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Preface 

I've always been fascinated by the human body, especially how it reacts to exercise. 
In medical school, I was initially drawn to orthopaedics because I thought it would 
combine my love for exercise and medicine. But I quickly realized that many 
orthopaedic surgeons, who I thought would share my interests, were better at bone 
procedures than really understanding muscle function and exercise physiology. The 
numerous internet jokes about their limited interest in human physiology might not 
be entirely unfounded. 

As the first years medical school progressed, my attention soon shifted. I found 
myself increasingly captivated by metabolic diseases, seeing in them the connection 
between exercise and health that I had been seeking. This led to my thesis on the 
potential of high-intensity training to combat metabolic syndrome. 

It was during this phase that I met Karl Fredrik Eriksson. Starting as an opponent 
during a defence, Karl Fredrik became a significant mentor, a mentorship that would 
shape both my research and future clinical aspirations. Karl Fredrik, with his deep 
knowledge, kindness, and dedication, introduced me to Ola Hansson. Ola H and I 
shared a mutual excitement for scientific discovery, not really for praise, but for 
genuine understanding. This collaboration, initially, took me deeper into lab work, 
where I learned to culture skeletal muscle cells, particularly from Cook Myosite, a 
name now hard to forget. Professor Leif Groop's introduction added another 
dimension. A towering figure in diabetes research, he was both an inspiration and, 
in a lighter vein, a benchmark I hoped to impress. 

Within Ola Hansson's group, I've come to appreciate the important value of joy as 
a driving factor in science. Research has underscored that enjoyment is not just a 
bonus, but an essential component for sustained scientific research and new 
ideas(1). The collective enthusiasm for science in this milieu is palpable, 
continuously reignited by an environment free from inhibitory hierarchies. 

With Ola’s guidance, inspired by the stimulating environment around me, we began 
designing my PhD project. Instead of following a preset out-of-the-box solution. 
We designed the project's foundation from scratch. While the initial blueprint 
underwent several changes over the years, thanks to unforeseen challenges – from 
financial constraints, clinical commitments, to even global pandemics – the 
underlying drive, driven by joy and curiosity, never waned. 
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Alongside my research journey, I took my initial clinical steps. Right out of medical 
school, I registered as a PhD student and engaged in a "Forskar AT", which provided 
the bandwidth to kick off my project. This period was crucial, marked by the 
demanding data collection processes of the MSAT study, culminating in the first 
three papers of my thesis. 

After earning my license to practice medicine, my clinical trajectory took me to 
family medicine, driven by a passion for general health and preventive care. 
However, juggling the intricacies of family medicine with rigorous research proved 
challenging, especially during personal life challenges. Luckily, Karl Fredrik's 
support emerged once more, guiding me towards Internal Medicine at Malmö 
Hospital. This change placed me closer, both in terms of location and clinical 
perspective, to my research work. This change gave me a renewed energy, helping 
me to move forward and finish my PhD project. 

Looking back over these years, it's evident that my journey is both shaped and 
fuelled by invaluable mentorships, clinical experiences, and an underlying curiosity 
about exercise physiology and metabolic disease. My approach to scientific research 
has been that of a generalist—drawing from a breadth of knowledge and attempting 
to integrate these diverse insights into a comprehensive clinical perspective. This 
journey has been as much about the people and experiences as it has been about the 
science. This introduction not only sets the stage for my research but also captures 
the essence of a journey marked by learning, hurdles, and an enduring passion for 
understanding and care. 
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Diabetes: From Basics to Subtypes 

Diabetes is a significant global health concern, with its prevalence, economic 
burden, and social impact escalating over recent decades. The International Diabetes 
Federation's Diabetes Atlas reported that in 2021, there were 537 million adults 
living with diabetes worldwide. This dramatic rise contrasts starkly with the 108 
million adults estimated by the World Health Organization to have diabetes in the 
1980s. Projections suggest this number can increase to 700 million by 2045(2, 3).  

Economically, the global expenditure on diabetes care is expected to surpass $760 
billion USD by 2045(4), with costs related to management and associated loss of 
productivity. In the United States, the economic burden reached over $327 billion 
in 2017(5). 

In Sweden, the situation remains critical. Here we have observed a consistent rise 
in diabetes prevalence, with recent estimates suggesting that approximately 5-6% of 
the adult population is affected(6). A Swedish study from 2016 highlights the 
substantial economic impact of type 2 diabetes complications. Hospital-based care 
for these complications amounted to €919 per person, with 74.7% directly attributed 
to diabetes. Moreover, work absences due to diabetes complications posed an even 
greater cost, reaching €1317 per person, underscoring the broader societal 
implications of the disease(7). 

The economic impact in Sweden aligns with global trends, placing a notable strain 
on its healthcare budget and necessitating rigorous research into understanding and 
managing the disease more effectively. 
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The Type 2 Diabetes Puzzle 
Type 2 diabetes (T2D) is a multifactorial disease with a complex interplay of genetic 
and environmental factors contributing to its development and progression. The 
pathophysiological mechanisms underlying the disease are diverse and 
interconnected, involving insulin resistance, impaired insulin secretion, alterations 
in glucose and lipid metabolism and even inflammation(8, 9). This complex 
diversity has led researchers to continuously search for new tools and approaches to 
better understand and treat the individual factors contributing to T2D(10). 

Insulin resistance at the cellular level results from impaired insulin signalling, 
reducing glucose uptake in tissues like skeletal muscle, adipose tissue, and the liver. 
With skeletal muscle being a crucial site for whole body glucose disposal, any 
disruptions can yield significant consequences on the entire body(11, 12).  

Insulin resistance can eventually lead to hyperglycaemia and the overproduction of 
insulin by pancreatic beta cells to compensate for the reduced insulin sensitivity 
(13). Chronic hyperglycaemia resulting in glucotoxicity can also further impair beta 
cell function, eventually leading to insufficient insulin secretion(14). Additionally, 
alterations in lipid metabolism, such as increased free fatty acid levels, can 
contribute to insulin resistance and beta cell dysfunction through a process known 
as lipotoxicity(14). 

The Impact of Lifestyle 
Lifestyle factors play a significant role in the development of T2D. Obesity, physical 
inactivity, and poor diet are well-established risk factors for the disease (15). These 
factors can contribute to insulin resistance, systemic inflammation, and altered 
metabolism, further exacerbating the disease's pathophysiological mechanisms(16, 
17). A comprehensive understanding of these mechanisms and their clinical 
implications is crucial for tailoring individualized treatments and management 
strategies. 

Historical Milestones 
History of diabetes research dates back to ancient times, when the symptoms of the 
disease were first documented(18). However, it was not until the early 20th century 
when Sir Frederick Banting and Charles Best discovered the role of insulin in 
regulating blood glucose levels, marking a major milestone in diabetes research(19). 
Since then, our understanding of the disease has significantly advanced, leading to 
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the development of the concept around multiple subtypes of diabetes and the 
development of various pharmacological and non-pharmacological interventions to 
manage the condition(20-22). 

Beyond Blood Sugar 
With advances in diabetes treatment, T2D is increasingly being viewed as a risk 
factor for future end stage organ disease, such as cardiovascular disease, 
nephropathy, neuropathy, retinopathy rather than a disease causing significant 
mortality and morbidity itself due to hyperglycaemia(23). Modern pharmacological 
interventions have considerably improved glycaemic control, reducing the risk of 
acute complications such as diabetic ketoacidosis and the hyperosmolar 
hyperglycaemic state(24-26). However, long-term exposure to diabetic factors still 
contributes to the development of end-organ damage and associated complications, 
emphasizing the importance of early identification and individual management of 
people at risk for T2D(27-29). Particularly, complications stemming from 
prolonged insulin resistance, such as liver disease, chronic kidney disease and 
cardiovascular disease demonstrate the critical nature of targeting and 
understanding this condition(30-33). 

