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Don’t worry about genius and don’t worry about not being clever. Trust rather to 
hard work, perseverance, and determination. The best motto for a long march is 
“Don’t grumble. Plug on.” 

You hold your future in your own hands. Never waver in this belief. Don’t swagger. 
The boy who swaggers – like the man who swaggers – has little else that he can do. 
He is a cheap-Jack crying his own paltry wares. It is the empty tin that rattles most. 
Be honest. Be loyal. Be kind. Remember that the hardest thing to acquire is the 
faculty of being unselfish. As a quality it is one of the finest attributes of manliness. 

Love the sea, the ringing beach and the open downs. 

Keep clean, body and mind. 

 
-Sir Frederick Treves, Bart, KCVO, CB Serjeant Surgeon to HM the King, Serjeant Surgeon to HRH 

Prince of Wales, written at 6 Wimpole Street, Cavendish Square, London on 2 September 1903, 
on the occasion of the twenty-fifth anniversary of the Boy’s Own Paper.  
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To my parents, Bettina and Ulf Koivula 
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Introduction  

Epidemiology is the study of health and disease outcomes relating to potential 
causal factors in a population setting. Discoveries of epidemiology are used to 
guide further experimental research, improve aetiological understanding of 
diseases, as well as to guide public health policy. Famously, John Snow found that 
the centre of the London cholera epidemic in 1854 was likely to be the water 
pump on Broad street (see Figure 1). He came to this conclusion after carefully 
interviewing local residents and finding an association with the incidence of 
cholera and the proximity to, and later use of water from that public pump. When 
the authorities, informed by his findings, later removed the handle of the pump, 
the incidence of cholera subsided. For this, he is often considered the ‘father’ of 
modern epidemiology1. Since then, methods in epidemiology have advanced but 
the principal remains the same: to make causal inferences about exposures and 
outcomes in defined populations. In the case of this thesis, the main outcome of 
interest is type 2 diabetes (T2D), the exposures are lifestyle, adiposity, and genetic 
factors, with the populations under investigation being cohorts from northern 
Europe.  
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Figure 1. London 1854, Cholera incidence surrounding Broad Street. 
Red dot: Broad street water pump, blue dots: other water pumps, black shapes: properties with incident cholera. 
Orginial map published by John Snow2.  

Background  

T2D is a ‘complex’ disease with many identifiable physiological insults that 
change with time and vary between people.  

T2D is diagnosed by its primary symptom of elevated blood glucose. T2D is 
characterised by a gradual decline in insulin sensitivity, which (for a while, at 
least) allows maintenance of glycaemic control by a compensatory rise in 
endogenous insulin secretion3. Type 1 diabetes on the other hand, is characterised 
by an autoimmune destruction of pancreatic beta-cells leading to an inability to 
endogenously secrete insulin but is not in the scope of this thesis. T2D is also 
characterised by a gradual loss of endogenous insulin secretion (beta-cell 
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function), which eventually leads to the loss of glycaemic control and the 
diagnosis of T2D requiring treatment. The first line of treatment, according to 
guidelines from the International Federation of Diabetes which reflect common 
practice4, is ‘lifestyle measures’. If glycaemic control is not achieved by lifestyle 
changes, the next level is treatment with various pharmaceutical agents aimed to 
increase either insulin sensitivity or boost endogenous insulin production. If this 
does not effectively improve glycaemic control, insulin treatment with exogenous 
insulin is required. Indeed, 25% of newly diagnosed T2D cases go on to 
exogenous insulin treatment within six years5. The aim of such treatment (with the 
exception of lifestyle interventions) is primarily symptom-, rather than primordial-
cause orientated; i.e. pharmaceutical treatment attempts to restore identifiable 
physiological insults to glycaemic control rather than addressing the underlying 
causes of those insults. 

We are exposed to a vast number of potential primordial causal factors, often 
referred to as the ‘exposome’6. Coupled with numerous individual genetic 
differences, it seems unlikely that there is a single primordial cause for T2D but 
rather a combination of causal factors7,8. This is an important point because 
whatever causes are at the origin of the pathogenesis of T2D, they clearly affect 
multiple factors, which in turn affect other factors (and so on), leading to a 
heterogeneous, complex disease. So complex in fact that, despite several subtypes 
of diabetes already identified, T2D makes up 90% of them. This reflects the fact 
that T2D is essentially the diagnosis reached when all other distinct causes of 
diabetes subtypes have been ruled out.  

Globally, the prevalence of T2D today is estimated at around 8.8% of adults, about 
415 million people9. The prevalence of diagnosed diabetes in the USA in 1980 
was estimated to be around 0.6%, 5.4% and 9.7% and 8.6% in people aged 0-44, 
45-65, 65-74, and 75+ years, respectively. These numbers increased to 1.5%, 
12.0%, 21.5% and 19.2% in 201410. The rising prevalence has been attributed to 
the parallel increase in obesity11 and ‘westernised’ lifestyles, comprising of 
excessive consumption of energy-dense diets with poor nutritional content, in 
combination with inadequate levels of habitual physical activity. However, a 
major driver of this increase in prevalence is likely to be better disease detection 
and that people now live longer with diabetes. The increasing prevalence of T2D 
has led to a spiralling economic and social burden of treating diabetes 
complications, early loss of life and reduced quality of life. With no highly 
effective means to prevent or treat T2D, and no cure (in part, due to our lack of 
knowledge about the disease’s aetiology and mechanisms of action), there is a 
clear and urgent need for research that addresses these insufficiencies.  

The ‘exposome’ mentioned earlier is a universal collection of exposures; the focus 
of this thesis, as the title suggests, will be exposure to ‘lifestyle factors’. 
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‘Lifestyle’ includes all factors describing our habitual behaviour on a day-to-day 
basis. In this thesis however, I will focus primarily on physical activity (PA) and 
to a lesser extent diet. I do not consider the two in isolation because they are so 
closely linked in our daily lives. For example, the ‘inactivity’ of TV watching is 
related to snacking12. Similarly, participants who are more physically active also 
eat more13. The Lancet Physical Activity Series Working Group estimated that 
worldwide, physical inactivity accounted for 7% of the burden of T2D14, accruing 
around 53.8 billion US$ in healthcare costs in 201315.  

Below is a brief background describing the role of lifestyle factors in the genetic 
epidemiology of T2D. I shall then describe the role of lifestyle and adiposity in the 
epidemiology of T2D and their role in experimental studies of T2D. 

Role of lifestyle factors in genetic epidemiology of type 2 diabetes 

Family and twin studies have noted a significant genetic component to the 
susceptibility of T2D through heritability studies, where ‘broad sense heritability’ 
is defined as:  H2 = total genetic variance ÷ total phenotypic variance and ‘narrow 
sense heritability’ is h2 = additive genetic variance ÷ total phenotypic variance. 
Heritability studies in twins have estimated the heritability h2 to be ~72% and 
sibling-based heritability estimates have been reported h2 to be ~69%16,17. 
However, in older adults this may be less, as a study of ~5800 Finns from around 
~940 families estimated a h2 of ~69% in 35-60 years, but only ~31% when ages up 
to 75 years were include18. 

From 2005, a major advance in the field of genetic epidemiology was the genome-
wide association study (GWAS). In these studies, population cohorts were used to 
discover single nucleotide polymorphisms (SNPs) associated with an outcome of 
interest. These studies give insight into which proteins (depending on the location 
of the SNP) might be involved in underlying biology. To date in European study 
populations, 65 variants have been robustly associated with T2D susceptibility, 36 
with fasting glucose, and 9 with 2-hr glucose at a genome-wide level of statistical 
significance (P < 5×10-8, a P-value threshold of 1 million tests, reflecting an 
estimated number of SNPs above 5% minor allele frequency in the whole genome 
of 3.3bn pairs)19-21. Collectively however, these SNPs only describe 5.7% of the 
variance in T2D risk20. However, common (minor allele frequency >5 %) and rare 
(minor allele frequency <5 %) SNPs explain about 50% of the heritability 
estimates by the Falconer’s method17,22. 

As to why so much of the heritable fraction of T2D is not explained by established 
gene variants (a phenomenon termed ‘missing heritability’) is widely speculated. 
For example, Manolio et al.23 suggested the following reasons for missing 
heritability: i) rare SNPs not being included (although later analyses including rare 
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variants have not had a major impact on missing heritability17); ii) multiple causal 
SNPs being inherited together (i.e. in linkage disequilibrium) which would mask 
individual effects; and iii) shared family environments, such as lifestyle (in 
genetics it is common to use the term ‘environment’ to mean any non-genetic 
exposure which can affect the phenotype of interest).  

Analyses that seek to account for missing heritability by including higher 
resolution genotyping (where entire regions of the genome are sequenced for each 
individual, or higher resolution reference panels are used to impute rare variants) 
have been undertaken. However, a landmark study of this sort found that rare 
variants added little information24.  

A recent study17 used structural equation modelling (SEM), which is a multivariate 
analysis method allowing the inclusion of ‘latent’ variables, factors that 
themselves cannot be measured but are ‘manifested’ as other measurable factors. 
In this study, the authors used SEM to estimate the proportion of heritability 
explained by SNPs and shared familial environment, and then compared this to the 
heritability estimates gleaned from an established approach (Falconer’s method). 
They hypothesised that heritability is often overestimated because the shared 
familial environment is included in the estimate of heritability, and thus SNPs 
would explain a smaller proportion of heritable fraction of disease. Using SEM, 
they estimated h2 heritability of T2D to be ~50%, which meant that SNPs now 
explained ~70% of the total heritability.  It is noteworthy that studies attempting to 
explain missing heritability usually do so by using SNPs discovered in 
conventional T2D GWAS, which focus on variants ranked by P-value and not by 
effect size. Thus, any variants that have large, yet heterogeneous effects, might not 
be picked up in conventional GWAS and are, therefore, not used in missing 
heritability analyses. 

The evidence clearly suggests that there is a genetic component to the 
susceptibility of T2D while the magnitude of this compared with the environment 
is unclear. Still, as our genetic constitution at a population level has not changed 
substantially in the last 40 000 years25, it is thought that genetic susceptibility to 
T2D is not independent of environmental factors, such as lifestyle, which have 
changed over time8,26. Thus, when studying the effects of genomic variation in 
glycaemic traits, understanding the effects of lifestyle factors on these traits is 
essential.  
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Role of lifestyle and adiposity in epidemiology of type 2 diabetes 

In a landmark epidemiological study including 85 000 nurses, unhealthy lifestyle 
(defined as a combination of diet and PA factors) was shown to be associated with 
91% of the incidence of T2D that occurred during 16 years of follow-up27. 

In another landmark study on PA and T2D incidence, each additional 500kcal/day 
expended through PA was estimated to result in a 6% reduction in the relative risk 
of T2D, up to at least 3500kcal/day of PA energy expenditure28. The authors 
estimated that the protective effect of PA was strongest in those at high risk for 
T2D (by history of hypertension, high BMI, and family history of T2D).  

High levels of PA (compared with low) and obesity (compared with normal 
weight) have been found to be associated with reduced incidence of T2D29. 
Furthermore, they were found to do so even when adjusted for each other, 
indicating that part of their effect is likely to be independent, i.e. acting through 
alternate mechanisms29. Notably, this same study found that PA attenuated the risk 
for T2D in obesity.  

The relationships of body fat distribution, as well as type of adipose tissue with 
insulin resistance and glycaemic control is well established3,30,31. A more recent 
study by Marinou et al. found that deep subcutaneous adipose tissue and visceral 
adipose tissue were especially detrimental towards whole body- and liver-specific 
insulin sensitivity32. Differentiation between lower and upper body subcutaneous 
adipose tissue and insulin sensitivity has also been shown; lower body 
subcutaneous adipose tissue seems protective, whereas upper body subcutaneous 
adipose tissue seems detrimental to insulin sensitivity33.  

Visceral adipose tissue has also been shown to be inversely associated with PA 
energy-expenditure, assessed objectively with combined accelerometry and heart 
rate sensing34. Visceral adipose tissue, in turn, is known to be deleterious to our 
capacity to maintain metabolic homeostasis35. 

Collectively these studies indicate a complex relationship between body fat 
distribution, glycaemic control and lifestyle factors where some relationships are 
independent of other ones. For example, the beneficial effects of PA on glycaemic 
control may be through multiple mechanisms some dependent on adiposity and 
others not. 

Role of lifestyle and adiposity in experimental studies of type 2 diabetes 

There is epidemiological evidence linking PA, diet and adiposity factors with 
T2D. However, this is based on observational data and, as such, is prone to bias 
and confounding. A natural follow-up step is to test hypotheses generated from 
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epidemiology in an experimental setting. In this section, I will describe 
experimental evidence of the role lifestyle has in the aetiology of T2D and how 
adiposity relates to this. I will focus on in-vivo experiments and trials in humans 
rather than in-vitro experiments. In trials, rather than observing associations from 
naturally occurring exposures, these are experimentally introduced where other 
exposures are minimised and controlled.  

The landmark lifestyle intervention trials 
Three seminal lifestyle intervention trials (combining diet and PA components) 
have shown beneficial effects on glycaemic and adiposity traits: The Malmö 
feasibility study (MFS)36, the forerunner to the well-known Finnish Diabetes 
Prevention study (DPS)37 and the Diabetes Prevention Program (DPP) based in the 
USA38. The MFS illustrated the feasibility and effectiveness of a large scale (about 
7000 participants), long-term (5-year protocol) intervention in reducing T2D 
incidence and glycaemic control in a T2D, impaired glucose tolerance (IGT) and 
control arm. In MFS, 90% of participants completed the protocol where estimated 
maximal oxygen uptake (an estimate of physical fitness) was improved by 10-14% 
in the intervention arm compared to a reduction of 5-9% in the control arm. The 
trial showed that more than half of the participants in the T2D and IGT groups 
were in remission and normalised, respectively after the mean follow-up of six 
years. The DPS intervened on 522 participants at risk of developing T2D over a 
mean follow-up time of around three years. Compared to the control arm, the 
intervention arm showed a 58% reduction in risk for T2D. The DPP trial 
randomized 3234 participants with impaired fasting glucose (IFG) and/or IGT and 
randomised participants to either a placebo arm (standard care), metformin arm or 
lifestyle intervention arm. Over a mean follow up of around three years, they 
observed a 58% reduction in the incidence of T2D in the lifestyle intervention 
arm, and a 31% reduction in the metformin arm compared with the placebo.  

Physical activity, insulin sensitivity and oxidative capacity 
There is evidence suggesting that PA improves glycaemic control by improving 
peripheral insulin sensitivity and skeletal muscle fat oxidative capacity39,40. A six 
month supervised aerobic exercise intervention was performed in 17 adult pre-
menopausal women. Total and regional adipose tissue depots were measured with 
MRI before and after the intervention.  The participants displayed a preferential 
decrease of visceral adipose tissue, despite no change in BMI and bodyweight 
following the intervention. Measures of glycaemic control were not included in the 
study protocol41. Despite the participants undergoing an exercise intervention, no 
difference in caloric intake (assessed by a 7-day diet diary) was observed, 
suggesting that the participants likely achieved a negative caloric balance. Further, 
10 participants with T2D and 10 matched non-diabetics took part in an 8-week PA 
intervention trial designed to increase walking by 45 minutes per day. An increase 
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in lipid oxidation and improved fasting and 2-hr glucose was observed after eight 
weeks of the intervention in T2D participants only42. The non-diabetic group, 
however, showed lower levels of PA from objective PA monitors, which could be 
the underlying cause for the reported differences.  

None of these studies were randomised controlled trials (RCT), and not all 
accounted for diet. Findings from non-RCTs are prone to bias and confounding, as 
it may be that there are other exposures acting on the participants than those 
introduced by the trial. Without randomly assigning a control group, this potential 
effect is difficult to account for. Similarly, the intervention may unwittingly 
introduce a change of diet, which could confound the results. However, a 3-month 
light PA RCT (supervised walking for 60 minutes, 3 times per week), with 
objectively measured PA in 78 middle-aged Finnish men at risk of developing 
T2D, showed improvements in insulin sensitivity, 2-hr glucose, low density 
lipoprotein cholesterol and visceral fat, independent of weight change; this study 
did account for diet, which showed no significant differences43. In the same study, 
dose-response effects of walking on low-density lipoprotein and visceral adipose 
tissue were observed and investigators conclude that the beneficial effects of PA 
are likely to be, in part, independent of adiposity. 

PA can take place in various modes, intensities, durations and frequencies, and 
may have different effects on T2D risk. A study compared the effect of several 
protocols with varying combinations of intensities and durations in a cross-over 
efficacy trial. This showed that a high amount of moderate intensity PA was 
effective at improving glucose tolerance despite a small (2kg) weight change44. In 
recent years, high intensity/low volume exercise has been suggested to be a 
potentially time-efficient way to exercise for health benefits45. In 2013, a cross-
over trial in 10 overweight/obese men (aged 26.9±6 years) tested the effects of 
repeated bouts of high intensity exercise (4×30s sprints, with 4.5 min rest) 
compared with a single extended exercise bout (extended sprint), matched for 
energy expenditure and including a control of no exercise over three days in 
random order. Results showed improved fat oxidation in the day following the 
tests, by 63% and 38% in the repeated short sprints and extended sprints 
respectively, vs. the control46.   

Collectively these studies suggest that the beneficial effect of PA on glycaemic 
regulation is at least in part through improved insulin sensitivity and fat oxidative 
capacity. 

The ‘twin-cycle’ hypothesis 
There is also evidence suggesting that the mechanisms through which lifestyle 
factors affect insulin sensitivity and other glycaemic parameters are mediated by 
adiposity. This is primarily through ectopic fat deposition in liver, but also through 
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fat deposition in the pancreas. The ‘twin cycle’ hypothesis30,31 suggests that caloric 
balance, mediated by liver fat, affects hepatic insulin sensitivity and eventually 
beta-cell function, through increased levels of pancreatic fat, see Figure 2.  

 

  

 

Figure 2. The twin cycle hypothesis of the aetiology of type 2 diabetes. 
Figure from Taylor R., 2013, Diabetes31. 

In the twin-cycle hypothesis, a positive caloric balance in combination with 
peripheral insulin resistance leads to accumulating liver fat. Accumulating liver fat 
is exacerbated by increased de-novo lipogenesis, stimulated by the high levels of 
insulin (due to higher insulin resistance). Liver fat accumulation leads to hepatic 
insulin resistance, to inhibition of hepatic gluconeogenesis, which raises glucose- 
and (subsequently) insulin-levels further. The up-regulated de-novo lipogenesis 
leads to higher circulating levels of very low-density lipoprotein, which raises 
triglyceride levels in surrounding tissue such as the pancreas. This, in combination 
with the high levels of glucose, leads to glucotoxicity and lipotoxicity, which 
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reduces beta-cell function. Reduced beta-cell function leads to an inability to 
compensate for increased insulin resistance, which leads to impaired glycaemic 
regulation. 

The ‘twin cycle’ hypothesis is based on various bodies of evidence, some of which 
are discussed above. Taylor’s hypothesis does not consider PA independently of 
diet but rather as a component of caloric balance. The hypothesis has been tested 
in trials conducted by investigators from the same research unit47,48. However, a 
recent review, specifically focusing on the effects of exercise on liver fat, 
concluded that exercise can indeed reduce liver fat through a reduction in 
circulating free fatty acids (FFA), caused by increased skeletal muscle uptake of 
FFA49. This hypothesis is consistent with the ‘athlete paradox’ where endurance-
trained athletes are insulin sensitive despite increased intra myocellular lipids, i.e. 
the relationship between intra myocellular lipids and insulin sensitivity is in direct 
contrast to that seen in non-athletes. 

