energy conservation. State
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variables often govern a physical state, for example, pressure, velocity and mass, but
also by electrical or thermal origin conditions. Together it generates a set of interre-
lations between state variables, the governing equations, which may require further
modelling, to create the equation of state solver whose solution provides the governing
state variables. Solving the governing equation of state for a multi-physic problem in
three dimensions often requires computer-aided resources such as high-performance
computers (HPC) clustered into massively parallel systems.

Today many open-sourced or commercial solvers solve fluid and solid problems stand-
alone in an HPC environment in an efficient and scalable way, but there are much
fewer solvers that combine those different disciplines to the same degree of success.
A common approach to solve an FSI problem is to exchange state variables (x) across
the coupled boundary through an interface and formulate the governing equations
of state as a fixed point problem, where each sub-domain is solved sequentially by its
stand-alone solver,

x = H(x) ≡ F ◦ S(x), (1.1)

where the solvers F and S is applied to the fluid respectively solid sub-domain. This
partitioned black-box procedure generates a sequence X = {xi} whose limit x∗ is
the desired solution (x); however, this procedure may be unstable, mostly due to
the so-called added mass problem that appears in hydroelasticity applications. An
improvement of this procedure may be obtained by the application of vector acceler-
ation techniques to the sequence, where the sequence X is transformed by mapping
each element by a function f ,

f : X 7→ X ′ ≡ {f(xi)}. (1.2)

The choice of the function f depends on the design parameters, and since FSI for
hydroelasticity problems in engineering applications tends to be stiff, an efficient so-
lution is often difficult to achieve. This is further complicated because most large-scale
flows are turbulent, providing noise which may cause the accelerating procedure to
fail. Another approach is to apply the extrapolation/projection technique; the differ-
ence lies in the reformulation of the problem into the residual,

R(x) = H(x)− x, (1.3)

then by applying a root-finding procedure to solve the problem. The functional repre-
sentation of state variables is normally achieved using a mesh, a tesselation of the do-
main into sufficient small subdomains such that points in space can be related to each
other by compact functional expressions, thus providing a discrete representation of
state variables that varies across the space. A change of the boundary implies motion of
the mesh; this poses an additional complexity that is either solved by a superimposed
stationary mesh, immersed boundary technique (IB), or coherently moving disjoint
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mesh, normally solved by the Arbitrary-Lagrangian-Eulerian technique (ALE), thus
enforcing a set of Laws of Geometric constraints that has to be enforced into the bal-
ance equations for the fluid/solid. This is employed normally as part of the fluid step
but can be treated as a stand-alone solverM with the input of the boundary, and the
output is the change in the fluid mesh.

1.4 Research goals and objective of thesis

The main objectives of this thesis were to study the influence of turbulence and eval-
uate the feasibility of partitioned FSI methodology by choosing a cantilever and ap-
plying this to an area that at the start of the project was not thoroughly investigated,
namely, FSI in turbulent flow for hydroelastic problems by setting the material close
to rubber/water. The solution approach is a partitioned technique using ALE method-
ology and relaxation to enforce stability.

Although the main goals were achieved in the first paper, which was a significant nov-
elty when published, the turbulence showed only a minor influence with the current
application and required significant computer resources to further investigate the lim-
itation while using ALE methodology with turbulence. Therefore, the focus shifted
from turbulence modelling to studying the efficiency and stability of relaxation tech-
niques.

By choosing cost-efficient settings for the application, the stability and efficiency of
the FSI methodology were thoroughly investigated. This involves parameter depen-
dency studies on stand-alone solvers, coupled solvers by different schemes and domain
studies. The primary goal was to establish a procedure for a stable and efficient FSI
simulation.

Also, while shifting from turbulence modelling into hydroelasticity/hydrodynamic
damping, a secondary objective was to investigate vortex-induced vibrations (VIV)
to demonstrate the capability of the FSI methodology in an area with large ongoing
research. Since the application often requires damping in the solid, modelling aspects
of the damping becomes an additional goal.

6



Chapter 2

The methodology
The chapter first describes the governing equations, the boundary conditions, and
the modelling equations for turbulence. Then focus is on the FSI methodology, the
partitioned approach, the state diagram representation of the solver, and then the
relaxation methodology defined. See Appendix A for basic terminology and dimen-
sionless numbers.

2.1 The governing equations

The physical domain Ω is partitioned into two disjoint subdomains, the solid Ωs and
the fluid Ωf , with a coupled boundary Γ. Each state variable is a function of position
xi, and for each physical or fictitious boundary, a normal vector (nj) is defined and
governed by a balance equation in strong form. The state variable assigned to each
domain has superscript s or f , which is skipped whenever the context is clear or a
relation is the same for both domains. At Γ the Dirichlet-Neumann condition is
applied,

vi = ai,t (2.1)

tsi = −t
f
i (2.2)

where vi is the boundary velocity on the fluid side and displacement vector on the
solid side and ti is the traction. This is a continuum hypothesis (i.e. no-slip) and
Newton’s third law for action and reaction, respectively. Assuming a material element
with control volume CV of arbitrary size, and studying the change of a quantity ϕ
over time integrated over the CV , the Reynolds transport theorem (RTT) states the
relation between the flux across the surface with velocity vk and the change within
the CV to the measured total change of the quantity expressed as,

d

dt

∫
CV

ϕdV =

∫
CV

ϕ,tdV +

∫
∂CV

nkvkϕdA. (2.3)

This is the Lagrangian view. alternatively, by changing vk to uk, assuming a static fixed
CV and studying the flow of the fluid, the Eulerian view. Normally it is Lagrangian
view applied to the solid and the Eulerian view to fluid. Further, normally for solids,
one set vk=0. Applying RTT to formulate the balance equation for the mass, ϕ = ρ,
in each subdomain gives the continuity equation,

ρ,t + (ρUi),i = 0, (2.4)
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where ρ is the density and Ui the velocity. For incompressible flow, ρ being constant
and Eqn (2.4) is simplified to Ui,i = 0. Correspondingly, for the Lagrangian de-
scription of a solid, Eqn (2.4) has a closed algebraic form, ρ0 = Jρ where subscript
0 refers to density in the reference frame, and J is the determinant of the defor-
mation gradient of the strain measure. For fluid domain, using RTT to formulate
the balance equations for momentum, with ϕ = ρUi, incompressibility (Ui,i = 0),
Newtonian fluid (τij = 2νDij), Newton’s second law (ρdUi

dt = fi), Cauchy stress
theorem, with Cauchy stress formulation, thus expressing the force in terms of shear
(τij) and pressure(p), and divergence theorem gives the incompressible Navier-Stokes
equations (INS),

Ui,t + UjUi,j − 2νDij,j = −
1

ρ
p,i (2.5)

where ν is the kinematic viscosity. There are four variables (U ,x,p,t), and commonly
one applies the following scaling (U † = u

U , x† = x
L , p† = p

ρU2 , t† = t
L/U ) where L

is the so-called length scale, U reference magnitude, thus expressing the INS in terms
of the Reynolds number (Re),

U †
i,t†

+ U †
jU

†
i,j − 2

1

Re
D†

ij,j = −p
†
,i (2.6)

The choice of scaling reflects the type of problem to be solved, and Reynolds number
characterises, among other things, the turbulence in a flow.

The corresponding momentum equation for solids takes, due to the motion descrip-
tion, a much more compact form, the equation of motion, which relates the volume
forces with the acceleration and density,

ρai,tt + f(ai, ai,t) = f ei , (2.7)

where f is the internal force, f e is the external force, ai the displacement field. The
balance equations to be solved are coupled through the common boundary Γ. Com-
monly, f(ai, ai,t) = h(ai,t) + g(ai) and applying linear damping (h ≡ ηai,t) and
Cauchy stress theorem (g ≡ −σij,j), Eqn (2.7) takes the following form,

ρai,tt + ηȧi − σij,j = f ei . (2.8)

The BC at the coupled boundary, governed by Eqn (2.2), implies that the traction by
the fluid acting on the solid, scales by the mass ratio R =

ρf
ρs

.

2.2 Turbulence modelling

The turbulent flow contains a cascade of degrading motion that is of a chaotic nature
with a self-similarity, thus requiring finer mesh to be resolved. The exact velocity field
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Ui (unknown) is therefore decomposed into a resolved field (i.e. known field) Ūi and
a subgrid-scale part u′i ( modelling portion of the cascading part of the turbulence),

Ui = Ūi + u′i, (2.9)

where the resolved field is Ūi =
∫
G(r)Ui(x − x′, t − t′)dx′dt′, of with a filter

functionG. Applied to Eqn (2.5), this defines the sub-grid part in terms of the resolved
component, and the filtered INS in strong form is obtained¹²,

Ūi,t + ŪjŪi,j +Bij,j − 2νD̄ij,j = −
1

ρ
p,i (2.10)

whereBij is the sub-grid scale (SGS) stress tensor,Bij = UiUj−U jU i. The applied
turbulence model is the Large Eddy Simulation model (LES).

Two main LES approaches exist, explicit¹³ and implicit filtering¹⁴. In the explicit
form, a filter is applied, and the SGS turbulence is computed explicitly, while in
the implicit, a top-hat filter and dispersion of the discretisation scheme is used, the
upwind scheme for example.

A common approach to finding the closure to the Navier-Stokes equation, namely
parameterise Bij , is to assume that the turbulence is aligned with the strain tensor of
the mean flow, the Boussinesq hypothesis¹⁵. Although this is often not the case, it
has one aspect that makes it still useful: even a non-exact turbulence model at least
has the advantage that it mitigates the stability loss that would result when trying to
solve INS without turbulence for large Reynolds number. However, one known issue
with LES is the non-commutative property¹⁶ in moving parts, introducing an error.
The thesis does not cover this topic, but its effect is limited by the application.

2.3 Solving the balance equation

The tensor fields are continuous functions over the whole space. Applying spectral
methods, using a continuous basis function over the entire domain, is feasible but
not a common practice for various reasons. To achieve a solution to the balance
equations, one needs to simplify the balance equations into a finite representation by
discretisation; this is achieved by first defining the mesh of a domain. The domain
is partitioned into a disjoint set of control volumes (CV), polyhedrons, defined by
vertices which form facets, and each facet has an associated normal. This forms the
mesh of the domain, where the state variables take discrete values indexed by either
the vertices or the centroid of the control volume or the facet. The localisation matrix
Ze relates the local elements Xe

i with the global field Xi.

Xe
i = (Ze)ijXj , (2.11)
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The balance equations can then be solved ”exactly” for each control volume with a lo-
cal balance equationAe(Xe

i ) for a non-linear root problem. The assembling of these
interrelated equations for each control volume allows the strong form of the governing
balance equations to be formulated as the aforementioned fixed-point problem,

Xi =
∑
e

Ae(Xe
i ) =

∑
e

Ae((Ze)ijXj) ≡ A(Xi), (2.12)

whereA is the assembled equation, often expressed as recurrence relation or functional
expression. The process of assembly and formulating this is phrased as the solution
procedure with A as the solver of the balance equations. The classification of the
methodology is independent of the choice of the solution procedure. By designating
A to F for the balance equations of the fluid domain and S over the solid domain,
one obtains a solver for each subdomain. The unknown variables of displacement
and traction across the coupled boundary are thus ai respectively ti. By defining the
mapping ai = S(ti) and ti = F(ai) at the coupled boundary, two different solution
approaches are,

ai = S ◦ F(ai) ∨ ti = F ◦ S(ti), (2.13)

and [
ai
ti

]
=

[
S(ti)
F(ai)

]
, (2.14)

respectively. One could solve this simultaneously in the same mathematical frame-
work, monolithic solution, or sequentially in each subdomain. While solving this for
a monolithic approach, the Eqn (2.14) is the most natural choice, the Jacobi proce-
dure, however, by solving each domain sequentially using the coupling, Eqn (2.13) is
a natural choice, using the Gauss-Seidel procedure. The composite S ◦ F(ai) used
in formulating the FSI problem is designated asH, a cornerstone in the FSI method-
ology. Whenever the framework is separate for each subdomain, hence ignoring the
coupling, the sequential procedure is also known as the partitioned approach.

2.4 A mesh conforming motion technique

The ALE method² is a technique where one solves the fluid equation by moving the
whole grid on the fluid subdomain in a Lagrangian perspective, where the fluid solver
remains in Eulerian perspective, originally formulated for moving boundary problems
without the structural subdomain¹⁷. The Lagrangian perspective solves the balance
equation in the material domain and is related to the spatial domain by a mapping φ,
see Figure 2.1. This mapping φ is equivalent to Φ◦Ψ−1 which relates the gradients in

10



Figure 2.1: ALE mapping: The reference domain Rχ maps the position of the material space and spatial
space by the mapping Ψ respectively Φ which produces the mapping (φ) between material point

Xi to spatial point xi through the composite mapping ϕ ≡ Φ ◦ Ψ−1 [Chapter 14: Arbitrary
Lagrangian-Eulerian by Donea ²].

the material and spatial domain, (Xi,t) respectively (xi,t), thus following the motion
of a material point in the spatial domain and differentiate the ϕ with respect toXi to
find the relation between the velocities in each domain by chain rule,[

∂xi
∂Xj

vi

0ti 1

]
=

[
∂xi
∂χ v̂i

0ti 1

][
∂χ
∂Xj

wi

0ti 1

]
≡

[
∂xi
∂Xj

v̂i +
∂xi
∂χ · wi

0ti 1

]
, (2.15)

where (vi, v̂i, wi) ≡ ( ∂xi
∂t

∣∣∣
x
, ∂xi

∂t

∣∣∣
χ
,
∂χ
∂t

∣∣∣
X
). This is used to relate the derivatives of

a variable f in spatial with respect to the material through the reference, (f(Xi, t) =
f(χ, t) ◦ Φ−1(xi, t)) by using the chain rule,

∂f

∂t

∣∣∣∣
X

=
∂f

∂t

∣∣∣∣
χ
+ (vk − v̂k)f,k (2.16)

where (vi − v̂i) is the relative velocity in reference space and v̂ is the mesh velocity.

As a consequence of this, the governing equations for the fluid, which are formulated
in the Eulerian description, can be related to the Lagrangian description by a mere
change of velocity in the Eqn (2.5) for the convective part (UkUi,k) with relative ve-
locity (i.e. U r

kUi,k). Computing the mesh motion velocity U r
i requires an additional

solution step, the mesh motion solver, which is denoted asM with the structural in-
terface coordinates as input, and the output is the mesh velocities of the fluid domain,
i.e. vi =M(ai).

Also, due to the motion of cells, to preserve the conservation laws (i.e. balance equa-
tions), the Geometric Law of Constraints (GLC)¹⁸ must be applied unless one deals
with space-time formulation. A commonly applied solution approach is to enforce
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uniform flow preservation, which implies a correction step by adding a source term
that removes the error produced by solving an advection problem for constant flow,

∂

∂t

∣∣∣∣
χ

∫
CV

dV =

∫
∂CV

uinidS. (2.17)

This is a procedure that has been debated over decades, notably for FV methods,
about its necessity and sufficiency, but in general it has been considered to be a key
ingredient for increased stability and accuracy¹⁹,²⁰,²¹. The mesh motion procedure is
closely dependent on the meshing strategy. The applied mesh motion procedure in
this thesis is the diffusion algorithm²²,²³, which assumes the mesh topology is fixed
(i.e. same interrelations and cells),

(γdfi,jj) = 0 , vgi = dfi,t (2.18)

where dfi is the displacement vector of the discretisation points in the fluid domain,
and vgi is the mesh motion velocity (i.e. v̂i). The mesh diffusion γ requires further
parametrisation²²,²³. By a study of parameter dependency, one obtains an optimal ap-
proach concerning accuracy by choosing the diffusivity γ to be inversely proportional
to the displacement.

M

F

ani tni

S

∥an
i − H(an

i )∥∞ < ϵ

ani → an+1
i

Start

k = k + 1

End

Figure 2.2: Partitioned FSI procedure: Coupling schema for a strongly coupled solution to Eqn (2.20). Grey
boxes are stand-alone solvers, white boxes are the coupling interface.
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2.5 The partitioned FSI methodology

With each stand-alone solver defined by Eqn (2.13) and the mesh motion solverM,
the FSI is formulated with a flow chart, as presented in Figure 2.2. The entry point to
the iterative procedure is labelled as ”Start” and the exit point as ”End”. The super-
script n stands for the current time step.

The entry point (”Start”) in the FSI is extrapolated, the predictor step, from the pre-
vious time step by applying velocity and acceleration for the displacement and/or
regression extrapolation for the pressure (k = 0),

ani ' an−1
i + vn−1

i ∆t+
1

2
vn−1
i,t ∆t2 , pni ' clpn−l

i . (2.19)

As explained in the forthcoming solution procedure, the predictor still applies for the
displacement irrespective of the entry point. The shaded boxes represent the stand-
alone solution step; the white boxes are the interfaces that integrate the separate solvers
into an FSI solver. The Mesh motion solver for the fluid domain is normally integrated
into the same software package as for the fluid. The Gauss-Seidel fixed-point problem
can be expressed as,

ani = H(ani ) = (S ◦ F ◦M)(ani ). (2.20)

A solution is reached when with a sufficient number of subcycles k, the difference in
norm between LHS and RHS is below a prescribed tolerance (‖H(ani )− ani ‖ < ϵ).
The tolerance ϵ is set from a tolerance study as a function of the mesh size and time
step.