Exercise and improved physical fitness are associated with increased insulin 
sensitivity, glucose uptake, and glycogen storage capacity in skeletal muscles(34). 
These improvements are largely due to enhanced muscle insulin signalling and 
glucose transporter 4 (GLUT4) expression, which facilitate glucose uptake and 
utilization in muscle cells(35, 36). Besides physical exercise and/or weight loss, 
there is a scarcity of interventions, such as drugs, that target muscle insulin 
resistance(37, 38). The understanding of muscle insulin resistance is hence not only 
important for its role in diabetes but also its broader implications in metabolic health 
and associated complications. 

Diabetes Subtypes 
Delving deeper into diabetes heterogeneity, Ahlqvist et al. (2018) identified five 
distinct subtypes of diabetes in the ANDIS study, providing a refined classification 
system for a better understanding of the disease. These subtypes are Severe Insulin-
Resistant Diabetes (SIRD), Severe Insulin-Deficient Diabetes (SIDD), Mild 
Obesity-related Diabetes (MOD), Mild Age-related Diabetes (MARD), and Severe 
Autoimmune Diabetes (SAID).  
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Each subtype has unique pathophysiological mechanisms and clinical implications, 
briefly described below. 

Severe Insulin-Resistant Diabetes (SIRD): 
Characteristics: Characterized by insulin resistance. 

Associated Risks: Increased risk of diabetic kidney disease and fatty liver disease 

Severe Insulin-Deficient Diabetes (SIDD): 
Characteristics: Patients display insulin deficiency. 

Associated Risks: Higher risk of diabetic retinopathy. 

Mild Obesity-related Diabetes (MOD): 
Characteristics: Associated with obesity and early onset. 

Associated Risks: Mild metabolic disturbances compared to other subtypes. 

Mild Age-related Diabetes (MARD): 
Characteristics: Characterized by older age at onset. 

Associated Risks: Generally lower risk of complications than SIRD and SIDD. 

Severe Autoimmune Diabetes (SAID): 
Characteristics: Characterized by the presence of GADA and early onset. This 
encompasses individuals typically labelled as T1D and LADA. 

Associated Risks: Poor metabolic control. High prevalence of ketoacidosis 

 

Each subtype offers insights into different diabetes causes and outcomes. 
Importantly, among these subtypes, the Severe Insulin-Resistant Diabetes (SIRD) 
directly underscores the centrality of insulin resistance in its pathophysiology. Using 
these classifications, notably SIRD, as a foundation, this thesis aims to explore 
muscle insulin resistance's wider effects. 

Early-life determinants, epigenetics, and heterogeneity 
in diabetes 
Diabetes, a complex metabolic disorder, presents with significant heterogeneity in 
its subtypes and underlying etiological factors. In Paper IV of this thesis, we 
explored the associations between early-adulthood physical fitness metrics, BMI, 
and the subsequent development of distinct diabetes subtypes. Using Swedish 
registry data, our research revealed that specific diabetes subtypes, notably SIRD 
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and MOD, showed variations in early adulthood physical parameters. These 
findings underscore the importance of early-life determinants in diabetes 
heterogeneity. Our work also emphasizes the translational potential of melding 
register data with genetics, possibly leading to molecular insights behind observed 
phenomena and the value of proactive early detection and targeted intervention. The 
integration of genetic perspectives, such as Polygenic Risk Scores, offers a 
comprehensive view of the intricate interplay of genes and environment in diabetes 
manifestation. 

 

 
Table 1 Regression analysis on the differences in maximal aerobic workload (measured in watts),  
During military conscription testing, among diabetes subtypes (MARD, MOD, SAID, SIDD, SIRD) 
compared to controls. Three models were used: unadjusted (Model 1), adjusted for a known method 
change (Model 2), and further adjusted for BMI (Model 3). Regression coefficients and standard errors 
are shown for each subtype, with significance denoted as *p<0.1; **p<0.05; ***p<0.01. 

Besides physical fitness metrics in early adulthood, other early-life experiences are 
important in shaping the health trajectories of individuals, influencing the risk of 
metabolic conditions. One such determinant in relation to metabolic diseases is birth 
weight. The relationship between birth weight and the subsequent risk of developing 
metabolic diseases in adulthood has been well-documented (39). Specifically, low 
birth weight, possibly indicative of intrauterine growth restriction, is associated with 
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an increased risk of insulin resistance, T2D, and cardiovascular diseases later in life 
(40, 41). The connection is theorized to stem from adaptive changes in fetal 
physiology due to a nutrient-limited environment, anchored in the fetal 
programming concept(42). While fetal programming offers one perspective, it's also 
possible that risks of metabolic diseases originate from maternal metabolically 
unfavourable predispositions. Such biases could result in diminished placental 
efficiency leading to low birth weight, decreased muscle mass, and a decline in 
pancreatic β-cell mass(43). 

Adding to this, recent epigenetic studies show that early-life environmental 
exposures might cause changes in DNA methylation patterns and other molecular 
markers(44). These can adjust gene activity without altering the DNA itself, 
potentially increasing metabolic disease risk.  

By recognizing these early-life determinants, the medical and science community 
can try to craft tailored prevention strategies, emphasizing the importance of a 
comprehensive understanding of diabetes. 

In the coming sections, we will look closely at the role of skeletal muscle in how 
our body uses energy. We'll learn about how exercise affects our bodies and why 
physical activity is important from an evolutionary point of view. By studying the 
details, from taking muscle samples to analysing genes and study epidemiological 
connections between performance and diabetes subtypes I hope to understand better 
how muscle function and exercise relate to insulin sensitivity. Overall, the aim is to 
learn more about muscle insulin resistance, which is important not just for diabetes 
but also for our general health. 
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Skeletal Muscle in Human 
Metabolism 

Anatomy and Function of Skeletal muscle 
Skeletal muscle is the most abundant type of muscle in the human body, constituting 
about 35% of total body weight, containing more than 50% of all body proteins and 
it is responsible for a wide range of functions, including locomotion, posture, and 
metabolic regulation(45). It accounts for around 80% of the post prandial glucose 
disposal in humans. Having a fully functioning insulin response is crucial to 
maintain a non-pathological blood glucose levels(11).  

In general, muscle mass is affected by the equilibrium of protein synthesis and 
breakdown, which respond to known factors like nutrition, hormone levels, physical 
activity, ageing and certain diseases, including cancer(46-48).  

At the cellular level, skeletal muscle is composed of elongated, multinucleated cells 
termed muscle fibers, which contain myofibrils, the functional units responsible for 
muscle contraction. These myofibrils contain the contractile proteins actin and 
myosin, which generate force through filament interaction.  

While the evidence for muscle contraction's molecular basis was present as early as 
the mid-1800s, it wasn't until the 1950s that researchers, including two unrelated 
Huxleys, recognized that striated muscle sarcomeres consist of overlapping filament 
sets that slide past each other during muscle shortening(49, 50). This sliding 
filament theory, initially criticized, is now fundamental to our understanding of 
muscle function, underscoring the consistent principles governing all muscle 
types(51). 

Lund University has also, historically, played a role in advancing our understanding 
of muscle function. Notably, KAP Edman's 1979 work offered valuable insights into 
the dynamics of muscle fiber shortening, further refining our knowledge of the 
sliding filament theory(52). On a related note, KAP Edman's dedication to muscle 
research was truly remarkable. Edman, who spent a considerable part of his 
academic career at Lund University, continued to contribute to the field even in his 
later years, notably publishing a research paper as the sole author at the age of 
88(53). 
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The Power of Exercise 
Regular exercise during diet-induced weight loss in individuals with obesity and 
prediabetes has been shown to yield a significantly greater improvement in whole-
body insulin sensitivity than diet alone. This enhanced insulin sensitivity correlates 
with an increase in muscle gene expression associated with mitochondrial 
biogenesis, energy metabolism, and angiogenesis. Moreover, while diet alone does 
enhance multi-organ insulin sensitivity, incorporating exercise delivers remarkable 
additional benefits on insulin kinetics, underscoring the vital role of physical 
activity in augmenting the therapeutic effects of weight loss(54). 