Taken together, the existing evidence suggests a number of potential mechanisms 
by which lifestyle factors can affect parameters of glycaemic control and the 
pathogenesis of T2D, in particular those in the twin-cycle hypothesis. These 
mechanisms have not, however, been shown in population settings under a single 
unified analysis framework.  
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Aims 

The existing evidence strongly supports the beneficial effects of PA in T2D 
pathophysiology. This includes beneficial effects on adiposity-related traits (e.g. 
obesity, visceral fat and liver fat) and glycaemic control (e.g. HbA1c, fasting 
glucose, 2-hr glucose and insulin sensitivity). The evidence also suggests that 
these relationships may interrelate in cyclic pathways. 

Improving our understanding of these relationships to find underlying causal 
mechanisms (such as those hypothesised in the twin cycle model) is a major 
research focus worldwide, including the GLACIER and IMI DIRECT studies, 
within which the projects covered in this thesis are nested. 

The overall objective of this thesis is to investigate the role of lifestyle with an 
emphasis on PA in glycaemic control, before and after the onset of T2D. 

The specific aims of the four papers included in this thesis are: 

• In Paper 1, we compare the predictive ability of established genetic 
susceptibility loci and established lifestyle factors in the incidences of 
obesity, impaired glycaemic control and T2D.  

• In Paper 2, we overview the design and rationale of the two IMI DIRECT 
glycaemic deterioration prospective cohorts.  

• In Paper 3, we describe the baseline characteristics of the two IMI 
DIRECT glycaemic deterioration prospective cohorts, in order to provide 
context for those subsequently analysing and reading articles based on 
data from these cohorts.  

• In Paper 4, we test the hypothesised relationships of the key factors 
involved in the regulation of glucose homeostasis, proposed by Taylor et 
al.31 in the mechanistic ‘twin cycle model’. The aim is also to determine if 
the association of PA with glycaemic control is mediated by parameters in 
the model, and whether such relationships differ in a prediabetic cohort 
compared with a diabetic cohort. 
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Materials and Methods 

Two population cohorts are used in this thesis, the Gene-Lifestyle interactions And 
Complex traits Involved in elevated disease Risk (GLACIER) study and two new 
cohorts within the Diabetes Research on Patient Stratification Consortium 
(DIRECT). Paper 1 is a GLACIER paper, whilst Papers 2-4 are DIRECT papers. 
In this section, I give an overview of each cohort and describe the materials and 
methods pertaining to the results presented in this thesis. More detailed 
information about the materials and methods used in these papers are available in 
a study by Kurbasic et al.50 for GLACIER, and Papers 2-3 for the DIRECT 
cohorts.  

GLACIER 

The GLACIER study is nested within the Västerbotten Health Survey (VHS), 
which is sometimes called the Västerbotten Intervention Program51 (VIP) 
coordinated in Umeå, Sweden (see Figure 3). 

 

Figure 3 
GLACIER cohort study site.  

!!Umeå!
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The VHS/VIP began in the 1985 in response to high cardiovascular disease (CVD) 
mortality in the region at the time. The study is a community-based intervention 
where participants from Västerbotten county were invited for detailed screening 
and lifestyle counselling. The visit took place at their primary healthcare facility in 
the year of their 30th, 40th, 50th and 60th birthdays. The detailed health screening 
consisted of standard clinical parameters, blood pressure, anthropometrics, fasting 
blood samples, 75g oral glucose tolerance test, and validated lifestyle assessment 
questionnaires. VHS/VIP consists of around 90,000 participants, of these around 
19,000 were enrolled into GLACIER. Within GLACIER, around 6000 participants 
have been genotyped using the Illumina Cardio-MetaboChip array, and 5000 
participants have a follow-up visit (at around 10 years). Around 3500 of the 
genotyped participants have a follow-up visit. 

IMI DIRECT  

The DIRECT study was launched in 2012 under the banner of the Innovative 
Medicines Initiative (IMI), a joint undertaking of the European Union (EU), 
European academic institutions and pharmaceutical companies that form part of 
the Seventh Framework Programme (FP7). There are 21 academic partners and 5 
pharmaceutical industry partners in DIRECT. The overall aim of the DIRECT 
consortium is to discover and validate biomarkers that: predict glycaemic 
deterioration before and after T2D onset; predict therapeutic response; and help 
stratify T2D into subclasses for more efficient prevention and treatment. Within 
the DIRECT consortium, we established two new prospective cohort studies 
aimed at identifying biomarkers for glycaemic deterioration, one before the onset 
of T2D (Cohort 1, ‘Prediabetes’), and one after the onset of T2D (Cohort 2, 
‘T2D’). The study centres are located at 7 academic sites across Europe, see 
Figure 4.  



31 

 

Figure 4. 

IMI DIRECT glycaemic deterioration cohort study sites. Green dot: Cohort 1 (‘Prediabetes’), Blue dot: Cohort 2 (‘T2D’) 

Three of the seven study centres (Lund/Malmö, Copenhagen, and Amsterdam) 
recruit for both Cohort 1 and Cohort 2. The Kuopio study centre, only recruits for 
Cohort 1 and the three centres in the UK (Dundee, Newcastle, and Exeter) recruit 
only for Cohort 2. The overall design of the cohorts is illustrated in Figure 5.  

 

Figure 5. 
Overview of the biomarker discovery strategy in the two glycaemic deterioration prospective cohorts of the DIRECT 
consortium. Persons at high risk of glycaemic deterioration before (Cohort 1) or soon after (Cohort 2)  the onset of 
T2D are enrolled and followed for between 36 and 48 months. Biomarkers are discovered for the rate of glycaemic 
deterioration. Discovered biomarkers are subsequently fed back to improve risk-prediction models, which will be 
validated in other epidemiological studies and clinical trials organised by the DIRECT Consortium and its Partners. 
Adapted from Paper 1. 
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The two cohorts in DIRECT for glycaemic deterioration are prospective cohorts 
designed to capture the change in glycaemic control over time, before and after the 
onset of T2D. At recruitment, participants are expected to represent a range of risk 
for glycaemic deterioration and, over time, this deterioration is expected to be 
heterogeneous between the participants. Discovery of biomarkers that predict the 
extent of decline in glycaemic regulation are fed back to improve prediction 
models and shall be validated in subsequent DIRECT clinical trials. 

Recruitment  
Participants in Cohort 1 were recruited using a risk prediction algorithm, 
DIRECT-DETECT based on the DETECT-2DM algorithm52. The DIRECT-
DETECT algorithm was developed by DIRECT scientists for this purpose. Two 
models were developed, one for use where HbA1c was not available (Model 1) 
and another with HbA1c (Model 2). The models are outlined below. Note that for 
‘if’ arguments, true = 1, false = 0. 

Model 1 for men: 

HbA1c at follow-up = (5502 + 53 × (if age between 45.0 and 54.99) + 91 × (if 
age between 55.0 and 64.99) + 188 × (if age ≥ 65.0) – 28 × (if BMI between 25.0 
and 29.99) + 32 × (if BMI ≥30.0) + 65 × (if waist between 94.0 and 101.99) + 
115 × (if waist ≥ 102.0) + 50 × (if person uses antihypertensive medication) + 
133 × (if current smoker) + 69 × (if parent(s) have/had T2D)) / 1000 

Model 1 for women: 

HbA1c at follow-up = (5398 + 173 × (if age between 45.0 and 54.99) + 213 × (if 
age between 55.0 and 64.99) + 307 × (if age ≥ 65.0) + 33 × (if BMI between 25.0 
and 29.99) + 108 × (if BMI ≥30.0) + 2 × (if waist between 94.0 and 101.99) + 
106 × (if waist ≥ 102.0) + 50 × (if person uses antihypertensive medication) + 93 
× (if current smoker) + 71 × (if parent(s) have/had T2D)) / 1000 

Model 2 for men: 

HbA1c at follow-up = (2211 + 4 (if age between 45.0 and 54.99) + 19 (if age 
between 55.0 and 64.99) + 81 (if age ≥ 65.0) + 70 (if waist between 94.0 and 
101.99) + 128 (if waist ≥ 102.0) - 109 (if former smoker) - 9 (if current smoker) + 
90 (if parent(s) have/had T2D) + 604 × HbA1c) / 1000 

Model 2 for women: 

HbA1c at follow-up = (2300 - 24 (if BMI between 25.0 and 29.99) + 39 (if BMI 
≥30.0) + 31 (if waist between 80.0 and 87.99) + 81 (if waist ≥ 88.0) + 600 × 
HbA1c) / 1000 
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These models were applied to datasets from parent cohorts at ‘prediabetes’ study 
centres (Cohort 1). Participants were then ranked based on the scores from these 
models; recruitment began from those with the highest scores. A timeline 
overview of the visit protocols for both cohorts is illustrated in Figure 6.  

 

Figure 6.  
Overview of the timeline of the DIRECT glycaemic deterioration cohorts 1 and 2 protocols. Core assessments (CORE) 
are: anthropometry; fasting blood; MRI*; faecal microbiome; urine; physical activity; diet; quality of life; diabetes family 
history; medication history. Dashed lines indicate data assimilated from existing cohorts and registers. m, months; U-
CP, urinary C-peptide; y, years.  For Cohort 2, the 9m and 27m* visits are minor study visits.  *carried out in a subset 
of the sample population. Squares, deep-phenotype study visit. Adapted from Paper 1. 

Protocols for each study are prospective with main visits at baseline, 18 months 
and 36 months (Cohort 2), and 48 months (Cohort 1). Baseline visit recruitment 
for both cohorts began in December 2012 and the final 48m visits are expected to 
take place towards the end of the second quarter in 2018. Both cohorts are 
comprehensively phenotyped with assessments for: Standard clinical 
characteristics, glycaemic control, and beta-cell function modelling from 
frequently samples oral glucose tolerance test / mixed meal tolerance test 
(fsOGTT/MMTT), abdominal adiposity by MRI, self-reported diet, objective PA 
by tri-axial accelerometry, and multiple omics including genomic, transcriptomic, 
metabolomic, proteomic and faecal microbiome. 

Cohort specific methods 

Glycaemia 

GLACIER 
Capillary blood was drawn after an overnight fast of at least 8 hours. 12% at 
baseline, and 2% at follow-up reported having fasted for less than 8 hours. Fasting 
status was therefore included as a covariate in glycaemic models. A second blood 
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sample was drawn 2 hours after a 75g oral glucose load. Plasma glucose 
concentrations were measured using a Reflotron bench-top analyser (Roche 
Diagnostics Scandinavia, Umeå, Sweden). T2D was determined either by self-
report or from fasting and 2-hr glucose values determined during the visit.  

DIRECT 
Fasting venous blood samples were drawn after a 10-hour overnight fast from a 
cannula inserted into a forearm vein. Non-fasted participants were rescheduled or 
excluded from the study, so all participants were fasted for a minimum of 10 
hours.  

In Cohort 1, a finger-prick fasting capillary glucose sample with a HemoCue 
Glucose 201 monitor or similar was taken before the glucose load. Participants 
with a fasting capillary glucose above >11mmol/l were excluded from the study. 
After this, an fsOGTT was conducted where a baseline blood sample was drawn 
and a standard 75g oral glucose load was consumed within 2-5 minutes. Blood 
samples were subsequently drawn at 15, 30, 45, 60, 90, and 120 minutes.  

In Cohort 2, an MMTT was carried out instead of an fsOGTT. A baseline sample 
was taken and following this, participants consumed a 250 ml Fortisip liquid meal 
(18.4 g carbohydrate per 100 ml) over a period of 2–5 min. Blood samples were 
drawn at 30, 60, 90, and 120 minutes post load.  

Based on glucose, C-peptide and insulin concentrations from the blood samples at 
the above time points, β-cell function was parameterised using a mathematical 
model described in detail elsewhere53. Briefly, the model describes the relationship 
between insulin secretion and glucose concentration as the sum of two 
components. The first component is the dose-response relationship between 
glucose and insulin secretion (this parameter is termed glucose sensitivity). This is 
modulated by a potentiation factor, which accounts for the enhancement of the 
insulin secretion during the descending late phase of the glucose concentration 
following the load (this parameter is termed potentiation fraction ratio or PFR). 
The second component of the model reflects the dependency of insulin secretion 
on the rate at which the glucose concentration increases during the ascending early 
phase of the glucose curve (this parameter is termed rate sensitivity), and is 
indicative of early insulin release54. 
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Physical Activity 

GLACIER 
A modified version of the validated International Physical Activity Questionnaire 
(IPAQ) was used55,56. For the analysis in Paper 1, only leisure time PA was 
considered. Participants were asked "In the past 3 months, how often have you 
exercised in training gear?” with the possibility to answer: ‘never, occasionally, 1–
2 times/week, 2–3 times/week or >3 times/week’. ‘Never’ and ‘occasionally’ were 
combined into a physically ‘inactive’ category and ‘1–2 times/week’, ‘2–3 
times/week’ and ‘>3 times/week’ to ‘physically active’. 

DIRECT 
We objectively assessed PA using a tri-axial accelerometer (ActiGraph 
GT3X+/GT3X+w/GT3X+bt; Actigraph, LLC, Pensacola, FL, USA). The monitor 
was worn on the non-dominant wrist continuously for 10 days. It was fastened 
with the manufacturer’s disposable (single use, non-removable) hospital band-type 
strap to allow comfortable, uninterrupted measures of both sleep and PA. The 
monitor was set to record at 30 Hz, with the LED-light off and the manufacturer’s 
sleep-mode disabled. Participants were instructed only to remove the device if 
they were going to undertake water-based activities deeper than 1 meter and 
lasting for more than 30 minutes. To analyse the rawest possible measures, 
manufacturer raw data files (.gt3x) were converted to comma-separated value 
(.csv) using ActiLife 6 (version 6.11.5, ActiGraph Co, Pensacola, USA).  The raw 
(.csv) data was then used to perform quality control steps and calculate the PA 
parameters using PAMPRO (version uploaded 2015-10-21, MRC Epidemiology 
unit, Cambridge, UK), a custom open source software available under public 
license (https://github.com/Thomite/pampro). Each axis of acceleration was auto-
calibrated to local gravity57. Non-wear was rare due to the method of fastening; it 
was not possible to refasten the accelerometer if removed. Nonetheless, non-wear 
was inferred as a 60-min consecutive period of vector magnitude (direction 
agnostic acceleration intensity) standard deviation of less than 4mgs. Measures 
were adjusted intra-individual differences due to non-wear removal by diurnal 
rhythm58. The main PA estimates used in the analyses of both Paper 3 and 4 are 
Euclidean norm minus one (ENMO) and high-pass-filtered vector magnitude 
(hpfVM), both of which infer intensity of participants’ movement in any direction 
,at any given time (or average values during a defined period). Custom analyses of 
the raw accelerometry data are an important feature of these PA measures, as the 
methods are entirely transparent and can be comparable when applied to data from 
other monitors and other studies59.  
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Diet 

GLACIER 
Diet was assessed using a validated Food Frequency Questionnaire (FFQ), 
designed to capture habitual diet over the previous year60-62. A nine-point 
frequency scale was used for participants to report how often they consumed food 
or beverages. Answers ranged from ‘never’ to ‘four or more per day’. Average 
portion size for meat and fish, vegetables, potatoes, rice and pasta were also 
assessed. Total energy intake was calculated based on the National Food 
Administration database (www.slv.se). The FFQ version used was adjusted for, 
because the 84-food item FFQ (used between 1985-1996) was reduced to a 66-
food item FFQ (used from 1996 onwards) after combining several questions 
related to similar foods items. In addition to this, if ≥10% of the FFQ was missing, 
or total energy intake was estimated to be <500 or >4500kcal/day, the data were 
excluded. Three diet scores were calculated from the parameters: the Healthy Diet 
(HD) score, the Nordic Nutrition Recommendation (NNR)63 score, and a principal 
components analysis (PCA) score were all constructed from the available diet 
data. These are described in more detail in Paper 1. Briefly, the HD score was 
validated elsewhere64 and is based on intakes of eight food groups. Whole grains, 
fish, fruits and vegetables were designated as ‘favourable’ foods, whereas red and 
processed meats, desserts and sweets, sugar-sweetened beverages and fried 
potatoes were designated as ‘unfavourable’. A higher HD score indicates a 
healthier diet. The validated NNR63 score assigns one point for every Nordic 
nutrition criteria which is met, thus a higher NNR score indicates a healthier diet. 
A PCA including all the macronutrients (i.e. carbohydrate, protein, total fat, 
saturated fat, monounsaturated fatty acids, polyunsaturated fatty acids, essential 
fatty acids and fibre) and adjusted for total energy intake was conducted to create 
the PCA score. One factor was retained which contrasted carbohydrate and fibre 
intake against fat intake; this accounted for 54% of the variance of all 
macronutrients. 

DIRECT 
A 24-hr multi-pass dietary record was used to assess diet. The assessment was 
made the day before the baseline visit. The method has been validated for total 
energy intake using double labelled water with good reproducibility65-68. 

The method is composed of three question ‘passes’: the first document is a usual 
day’s meal; the second pass gives the participant time to reflect and add to the first 
pass; the final third pass aims to record portion size. In conjunction with the 24-hr 
diet record, participants also answered a food habit questionnaire covering the 
overall quality of their diet against guidelines. Questionnaires were translated into 
the local language of each study centre and back translated by native speakers at 
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the analysing academic Partner site. The data was then manually entered and 
computationally analysed using Dietplan-6, a comprehensive food analysis 
programme (version 6.70.43, 2013; Forestfield Software, Horsham, UK). 
Under/over reporting of energy intake is assessed using Goldberg’s equation69,70.  

Magnetic Resonance Imaging (MRI)  

DIRECT  

We assessed abdominal adiposity factors using Magnetic Resonance Imaging 
(MRI). MRIs were undertaken on about half of Cohort 1 and all of Cohort 2 for 
the baseline visit. Protocols across the study centres were standardised as far as 
possible given the equipment available. Scans were made at 1.5 and 3.0T field 
strengths, depending on equipment. The scanners used at each centre were: 
Siemens Trio 3T at Dundee, Philips Intera 1.5T at Exeter, Siemens Espree 1.5T at 
Newcastle, Philips Achieva 3T at Copenhagen and Siemens Avanto 1.5T at 
Kuopio and Amsterdam. 

Participants are scanned in the prone position with arms extended above their 
head. T1-weighted images are taken from diaphragm to the acetabulum using the 
maximum field of view (during free breathing) with a slice thickness and gap of 
10 mm. Pancreatic volume was assessed from scans in suspended breathing. 
Three-dimensional T1-weighted scans with fat suppression is placed over the 
pancreas to cover the whole organ. 50 to 90 slices with thickness ranging from 1.2 
to 2mm is used. Once the pancreas is identified, axial images are performed during 
suspended breathing. These are used to position a single-slice multiecho sequence 
through the pancreas using a surface coil. An identical axial slice is acquired 
through the liver. These methods have been described and validated elsewhere 71. 
Images are converted to an analysable format using Image J (Image; National 
Institutes of Health, Bethesda,MD). An automated pixel-by-pixel analysis is then 
carried out to for colour-coded maps of the entire pancreas and liver using Matlab 
version 7.7 (Mathworks, Natick, MA, USA). The proportion of fat and water 
within the liver and pancreas are then estimated from these. 

