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Kristian Soltesz1,*, Chriss Grimholt2, Sigurd Skogestad3

1Department of Automatic Control, Lund University, Lund, Sweden
2,3Department of Chemical Engineering, Norwegian University of Science and Technology, Trond-
heim, Norway
*kristian@control.lth.se

Abstract: A method for optimization of PID controller parameters and measurement filter time
constant is presented. The method differs from the traditional approach in that the controller and
filter parameters are simultaneously optimized, as opposed to standard, sequential, design. Control
performance is maximized through minimization of the integrated absolute error (IAE) caused by
a unit step load disturbance. Robustness is achieved through H∞ constraints on sensitivity and
complementary sensitivity. At the same time, noise attenuation is enforced by limiting either the
H2 or H∞ norm of the transfer function from measurement noise to control signal. The use of
exact gradients makes the synthesis method faster and more numerically robust than previously
proposed alternatives.

1. Introduction

1.1. Motivation

The PID controller is by far the most widely used controller structure. Consequently, there exist
an abundance of methods for PID synthesis. A majority of these aim at achieving sufficient load
disturbance rejection (regulatory control) and robustness to plant model uncertainty. Most PID
synthesis methods do not explicitly consider reference tracking (servo control). One reason for
this might be that reference tracking can be achieved independently through a two degrees of
freedom (2DOF) design scheme, such as [1]. Furthermore, regulatory control performance is more
important than servo ditto in most (process) industrial applications, and controllers which achieve
adequate regulatory control often also have acceptable reference tracking behavior.

There exist several performance measures to evaluate regulatory control performance. Two
well-established such measures are the integrated error (IE) and integrated absolute error (IAE),
defined through (7) and (6), respectively. In their context error refers to that resulting from a load
disturbance unit step. The IAE has an advantage over the IE in that it punishes oscillatory load
responses. The two performance measures are further discussed in Section 2.2.1.

When minimizing the IAE (but also the IE, or other measures of regulatory control perfor-
mance) – even under robustness constraints – it is common to end up with controllers of very high
gain from measurement (plant output) noise to control signal (plant input). These controllers can
be practically useless, as will be demonstrated in Section 5, and shown in Figure 6. The typical
approach to alleviate this problem, is to replace the derivative term of the PID control law, by a
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low-pass filtered version [2]. This introduces at least one additional parameter – that of the filter. In
many industrial controllers, the filter parameter is automatically set to a fixed ratio of the derivative
time Td of (4).

It was argued in [3], that filtering the entire measurement signal is preferential to only filtering
the derivative term. This corresponds to connecting a low-pass filter in series with the PID con-
troller, as shown in Figure 1. Furthermore, it was suggested to use (at least) a first-order filter for
PI controllers, and a second-order filter for PID controllers, to achieve high-frequency roll-off.

Regardless of which of the above (or other) filter structures is used, the industrially established
synthesis procedure is sequential. It comprises first choosing the gains of the PID controller, and
subsequently tuning the filter to achieve acceptable noise rejection. Alternatively, the filter is ini-
tially fixed, whereupon the controller is synthesized. This approach works well when the resulting
filter bandwidth lies significantly above that of the controller. However, if the noise spectrum is
such that the bandwidths overlap, the filter will not only affect noise attenuation, but also robust-
ness and control performance. This problem occurs regularly and suggests that the controller and
filter should be simultaneously designed.

1.2. Previous Work

The problem of simultaneous design of controller and filter has been studied in a number of pub-
lications. A survey of relevant ones known to the authors is given below, to produce a reference
frame for the work to be presented.

In [4], an approximate formula is used to compute a filter time constant, from the derivative
gain and a noise sensitivity constraint. One step further towards truly simultaneous design is taken
in [5], where an iteration between controller synthesis (by optimization) and filter design, is used.
First, a controller which minimizes IE, subject to anH∞ constraint on S, is obtained. Subsequently,
a filter is designed for the series connection of the plant and the obtained controller. The filter is
then assumed to be part of the plant model, and the procedure is iterated, until it converges. Similar,
iteration-based, methods are presented in [6, 7]. For industrially relevant problems it seems (but
has not been proven) that these iterative methods converge.

All methods mentioned so far, involve either solving a sequence of optimization problems [7]
(which can be very time consuming), or using approximate formulae [6] (which does not guaran-
tee optimality or constraints). The contributions [8, 9] propose a truly simultaneous design. An
optimization problem with objective min ‖PS/s‖∞, and H∞ constraints on S and Q is consid-
ered. Optimization is carried out over the parameters of a parallel form PID controller in series
with a first-order low-pass filter. While the constraints are industrially well-established, the H∞-
objective is not. (However, it can be thought of as an approximation of IAE, as shown in [10].) In
[11], Matlab-code is presented to perform the suggested optimization. The code is very compact
and simple to read, but suffers numerical issues, as pointed out in Section 3.3.