Recent genome-wide association studies (GWAS) have begun to unveil crucial 
genetic links between skeletal muscle and insulin resistance. Notably, a focus on 
dynamic, post-glucose-challenge measures identified loci related to GLUT4 
regulation in skeletal muscle(55). One standout discovery was the SLC2A4 locus, 
which encodes the GLUT4 transporter. Variations in this gene have been shown to 
impact its role in postprandial glucose uptake in muscle cells, emphasizing the value 
of understanding genetic influences on skeletal muscle's metabolic functions. 

Given the distinct metabolic properties of these muscle fiber types, their role in 
glucose metabolism and insulin sensitivity becomes evident. Exercise interventions 
that promote a shift towards a more oxidative profile can potentially improve 
glucose metabolism and insulin sensitivity, especially in individuals with T2D or 
those at risk(38). 

Moreover, delving deeper into the molecular mechanisms underlying the 
relationship between muscle fiber type composition and glucose metabolism might 
unveil novel therapeutic targets for preventing and managing T2D. 

Skeletal Muscle Fiber Diversity 
Understanding the characteristics of skeletal muscle fibers is key for insights into 
human metabolism and muscle function. Traditionally, human skeletal muscle 
fibers been classified into distinct types based on their metabolic and contractile 
properties. 

Type I fibers, or slow-twitch fibers, are characterized by their high mitochondrial 
content and oxidative capacity, making them more resistant to fatigue and suitable 
for endurance activities(56, 57). 

While sedentary lifestyles can lead to increased lipid content in these fibers with 
negative metabolic consequences, the 'athlete's paradox' presents an intriguing 
observation: endurance athletes, despite high levels of physical activity, also 
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accumulate lipids in their muscles like metabolically challenged individuals. 
However, in athletes, these lipids serve as a readily accessible energy source during 
prolonged exercise, contrasting sedentary individuals where lipid accumulation can 
disrupt insulin signalling and lead to insulin resistance(58, 59). 

In contrast, Type II fibers, often referred to as fast-twitch fibers, are equipped with 
a higher glycolytic capacity, enabling them to produce energy through anaerobic 
metabolism. These fibers contain a larger number of glycolytic enzymes and exhibit 
faster calcium cycling, facilitating quick bursts of strength or speed. However, due 
to their reliance on anaerobic energy production and reduced mitochondrial density 
compared to Type I fibers, they fatigue more rapidly(60). 

 

Figure 1. Illustrative Overview of Human Type 1 and Type 2 Muscle Fibers. 
Type 1 fibers (dark red): Abundant in mitochondria and myoglobin, these fibers support aerobic 
metabolism and prolonged activities, symbolized by the ergometer bike. The rich color indicates high 
myoglobin, while intramuscular lipid droplets reflect fat-based energy sources. Surrounding dense 
capillary network ensure continuous oxygen supply. Type 2 muscle fibers (light color): Optimized for 
anaerobic metabolism and short-duration high-intensity actions, represented by the leg press machine. 
These fibers have fewer mitochondria; their pale shade shows reduced myoglobin. Internal glycogen 
granules fuel quick energy spurts. Created with Biorender.com 
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In type I fibers, there's a higher presence of proteins that help with glucose uptake 
but a lower presence of those related to insulin regulation, compared to Type II 
fibers(61). This indicates that type I fibers are more efficient at using sugar but 
respond to insulin similarly as type 2 fibers. Moreover, people with obesity or T2D 
tend to have fewer type I fibers, resulting in less efficient energy metabolism(62, 
63) 

Historically, human Type II fibers have been subdivided into Type IIa and Type IIx. 
However, the distinction between these subtypes is currently debated, with newer 
research pointing towards just two primary clusters based on their metabolic and 
contractile characteristics(64). 

In our research (Paper II), we’ve introduced a method to estimate the Type I versus 
Type II fiber distribution(65). This high-throughput, minimal-invasive method 
aligns with the emerging perspective that focuses less on the distinction between 
Type IIa and IIx fibers and more on the broader dichotomy between slow and fast 
fibers. 

Rodent models introduce additional complexity with their own set fiber types like 
Type IIa, IIb, and IIx(60, 66). This emphasizes the importance of species-specific 
considerations in muscle research and highlights the need for human-specific 
studies when translating findings to human normal, and pathophysiology. 

The preferential atrophy of Type II fibers characterizes conditions like sarcopenia, 
affecting not only muscle strength but also metabolic health, given the role of 
muscle fiber types in influencing metabolic outcomes like insulin resistance(67, 68). 
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Muscle Capillarization 

The skeletal muscle microvasculature, with its vast network, plays an essential role 
in supporting muscle function. The primary sites for these exchanges in skeletal 
muscles are the capillaries. Their degree of proliferation and strategic positioning, 
often organized as both longitudinal and transverse capillaries that envelop the 
muscle fibers, can directly influence parameters such as mean transit time, capillary 
surface area, and diffusion distance. These factors, in turn, can have implications on 
muscle function, athletic performance, and metabolic health(69). 

Importance of Capillary Density in Muscle Physiology 
For optimal skeletal muscle performance, the availability of oxygen and energy 
substrates is paramount. While it is understood, due in part to the foundational work 
of Bengt Saltin and his contemporaries in the 1980s, that cardiac output is a 
determinant for oxygen delivery to muscles, the internal diffusion process, 
especially from the capillaries to the myofibrils, cannot be overlooked(70, 71). The 
nuances in this diffusion process, including the oxygen gradient, area for diffusion, 
mean transit time, and diffusion distance, are all modulated by the capillary network. 
Furthermore, the proliferation and organization of these capillaries, as seen in 
endurance athletes, offer insights into the criticality of maintaining a dense capillary 
network for improved muscle function(72, 73). 

Structure of the Capillary Network 
Traditionally, the capillary network within the skeletal muscle have been looked at 
as a series of mostly parallel-flowing vessels stemming from terminal arterioles and 
culminating in venules. This perspective has lately been refined when the concept 
of capillary fascicles was presented(74). These fascicles, which extend along muscle 
fibers, indicate an intricate organization aligned with the skeletal muscle's fascicle 
structure. Such architectural insights reiterate the importance of understanding 
capillary structure and function to fully understand all aspects of muscle physiology. 
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The Role of Capillarization in Glucose Uptake 
Beyond serving as pipelines for oxygen delivery, capillaries are gatekeepers for 
metabolic substrate exchange, a relationship that's intricately tied to the muscle’s 
functional demands. A growing area of interest is its potential influence on glucose 
uptake, a key process for understanding metabolic diseases and, particularly, 
skeletal muscle insulin resistance. Evidence suggests that capillaries impact muscle 
glucose uptake by mediating both glucose and insulin transport(75). Conversely, 
conditions like insulin resistance seem to feature diminished capillary density, 
limiting optimal substrate delivery and thus hampering muscle function(76, 77). In 
animal models, decreased capillary density is linked with diminished peripheral 
glucose uptake(78), underscoring the need for human studies to delineate this 
relationship further. 

Conclusion and Future Implications: The Role of 
RAB3GAP2 in Muscle Capillarization 
The complex network of capillaries within skeletal muscles offers more than just 
oxygen and nutrient delivery—it serves as a foundational component of metabolic 
health. Moreover, the adaptability of our body to alterations in blood flow is 
remarkable. Whether it's the intricate capillary adaptations in muscles to support 
increased activity or nutrient flux, the cerebral vasculature adjusting to cognitive 
demands(79), or the uterine response to hormonal shifts influencing its vascular 
dynamics(80), the body's ability to regulate and adapt to blood flow changes spans 
a vast array of organs and functions, underscoring its remarkable adoptability.  

Muscle capillarization plays an important role in determining the efficiency of 
glucose uptake, with reduced capillarization being a hallmark of conditions like 
insulin resistance. Beyond the capillaries' structural and functional dynamics, the 
genetic underpinnings that drive these dynamics are also crucial. 