Genotyping  

GLACIER 
Extraction of DNA was carried out using methods described elsewhere 72,73. 
Genotyping was performed using the Illumina Metabochip array (Illumina, San 
Diego, CA, USA)74 at the Wellcome Trust Sanger Institute, UK.  
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DIRECT 
Extraction of DNA was carried out using Maxwell 16 Blood DNA purification kits 
and Maxwell 16 semi-automated nucleic acid purification system (Promega). 
Genotyping was conducted using the Illumina HumaCore array (HCE24 v1.0) and 
genotypes were called using Illumina’s GenCall algorithm. Additional details on 
genotyping in the DIRECT cohorts can be found in Paper 3.  

Paper Specific Methods 

Paper 1 

Glycaemic strata 
Glycaemic strata were defined according to the American Diabetes Association 
criteria from 200375. For T2D, these were: fasting glucose ≥7.0 mmol/l or a 2-hr 
glucose concentration ≥11.1 mmol/l. IFG was defined as: fasting glucose ≥6.1 and 
<7.0 mmol/l. IGT was defined as 2-hr glucose ≥7.8 and <11.1 mmol/l. Normal 
glucose regulation (NGR) was defined as having fasting glucose <6.1 mmol/l and 
2hr-glucose  <7.8 mmol/l. Incident cases of IFG and IGT were defined as 
participants changed from NGR to IFG or IGT during follow-up. 

Genotypic variables 
We extracted: 65 T2D associated SNPs20, 36 fasting glucose associated SNPs21, 9 
2-hr associated SNPs21, and 97 BMI associated SNPs76. We coded genotypes 
according to number of effect alleles (alleles associated with higher trait values), 
as reported in the source studies20,21,76. We used proxy loci for 26 SNPs which 
were not available on MetaboChip. Missing genotypes were imputed using the 
mean imputation method77 by replacing each missing genotype with its mean 
value obtained from the rest of the cohort having genotypic information. Missing 
rate was ≤0.07 per participant and ≤0.007 per SNP.  

 We observed no significant deviations from Hardy–Weinberg equilibrium (No 
SNPs with P<0.0001). We generated unweighted Genetic Risk Scores (GRS) to 
examine the cumulative effects of the SNPs. This was done by summing up the 
number of effect alleles from each trait associated SNP, thus, the minimum value 
for each score is 0 and the maximum twice the number of SNPs in the score. 
These are t2d-GRS for T2D, fg-GRS for fasting glucose 2hg-GRS for 2-hr glucose 
and ob-GRS for obesity.  



39 

Statistical analyses 
We carried out logistic regressions to assess the predictive ability of genetic and 
lifestyle factors on the incidence of T2D, IFG, IGT, Obesity and weight gain 
≥10%. Participants who were classified as T2D, IFG, IGT, or Obese at baseline 
were excluded from analyses. We used three models:  

• Model 1 (genetic) included age, age2, follow-up duration, fasting status 
(for glycaemic traits), sex and trait-specific SNPs as independent variables 

• Model 2 (lifestyle) included age, age2, follow-up duration, fasting status 
(for glycaemic traits), sex, FFQ version, education, smoking status, PA 
and intakes of total energy, alcohol, salt, sucrose, macronutrients, vitamins 
and minerals 

• Model 3 (combined) included all variables in Models 1 and 2. 

The predictive ability of the models was assessed by calculating the area under the 
receiver operator curve (ROC AUC) and the predictive ability of the different 
models were compared using a method described in detail elsewhere78. To assess 
the gain in predictive accuracy of adding the genetic factors to the lifestyle factors 
in the combined model, we estimated the continuous net reclassification 
improvement (cNRI)79. Model calibration was assessed by Akaike’s information 
criterion (AIC) and the Hosmer–Lemeshow test80. 

To assess the association of separate lifestyle factors and genetic factors, we 
combined the genotypes into GRSs and diet variables into diet scores as described 
above. This was important to reduce multicollinearity, which effects individual 
factor estimates81.  

We investigated differences in genetic and lifestyle factors related to the traits by 
calculating quartiles of each lifestyle factor/score (except alcohol) and comparing 
the top and bottom quartiles.  

Analyses were carried out in PLINK (version 1.07)82, R (version 3.1.1)83 and SAS 
(version 9.4)84. 

Paper 3 

Glycaemic impairment was defined according to the American Diabetes 
Association criteria from 201185. NGR was defined as having fasting glucose <5.6 
mmol/l and 2hr-glucose <7.8 mmol/l. Impaired A1c (IA1c) was defined ≥5.6 
(37mmol/mol) and <6.5% (47.5mmol/mol). IFG was defined as: fasting glucose 
≥5.6 and <7.0 mmol/l. IGT was defined as 2-hr glucose ≥7.8 and <11.1 mmol/l. 
T2D was defined as fasting glucose ≥7.0 mmol/l or a 2-hr glucose concentration 
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≥11.1 mmol/l. Based on these criteria, participants in Cohort 1 were stratified into: 
NGR, isolated impaired HbA1c (iIA1c), isolated impaired fasting glucose (iIFG), 
isolated impaired glucose tolerance (iIGT) and combined impaired glucose 
regulation (cIGR). NGR was defined as having HbA1c, fasting glucose and 2-hr 
glucose values within normal ranges. iIA1c, iIFG, iIGT were defined as having 
only IA1c, IFG or IGT, respectively. cIGR was defined as having a combination 
of IA1c, IFG and/or IGT. Cohort 2 was stratified into treatment categories: 
lifestyle advice only (LS) or metformin and receiving lifestyle advice (Met+LS). 
These strata were chosen to reflect established strata according to current 
guidelines.  

We calculated means adjusted for standard putative confounders (age, sex and 
centre) using least square means. We used general linear models to compare 
differences between strata in continuous variables. Statistical significance is 
defined as P <0.05. All analyses were carried out in R (version 3.2.3)83. Version 
‘preliminary release 1 (direct_11-02-2016)’ of the DIRECT data release was used 
for this analysis. 

Paper 4 

Continuous variables were rank normally transformed where the mean = 0 and 
standard deviation = 1. Variables were regressed on age, sex, study centre, energy 
intake, carbohydrate-, fat-, and protein-intake (and metformin treatment in Cohort 
2), and the residuals from these regressions extracted. These residuals, which 
reflect the deviation from the mean after adjustment for the confounders, were 
then used in further analyses. 

To assess the relationship between parameters in the hypothesised twin-cycle 
hypothesis, we used variables in the dataset to define a model as close as possible 
to the original hypothesised model31 (see Figure 2 in introduction). Based on this, 
we defined a SEM using only manifest (measured) variables to fit a twin cycle 
hypothesis model on the DIRECT baseline data; we included edges from PA on all 
parameters in the model. This SEM definition is illustrated in Figure 7.   
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Figure 7 
Structural equation model definition diagram for a hypothesised model for the role of physical activity and liver fat in 
glycaemic control.  The diagram illustrates the model definitions, where manifest nodes are represented as squares 
and arrows indicate regression coefficients pointing towards an outcome of a respective regression (note several 
arrows pointing to the same node indicates a multiple regression). All continuous variables normally transformed and 
adjusted for age, sex, metformin treatment (Cohort 2), study centre, total energy-, carbohydrate-, fat-, and protein-
intake. PA: MeanVMhpf (physical activity), FG: Fasting Glucose, 2G: 2-hr Glucose, IS: Oral Glucose Insulin 
Sensitivity, LF: Liver Fat, PF: Pancreatic Fat, BI: Fasting insulin secretion rate, GS: Glucose Sensitivity (insulin 
secretion per glucose), RS: Rate Sensitivity (early insulin secretion enhancement), P: Potentiation Fraction Ratio (late 
insulin secretion enhancement). 

The model differs from the original twin-cycle model primarily in the use of 
insulin sensitivity. As a measure of resistance to insulin suppression of hepatic 
glucose production is not available in our dataset, we used 2-hr oral glucose 
insulin sensitivity (OGIS) instead. Our model also differs in the direction of the 
relationship modelled between 2-hr/postprandial glucose and fasting glucose. 

We assessed pairwise relationships using Pearson correlations, which we report in 
a correlation matrix. To assess relationships within the twin-cycle model, we 
estimated whole model fit, direct effects, and pathway effects (from PA to various 
outcomes). Pathway/mediation effects were estimated using the coefficient 
product method86 where mediation is defined using the approach described by 
Baron and Kenny (Baron & Kenny, 1986). Relative model fit was assessed using 
the Comparative Fit Index (CFI) and the Tucker-Lewis Index (TLI). Absolute fit 
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was assessed using Root Mean Square Error of Approximation (RMSEA), and 
Standardised Root Mean Square Residuals (SRMR). Use of these to categorically 
determine adequacy of fit is controversial; however, it is common practice to 
report them87-89. 

Multiple testing adjustments were not required, as the pairwise associations were 
separate tests done largely in replication of hypothesised associations. Estimates 
within the SEM are nested within a single model, thus do not require multiple 
testing adjustment. Statistical significance was defined as P <0.05. All statistics 
were computed using R (version 3.2.3)83. SEMs were fitted using R-package 
lavaan (version 0.5-20)90. Models were plotted using semPlot (version 1.0.1)91. 
The DIRECT data release version used for the analyses in this article is 
‘preliminary release 1 (direct_11-02-2016)’. 
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Results and Discussion  

Innate biology vs. lifestyle factors in predicting 
glycaemic deterioration and diabetes (Paper 1) 

The purpose of the analysis was to conduct a head-to-head comparison of the full 
array of established genetic markers (from GWAS on trait susceptibility) and 
established lifestyle risk factors for IFG, IGT, T2D and obesity incidence.  

Main findings 

Of 5,726 participants from the GLACIER cohort with the necessary phenotypic 
and genotypic data for the current analyses, 3,444 participants had follow-up data 
available for a median of 9.9±0.4 years. In this period, the incidence of T2D was 
192, IFG 563, IGT 613, and obesity 264. Mean age of the cohort at baseline was 
45.2±6.7 years (presented as mean±SD), BMI was 25.1±3.7 kg/m2, fasting glucose 
was 5.3±0.7 mmol/l, and 2-hr glucose was 6.5±1.4.  

T2D 
The predictive ability of the genetic and lifestyle models was similar for T2D 
incidence (AUC 74% v. 75%; Pdifference = 0.47). The combined model (lifestyle 
model + genetic factors) had a significantly higher predictive ability (AUC 80% 
Pdifference = 0.0003) than the lifestyle model alone. The net reclassification 
improvement of the combined model compared to the lifestyle model was 58% (P 
< 0.0001).  We also investigated the association of genetic and lifestyle factors 
with incidence of T2D (with separate models for each diet score). All lifestyle 
factors, except alcohol intake, demonstrated statistically significant associations 
with incidence of T2D (see Table 1).  
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Table 1. 
ORs for prediction of incident type 2 diabetes according to lifestyle risk factors and GRSs. 

 

Genetic model: age, age2, sex, follow up years and ob-GRS. Lifestyle model: age, age2, sex, FFQ type, follow up 
years, education, smoking status, alcohol intake, physical activity and diet scores. Combined model: Lifestyle model + 
T2d-GRS. Statistically significant values (P<0.05) are marked in bold. Smoking status = non-smokers vs current 
smokers; education = school vs university education; physical activity= inactive vs active; alcohol intake= 1st vs 4th 
quartiles; ob-GRS=1st vs 4th quartiles; NNR Score= 1st vs 4th quartiles; HD Score= 1st vs 4th quartiles; PCA Score= 
1st vs 4th quartiles.  

Notably, active participants had a lower incidence of T2D, independent of diet 
scores, alcohol intake, smoking status and education. The PCA score was the only 
diet score to be associated with incidence of T2D. 

IFG 
The predictive ability of the genetic model tended to be higher than that of the 
lifestyle model for IFG incidence, but this difference was not statistically 
significant (AUC 66% v. 63%; Pdifference = 0.05). The predictive ability of the 
combined model (lifestyle model + genetic factors) was significantly higher (AUC 
69% Pdifference < 0.0001) than that of the lifestyle model alone. The net 
reclassification improvement of the combined model compared to the lifestyle 
model was 36% (P < 0.0001). None of the lifestyle factors were significantly 
associated with incidence of IFG (see Table 2). 
  

Genetic Lifestyle Combined Genetic Lifestyle Combined Genetic Lifestyle Combined
(n= 2,017) (n= 2,017) (n= 2,017) (n= 2,087) (n= 2,087) (n= 2,087) (n= 2,017) (n= 2,017) (n= 2,017)

1.59 1.55 1.55 1.53 1.66 1.62
(1.06-2.37) (1.04-2.32) (1.05-2.30) (1.03-2.27) (1.11-2.48) (1.08-2.43)

0.57 0.58 0.56 0.57 0.55 0.55
(0.34-0.96) (0.34-0.98) (0.34-0.93) (0.34-0.95) (0.33-0.92) (0.33-0.94)

0.87 0.86 0.93 0.91 0.86 0.85
(0.52-1.45) (0.51-1.44) (0.56-1.53) (0.55-1.51) (0.52-1.44) (0.51-1.43)

0.51 0.51 0.54 0.53 0.49 0.48
(0.33-0.80) (0.33-0.79) (0.35-0.83) (0.35-0.82) (0.32-0.76) (0.31-0.75)

1.84 1.84 1.9 1.9 1.84 1.82
(1.16-2.92) (1.15-2.94) (1.20-3.00) (1.20-3.02) (1.16-2.92) (1.14-2.91)

1 0.99
(0.63-1.59) (0.62-1.57)

1.26 1.22
(0.77-2.06) (0.74-2.01)

0.5 0.52
(0.31-0.83) (0.31-0.85)- -PCA Score - - - - -

-

HD Score - - - - - - -

-

NNR Score - - - - -

Physical 
activity - - -

T2d-GRS - -

Education - - -

Alcohol 
intake - - -

Smoking 
status - - -

Regression model (OR, 95% CI)
NNR Score HD Score PCA Score

Variables
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Table 2. 
ORs for prediction of incident IFG according to lifestyle risk factors and GRSs. 

 

Genetic model: age, age2, sex, follow up years and fg-GRS. Lifestyle model: age, age2, sex, FFQ type, follow up 
years, education, smoking status, alcohol intake, physical activity and diet scores. Combined model: Lifestyle model + 
fg-GRS. Statistically significant values (P<0.05) are marked in bold. Smoking status = non-smokers vs current 
smokers; education = school vs university education; physical activity= inactive vs active; alcohol intake= 1st vs 4th 
quartiles; ob-GRS=1st vs 4th quartiles; NNR Score= 1st vs 4th quartiles; HD Score= 1st vs 4th quartiles; PCA Score= 
1st vs 4th quartiles.  

IGT 
The ability of the genetic model to predict IGT incidence was significantly lower 
than that of the lifestyle model (AUC 61% v. 64%; Pdifference =0.03). The predictive 
ability of the combined model (lifestyle model + genetic factors) was significantly 
better (AUC 65% Pdifference <0.03) than for the lifestyle model alone. The net 
reclassification improvement of the combined model compared to the lifestyle 
model was not statistically significant (8%, P =0.08). PA was significantly 
associated with incidence of IGT after adjustment for diet, smoking status, alcohol 
intake and education (see Table 3). 
  

Genetic Lifestyle Combined Genetic Lifestyle Combined Genetic Lifestyle Combined
(n= 2,778) (n= 2,778) (n= 2,778) (n= 2,882) (n= 2,882) (n= 2,882) (n= 2,778) (n= 2,778) (n= 2,778)

1.17 1.18 1.16 1.16 1.16 1.17
(0.91-1.50) (0.91-1.51) (0.91-1.48) (0.91-1.49) (0.91-1.49) (0.91-1.50)

0.84 0.85 0.89 0.9 0.83 0.85
(0.63-1.12) (0.63-1.14) (0.66-1.18) (0.68-1.21) (0.62-1.12) (0.63-1.14)

1.16 1.15 1.18 1.16 1.16 1.14
(0.85-1.59) (0.83-1.57) (0.87-1.61) (0.85-1.58) (0.84-1.59) (0.83-1.57)

0.92 0.93 0.93 0.94 0.91 0.93
(0.73-1.15) (0.74-1.17) (0.74-1.16) (0.75-1.18) (0.73-1.15) (0.74-1.17)

1.67 1.66 1.73 1.72 1.67 1.66
(1.25-2.24) (1.24-2.23) (1.30-2.31) (1.29-2.30) (1.25-2.24) (1.24-2.23)

1.01 1.01
(0.77-1.34) (0.76-1.33)

0.87 0.87
(0.64-1.17) (0.64-1.17)

1.09 1.1
(0.81-1.47) (0.82-1.48)- -PCA Score - - - - -

-

HD Score - - - - - - -

-

NNR Score - - - - - -

Physical 
activity - - -

fg-GRS - -

Education - - -

Alcohol 
intake - - -

Smoking 
status - - -

Regression model (OR, 95% CI)
NNR Score HD Score PCA Score

Variables
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Table 3. 
ORs for prediction of incident IGT according to lifestyle risk factors and GRSs. 

 

Genetic model: age, age2, sex, follow up years and 2hg-GRS. Lifestyle model: age, age2, sex, FFQ type, follow up 
years, education, smoking status, alcohol intake, physical activity and diet scores. Combined model: Lifestyle model + 
2hg-GRS. Statistically significant values (P<0.05) are marked in bold. Smoking status = non-smokers vs current 
smokers; education = school vs university education; physical activity= inactive vs active; alcohol intake= 1st vs 4th 
quartiles; ob-GRS=1st vs 4th quartiles; NNR Score= 1st vs 4th quartiles; HD Score= 1st vs 4th quartiles; PCA Score= 
1st vs 4th quartiles.  

For dietary factors, only the PCA score was significantly associated with the 
incidence of IGT.  

Obesity 
The difference in predictive ability between genetic and lifestyle models on 
obesity incidence was not statistically significant (AUC 68% v. 73%; Pdifference 
=0.08). The combined model (lifestyle model + genetic factors) significantly 
improved predictive ability (AUC 79% Pdifference <0.0001) of the lifestyle model. 
The net reclassification improvement of the combined model compared to the 
lifestyle model was 64% (P < 0.0001). Education and alcohol intake were 
significantly associated with obesity incidence, independent of diet, and PA (see 
Table 4). Notably, neither diet nor PA demonstrated statistically significant 
associations with obesity incidence. 
  