In [12], a parallel form PID controller, given by any chosen design method, is converted into a
PID controller with derivative filter. The filter is chosen in relation to the closed-loop cut-off fre-
quency or high-frequency gain, such that the effect on nominal performance and robustness is lim-
ited. A similar approach is presented in [13], in order to produce tuning rules for the measurement-
filter time constant. These rules are based solely on the controller parameters, and different rules
apply, depending on which method was used for controller synthesis (SIMC [14] or AMIGO [15]).
The method provides a free tuning parameter, affecting the trade-off between robustness and noise
sensitivity.
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Fig. 1. The considered control system structure.

In [16], a particle swarm method is applied to a mixed-objective optimization problem, aiming
at maximizing controller gain, while punishing the H∞ norm of S and T , as well as the H2 norm
of Q. A weighing of the different objective terms is proposed, but not motivated. In particular, this
weighing may need to be changed depending on P and the spectral density of the noise signal.

Finally, [3, 17] propose the problem formulation adopted in this work, where IAE is mini-
mized, under H∞ constraints on S, T and an H2 constraint on Q. (We will also consider the H∞
version of the last constraint.) This formulation is based on industrially established performance
and robustness measures. However, the optimization used in [3, 17] relies on finite difference ap-
proximations of (objective and constraint) gradients. Apart from slow execution time, the use of
finite differences easily leads to poor (or no) convergence, even in the simpler case of controller
synthesis with a fixed filter [18].

To summarize, most of the mentioned methods [3, 7, 8, 11, 16, 17] propose simultaneous
controller synthesis and filter design by optimization. However, they use the (simplex-like) Nelder-
Mead method [19], gradient methods based on finite difference approximations [3, 8, 11, 17]
or particle swarm methods [16] to find a solution. These methods all come with disadvantages:
Gradient-free methods are known to be slow and care must be taken when gridding the parameter
space. Using gradient methods, with finite difference approximations of the gradients, results
in poor (or no) convergence within the considered context, as pointed out in [18]. Particle swarm
methods require carefully chosen heuristics and provide little insight into the problem to be solved.

1.3. Novelty

This paper introduces an optimization-based tuning method for simultaneous PID controller and
measurement filter synthesis. As opposed to most previous work, the measurement filter and con-
troller are simultaneously designed by constrained optimization. The main novelty lies in the use of
exact (analytic) gradients, to facilitate numerical robustness. Furthermore, the method eliminates
the need for manual a priori selection of PID subtype (P, PI, PID, I, ID, PD, D). This selection is
instead implicitly handled by the optimization.

2. Problem Formulation

2.1. Definitions

A synthesis scenario for the control system shown in Figure 1 will be considered. It consists of
a linear time invariant single-input-single-output plant P , controller C, and measurement filter F .
The objective is to achieve plant output y = 0 by means of the control signal u, in the presence of
load disturbances d and measurement noise n. The standard deviations of n is denoted σn, and the
resulting standard deviation of u is σu.
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The single-input, single-output (SISO) controller C, the filter F and their combined parameter
vector θ are defined

C(s) =

(
kp +

ki
s

+ kds

)
, (1)

F (s) =
1

T 2
f s

2 + Tf
√

2s+ 1
, (2)

θ =
[
kp ki kd Tf

]T ∈ R4
+. (3)

The parametrization (1) is chosen in favor of the classic one

C(s) = K

(
1 +

1

Tis
+ Tds

)
, (4)

as the former is linear in its parameters. (It is also more general, as for instance
[
kp ki kd

]
=[

0 1 1
]

lacks an equivalent controller on the form (4).)
This paper focuses on using analytic expressions of gradients to optimize the controller param-

eters. The gradient operator, with respect to θ, will be denoted ∇. From here on, arguments of
transfer functions and signals will be dropped, whenever the transform domain is clearly given by
the context. The loop-transfer function is denoted G = PCF . Sensitivity and complementary
sensitivity are defined S = 1/(1 + G), and T = 1 − S = G/(1 + G), respectively. Furthermore,
the noise sensitivity, being the transfer function from measurement noise n to control signal u, is
Q = −CFS.