2.6 Relaxation and acceleration techniques

Acceleration techniques originate from the study of accelerated convergence of se-
quences of scalars(a1,...,an)²⁴ by applying a contracting map T ,

(a1, ..., an)→ (T (a1), ..., T (an)). (2.21)

Of course, the mapping is such that the two sequences should have the same limit,
lim ai = lim T (ai). One such of particular interest is Aitken δ2 acceleration. By
using the pseudo-inverse of a vector (i.e. x−1

i ≈
xi
|xi| ), this method can also be gener-

alised to handle a sequence of vectors. A more subtle approach to accelerate sequences
is continuing the argument of Eqn (2.20) by reformulating the fixed-point problem
in terms of a residual rki at subiteration k,

rki = H(aki )− xki , (2.22)
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where xki is the trial vector, then the Eqn (2.20) is said to converge as the infinity
norm l∞ of rki reaches below a threshold, the FSI tolerance. The converged solution,
i.e. the trial vector, is denoted as ani , where n is the index for the current time step.
It can be related to Newton’s method, i.e. solving a root problem R(x) = 0 with
J dx ≈ δr, where J is the Jacobian matrix ofR. The Jacobian matrix can, however,
be expensive to compute, but there exists an approach that allows combining the
fixed-point iterative method with Newton’s method in such a way that to a posteriori
estimate the solution to Eqn (2.13) by using the sequence of the solution fields aki for
the current and the previous subiterations by the following assertion,

a∗i = xki + clr
l
i, (2.23)

where 0 ≤ l ≤ k. This procedure is also known in the literature as the Jacobian-
Free Newton Krylov method (JFNK). A related technique is the successive under-
relaxation method (SUR), originating from solving a linear system of equations²⁵.
This can further be related to a branch of different solution techniques.

These approximate solutions from Eqn (2.21) and Eqn (2.23) are applied to the mesh
motion solver, except at the final subiteration to which ani is used. For that reason,
a∗i is called the interface. From this, it is apparent that a kinematic synchronisation
between the subdomains is attained only at convergence, and the choice of the epsilon
is a critical step in determining the accuracy of the FSI solution. Since both the
residual method above and the acceleration schemes act as a posterior correction, they
are phrased as relaxation methods and form the relaxation step, which is denoted as
R.

The main drawback with partitioned techniques for FSI applications is the instability
through the so-called added mass, which increases with increasing mass ratio. The
relaxation resolves this. It should be noted at this point that acceleration techniques
only partially resolve the instability.

2.7 Other FSI methodologies

In this section, other FSI methods that are of interest and mentioned in forthcoming
chapters are defined here. Firstly, the focus is on techniques that differ by how the
interface is moved and the choice of mesh representation. One notable of interest
is the non-conforming mesh technique, immersed boundary technique (IB)⁴, where
one introduces a virtual force to redirect the flow around the structure, the mesh
of respectively domain is overlayed, and the interface is often represented as Dirac
kernels. The fluid is described by Eulerian description, and the solid is independent
of the choice. A common issue with the IB method is the smearing, time stepping
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restriction, and stability issues for larger bodies with more complex geometries²⁶. This
is the main reason that for a larger body, the conformed meshing is applied. Another
category is the mesh-free technique, dealing with particle models in the Lagrange
description. Two methods stand out in this category: Smooth Particle Hydrodynamic
(SPH)⁶ and Lattice Boltzmann (LB)⁷. The application area for SPH is wide, from
large-scale astrophysical down to mesoscopic scales, such as free surface simulation
with complex geometries with the effect of gravity and multiphase flows, allowing
a cost-efficient procedure per cell count. The limitation is, however, the difficulty
in boundary conditions or when the metric in space is not density. The space is
discretised into a set of material elements with position and velocity, then the positions
of the particles are computed by solving the motion equations, and the interaction
between particles is achieved through kernel functions. Another limitation is that
the amount of particles required increases with increasing resolution. Since the cost
per particle becomes larger compared to mesh-based techniques, it comes to a tipping
point where mesh-based methods are more accurate and faster. In the LB method, the
space is discretised into a lattice of points (material element position), each connected
to the surroundings by a predefined direction. Quantities along these directions define
the fluid density. This method is well suited for parallelisation. Limitation of the
model appears for high Mach applications, and there is also no current modelling
for thermal-hydrodynamic problems. The Knudsen number governs the application
range for the LB.

For cases of steady-state character, the dynamics of FSI can be attributed to the ac-
celeration effect by the added mass. It can be possible, especially for structural-driven
applications, to merely modify the mass matrix and solving the structural equation
stand-alone, to estimate the frequency shift, induced stresses and amplitude of fatigue
cycles, and this is then called the added mass technique⁹.
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Chapter 3

Literature study
The development of methodology in computational engineering is synchronised with
hardware development. To illustrate this, a timeline of HPC development is presented
with statistics to be used while discussing an overview of the FSI methodology. The
statistics presented in this chapter, showing the techniques/years of publication and
complexity/application presented, are taken from the FSI methodology related articles
used as references in papers I-IV. Semi-empirical methods are excluded. The chapter
ends with a summary of the articles used for the case setup, postprocessing, and vali-
dation as well as solution procedures. In addition, other methodologies not applied in
this thesis are shortly discussed in order to create a context for the procedure chosen
in this thesis.

3.1 Timeline of HPC and software package

Figure 3.1 shows the development of HPC hardware with the open-source software
(relevant for the thesis) available for scientific computing and the performance peak
in terms of the number of floating point operations per second [FLOPS] indicated in
brackets. Around 1970 most of the keywords listed and discussed in the previous chap-

Figure 3.1: Timeline of HPC computer history of peak performance (above) [FLOPS], relevant
package/language release date used in the research of this thesis (below)
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ter were first developed: IB, ALE, SPH, FEM and INS solver. The terminology and
even FSI methodology were presented, but the limited computational resources made
the breakthrough only feasible once MPI protocol²⁷ and the software packages were in
place around 1990 and 2000. Large software packages for FEA emerged in early 1960,
for example, NASTRAN²⁸. CFD software followed shortly with the development of
techniques for solving the INS, more precisely, the projection methods for resolving
pressure/velocity coupling by Chorin 1968²⁹. An interesting aspect is that turbulence
models were founded at an earlier point. Mostly since the need for development was
based on the measurement techniques and using a statistical approach sidestepped
the need for simulation of complex fields using computer resources. Take, for exam-
ple, the Smagorinsky model from 1962³⁰. Further, most FEA/CFD analyses at that
time were done using pen and paper using scaling elements and framework/truss ap-
proaches. Using a computer at that time merely ”copied” the handwritten procedures,
developing algorithms purely in a black-box manner for computers was a concept not
coined until 1970 and later. Take, for example, numerical recipes (1988)³¹. From 1980
to the beginning of 1990, they marked an era for black-box libraries such as BLAS³²
and LAPACK³³. With the integration of HPC into the university, several pioneers
laid the foundation for several large program packages around 1970 and 1980, such as
ADINA³⁴ by Bathe, ANSYS by Swanson³⁵, Mathworks by Jack Little, Cleve Moler
and Steve Bangert.

3.2 FSI complexity

The complexity of an FSI problem is defined by the mesh resolution required to solve
a given problem and the order of accuracy, to which one coins the expression of
the quantity and the quality of a method. However, complexity does not directly
reflect efficiency and stability. Generally, the quality is the same between studies;
hence, the complexity differs by quantity. The reported mesh size (i.e. the number
of cells) on the year of published work is displayed in Figure 3.2. The data is fur-
ther differentiated between two/three dimensional (2D/3D) mesh, and aeroelasticity
(AE)/hydroelasticity (HE) is applied. The complexity increases with time, as to be
expected as HPC computational power (FLOPS) increases. However, most articles
report the usage of personal computers, and it is impossible to run the larger mesh
without HPC (∼ 106). Despite the recent decades of improvements, there are sparse
findings of studies of strongly coupled FSI using larger mesh; despite CFD breaking
the billion limits, FSI reports up to 2020 presents seldom studies with a mesh of more
than 10 M Cells.
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Figure 3.2: The complexity of FSI simulations over the past two decades. 2D/3D applications to hydroelastic
(HE) and aeroelastic (AE). FSI solver applied in this thesis: Solving a 1 M cells fluid mesh, with 1000

macro steps with on average 3 FSI coupling iterations cost for an HPC that delivers 700
GFLOPS/node, about 20 hrs simulation time with two nodes.

3.3 Keyword distribution

For each FSI article used in the literature study, their solution techniques and appli-
cations were compiled and categorised, and their fraction was presented as pie charts,
see Figure 3.3. The sections of the charts with a dark grey area show in which category
the work of this thesis can be placed. The ”Other” category represents a collective of
keywords with a lesser amount than listed for the next smallest section.

The FSI problem can either be solved monolithically or partitioned. Semi-implicit is
categorised as partitioned. The procedures for solving these are widely different; the
most simplistic is the black-box principle, where only the stand-alone input/output
are the transferred variables, whereas an interface program further stores the variables
that can be processed. Another approach is to modify the stand-alone solvers to adapt
to the FSI by computing the coupling elements in the FSI problem, a semi-implicit
approach. For a monolithic procedure, the whole mathematical framework is uni-
fied and solved in one solver step. However, this is often not feasible, partly due to
the different material settings and/or computational resource limitations. Indepen-
dently, one can choose between different meshing, conforming or non-conforming
mesh, leading to the differentiation between two different types of mesh handling: Ar-
bitrary Lagrange (ALE) and immersed boundary (IB), the ”Other” category contains
one-dimensional/spectral approximations, often for benchmark and stability analysis,
involving simplified governing equations, leading to either fluid or solid response to
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be one dimensional, so then ALE/IB loses its purpose. The governing equation can
then, on each mesh, be solved by Finite Element/Finite Volume and Finite Differ-
ence (FD); the ”Other” category contains methodologies such as SPH/LB and other
combinations of discretisation; one such particular of interest is FV-FV, despite its
popularity in some applications, the actual influence is much lesser on research fo-
rums, mainly due to the difficulty in representing the material description for a solid
in FV framework. The spatial dimension of the mesh is either one/two/three dimen-
sional, but a surface in three dimensions is represented as two-dimensional and so
forth. Therefore, the combined FSI problem may differ in the dimensionality of the
mesh. The spectral method is also common but mostly as a procedure to estimate
stability/efficiency, applied to one-dimensional problems (1D) to provide analytical
expressions, but it is placed under ”Others” among different combination techniques.
What dimension/discretisation on each mesh is specified with a hyphenation starting
with the fluid and then the solid.

There is a missing dimension: 3-1, which commonly appears in Vortex-induced vi-
bration (VIV) applications. We are also excluding all references where the dimension
of the solid is higher than that of the fluid since that often deals with simplified FSI,
such as added mass methodology.

The two final keywords of interest are the incompressible condition on fluid, whose

20



”Other” represents inviscid and compressible. The exclusion of solids is due to the
difficulty in modelling other than compressible. Secondly, for applications, the can-
tilever dominates, followed by tube (pipe, shock tube, thin membrane pipe, channel)
where either the whole/part of the wall is flexible; then comes biological applications
(blood vessel, heart, wings), followed up by still tank applications (moving lid on the
container, tilting liquid tanks partitioned by a membrane/plate). The ”Other” cate-
gory contains mostly one-dimensional applications such as piston, spring-dash pod,
thin-membrane, and immersed cantilever in inviscid, primarily to estimate the stabil-
ity and determine the added mass effect and efficiency analysis. There are cross-overs
with the still tank, but the other keywords take precedence.

3.4 A review of previous work on the subject and application

Firstly, the background and the application will be reviewed, and some terminology
will be defined to be used in chapter Results. Secondly, the context in which the
FSI methodology developed in this thesis will be reviewed. It should be noted that
the Finite strain theory was well-defined even before the 1950s, somewhere between
the birth of continuum theory in 1878 when George Cantor began to work through
Hilbert’s question to the book of Truesdell³⁶ or for a more modern framework³⁷,³⁸.
A similar argument goes with incompressible Navier Stokes from around 1850 to the
current date³⁹,⁴⁰. With the theory for the solid and fluid set to stone, the research is
focused on the challenge and the difference in implementing the mesh motion strategy
and relaxation together with action steps. To avoid bloating the remaining sections,
a chosen few are presented, ensuring references therein cover all relevant articles used
in this thesis.

Application: immersed beams in quiescence and channel flow

Sarpakaya⁴¹, provides an excellent review on the subject of Vortex-Induced Vibrations
(VIV). The flow characteristic generated by VIV in the application of bluff bodies has
been in focus for several decades for various reasons: from basic research of physical
phenomena, e.g. wake structures or parameter dependencies, towards engineering ap-
plications with specific goals, such as reduction/maximisation of lift and drag effects.
Other areas of interest are graphics and visualisation for the purpose of providing re-
alistic flow animation. A bluff-body and streamlined body are often characterised by
the drag and the lift coefficients, which are key design factors for the engineer. See, for
example, the work of Sumner⁴² on the clamped-free short AR cantilever, or drag/lift
coefficient dependency on various flow characteristics by C.Norberg⁴³. Most applica-
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tions for VIV are offshore type; the focus is therefore much centred around long and
slender cylinders, and the shedding modes downstream are often characterised as two-
dimensional in cross-flow/streamwise with oscillation force cross-flow, see the works
of Bearman⁴⁴ and Williamson⁴⁵. These modes can be parameterised as a function of
the Reynolds number and velocity of the free stream flow. Recording the pattern/-
mode as a function of forced amplitude/frequency for a given flow speed presented
a map with distinct regions for these patterns to emerge. Two-dimensional shedding
modes for non-deforming cylinders, forced into oscillation cross-flow, are often dis-
tinguished between 2S, 2P, 2C, 2T, S+P, 2P+2S, P modes⁴⁶ and non-synchronised.
Similar to flow over plates, hairpin vortices appear aligned streamwise, appearing with
a regular shape and equidistance between them as a function of the diameter of the
cylinder, one of the criteria for classification of these modes, notable two modes, firstly
appearing around 200 Reynolds number, then transition into B appears around Re
400, other modes exist, but mode B exist in transition regime for various applications,
such as clamped-clamped cantilever, flow over splitter blade and so forth. In addi-
tion, near corners and free-end, so-called trailing vortices appear, which shape the
wake behind the bluffbody, notable for sharp corners⁴⁷. For free-end regular-shaped
bluff bodies, two additional distinct flow phenomena shape the wake, the downwash
and the upwash. These are best characterised as redirected flow from below around the
bluff body upwards behind the body, leewards, and, across the free-end downwards.
respectively.

The measuring techniques were often limited to hotwires/instant snapshots with smoke
as visualisation, whereas the cylinders often were thin wires/slender tubes. Three-
dimensional flow characteristics/modes⁴⁷, to describe these, one often depicts mean
field flow, and from there, recirculation zones are identified. These are observed as
strongly dependent on the aspect ratio (height to frontal width)⁴⁸, free-end⁴⁹ or
clamped-clamped and the flow speed. Therefore, the position of these centres, ra-
dius, and topological flow pattern are often used to characterise the settings of an
experiment. Dimensional analysis shows that reduced flow speed UR = U

fD with the
frequency of the forced oscillation (f ) and cylinder diameter (D) scaling with the flow
speed (U ) is a governing variable for VIV, and research outcomes often characterise
the results in terms of these by presenting reduced amplitude (forced) versus reduced
UR or Strouhals number. By having a cylinder hinged with springs and restricting
the motion to the cross-flow direction, a non-forced motion can be achieved. Note
that the the reduced velocity in this case includes the eigenfrequency of the system.
For this kind of motion, the displacement as a function of reduced velocity exhibits
a pattern that can be divided into three regions: pre-synchronized, synchronized and
desynchronized. Comparing this to the forced non-deforming, the pre-synchronised
is mostly located in the 2P/C(2S) and 2S region, the synchronised mostly in 2P and
desynchronisation in the same region. However, as shown by Vikestad, there can be
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significant differences between free/forced motion⁵⁰. The difference between elastic-
mounted and flexible cantilevers in three-dimensional is an extra mile that is easily
overseen. Despite that, there are strong similarities in the output, mostly because
the reduced response graph is one of the strong features within the VIV community.
Moreover, a distinct phenomenon known as the upper/lower branch, a hysteresis ef-
fect, is also observed while decreasing and increasing flow speed⁵¹. Elastic-mounted
non-deforming cylinders, allowing streamwise flexibility, have been in focus, giving
similar response patterns, different in quantity, but still the same pattern. Fully flex-
ible and large deformation is mainly restricted to laboratory-scaled studies related to
seaweed response patterns¹ and fin/foil motion⁵² to understand the mechanism of
surrounding flow. Instantaneous flow pictures are mostly depicted in articles to un-
cover flow topology and their origin, but in practice, they hold a limited value from
a scientific point of view, reproducibility. Different shedding mechanisms have been
proposed for the above scenarios; despite that, the wake ought to be similar, and
the following inherent Hoph-instability and non-linearity make the classification and
modelling exceptionally difficult⁵³.

There are numerous more articles on this subject, but omitted here. The main reason
is that the goal is on the methodology, not the application. As the reader may already
observe, the keyword turbulence is omitted, but that is covered within the reference
above.