Genetic Lifestyle Combined Genetic Lifestyle Combined Genetic Lifestyle Combined
(n= 2,420) (n= 2,420) (n= 2,420) (n= 2,509) (n= 2,509) (n= 2,509) (n= 2,420) (n= 2,420) (n= 2,420)

0.92 0.91 0.91 0.9 0.94 0.93
(0.72-1.18) (0.71-1.17) (0.71-1.16) (0.70-1.15) (0.73-1.21) (0.72-1.20)

0.79 0.79 0.8 0.79 0.78 0.77
(0.59-1.05) (0.59-1.05) (0.60-1.06) (0.59-1.05) (0.58-1.04) (0.58-1.03)

1.26 1.26 1.27 1.27 1.28 1.29
(0.92-1.71) (0.93-1.72) (0.94-1.72) (0.94-1.73) (0.94-1.75) (0.95-1.76)

0.69 0.69 0.74 0.74 0.67 0.67
(0.55-0.86) (0.55-0.86) (0.59-0.92) (0.59-0.93) (0.54-0.85) (0.54-0.85)

1.44 1.46 1.45 1.46 1.44 1.46
(1.11-1.87) (1.13-1.90) (1.12-1.87) (1.13-1.89) (1.11-1.87) (1.13-1.90)

1.05 1.05
(0.80-1.39) (0.80-1.38)

0.94 0.94
(0.71-1.26) (0.71-1.26)

0.71 0.71
(0.53-0.95) (0.53-0.95)- -PCA Score - - - - -

-

HD Score - - - - - - -

-

NNR Score - - - - - -

Physical 
activity - - -

2hg-GRS - -

Education - - -

Alcohol 
intake - - -

Smoking 
status - - -

Regression model (OR, 95% CI)
NNR Score HD Score PCA Score

Variables
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Table 4. 
ORs for prediction of incident obesity according to lifestyle risk factors and GRSs. 

 

Genetic model: age, age2, sex, follow up years and ob-GRS. Lifestyle model: age, age2, sex, FFQ type, follow up 
years, education, smoking status, alcohol intake, physical activity and diet scores. Combined model: Lifestyle model + 
ob-GRS. Statistically significant values (P<0.05) are marked in bold. Smoking status = non-smokers vs current 
smokers; education = school vs university education; physical activity= inactive vs active; alcohol intake= 1st vs 4th 
quartiles; ob-GRS=1st vs 4th quartiles; NNR Score= 1st vs 4th quartiles; HD Score= 1st vs 4th quartiles; PCA Score= 
1st vs 4th quartiles.  

The ability of the genetic and lifestyle models to predict an incidence of ≥10% 
weight gain was AUC = 65% (for both models). The predictive ability of the 
combined model (lifestyle + genetic factors) was significantly better than the 
lifestyle model alone (AUC 68% Pdifference =0.0004). The net reclassification 
improvement for the combined model compared to the lifestyle model alone was 
26% (P <0.0001). 

Viewing the results in the context of other published work  
We observed no improvement in reclassification of IGT incidence when adding 
the genetic factors to the lifestyle model. This may be partly explained by the low 
number of SNPs (9 SNPs) associated with 2hr glucose. For other outcomes where 
more loci are available, we observed greater improvements from adding genetic 
factors; in obesity 61% (97 SNPs), T2D 52% (65 SNPs), and IFG incidence 33% 
(36 SNPs associated with fasting glucose). The limited addition to predictive 
ability of genetic factors in screening has been noted by others. A review by 
Lyssenko and Laakso, which included older studies often with fewer SNPs, 
concluded that genetic markers add little predictive ability to clinical factors92. 
Adding other clinical factors to the models, however, may improve the ROC 
AUC. Lyssenko and Laakso92 reported on several studies where BMI (and, in 
most, fasting glucose) are included in predictive models for T2D, and have a ROC 

Genetic Lifestyle Combined Genetic Lifestyle Combined Genetic Lifestyle Combined
(n=1,511) (n= 1,511) (n= 1,511) (n=1557) (n= 1,557) (n= 1,557) (n= 1,511) (n= 1,511) (n= 1,511)

1.36 1.37 1.34 1.35 1.36 1.38
(0.95-1.93) (0.96-1.96) (0.94-1.90) (0.95-1.92) (0.96-1.94) (0.97-1.96)

0.58 0.58 0.57 0.57 0.57 0.57
(0.37-0.89) (0.37-0.90) (0.37-0.89) (0.37-0.89) (0.37-0.89) (0.37-0.89)

0.62 0.61 0.61 0.61 0.62 0.61
(0.40-0.96) (0.39-0.95) (0.40-0.94) (0.39-0.94) (0.40-0.96) (0.39-0.95)

1.05 1.03 1.03 1.02 1.05 1.03
(0.77-1.44) (0.75-1.41) (0.76-1.41) (0.75-1.39) (0.77-1.43) (0.75-1.41)

2.02 2.03 1.97 1.97 2.02 2.02
(1.36-3.02) (1.35-3.05) (1.33-2.93) (1.32-2.94) (1.36-3.02) (1.35-3.04)

0.91 0.93
(0.62-1.34) (0.63-1.37)

1.27 1.26
(0.84-1.94) (0.83-1.93)

0.97 0.98
(0.64-1.47) (0.65-1.48)- -PCA Score - - - - -

-

HD Score - - - - - - -

-

NNR Score - - - - - -

Physical 
activity - - -

Ob-GRS - -

Education - - -

Alcohol 
intake - - -

Smoking 
status - - -

Regression model (OR, 95% CI)
NNR Score HD Score PCA Score

Variables
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AUC above 90% for the incidence of T2D93-96. Here, we did not include 
intermediate clinical phenotypes in the prediction models, as the objective was to 
compare the predictive ability of modifiable lifestyle factors against a set of easily 
measured and salient biological markers (genotypes). Including intermediate 
clinical phenotypes, such as BMI and fasting glucose, in the comparison model is 
counter-intuitive in this context, as this would lead to the underestimation of the 
predictive ability of lifestyle and genotypes due to mediation97. We did, however, 
adjust for age and sex, as they are not on the causal pathway between either 
lifestyle or genetic exposures, and the index outcomes (i.e., lifestyle factors cannot 
affect the sex or age of a participant). Moreover, excluding age and sex from the 
models could cause bias and confounding. We did not include gene-environment 
interaction terms in our models, as the study is unlikely to be powered, and 
multiplicative interaction effects are unlikely to have a major impact on predictive 
ability98. 

Our findings agree with existing literature, but results from analyses carried out in 
North American95, Nordic99 and British100 cohorts demonstrated that the inclusion 
of 11-20 T2D SNPs did not improve the predictive ability of clinical risk factor 
scores for T2D incidence. Nevertheless, all of these analyses included family 
history of T2D in their clinical variable model, which, to some extent, reflects 
genetic influences on T2D risk. Thus, it is not surprising that adding T2D-
associated variants to a model already including family history of the disease does 
not improve the model’s predictive ability substantially. However, an update to the 
Whitehall II study101 including 65 T2D associated SNPs, showed that including 
genetic factors in a clinical risk-factor model did improve predictive power, 
mirroring our own findings.  

Limitations 

The self-report methods used here, though clinically practicable, can lead to self-
report bias. For instance, participants may systematically underreport unhealthy 
behaviours, which would make them less reliable predictors.  

The SNPs used in this analysis have been discovered in a cross-sectional analysis, 
which may not reflect the same biological mechanisms that govern changes over 
time.  
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Paper 1 Conclusions 

In a head-to-head comparison, this study illustrates comparable predictive ability 
of selected lifestyle and genetic factors for IFG, IGT, T2D and obesity incidence. 
We also show that when genetic factors are added to the lifestyle model, a 
significant net reclassification improvement was achieved for IFG (36%), T2D 
(58%) and obesity (64%). In past studies, this improvement has not been reported, 
possibly because of a low number of SNPs available, and clinical factors 
(including phenotypic mediators) explaining some of the genetic effects.  

The findings of this study add to this thesis by illustrating that lifestyle factors and 
genetic factors complement each other in a model to predict incidence of obesity 
and T2D, and that neither surpasses the other. This strengthens the notion that 
genetic and lifestyle factors provide informative context for the biological effects 
each have. They are predictors which can be used in parallel, as well as in addition 
to, other clinical variables. Moreover, the study illustrates how lifestyle factors 
representing an origin risk factor (i.e. in a causal pathway, they would begin the 
cascade of effects that cause the outcome) and not an intermediate phenotype (i.e. 
caused by a combination of lifestyle and genetic effects that are upstream in the 
causal pathway) can add predictive value for glycaemic control and adiposity 
traits.  

Baseline visit results of the IMI DIRECT Cohorts  
(Paper 2 and Paper 3) 

Here I describe the baseline characteristics of the two prospective cohorts in 
DIRECT focusing on glycaemic deterioration. I also discuss some potential 
mechanisms behind the differences in glycaemic control between ADA glycaemic 
strata85 in Cohort 1 and treatment strata in the Cohort 2, with an emphasis on the 
role of PA.  

Recruitment  

Cohort 1 
Participants for the ‘prediabetes’ cohort in DIRECT (Study 1 in Paper 2), were 
recruited from existing population cohort studies in Europe. We did this by 
applying the DIRECT-DETECT glycaemic deterioration risk prediction algorithm 
(described in the Methods) to identify those at higher risk of rapid glycaemic 



50 

deterioration. We recruited 2,335 participants (10%) from a combined sampling 
frame of 24,196 participants across four cohorts as follows: 

In Kuopio, we recruited 1,340 participants from the Metabolic Syndrome in Men 
(METSIM) study (total N=6,414)102. 

In Hoorn/Amsterdam, we recruited 500 from a total of 2,607 participants enrolled 
in studies around Amsterdam. Of these, 18 (out of 76) participants were recruited 
from the Relationship between Insulin Sensitivity and Cardiovascular disease 
(RISC) cohort103; 48 participants (out of 201) were recruited from the Hoorn Meal 
Study (HMS) and; 434 participants (out of 2,330) were recruited from the New 
Hoorn Study (NHS)104.  

In Copenhagen, we recruited 326 participants from a total sample frame of 11,441. 
Of these, 56 (out of 1,522) were recruited from the Health2010 study105; 172 (out 
of 2,308) were recruited from the Health2006 study106; 87 (out of 7439) were 
recruited from the Danish Study of Functional Disorders (DanFunD)107; 11 (out of 
118) were recruited from the Gut, Grain and Greens(GGG) study108.  

In Malmö, we recruited 169 participants out of a sampling-frame of 3,734 
participants from the Malmö Diet and Cancer (MDC) study109.  

Thus, the 2335 participants in Cohort 1 constitutes 58%, 21%, 14% and 7% 
participants from Kuopio, Amsterdam/Hoorn, Copenhagen and Malmö, 
respectively. Of the 2,335 participants recruited: 2,247 had the minimum 
measurements (standard clinical and eligibility criteria variables, and a fasting 
blood sample); 490 participants had apparently NGR; 545 participants had iIA1c; 
369 participants had iIFG; 38 participants had iIGT; and, 805 participants had 
cIGR. 

The DIRECT-DETECT algorithm was used to help maximize the rate of 
glycaemic deterioration within Cohort 1; thus, participants were purposefully 
recruited with the highest DIRECT-DETECT scores first. However, the sampling 
frame of around 24000 was insufficient to ensure only participants with 
dysregulated glucose were recruited; around 500 participants who had apparently 
normal glycaemic regulation were also included in the cohort, as a matter of 
necessity.  

Cohort 2 

Participants for the ‘type 2 diabetes’ cohort, in IMI DIRECT (Study 2 in Paper 2) 
were recruited from General Practice clinics and other clinical registries from 
several northern European countries. We recruited a total of 830 participants with 
new-onset T2D (diagnosed between 6 and 24 months before the baseline 
examination): 184 (22%) from Dundee, UK; 170 (20%) in Exeter, UK; 169 (20%) 
participants in Hoorn/Amsterdam, Netherlands; 146 (18%) participants in 
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Newcastle upon Tyne, UK; 107 (13%) participants in Lund, Sweden; and, 54 (7%) 
participants in Copenhagen, Denmark. Of the 830 participants recruited to the 
T2D cohort, 804 participants had minimum measurements (standard clinical and 
eligibility criteria variables, and a fasting blood sample) available. 

Baseline Characteristics  

Tables 5-14 describe the baseline characteristics of the main phenotypic variables 
in the two IMI DIRECT glycaemic deterioration cohorts. Values are presented as 
mean (sem) adjusted for age, sex and recruitment centre, unless indicated 
otherwise. It is important to note that observed differences in characteristics 
between the strata are meant to be descriptive rather than to make any causal 
inferences. This is of particular importance for data from Cohort 2, where 
observed differences between participants treated with lifestyle only vs. lifestyle 
plus metformin therapy are not necessarily true (because the latter group also 
receive metformin). As treatment guidelines are based on glycaemic control, 
participants with higher glucose concentrations are those most likely to receive 
metformin treatment (e.g. in this case, adding metformin to lifestyle changes). 
Accordingly, patients who respond well to lifestyle therapy may not progress to 
metformin during the course of the DIRECT study. 

Clinical characteristics 
Table 5 shows the baseline clinical characteristics of Cohort 1 stratified by ADA 
glycaemic strata85. The majority (76%) of participants in Cohort 1 were male, 
largely because around 57% of the participants were recruited from METSIM, 
which is a male-only study. Of note, 95% of the 368 participants who had iIFG 
were male. Mean age, BMI, waist circumference, systolic blood pressure, and 
diastolic blood pressure all differed between glycaemic strata (Pdifference < 0.0001).  

Table 5. 
Baseline clinical characteristics by ADA glycaemic control strata for Cohort 1.  

 

Values are mean (sem) adjusted for age, sex and centre unless indicated otherwise, * not adjusted for age, sex and 
centre. 

NGR iIA1c iIFG iIGT cIGR All Pdifference

N 485 537 368 38 799 2227
Male (%)* 81 58 95 76 76 76
Age (yrs)* 61.2 (0.3) 62.3 (0.3) 60.4 (0.3) 64 (1.1) 61.8 (0.2) 61.6 (0.1) <0.001

BMI (kg·m-2) 27.9 (0.2) 27.7 (0.2) 28.9 (0.2) 29.1 (0.6) 29.7 (0.2) 28.7 (0.2) <0.001
Waist circumference (cm) 98.1 (0.5) 97.3 (0.5) 101.2 (0.6) 100.3 (1.7) 102.9 (0.4) 99.9 (0.4) <0.001

Systolic blood pressure (mmHg) 127.9 (0.8) 127.5 (0.7) 130.2 (0.9) 132.1 (2.4) 131.6 (0.6) 129.9 (0.6) <0.001
Diastolic blood pressure (mmHg) 77.3 (0.4) 77.4 (0.4) 78.8 (0.5) 79.6 (1.4) 79.5 (0.3) 78.5 (0.4) <0.001
Smoking (% current / ex- / never)* 15/50/35 18/42/40 12/47/41 11/58/32 13/51/36 14/48/38

Alcohol Usage (% regularly / occasionally /never)* 67/20/13 63/24/14 74/14/12 14/12/71 71/21/8 69/19/12

 Cohort 1 ("Prediabetes")
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Table 6 shows the baseline clinical characteristics of Cohort 2 stratified by 
treatment. Participants on lifestyle treatment only, compared with participants on 
lifestyle and metformin treatment, were on average 1 year older and had a systolic 
blood pressure 3 mmHg greater (Pdifference = 0.025 and Pdifference = 0.029, 
respectively).  

Table 6. 
Baseline clinical characteristics by treatment for Cohort 2.  

 

Values are mean (sem) adjusted for age, sex and centre unless indicated otherwise, * not adjusted for age, sex and 
centre. 

Glycaemic Measures 
The glycaemic measures in Cohort 1 are derived from 2-hr fsOGTT data (see 
materials and methods section for more details). Glycaemic measures in Cohort 2 
are measured and modelled from a 2-hr MMTT (see materials and methods section 
for more details). 

Table 7 shows the baseline glycaemic control characteristics of Cohort 1 stratified 
according to ADA criteria85. All glycaemic measures differ by glycaemic control 
group (Pdifference < 0.0001).  

Table 7. 
Baseline glycaemic characteristics by ADA glycaemic control strata for Cohort 1.  

 

Values are mean (sem) adjusted for age, sex and centre unless indicated otherwise, * not adjusted for age, sex and 
centre. 

N 
Male (%)*
Age (yrs)*

BMI (kg·m-2)
Waist circumference (cm)

Systolic blood pressure (mmHg)
Diastolic blood pressure (mmHg)
Smoking (% current / ex- / never)*

Alcohol Usage (% regularly / occasionally /never)*

LS Met+LS All Pdifference

527 277 804
58 56 57

62 (0.3) 61 (0.5) 62 (0.3) 0.025
30.3 (0.2) 30.6 (0.3) 30.4 (0.2) 0.4
103 (0.6) 104 (0.8) 103 (0.5) 0.2
133 (0.9) 130 (1.1) 131 (0.7) 0.029
76 (0.5) 75 (0.6) 76 (0.4) 0.3
13/50/37 15/49/36 14/50/37
58/24/18 58/27/15 58/25/17

 Cohort 2 ("Diabetes")

NGR iIA1c iIFG iIGT cIGR All Pdifference

 Cohort 1 ("Prediabetes")

N 490 545 369 38 805 2247
HbA1c (mmol·mol-1) 36.8 (0.1) 41.7 (0.1) 37.4 (0.2) 37 (0.4) 42.6 (0.1) 39.1 (0.1) <0.001

Fasting glucose (mmol·L-1) 5.2 (0) 5.2 (0) 5.9 (0) 5.3 (0.1) 6 (0) 5.5 (0) <0.001
Mean 2-hr glucose (mmol·L-1) 6.7 (0.1) 7 (0.1) 7.6 (0.1) 9 (0.2) 8.8 (0.1) 7.8 (0.1) <0.001

2-hr glucose (mmol·L-1) 5.4 (0.1) 5.6 (0.1) 5.8 (0.1) 8.9 (0.3) 7.4 (0.1) 6.6 (0.1) <0.001
Fasting insulin (pmol·l -1) 52.6 (2) 53.3 (1.9) 66.6 (2.4) 65.7 (6.5) 75.8 (1.6) 62.8 (1.7) <0.001

Mean 2-hr insulin (pmol·l-1) 315 (13) 330 (12) 392 (16) 468 (42) 448 (11) 391 (11) <0.001
2-hr insulin (pmol·l-1) 37 (2) 42 (2) 46 (3) 97 (8) 74 (2) 59 (2) <0.001

Fasting insulin secretion (pmol·min·m-2) 94 (2) 97 (2) 113 (2) 114 (6) 124 (2) 108 (2) <0.001
Integral of total insulin secretion (nmol·m-2) 47 (1) 48 (1) 52 (1) 62 (3) 57 (1) 53 (1) <0.001
Glucose sensitivity (pmol·min-1·m-2·mM-1) 124 (3) 122 (3) 114 (3) 97 (9) 101 (2) 112 (2) <0.001

Potentiation factor ratio 1.7 (0) 1.7 (0) 1.9 (0) 1.2 (0.1) 1.6 (0) 1.6 (0) <0.001
Rate sensitivity (pmol·m-2·mM-1) 1102 (35) 933 (32) 989 (42) 1041 (112) 859 (28) 985 (29) <0.001

Insulin sensitivity  2-h OGIS (ml·min-1·m·-2) 419 (3) 413 (2) 366 (3) 365 (8) 344 (2) 381 (2) <0.001



53 

As expected, HbA1c, fasting glucose, and 2-hr glucose differ between the ADA 
glycaemic control strata85. However, given that poor glycaemic control is often an 
indicator of poor insulin sensitivity and incapacity to compensate by increasing 
insulin secretion, we can surmise that participants with either iIGT or cIGR are 
likely to show signs of reduced insulin sensitivity and beta-cell function. Indeed, 
we see that insulin sensitivity (by 2-hr OGIS) is substantially lower in the cIGR 
strata and higher in the NGR and iIA1c strata. Similarly, for beta-cell function, we 
see that glucose sensitivity (dose response slope of insulin secretion in response to 
glucose) and rate sensitivity (early secretion parameter) are lower in cIGR 
compared with NGR, and even iIA1c and iIFG. However, the opposite is apparent 
for iIGT. There are two possible explanations for these observations. The first is 
that loss of beta-cell function, associated with progression to T2D110, may also 
affect participants in IGR111. A study tested the association between insulin 
sensitivity and insulin secretion rate (both assessed by euglycaemic 
hyperinsulinaemic clamp, unlike fsOGTT/MMTT, as we have in DIRECT) in 156 
and 1,123 participants with IGR and NGR, respectively111. They found that insulin 
sensitivity was associated with insulin secretion rate in IGR, though not with beta-
cell glucose sensitivity. As we measure insulin sensitivity from fsOGTT/MMTTs 
rather that euglycaemic hyperinsulinaemic clamps, we may see a relationship 
which they did not. A second explanation could be that a drink with 75g of 
glucose (the fsOGTT) may not elicit a maximum insulin secretion response. 
Instead these participants experience an adequate compensatory rise in insulin 
secretion based on their glucose and insulin sensitivity.  