An extensive multidisciplinary research initiative from our group has culminate in 
a comprehensive examination of the gene RAB3GAP2 and its association with 
skeletal muscle capillary-to-fiber ratio (C:F) (Ström K. et al., 2023, under review). 
This project has identified a variant, rs115660502, linked to both variations in the 
C:F ratio and differential expression of RAB3GAP2 in skeletal muscles. This work 
is the result of an extensive collaboration between different research groups with 
diverse expertise, integrating a myriad of methodological approaches from GWAS 
genetic analysis, clinical datasets, to in vitro experiments, and leveraging insights 
from the MSAT cohort as detailed in Paper I of this thesis. Remarkably, those 
harbouring the G allele of this variant showed heightened capillarization, suggesting 
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a potential genetic predisposition for some individuals toward enhanced muscle 
vascularization. 

 
Figure 2. (a) Expression of RAB3GAP2 mRNA in skeletal muscle after 6-weeks high-intensity 
intermittent training(167). pWilcoxon = 0.002, n = 11. (b) Expression of RAB3GAP2 mRNA across 
rs115660502 genotypes in the MM (n = 33 vs 5) and MEI studies (n = 36 vs 3), pMeta-FDR = 0.007. (c) 
Plot of RAB3GAP2 mRNA expression versus capillary-to-fiber ratio in the Malmö Men cohort. r = 0.38, 
pSpearman = 0.03, n = 32. (d) Lower and (e) higher magnification of RAB3GAP2 protein localization 
(brown) in human skeletal muscle. (f) Negative control using non-immune IgG with same concentration 
as in (e). Nuclei stained with hematoxylin (blue) in d-f. (g) Lower and (h) higher magnification of 
confocal immunofluorescence images of RAB3GAP2 (red) and the endothelial marker lectin (green) of 
human skeletal muscle, demonstrating RAB3GAP2 localization to the endothelium (green). (i) Confocal 
immunofluorescence of human skeletal muscle stained for RAB3GAP2 (red) and lectin (green), 
demonstrating RAB3GAP2 localization to capillaries, but not to large vessels. ** p < 0.01 
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Beyond just exercise adaptation, RAB3GAP2 seems to regulate several key 
pathways. By modulating the release of proteins like TNC and CD70, it influences 
both immune responses and angiogenesis. Given the shared inflammatory markers 
between exercise-induced responses and metabolic diseases such as T2D(81), the 
regulation of these pathways by RAB3GAP2 may provide a mechanistic bridge 
between exercise adaptation and metabolic health. Additionally, the potential for 
certain genetic profiles, such as those with the G allele of rs115660502, to influence 
susceptibility to stress-induced endothelial and muscle damage hints at broader 
implications for understanding individualized responses to different stressors, be it 
through exercise or infectious agents. 

These revelations bring into focus the intertwined nature of genetics, capillarization, 
and metabolic health. It underscores the imperative to study capillarization not in 
isolation but as part of a complex system influenced by genetics and environmental 
factors. Moving forward, understanding these interactions may help paving the way 
for more personalized exercise and metabolic interventions. 
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Metabolic Pathways in Muscle 

Glucose Metabolism 
Skeletal muscle is important for whole-body glucose metabolism due to its 
significant role in insulin-stimulated glucose uptake and utilization(82). During 
exercise, as energy demand surges, skeletal muscle amplifies glucose uptake 
through both insulin-dependent and insulin-independent pathways(83). The former 
involves the translocation of GLUT4 to the cell membrane, facilitating glucose 
influx. On the other hand, exercise-induced muscle contractions activate the insulin-
independent pathways, resulting in enhanced intracellular signalling that also boosts 
GLUT4 translocation. 

 
Figure 3.  Dual Mechanisms Facilitating GLUT4 Translocation in Skeletal Muscle. 
Exercise/Contraction-Dependent Pathway (left): Amplifies glucose uptake through activation of 
intracellular signals, notably AMPK phosphorylation, responding to increased muscle energy demands 
during physical activity. Insulin-Dependent Pathway (right): Initiated by insulin secretion from the 
pancreas, this pathway promotes GLUT4's movement to the cell membrane, ensuring efficient glucose 
influx in response to rising demand. Created with Biorender.com 

It's important to note that insulin resistance in skeletal muscle can diminish glucose 
uptake, leading to hyperglycaemia(11). Those with T2D often display a diminished 
oxidative capacity in skeletal muscles, possibly driven by fiber type disparities. This 
deficiency can compound the effects of insulin resistance(84).  

Although insulin resistance in skeletal muscle can impair glucose uptake, research 
is clear that regular physical activity benefits insulin sensitivity in skeletal muscle 
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in both healthy and individuals with diabetes(85-87). This improvement is 
associated with increased mitochondrial biogenesis and oxidative capacity(88, 89). 

Lipid Metabolism 
Skeletal muscle is a vital player in lipid metabolism, efficiently utilizing free fatty 
acids (FFAs) as an energy source during low-intensity exercise or prolonged 
fasting(90). Mitochondria in skeletal muscle are crucial for this process, converting 
FFAs into ATP through beta-oxidation. However, disruptions in these pathways are 
linked to insulin resistance and the onset of T2D(91). 

In skeletal muscle of individuals with obesity and T2D, there is a decreased ability 
to convert fatty acids to fatty acyl-CoAs, suggesting disruptions in these metabolic 
pathways. Interestingly, exercise training has been demonstrated to counteract these 
alterations and enhance insulin responsiveness(92). 

Lipotoxicity emerges when lipid accumulation in muscles surpasses the muscle's 
storage or oxidation capacity. This overaccumulation gives rise to lipid 
intermediates such as diacylglycerols and ceramides, which are known to interfere 
with insulin signalling, thus potentially exacerbating insulin resistance(93). 

On the molecular front, as highlighted in Paper III of this thesis(94), genes involved 
in lipid metabolism hold significant influence over muscle insulin resistance. Such 
genes could modulate the muscle's oxidative capacity, further impacting its ability 
to handle glucose and, by extension, its role in T2D progression. 

Importantly, lipid accumulation in non-adipose tissues like skeletal muscle is linked 
to a heightened cardiovascular disease risk, irrespective of total body fat(95). 
Intriguingly, there's a distinct association between increased intramuscular fat 
deposition and a higher risk of heart failure, especially in cases typified by a reduced 
ejection fraction(96). Even after adjusting for other cardiometabolic risk factors, this 
connection underscores the profound effect of lipid metabolism within skeletal 
muscles on cardiovascular, as well as metabolic, health. 

Amino Acid Metabolism 
In addition to glucose and lipid metabolism, skeletal muscle is also a key player in 
amino acid metabolism. Muscle proteins are continuously synthesized and 
degraded, maintaining an equilibrium between protein synthesis and breakdown, 
influenced by periods of muscle activity and rest(97, 98). Amino acids serve as 
important substrates for energy production in skeletal muscle, especially during 
exercise or prolonged energy restriction(99-101). Abnormalities in amino acid 
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metabolism have been associated with insulin resistance and T2D, although the 
exact mechanisms are not fully understood(102, 103). 

Lactate Metabolism 
Skeletal muscle lactate metabolism is another important aspect of energy 
homeostasis during exercise. Lactate, a byproduct of anaerobic glycolysis, was once 
considered as merely a waste product; however, recent research has shown that 
lactate has more complex and significant roles in metabolism. In fact, it serves as a 
critical energy source and a signalling molecule under various physiological 
conditions(104, 105). 

During intense exercise, the increased reliance on anaerobic glycolysis leads to the 
production and accumulation of lactate in the skeletal muscle(106). As the lactate 
concentration rises, it is transported from the muscle cells into the bloodstream 
through monocarboxylate transporters (MCTs), which are essential for lactate 
transport across cell membranes(107). The lactate produced in the muscles can be 
utilized by other tissues, such as the heart and the liver(108). The heart can take up 
and oxidize lactate as an energy source, especially during intense exercise when 
oxygen availability is limited(109). In the liver, lactate is utilized as a substrate for 
gluconeogenesis, culminating in the conversion of lactate to glucose, constituting 
the Cori cycle(110). 