FSI methodology

For a more rigorous approach, the interested is referred to some of the reviews on this
subject, for the coupling scheme procedures⁵⁴, IB procedure²⁶, strangely enough, no
review on ALE could be found, but numerous rigorous works exist on the subject
such as the work by Hirt⁵⁵ or Donea et al.². For relaxation techniques, there are
several different, but within the FSI community, notable IQN-ILS by Degroote⁵⁶ or
Aitken relaxation δ2 ⁵⁷ by Küttler. The JFNK methodology by Knoll⁵⁸, which relates
to Anderson mixing⁵⁹, and in turn is closely related to IQN-ILS, provides a whole
branch of different approaches. There is an interesting investigation, saying that An-
derson mixing is best suited for first order convergence⁶⁰. An outlook on partition
methodology and different coupling strategies was presented by KC Park⁶¹, and from
one of its references within, there is a notion about SSI that subsequently led to the
validation case in paper I. The earliest FSI methodology closest to the presented in this
thesis is the work by Wood¹⁸, essentially the same main steps with the difference of
usage of the Finite Strain methodology present in the work by Bathe⁶². One stabilisa-
tion procedure that made the methodology feasible before JFNK relaxation methods
were implemented was the continuation technique; there is a corresponding work
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about fictitious mass/damping procedure that applies a similar approach⁶³, which is
applied implicitly to other techniques, such as space-time discretisation⁵. There are
several similar methodologies that can be traced back to the early 60s, such as the
method of lines⁶⁴ or false transient analysis. Monolithic solvers are quite commonly
seen in the literature, for example, the original work by Peskin 1972⁴ using IB proce-
dure. Of course, there are monolithic solvers based on ALE⁶⁵. However, monolithic
solvers are primarily used in comparison to partitioned⁶⁶, and there are sparse reports
with application to larger FSI problems. In the study of a GMRES-based mono-
lithic FEM solver by Heil⁶⁷, it was concluded that the dimensionality issue made
monolithic challenging to handle since it required sufficient high resolution and sta-
bilisation to provide accurate results, also providing insight into the importance of
ensuring the accuracy by studying the pressure response. Otherwise, it may produce
a substantial pressure difference, leading to inconsistent solutions. Although this ob-
servation applies to the Galerkin procedure with fluid solver using SUPG stabilisation
and multigrid, it is sensible to assume that any iterative procedure would show similar
sensitivity. Further, DEAL.II supports dual-weighted residual functionality with er-
ror indicators and orto mesh refinement, but it is not used in this thesis. The FEM-FV
partitioned solver is used because most solvers often apply pure FEM-FEM or FV-FV
(60%).

Using a structured grid in the solid and an unstructured grid in the fluid raises con-
cerns regarding the impact of interpolation error at the surface. A study by Jaiman et
al.⁶⁸ shows that point-to-point interpolation introduces spurious oscillation that leads
to inconsistent solutions, notable for shock expansion. When measuring the quality
of a methodology, one often measures it by the quantity of cells in a mesh required to
reach a certain accuracy. The TVD scheme in OpenFOAM⁶⁹ is described as repro-
ducing ”quite accurately the three different exact solutions” but observed somewhat
larger dissipation and thus requiring a larger mesh, especially while using unstruc-
tured mesh. Still, quantity trumps quality; it is sometimes more effective to have a
higher resolution of the mesh to ensure the error is sufficiently low than to improve
the quality of methodology. In addition, using unstructured mesh on the fluid and
structured mesh in the solid generally requires interpolation, and one of the most
commonly used is the inverse interpolation distance weight methodology (IDW)⁷⁰,
which usually lowers the accuracy. Therefore, a mesh dependency study is necessary
for every simulation to assess the introduced errors.

In the choice between ALE and IB methods, whenever both are eligible for the same
application, the IB approach is often first reported, but turbulent flow limits the usage
of IB, leaving room for the more complex approach with moving mesh, the ALE
approach. The debate over which mesh motion approach is the most suitable in the
literature is as infectious as which discretisation is most suitable on FSI. For example,
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a related technique to IB is the fictitious domain method⁷¹ but adapted to FD, or
an IB versus ALE with application to heart valve⁷², with opposite results, and that is
due to a common line, the application, and re-meshing. The ALE approach is more
accurate or efficient as long as re-meshing is unnecessary. Nevertheless, it should be
remembered that the ALE procedure has issues with the LES approach¹⁶,⁷³. Another
issue often recurring for ALE is the GLC error; however, for FV methods, it has
less impact¹⁹. An interesting but different procedure is the SPH solver⁶,⁷⁴, a mesh-
free Lagrangian based methodology, which has difficulty in handling turbulence and
boundary conditions as well as lower efficiency for higher viscous fluid problems.

Numerous two-dimensional in-house FSI procedures have been reported; one of par-
ticular interest is the work of Turek⁷⁵, using a monolithic IB solver, providing a bench-
mark test that most of the ALE mesh motion solvers cannot reproduce without re-
meshing. Then there is a 3D elastic tube shock tube⁷⁶, that is gently put aside; it
is an interesting benchmark but not applicable with an incompressible solver with-
out correction terms in discretisation to the openings and mysterious justification.
For turbulent flows, using LES, one cannot apply two-dimensional validation cases
and expect reproducing expected behaviour such as scaling in kinetic energy. For
that reason, two-dimensional studies have been removed from this study and, there-
fore, not further discussed. However, with immersed flexible cantilever with large
deformation as an application, there are almost no three-dimensional applications to
cantilever, with few exceptions, such as the work by Tian et al.⁷⁷ and Wang⁷⁸, and
Nayer et al.⁷⁹. The application of interest in the work of Tian et al. is with an ap-
plication to submerged vegetations by Luhar and Nepf¹ using the IB approach and
under-relaxation to stabilise the strongly coupled. Nayer et al. use ALE methodology
to a partitioned technique stabilised by under-relaxation applied to a splitter blade,
a three-dimensional form of the Turek benchmark test. Also, Nayer et al provide
detailed experimental data for the same application, showing a good match toward
simulation. Unfortunately, their case setting was not feasible for the settings of the
mesh motion for OpenFOAM at that time. Not many have applied this splitter blade
case compared to the work by Luhar¹. Commercial programs that handle FSI exist,
such as ANSYS-FLUENT, which have been used in numerous different reports⁸⁰,⁸¹,
but one of interest is ANSYS-CFX⁸². Also, ADINA is commonly applied⁸³,⁸⁴. How-
ever, the advantage of partition techniques arises from the fact that with an interface
program package, one can use different programs to handle the coupling procedure.
Several interfaced open-source codes existed, for example, MPCCI⁸⁵, PreCICE⁸⁶,
Elmer⁸⁷.

A method’s efficiency is often measured by the wall time required to accomplish a
simulation and its stability by the convergence radius of the method’s governing pa-
rameters, namely, the mass ratio and form factor⁸⁸, which also can be related to the
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added mass effect and frequency shift. There are notable differences between the con-
clusion of stability and efficiency and the choice of relaxation, but some aspects are
common between studies. For example, in Quasi-Newton residual techniques, 50%
gain in efficiency is to be expected⁸⁹, some notable parameter dependency study has
been reported⁹,⁹⁰,⁹¹, showing that with increasing temporal order or increasing mass
ratio, the stability decreases.
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Chapter 4

Solution procedure
This chapter presents the solution procedure for each solver, the FSI coupling strat-
egy, and parallelisation. It begins with presenting the specific procedure used as a fluid
step solver, which is used as a black-box obtained from the OpenFOAM package⁹².
Similarly, but somewhat in more detail, the solid step solver is outlined, mostly since
there is no black-box solver available within the deal.II package⁶². Then the chapter
ends with a thorough algorithm presentation of all relaxation methods applied. Ap-
pendix A and B outlines terminology for different discretisation approaches, FVM
and FEM.

4.1 Fluid solver step (F ◦M)

The F andM are described within the same formalism, the Finite Volume Method
(FVM). The package used is OpenFOAM⁹³ and this section outlines the solution
procedure using FVM. The entry point is the balance equation for a control volume,
a volume integral representation. The FVM essentially transform the volume-based
integrals of balance equations into face integrated ones with a summation of fluxes
that is conservative. See further in any course book on the subject⁴⁰,⁹⁴ for more details
of terminology applied and formulae applied.

4.1.1 Solving INS step (F )

The INS equation, namely Eqn (2.5), consists of a temporal term, a Laplacian term
(diffusion), a SGS term (turbulence modelling), a gradient and a divergence term
(convection). Now, set ϕ = Ui and each term is evaluated separately, and added
together to give the local balance equation.

The divergence term in the INS can be identified as a contraction of the mass flux
term over facets (F = Sj(ρUj)) with face values ϕf of ϕ,∫

CV
(ϕρUj),jdV =

∫
∂CV

nj(ρUjϕ)dA = Fkϕ
k
f , (4.1)

where k is the face index, and Sj is surface area normal.
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Likewise, the gradient of the pressure,∫
CV

p,idV =

∫
∂CV

pnidA = (Si)kp
k
f , (4.2)

where k is the face index. The Laplacian term, expressed as the divergence of the
gradient of Ui, then becomes∫

CV
νϕ,jjdV = ν

∫
∂CV

njϕ,jdA = ν(Sj)k(ϕ,j)
k
f , (4.3)

where k is the face index. In the closure of the SGS residual tensor (Bij), the Smagorinsky-
Lilly approximation is applied, using the rate strain (Dij),

Bij = −2νSGSDij . (4.4)

where the SGS viscosity is calculated from

νSGS = Cs∆|Dij |. (4.5)

Hence, an additional Laplacian term, leading to modification of the viscosity ν into
an effective viscosity νeff = ν + νSGS .

It should be noted that the value of the Smagorinsky coefficient⁹⁵ (Cs) is not universal
and that this model often overestimates the dissipation. An alternative approach is to
apply a least square fit in which one obtains an explicit expression for Cs in terms of
the velocity field and a test filter, the Lilly Model⁹⁶. This approach is with limited
application because it uses a homogeneous approximation in the average procedure,
i.e. the averaging along each principal direction. Such approximation is suitable for
flow with little obstruction and flat surfaces. For all simulations, the tophat filter
is applied as a test filter. This approach also includes the transfer of energy from
the subgrid to the resolved scale, the so-called backscatter. However, in the current
implementation of OpenFOAM, the subgrid viscosity is limited to positive values for
numerical stability.

By summation of each term, assuming the cell size to be fixed, a semi-discretised form
of INS is obtained for each CV, i.e. keeping the derivative over time non-discretised,
with an RHS equal to zero (no source),∫

CV
(ϕ,t + (ϕUj),j + νϕ,jj + p,i)dV =

ϕ,t + Fk(ϕ)
k
f + (Sf )kp

k
f + ν(Sj)k(ϕ,j)

k
f =

ϕ,t + aPϕP +
∑
N

aNϕN ,

(4.6)
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where the summation is over N , aP , and aN are the coefficients gathered for respec-
tive source nodes, owner CV and neighbour cells. The final term is the time evolution,
to which the backward interpolation scheme is applied,

ϕ,t =
1

∆t
(
2

3
ϕn − 2ϕn−1 +

1

2
ϕn−2), (4.7)

which is second-order accurate over time. Adding this to Eqn (4.6) and moving
around the terms, gives a non-zero RHS phrased as Rj and the local discretisation
is finished, providing the local matrix (Ae

ijϕ
e
j = Re

j )⁹⁷. Using the localisation rela-
tion (Ze)ij , i.e. Eqn (2.11), the global degrees of freedom ϕi is mapped to the local
ϕei , i.e. the global discretisation ϕj by incrementally summation,

∑
CV

Ae((Ze)ijϕj)l =

[∑
CV

Ae((Ze)ij)

]
ϕj ≡ Aijϕj , (4.8)

which forms the desired solver as a matrix Aij ,

Aijϕj = Ri. (4.9)

This is the assemblage stage for the global representation of the momentum equation.

However, the pressure field is unknown. To resolve this, a projection method is ap-
plied called the PISO algorithm⁹⁸, which formulates a pressure equation to enforce
mass continuity, then applying a predictor-corrector procedure. In PISO one be-
gins with a guess of pressures and fluxes, then solves the momentum equation, and
then by applying divergence of momentum, reformulates the equation into a pressure
equation using intermediate fields. To achieve continuity to be satisfied the proce-
dure reiterates until convergence of the involved fields. To minimise the influence
of checkerboard in pressure by using a collocated grid, Rhie-Chow interpolation is
applied, where the gradient of pressure/velocity is computed from face values.

Together, the procedure to determine the pressure is phrased as the Rhie-Chow PISO
algorithm. To outline this procedure one first separates the contribution from the
owner CV indexed P from the neighbour N field,

aP (Ui)P = −
∑
N

aN (Ui)N −
1

VP
p,i (4.10)

Then prior definition of intermediate velocity, the Hi field is defined,

Hi = −
∑
N

aN (Ui)N , (4.11)
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the Rhie-Chow interpolation step begins with,

(Ui)P =
Hi

aP
− 1

aPVP
p,i (4.12)

by substituting Eqn (4.11) into Eqn (4.10). Now the continuity condition for in-
compressible flow, followed by Eqn (2.4), leaves the LHS zero for INS, defining the
intermediate velocity field as U∗

i = Hi
aP

gives the following local discretisation of
pressure,

U∗
i,i =

p,ii
aPVP

. (4.13)

Then one forms the global equation by assemblage. Note that multiplying by VP on
both sides U∗

i,i is changed to a volumetric flux ϕ∗. Further, the mass flux is computed
differently for INS using this procedure, see section 3.8 in Jasaks thesis⁹⁷. This in-
termediate velocity term makes it necessary to iterate. To summarise the PISO step,
with the velocity field, the momentum equation, and guessed pressure (previous time
step),

• Compute Hi : Eqn (4.11).

• Compute the mass flux on the cells faces

• Solve the pressure equation : Eqn (4.13).

• Compute the (Ui)P and mass fluxes : Eqn (4.12).

• Update boundary conditions.

• Repeat from the start for a prescribed amount of iterations.

There is an additional extension of the PISO at this stage, the PIMPLE algorithm,
which merely recomputes the momentum equation (outerloop) and re-enters the
PISO with under-relaxation (inner loop). This forms the fluid solver F that is be-
ing applied. It should be noted here, that the actual necessity for the outer loop is
merely to allow much larger time steps, suitable in FSI, the convergence of the velocity
field is ensured by convergence in the pressure field from the inner loop.

The OpenFOAM package provides this solver and is used as a black-box solver ex-
pressed in non-dimensional units similar to Eqn (2.6). The choice of discretisa-
tion, interpolations, correction, and values of correction/blending are specified by
keywords of format ”<discretisation> <interpolation> <correction> <values>”. The
non-temporal terms that need discretisation use Gauss scheme, and the temporal uses
”backward”. The interpolation for non-divergence terms, uses ”linear”, while the di-
vergence term ”limitedLinear” (TVD scheme). What is not discussed here but can
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be found elsewhere, is the correction of the non-orthogonality in the mesh, see for
example Jasaks thesis⁹⁷. The motion is integrated into the momentum equation by
replacing the convection Ui field with the relative velocity field with respect to the
mesh motion field obtained from solving the mesh motion equation Eqn (2.18). This
introduces an additional field to be computed, but it is not part of the FSI boundary
condition, the mesh velocity. However, the motion solver has been separated code-
wise and treated as a stand-alone solver and thus is described separately next section.

The turbulence model described above does not account for the transported sub-grid
turbulence, which is then added as a transport equation of SGS kinetic energy k =
1
2uiui. The transport of sub-grid kinetic energy can be obtained from the filtered INS
Eqn (2.10), and by introducing the modelling described above, also by neglecting the
viscous large-scale dissipation, the transport equation for the variable k is defined by
Yoshizawa and Horiuti in⁹⁹ as,

kt + (kŪi)i = νeffk,ii −BijDij − Cs
k3/2

∆
, (4.14)

where νeff = ν + νSGS and ν is the kinematic viscosity. Eqn (4.14) is solved as a
post-correction, after the resolved variables for a given time step, are computed. This
approach is superimposed with Lilly’s model⁹⁹.

4.1.2 The Mesh Motion solver (M)

The diffusion equation Eqn (2.18) requires a definition of the diffusivity. By setting

γ =
C

rnc
(4.15)

where rc is the distance from the centre to the nearest moving boundary cell centre.
The coefficient C is a scaling factor concerning the initial values that can be further
parametrised. This leads to the following discretised form of the motion equation,

Sk
j

C

rnc
(di,j)f = 0. (4.16)

Moreover, the prescribed boundary moved to the RHS sets the equation to be solved.
However, while deforming the cells, the continuity is violated. The Geometric Law
of Constraints (GLC) must be satisfied. This is obtained by rewriting Eqn (2.4) and
then apply the incompressibility condition (Ui,i = 0),

∂

∂t

∫
CV

dVf =

∫
Sf

vgi nidA = Sk
i (v

g
i )

k
f . (4.17)
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This equation is be solved in two steps. Firstly by solving Eqn (4.16), then from the
corresponding mesh displacement from the previous time step, compute the change
in volume by Eqn (4.17) by the RHS computing face velocity for each face, averaged
face area. One then applies Euler forward stepping on the temporal term on LHS,
multiplied together with time step gives the swept volume, by division of swept area,
distance swept along face normal is computed (δX). This gives a provisional expres-
sion for the mesh velocity v∗,

v∗ =
1

∆t

∑
f

δXf . (4.18)

Then, with these stored provisional velocities, one adopts the same discretisation
scheme for the momentum equation to ensure proper time marching at the coupled
boundary. The time marching scheme on LHS is the same temporal discretisation
used for the INS. The GLC is satisfied as one introduces the aforementioned rela-
tive velocity Ur into the INS. Similarly as with INS, using OpenFOAM, the above
solution procedure is specified by setting the keyword for the solver as ”displacement-
Laplacian” and the metric of diffusivity ”inverseDistance”.