Table 8 shows the baseline glycaemic control characteristics of Cohort 2 stratified 
by treatment. HbA1c, fasting glucose, mean-2-hr glucose (mean glucose during 2-
hr OGTT), 2-hr glucose and fasting insulin secretion were all higher in the group 
receiving both lifestyle and metformin (Met+LS) treatment (Pdifference ≤ 0.012). 
Glucose sensitivity and potentiation fraction ratio (indication of beta-cell function 
at late stage insulin secretion) were reduced in the Met+LS strata (Pdifference ≤ 
0.004). 
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Table 8. 
Baseline glycaemic characteristics by treatment for Cohort 2.  

 

Values are mean (sem) adjusted for age, sex and centre unless indicated otherwise, * not adjusted for age, sex and 
centre. 

The apparently poor glycaemic control in the Met+LS strata is unlikely to be 
caused by metformin. To the contrary, it is likely to be the reverse, where worse 
glycaemic control prompts treatment with metformin. As indicated in the 
Methods, participants who were taking metformin were asked not to take 
metformin for 48 hours before the visit, in part removing its effect from these 
results. 

Comparisons between cohorts 1 and 2 

Because there is a difference between the glycaemic control assessment protocol 
in the two cohorts (fsOGTT in Cohort 1; MMTT in Cohort 2), comparison 
between the two cohorts should be done with caution when relating to glycaemic 
control. The modelled parameters presented here are based on the measured levels 
of glucose, insulin and c-peptide in the blood, as well as some phenotypic 
variables and the nutritional content of the test drink. Thus, the main differences in 
the protocol are accounted for in the modelling. For instance, we can see markedly 
lower glucose sensitivity in Cohort 2. This could be indicative of the reduced beta 
cell function in participants with T2D, who cannot adequately compensate for 
their insulin resistance with increased insulin secretion. We also see similar 
expected differences in other important glycaemic control parameters (e.g. fasting 
glucose, 2-hr glucose, insulin sensitivity, rate sensitivity and potentiation fraction 
ratio). However, making any inferences based on these analyses (that the condition 
of T2D is a causal factor) is not possible due to the protocol difference, as 
mentioned previously. 

LS Met+LS All Pdifference

 Cohort 2 ("Diabetes")

N
HbA1c (mmol·mol-1)

Fasting glucose (mmol·L-1)
Mean 2-hr glucose (mmol·L-1)

2-hr glucose (mmol·L-1)
Fasting insulin (pmol·l -1)

Mean 2-hr insulin (pmol·l-1)
2-hr insulin (pmol·l-1)

Fasting insulin secretion (pmol·min·m-2)
Integral of total insulin secretion (nmol·m-2)
Glucose sensitivity (pmol·min-1·m-2·mM-1)

Potentiation factor ratio
Rate sensitivity (pmol·m-2·mM-1)

Insulin sensitivity  2-h OGIS (ml·min-1·m·-2) 

527 277 804
46 (0.3) 47 (0.4) 47 (0.2) 0.005
7 (0.07) 7.3 (0.09) 7.1 (0.06) 0.012
9 (0.1) 9.9 (0.1) 9.5 (0.1) <0.001

8.2 (0.1) 9.4 (0.2) 8.8 (0.1) <0.001
101 (3.4) 110 (4.3) 105 (2.7) 0.1
448 (14) 440 (17) 444 (11) 0.7
422 (17) 443 (21) 432 (14) 0.5
130 (2) 140 (3) 135 (2) 0.006
43 (1) 44 (1) 43 (1) 0.4
88 (3) 73 (4) 81 (3) 0.004

1.5 (0.03) 1.3 (0.04) 1.4 (0.03) <0.001
1078 (55) 1135 (69) 1107 (44) 0.5

305 (4) 295 (5) 300 (3) 0.1
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Physical Activity 
All PA parameters are objectively measured using an ActiGraph GT3X+ device 
worn continuously on the non-dominant wrist for 10 days (see materials and 
methods section for more details).  

Table 9 shows the baseline PA characteristics of Cohort 1 stratified by ADA 
glycaemic strata85. The mean daily PA intensity in Cohort 1 was 36.1 mGs 
(hpfVM) or 24.7 mGs (ENMO). On average, participants were: i) sedentary 83% 
of the time; ii) in light-intensity PA 11%; iii) in moderate-intensity PA 5%; and, 
iv) in vigorous-intensity PA 1% of the time. We observe that mean values of all 
hpfVM parameters except vigorous intensity PA were significantly different 
between glycaemic strata (Pdifference ≤ 0.016). Vigorous PA, which only made up a 
mean of 1.5% of the time, showed a nominally statistically significant difference 
(Pdifference � 0.054).  

Table 9. 
Baseline physical activity characteristics by glycaemic control strata for Cohort 1.  

 

Values are mean (sem) adjusted for age, sex and centre unless indicated otherwise, * not adjusted for age, sex and 
centre. 

Though the results indicate that there is heterogeneity in PA behaviour between 
the glycaemic strata, the differences do not appear to be substantial, with the 
exception of the small group of participants with iIGT. Participants in this strata 
did about 10% less light-intensity PA than the participants in the NGR, iIA1c and 
iIFG strata. This result is also established in existing literature 112 in a free-living 
setting with a robust objective measurement method.  

Table 10 shows the baseline PA characteristics of Cohort 2 stratified by treatment. 
The mean daily PA intensity in Cohort 2 was 34mGs (hpfVM) or 22 mGs 
(ENMO). On average, participants were sedentary 83% of the time, in light-
intensity PA 10%, in moderate-intensity PA 5%, and the remaining 2% in 
vigorous PA intensity. We observe that all PA parameters were statistically 
different between glycaemic strata (Pdifference < 0.0001).  
  

NGR iIA1c iIFG iIGT cIGR All Pdifference

 Cohort 1 ("Prediabetes")

N 391 444 284 31 666 1816
Average physical activity intensity - ENMO (mGs) 24.7 (0.8) 24.1 (0.7) 25.1 (0.9) 25.8 (2.5) 24.2 (0.6) 24.8 (0.6) 0.8
Average physical activity intensity - hpfVM (mGs) 37.1 (0.5) 37.5 (0.5) 37.1 (0.7) 33.2 (1.8) 35.8 (0.4) 36.1 (0.5) 0.009

Percent sedentary intensity (<48 mGs hpfVM) 82.2 (0.2) 81.9 (0.2) 82.2 (0.3) 84.1 (0.8) 82.7 (0.2) 82.6 (0.2) 0.003
Percent light intensity (48-154 mGs hpfVM) 10.9 (0.1) 11 (0.1) 10.8 (0.2) 9.8 (0.4) 10.6 (0.1) 10.6 (0.1) 0.003

Percent moderate intensity (154-389 mGs hpfVM) 5.29 (0.08) 5.34 (0.08) 5.28 (0.1) 4.75 (0.27) 5.09 (0.07) 5.15 (0.07) 0.016
Percent vigorous intensity (>389 mGs hpfVM) 1.51 (0.04) 1.52 (0.04) 1.51 (0.05) 1.29 (0.13) 1.42 (0.03) 1.45 (0.03) 0.054
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Table 10. 
Baseline physical activity characteristics by treatment for Cohort 2.  

 

Values are mean (sem) adjusted for age, sex and centre unless indicated otherwise, * not adjusted for age, sex and 
centre. 

The differences in PA between the treatment strata in Cohort 2 appear to be more 
substantial than between the glycaemic strata in Cohort 1. Average PA intensity 
appears to be about 11-13% less in the metformin group. Light, moderate and 
vigorous PA was 8%, 11%, and 14% less in the metformin group. Though PA is 
measured identically in Cohort 1 and 2, allowing a comparison between the 
cohorts, such analyses were not carried out as the two cohorts have not been 
designed with such comparisons in mind. Notwithstanding, a visual comparison 
suggests that Cohort 2 is less active with potentially around 10% less time spent in 
vigorous PA. Such comparisons should be considered with care, as the age, sex 
and centre adjustments do not apply when comparing the adjusted means between 
the two cohorts. Within Cohort 2, a plausible explanation for the metformin 
treated strata being less active than the lifestyle + metformin treated group is not 
that they failed to respond to the lifestyle treatment, but rather that they failed to 
adhere to it, and thus did not benefit.  

Diet 
Diet parameters in both cohorts are derived from self-reported multi-pass food 
habit questionnaires, in combination with a 24-hr diet record (see materials and 
methods section for more details). 

Table 11 shows the baseline diet characteristics of Cohort 1 stratified by ADA 
glycaemic strata85. Total intake of energy, carbohydrate, protein, and sugar 
differed between glycaemic strata (Pdifference ≤ 0.014).  
  

LS Met+LS All Pdifference

 Cohort 2 ("Diabetes")

N
Average physical activity intensity - ENMO (mGs) 
Average physical activity intensity - hpfVM (mGs) 

Percent sedentary intensity (<48 mGs hpfVM)
Percent light intensity (48-154 mGs hpfVM)

Percent moderate intensity (154-389 mGs hpfVM)
Percent vigorous intensity (>389 mGs hpfVM)

483 253 736
23 (0.4) 20 (0.5) 22 (0.3) <0.001
36 (0.5) 32 (0.6) 34 (0.4) <0.001

82.4 (0.22) 84 (0.27) 83.2 (0.18) <0.001
10.8 (0.12) 10 (0.15) 10.4 (0.1) <0.001
5.2 (0.08) 4.6 (0.1) 4.9 (0.06) <0.001
1.4 (0.03) 1.2 (0.04) 1.3 (0.03) <0.001
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Table 11. 
Baseline diet characteristics by ADA glycaemic control strata for Cohort 1.  

 

Values are mean (sem) adjusted for age, sex and centre unless indicated otherwise, * not adjusted for age, sex and 
centre. 

The heterogeneity in dietary intake we see in Cohort 1 pertains to participants in 
the iIGT and iIA1c strata. Participants in the iIGT strata had lower total energy 
intake than in iIA1c and lower total protein intake than in the NGR, iIA1c and 
iIFG strata (Pdifference < 0.05) in pairwise difference tests. The total energy intake in 
the iIA1c group being 18% higher than in the iIGT group is of note (Ppairwise difference 
<0.05, analyses described in more detail in paper). The participants in the iIA1c 
strata also reported a higher total carbohydrate and sugar intake than participants 
in the cIGR strata (Pdifference < 0.05).   

Table 12 shows the baseline diet characteristics of Cohort 2 stratified by treatment. 
We observe no statistically significant differences between participants in the 
Met+LS and lifestyle treatment strata. 

Table 12. 
Baseline diet characteristics by treatment for Cohort 2.  

 

Values are mean (sem) adjusted for age, sex and centre unless indicated otherwise, * not adjusted for age, sex and 
centre. 

MRI 
MRI-derived adiposity estimates were carried out in roughly half of the 
participants in Cohort 1 and 60% in Cohort 2 using a multiecho technique (see 

NGR iIA1c iIFG iIGT cIGR All Pdifference

 Cohort 1 ("Prediabetes")

Total Energy Intake (kCal) 1842 (38) 1930 (35) 1852 (46) 1580 (121) 1812 (32) 1803 (32) 0.014
Total Carbohydrate (g) 201.8 (4.9) 218.2 (4.5) 199.5 (5.8) 184.8 (15.5) 197.1 (4) 200.3 (4.1) 0.002

Total Fat (g) 76.4 (2) 79.4 (1.9) 76.3 (2.4) 63.6 (6.4) 75.7 (1.7) 74.3 (1.7) 0.1
Total Protein (g) 92 (2.2) 92.1 (2) 97.1 (2.7) 71.4 (7) 90.4 (1.8) 88.6 (1.9) 0.005
Total Sugar (g) 89.3 (2.7) 96.9 (2.5) 89.6 (3.3) 85.5 (8.7) 85.7 (2.3) 89.4 (2.3) 0.009
Total Fibre (g) 18.8 (0.5) 18.9 (0.5) 17.9 (0.6) 15.9 (1.6) 17.6 (0.4) 17.8 (0.4) 0.054

Total Saturated Fat (g) 28.7 (0.9) 29.8 (0.8) 28 (1) 23.8 (2.7) 28.5 (0.7) 27.8 (0.7) 0.2
Total Monounsaturated Fat (g) 25.6 (0.9) 26.6 (0.8) 24.6 (1) 19.8 (2.8) 25.1 (0.7) 24.3 (0.7) 0.1
Total Polyunsaturated Fat (g) 11.7 (0.4) 12.7 (0.4) 12.4 (0.5) 9.4 (1.3) 11.7 (0.4) 11.6 (0.4) 0.056

LS Met+LS All Pdifference

 Cohort 2 ("Diabetes")

N
Total Energy Intake (kCal)

Total Carbohydrate (g)
Total Fat (g)

Total Protein (g)
Total Sugar (g)
Total Fibre (g)

Total Saturated Fat (g)
Total Monounsaturated Fat (g)
Total Polyunsaturated Fat (g)

493 229 722
1826 (28) 1806 (40) 1816 (24) 0.7
206 (3.6) 209 (5.1) 208 (3.1) 0.7
73 (1.6) 71 (2.2) 72 (1.3) 0.4
88 (1.4) 85 (2) 86 (1.2) 0.2
84 (2) 84 (2.8) 84 (1.7) 0.9

19 (0.4) 18 (0.6) 19 (0.3) 0.1
26 (0.7) 27 (0.9) 27 (0.6) 0.5
25 (0.6) 24 (0.9) 24 (0.5) 0.4
12 (0.4) 11 (0.5) 12 (0.3) 0.1
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materials and methods section for details). No MRIs were carried out in the 
Lund/Malmö study sites for either cohort. 

Table 13 shows the baseline MRI-derived adiposity characteristics of Cohort 1 
stratified by ADA glycaemic strata85. Total abdominal adipose tissue (TAAT), 
visceral fat, liver fat and pancreatic fat differ between glycaemic strata (Pdifference ≤ 
0.024).  

Table 13. 
Baseline MRI characteristics by ADA glycaemic control strata for Cohort 1.  

 

Values are mean (sem) adjusted for age, sex and centre unless indicated otherwise, * not adjusted for age, sex and 
centre. 

Despite the heterogeneity across all strata, in pairwise comparisons we only 
observe a statistically significant difference in TAAT between participants in the 
NGR and iIA1c strata, where NGR had roughly 10% smaller mean TAAT. For the 
key measures of visceral, liver and pancreatic fat, we do not observe statistically 
significant pairwise difference between glycaemic strata, despite findings reported 
by others, suggesting they are related to glycaemic regulation71,113-115. There are 
some plausible explanations, one is that the participants in Cohort 1 with impaired 
glycaemic control are still too close to the NGR end of the spectrum of glycaemic 
regulation. Another explanation could be that the type of lipids making up the 
detected fat are not those (or in that sub fraction) that are causing the dysregulation 
detected by others. Regarding pancreatic fat, a further explanation could be that 
our measurement methods may not be able to distinguish between intra-organ fat, 
or fat surrounding the organ, especially under circumstances where pancreatic 
shape is irregular113,116.  

Table 14 shows the baseline MRI derived adiposity characteristics of Cohort 2 
stratified by treatment. In this cohort, we observe that participants in the Met+LS 
treated strata have nearly 25% greater liver fat percentage than those receiving 
lifestyle treatment only (Pdifference < 0.0001).  
  

NGR iIA1c iIFG iIGT cIGR All Pdifference

 Cohort 1 ("Prediabetes")

N 217 200 194 11 399 1021
Total Abdominal Adipose Tissue (Litres) 11.5 (0.4) 12.7 (0.4) 12.5 (0.7) 11.9 (0.8) 12.1 (0.5) 12.1 (0.4) <0.001

Visceral Fat (Litres) 4.6 (0.2) 4.9 (0.2) 5 (0.4) 4.9 (0.4) 4.5 (0.3) 4.8 (0.2) <0.001
Liver Fat (%) 5.1 (0.6) 5.6 (0.6) 5.6 (1) 5.6 (1.1) 6 (0.7) 5.6 (0.5) <0.001

Pancreatic Fat (%) 11.3 (0.8) 12.2 (0.8) 13.4 (1.4) 13.1 (1.5) 9.9 (0.9) 12 (0.7) 0.024
Liver Iron Content (S-1) 55.3 (1.7) 55.4 (1.7) 56.3 (3) 56.8 (3.2) 55.6 (2) 55.9 (1.5) 0.8

Pancreatic Iron Content (S-1) 47.3 (1.6) 47.4 (1.6) 51.1 (2.8) 51.9 (3) 43 (1.8) 48.2 (1.4) 0.067
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Table 14. 
Baseline MRI characteristics by treatment for Cohort 2.  

 

Values are mean (sem) adjusted for age, sex and centre unless indicated otherwise, * not adjusted for age, sex and 
centre. 

The marked increase in liver fat in the Met+LS strata in Cohort 2 may be due to 
these participants having progressed further in T2D than those in the LS strata. 
This would lend weight to the hypothesis that liver fat is a central intermediate 
phenotype in the pathogenesis of T2D, as reported by others30,31 (see introduction 
for more on this hypothesis).  

Genotyping 
Figure 8 illustrates the genetic population substructure of the two cohorts in 
DIRECT.  

 

Figure 8 
Population structure within WP2 baseline study samples. A statistical summary of genetic data from Cohorts 1 and 2 
based on principal component axis one (PC1) and axis two (PC2). Circles represent “Prediabetes” subjects and stars 
represent “New-onset Diabetes” subjects. Circles and stars are coloured as per the recruitment centres. Red, Kuopio; 
Yellow, Lund; Blue, Copenhagen; Green, Amsterdam; Pink, Newcastle; Salmon, Dundee; Purple, Exeter. 

LS Met+LS All Pdifference

 Cohort 2 ("Diabetes")

N
Total Abdominal Adipose Tissue (Litres)

Visceral Fat (Litres)
Liver Fat (%)

Pancreatic Fat (%)
Liver Iron Content (S-1)

Pancreatic Iron Content (S-1)

357 157 514
13 (0.3) 13.7 (0.4) 13.4 (0.2) 0.2
5.1 (0.1) 5.4 (0.2) 5.2 (0.1) 0.1
7.3 (0.4) 9.7 (0.5) 8.5 (0.3) <0.001
11 (0.4) 12 (0.6) 12 (0.3) 0.2
54 (1) 54 (1.3) 54 (0.8) 0.7
46 (1) 46 (1.3) 46 (0.8) 0.9

PC1 

PC2 

!!Kuopio!