Furthermore, lactate has been shown to act as a signalling molecule involved in 
various processes such as angiogenesis, immune response modulation, and cell 
proliferation(111-113). This highlights the multifaceted role of lactate in skeletal 
muscle metabolism and the human body's adaptive responses to exercise. 

In summary, skeletal muscle plays a vital role in human metabolism, particularly 
glucose homeostasis, lipid metabolism and lactate metabolism. The interplay 
between different energy substrates, metabolic pathways, and the adaptive 
responses of skeletal muscle during exercise and rest periods highlights the 
complexity and importance of skeletal muscle in maintaining overall metabolic 
health. 
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Exercise Physiology 

The Nordic Legacy 
Exercise physiology is a field of research with a long and illustrious history in 
Scandinavia, a region that has made significant contributions to the understanding 
of human performance, health, and well-being. The Nordic countries have a strong 
tradition in exercise physiology, with pioneers such as Per-Olof Åstrand and Bengt 
Saltin, who made groundbreaking discoveries in the 1960s and 1970s. Their work 
helped establish the foundation for our understanding of how the human body 
responds to and adapts to physical activity. 

Per-Olof Åstrand's seminal studies on the effects of physical fitness on work 
capacity and the influence of exercise intensity on oxygen uptake set the stage for 
decades of research in this field(114, 115). Bengt Saltin further advanced our 
knowledge of muscle metabolism, mitochondrial function, and the impact of 
training on aerobic capacity(116, 117). These early achievements in exercise 
physiology research have had a lasting impact on our understanding of the 
importance of physical activity for human health. 

Erythropoietin (EPO) research in the 1990s, led by Björn Ekblom and colleagues, 
significantly impacted our understanding of endurance performance(118). While 
their findings stirred debate and highlighted the complexities of studying doping in 
sports, they underscored the importance and challenges of scientific exploration into 
elite human performance(119). 

As we strive to address the burden of T2D and associated complications, it is crucial 
to continue building upon this rich Scandinavian research tradition. Advances in our 
understanding of the molecular and cellular mechanisms underlying the beneficial 
effects of exercise have the potential to inform the development of more effective, 
individualized prevention and treatment strategies for people with or at risk of 
developing T2D. Moreover, it is maybe even more essential that we consider the 
broader societal context and advocate for public policies that facilitate healthier, 
more active lifestyles.  
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Types of Exercise: Aerobic vs Anaerobic 
There are two primary types of exercise: aerobic and anaerobic(120). Aerobic 
exercise involves low to moderate intensity activities sustained over an extended 
period of time, such as running, cycling, or swimming. This type of exercise relies 
on oxygen to produce energy through oxidative phosphorylation in the 
mitochondria(121, 122). 

Anaerobic exercise, on the other hand, involves high-intensity, short-duration 
activities like sprinting or weightlifting. In anaerobic exercise, energy is produced 
primarily through glycolysis without the reliance on oxygen(123).  

Body Responses:  Acute and Chronic Adaptations 
Exercise induces both acute and chronic adaptations in the human body. Acute 
adaptations encompass short-lived changes that transpire during or immediately 
post-exercise, including an elevated heart rate, amplified ventilation, augmented 
blood flow, and skeletal muscle metabolic alterations(124).  

Acute adaptations to exercise also include molecular shifts. In Paper I, we 
discovered that serum levels of the extracellular matrix glycoprotein Tenascin C 
(TNC) surged notably after an anaerobic exertion. This rise was associated with 
performance measures such as peak power and power drop, hinting at a linkage to 
mechanical strain and enhanced microvascular blood flow(125). Furthermore, TNC 
has been pinpointed to stimulate the proliferation of muscle stem cells, emphasizing 
its potential significance in muscle tissue remodelling and regeneration(126). 

Chronic adaptations are enduring modifications resulting from prolonged exercise 
training, such as enhanced aerobic capacity, improved insulin sensitivity, and shifts 
in skeletal muscle fiber type distribution and metabolism(124).  

These adaptations aids exercise performance and contributes to health. One early 
insight from Malmö and Lund University, a study in Diabetologia by Eriksson and 
Lindgärde in 1991, highlighted how physical exercise can prevent T2D(127). 
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Exercise and Physical Activity for Diabetes Prevention 
and Management 
Considering the significant impact of exercise on glucose metabolism and overall 
health, incorporating regular physical activity into the management plan for 
individuals with T2D is crucial. Current recommendations suggest that individuals 
with T2D should engage in at least 150 minutes of moderate to vigorous aerobic 
exercise per week, spread over at least three days(128, 129). Resistance training, 
performed at least twice a week, is also recommended to promote muscle strength. 

It is worth noting that these recommendations are quite general, and there is growing 
evidence supporting the need for more individualized exercise prescriptions to 
maximize training response, adherence, and compliance(130, 131). Research 
indicates that individuals with a family history of T2D may respond differently to 
exercise interventions than those without such a history. Specifically, individuals 
with family history might experience a less pronounced response to exercise, 
requiring higher volume and/or intensity to achieve similar results(132). By 
tailoring exercise recommendations to suit individual needs, preferences, and 
capacities, patients may be more likely to sustain their engagement in physical 
activity and in the long run take advantage of associated health benefits. 

In addition to individualized exercise prescriptions, changes at the societal and 
political level are necessary to encourage physical activity and create environments 
that support healthy behaviours. This includes for example investments in 
infrastructure like bike lanes and parks(133, 134). By creating an environment 
conducive to physical activity, individuals will be better positioned to adopt and 
maintain active lifestyles, reducing the risk of developing T2D and improving 
overall public health. By promoting infrastructure changes such as improved bike 
lanes, parks, and urban design, we can create environments that encourage physical 
activity and make it more accessible for everyone, ultimately contributing to the 
prevention and management of diabetes on a population level(135, 136). 
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The Evolutionary perspective 

The evolutionary perspective on physical activity and skeletal muscle metabolism 
offers valuable insights into contemporary health challenges, especially T2D. 
Today's sedentary lifestyles starkly contrast with those of our ancestors, who thrived 
in environments demanding consistent physical activity. This discord might play a 
role in current chronic disease trends, including the surge in T2D(137, 138). 

Evolutionary Adaptations for Endurance 
Throughout evolutionary history, humans were physically active, from hunting and 
gathering to evading predators. Key adaptations, such as elongated limbs, large 
gluteal muscles, and relative hairlessness, enabled long-distance running and 
efficient thermoregulation(139). The adoption of bipedalism provided advantages 
in locomotion and environment perception. This superior endurance capacity and 
effective thermoregulation became essential for human survival. Moreover, 
endurance behaviours, potentially like persistence hunting, might have driven the 
evolution of larger human brains by enabling access to high-quality food 
sources(140, 141). 

Fiber Differences: Humans vs. Primates 
A distinction in muscle fiber distribution between humans and non-human primates 
further underscores our evolutionary trajectory. Humans typically have a higher 
proportion of Type I fibers, which are adept at sustained, endurance activities. In 
contrast, many non-human primates possess a more significant share of Type II 
fibers, suited for rapid, powerful actions(57). 

Recognizing these evolutionary underpinnings deepens our understanding of the 
importance of physical activity in maintaining health and warding off diseases like 
T2D. 
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Human Metabolic Evolution and Skeletal Muscle 
Advancements in metabolomics have illuminated evolutionary metabolic shifts 
among species. A important study by Bozek et al. examined the metabolomes of 
humans, chimpanzees, macaque monkeys, and mice across different tissues, 
including the brain and skeletal muscle(142). Their findings underscored an 
accelerated evolution in human prefrontal cortex and skeletal muscle metabolomes, 
particularly affecting neural and energy metabolism pathways. This suggests an 
intricate link between human brain and skeletal muscle evolution, potentially 
bearing implications for metabolic diseases, including T2D. 