4.2 The Solid step (S)

First the equation of motion Eqn (2.7) is transformed into a weak form, expressing the
virtual work in the current configuration in terms of the virtual displacement (δai)
and Voigt notation with operator matrix Lij ,∫

δai(Lijσj + f ei − ρäi)dV = 0, (4.19)

which after integration and introduction of shape functions (Hij) gives the discretised
form of the equation of motion,a(ξ)→ Hik(ξ)ak, where ak is a discrete vector over
local space). After applying the divergence theorem, moving partial derivatives of the
stress to the displacement, strain (ϵi) is introduced. Moving force contribution to the
right and keeping the acceleration on the left the equation of motion then becomes

Mij äj = f ei − fi, (4.20)

where Mij is the mass matrix and fi the internal force (fi =
∫
BijσidV ). For the

details and notations, see further in any course book on the subject³⁷,³⁸. The strain
displacement matrix is Bij = LikHkj . Also, gi is the acceleration of gravity.
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4.2.1 Constitutive relation

To relate the strain with stresses, constitutive relations must be defined, here focus-
ing on reference configuration (X). As such, the hyperelastic material description is
applied, where one assumes a potential function (W) from which the nominal stress
can be evaluated, the Second Piola-Kirchhoff tensor Sij ,

Sij =
∂W
∂Eij

, (4.21)

where Green strain tensor Eij is defined by,

Eij =
1

2
(
∂ai
∂Xj

+
∂aj
∂Xi

) +
1

2

∂ak
∂Xj

∂ak
∂Xi

. (4.22)

The Saint-Venant-Kirchhoff model is applied,

W(Eij) =
1

2
DijmlEijEml. (4.23)

Using the isotropic material assumption, Dijml can be defined as

Dijml = λδijδml + µ(δimδjl + δjmδil) (4.24)

where the Lamé parameters λ and µ are related to Young modulus (E) and Poisson
ratio (νs) as

λ =
νsE

(1 + νs)(2νs − 1)
(4.25)

µ =
E

2(1 + νs)
. (4.26)

The internal force is, however, a function of velocity and displacement, see Eqn (2.7),
which in discretised form phrased asF , is a reminder of this, but a linear split between
velocity and displacement is assumed,

F(ai,t, ai) = D(ai,t) + G(ai), (4.27)

where G(ai) is the internal force for a static case and D(ai,t) is the damping term,
which need further modelling.

4.2.2 Finite strain and total Lagrangian formulation.

Assuming static case, dropping the temporal terms, set the time evolution as St+∆t
ij =

∆Sij + St
ij the virtual work, Eqn (4.19) can be expressed as,∫

CV
δEij∆SijdV +

∫
CV

δEijS
t
ijdV =

∫
CV

ρδaigidV +

∫
∂CV

δai(t0)idA,

(4.28)
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where t0 is the nominal traction, i.e. the traction acting in the reference configuration.
Now, using the constitutive relation between strain and stress on the increment of
St+∆t
ij , (i.e. ∆Sij = Dijkl∆Ekl). As the strain increment due to Eqn (4.22) contains

linear (ϵij) and quadratic (ηij) terms, i.e. ∆Eij = ∆eij + ∆ηij , and its variation
(δEij = δ∆Eij), applying this to Eqn (4.28) and and omitting second order and
higher order terms with respect to increment gives,∫

CV
δ∆eijDijkl∆ekldV +

∫
δ∆ηijS

t
ijdV =∫

δai(t0)idA+

∫
ρδaigidV −

∫
δ∆eijS

t
ijdV.

(4.29)

By rearranging terms on LHS, an operator matrix Lij can be defined for the purpose
to introducing Voigt notation (i.e∆ei = LijHij∆ai). However, for finite strain, the
strain displacement matrixB is a sum of a linear part (BL) and non-linear (BNL). In-
troducingBL = LH then∆ei = (BL)ij∆aj and by definingKL =

∫
BLDBLdV

one reformulates first term on LHS as∫
CV

δ∆eijDijkl∆ekldV = δ∆ai

[∫
(BL)ikDkl(BL)ljdV

]
∆aj =

δ∆ai(KL)ij∆aj .

(4.30)

The linear part of the discretisation is obtained. The second term in LHS, the non-
linear part, can be similarly abbreviated as

∫
δηijS

t
ijdV = ∆ai(KNL)ij∆aj . The

so-called geometric contribution is defined by KNL =
∫
Bt

NLTBNLdV , where
BNL are the non-linear strain matrix respectively shear matrix T . Altogether, one
obtains the following discretised version for the virtual work with finite strain for the
static case,

δ∆ai(KL +KNL)ij∆aj = δ∆ai(f
e,t+∆t
i − f ti ). (4.31)

with the external (f e), sum of the acceleration gravity (gi) and the traction (ti), com-
puted in discrete space by introducingHij , and the internal forces (f ) on RHS, com-
puted as

∫
BSdV . The linearised displacement increment then becomes

(KL +KNL)ij∆aj = (Kt)ij∆aj = f e,t+∆t
i − f ti (4.32)

As stated above, the tangential stiffness matrix Kt is applied to solve the problem
by an increment solution procedure. However, at this point, temporal discretisation
must be taken into consideration.

4.2.3 Temporal discretisation

The semi-discretisation form of Eqn (2.7) takes the following form,

Mij ä
t+∆t
j + F(at+∆t

i , ȧt+∆t
i ) = f e,t+∆t

i , (4.33)
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where F is the internal force. Taking the residual r, being the difference between the
RHS and LHS, then using the chain rule the variation of the residual becomes,

δri =
dri
dak

dak =
∂ri
∂ak

δak +
∂ri
∂ȧk

δȧk +
∂ri
∂äk

δäk. (4.34)

The first and last term can be identified from above as−(Kt)ij and−Mij respecitvely,
and define Cij = −∂F

∂ȧ . The Newmark algorithm computes increments from accel-
eration using the integration of parts which takes the following form

δȧi = γ∆tδäi (4.35)

δai = β∆t2δäi (4.36)

giving the final expression

δri = −
[
Kt +

γ

β∆t
C +

1

β∆t2
M

]
ij

δaj = −(K∗
t )ijδaj , (4.37)

leading to
(K∗

t )ijδaj = ri, (4.38)

since rt+∆t
i = ri + δri ≈ 0. This allows for an incremental solution approach, a

conventional Newton-Raphson method. The only unknown term is the Cij , which
represents the damping in the material and thus requires constitutive relation towards
governing variables.

4.2.4 Rayleigh damping model

The Cij term in Eqn (4.37) is computed from Rayleigh damping model, which is
obtained by an ad-hoc assumption of prescribing a linear dependence in the velocity
D(ai,t) giving the following expression,

D(ai,t) = Cijaj,t (4.39)

where Cij is called the damping matrix. The Rayleigh damping model defines the
Cij matrix as

Cij = αMij + βKij . (4.40)

This choice is motivated by modal analysis, using the fact that Kij and Mij are si-
multaneously diagonalisable (Mijaj =

1
ω2Kijaj). The discretised form of Eqn (4.33)

is then transformed into a linear system of uncoupled damped harmonic oscillators.
Each mode has the following one-dimensional ODE

ä+ ωnζȧ+ ω2
na = 0, (4.41)
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in the unforced case, where ζ is the damping ratio, and ω is the undamped frequency.
Eqn (4.40) is obtained by the back transformation from the ODE to the original form.
Thus for a given damping ratio ζ, Eqn (4.40) relates by Eqn (4.41) to frequency ω as
follows,

ζ =
α

2ω
+
β

2
ω. (4.42)

In order to choose the parameters for a given damping ratio, a commonly used strategy
is to select a discrete set of frequencies ωi and then perform a least square fit to a given
damping ratio ζ using Eqn (4.42). Rayleigh damping can also be described as the first
two terms in the theory of proportional damping. Higher terms can be added to fit
in a larger frequency interval. However, this involves the inverses of the mass and
stiffness matrices, restricting the applicability¹⁰⁰ of higher-order damping terms.

4.2.5 Solution procedure for solid S

The procedure to solve Eqn (4.38) is presented, known as the GN22 Newmark algo-
rithm³⁷ (the external force vector placed on RHS and γ = β1 and β = 2β2), the
algorithm classifies to the Newmark algorithm family of schemes due to Eqn (4.35)
and Eqn (4.36). This is called as the S solver. The F term is evaluated by Eqn (4.27),
the Cij is computed by RD modelling.

4.3 Relaxation techniques (R)

In this section, the algorithms that solves the root problem R(x) = 0 as outlined
in the method section is presented, starting from Eqn (2.22) and Eqn (2.23). The
algorithms are categorised by the type of relaxation. The Jacobian-Free Krylov New-
ton methods are techniques⁵⁸ that approximate the Jacobian in the Newton iterative
methods by differences of the residuals, acceleration of sequence of numbers, gener-
alised to vector fields by the pseudo vector inverse. Pseudo-algorithm schemes are pre-
sented for most of the methods. Using no relaxation is called the PICARD method,
hence solving Eqn (2.20) iteratively. An iteration is defined as one computation of
S and F . Normally the fluid step is the most expensive; therefore, setting the end
condition at the fluid step, the actual number of iterations is one less. The dimension-
ality is DOFS over interface only (N ) and the number of sampled subiterations (I).
Usually it is negligible since the system matrix is at most N × I . Original residual
techniques formulated these algorithms asNxN but due to instability and large-sized
system matrices, these approaches were abandoned very early in the development of
the code. The timing for this step is expected to be negligible. The← in pseudo-code
is a reference to the text for more information.
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Algorithm 1: Newmark GN22 integration scheme
if n = 0 then
Mij ← Compute mass Matrix
ä∗i =

1
β∆t2

ati +
1

β∆t ȧ
t
i +

1−2β
2β äti

ȧ∗i =
γ

β∆ta
t
i +

γ−β
β ȧti +∆tγ−2β

2β äti
at+∆t
i ← apply predictor, Eqn (2.19).

else
while ‖ri‖ > η do
(Kt)ij ← Compute tangential stiffness, Eqn (4.32)
Cij ← Compute damping matrix, Eqn (4.40)
(K∗

t )ij = (Kt)ij +
γ

β∆tCij +
1

β∆t2
Mij

ri = f e,t+∆t
i − f t+∆t

i − Cij ȧ
t+∆t
j −Mij ä

t+∆t
j

Solve (K∗
t )ijδaj = ri

at+∆t
i = at+∆t

i + δai
ȧt+∆t
i = γ

β∆ta
t+∆t
i − ȧ∗i

ät+∆t
i = 1

β∆t2
at+∆t
i − ä∗i

f t+∆t
i ← Compute internal force

end while
end if

4.3.1 Jacobi-Free Krylov Newton method

Taking residual of the Eqn (2.22), form the sequence (rki ) and the mapping ãi =
H(a)i, then gather the differences ∆ãk−l

i = ãk−l
i − ãki and ∆rk−l

i = rk−l − rk,

V k
ij =

[
∆r0i , ...,∆r

k−1
i

]
, (4.43)

W k
ij =

[
∆ã0i , ...,∆ã

k−1
i

]
. (4.44)

After each fixed-point iteration, it is assumed that the ∆ri is a linear combination of
the columns of V k (cki ), computed by the LSQR procedure. This computes the inter-
face with inverse Jacobian for Quasi Newton-Raphson using LSQR procedure, hence
called as IQN-ILS⁷⁶. The most commonly used procedure to solve the linear system
is by the QR factorisation, i.e. solving Rk

ijc
k
j = Qk

ji∆rj where Q is orthogonal and
R is an upper triangular matrix. By linearity, also

∆ãi =W k
ijc

k
j (4.45)

and from Eqn (2.22) and the minimisation of the residual, ∆ri = ∆ãki −∆aki where
aki is the computed interface vector, i.e. the actual displacement field supplied from
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Algorithm 2: IQN-ILS/MIXING
k = 0
ã1i = H(a0i )
r0i = ã1i − a0i
while ‖rk‖ > η do

if k == 0 then
ak+1
i = aki + ωrki

else
MIXING : ∆ãki = ãki − ã

k−1
i

IQN-ILS : ∆ãk−l
i = ãk−l

i − ãki
Construct V k

ij and W k
ij from Eqn (4.43), Eqn (4.44)

Compute by QR the V k
ij = Qk

ikR
k
kj

Solve Rk
ijc

k
j = −Qk

jir
k
j

IQN-ILS : ak+1
i = aki +W k

ijc
k
j + rki

MIXING : ak+1
i = aki + (V k +W k)ijc

k
j + rki

end if
k = k + 1
ãk+1
i = H(aki )
rki = ãk+1

i − aki
end while

R to the mesh motion solverM and ãki is the output vector from the solid solver.
The update of the interface then becomes

ak+1
i = aki +W k

ijc
k
j + rki . (4.46)

Another approach is to compute the V k with respect to the previous iteration, Ander-
son mixing (MIXING)⁵⁹, leading to a slight modification of the scheme. The pseudo
code for MIXING and IQN-ILS are collapsed into the same for transparency, see
Algorithm 2. Several different approaches to this residual technique. A more direct
approach to the minimisation is to apply the method of Lagrange multipliers, requir-
ing an objective function, leading to the Pulay mixing (PULAY)¹⁰¹ see Algorithm
3,

ak+1
i = cla

l
i, (4.47)

where cl is the Lagrange multipliers and 0 ≤ l ≤ k. The weight (cl) is computed from
applying the objective functionL = ‖clrl‖2−2λ(cl1l−1) = ckBklcl−2λ(cl1l−1),
where Bkl = rki r

l
i.
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Algorithm 3: PULAY
k = 0
ã1i = H(a0i )
r0i = ã1i − a0i
while ‖rki ‖ > η do

Construct Xk
ij

Solve Eqn (4.48)
ak+1
i = cla

l
i

k = k + 1
ãk+1
i = H(aki )
rki = ãk+1

i − aki
end while

A direct computation of the derivatives and setting to zero leads to the following

Xk
ijcj =



B00 B01 . . . B0k −1
B10 B11 . . . B1k −1
B20 B21 . . . B2k −1

B30 B31
. . .

...
...

...
...

... Bkk −1
−1 −1 . . . −1 0





c0
c1
c2
c3
...
λ


=



0
0
0
0
...
−1


. (4.48)

A related technique is the GMRES applied to the interface vector, so-called IGM-
RES¹⁰², which applies Krylov technique upon the residual using orthogonalisation,
see Algorithm 4. The IGMRES, IQN-ILS, MIXING and PULAY form the Jacobi-
Free Krylov Newton methods (JFKN). All these methods are equivalent to each other
for linear H. Normally, one applies an upper limit to the number of previous it-
erations (taps) to be used, which, of course, affects the performance; therefore, this
number is within the parenthesis of the method name.

4.3.2 Acceleration of sequences

Acceleration techniques, such as Aitkens δ2 (AITKEN)⁵⁷ and successive under-relaxation
(SUR), belong to a category of relaxation phrased as BLEND. The essential relaxation
in BLEND is with a given ω ∈ (0, 1]

ak+1
i = aki + ωrki . (4.49)

In addition to BLEND, there is a hybrid between BLEND and JFKN, namely the
DSUR technique, which computes the optimal blend ωk from the previous iterations
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Algorithm 4: IGMRES
k = 0
ã∗i = H(a∗i )
r∗i = ã∗i − a∗i
while ‖rki ‖ > η1 do
j = 0
ξ = ‖rki ‖
while ξ > η2 do
j = j + 1
for l = 1 to l = j − 1 do

∆aji = ∆aji −
∆ajm∆alm
∥∆ali∥

∆ali
end for
∆aji =

∥a∗∥
∥∆aji∥

∆aji

aji = a∗i +∆aji
ãji = H(a

j
i )

V j
ij = [∆r1i ..∆r

j
i ]

W j
ij = [∆a1i ...∆a

j
i ]

Compute QR, V j
ij = Qj

ikR
j
kj

Solve Rj
ilcl = −Q

j
lir

k
l

ξ = ‖rki + V j
licl‖

end while
a∗i = a∗i +W j

ilcl
rk+1
i = H(a∗i )− a∗i
k = k + 1

end while

by LSQR and computes the average 〈ωk〉 within a moving time window, where the
width of the window is set as the maximum number of subcycles,

ϵ̃k = minωk∈[0,1]‖an−1
i − (aki + ωkrki )‖. (4.50)

It is applied by comparing the residual value of the current step with the residual
from the previous, and if smaller, then apply the current estimate; otherwise, apply
the average value.

a∗i =

{
aki + ωkrki , ϵ̃

k < ‖rki ‖
aki + 〈ωk〉rki , ϵ̃k ≥ ‖rki ‖

. (4.51)

See algorithm 5 for an outline of the methods. Of course, JFKN restricted to two
vectors is a special case of BLEND.
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Algorithm 5: BLEND
k = 0
ã0i = H(a0i )
r0i = ã0i − a0i
while ‖rk‖ > η do

AITKEN:
if k == 0 then
ω0 = sign(ωn)min(|ωn|, ωmax)

else
ωk = −ωk−1 rk−1

i (rki −rk−1
i )

(rki −rk−1
i )(rki −rk−1

i )

end if
SUR: ωk fixed value
DSUR: Compute ωk from Eqn (4.50) and Eqn (4.51)

ak+1
i = aki + ωkrki
ãk+1
i = H(aki )
rk+1
i = ãk+1

i − ak+1
i

end while

4.3.3 Polynomial extrapolation

Another type of acceleration is extrapolation methods²⁴: the minimal polynomial
extrapolation (MPE) and Reduced Rank Extrapolation (RRE). They are related to
Krylov subspace techniques, arising in the context of full orthogonalisation method
and generalised minimal residuals, Krylov technique that applies to solve linear sys-
tems (δij−Tij)xj = di. Defining the residual rki = ak+1

i −aki , with the fixed-point
equation Eqn (2.20) to be solved, given a sequence of successive approximations (aki ),
acceleration of sequence, as with blending, find an approximation sequence of the
form,

ski = γla
l
i = a0i + ξlr

l
i, (4.52)

where γl1l = 1 and ξ0 = 1 − γ0 and ξl = ξl−1 − γl for 0 ≤ l ≤ k. Then
s = limk→∞sk is the solution to the fixed-point solution. This can also be expressed
as

ski = a0 + Uk−1
ij ξj , (4.53)

where Uk−1
ij = [r0i ...r

k−1
i ]. Now for MPE, one computes the γi by the following,

mincl‖clr
l
i + rki ‖, (4.54)
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Algorithm 6: MPE/RRE

Compute rli = al+1
i − ali for 0 ≤ l ≤ k

Compute Uij = [r0i ...r
k
i ]

Compute QR of Uij , take subset Qk−1
ij , Rk−1

ij .
MPE:
Solve Rk−1

ij cj = −Qk−1
ij rkj

ck = 1 and γl = cl
cm1m

RRE:
Solve Rk

miR
k
mjcj = 1i

γl =
cl

cm1m
Compute for both MPE/RRE:
ξ0 = 1− γ0 and ξl = ξl−1 − γl for 1 ≤ l ≤ k − 1
ski = a0i +Qk−1

im Rk−1
ml ξl

and then γl = cl
cm1m

where 0 ≤ l ≤ k − 1 and ck = 1. On the other hand, RRE
computes γl by the following,

minγl‖γlr
l
i‖, (4.55)

with the condition γm1m = 1. And the solution then becomes ski = γma
m
i , or

expressed by Eqn (4.53). See algorithm 5 for an outline of the implementation.