!!Lund!
!!Copenhagen!

!!Amsterdam!
!!Dundee!
!!Newcastle!
!!Exeter!
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In agreement with findings by others, we can see in Figure 7 that the genetic 
substructure maps to the geographic location of the study centres117. This 
illustrates ethnic homogeneity within study centres and heterogeneity between 
study centres. The main heterogeneity in these cohorts is driven by inclusion of 
Finnish participants, a population known to be an ancestral genetic isolate118.  

Paper 2 and Paper 3 Conclusions 

The ability to generate data from physiological measurements and cost-effectively 
store biosamples long-term has advanced over recent years. At the same time, 
increasing prevalence of T2D and the development of methods to analyse complex 
multivariable prospective datasets continues to drive the demand for well 
phenotyped prospective datasets, coupled with biobank material. Papers 2 and 3 
illustrate recent progress in one of the largest international efforts to date trying to 
address this demand for the study of glycaemic deterioration. As data availability 
from these cohorts grows, and analysts worldwide begin to use them, 
understanding the context of these data and coupled biobank material becomes 
pivotal to informative analyses. The purpose of papers 2 and 3 have been to 
facilitate this process and highlight potential future research questions. 

The results described in Paper 3 highlight heterogeneity in T2D-related metabolic 
and lifestyle factors, between established glycaemic strata in prediabetes, and 
treatment strata in T2D. Among the differentiating factors were PA, diet, intra-
abdominal fat and glycaemic control parameters. 
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The role of physical activity in metabolic homeostasis 
before and after the onset of type 2 diabetes (Paper 4) 

Paper 4 describes an analysis that focuses on the complex regulation of beta-cell 
function and glucose control. Of all papers in this thesis, Paper 4 is the most 
relevant to my interests, the role of PA in energy metabolism and T2D; as this was 
done later in my PhD, it also represents my most independent work. Using 
baseline data from the two prospective DIRECT cohorts described in Paper 2 and 
3, I used a SEM to test a network of hypothesised relationships nested within a 
single multivariate model. 

The paper has three aims: first, to test the ‘twin cycle’ hypothesis, a model that has 
been set forth to explain the pathogenesis of T2D (for more information see 
Introduction); second, to determine if the association of PA with glycaemic control 
is mediated by parameters in this model; and third, to explore if these relationships 
differ before and after the onset of T2D.  

Pairwise associations between physical activity and other parameters 
in the model. 

Initially, I sought to determine pairwise correlations (Figures 9 and 10) between 
the parameters that are relevant to the twin cycle hypothesis: PA, fasting glucose, 
2-hr glucose, oral glucose insulin sensitivity, liver fat, pancreatic fat, fasting 
insulin secretion rate, glucose sensitivity (beta-cell function estimated as insulin 
secretion per unit glucose), rate sensitivity (beta-cell function estimated as early 
insulin secretion enhancement), and potentiation fraction ratio (beta-cell function 
estimated as late insulin secretion enhancement). See the Materials and Methods 
section for more details on how these parameters have been measured. 
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Figure 9 
Cohort 1 (Prediabetes): Pairwise Pearson correlations, scatter plots, and histograms. Plot matrix shows pairwise 
correlations in upper panels, histograms in diagonal panels and pairwise scatterplots in the lower panels. All 
continuous variables normally transformed and adjusted for age, sex, metformin treatment, study centre, total energy-, 
carbohydrate-, fat-, and protein-intake. MeanVMhpf: Physical Activity, FastGlu: Fasting Glucose, TwoGlu: 2-hr 
Glucose, OGIS: Oral Glucose Insulin Sensitivity, LiverFat: Liver Fat, PancFat: Pancreatic Fat, FastISR: Fasting insulin 
secretion rate, GluSens: Glucose Sensitivity (insulin secretion per glucose), RateSens: Rate Sensitivity (early insulin 
secretion enhancement), PFR1: Potentiation Fraction Ratio (late insulin secretion enhancement). 
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Figure 10 
Cohort 2 (T2D): Pairwise Pearson correlations, scatter plots, and histograms. Plot matrix shows pairwise correlations 
in upper panels, histograms in diagonal panels and pairwise scatterplots in the lower panels. All continuous variables 
normally transformed and adjusted for age, sex, metformin treatment, study centre, total energy-, carbohydrate-, fat-, 
and protein-intake. MeanVMhpf: Physical Activity, FastGlu: Fasting Glucose, TwoGlu: 2-hr Glucose, OGIS: Oral 
Glucose Insulin Sensitivity, LiverFat: Liver Fat, PancFat: Pancreatic Fat, FastISR: Fasting insulin secretion rate, 
GluSens: Glucose Sensitivity (insulin secretion per glucose), RateSens: Rate Sensitivity (early insulin secretion 
enhancement), PFR1: Potentiation Fraction Ratio (late insulin secretion enhancement). 

Below I describe the key pairwise correlations between PA and all the model 
parameters, between parameters in the liver and pancreas cycles (see figure 2 in 
the Introduction), and between insulin sensitivity and beta cell function 
parameters. Where results are presented in the text, they are as Pearson correlation 
coefficients (r) and P-values. 



64 

Physical activity (see Figures 9 and 10) 
PA was significantly correlated with all liver and pancreatic fat cycle parameters 
apart from fasting glucose (P =0.062, and P =0.051 in Cohort 1 and Cohort 2, 
respectively), pancreatic fat in Cohort 2 (P =0.84), and the potentiation fraction 
ratio (P =0.073).  

Liver cycle (see Figures 9 and 10) 
The following correlations were observed in both cohorts: liver fat content is 
correlated with fasting glucose, basal insulin secretion, and 2-hr glucose. Fasting 
glucose level is correlated with insulin sensitivity and basal insulin secretion, and 
2-hr glucose is correlated with insulin sensitivity. Insulin sensitivity is associated 
with basal insulin secretion.  

Pancreas cycle (see Figures 9 and 10) 
Pancreatic fat content is correlated with liver fat content, 2-hr glucose levels, and 
the potentiation fraction ratio in Cohort 1 only. In both cohorts, 2-hr glucose is 
correlated with glucose sensitivity and the potentiation fraction ratio.  

Insulin sensitivity – beta cell function (see Figures 9 and 10) 
Insulin sensitivity is correlated with all three beta-cell function parameters 
(glucose sensitivity, rate sensitivity and potentiation fraction ratio) in Cohort 1 
only. 

Structural equation model to test the established hypothesis for 
mediation pathways 

Baron and Kenny illustrated how two variables can be associated with an outcome 
because one of them is a mediator for the other97. This may be the case for the 
associations observed above. In order to test relationships within such a network, I 
fitted a SEM and tested the effect of direct paths between two variables (known as 
edges) and pathways through several edges. I describe the results from these 
analyses below. 

Overall model fit (see Figure 11) 
Figure 11 illustrates the effect estimates and fit indices of the SEM fitted to Cohort 
1 and Cohort 2.  
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Figure 11 
Structural equation model effect estimate diagram from a hypothesised model for the role of physical activity and liver 
fat in glycaemic control. The diagram illustrates effect size of the defined model applied on Cohort 1 (upper panel) and 
Cohort 2 (lower panel) where the arrow thickness is weighted by effect estimate magnitude and colours red and blue 
indicate +ve and –ve estimates respectively.  Arrows not originating from a node represent residual variance. All 
continuous variables normally transformed and adjusted for age, sex, metformin treatment (Cohort 2), study centre, 
total energy-, carbohydrate-, fat-, and protein-intake. PA: MeanVMhpf (physical activity), FG: Fasting Glucose, 2G: 2-
hr Glucose, IS: Oral Glucose Insulin Sensitivity, LF: Liver Fat, PF: Pancreatic Fat, BI: Fasting insulin secretion rate, 
GS: Glucose Sensitivity (insulin secretion per glucose), RS: Rate Sensitivity (early insulin secretion enhancement), P: 
Potentiation Fraction Ratio (late insulin secretion enhancement). CFI: Comparative Fit Index, TLI: Tucker-Lewis Index, 
SRMR: Standardised Root Mean Square Residual. 
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I report the main fit statistics in the context of established cut-offs for adequacy of 
fit, as is common practice. However, because there is controversy about the use of 
fit index cut-offs to decide adequate model fit89, I do not use them to accept or 
reject a hypothesis. 

The comparative fit index (CFI) for the model is 0.88 and 0.95 in Cohort 1 and 2, 
respectively. The Tucker-Lewis index (TLI) is 0.66 and 0.86 in Cohort 1 and 2, 
respectively. CFI and TLI are the main relative fit indexes indicating ‘goodness’ 
of fit, they compare fit relative to a specified model or in this case a null model. 
Their minimum is 0 and maximum 1, with 1 indicating a perfect fit89. The 
accepted cut-off for both indices is >0.95 for a good fit119,120.  

The standardised root mean square residual (SRMR) is 0.07 and 0.045 in Cohort 1 
and 2, respectively. The root mean square error of approximation (RMSEA) is 
0.151 and 0.098 in Cohort 1 and 2, respectively. SRMR and RMSEA are the main 
absolute fit indices indicating ‘badness’ of model fit. The minimum estimate for 
both is 0 and the maximum 1, with 0 indicating a perfect fit89. The accepted cut off 
for bad fit is >0.08 for SRMR and >0.06 for RMSEA121,122. 

For the current analysis, these indices indicate that the model fit is good in Cohort 
2 when assessed by CFI and SRMR. The indices indicate that model fit is good in 
Cohort 1 only when assessed by SRMR. All indices had values indicating that the 
models fitted better in Cohort 2 than Cohort 1, but formal comparisons were not 
done as these estimates are based on different datasets. The apparent better fit in 
Cohort 2 likely reflects that the twin-cycle model is based on data primarily 
including T2D participants. 

Direct effects (see Figure 11, Table 15)  
Nested within the defined model (see figure 6 in materials and methods) are 
multiple regressions within which direct effects (edges) between variables (nodes) 
are estimated. These are listed in Table 15.  
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Table 15 
Individual edge effect estimates for the effect of physical activity and abdominal ectopic fat in glycaemic control within 
a mechanistic model (see Figure 8).   

 

β units are standard deviations. βSE: Standard error. All continuous variables normally transformed and adjusted for 
age, sex, metformin treatment (Cohort 2), study centre, total energy-, carbohydrate-, fat-, and protein-intake. 

Physical activity direct effects (see Figure 11, Table 15)  
PA is associated with insulin sensitivity after adjustment for liver fat in both 
cohorts. PA is inversely associated with basal insulin secretion after adjustment for 
fasting glucose and insulin sensitivity in both cohorts. PA is associated with 
fasting glucose after adjustment for insulin sensitivity, glucose sensitivity, rate 
sensitivity and potentiation fraction ratio in Cohort 1.  

Outcome Node Parent Node (edge) β βSE P β βSE P
OGIS

Liver Fat (lf1) -0.20 0.04 <0.001 -0.10 0.07 0.127
Mean hpfVM (pa1) 0.27 0.03 <0.001 0.21 0.05 <0.001

Liver Fat
Basal Insulin Secretion (bi1) 0.43 0.04 <0.001 0.47 0.05 <0.001

Mean hpfVM (pa2) -0.04 0.03 0.225 -0.06 0.04 0.21
Basal Insulin Secretion

Fasting Glucose (fg1) -0.09 0.03 0.006 -0.22 0.06 0.001
OGIS (is1) -0.68 0.04 <0.001 -0.64 0.07 <0.001

Mean hpfVM (pa3) -0.13 0.03 <0.001 -0.11 0.04 0.01
Fasting Glucose

Mean hpfVM (pa4) 0.10 0.03 <0.001 0.03 0.03 0.382
OGIS (is2) -0.76 0.03 <0.001 -0.74 0.03 <0.001

Glucose Sensitivity (gs1) -0.25 0.02 <0.001 -0.30 0.03 <0.001
Rate Sensitivity (rs1) -0.10 0.02 <0.001 -0.06 0.03 0.068

Potentiation Fraction Ratio (p1) 0.15 0.02 <0.001 0.02 0.03 0.53
Pancreas Fat

Liver Fat (lf2) 0.17 0.03 <0.001 0.03 0.05 0.567
Mean hpfVM (pa5) -0.05 0.03 0.1 -0.01 0.05 0.91

Glucose Sensitivity
Pancreas Fat (pf1) -0.04 0.05 0.36 0.03 0.05 0.599
Mean hpfVM (pa6) -0.08 0.04 0.032 -0.08 0.05 0.12

OGIS (is3) -0.14 0.04 <0.001 -0.02 0.05 0.773
Rate Sensitivity

Pancreas Fat (pf2) 0.03 0.04 0.489 -0.11 0.05 0.038
Mean hpfVM (pa7) -0.12 0.04 0.002 -0.15 0.05 0.004

OGIS (is4) -0.12 0.04 0.002 -0.05 0.05 0.365
Potentiation Fraction Ratio

Pancreas Fat (pf3) -0.07 0.05 0.148 -0.07 0.05 0.203
Mean hpfVM (pa8) 0.08 0.04 0.032 0.11 0.05 0.032

OGIS (is5) 0.13 0.04 0.001 -0.07 0.05 0.177
2-hr Glucose

OGIS (is6) -0.59 0.04 <0.001 -0.65 0.05 <0.001
Fasting Glucose (fg2) -0.08 0.04 0.035 0.09 0.05 0.065

Glucose Sensitivity (gs2) -0.22 0.03 <0.001 -0.37 0.03 <0.001
Rate Sensitivity (rs2) -0.01 0.03 0.832 -0.07 0.03 0.015

Potentiation Fraction Ratio (p2) -0.24 0.03 <0.001 -0.23 0.03 <0.001
Mean hpfVM (pa9) -0.01 0.03 0.724 -0.04 0.03 0.254

Cohort 1 (Prediabetes) Cohort 2 (Diabetes)



68 

PA is inversely associated with glucose sensitivity and rate sensitivity after 
adjustment for pancreatic fat and insulin sensitivity in Cohort 1. PA is associated 
with potentiation fraction ratio after adjustment for insulin sensitivity and 
pancreatic fat in both cohorts.  

There were two key associations postulated by the twin-cycle hypothesis that I do 
not observed here. First, PA is not associated with liver fat after adjustment for 
basal insulin secretion in either cohort. However, PA was associated with liver fat 
in pairwise associations.  Second, PA is not associated with 2-hr glucose after 
adjustment for insulin sensitivity, fasting glucose, glucose sensitivity, rate 
sensitivity and potentiation fraction ratio in either cohort. PA was associated with 
2-hr glucose in pairwise associations. These two differences may be due to 
indirect pathway effects, i.e. mediation pathways. 

Liver cycle direct effects (see Figure 11, Table 15)  
Insulin sensitivity is inversely associated with liver fat after adjustment for PA in 
Cohort 1. Liver fat is associated with basal insulin secretion after adjustment for 
PA in both cohorts. Basal insulin secretion is inversely associated with fasting 
glucose after adjustment for PA and insulin sensitivity in both cohorts. Basal 
insulin secretion is also inversely associated with insulin sensitivity after 
adjustment for PA and fasting glucose in both cohorts.  

Fasting glucose is inversely associated with insulin sensitivity after adjustment for 
PA, glucose sensitivity, rate sensitivity and potentiation fraction ratio in both 
cohorts.  

2-hr glucose is inversely associated with insulin sensitivity after adjustment for 
PA, fasting glucose, glucose sensitivity, rate sensitivity, and potentiation fraction 
ratio in both cohorts. 

Pancreas cycle direct effects (see Figure 11, Table 15)  
Pancreatic fat is associated with liver fat after adjustment for PA in Cohort 1. Rate 
sensitivity is inversely associated with pancreatic fat after adjustment for PA and 
insulin sensitivity in Cohort 2.  

Fasting glucose is inversely associated with glucose sensitivity after adjustment 
for PA, insulin sensitivity, rate sensitivity, and potentiation fraction ratio in both 
cohorts. Fasting glucose is inversely associated with rate sensitivity after 
adjustment for PA, insulin sensitivity, glucose sensitivity, and potentiation fraction 
ratio in Cohort 1. Fasting glucose is associated with potentiation fraction ratio 
after adjustment for PA, insulin sensitivity, glucose sensitivity, and rate sensitivity 
in Cohort 1.  
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2-hr glucose is inversely associated with glucose sensitivity after adjustment for 
PA, insulin sensitivity, rate sensitivity, and potentiation fraction ratio in both 
cohorts. 2-hr glucose is inversely associated with rate sensitivity after adjustment 
for PA, insulin sensitivity, glucose sensitivity, and potentiation fraction ratio in 
Cohort 2 only. 2-hr glucose is inversely associated with potentiation fraction ratio 
after adjustment for PA, insulin sensitivity, glucose sensitivity, and rate sensitivity 
in both cohorts. 

Potentiation fraction ratio is not associated with pancreatic fat after adjustment for 
PA and insulin sensitivity in either cohort. Note that potentiation fraction ratio is, 
however, associated with pancreatic fat in pairwise associations in Cohort 1. This 
may reflect the compensatory capacity of beta-cells in the prediabetic state, 
depending on the degree of insulin sensitivity, which was not considered in the 
pairwise associations. 

Pathways (see Figure 11, Table 16)  
Mediation analyses were carried out to estimate indirect effects of PA on fasting 
glucose, 2-hr glucose, liver fat and insulin sensitivity. This was only carried out on 
pathways composed of edges where we observe statistically significant direct 
effects, as indicated in Table 16.  

Table 16 
Pathway (mediation) effect estimates for the association of physical activity with glycaemic control within a 
mechanistic model (see Figure 7). 

 

β units are standard deviations. βSE: Standard error. All continuous variables normally transformed and adjusted for 
age, sex, metformin treatment, study centre, total energy-, carbohydrate-, fat-, and protein-intake. 

Physical activity and the liver fat cycle (see Figure 11, Table 16)  
PA is inversely associated with liver fat through pathway PA→BI→LF in both 
cohorts. PA is inversely associated with liver fat through pathway 
PA→IS→BI→LF in both cohorts. PA is associated with insulin sensitivity 
through pathway PA→BI→LF→IS in Cohort 1.  

Outcome Node Edge Path β βSE P β βSE P
Fasting Glucose PA→IS→FG -0.204 0.026 <0.001 -0.158 0.039 <0.001

2-hr Glucose PA→IS→2G -0.157 0.022 <0.001 -0.137 0.035 <0.001
Liver Fat PA→IS→BI→LF -0.079 0.014 <0.001 -0.063 0.019 0.001
Liver Fat PA→BI→LF -0.057 0.013 <0.001 -0.053 0.021 0.012

OGIS PA→BI→LF→IS 0.011 0.003 0.001
Fasting Glucose PA→BI→LF→IS→FG -0.008 0.002 0.001

2-hr Glucose PA→BI→LF→IS→2G -0.007 0.002 0.001
Fasting Glucose PA→GS→FG 0.020 0.010 0.036
Fasting Glucose PA→RS→FG 0.012 0.005 0.011
Fasting Glucose PA→P→FG 0.012 0.006 0.043 0.002 0.004 0.546

2-hr Glucose PA→GS→2G 0.029 0.019 0.124
2-hr Glucose PA→RS→2G 0.001 0.003 0.833 0.011 0.006 0.064
2-hr Glucose PA→P→2G -0.020 0.009 0.037 -0.026 0.013 0.038

Cohort 1 (Prediabetes) Cohort 2 (Diabetes)
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Physical activity, the liver fat cycle and fasting glucose (see Figure 11, Table 16)  
The associations of PA with estimates of glycaemic regulation are mostly 
mediated by parameters in the liver fat cycle. PA is inversely associated with 
fasting glucose through pathway PA→IS→FG in both cohorts. PA is inversely 
associated with fasting glucose through pathway PA→BI→LF→IS→FG in 
Cohort 1. 