Human evolution seems to have favoured endurance, as indicated by observed 
adaptations(143). In contrast, chimpanzees, surpass human muscle in maximum 
dynamic force and power output. not necessarily due to superior isometric force or 
maximum shortening velocities, but largely owing to a higher proportion of Type II 
fibers. This difference suggests that over the course of human evolution, there was 
a shift towards repetitive, low-cost contractile behaviour, which may have reduced 
maximum dynamic force and power outputs. In essence, while our human lineage 
evolved to prioritize endurance and repetitive muscular tasks, our closest primate 
relatives retained greater explosive power(144). In 1962, James Neel postulated the 
"thrifty genes" concept, suggesting genes evolved to optimize fuel storage during 
periods of food scarcity(145). While the concept has been both supported and 
challenged over the years, it's not seen as the sole explanation for modern metabolic 
issues like obesity and T2D(146, 147). Yet, the idea has emphasized the significance 
of evolutionary perspectives in understanding these conditions, highlighting the 
intricate dance between genetics, environment, and behaviour. 

 
Figure 4: Evolutionary progression of human locomotion and muscle adaptation.  
The intensifying red hue in the muscle region symbolizes the increasing proportion of Type 1 fibers, 
reflecting the evolutionary shift towards sustained physical activity and endurance capacities. Created 
with BioRender.com 
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By examining the evolutionary history of human physical activity and metabolism, 
researchers can gain a deeper understanding of the factors that contribute to the 
development of T2D and other metabolic disorders. This knowledge can inform the 
development of targeted interventions that leverage our evolutionary heritage to 
promote healthier lifestyles, optimize skeletal muscle metabolism, and prevent or 
manage diabetes. 
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Rationale and Aims 

The rise in metabolic diseases, particularly diabetes, has made it crucial to better 
understand the factors at play. Given skeletal muscle's essential role in glucose 
metabolism, its function in insulin resistance becomes central. The approach of this 
thesis employs various scientific methods to gain a clearer understanding of muscle 
insulin resistance and its complications. The intent is to offer valuable insights to 
guide future research. 

Paper I: Our objective was to understand the factors influencing skeletal muscle's 
reaction to high-intensity exercise. We focused on the release patterns during the 
Wingate test, considering aspects such as power output, VO2max, fasting glucose, 
and characteristics of isolated muscle cells. While we initially looked at responses 
in healthy individuals, this knowledge can lay the groundwork for exploring 
responses in those with metabolic disorders. 

Paper II: This paper introduces tools useful for expansive research into metabolic 
diseases. Specifically, we aim to harness these tools for in-depth exploration of 
muscle insulin resistance, paving the way for potential treatments. 

Paper III: Here, we delve into fundamental components like mitochondrial function 
and its potential connection to insulin resistance. Grasping these base mechanisms 
is vital as they may influence the onset of muscle insulin resistance and subsequent 
treatment paths. 

Paper IV: Our goal was to explore connections between different diabetes subtypes 
and early adulthood attributes like BMI, strength, and aerobic endurance. By using 
fitness data from Swedish military conscripts who later developed diabetes, we 
aimed to discern if there were distinct fitness patterns in their younger years that 
correlated with specific diabetes subtypes. 
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Further, with a broader lens: 
Understanding Muscle Insulin Resistance: Throughout the papers, we strive to 
chart the progression of muscle insulin resistance, looking at everything from cell-
level pathways to early markers. 

Potential Treatment Pathways: Drawing from insights in Papers 1 and 3, we aim 
to identify possible therapeutic targets, bridging the gap from molecular 
understanding to mechanistic approaches. 

Early Identification and Intervention: Building on the findings of Paper 4, the 
goal is to detect early indicators of muscle insulin resistance, which can inform and 
guide early intervention strategies. 

A Comprehensive Perspective: The aim of this thesis is to offer a broad 
understanding of muscle insulin resistance by connecting detailed scientific findings 
with their clinical relevance, with the hope of directing future research paths. 
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Methodology 

In this thesis, we employ a diverse set of methods, indicative of an interdisciplinary 
approach. These methods were chosen to address our research questions from 
different perspectives, emphasizing a broad understanding over focusing narrowly 
on one specific technique. The goal has been to provide a multifaceted view of the 
topic in a clinical perspective. 

Study Populations 
The choice of study populations is instrumental in shaping the insights derived from 
our research. We relied on two primary cohorts: 

• MSAT (Muscle SATellite cell cohort): Comprised of 39 healthy men aged 
between 20 and 55 years, participants were recruited via social media and 
local cycling clubs. The study involved three distinct visits: the initial visit 
included a medical examination, blood sampling, and an Åstrand test for 
equipment familiarization. The second visit featured a Wingate test, followed 
by a muscle biopsy. Blood samples were taken before and after the Wingate 
and VO2max tests, performed during the second and third visits, respectively. 
This design facilitated an understanding of muscle activity under varying 
conditions and physical strain. 

• ANDIS (All New Diabetics in Scania): As previously outlined, The ANDIS 
cohort (n=~27000, still recruiting) is a well-characterized cohort of 
individuals with newly diagnosed diabetes from Scania, Sweden. It's been 
instrumental in pinpointing five distinct diabetes subtypes. ANDIS merges 
genetic, clinical, and phenotypic data to provide a multidimensional view of 
diabetes. 

• INSARK (Inskrivningsarkivregistret): As presented in Paper IV, the register 
contains data from standardized testing of individuals, primarily men, 
undergoing military conscription between 1969 and 2018. The register 
encompasses digital records for approximately 2 million individuals, with 
about 90% coverage for men born between 1951 and 1987. Conscripts 
underwent assessments that included verbal, spatial, logical, and technical 
ability tests, along with medical, physical, and psychological 
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evaluations(148). We have ethical approval for analysing data from INSARK 
on the individuals included in ANDIS – creating opportunity for further 
analysis than those presented in Paper IV. 

Ethical Approvals 
All studies carried out ensured adherence to ethical guidelines, with approvals 
obtained from both the ethical board, and later on the national ethical authorities. 
Ensuring the welfare, autonomy, and rights of the participants was of paramount 
importance throughout the research process. Specific diary numbers are stated 
specifically in the papers. 

Muscle Biopsy Collection and Processing 
Muscle biopsies have long been the gold standard for direct assessment of muscle 
tissue. Historically, the procedure relied on the Bergström needle, an approach 
pioneered by Dr. Jonas Bergström in the 1960s(149). The procedure, although 
highly effective, is invasive and may lead to participant discomfort. It's performed 
under local anaesthesia, involving a small incision in both the skin and muscle fascia 
to access the muscle. 

However, with technological advancements and the pursuit of participant comfort, 
the spotlight has turned to micro biopsies. These are less invasive and considerably 
mitigate discomfort, marking a small, but significant, stride in the biopsy collection 
methodology(150). 

Isolation and Culture of Muscle Cells 
Human primary muscle cells are an important in vitro model, providing an accurate 
representation of human muscle physiology. A section of the biopsy is used to 
isolate muscle satellite cells. The biopsy samples undergo mincing and are subjected 
to a digestion process at 37°C. The resulting cells are strained and centrifuged, with 
the pellet then suspended in a growth medium. The initial plating phase allows 
fibroblasts to adhere to the dish, while the suspended cells are cultured on a 
matrigel-coated flask. This growth medium is replaced periodically. 

When cells approach confluence, the medium undergoes sequential changes, 
facilitating cell differentiation over 8 days. To control the growth of proliferating 
cells, such as fibroblasts, Cytarabine is introduced. Selection for further analysis is 
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based on clear gene expression indicators of a successful myoblast-myotube 
transition. 

Culturing human muscle cells, as opposed to using animal cells or established cell 
lines, provides an authentic representation of human muscle physiology(151, 152). 

Determination of Muscle Fiber Type Distribution 
In this project, both traditional and novel methodologies were applied to evaluate 
muscle fiber type distribution. Immunohistochemistry, a widely accepted method, 
was employed due to its robust and validated capability to identify and visualize 
different muscle proteins(153, 154). Nonetheless, this technique demands quite 
large tissue samples and is labour-intensive. 