4.3.4 Epsilon algorithm

The epsilon algorithm also known as Wynn’s method¹⁰³ is an acceleration scheme
for computation limits of sequence of scalars (si). It should be emphasised the strong
correlation between Aitkens δ2, MPE, and RRE with this method; for a more detailed
discussion, see the work of Sadok et al¹⁰⁴. The method is straightforwardly described
by the following scheme, the epsilon table,

s0

0 ϵ
(0)
1

s1 ϵ
(0)
2

0 ϵ
(1)
1

. . .
s2 ϵ

(1)
2

0 ϵ
(2)
1

s3 ϵ
(2)
2

...
...

...

(4.56)
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The leftmost column and second column are the initialisation, ϵj−1 = 0, ϵj0 = sj .
The iteration is

ϵ
(j)
k+1 = ϵ

(j+1)
k−1 + [ϵ

(j+1)
k − e(j)k ]−1. (4.57)

The sought answer is the right-most middle row value of ϵn/2n . This is generalised
to vector sequences by pseudo inverse a−1

i = ai
∥ai∥2 . This is denoted as the vector-

epsilon algorithm (VEA), see Algorithm 7. The algorithm uses matrices ep, ec, en to
represent the terms in Eqn (4.57), where ec = ϵjk and ep = ϵj+1

k−1 and en = ϵjk+1

and in update to next iteration ep = ec and ec = en. The ec is the notation for the
current epsilon, i.e. ϵ∗k, and likewise ep for the previous epsilon (ϵ∗k−1) and finally
next epsilon (ϵ∗k+1). The k index refers to column and j the row index of the scheme
(4.56).

Algorithm 7: VEA
ec=[a0i ... aki ],ep=0
n=0;
while column size of ec>1 do

n=n+1
en=[0i ... 0i] , column size=column size of ec-1
for j<column size of en do
enij = epi(j+1)

vi = eci(j+1)

vi = vi − ecij
vi = vi/vkvk
enij = enij + vi

end for
ep=ec
ec=en

end while
if n%2 == 0 then
a∗i = eci

else
a∗i =last column of epij

end if
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A variant of VEA is the so-called topological-epsilon algorithm (TEA) expressed in
vector form,

(ϵ
(j)
2k+1)i = (ϵ

(j+1)
2k−1 )i +

yi

yl(∆ϵ
(n)
2k )l

, (4.58)

(ϵ
(j)
2k+2)i = (ϵ

(j+1)
2k )i +

(∆ϵ(j))i

(∆ϵ
(j)
2k+1)l(∆ϵ

(n)
2k )l

. (4.59)

where yi is orthogonal vector to the residuals of si, and∆ forward difference operator,
see Algorithm 8.

Algorithm 8: TEA
ec=[a0i ... aki ],ep=0
while column size of ec>2 do

en=[0i ... 0i] , column size=column size of ec-1
for j<column size of enij do
enij=epi(j+1)

vi=eci(j+1)

vi=vi − ecij
enij=enij + yi

ykvk
end for
enpij=[0i ... 0i] , column size=column size of en-1
for j< column size of enpij do
enpij=eci(j+1)

vi=eci(j+1)

vi=vi − ecij
wi = eni(j+1)

wi = wi − enij
enpij=enpij + vi

wkvk
end for
ep=en
ec=enp

end while
a∗i =last column of ecij

4.3.5 Broyden algorithm

The approach applied here is called the ”bad” Broyden’s method¹⁰⁵, and it is a secant
method. The idea is to update the Jacobian iteratively by rank one matrix and by
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linearity and defined multiplication for JFKN, the update formula becomes compact.
The algorithm can be summarised as for rji = ãji − a

j
i and

zi = zi + rj+1
i

rjl zl

‖rji ‖2
, 0 ≤ j ≤ k − 1, (4.60)

rk+1
i =

zi

1− rkl zl
∥rki ∥

, (4.61)

ak+1
i = aki + rk+1

i . (4.62)

See Algorithm 9 for the procedure.

Algorithm 9: BROYDEN
zi=-rki
for j<k do

zi=zi + rj+1
i

rjl zl

rjl r
j
l

end for
rk+1
i = − zi

1−
rk
l
zl

∥rk
i
∥

a∗i = aki + rk+1
i

4.3.6 Hybrid techniques

The relaxation step, similar to the action steps, can be applied to both input and out-
put. Further, it is expected that the efficiency of each algorithm may vary by different
dependencies. In combining different relaxations and/or applying them at different
steps, tokenisation is applied by setting a token for each method, switch token and
number at which iterative step a method is to be applied, see Table 4.1 or within paren-
thesis. For different steps (-), normally it applies to solid/fluid. The switch token says
that only the left/right (< or >) side of the string is applied if lesser/greater than the
mentioned number; any tokens placed between split token is applied for all coupling
iterations. The split rule k, is a switch where all blending techniques are applied below
or equal k and residual techniques above. As implied, some methods are more effi-
cient towards the end of the coupling or at the beginning. Several different strategies
have been evaluated, and only those deemed prominent are presented in paper IV.
One of particular interest is the bombardment technique¹⁰⁶ in which one computes
the residual for a set of relaxations, and then as a selection principle, one can either
take the lowest norm (T), make an LSQR approach (Q), or do the average (default).
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Table 4.1: Tokenisation for BOMBARDMENT with split token

Token Relaxation
I IQN-ILS
D DSUR
P PULAY
A AITKEN
X MIXING
S SUR

<,> switch tokens
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Chapter 5

Implementation and validation
This chapter presents the implementation details and steps of validation of the FSI
code. It begins with a presentation of the used software packages, then for each pack-
age, snippet codes and code strategy is presented, in such way that the FSI code can
be reconstructued, using chapter 4. Then the code strategy of the MPI implemen-
tation is presented, how to measure the scaling. The validation procedure marks the
final part of the chapter and presenting the main steps in providing verification and
validation. Mostly it is done by first verifying each solving step on a stand-alone unit
test, then the results of common benchmark cases are presented, which validates the
FSI solver.

5.1 Software packages

The fluid and solid steps are built on the OpenFOAM¹⁰⁷ and deal.II⁶² packages, re-
spectively. The interface is an in-house solution. The OpenMPI package²⁷ is used
for parallellisation. The partition manager used for creating partition for the MPI,
deal.II employs while OpenFoam uses scotch. Similarly, numerical libraries (Open-
BLAS, LAPACK, BLAS, etc.) are involved in both packages by dependency. How-
ever, deal.II also employs PetSc, a scientific library for solving parallel PDE problems.
The FSI code is adapted to Paraview for visualisation and postprocessing. The pre-
processing is mostly centred around mesh generation, using the GMSH package¹⁰⁸,
a stand-alone program using script input files and generates an unstructured mesh for
the fluid and structured mesh for the solid. Matlab/Octave is used for postprocessing
together with scripting to be used for gnuplot and the graphs. After the implemen-
tation and validation of the FSI core solver, the versions of the packages were not
upgraded with later releases, in order to avoid biased results, so the used versions are
OF2.3.X and deal.II 8.0.

5.2 Implementation

The description of the implementation is split into sections, each explaining: the de-
tails of the interface code, which is the main program of the FSI solver, and then
each state solver, the parallellisation approach, and relaxation procedure. The Open-
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Figure 5.1: Pseudo code of the main code using tokenisation, see Table 5.1 for available tokens.

FOAM provides a state solver for fluid, which is code-wise split into an INS solver
and a mesh motion solver. The deal.II package provides a toolbox for the paralleli-
sation, construction of the shape functions, assemblage, and encapsulated PetSc to
solve a system of linear equations. Using the namespace programming technique, the
governing variables of the coupled interface are stored at run time in RAM memory,
allowing transferring data between state solvers without using any file system. The to-
kenisation procedure implemented in the main program accesses each solver, driven
by a stream of tokens, provided as a string from input. Each state solver has an input
file, describing the conditions, material properties, and mesh.

5.2.1 Interface code

The interface code contains the tokenizer, the transfer functionality between the state
solvers, acting as a dereference pointer or namespace variable depending on which
variable and which step. It is the main program, that integrates the OpenFOAM and
deal.II into one executable code.

Flowchart: main code

The FSI procedure, see Figure 5.1, begins with reading the case description and input
files. It then computes the mapping functions and provides the largest distance be-
tween mapped facets cell centres, the settings are such that the facet centre of the fluid
is onto the solid facet. The rest of the main routine is a nested time loop processing
the token string. The token string defines the steps to be taken during one subiter-
ation. It shall always for FSI contain a fluid, solid and motion step. Then for fluid
only, the solid is omitted and correspondingly for solid only, the fluid step is omit-
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ted. Normally there is a default setting, the ”!SMF” is the default string, see Table
5.1 for the most commonly applied tokens. Another advantage of tokenisation is that
programmatic instruction can be applied, allowing for example different strings to
be applied, if divergence or when any other exceptions occurs defined by conditions.
Since action steps can be between steps or within steps, they are specified elsewhere
in the input.

Table 5.1: Tokenisation for partition solver.

Token Instruction
F INS solver
M ALE mesh solver
S Solid solver
! MPI Synchronisation
R Relaxation
@ End condition

Action steps

All action steps defined in the study are implemented in the interface and thus applied
only to the variables stored within that module, i.e. the field variables of the coupled
boundary. The following shows at which transition the action applies,

• S →M: filtering, relaxation, inverse interpolation, extrapolation

• F → S : filtering, relaxation, extrapolation

• ∆t→ ∆t+ 1: extrapolation

• M→ F : filtering, relaxation, extrapolation

Finite Impulse Response (FIR) filtering is applied to suppress noisy data. Let the x[i]
be defined as the incoming signal at observation step i, which can be a macro time
step or sub-iteration index. Assume n such steps have been sampled (i.e. taps), then
the outgoing signal step x[n] can be expressed as,

x[n] =

m−1∑
i=0

bix[n− i], (5.1)

wherem < n is the filtering order, and the expression of bi depends on the filter win-
dow, which for the current study is either a constant value or the Blackman window.
The sum

∑
bi should be 1 in order not to alter a constant field. For white noise error,
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m=1, and bi=0.5, e.g. the average, is the most efficient choice. Using FIR degrades the
order of accuracy of the procedure to the first order, but this is negligible for sufficient
large sampling over the period of interest. This is normally applied in this study as
pre-processing, and if so, it will be phrased as FIR followed by a cutoff frequency and
type of filter. To transfer data across a map that is non-conforming with no common

Figure 5.2: Code snippet, the traction split for Eqn (5.6), the traction contains the stress for viscous traction
and the pressure. The traction usage is part of the function call get_traction which has the input

parameter solid_index, interface code provides the inclusion maps, computes the input
reference quadrature point to current, then viscous stress is scaled according to IDW formulae.
After looping, the traction is computed and scaled by the total weight and this finalise the IDW

computation of the traction.

nodal points, only a common interface surface, requires an interpolation procedure
to determine the function value f at a given target point xi on the coupled interface
Γ at the current configuration. For each target point, xi there will be a set of source
points xni on the coupled surface, which are part of the adjacent domains mesh with
corresponding function values f∗(xni ). See Figure 5.2. The interfaced mapping stores
for the deal.II four displacement points/vertex per solid facet and vertex point of the
fluid facet, then the scoring index for the closest vertex to the given quadrature point
or vice versa, sets the data for the IDW interpolation in both directions.
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Let the weight wn between a target point and a source point be defined as

wn =
1

‖xi − xni ‖d + ϵ
, (5.2)

where ϵ is arbitrarily small but positive. These weights are computed at every mesh
update. These weights are then applied to the inverse distance weighting formulae
(IDW)⁷⁰ defined by

f(xi) =
1

wk1k
wnf

∗(xni ). (5.3)

As mentioned, since the interpolation is executed at the current configuration, the
solid weights are based upon the transformed solid facets, obtained by summation of
reference configuration and displacement field.

One can further stabilise the procedure by preconditioning the input variables. Even
though the following discussion can be applied to any field, assuming that for a given
displacement field ani the corresponding traction tni = F ◦M(ani ) is given, where
superindexn represents stepn, which is either a time step index or sub-iteration index.
The common goal for all loading and traction control is to incrementally change the
field value from a reference value to its natural value by using a ramp function so
that one may control the acceleration of the structure and thus allow building up
the inertia in a stable way. Then given the computed traction ti for given step n, a
reference traction (t∗) and a blending sn, an intermediate value tni is applied instead
of the computed value,

tni = snt∗i + (1− sn)ti, (5.4)

where sn = ϕ(n)ψ with 0 < ϕ < 1 and 0 < ψ ≤ 1. The blending function ϕ
gradually goes to zero monotonically as n increases, and thus the intermediate value tni
goes to the computed value ti. This has been applied to balance equation as well, then
known as the continuation technique, allowing precondition or acting as relaxation.

Before the non-linear iterative steps in the finite strain algorithms, a predictor (a∗) of
the displacement was applied, see Eqn (2.19), using first and second-order terms in
the Taylor expansion over time. Another approach is, by finite difference, to extrap-
olate the current state from previous states, either used as a replacement of the state
solver or trial vector. Of course, for noisy data, polynomial fitting by LSQR and then
extrapolation is normally applied for the pressure field.

Traction split

The second Piola–Kirchhoff stress tensor (Sij) applies to the reference configuration,
while the Cauchy stress tensor (σij) to the current configuration. The synchronisation
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provides the latter from the fluid step as input for solid step, and thus requires a
transformation, using the so-called Nanson formulae,

Sij = JF−1
ik F−1

jmσkm, (5.5)

which relates to the nominal traction (t0) Eqn (4.28) by the first Piola-Kirchhoff tensor
Nij = SikFjk and (t0)j = Nij(n0)j , where (n0)i is the normal in reference do-
main. Therefore, code-wise, the transfer is done with the first Piola-Kirchhoff since
the return statement is only the traction t0. The traction on the fluid side is split
into two components: the viscous stress, computed by the symmetric gradient of the
velocity (σviscij = ν

2 (Ui,j + Uj,i)), and the pressure (pf ). The nominal force at the
interface is then computed as follows, assuming matched fluid facet onto solid facet,

(t0)i = JF−1
ik σvisckj (n0)j − pf (n0)i, (5.6)

this is the traction split. However, it’s not exact since the fluid facet is not exactly
matched onto the solid facet; although its centre is on the solid facet, the normal
wiggles, and with increasing resolution it aligns with the opposite normal. Further,
since there is a possibility of multiple fluid cells with the same solid cell as the closest
facet, the IDW formula is applied for the mapping of traction at the quadrature point
of the solid. As a remark: The difference in use of the Piola-Kirchhoff tensors is the
involvement of the Green strain tensor or not in the term of interest, on the RHS
of Eqn (4.32) there is no Eij terms on the external force term, the traction, but the
internal force tensor has.

5.2.2 OpenFOAM package

The OpenFOAM C++ tool kit is exemplified by computing the moment predictor
step Eqn (4.9), which is evaluated using class fvV ectorMatrix. This class discre-
tises and distributes the operators specified within curled brackets, the code extracted
from include file UEq.H is shown in Figure 5.3. It is used in the solver that solves
the INS with moving patches, pimpleDyMFoam. The class first applies the construc-
tor using fvm class which is the solution method applied, namely FVM. To dis-
cretisation, in this case, fvm :: ddt(U) contains the scheme for the temporal part,
fvm :: div(phi, U) refers to the scheme for the divergence operator with involving
variables phi and U , and the two remaining terms are the effective viscosity part as
mentioned Eqn (4.5), the νeff (−2

3Uk,kδi,j + Ui,j + Uj,i). Some snippets from the
PISO algorithm are presented: from UEqn class one gets the aP terms from the
method call A(), from which the intermediate velocity is computed, then the pres-
sure equation can be formulated and solved, by using the computed flux, the pressure
correction to the velocity see Figure 5.2. The Fvc class refers to the Finite Volume
Calculus class, which contains the interpolation schemes.
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Figure 5.3: Code snippet, the moment predictor: Aijϕj = Ri.

Table 5.2: Code snippets used in OpenFOAM.

Eqn (4.6) aP AU=UEqn().A()
Eqn (4.12) Ui = Ui − 1

ap
p,i U-=fvc::grad(p)/AU

intermediate velocity U∗
i = 1

aP
H[Uj ]i U=UEqn().H()/AU

volumetric flux ϕ∗ = SkU
∗
k phi=fvc::interpolate(U)& mesh.Sf()

Eqn (4.13) ( 1
aP

p,i)),i = 1iϕ
∗
,i fvm::laplacian(1.0/AU, p)==fvc::div(phi)

5.2.3 deal.II package

The core deal.II functionality in computing the integral values is exemplified by the
following snippet code of the evaluation of the surface integral of traction vector. The

Table 5.3: Correspondence table between notation and variables in deal.II. wi is the quadrature weight.