Physical activity, the liver fat cycle and 2-hr glucose (see Figure 11, Table 16) 
PA is inversely associated with 2-hr glucose through pathway PA→IS→2G in 
both cohorts. PA is inversely associated with 2-hr glucose through pathway 
PA→BI→LF→IS→2G in Cohort 1. 

Physical activity, beta-cell function and fasting glucose (see Figure 11, Table 16) 
The association of PA with glycaemic regulation is also mediated by beta-cell 
function parameters in the pancreatic fat cycle. PA is associated with fasting 
glucose through pathway PA→GS→FG in Cohort 1. PA is associated with fasting 
glucose through pathway PA→RS→FG in Cohort 1. PA is associated with fasting 
glucose through pathway PA→P→FG in Cohort 1. 

Physical activity, beta-cell function and 2-hr glucose (see Figure 11, Table 16) 
PA is associated with 2-hr glucose through pathway PA→GS→2G in Cohort 1 
only. PA is inversely associated with 2-hr glucose through pathway PA→P→2G 
in both cohorts.  

Discussion of combined results in the context of current literature 
The association between PA and glycaemia being mediated by insulin sensitivity 
is an established mechanism, as the American College of Sports Medicine 
(ACSM) indicate in their position statement112,123-126.  

While the relationship we observe between liver fat and glycaemic control has 
been seen in several studies115,127,128, there are some noteworthy novel insights 
provided by our analyses. We observe a strong relationship between PA and 
insulin sensitivity in both cohorts, in terms of both pairwise and direct effects 
nested within the SEM. In the pairwise association analyses, we observe strong 
relationships between liver fat, PA and insulin sensitivity. However, when the 
edge between liver fat and insulin sensitivity in the SEM was adjusted for PA, the 
association between liver fat and insulin sensitivity is no longer statistically 
significant. Similarly, the association between PA and liver fat was not statistically 
significant, which would be the case if the association between PA and liver fat is 
mediated by another parameter in the model. The pathway analysis indicates that 
insulin sensitivity and basal insulin secretion mediate the effects of PA in liver fat. 
This is in agreement with previous commentaries49. In the RAED2 study by 
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Bacchi et al.129, 31 middle-aged adults with either non-alcoholic fatty liver disease 
or T2D were followed-up during two separate four-month exercise interventions 
of aerobic and resistance exercise. The authors found that the aerobic exercise 
intervention reduced their liver fat content and increased their insulin sensitivity.  

In another investigation based on the RAED2 study, Bacchi et al.130 report an 
improvement in oxidative capacity following the aerobic exercise intervention, 
which may reflect a greater capacity for fat oxidation. This may be a result of 
aerobic exercise training, which would fit with the notion of the athlete 
paradox39,131,132 and, as Brouwers et al.49 suggest, through increased FFA uptake 
by muscle. A study by Shaw et al. show that an endurance exercise intervention 
increased intramuscular triglyceride content despite no change in glycaemic 
control parameters in participants with T2D (i.e. fasting glucose, fasting insulin, 2-
hr glucose, HbA1c and HOMA index). In a randomised controlled trial, 100 
participants with a mean age of 71 years from the Hertfordshire Cohort Study took 
part in 36 × 1h cycling sessions over 12 weeks133. The researchers found that the 
intervention arm decreased liver fat, risk for glycaemic dysregulation and 
increased aerobic capacity compared with the control arm. The study by Shaw et 
al.132, the RAED2 study129, and the RCT using Hertfordshire Cohort Study 
participants133 were composed of older participants, similar to the two cohorts in 
IMI DIRECT. In these studies, exercise was associated with increased insulin 
sensitivity, as would be expected if the effect was mediated by insulin sensitivity. 
This is similar to what we observe in the IMI DIRECT cohorts. Unfortunately, 
neither study tested to see if the magnitude of reduction in liver fat was reduced 
following adjustment for insulin sensitivity, which could be indicative of 
mediation.  

We find an inverse relationship between PA and glucose sensitivity, as well as rate 
sensitivity in both the prediabetic and T2D cohorts, which was evident in both the 
pairwise and the multivariate models. We also observed that PA paths mediated by 
glucose sensitivity, rate sensitivity and PFR have a small but significant positive 
association with fasting glucose in Cohort 1. However, we see that PA is inversely 
associated with 2-hr glucose through PFR in both cohorts. Importantly, the direct 
effect estimates of PA on the beta-cell function parameters modelled in the SEM 
are adjusted for insulin sensitivity, indicating that there may be other factors 
mediating this relationship. There are potential explanations for this in the 
literature. The relationship between PA and beta-cell function is less commonly 
reported, but has been shown before. It may be less commonly reported because, 
counter intuitively, exercise decreases insulin secretion both during exercise134 and 
in an exercise-trained state135-138. This would result in an inverse association 
similar to what we observe in our analyses. In the European RISC study139, 549 
adult men and women with three year follow-up data showed similar findings. 
This study found that the 3-year increase in insulin secretion was of a lesser extent 
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in participants who spent more time doing moderate or vigorous PA. In the 
exercising state, lower insulin secretion is not a detrimental attribute, as insulin 
inhibits hepatic gluconeogenesis and adipose tissue from releasing FFA, both of 
which are vital sources of energy during exercise. The apparent chronic nature of 
the PA-insulin secretion association may be due, in part, to repeated exposure to 
adrenaline, which increases during and after exercise compared with the basal 
state140. As previously discussed, exercise-trained individuals have a greater 
capacity to use FFA as an energy source, and do not develop insulin resistance 
despite increasing uptake of FFA into muscle39,131,132.  

In this analysis, we observe relatively little effect of pancreatic fat on beta-cell 
function parameters (In SEM only rate sensitivity in Cohort 2, and in pair-wise 
correlations only PFR in Cohort 1), which to some extent contradicts prior reports, 
including those describing the twin-cycle model of T2D pathogenesis. This might 
be because it is difficult to accurately estimate pancreatic fat content. In DIRECT, 
we use a multiecho MRI method to measure both liver fat and pancreatic fat, as 
described in the Materials and Methods section of this thesis and elsewhere71,141. 
Measuring pancreatic fat is more complex than liver fat and, if not done correctly, 
can lead to spurious results114. In trials carried out by the group who formulated 
the twin-cycle model47,48, researchers used a ‘three-point-Dixon’ method142. This 
method differs from the multiecho method, in that the Dixon method focuses on a 
signal phase for fat and a signal phase for water within voxels71. By contrast, 
multiecho uses a series of echoes from which oscillations in signal decay give an 
indication of water and fat content on the whole image rather than a voxel. This 
means you get an estimate from the whole pancreas rather than defined voxels. 
The pancreas is not regularly shaped, which may make measurement of ectopic fat 
difficult to estimate near the boundary of the organ. Macauley et al.113 report in a 
study of 41 T2Ds and 14 controls that the pancreas in the T2D group was typically 
serrated and involuted. An abstract and poster, presented this year at the European 
Association for the Study of Diabetes116, quantitatively assessed the irregularity of 
the pancreas and its relationship with recovery from T2D after a very low calorie 
diet (in the same population as Steven et al.48). It was found that shape irregularity 
was decreased in participants who recovered their early phase insulin secretion 
following the very low calorie diet, compared to those who did not recover. If our 
method has increasing measurement error for pancreatic fat when the pancreas has 
a more irregular shape, and the irregular shape is related to beta-cell function, it is 
possible that organ shape irregularity causes confounding in the DIRECT 
measurements. On the other hand, in the second very low calorie diet trial48, 
responders to the intervention arm show a reduction in pancreatic fat and an 
increase in early phase insulin response during the very low calorie diet 
intervention phase (0.12±0.04 to 0.26±0.04, P = 0.03).  This corresponds to the 



73 

direct effect estimate of pancreatic fat association with rate sensitivity (our beta 
cell parameter for early phase insulin secretion enhancement143) in Cohort 2.  

Limitations 

One weakness of this analysis is that it is cross-sectional. This makes an 
association between any two variables open to reverse causality. However, in the 
definition of a SEM, we assign directionality to the relationships we test based on 
a hypothesis built on evidence, which follows a biologically plausible pathway144, 
thus minimizing the extent to which reverse causality is likely to occur.  

In the absence of longitudinal data (which is not yet available in DIRECT), we 
compare effects obtained in two populations (DIRECT cohorts 1 and 2) at 
different stages (before and after the onset of T2D). However, despite the cross-
sectional nature of the studies, the high similarity of the protocols used in the two 
cohorts facilitates a degree of direct comparisons between the disease stages. This 
is rarely possible in other settings, as protocols usually differ between cohorts, 
which renders comparisons of the nature undertaken here prone to bias.  

Because we did not assess all variables in the original twin-cycle model, it was not 
possible to determine whether insulin resistance inhibits hepatic gluconeogenesis. 
It was also not possible to determine if hyperinsulinaemia increased de-novo 
lipogenesis, very low density lipoprotein circulation and pancreatic fat. These 
differences in the model we defined and the original twin-cycle model may also 
explain why some of the relationships were not seen.  

It is also possible that the methods used here to correct for non-normally 
distributed data (blanket rank normal transformation of continuous variables) and 
to control for confounding are overly conservative. These methods make effect 
estimates of associations between variables easier to compare and more robust, but 
makes the magnitude difficult to relate to results from other studies. In this study 
however, the main aim is to establish robust effect estimates for the relationships 
within the twin-cycle model which favour the methods adopted. 

Paper 4 Conclusions 

This analysis tests the previously hypothesised twin-cycle model of T2D 
pathogenesis30,31 in a free-living epidemiological setting in participants before and 
after the onset of T2D. Moreover, this analysis integrates the assessment of overall 
model fit, direct effects and pathway effects of relationships between parameters 
in the model, by testing them as nested within the same multivariate model. 
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The results from these analyses support the veracity of the twin-cycle hypothesis 
as a whole. We observe strong relationships in the liver cycle but only weaker 
ones in the pancreatic cycle, possibly due to the difficulty in assessing pancreatic 
fat. We find that the relationship between PA and glucose regulation is mainly 
mediated by insulin sensitivity, but also to a lesser extent by beta-cell function. 
The relationship between PA and liver fat is shown to be mediated by whole body 
insulin sensitivity and basal insulin secretion. Notably, we also observe a 
relationship between insulin sensitivity and beta-cell function in the prediabetic 
cohort but not in the T2D cohort, which likely reflects the insulin secretory 
capacity reserve in the former cohort. 

Summary and overall conclusions 

My major interest has been the role of PA in glycaemic control, before and after 
the onset of T2D. During my PhD, I undertook analyses using existing cohort data 
from Sweden (from the GLACIER Study) and in two newly established European 
prospective cohorts within the IMI DIRECT consortium; for the DIRECT Study, I 
have been centrally involved in project coordination, planning and data collection, 
as well as data QC and processing. I have authored and co-authored 10 papers 
during my PhD, but the four papers included in my thesis are representative of my 
primary area of interest and work I have been centrally involved in for the past 
few years.  

In Paper 1, I carried out analysis in an existing population-based prospective study 
called the GLACIER Study. The cohort consists of around 20,000 participants 
nested within the ongoing Västerbotten Health Survey in the county of 
Västerbotten in Sweden. Participants are invited to attend a primary healthcare 
centre in the year of their 30th, 40th, 50th and 60th birthdays for a thorough health 
examination. Of the 20,000 GLACIER participants, about 6,000 currently have 
follow-up data and of these, around 3,500 participants were eligible for the current 
analysis. The aim was to compare the predictive ability of established genetic risk 
loci and lifestyle risk factors for the incidence of impaired glycaemic control, T2D 
and obesity. We found that:  

• Lifestyle and genetic factors have comparable predictive ability for the 
incidence of IFG (ROC AUC 63% and 66%, respectively), IGT (ROC 
AUC 64% and 61%, respectively), T2D (ROC AUC 75% and 74%, 
respectively), and obesity (ROC AUC 68% and 72%, respectively).  

• Adding information on genetic risk factors to the lifestyle model improved 
predictive ability for IFG, T2D and obesity (ROC AUC 68%, 80% and 
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79%, respectively). Genetic factors did not improve the predictive ability 
for IGT incidence, possibly because only nine SNPs were available for 
this trait.  

• The addition of genetic risk factors to the lifestyle prediction model 
improved net reclassification by 64% for obesity, 58% for T2D and 36% 
for IFG. This illustrates that combining information on lifestyle and 
genetic factors improves the accuracy of models focused on predicting 
IFG, T2D and obesity. 

• No previous studies had shown to what extent genetic factors can add 
predictive value beyond well-established lifestyle factors. We demonstrate 
that they can. The reason this has not been more clearly demonstrated is 
most likely because previous clinical factor models have included 
intermediate phenotypes, which have encompassed some of the genetic 
risk. 

Papers 2 and 3 describe the output of the data collection aspect of my PhD, 
through my central involvement in the coordination of two new epidemiological 
cohorts within the IMI DIRECT consortium; in Paper 2, I overview the design and 
rationale of the two new glycaemic deterioration prospective cohorts; I describe 
the baseline characteristics of the cohorts in Paper 3. Below, I summarise a few 
key points arising from this work:  

• The DIRECT Consortium was formed under the banner of the Innovative 
Medicines Initiative, a joint undertaking between the EU, European 
academic institutions, and pharmaceutical companies that forms part of 
the EU’s Seventh Framework Programme. 

• The aim of DIRECT is to identify novel biomarkers for glycaemic 
deterioration before and after the onset of T2D. To facilitate this work, we 
are undertaking two new prospective cohort studies: Cohort 1 
‘Prediabetes’ and Cohort 2 ‘T2D’. 

• Both cohorts are prospective with main visits at baseline, 18 months, 36 
months (Cohort 2), and 48 months (Cohort 1). Both cohorts are 
comprehensively phenotyped with assessments for standard clinical 
characteristics, glycaemic control and beta-cell function (using 
fsOGTT/MMTT), regional adiposity (by MRI), self-reported diet intake, 
PA (by tri-axial accelerometry), and multiple omics, including genomic, 
transcriptomic, metabolomic, proteomic and faecal microbiome.  
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Cohort 1 ‘Prediabetes’. 
• Around 2,300 participants were identified using a glycaemic deterioration 

risk prediction algorithm (DIRECT-DETECT) and recruited from a 
sampling frame of around 24,000 adults living in or near Kuopio 
(Finland), Malmö (Sweden), Amsterdam (Netherlands) and Copenhagen 
(Denmark).  

• Using ADA-2011 glycaemic categories for prediabetes, 22% were NGR, 
24% had iIA1c, 16% iIFG, 2% iIGT, and 36% cIGR.   

• Statistics are presented as mean±SEM; P-values are shown to illustrate 
differences by glycaemic strata within the cohort. 76% of participants 
were male, age 62±0.1 years. Age, sex and centre adjusted means were: 
BMI = 28.7±0.2 kg/m2 (P<1.6×10-21); fasting glucose was 5.5±0.02 
mmol/l (P<2.5×10-295); glucose sensitivity was 112±2 pmol/min/m2/mM 
(P=9.8×10-15); oral glucose insulin sensitivity was 381±2 ml/min/m2 
(P=6.6×10-165); and liver fat was 5.6±0.6 percent (P =1.9×10-6).  

Cohort 2 ‘T2D’ 
• Around 850 participants identified from primary care centres and 

associated registries were recruited to study centres in Dundee (UK), 
Exeter (UK), Newcastle (UK), Malmö (Sweden), Amsterdam 
(Netherlands) and Copenhagen (Denmark).  

• 66% of the recruited participants were lifestyle treated (LS) and 34% were 
metformin + lifestyle treated (Met+LS). 

• Statistics are presented as mean±SEM; P-values are shown to illustrate 
differences by treatment strata within the cohort. Age, sex and centre 
adjusted means for: BMI was 30.4 ±0.2 kg/m2 (P=0.4); fasting glucose 
was 7.1±0.06 mmol/l (P=0.012); glucose sensitivity was 81±3 
pmol/min/m2/mM (P=0.004); oral glucose insulin sensitivity was 300±3 
ml/min/m2 (P =0.09); and liver fat was 8.5±0.3 percent (P =9.8×10-4). 

Towards the end of my PhD, I used the newly collected IMI DIRECT cohorts 
described in Papers 2 and 3 to perform the analysis presented in Paper 4. Here, I 
tested the hypothesised twin-cycle model for the pathogenesis of T2D, proposed 
by professor Roy Taylor. I also estimated whether the effect of PA in glycaemic 
control is likely to operate through factors in this pathway. In this study, I found 
that:  

• The majority of the relationships postulated in the twin-cycle model were 
replicated in pairwise correlation analyses, with the exception of the 
associations relating to pancreatic fat in general, and in particular its 
correlations with parameters of beta-cell function. This was the case in 
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both the prediabetic and T2D cohort. PA was associated with almost all 
parameters in the twin-cycle model in both cohorts.  

• A twin-cycle model, defined as closely as possible to the original model 
and using only measured variables, was fitted as an SEM using data from 
Cohort 1 and Cohort 2. Fit statistics indicated better fit of the model in 
Cohort 2 than Cohort 1.  

• The majority of the main effect associations between variables nested 
within the SEM (as postulated by the hypothesised twin-cycle 
relationships) were also replicated, with the exception of edges to and 
from pancreatic fat. A review of the literature and recent presentations at 
international conferences suggest this may be due to the irregular shape of 
the pancreas in diabetes, which has been associated with poor beta-cell 
function, which in turn might cause measurement error.  

• Pathway analyses indicated that the relationship between PA and 
parameters of glycaemic control are mainly mediated by the association 
between PA and insulin sensitivity. The analyses also show that the 
association between PA and liver fat is mediated by insulin sensitivity and 
basal insulin secretion. We also observed that PA has a small inverse 
association with glucose sensitivity. 

• Most observed associations are directionally consistent and of similar 
magnitude in both Cohort 1 and Cohort 2. There is one main difference, 
however: in Cohort 1 (but not in Cohort 2), we observe associations 
between insulin sensitivity and beta-cell function parameters. This likely 
reflects the insulin secretion capacity reserve present in people without 
diabetes, which enables adequate compensatory insulin secretion in the 
face of insulin resistance, which people with manifest diabetes cannot 
achieve.  