In contrast, the method described in Paper 3 leverages transcriptomic analysis to 
study muscle fiber types using smaller biopsies, offering efficiency in both sample 
size and time. 

Other methods for fiber typing range from invasive ones like electrophoretic 
separation(155) to non-invasive techniques like magnetic resonance spectroscopy 
(MRS)(156). While each technique has its merits, the selection often depends on the 
specific goals and constraints of the study. 

Exercise Testing: VO2max and Wingate Assessments 
This project employed two classical tests in exercise physiology to gain insights into 
aerobic and anaerobic performance: the Wingate Test and the VO2max test. 

Wingate Anaerobic Test 
Originating from the Wingate Institute in Israel during the 1970s, the Wingate Test 
serves as a straightforward method to gauge anaerobic power and capacity. 
Conducted on a cycle ergometer, participants are asked to cycle at their maximum 
effort for a duration of 30 seconds. From this, it's possible to derive anaerobic 
capacity and maximal power output, relevant for activities demanding short, intense 
bursts of energy but could also be used as a surrogate measure for muscle properties 
like fiber type distribution(157, 158). 
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VO2max testing 
For a clearer understanding of aerobic capacity, the VO2max test is commonly used. 
Often done on an ergometer bike, participants start with a manageable intensity, 
which gradually intensifies until they reach the point of exhaustion. The peak 
oxygen consumption during this period is what is referred to as VO2max(159). 

It's recognized that VO2max is truly reached when there's no increase in oxygen 
consumption despite the intensification of the exercise, the heart rate is near its 
predicted maximum, and the respiratory exchange ratio goes beyond 1.1(160). 

RNA Sequencing, Bioinformatics, and Data Analysis 
To deeper investigate the molecular complexities of skeletal muscle, a combination 
of modern RNA sequencing methodologies and traditional validation techniques 
was employed. 

• Global skeletal muscle gene expression profiling: We used oligonucleotide 
microarrays to profile muscle gene expression, establishing a connection 
between expression profile and insulin sensitivity. Microarrays provide a 
high-throughput platform to measure the expression levels of thousands of 
genes simultaneously(161, 162). 

• Total RNA sequencing (totRNAseq): An all-encompassing method that 
sequences all types of RNA present in a sample, offering a holistic 
perspective on transcriptional activity(163). 

• Single-nuclei RNA sequencing (snRNAseq): Targets RNA from individual 
nuclei, enabling detailed exploration of cell-type-specific gene expression, 
especially in tissues where cell dissociation is challenging. Using snRNAseq 
as a benchmark, cluster expression signatures from specific gene markers 
assist in interpreting muscle fiber nuclei type through linear matrix 
decomposition(164). 

• Quantitative Real-time PCR (QPCR): To corroborate key findings, QPCR 
was employed. This technique calculates and normalizes expression levels, 
offering precision and validation for the results derived from RNA 
sequencing. (165) 

All the derived sequencing data were subjected to advanced bioinformatics tools, 
described in detail in each paper, ensuring rigid data analysis. 
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Statistics 
The application of rigorous statistical methods is important in ensuring the validity 
of data interpretations. In this thesis, a range of statistical techniques were 
implemented to analyse and interpret the multifaceted data(166): 

• Descriptive Statistics: Furnishes basic insights into datasets by summarizing
their primary features. Typical measures include means, standard deviations,
and frequency distributions.

• Inferential Statistics: Used to draw conclusions from data that might not be
immediately obvious. Methods such as t-tests, ANOVA, and chi-square tests
were utilized to discern differences between groups or associations.

• Regression Analysis: Facilitates the understanding of the strength and
character of the relationship between a dependent variable and one or multiple
independent variables.

• Multivariate Analysis: Employed when examining more than two variables
concurrently. It's instrumental in deciphering complex datasets and
discerning interactions between numerous variables.

Proper application of these statistical methods is crucial for drawing meaningful 
conclusions and understanding the significance and implications of the findings. 
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Conclusions and future directions 

The work presented in this thesis provide insights into the complexities of diabetes, 
focusing on skeletal muscle insulin resistance. By adopting a broad approach to 
studying these phenomena and related pathophysiology, we reveal clinically 
valuable patterns and connections, creating a solid foundation for continued diabetes 
research. Our findings on the fiber type dichotomy, comparing with rodent fiber 
types, and in the light of discussed evolutionary perspective we highlight the need 
for using human-specific models to better understand our metabolic processes and 
related diseases. 

Conclusions 
Tenascin C Response to Exercise: Paper I showed a significant increase in Tenascin 
C (TNC) levels in blood after intensive exercise. Combined with in vitro findings, 
we suggest TNC has a role in muscle remodelling post-exertion. 

Muscle Fiber Typing via Genetic Analysis:  In Paper II we introduce a novel method 
for assessing muscle fiber type distribution. This cost-effective and accurate 
technique holds the potential to significantly advance our understanding of muscle 
fiber dynamics in relation to health and disease. 

Insulin Resistance and Gene Expression: Paper III highlights a connection between 
180 genes and insulin sensitivity. Showing the complexity of insulin resistance in 
skeletal muscle. Genes like SIRT2 and FBXW5 point to the importance of lipid 
metabolism and mTOR signalling. 

Early-life Physical Fitness and Diabetes Subtypes: Paper IV's findings are pivotal. 
The observed association between early-life physical fitness and specific diabetes 
subtypes later in life accentuates the profound influence of early-life health 
determinants. This underscores the importance of understanding events preceding a 
diabetes diagnosis and how these differ across diabetes subtypes. 
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Future Directions 
There's still a lot to learn about insulin resistance in skeletal muscle. Studying it 
from different angles can give a more comprehensive understanding of the disease's 
pathophysiological pathways. This can lead to enhanced treatment strategies, 
whether through lifestyle adjustments or pharmacological means. 

A forthcoming study is set to compare muscle fiber type distribution among the 
SIDD and SIRD clusters, using the fiber typing method introduced Paper II. This 
kind of detailed look at skeletal muscle in people with T2D hasn't been done before. 
It can add to the ANDIS project and help researchers understand T2D better. 

In light of Paper IV, Sweden's extensive and unique register data presents a great 
opportunity. We can study other factors or events that come before a diabetes 
diagnosis among the different diabetes types. For example, we could investigate 
common infections or other health issues that might be linked to certain subtypes. 

Building upon the insights of this thesis, particularly from Papers I and IV, there's 
potential to undertake more extensive interventional studies. Envisioning a tailored 
exercise program optimized for skeletal muscle metabolic benefits, like increased 
capillary density, and implementing a randomized clinical trial (RCT) for 
individuals with newly diagnosed diabetes of different subtypes could be important. 
The primary end point of such a trial would be the prevention or delay of diabetes 
complications. 

Expected results from these studies could offer practical clinical advice. This might 
include immediate exercise suggestions for patients and, in the long term, treatments 
using medication to influence muscle properties. 
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Popular Science Summary  
(In Swedish) 

Typ 2-diabetes (T2D) är en av världens snabbast växande hälsoutmaningar. Bara i 
Sverige har över 400,000 personer diagnostiserats med T2D, och globalt beräknas 
siffran vara över 300 miljoner. Trots det stora antalet drabbade individer och den 
allvarliga belastningen som sjukdomen lägger på individer och sjukvårdssystem, är 
dagens diagnostik och behandlingsmetoder inte alltid tillräckliga. 

T2D ökar risken för komplikationer som hjärt-kärlsjukdomar, ögonproblem, 
njurproblem och känselbortfall, särskilt i fötterna. Dessa komplikationer kan ofta 
vara närvarande redan vid diagnos. Eftersom tidiga symtom på T2D är svåra att 
identifiera, kan sjukdomen ofta gå oupptäckt under flera år. För att minska risken 
för komplikationer är det viktigt att försöka identifiera diabetes så tidigt som 
möjligt. 