Kt system_matrix
f system_rhs
Hiq(ξq) fe.values.shape value(i,q)
ξq fe.values.quadrature point(q)
|detJ(ξq)|wq fe values.JxW(q)

deal.II functionality is first exemplified by the following snippet code of the evaluation
of the surface integral of traction vector, see Table 5.3, and computes traction term of
the external force over one solid facet approximated by Gauss quadrature integration
formula, ∫

∂CV

1

ρs
HjktjdA ≈

∑
q

1

ρs
Hjk(ξq)tj(ξq)|detJ(ξq)wq. (5.7)

The snippet code for this in deal.II is presented in Figure 5.4. The first loop extends
over the faces of a given cell. The boundary indicator() ==1, ensures the surface face is
chosen, and the reinit member function initialises the values of all test functions re-
lated to a given cell. The inner loop is over the quadrature points. The second example
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Figure 5.4: Code snippet, for (t0)j in Eqn (5.7).The boundary_indicator() classify the patch, ”1” imply
coupled FSI patch. The get_traction is the interface matchmaker, with the input of the face
index, quadrature point and normal vector, it computes with IDW at current configuration the

traction for given quadrature point, then apply pullback, obtaining the traction for reference. It
comes in two components, firstly the viscous term (σ*normal), secondly the pressure, which is the

essence of the traction split. The innerloop is over quadrature points, the face integral is
computed with the quadrature weight as outlined in Table 5.3.

is to show the crucial difference between OpenFOAM and deal.II. The OpenFOAM
benefits from moving the discretisation into classes and allowing abstract treatment
of PDE by all the tricks in the book of C++ functionality. It significantly reduces the
effort in the implementation of solvers. In deal.II version used, there is no such solver
except for limited tutorials, the code snippet illustrates the assembly of the system
matrix, before it calls the solver of the linear equation.

Instead of allowing polymorphism to ’=*+/-’ math operators, and having a class that
deals with the discretisation, deal.II deals with methods for each operation such as
add, copy_from, assign, vmult, mmult and so forth.
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Figure 5.5: Code snippet, IQN-ILS procedure presented in Algorithm 2 in chapter 4 using economic QR
procedure. The interface CMatrixTool is used as a ”handler” class, that is a class that takes input
variables, executes desired operation, and returns the results. trim_bundle and update_bundle

handles the stack of global vectors, and the computing of difference matrices is done by
create_delta. QR is solved by qr_house_solve equation and solution computed by

vmult/vector_add. The solution in global vector is inserted into the interface on the mpi
solution vector, then it replaces the current interface on global stack by displacement_field.

Garbage collection is handled by clear/resize(0)

5.2.4 Relaxation step

The relaxation uses the CMatrixTool, which is an in-house math library using C++
Standard Template Library (STL) functions. This is exemplified by showing how the
IQN-ILS is implemented, see Figure 5.5. The CMatrixTool uses the same method
names as deal.II for keeping transparency within the code. The handler is a class that
takes the in parameter, then performs the math procedure, keeping necessary data
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encapsulated, then allowing further processing, and also acting as a garbage collector.
The advantages of STL are many, apart from being efficiently implemented, it also en-
sures data integrity. The word bundle refers to a stored collection of previous solution
vectors (X), and the routine begins with adding the latest solution from solid step,
i.e. xk+1 = H(xk), the tilde_u_cur vector, to this bundle by first trimming the
bundle trim_bundle which extracts the coupled boundary and storing it, by merely
handle a dynamic list stack, LIFO type, using push_back, a pointer k%I gives the
position of the current vector. Then it adds to the bundle the latest solution and
updates the residual by update_bundle. The W k

ij and V k
ij difference matrices are

created by create_delta and at the earliest second subiteration the IQN-ILS proce-
dure begins by solving the residual equation by using the QR method in the handler,
handler.qr_house_solve, several different QR procedures are implemented, the
one used here is the economic QR, using Householder QR, which eliminate the ex-
plicit usage of Q matrix, otherwise the memory usage will be too large (NxN). The
vector_add is a routine that handles the extraction of the data from the bundle into a
solution vector, and then one changes the format, from STL to deal.II, for the purpose
of updating the global interface vector. The logistic difficulty, to know which pro-
cess the relevant DOF belongs to, and the relation between the location of interface
to the position in the solution vector, can be simplified by consistently transferring
data in the same order that they are processed in solid step. This also minimises the
bandwidth. The in/out of data thus follows the same processing path, no need for
keeping track of the data: the displacement_field transfer and mpi solution vector
to global vector, the boundary_field replaces the interface of a mpi vector with the
values of the global vector. All remaining algorithms in the relaxation step, use the
same functionality as outlined here. The translation of the pseudo code into C++ is
almost seamless by this approach.

Figure 5.6: MPI decomposition. Cell extract from mid-cut plane for a channel with solid clamped-clamped
cantilever, and each partition is shaded with discrete value, one partition per thread. This mesh is

partitioned for two node simulation (40 processes)
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5.2.5 OpenMPI: parallelisation

There are several other packages that provides same functionality as described in this
section, for example MPICH, the essential difference between those, is that Open-
MPI is more modular and easier to implement, while the latter is more efficient.
By parallelisation, the field variables of the mesh are distributed across a cluster of
processes, creating partitions, assigned to each process, which have disjoint memory
and often across different machines, unless within the same computer node. The
cells are coloured by which partition they belong; see Figure 5.6 as an example, with
a clamped-clamped cantilever immersed in a channel flow. For OpenFOAM, the
scotch package is employed for the purpose of creating this partition, while parMetis
is applied for deal.II. The cells that share facets with adjacent patches create a ghost-
interface, included in each partition for the closure of the solution matrix for the
state solvers. Although the way the parallelisation is handled is different between
the interface/OpenFOAM and deal.II, the basic strategy is the same since the same
communication protocol is applied, the MPI protocol.

MPI protocol

The code is the same across all processes, the code parts that are subjected to paralleli-
sation begin with a marker, and they end with a corresponding end marker, normally
a function call. The process ID is used in a workload partition, e.g. to establish loop
limits so each process accesses only the relevant data for its process. Communication
is by gathering / scattering / synchronisation / wait calls within the MPI package. A
normal strategy is to gather all data relevant to each process, execute the code with the
acquired data, and then to distribute the results to relevant processes. The wait call is
to ensure that all processes have finished before applying synchronisation.

Efficiency loss

Efficiency loss occurs when each process must wait until all processes reach the end
marker, and may occur either by different partition sizes or workload, either by own
code or competing resources on the same cluster. Another aspect is the proportion
of ghost cells with respect to the cells without partition, they increase in numbers
by increasing the number of partitions, and that reduces the efficiency. In terms of
efficiency, one often speaks of scalability, namely, to a given number of processes (N ),
for a fixed-size problem (DOFS), how much is the speedup (S),

S =
1

p+ 1−p
N

, (5.8)
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where p is the imperfection in parallelisation. This is often referred to as Amdahl’s
law. To measure the efficiency by parallelisation, one measures the total time (T)
spent at each cluster. Ideally, these times should be equal, but usually they differ,
causing processes to idle waiting for synchronisation, as will be discussed further in
detail later. The part of the code/process that benefits from parallelisation, the wall
time drops by (1−p)T

S , while pT remains unaffected. However, this mostly gives a
pessimistic view with increasing N but other conditions and procedures to measure
efficiency in parallellisation¹⁰⁹. To achieve an optimal partition, as a preprocessing
step, partition managers is applied. In general, nested gather/scatter seldom impacts
efficiency unless there is an outer loop redoing the steps, for example, NP algorithms.

The usage of global vector representation

The global interface of the displacement is the key element that is distributed, which
is done in two steps. Firstly, looping over all DOFs and extracting interfaced val-
ues and storing them it in a global representation on each processor, which involves
MPI gathering. Then locally on each processor, updating solution vector by insert-
ing values of interface boundary, which are later used for next update in the strongly
coupled FSI procedure. The extract and insert are executed with the same procedure
(i.e. just interchange get_field with set_field) which is advantageous since there
is then no need to keep an extra mapping of DOFS index. Of course, within each
processor, the DOF index is stored but it is related to gobal vector by using a STL
mapping of position index in global vector and the DOF index. Despite the obvious
drawback in gathering and scatter, handling the global vector of the interface at every
cluster, the timing operation and memory usage determine the necessity for further
improvement. The bottleneck at current implementation lies mainly under the hood
of the PetSc and solving the linear system and the assemblage. For that reason, no
further MPI improvement has deemed being necessary, but with an increasing num-
ber of partitions, it is better to avoid global vector representation at each process. The
particular reason for handling in this way is because the QR algorithm, used in the
residual techniques in the relaxation step, and in the prediction step for the traction,
does not scale well with size when using gather/scatter.

5.3 Postprocessing

After the FSI procedure is finished, one obtains sampled data as a function of time.
These are probe data in the solid and the fluid, statistics of the convergence, and a
measure of proximity which gives an estimate of IE. The statistics of convergence are
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in terms of a key indicator of accuracy, namely the maximum of the norm at the final
sub-iteration at each timestep, with it’s face index on Γ and the largest difference be-
tween fluid and cell centre. Apart from the governing fields, the sampled data contains
intermediate data such as the residual at Γ, Eqn (2.22), used in the action step relax-
ation. The analysis of these data is phrased as post-processing and visualised mostly
by plotting processed data in terms of non-dimensional units or using Paraview¹¹⁰ to
visualise the governing fields velocity/displacement/pressure or vorticity, also known
as the Q plot. The Q plots are coloured by the sign of the Uy velocity or the velocity
field (interpolated), which allows rough information on frequency such as angular ve-
locities and direction of change. Paraview also allows ground-truthing data (picking
cell values), interpolation in between cells, cutting out cell stripes, and providing plots
of governing variables on cells, smoothed surface, or along curves. Each data has an
interface, allowing their case description to be imported. Then each solver provides
extra data such as drag/lift coefficients, and governing variables at probe points.

5.4 Validation of the FSI procedure

The FSI solver is validated by several steps. It begins by breaking it down into the
modules as described by the flow chart Figure 2.2; each step can be tested stand-alone;
the essential step is to ensure that to given input, the expected output is generated.
Several parts of these steps have to be assumed to be validated by the supplier of the
package, but it is still a matter of proper usage and the case of an application that
requires validation. Then a comprehensive efficiency study of the scalability is carried
out. The validation against experiments and other FSI codes is investigated.

Table 5.4: Validation case of Fluid step for AR 5 cantilever in a channel flow for Re 5000 [ConfI]. Rounding off
to two digits due to precision.

Reference Cd Cl St Remark
ConfI 1.49 0.18 0.11 StKH ∼ 0.5
ConfII 1.47 0.09 0.11 UR = 2
Exp. ¹¹¹ 1.42 - 0.11 Re 73000
Numerical ¹¹² 1.61 - 0.11 Re 5000

5.4.1 Fluid step: Validation of OpenFOAM

Several studies have validated OpenFOAM, both experiment and commercial/open
source programs such as ANSYS-Fluent¹¹³,¹¹⁴, but one of the founders of Open-
FOAM also has a monograph with detailed error analysis⁹⁷. ConfI serves as valida-
tion to ensure a proper case setting and usage of the fluid solver. This study involves
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a domain study, a study of different discretisation schemes and turbulence models
that was performed and applied to principal cantilever configurations in Figure 6.1.
TVD scheme on divergence term was the best suited with the application of a blend
(0.1). For remaining terms, backward on the temporal and otherwise Gauss linear
were shown to be adequate. Further, it was shown that the distance of the cantilever
surface shorter than 10D/7D to the inlet/walls produces a signature of pressure, hence
implying coupling. ConfI provides the drag/lift coefficient, mean velocity profiles,
and frequency spectra, Dynamical Mode Decomposition (DMD). Analysing the tur-
bulence generated by the bluff body. Table 5.4 shows the characteristics of Strouhals
and drag/lift coefficients of the bluff-body in channel flow, compared to the experi-
ment of the closest domain setting (same aspect ratio). In general, the frequencies, the
shape of the wake, and the slope of the inertia range follow the expected behaviour
from experiments, see for example the results of Sumner¹¹⁵. The average flow field
was identical regarding the size of the wake, presence of vortices, and frequencies, in-
cluding the intermittency effect as presented in the work by Sumner on clamped-free
end¹¹⁶. Regarding turbulence modelling, it was observed that the best results were
obtained with dynamic one-equation giving a near -5/3 slope in the inertia range at
the position with the largest mixing downstream. A mesh dependency study showed
that convergence within 10% accuracy of the drag/lift was obtained with 10 cells/D;
no further improvement was observed with 30 cells/D. In the enclosed papers, the
resolution is 20 cuts/D or better.

5.4.2 Solid step: deal.II

The validation of solid step is normally made against the beam theory, using the theory
of elasticity and the analytic formulas. Nonlinear effects are not included, including
dependency on the Possion ratio¹¹⁷. Solving the balance equation using continuum
modelling will thus not provide the same value as the beam theory, but the expected
difference is often only parts of a per cent for the amplitude and a few per cent for
frequency, the latter mainly due to imprecision in measurement. For the frequency
(rad/sec) and max deflection for uniform load upon the width side of a clamped-
free/clamped-clamped,

fv =
K1

L2

√
EI

ρA
, δm = K2

pL4

EI
, (5.9)

where K1 and K2 are constants unique for flexuration mode and configuration¹¹⁸
and EI often phrased as the stiffness but I is the area moment of inertia, the p is the
load per unit height, A is the area of cross section. For the first mode of the cantilever
K1 = 3.52/22.36 and K2 =

1
8/

5
384 .
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The mode shape for the lowest flexuration of the clamped-free,

δ(x) =
px2

24EI
(6L2 − 4Lx+ x2), (5.10)

similarly for clamped-clamped,

δ(x) =
px

24EI
(L3 − 2Lx2 + x3), (5.11)

where x is the position in between 0 and L. The damping model can be evaluated by
two approaches, either computing the peak resonance height (Rd,m) from an FHV
or by the fraction of decay in a FCS, the amplitude is lowered by the damping ratio
(ζ)¹¹⁹. The following formulas for computation of the damping ratio,

Rd,m =
1

2ζ
√
1− ζ2

,
1

n
ln

x(t)

x(t+ n
fv
)
=

2πζ√
1− ζ2

, (5.12)

where n is the number of periods between points of measure. To evaluate the damp-
ing, one sets the damping ratio, and the Rayleigh model’s capability to reproduce
that value is measured from simulation. Using the above formulas, the deal.II solver
was verified to provide accurate solutions already after 8 cells/D, but the convergence
is slow using continuum elements, requiring more than 30 cuts/D to reach within
theoretical accuracy with respect to nonlinear effects.

Numerous other time marching techniques exist¹²⁰: the central difference, explicit as
well as implicit, conservative, and dissipative. A variant of GN22 is HHT-α³⁸. An-
other commonly applied method is the α method³⁷. In addition an implicit scheme
with an extra half step¹²¹. From an evaluation, it was observed that for the parti-
tioned technique, as long one use a second-order accurate scheme, the choice of the
scheme was irrelevant. GN22 procedure is by far the most cited in the literature for
partitioned FSI and therefore selected as a time marching procedure. In addition,
RD modelling suffers from being unstable for displacement driven application, that
is, instead of applying traction, one apply Dirichlet condition, in solving the equation
of motion, the solution to this is to implement a visco-elastic model (VE), which is
not covered in this thesis.

5.4.3 Mesh motion step

This should ensure that the ascribed change is obtained for a given displacement field;
it was a functional test, using ascribed displacement and direct downloading data and
studying the result in ParaView and ground-truth data by debug trap, see Figure 5.7,
for the thin-beam experiment, presented in paper I. In this figure, the surface from the
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Figure 5.7: The surface of the thin-beam [D, d, L]=[0.01,0.002,0.05]. The observed fluctuations are of the
order 10−5, this behaviour is an effect of non-matched fluid centre onto a solid surface. It’s a
general observation that this pattern is a function of cell size, thus increasing, will reduce the

deviation further.

fluid surface is placed the furthest away with black surface colour and white segments
of facet segments, and otherway around for the solid, closest to view, the middle is
superimposed, showing the difference. Note, although the facets cell centres are to
the order of 10−8 in l2 norm, it was sensitive and could crash while further increasing
tolerances, the displacementLaplacian mesh motion solver. Since it was observed user-
defined error by patch assign, proximity analysis is performed at the start of each
simulation, which measures the largest deviation between source points ascribed by
patch fluid and solid interface. This ensures that the transfer between the solid and
mesh motion steps is consistent in each simulation. Also, a flag is introduced as a
warning, issued whenever missing matching occurs, i.e. a cell lacks a correspondence
at the partition level; this applies to the mapping in both directions. A simulation is
discarded if any unit test fails and/or issued a flag during run-time or proximity of
matching fails.