Future Perspective  

The challenge 

The mechanisms of metabolic dysregulation are composed of a network of factors 
and their causal effects on each other. Lifestyle risk factors, such as physical 
inactivity and diet, are considered primordial risk factors and origins of such 
pathways. They stimulate a cascade of metabolic responses. These responses 
depend on genetic predisposition, as well as acute and chronic environmental 
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stimuli. Thus, the factors that regulate metabolism and affect T2D risk are not only 
multifactorial, but also dynamic, making adequate characterization of these 
processes extremely challenging. Typically, the data we use to study T2D are 
selective snapshots of this complex system, and its dynamic nature is rarely 
captured. Failing to measure everything is not necessarily a problem if all the 
unmeasured stimuli remained constant, but this is usual not the case in a 
population study. An overwhelming majority of the genetic diversity of the human 
race can be attributed to approximately one million genetic variants (a seemingly 
large number, yet still only about 0.03% of the whole human genome); of these 
65, 36 and 9 SNPs have been robustly associated with T2D susceptibility, fasting 
glucose, and 2-hr glucose levels, respectively. Varying degrees of physical 
inactivity and healthfulness of our diet also exposes us to differentiating lifestyle 
risk factors. Furthermore, measurements are not made simultaneously under the 
same conditions. As these factors affect potential outcomes of interest, the 
unmeasured and unaccounted for factors add error to our models. This challenge 
necessitates a more complex and comprehensive approach to address the dynamic 
system leading to the onset of T2D. 

Thankfully, scientific advances are allowing us to overcome these challenges more 
efficiently all the time. Cheaper, more precise measures are allowing us to make 
more comprehensive assessments in greater sample sizes. The advances from the 
GWAS era are a prime example of this. Development of arrays and sequencing 
technologies mean that increasingly detailed assessments can be made in multiple 
omic levels such as transcriptome, proteome, epigenome, metabolome and 
microbiome. Phenotypic measures, too, have advanced with more accurate and 
cheaper assessments of body composition from MRIs, beta-cell function 
modelling from frequently sampled oral glucose tolerance tests, and objectively 
measured physical activity from continuously worn triaxial accelerometry.  

Technological advances make it possible to obtain more frequent and higher 
resolution snapshots of disease biology than ever before. But such data are 
extremely complex, to an extent where conventional modelling approaches are 
insufficient. Thus, the new technologies are only valuable if advances in data 
analysis methods and computing power are commensurate. Indeed, high 
performance computers are about a thousand times more powerful today than in 
2003 when the human genome was first sequenced. Moreover, even the most 
advanced technologies are only as good as the materials to which they are applied 
and the conditions under which the materials were obtained. Until recently, the 
small subfields of systems biology and bioinformatics have emerged as central in 
modern epidemiology and with this, new analytical tools have become more 
accessible. The application of interdisciplinary methods such as structural equation 
modelling, traditionally used in social sciences, and methods for quantifying 
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pancreatic morphology developed by geographers, is also aiding data processing 
and analysis.  

My strategy for addressing the challenge 

I intend to continue on the topic surrounding the role of lifestyle factors, such as 
physical activity, on metabolic regulation in the pathogenesis of T2D. Building on 
the findings and methods I have used during my PhD, I will apply a systems 
biology-oriented approach to existing and new datasets, and continue to build 
comprehensive datasets for future use.  

Background   
Based on the published evidence and the results presented in this thesis, there is a 
mounting body of evidence for the following relationships: 

• Peripheral insulin resistance raises insulin levels 
• Intramyocellular lipid content increases muscle insulin resistance 
• Intrahepatic lipid decreases insulin mediated suppression of 

gluconeogenesis 
• Insulin signals de-novo lipogenesis 
• de-novo lipogenesis increases liver fat 
• High fat oxidation attenuates intramyocellular lipid content meditaed 

insulin resistance 
• PA increases peripheral insulin sensitivity 
• PA reduces liver fat 
• PA increases fat oxidation in muscle 
• PA reduces insulin secretion 

While the evidence for these relationships increase, as to how they relate to each 
other within a system is poorly understood; unravelling these relationships are 
crucial to understanding the aetiology of disease. In Paper 4 of this thesis, we 
begin to unravel these effects in a cross-sectional setting.  
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Potential Project Outlines 
Below are some potential research projects which I intend to pursue in the future: 

1. Do the relationships identified in Paper 4 hold in a longitudinal 
setting? For example, if habitual PA increased, does IS increase as the 
cross-sectional results suggest? As longitudinal data becomes available in 
DIRECT, it may be possible to test this using similar structural equation 
modelling methods. In the DIRECT cohorts, the strategy has been to 
prospectively make comprehensive assessments to form as complete a 
snapshot of the pathogenic system as possible. Moreover, this has been 
done in two cohorts where glycaemic deterioration is expected.  

2. Do the directions of the relationships hypothesised in Paper 4 hold in 
causal inference analyses? Using genetic instrumental variables in a 
Mendelian randomisation framework it would be possible to assess the 
causal link between insulin sensitivity and liver fat. This would potentially 
require a very large sample size, which may be possible in the UK 
BioBank public dataset: a very large dataset at around 500,000 
participants, also a comprehensively phenotyped dataset with MRI’s and 
objectively measured PA (both in a subset).  

3. Does PA modify the effect of genetic markers indicating a high degree 
of heterogeneity in the variance between genotypes? The study and 
detection of gene-environment interactions can require a very large sample 
size depending on the frequency and effect size of the genotype in 
question. However, prioritizing SNPs which might be prone to be genetic 
components in gene-environment interactions by calculating variance 
heterogeneity by genotypes could be a feasible strategy to decrease the 
sample size needed to detect gene-environment interactions. Using this 
approach to first identify SNPs, and a genotype-based recall trial 
framwork to identify a sufficient number of participants with and without 
the risk allele, a gene-environment interaction trial could be performed.  
The Oxford BioBank would be an ideal candidate for this type of analysis. 
The Oxford BioBank is a well phenotyped dataset, currently of about 7500 
participants with detailed body composition and genetic assessments. 
Importantly, the Oxford BioBank participants have given consent to be re-
invited for further studies based on their genetic results allowing 
genotype-based-recall studies. 
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Popular science summary 

Like any living organism, we need energy to survive. We get energy primarily 
from the food we eat. Once digested, the macronutrients (carbohydrates, protein 
and fats) are used to fuel movement and repair damaged tissues, or stored for 
future use throughout the body. Carbohydrates are comprised of carbon, hydrogen 
and oxygen structures in simple or complex forms. The complexity of the 
carbohydrate influences the rate at which it can be digested and metabolized. 
Glucose (sugar), for example, has a simple structure, providing energy that can be 
rapidly metabolised. When carbohydrates are digested, glucose is released and 
enters the blood stream where it is transported around the body. In healthy people, 
the concentration of glucose in the blood is tightly regulated (termed glycaemic 
regulation). Unlike other organs, the brain relies almost exclusively on glucose as 
its fuel. Thus, when blood glucose falls too low (hypoglycaemia), this can cause a 
person to feel faint and dizzy; however, too much bloody glucose 
(hyperglycaemia), when sustained for a long period, can lead to tissue damage 
such as kidney and liver problems, blindness, and foot ulcers (termed diabetes-
related complications). 

Type 2 diabetes (T2D) is a disease where the body loses its ability to regulate 
blood glucose levels. Although many people with T2D can control their blood 
glucose levels by increasing their levels of physical activity, improving their diets, 
and/or taking special medicines, most people with the disease will never fully 
recover their ability to control blood glucose, and many will go on to develop 
diabetes-related complications. Before the 1980s it is estimated that less than 1% 
of the adult population worldwide had T2D, today about 10% of the global 
population has the disease, and one in five people aged 65 years or older is 
affected. Today, around 11% of healthcare costs are attributable to dealing with 
diabetes. 

Unhealthy lifestyles are a major cause of T2D. Specifically, T2D is primarily 
caused by too little physical activity, excessive consumption of energy dense foods 
with poor nutritional content, genetic predisposition, and adverse early life 
exposures. Many other potential causes have also been proposed. Whilst the 
prevalence of T2D has increased dramatically during the past half century, 
people’s genetic characteristics have not changed markedly within this timeframe. 
This suggests that the genetic predisposition to T2D seen in many populations is 
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triggered by lifestyle related factors, specifically those that have emerged in recent 
decades and that are obesogenic.  

Around the world, large clinical intervention trials have demonstrated that a 
healthy lifestyle change in people at high risk of T2D can reduce risk of disease by 
about 60% compared with routine care. This substantial risk reduction for T2D is 
achieved by interventions aimed at weight loss through increasing physical 
activity, reduced caloric intake and improved nutritional content in the diet. The 
role lifestyle plays in the physiological and molecular changes that occur as T2D 
develops are still not well understood. But because healthy lifestyle can be so 
effective at reducing the risk for T2D it’s important that we try to understand the 
mechanisms underlying this, as this may help develop new strategies to prevent or 
treat T2D more effectively. 

Successfully identifying populations at high risk of T2D, and predicting the onset 
and progression of T2D is important because it might allow more effective 
targeting of prevention and treatment efforts. In Paper 1, we show in 3,444 
GLACIER Study participants that the ability of self-reported lifestyle information 
compared with genetic data to predict the development of obesity and loss of 
glycaemic control is similar during 10-years follow-up. We also show that adding 
the genetic risk factors to a prediction model based on lifestyle risk factors further 
increases the predictive ability. 

Scientists have discovered many risk factors that are associated with worsening of 
glycaemic regulation. However, it is often difficult to determine whether these risk 
factors are the cause or consequence of the T2D, confounding our ability to 
pinpoint the specific factors upon which to intervene and precisely how this should 
be done.  

Within a large European consortium called DIRECT (www.direct-diabetes.org), I 
have been centrally involved in the coordination of two new prospective cohort 
studies. In these studies we made comprehensive measurements of risk factors and 
biological markers related to T2D over a three to four year follow-up period. We 
did this in more than 2,000 people at high risk of developing T2D, and another 
850 who had been recently diagnosed with the disease. Our objective is to find 
biomarkers that can be used in the clinical setting as tools to better predict onset, 
progression or response to treatment in T2D. We have placed specific emphasis on 
measuring physical activity accurately and precisely, using wrist worn 
accelerometers. During my PhD I spent half a year at the University of 
Cambridge, where I learned state-of-the-art methods for processing and analysing 
the physical activity data that I used in Papers 3 and 4 of this thesis. In Paper 2, the 
rationale and design behind the two DIRECT cohorts are described, and in Paper 3 
the physiological characteristics from the first main visit in each cohort is 
presented. I anticipate that these papers will help guide scientists to better 
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understand results from other analyses using the DIRECT data, and to design 
subsequent analyses and studies. 

One of the driving factors in the development of T2D is that the cells in the body 
become resistant to the effects of insulin (the main hormone responsible for 
moving glucose from the blood into the body’s cells, where it can be metabolised). 
This happens in combination with a gradual decline in the body’s ability to 
produce insulin. Research by Professor Roy Taylor (the opponent at the defence of 
this thesis) indicates that a greater intake than expenditure of calories from food 
leads to increased levels of fat stored in the liver. This, in combination with 
decreased whole body insulin sensitivity leads to insulin insensitivity in the liver 
too. This is a problem, because the liver acts much like an energy redistribution 
depot, releasing glucose in the fasted state to ensure that blood glucose levels do 
not drop too low. The glucose production by the liver is in part regulated by 
insulin. Insensitivity to insulin in the liver stops it from functioning correctly in the 
fed state, causing it to continue releasing glucose and fats into the blood when it 
shouldn’t. Importantly, whole body insulin sensitivity is increased and fat in the 
liver has been shown to be reduced by physical activity. In Paper 4 we use data 
from the new DIRECT cohorts to investigate the role of physical activity in the 
model of T2D development proposed by Professor Taylor. Here, we show that 
physical activity likely affects glycaemic control and liver fat by improving insulin 
sensitivity.  
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Populärvetenskaplig sammanfattning 

Som allt levande behöver vi energi för att överleva och den får vi främst från 
maten vi äter. Makronäringsämnena i maten (kolhydrater, protein och fett) bryts 
ner i mag-tarmkanalen och dess mindre beståndsdelar används runt om i kroppen 
som bränsle till kroppens rörelser, för att reparera vävnadsskador eller lagras för 
senare användning. Kolhydrater är ett samlingsnamn för stärkelse, kostfibrer och 
olika sockerarter och delas upp i enkla och sammansatta, vilket i sin tur påverkar 
hur snabbt de kan brytas ner av kroppen. Det mesta av kolhydraterna bryts ner till 
glukos (socker) som har en enkel struktur som snabbt kan brytas ner och ge 
kroppens celler energi. När kolhydrater bryts ner frisätts glukos till blodet där det 
transporteras runt i kroppen. I friska människor är mängden glukos i blodet starkt 
reglerat (kallas glykemisk reglering). En anledning är att till skillnad från andra 
organ i kroppen är hjärnan nästan helt beroende av glukos som energikälla. Om 
blodsockernivån är för låg (hypoglykemi) kan man känna yrsel, darrighet och bli 
lättretlig; vid höga blodsockernivåer (hyperglykemi) under en längre tid uppstår 
vävnadsskador som kan leda till lever- och njursvikt, blindhet och fotsår (dessa 
kallas gemensamt diabetesrelaterade komplikationer).  

Typ 2-diabetes (T2D) är en sjukdom där kroppen förlorar möjligheten att reglera 
nivån av glukos i blodet. Även om många människor som utvecklar T2D kan 
kontrollera sin blodsockernivå genom ökad fysisk aktivitet, förbättrad kosthållning 
och/eller med hjälp av läkemedel kommer de flesta aldrig att återfå en fungerande 
blodsockerreglering och utvecklar med tiden diabetesrelaterade komplikationer. 
Man har uppskattat att före 1980 så hade mindre än 1% av världens vuxna T2D, 
idag är siffran runt 10% för vuxna generellt och en av fem över 65 års ålder är 
drabbad. Idag beräknas 11% av sjukvårdskostnaderna gå till diabetesrelaterad 
vård.  

Ohälsosam livsstil är en av huvudorsakerna till T2D. Mer specifikt är T2D 
resultatet av för lite fysisk aktivitet, överkonsumtion av energirik men 
näringsfattig mat, ärftlig riskbenägenhet och ogynnsamma förhållanden under 
foster- och spädbarnstiden. Många andra potentiella orsaker har också föreslagits. 
Medan förekomsten av T2D har ökat dramatiskt under de senaste 50 åren har 
människors genetiska uppsättning under samma tidsperiod inte genomgått några 
dramatiska förändringar. Detta tyder på att den genetiska riskbenägenhet för T2D 
som ses i flera populationer har triggats av livsstilsrelaterade faktorer, speciellt de 
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som blivit mer vanliga de senaste årtiondena och som är obesogena (kan framkalla 
fetma).     

Stora kliniska studier världen över har demonstrerat att människor i riskgruppen 
för T2D som genomför hälsosamma livsstilsförändringar kan minska risken för 
sjukdom med ca 60% jämfört med rutinmässig vård. De positiva resultaten uppnås 
med interventioner som har som målsättning att minska vikten genom ökad fysisk 
aktivitet och reducerat energiintag med förbättrad kosthållning. Hur 
livsstilsfaktorer påverkar de fysiologiska och molekylära förändringar som sker 
under utvecklingen av T2D är fortfarande inte helt kända. Men eftersom en 
hälsosam livsstil så effektivt kan minska risken för sjukdom är det viktigt att vi 
försöker förstå de underliggande mekanismerna då det kan hjälpa oss att utveckla 
nya strategier för att mer effektivt förebygga och behandla T2D. 

Att framgångsrikt identifiera grupper med hög risk att utveckla T2D och kunna 
förutsäga sjukdom och sjukdomsutveckling är viktigt eftersom det kanske skulle 
möjliggöra att förebyggande åtgärder och behandling mer effektivt kunde riktas 
mot de som bäst behöver dem. I det första arbetet i denna avhandling visar vi att 
livsstilsfaktorer mätt med enkät och information kring genetisk riskbenägenhet var 
för sig har likvärdig förmåga att förutsäga försämrad blodsockerkontroll och fetma 
efter 10-års uppföljning hos 3,444 deltagare in GLACIER-studien. Vi visar också 
att möjligheten att kunna förutsäga försämrad blodsockerkontroll och fetma ökar 
om både genetisk och livsstilsrelaterad information tillsammans tas i beaktande.  

Forskare har upptäckt många riskfaktorer kopplade till försämrad glykemisk 
reglering. Men det är ofta svårt att avgöra om dessa riskfaktorer är orsak till eller 
en konsekvens av T2D, vilket gör det svårt att avgöra vilka specifika riskfaktorer 
som vi borde förebygga och hur det skulle gå till.  

Inom ett stort europeiskt konsortium som heter DIRECT (www.direct-
diabetes.org) har jag varit centralt involverad i att samordna två nya prospektiva 
studier. I dessa två studier har vi under tre till fyra års tid samlat in omfattande 
data kring riskfaktorer och biologiska markörer relaterade till T2D hos 
studiedeltagarna. Detta genomfördes i mer än 2000 människor med hög risk men 
som ännu inte utvecklat T2D, och ytterligare 850 människor som nyligen blivit 
diagnostiserad med sjukdomen. Målsättningen med DIRECT är att upptäcka 
biomarkörer som redan i ett tidigt stadium kan visa på en framtida försämring av 
blodsockerkontroll respektive sjukdomsutveckling och som kan användas inom 
sjukvården för att bättra kunna förebygga och behandla sjukdomen. Inom 
DIRECT har vi speciellt fokuserat på att försöka mäta fysisk aktivitet på ett 
korrekt och objektivt sätt genom att använda accelerometrar (monitorer) som bärs 
på handleden. Under min doktorandtid har jag tillbringat sex månader vid 
universitetet i Cambridge där jag lärt mig spjutspetsmetoder för att bearbetat, 
förädlat och analysera de fysisk aktivitetsdata som jag använt i arbete 3 och 4 i 
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min avhandling. I arbete 2 beskrivs bakgrunden till och designen av de två 
kohortstudierna inom DIRECT och i artikel 3 presenteras studiedeltagarnas 
fysiologiska och kliniska data från det första besöket. Min målsättning är att dessa 
artiklar kommer att hjälpa till att orientera forskare så att de lättare förstår 
forskningsresultat som baseras på DIRECT-data och att designa uppföljande 
analyser och studier.    

En av huvudorsakerna till att T2D utvecklas är att kroppens celler förlorar sin 
känslighet för insulins effekt (insulin är ett av de huvudsakliga hormon som ser till 
att glukos transporteras från blodet in i cellen där det kan brytas ner och tillföra 
cellen energi). Detta sker samtidigt som kroppen gradvis förlorar förmågan att 
producera insulin. Forskning av professor Roy Taylor (opponent vid disputationen 
av denna avhandling) visar att ett större intag än förbrukning av kalorier (energi) 
från mat leder till att en ökad mängd fett lagras in i levern. Detta, i kombination 
med en minskad insulinkänslighet i kroppen, leder till insulinkänslighet också i 
levern. Detta är ett problem eftersom levern fungerar som en central för 
omfördelning av energi och utsöndrar glukos till blodet under fasta för att 
säkerställa att blodsockernivån inte blir för låg. Glukosproduktionen i levern är 
delvis reglerad av insulin. En okänslighet för insulin i levern gör att den inte 
längre fungerar normal efter måltid och leder till att den fortsätter att frisätta 
glukos och fetter till blodet när den inte borde. Fysisk aktivitet ökar kroppens 
insulinkänslighet och minskar fettinlagring i levern. I arbete 4 använder vi data 
från DIRECT-studierna för att undersöka vilken roll fysisk aktivitet spelar i den 
modell över sjukdomsutveckling som professor Taylor lagt fram. Vi visar att 
fysisk aktivitet troligtvis påverkar glykemisk kontroll och fettinlagring i levern 
genom att förbättra insulinkänsligheten. 
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