Traditionellt definieras T2D av ett högt blodsocker, men vi inser nu att sjukdomen 
är långt mer komplex och multifaktoriell där ett högt socker endast är slutprodukten. 
Även vid utvecklad sjukdom har olika individer olika kliniska egenskaper, 
sjukdomsprogression, läkemedelsrespons och risk för komplikationer.  

I T2D, till skillnad från Typ 1 Diabetes där de insulinproducerande cellerna i 
bukspottkörteln slås ut, genererar bukspottkörteln oftast fortfarande insulin under 
en lång period. Men kroppens respons på detta insulin är nedsatt, vilket resulterar i 
att cellerna inte tar upp socker som de borde. Därför samlas sockret i blodet och 
höjer blodsockernivåerna – detta fenomen kallas insulinresistens. Insulinresistens 
drabbar primärt lever, fett och muskel. 

En betydande kunskapslucka gäller vår förståelse av muskelns roll i insulinresistens 
och diabetes. Muskel har identifierats som en nyckelfaktor i insulinresistens och 
därmed också utvecklingen av T2D. Trots denna kunskap saknas det riktad och/eller 
individanpassad behandling på området. Förutom träning och kost finns det inte 
många behandlingsmetoder, som mediciner, som fokuserar på insulinresistens i 
musklerna. Inte heller finns det någon lättillgänglig och kostnadseffektiv diagnostik, 
såsom blodprover, som fångar insulinresistens i muskel.  

Vi behöver därför forska mer för att få en detaljerad förståelse kring ämnet. Hur 
påverkar fysisk aktivitet T2D? Vilka faktorer, genetiska och miljömässiga, bidrar 
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till insulinresistens och dess utveckling? Kunskap som förhoppningsvis, i 
förlängningen, kan bidra till nya förebyggande åtgärder och behandlingar. 

Detta projekt syftar till att, till viss mån, försöka fylla dessa viktiga kunskapsluckor. 
Genom en bred vetenskaplig ansats med fokus på klinisk relevans har mitt 
avhandlingsarbete tagit sig an frågan ur ett flertal aspekter. 

I den första studien fokuserade vi på proteinet Tenascin C (TNC), ett protein som 
finns i kroppens extracellulära matrix och där nylig forskning visat att TNC kan 
rekrytera så kallade muskelstamceller vid exempelvis muskelskada. I vår studie fick 
39 friska män genomgå en serie utförliga tester och provtagning för att kartlägga 
bland annat muskelfibersammansättning via muskelbiopsier och maximal 
aerob/anaerob kapacitet på en testcykel. Från muskelbiopsierna isolerades 
muskelstamceller som förädlades till muskelceller i odlingsskålar för senare 
cellförsök. I studien visar vi att mängden TNC i blodet ökade i genomsnitt med 23% 
efter en 30 sekunder lång ”all out” ansträngning på cykel. Mängden frisatt TNC i 
blodet verkade öka med maximal uppnådd effekt i Watt. Vi kunde också visa att 
genuttrycket av TNC ökar vid högre mognadsgrad hos muskelceller. 

Detta antyder att TNC spelar en roll vid muskelns svar på ansträngning, sannolikt 
som en del av återhämtning och kompensation efter träning. 

Den andra studien handlar om en nyutvecklad metod för att bedöma muskelfibertyp 
via genetisk analys. Vi har skapat en metod som, baserad på RNA-sekvensering, 
kan skatta muskelfibersammansättningen, det vill säga förhållandet mellan andelen 
snabba och långsamma muskelfibrer. Jämfört med traditionella, mer 
arbetskrävande, metoder fann vi en mycket god korrelation. Vår nya metod ger en 
möjlighet att analysera tusentals prover på ett mer automatiserat sätt än tidigare 
vilket ger en betydande kostnadseffektivitet jämfört med sedvanliga metoder. Den 
nya metoden kräver också, i genomsnitt, mycket mindre vävnad. Detta möjliggör 
användandet av betydligt mindre biopsinålar som tolereras bättre av individen.  

I den tredje studien utforskade vi genetiken bakom insulinresistens i muskelvävnad. 
Genom att jämföra genuttryck i muskelprover från 38 män, utan diabetessjukdom, 
fann vi 180 gener som korrelerade med insulinresistens. Särskilt noterade vi att 
gener som SIRT2, som är involverad i fettmetabolism, och FBXW5, som reglerar 
mTOR-signalering, var starkt associerade med insulinkänslighet. mTOR är en känd 
faktor vid muskeltillväxt och träningssvar. 

Den fjärde studien undersöker vilken roll spelar fysisk kapacitet, styrka och/eller 
kondition, i ung ålder för hur framtida diabetessjukdom ter sig. Det är sedan tidigare 
känt att hög fitness i ung ålder minskar risken för typ 2 diabetes. Det är däremot inte 
särskilt välbeforskat huruvida fitness i ung ålder påverkar sjukdomsförloppet för de 
som ändå drabbas av sjukdomen.  

Med ANDIS-registret, som omfattar Alla Nya Diabetiker I Skåne, har kollegor på 
Lunds universitet med hjälp av datormodellering kunnat identifiera fem distinkta 



111 

diabetesundergrupper med unika sjukdomskarakteristika vid insjuknandet. Dessa 
subgrupper öppnar upp för en mer riktad och precis forskning kring olika drivande 
faktorer vid diabetessjukdom. 

Subgrupperna är uppdelade på följande vis: 

•Grupp 1, SAID (allvarlig autoimmun diabetes): liknar i stort sett typ 1 diabetes 
samt LADA (latent autoimmun diabetes hos vuxna).  

•Grupp 2, SIDD (allvarlig insulinbristande diabetes): innefattar individer som har 
högt HbA1C, nedsatt insulinproduktion och en medelmåttig insulinresistens. 

•Grupp 3, SIRD (allvarlig insulinresistent diabetes): Definieras av övervikt och en 
hög grad av insulinresistens.  

•Grupp 4, MOD (måttlig fetma-relaterad diabetes): innefattar individer med kraftig 
övervikt som insjuknar vid en relativt ung ålder. 

•Grupp 5, MARD (måttlig åldersrelaterad diabetes): representerar den mest 
omfattande gruppen (cirka 40%) och består huvudsakligen av de äldre patienterna. 

Genom att koppla ANDIS till det svenska Inskrivningsarkivregistret (INSARK) har 
vi kunnat jämföra validerade mätningar av kondition och muskelstyrka vid 
mönstring (vid 18 års ålder) bland 4,417 män som alla utvecklat diabetes senare i 
livet.  

I vår analys såg vi att individer diagnostiserade med vissa subtyper av diabetes (som 
MOD och SIRD) hade minskad knästyrka, greppstyrka och kondition jämfört med 
andra undergrupper, som MARD. Mycket av effekterna verkar drivas av ett högre 
BMI hos individerna med dessa subtyper. Vid justering vid BMI kvarstod intressant 
nog en nedsatt kondition hos SIRD-gruppen. Detta alltså ca 40 år innan de får sin 
diabetesdiagnos. Resultaten ger insikter i potentiella tidiga livsfaktorer bidragande 
till diabetes. Detta öppnar för framtida forskning för att mer i detalj undersöka 
bakomliggande mekanismer. 

Insulinresistens, särskilt i muskulatur, är en underforskad del i T2D. Genom den 
forskning som presenteras här tar vi förhoppningsvis ett litet steg närmare att förstå 
muskelns centrala roll i diabetesutveckling. Projektet har givit en bas för fortsatt 
forskning på området och vi rekryterar just nu för ny studie där vi, genom vår 
nyutvecklade metod från studie 2, planerar att jämföra muskelfiber-
sammansättningen hos diabetessubgrupperna SIDD och SIRD. 

Med ökad insikt kan vi hoppas på att skapa effektiva och tillgängliga förebyggande 
strategier och behandlingar, vilket kan förbättra livskvaliteten för miljontals 
drabbade individer. 
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