5.4.4 MPI scalability

The LUNARC HPC Aurora consists of 180 nodes, each node 20 threads (40 pro-
cesses). Due to interaction with other users between/within nodes, the scalability test
was limited to up to 60 threads, and the nodes were confined to one rack since other-
wise was biased by competition over bandwidth but also by limitation in Mesh mo-
tion solver at that target version; since using reduce all call lowers the efficiency for the
mesh motion significantly already at 80 threads and becomes negative at 120 threads
(fluid step stand-alone). See Figure 5.8. Scalability is also lessened due to unstructured
mesh and using parMetis, giving a disadvantage compared to structured mesh, increas-
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Figure 5.8: The speedup with estimated non-parallelisable p ∼ 0.2%, the Y axis is the scaling and the X axis
the number of processes.

ing with decreasing cells/threads, below a certain point, the overhead and variance of
the number of cells per thread hampers the analysis and increasing the total number of
cells only would make the lower range costly and hence a negative scaling is observed,
see Figure This scalability study provides an estimate of the non-parallelisable fraction
(p) by using the Amdahls law, a fit to Eqn (5.8), gave p ∼ 0.2%. The application is
the quiescence flow study from paper III, for two nodes, the speedup is around 37 of
N=40. However, that is for a run with no competition over bandwidth; in practice,
for an average load of users, the efficiency for two nodes may drop down to a scaling
of around 30. For current application with cantilever with AR and width to thickness

Table 5.5: modified Richter case

Reference X/D f1/Hz f2/Hz f3/Hz
This work 0.175 2± 0.5 7.8± 0.5 26± 1
Numerical ³ 0.18 2 7.3 27

ratio, for a typical mesh of 3 M cells for fluid, and around 50 000 cells for the solid,
leaving to around few thousands of facets on the coupled surface, the majority of time
is spent at fluid step (94%) and solid step comes in second place (4%), then there is
1.5% outside timing statistics, while time for the relaxation step is negligible (0.5%).
The expected outcome for 40 processes (2 Intel Xeon E5-2650) in one week (168 h)
is around 17000 subiterations, thus providing, assuming mean 4 subiterations and a
time step of 2 ms, a total simulation time of around 8.5 seconds. This normally for an
FSI application using rubber/water material with around 1-2 Hz ground frequency,
generates around 10 shedding vorticies.
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5.4.5 FSI validation

There are standard benchmark cases, although not relevant to the current scope of
this study; these have been reviewed and studied but are not presented here. For the
current case setting, two benchmarks are applied. Firstly, the experiments of Luhar et
al¹, see the paper I, Table 1 and Figure 8, provide validation against experiments and
numerical study. Secondly, in the literature referred to as the Richter case, an elastic
block immersed in a channel, with AR 2:1 for height to thickness and 4:1 with respect
to width to thickness. The thickness is set to D=0.2 m. Using the case setting from the
numerical study that is benchmarked against³, see Table 5.5 for the tip displacement
and the three dominant frequencies in displacement. Figure 5.9 depicts the velocity
profile from midplane at three seconds simulation time. Since the simulation will, in
the end, fail by strong resonance between inlet and outlet with respect to the solid.

Figure 5.9: modified Richter case, see Ref ³ for the case description. Midcut magnitude velocity at 2 seconds
simulation.
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Chapter 6

Summary of results
The enclosed papers contain detailed results; It begins with a case description, with
the principal cantilever configurations and the mesh applied. The validation results
are presented and placed in context with other sources. Thereafter stability analysis
and efficiency analysis of the FSI solver are presented. The chapter ends with the
presentation of a case which is part of the outlook of this thesis.

6.1 Case description

The thesis is focused on channel and still tank (quiescence flow), with an immersed
cantilever that is either clamped-clamped or clamped-free; see Figure 6.1. The fluid
mesh is unstructured since it has been shown in technical reports, available on CFD
forums on the subject strategy to move mesh with OpenFOAM using a structured
mesh with the mesh motion solver with best-displayed scalability MPI wise often
requires re-meshing during the simulation. That functionality was not feasible with

Figure 6.1: Principal configuration of the cantilever with different shapes, from left to right: straight,
twisted, tapered and twisted-tapered. [Conf I]

the current application version for various reasons. Using non-dimensional numbers
enables flexibility and provides a compact description for a flow case. For all cases,
the width is always 1D; the cantilever is therefore defined by the aspect ratio height
to thickness (AR). The applied spatial discretisation on fluid is TVD for convective,
backward on temporal and gauss linear on the other terms in governing equations. No
wall modelling is applied, a nearly DNS, with y+ < 1, where y+ is a dimensionless
number telling the resolution of the boundary layer at the wall. At the interface 20
cuts/D unless otherwise said. Then the mesh is stretched (at most 20% at adjacent
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cell layer, on average 5%) to ensure sufficient division of the space for the forming and
moving of the vortices generated by the cantilever.

Figure 6.2: Principal mesh description. The upper is for channel flow, with refinement in the wake and
around the cantilever. The middle is for quiescence flow case, with only refinement around the

principal cantilever, the lower is clamped-clamped cantilever case in channel flow.

Therefore the channel has an additional mesh strip to cover the downstream vortex
street, and still tank has not. Throughout the chapter, distances are measured by the
ratio of the thickness of the cantilever (D). The channel flow is velocity driven, where
the BC of the opposing opening uses prescribed velocity and zero gradient pressure
at the inlet and at the outlet, a pressure gauge with zero velocity gradient. The setting
of aspect ratio, material and conditions, and Reynolds number set the parameters
needed to reproduce the data. Unless otherwise specified, as by reference or explicit
in text/figure, the mass ratio is 1, and the cantilevers Young modulus is E=59 MPa.
For quiescence flow, traction is applied to the side that faces the opening, and the
openings are set with gauge pressure. All walls have a non-slip condition.
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6.2 Validation

Paper I and Paper III contain the main parts of validating the FSI solver. During
the work, before the publication, conference papers ConfI and ConfII include the
preliminary results for the coming papers I and III. A particular validation in this
context is the Solid-Solid Interaction²¹, phrased as ”interesting but not particularly
effective”, but as a validation, most useful, since it is a black-box and case-specific. The
strategy is to replace the fluid solver with a solid solver for the case of interest, split the
solid domain, and apply traction over a surface part that is split, and the reference is
merely the ”monolithic”, i.e. no split, see Figure 3 for case setup and Figure 4 for the
absolute error versus number of cuts per D presented in paper I, using the formulas
presented in section 5.4.2. This validates the traction transfer for a static deflection
case, showing the difference between monolithic and partitioned in absolute error,
decreasing to 0 with increasing resolution. It mainly sets the resolution and IE error
from the log file in perspective as an accuracy index, see Figure 5 in paper I. As long

Table 6.1: Luhar experiment. Re 1600

Reference Cd X Z Remark
Paper I 1.12 2.30 -0.65 constant Smagorisnky
Paper I 1.11 2.18 -0.67 dynamic one-equation
Exp¹ 1.15 2.14 -0.59 Error ∼10%
Numerical ⁷⁷ 1.05 2.45 -0.75 constant Smagorinsky

as one has 0.2% or less IE, the partition provides a solution error of a few percent or
less, requiring an average of 20 cuts per D at the surface. The deflection/frequency and
RD modelling for the solid-state solver are also compared to beam theory, see Table
6.2, showing static/dynamic deflection. The RD modelling can only be ratified by
setting the damping ratio and measuring its outcome. The OpenFOAM state solver

Table 6.2: validation of the solid step by applying traction to a cantilever side. AR 5

Reference Ax/m f/Hz ζ

Paper III 0.00799 m 7.95± 0.15 Hz 0.049
Beam theory 0.00796 m 7.83 Hz 0.05

is discussed in the previous chapter. For an additional validation of the dynamics,
apart from the Richter case Figure 5.9, see Table 6.1, which shows the deflection in
the experiment by Luhar et al¹, as depicted in right Figure 1.2 should be compared to
Figure 7 in the paper I. Another validation aspect is reproducing the flow topologies
observed in the literature, such as the VIV, the shedding frequency, the deflection
limits and distances between pin vortices. An eluded pattern is the upper branch; only
the lower branch was observed in paper I with a deflection limit of mostly around 0.8
and Strouhal’s number around 0.1, see Figure 8.
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6.3 Stability analysis

Paper II is mainly focused on FSI stability for the immersed cantilever. Firstly a clas-
sification of how the FSI solver fails is introduced, since for unstable FSI using PI-
CARD, relaxation increases the stability but may produce a defect solution, and as
observed, it is manifested differently. An FSI solution is stable when it produces a
bounded solution throughout the simulation. Then the influence of the action steps
to stability and its parameter dependency are presented.

Definition of failures

Three types of failures can occur in the context of a coupling strategy in numerical
simulation. Type I failure occurs when the coupling leads to an increasing norm,
despite each subcycle of the FSI having a stable result, thus leading either to divergence
within a few macro iterations or slowly diverging, all depending on the settings in the
application. Type II failure occurs when the coupling is stable, and depending on
the choice of tolerance, and the frequency of this failure, an error in the solution is
introduced by various degrees. Type III failure occurs when the mesh motion solver
fails, which mostly leads to type I failure. This study eliminates type III failure by
ensuring a proper case description. This classification of failures helps to understand
and improve the methodology’s stability.

The influence of action step to stability

From paper II, using traction SUR as a reference, i.e. continuation over the traction
from the previous to the current time step, continuation over Young modulus and
mass show a relative difference of −0.26 ± 0.5%, IQN-ILS[5] 0.17 ± 0.3%, while
FIR applied to the traction,−1.3± 1.8%. The application is an immersed cantilever
in channel flow with R=2, with the PICARD unstable at Re 500. Hence action step
continuation and FIR stabilise the FSI, and continuation provides similar accuracy
as compared to relaxation, showing that the solution is not altered by either of the
methods. Therefore, these action steps can be applied to stabilise the coupling and
improve the convergence of the solution in a numerical simulation using the PICARD
method. However, the FIR action step has the drawback of introducing a growing
phase error proportional to the width of the filter. Similarly, as the continuation tech-
nique can also remove higher-order modes that should be part of the final solution,
hence acting like a projection. The same goes for IQN-ILS and R-family⁷⁶, if the
last iteration is without relaxation⁵⁶. The IQN-ILS-R technique increases stability by
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suppressing the zig-zag pattern described by Figure 5 in paper II, but not to the same
extent as continuation. Since at the beginning of the strongly coupled FSI iteration,
the R-family re-uses previous macro iterations residuals, every iteration is with relax-
ation and full-matrix. But the continuation technique is more efficient in suppressing
this pattern and can be combined with IQN-ILS, providing the most stable procedure
in this study.

R versus AR dependency

In paper II, one studies the critical mass ratio R∗ at which type I failures occur, the
change of R is done by keeping fluid density constant and lowering the solid density.
Several studies, see references in the introduction of paper II, have shown that this
limit, in terms of vanishing time step, is independent of the structural stiffness, hence
the aspect ratio, and the viscosity. It is merely dependent on the added mass effect.
For cantilever, inviscid theory, i.e. potential theory, it can be shown that the inviscid
added mass is equal to R∗Γ. Hence, by computing R∗Γ, it is shown in paper II
that the stability is independent of aspect ratio height over thickness (AR) for SUR
and PICARD. However, there is no similar theoretical study, showing the stability for
IQN-ILS or residual technique in general, except for IGMRES. Paper II, however,
implies that despite the improvement in stability by the residual relaxation techniques,
all studied residual relaxation techniques fail with the increasing mass ratio for a given
aspect ratio. However, the hybridisation technique, a combination of continuation
and IQN-ILS appears to give unconditional stability, until between 10 to 20 AR, it
begins to fail, hence providing aR∗, it alters the character of failure, going from type I
to type II. What causes this was not clear, but a similar behaviour was observed when
altering fluid density instead. The stability limit shifts from type I to type II, and
often to slightly less R∗ value, but less than 1 in difference.

6.4 Relaxation techniques

This section focuses on evaluating the performance of the relaxation techniques used
in solving the fixed-point iterative problem for fluid-structure interaction (FSI). Paper
IV provides a more detailed analysis of each method. The first aspect discussed is the
process of quality assurance, which includes the analysis of probe data and the criteria
for selecting the result of relaxation. This is followed by a comprehensive performance
study that presents statistics on the best-performing relaxation techniques. The sec-
tion concludes by providing more in-depth information on the top-performing relax-
ation technique in the study.
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Performance

In solving the fluid-structure interaction (FSI) problem, relaxation techniques can
be used to stabilise the solution. The performance of these techniques is assessed
by looking at the average number of subiterations required per macroiteration, the
standard deviation with respect to the mean value and the fraction of type II failure.
The two-step method applies the Gauss-Seidel method at both the solid and fluid
response, with relaxation applied at each step. See the results in Figure 6.3. Eval-
uation results show hybrid/bombardment techniques (HYBRID), using X=2, per-
form better than standard techniques while blending techniques are the second best.
Blending techniques are better suited for alternating series (zig-zag patter, see paper
II) unless applied on every even/odd subset; see further in¹²² and reference therein.
Acceleration techniques such as VEA and TEA have failed to perform better than
AITKEN and have a similar performance to residual techniques like IQN-ILS. Meth-
ods marked with the super-index ”*” generally lead to improved performance, indicat-
ing that excluding the first response from relaxation results in better convergence. This
finding aligns with previous research that showed that the family of Anderson relax-
ation techniques performs better for sequences with linear convergence than for those
with quadratic convergence⁶⁰. The convergence rate between the first two iterations
is nearly two. The DSUR technique is the best-performing non-hybrid relaxation
technique, but further studies on other cases are needed to confirm this observation.
DSUR should be regarded as a continuance of the work by Degroote with the so-called
IQN-ILS-R-family methods. Instead of reusing previous residuals, one instead com-
putes the statistics of relaxation parameters for current subiteration level and reuses
them instead applied to the current residual.

A previous study found that AITKEN performed worse than IQN-ILS, but this con-
clusion might change if the pressure response was studied, as the authors concluded
that AITKEN was unstable for those settings. Improvement of AITKEN by replacing
the scalar product over the interface with scalar product over the entire field signifi-
cantly improves the performance.

That a method can be categorised differently depending on the number of used iter-
ations obscures the analysis and opens the question of whether to take advantage of
the fact that some techniques work better at different stages of the coupling iteration.
This led to the subsequent study, the bombardment technique, a methodology that
emerged from this performance study and outperformed all other in this study.
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Figure 6.3: Performance statistics with log y scale. Upper: The mean value (with 3.5 subtracted) as a function
of the number of X. Lower: Std versus Type II failure.

Bombardment technique

The bombardment technique developed has three evaluation options: selecting the
method with the smallest norm, taking the average of all relaxation techniques, or
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using the relaxation result as input for the PULAY method. The results showed that
selecting the method with the smallest norm was the best choice. Another aspect of in-
terest is to see how the techniques perform as the mass ratio, or added mass, increases.
See Figure 6.4 including a comparison to regular relaxation methods statistics.

 2

 4

 6

 8

 10

 12

 14

 16

 0  2  4  6  8  10  12  14  16

M
E

A
N

R

AITKEN
ADSPIT[2-5]*

ADSPIT[2-5]* MIXED
IQN-ILS[4]*

IQN-ILS[4]* MIXED
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  2  4  6  8  10  12  14  16  18

F
ra

ct
io

n
R

SUR
BOOST
AITKEN
IQN-ILS

Figure 6.4: BOMBARDMENT Left: Mean value as a function of mass ratio R, with reference to the most
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techniques gain influence with increasing mass ratio. The R=16, IQN-ILS stand-alone are not

stable for X=4,5

From paper IV, it is further shown that, which aligns well with the previous section of
the performance, the blending techniques based upon two iterations decrease with in-
creasing mass ratio, and the optimised blending decreases with the increasing variance
of the number of iterations. MIXING is constantly lesser performance than IQN-ILS,
by only a margin though, (within a factor of 10 in norm) but it has been the other
way around for case settings with a clamped-clamped cantilever, especially while the
continuum wave is amplified. Using double end-condition (l∞ < 10ϵ, l2√

n
< ϵ) as

described in paper IV is called ”MIXED”.

6.5 Application: clamped-clamped cantilever

The clamped-clamped cantilever immersed in a velocity-driven channel is studied. Al-
though the primary goal of this study is to investigate the statistics of the BOMBARD-
MENT technique, a secondary goal emerged, to investigate the upper branch, which
has been eluding earlier studies and thus not part of the enclosed papers. The trigger-
ing of the upper and lower branches is obtained experimentally by slowly changing the
inlet from upper/lower speed. The most strongly dependent parameter in the fluid for
efficiency and stability is the mass ratio. To evaluate the BOMBARDMENT, a test
series is created with relaxation ADSPIT[2-5]∗, where two simulations are executed
for each mass ratio: changing inlet velocity from lower to higher, and vice-versa.
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Case setup

At first, the application applied uniform constant inlet, three different heights such
that the same structural damping is achieved with mass ratio 1. See upper Figure 6.5
for an instantaneous Q plot with all cantilevers aligned and isosurface coloured by
the sign of Uy showing the rotation of the vortex tubes. The immersed frequency is
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Figure 6.5: Upper: Clamped-clamped cantilever in a velocity-driven channel, uniform flow with inlet U=4 m/s.
Lower Left: Inline (X) and cross-flow (Y) displacement scaled with D. Lower Right: phase plot of

the left data

around 2 Hz. The settings differ in such a way that clamped-clamped can have stand-
ing continuum waves. To alleviate the eventual build-up of these waves, RD damping
is applied, specifically, β damping, a common way to suppress high-frequency modes,
corresponding to a damping ratio of 0.025 at 2 Hz. The constant inlet at synchronisa-
tion point provided insight in the settings for the test serie, see lower part of figure 6.5.
The simulation begins with a 2 second interval initialisation with the starting inlet,
then linearly for 10 seconds changes from inlet from 2 m/s to 6 m/s. The FSI begins
after 0.1 seconds. The corresponding simulation from higher to lower differs in that
the initialisation is lowered by 1 second. In the first test series, the inline deflection
was allowed, which at first appeared to trigger a larger envelope but due to the col-
lapsing of vortex tubes, failed to maintain the envelope. The remedy for this appears
to be freezing the degrees of freedom in inline deflection. As a result, a hysteresis
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appears, showing the difference in the envelope is large between the simulation going
from low to high, versus high to low, inlet. Although the frequency changes linearly
with inlet velocity at inlet velocity in presynchronisation range, at the higher inlet, i.e.
at synchronisation/desynchronisation, the cross-flow frequency appears to be locked
and the amplitude reaches to a plateau. This may implicate that the upper branch
is triggered. The simulation with frozen displacement inline revealed an issue with
triggering the secondary mode of vibration (∼4 Hz). This required a change from
uniform inlet to elliptic inlet profile. Still, one can see partially this mode being acti-
vated but to a lesser extent with increasing height, which is why the study presented in
left Figure 6.6 is restricted to height 15L, the 20L case is more costly although showing
the same result and 10L has a larger proportion of second mode than the other cases.
Further, which is more interesting, the maximum amplitude (scaled with D) increases
with increasing mass ratio. At R=1, it is around 1.15; at R=8, it is around 2.3.

TheBOMBARDMENT technique revisited for clamped-clamped cantilever

For that test series, using elliptic inlet, height 15 L, by varying mass ratio from 1 to
8, using frozen inline, the statistics of subiterations and selection of relaxation were
sampled and their results are presented in the Figure 6.6 - 6.7. The primary goal is to

Figure 6.6: The clamped-clamped cantilever with R=8, sweeping inlet velocity, elliptic inlet profile. Uy signed
coloured with thresold of 0.1. The motion of the cantilever is decreasing amplitude in the Y
direction. Left: XZ plane at height Z=7.5D front side of the cantilever. Showing coherent flow
with negative direction (down). Middle Q plot: the cantilever, moved 0.5 m sideway in the Y

direction, showing the vorticity and the motion in the Y direction, note the same sign where it is
strongest. Right: From the cantilever behind, showing at the maximum deflection, turning point,

the black part is the motion of the fluid moving in Y direction to the right.

study the BOMBARDMENT statistics; from R=1 to 8, the mean value of subitera-
tions goes from 3.6 to 7.1, fully consistent with the results in paper IV, but the selected
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Figure 6.7: The clamped-clamped cantilever with R=8, sweeping inlet velocity, elliptic inlet profile, R=1 to
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Left: Convergence statistics. Left: average iterations. Lower Right: Selection statistics

statistics differ significantly; see lower right Figure 6.7, the PULAY is the leading se-
lection for R=8, all methods less than 0.01 fraction selected are omitted. From the
Figure 6.6, the Q plot shows that the vortex tubes, throughout the simulation alter in
size, but never collapse. This implies that it is indeed a significant aspect in triggering
the upper branch. It also explains why this phenomenon is only observed for long
slender cylinders designed so it minimises the inline deflection⁴⁵. Numerous more
results on the aspects of flow topology are observed, one such of interest is the pres-
ence of mode B. A study of the transition in the modes shows that mode A appears
around Re 180, then around Re 400, it changed into mode B. The indicator for the
mode is the distance between the release of pin vortices, span-wise.
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Chapter 7

Conclusions and outlook
The study focuses on conducting a thorough investigation of the dependence of pa-
rameters on fluid-structure interaction (FSI) in partitioned systems, with specific em-
phasis on cantilever beams in both channel and quiescence flow. The objective is to
understand the impact of fluid flow on the structural behavior of cantilever beams
and how different parameters affect the overall system dynamics. The study aims to
provide insights into the design and optimisation of cantilever-based systems for prac-
tical applications, particularly hydroelastic. All arguments here is not fully covered in
the compilation thesis, some can be found in enclosed paper, therefore mentioning
in parenthesis.

7.1 Conclusion

The FSI methodology outlined in this thesis has shown to be robust, and efficient, to
the same level or better as presented in the literature. This is based upon two argu-
ments, firstly by reproducing benchmarks from references, and secondly, by compar-
ing the methods on the current application, cantilever immersed incompressible flow,
together with parameter study of the stability limits and with that the efficiency in
convergence statistics. It has been shown by reference and in this thesis that the pres-
sure field for incompressible flow is a significant field and cannot be omitted in a study
(paper III/paper IV). It is rather concerning that this consistent pattern of omission
of pressure is the dominant feature in articles, it’s the big elephant in the room. For
that reason, separate supplementary data has been provided in paper IV. But with
the current methodology at hand, and implementing similar partitioned FSI as in
comparative methodology, the split traction approach with resetting all fields except
interface at every subiteration appears to be crucial in achieving increased efficiency,
not stability. Otherwise, the artificial growth of residual limits the partitioned FSI
methodology to moderate mass ratio/structural form factor (e.g. aspect ratio width
to height, AR) (paper II). The most stabilising technique so far is the continuation
technique, but less efficient. The continuum waves have proven to be a challenge due
to the requirement of high resolution and impairment to efficiency, the most com-
monly observed resolution to this in the literature, is to either by material eliminate
its source or by implict filtering it out by choice of time step. (paper I,paper II/paper
IV). In bullet form, summarising conclusions,

77



• The partition FSI methodology for incompressible flow is limited by the prod-
uct of the structural factor and mass ratio. But relaxation techniques so far
do not alleviate the stability issue and thus with increasing limiting factor, i.e.
mass ratio or structural factor, the partitioned technique will ultimately fail.
The second governing parameter appears to be the stiffness, which closely re-
lates to the accuracy of the transferred data, phasing/interpolation error, since
with decreasing stiffness with the same traction, a smaller time step is required,
hence requiring higher accuracy. (paper II).

• The continuation technique is the most stable technique and can either be used
as a precondition or relaxation technique itself. (paper I/paperII)

• The blending technique phrased as the DSUR has shown promising results and
is for stable PICARD the most efficient technique. (paper IV)

• Improvement of AITKEN by replacing the scalar product over the interface is
more efficient than IQN-ILS and has a stability range similar to IQN-ILS-4
(paper II).

• The residual technique is only first order in rate of convergence with respect to
the norm over a number of subiterations, it is outperformed by the accelerating
technique of modified AITKEN and the DSUR, notably for those case settings
for which PICARD is stable, but as PICARDS grows unstable, the residual
technique becomes the better choice, notable IQN-ILS with skipping first three
iterations. (paper IV)

• By computing the residuals simultaneously and selecting the technique with
lowest norm and apply its solution to interface, the BOMBARDMENT tech-
nique. Further, by having two sets of relaxation techniques, applying the first
up to given subiteration, then the second after, this is the split technique. To-
gether these two techniques, provided the most efficient and stable technique
with only tolerance as input. (paper IV)

• The partitioned technique is highly scalable for parallelisation and appears to
be limited by each solver stand-alone, this allows the partitioned technique to
be applied to HPPC and thus study larger applications.

Although the BOMBARDMENT is a black-box technique, the choice of FSI toler-
ance for the end criteria and type of norm sets the limit of the technique. The l2

norm is the most efficient, but this study shows that the l∞ is the most accurate, by
identifying the critical tolerance for accuracy for each norm, the combination of the
norms, requiring both, provides the best marriage between accuracy and efficiency
(paper IV).
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In addition to the conclusions in methodology findings, some interesting flow topol-
ogy and parameter dependency were to be found. First and most importantly, the
turbulence, the chaotic motion with its characteristic degrade with a cascade of mo-
tion was successfully modeled by LES providing a turbulence spectrum that shows
promising results (paper I) but is still inconclusive whether consistency is achieved
near the resolution limit, fortunately, the noise generated by FSI can be reduced by
further increasing resolution in both time and space, but the cost in computing re-
source limits its value. A functional relation between drag force and the form factor
provides a theoretical expression for the change in drag as a function of the reduced
height (paper I). Another observation is that semi-empirical methods for some MEMS
devices would benefit from reparametrisation, due to the presence of convective flow
(paper III). Further, one aspect of vortex-induced vibration is the cause for limiting of
the cross-flow deflection, it appears to be related to the collapsing of vortex tubes at-
tached to the cantilever, providing only lower branch DLF graphs with a value around
0.8 reduced deflection for R=1, while freezing the inline deflection, it quickly increases
with increasing mass ratio and shows hysteresis and frequency lock, however, no ap-
parent frequency shift for current case setting.

7.2 Outlook

The study had one significant deficiency: the mesh motion technique. The charac-
terisation of the failures omitted the third type. The limitation of a diffusive motion
solver limits the application. Therefore, extending the functionality with other mo-
tion solvers would be an immediate improvement. Another limitation is the ALE/un-
structured mesh restriction since using the same partitioned approach to structured
mesh and IB procedure would increase the application range. The main reason to
apply a structured mesh is to increase the accuracy. This would also allow further
study the impact of turbulence to FSI. Using IB would allow extension to other ap-
plications. Another point of interest is to explore the impact of the findings from
relaxations to the relaxation methods applied in computational chemistry. During
the implementation, it was also realised that an interface code would benefit much
if a standard exchange protocol could be introduced, allowing schema to create the
necessary digital handshakes between stand-alone solvers. Also, providing the means
to generate coupling schema based upon scripting, increases the application range in
using partitioned techniques. This since different application may required different
coupling strategies. Some commercial solvers already offer this, but with a standard
exchange protocol, this would significantly facilitate the integration of stand-alone
solvers.
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Appendix A

Finite Volume terminology

A.1 Basic terminology

As described from Eqn (2.12), to obtain a solver to INS, one firstly solves the local
problem for each CV in the mesh, then one assembles the local into a global repre-
sentation of the governing variables. In this assemblage, each integral term becomes
a summation of integrated face values and source terms. The governing tensor fields
(ϕi) are evaluated component-wise, hence dropping the i index.

For each CV there is a cell centroid (xi)P , and boundary consisting of a set of flat
surfaces (facets) with their associated normal ni, face area Sf and face centroid (xi)f .
The volume of CV is denoted VP . Each facet is shared with only two CVs, the owner
cell P with the neighbour cell N. The vector (di)PN defines the vector between the
centroid of P and centroid of neightbour N and likewise for the shared facet, (di)fN
the vector from centroid of P to the sharing facet to the centroid of the neighbour N.

Given any scalar ϕ, a Taylor expansion around the centroid to the first order, leave
the integration error second-order accurate,

ϕ(x) = (ϕ)P + (ϕ,k)P (xk − (xk)P ) +O(‖x‖2). (A.1)

For orthogonal mesh, i.e. the facet normal being parallel to the (di)PN ), the diver-
gence term can be estimated by

nj(ϕ,j)f = Sf
(ϕN − ϕP )
‖(di)PN‖

. (A.2)

This is used for the evaluation of the laplacian term in the INS. And for clarity,∫
CV

ϕdV = VPϕP ,

∫
∂CV

=
∑
f

∫
f
ϕdA,

∫
f
ϕdA = Sfϕf , (A.3)

A.2 Limited advection scheme

The face values ϕf (including the gradient above) can be estimated by a ”higher-order”
scheme, such as the central difference approximation (CD),

ϕCD = γϕP + (1− γ)ϕN , (A.4)
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where γ =
(di)fNni

(di)PNni
. The mass flux across a given face is defined by Si = niSf ,

F = Si(ρUi). (A.5)

Although being ”second-order” accurate, even for non-orthogonal mesh, it introduces
a ”wiggle” in solving the advection equation, which is commonly applied for FVM in
defining schemes to compute the face values. The upwind scheme resolves this,

ϕf = ϕP , F ≥ 0, ϕf = ϕN , F < 0, (A.6)

but lowers the accuracy to first-order and is phrased as ϕUD. Normally one applies a
limiter (Ψ) between those,

ϕf = ΨϕCD + (1−Ψ)ϕUD. (A.7)

Along (di)PN and for given flow direction, define N as U while upwind and D down-
wind with respect to source value P, then setting r = ϕP−ϕU

ϕD−ϕP
, the ratio of the gradient

of face values between upwind/downwind cell, one obtains a parameter to which one
can defines schemes to compute the face values.

A.3 TVD scheme

A TVD scheme is an ”entropy” satisfying scheme such that for any update (i.e. ϕn →
ϕn+1), with summation of fluxes (TV),

TV (ϕn) =
∑
f

ϕnN − ϕnP , (A.8)

it is not increasing, hence satisfying TV (ϕn+1) ≤ TV (ϕn). A limiter defined by,

Ψ(r) = max(min(
2r

κ
, 1), 0), (A.9)

is a TVD scheme. This provides a ”wiggle” free solution but introduces numerical
diffusion. The κ is the ”blend” between 0 and 1, where 0 mean Φ = 1 and vice versa
Φ = 0. The Eqn (A.7) is applied in OpenFOAM with the keyword ”limitedLinear”
while Eqn (A.4) by ”linear”.
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Appendix B

Finite Element terminology
Voigt notation introduces matrices that is used in the implementation of the solid
solver.

B.1 Space discretisation, the shape matrix: Hij

The Finite Element Method approximates the continuous displacement field to all
degrees of freedom with respect to an element vector aei of length 3 × n using the
vertexes of the polyhedron (nodes) as discrete representation.

a(ξ, η, ζ)i =
∑
ik

h(ξ, η, ζ)ki a
e
3k+i−3, (B.1)

where hki are the shape functions, normally in terms of the local coordinate system
using iso-parametric coordinates, which introduces the local shape function matrix
Hij(ξ, η, ζ) matrix,

Hij =

h11 0 0 h21 0 0 . . . hn1 0 0
0 h12 0 0 h22 0 . . . 0 hn2 0
0 0 h13 0 0 h23 . . . 0 0 hn3

 . (B.2)

B.2 Equation of motion: operator matrix Lij

Operator matrix for σj in Eqn (4.19),

Lij =


∂
∂x 0 0 ∂

∂y 0 ∂
∂z

0 ∂
∂y 0 ∂

∂x
∂
∂z 0

0 0 ∂
∂z 0 ∂

∂y
∂
∂x

 . (B.3)

95



B.3 Virtual work equation: operator matrix Lij

Lij operator matrix for stress-strain displacement becomes for the virtual work equa-
tion for finite strain,

Lij =



FXX
∂
∂X FY X

∂
∂X FZX

∂
∂X

FXY
∂
∂Y FY Y

∂
∂Y FZY

∂
∂Y

FXZ
∂
∂Z FY Z

∂
∂Z FZZ

∂
∂Z

FXX
∂
∂Y + FY X

∂
∂X FY X

∂
∂Y + FY Y

∂
∂X FZX

∂
∂Y + FZY

∂
∂X

FXY
∂
∂Z + FXZ

∂
∂Y FY Y

∂
∂Z + FY Z

∂
∂Y FZY

∂
∂Z + FZZ

∂
∂Y

FXZ
∂
∂X + FXX

∂
∂Z FY Z

∂
∂X + FY X

∂
∂Z FZZ

∂
∂X + FZX

∂
∂Z

 ,
(B.4)

where (Xi) is reference coordinate system and (ξi) the current coordinateFij the finite
strain matrix, used to connecting the stress/strain between current and reference, see
Figure B.1. The local coordinate is related to the global by mapping x = x(ζ) and

Figure B.1: The large deformation problem, X → x (ξ, η, ζ) [Wikimedia Commons search: Sanpaz]

the integrand interrelates dV = dxdydz = (detFij)dξdηdζ , where F is the jacobian
matrix,

Fij =
∂xi
∂ξj

=


∂x
∂ξ

∂x
∂η

∂x
∂ζ

∂y
∂ξ

∂y
∂η

∂y
∂ζ

∂z
∂ξ

∂z
∂η

∂z
∂ζ

 , (B.5)

called the deformation matrix. Define the displacement vector a accordingly xi =
ξi + ai,

Fij = δij +
∂ai
∂ξj

. (B.6)

This relates to Green-Lagrange strain tensor γij ,

dxidxi − dξidξi = dξi [FkiFkj − δij ] dξj = 2dξiγijdξj . (B.7)

From polar decomposition theorem F = RU = V R, involving a pair of stretch
and rotation tensors, gives Cauchy-Green deformation tensor Cij = FkiFkj ≡ U2,
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Cauchy-Green deformation tensor Bij = FikFjk ≡ V 2, see Figure B.2. Cauchy
stress tensor relates to the current configuration; the corresponding tensor with respect
to reference is called the Second Piola-Kirchhoff stress tensor τij ,

σij =
1

detF
FikτklFjl. (B.8)

Figure B.2: The transformation: pullback/pushforward. [Wikimedia Commons search: Sanpaz]

B.4 Non-linearKNL: T,BNL

The geometric stiffness tensor use the following matrix that collects the stresses for the
Second Picola-Kirchhoff Stress tensor,

T =



τxx τxy τxz 0 0 0 0 0 0
τxy τyy τyz 0 0 0 0 0 0
τzx τyz τzz 0 0 0 0 0 0
0 0 0 τxx τxy τxz 0 0 0
0 0 0 τxy τyy τyz 0 0 0
0 0 0 τzx τyz τzz 0 0 0
0 0 0 0 0 0 τxx τxy τxz
0 0 0 0 0 0 τxy τyy τyz
0 0 0 0 0 0 τzx τyz τzz


, (B.9)
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together with the following matrix with element derivatives used to compute the green
strain-displacement,

BNL =



∂h1
∂X 0 0 . . . ∂hn

∂X 0 0
∂h1
∂Y 0 0 . . . ∂hn

∂Y 0 0
∂h1
∂Z 0 0 . . . ∂hn

∂Z 0 0

0 ∂h1
∂X 0 . . . 0 ∂hn

∂X 0

0 ∂h1
∂Y 0 . . . 0 ∂hn

∂Y 0

0 ∂h1
∂Z 0 . . . 0 ∂hn

∂Z 0

0 0 ∂h1
∂X . . . 0 0 ∂hn

∂X

0 0 ∂h1
∂Y . . . 0 0 ∂hn

∂Y

0 0 ∂h1
∂Z . . . 0 0 ∂hn

∂Z


. (B.10)
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