The error caused by a unit load step disturbance d (see Figure 1) is

e(t) = −L−1

(
S(s)P (s)

1

s

)
. (5)

The load step integrated absolute error (IAE) is then defined as

IAE =

∫ ∞
0

|e(τ)|dτ. (6)

In addition we will consider the mathematically more convenient integrated error (IE)

IE =

∫ ∞
0

e(τ)dτ. (7)

2.2. Optimization Problem

The considered optimization problem is

minimize
θ

IAE,

subject to ‖S‖∞ ≤Ms,

‖T‖∞ ≤Mt,
σu
σn
≤Mq,

(8)
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where Ms, Mt and Mq are scalar constraint levels. It was recommended in [2] to keep Ms and Mt

within the range 1.4 − 1.8. The third constraint, enforcing noise attenuation by constraining the
ratio between control signal and noise standard deviations, is the topic of Section 4.

2.2.1. Performance: The idea of posing PID design as a constrained optimization problem
stretches back at least three decades. In early work [5, 20] the performance objective was to
minimize the IE, as defined in Section 2.1. It was shown in [5] that minimization of the IE is
equivalent to maximization of the integral gain ki of (1). This constitutes a convex objective in the
parameter vector θ (3), motivating the popularity of the IE as (inverse) performance measure.

If the load step response e (5) lacks zero crossings, it is evident from (7) and (6) that IE = IAE.
Furthermore, well-damped control systems yield IE ≈ IAE. However, oscillatory systems, with
consecutive zero crossings of e, may result in IE � IAE. It is therefore preferential to minimize
the IAE, in favor of the IE, in order to avoid oscillatory behavior. While minimization of the IAE
does not constitute a convex objective, it can be efficiently performed using gradient methods [18],
as further explained in Section 3.3.

2.2.2. Robustness: It is customary, and industrially well-established, to enforce robustness of
the control system through H∞ constraints on S and T . These constraints limit the magnitude
of S and T , and it is well-known that large values of these magnitudes make the control system
sensitive to process variations [2].

Each of the two constraints imply that the Nyquist curve of the loop-transfer function G avoids
one circular disc in the complex plane. Consequently, the constraints are not convex in the op-
timization variable θ. However, the comparison with results of [21] in Section 5.4 indicates that
minimization of the IAE constrained by ‖S‖∞ ≤ Ms and ‖T‖∞ ≤ Mt lacks local minima for
industrially relevant plant models P and constraint levels Ms, Mt.

2.2.3. Noise Attenuation: The probably most common way to quantify activity of the control
signal u, is through the variance σ2

u, as in for example LQG control. In this work, a constraint on
the standard deviation ratio σu/σn (or equivalently the variance ratio σ2

u/σ
2
n) is considered. This is

closely related to limiting the noise gain, defined in [6] as the ratio σu/σyf
between the standard

deviations of the control signal and filtered measurement signal yf (s) = F (s)y(s). However, our
definition has the advantage of being independent of the filter dynamics.

If an estimate σ̂n of σn is available (it can be obtained in open-loop at the input of F ), one can
constrain an upper bound σ̄u on σu through Mq = σ̄u/σ̂n.

In Section 4.2 we will see how two different assumptions on the spectral density of n lead to
H2 andH∞ constraints on Q, respectively.

3. Optimization

3.1. Gradient Methods

It was pointed out in [18] that the efficiency of solving (8) (without considering the constraint on
Q) can be significantly improved by moving from gradient-free methods to gradient-based ones.
Such methods rely on (approximations) of the objective and constraint gradients, with respect to
the optimization variable. It is well-known that the convergence rate of gradient methods is sig-
nificantly improved if exact gradients are supplied, as opposed to finite difference approximations.
Furthermore, exact gradients improve accuracy for cases where the cost is flat in a vicinity of the
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Fig. 2. Sensitivity magnitude with multiple peaks, obtained during gradient search for IAE optimal
controller. The example was obtained with P (s) = e−s/(s+ 1), C(s) = 1 + 4/s, and F (s) = 1.

optimum.
Implementation of an active-set-based method for constrained optimization of PID parameters

was presented in [11], see Section 1.2. While not relying on exact gradients, the method performs
adequately on several test cases, but encounters difficulties with some dynamics, including P (s) =
e−s/(s+ 1), and P (s) = 1/(s+ 1)4.

Next, we will introduce two measures to improve convergence of gradient methods: the dis-
cretization ofH∞ constraints in Section 3.2 and the use of exact gradients in Section 3.3.

3.2. Constraint Discretization

The H∞ constraint on S often poses a problem for gradient-based methods, as pointed out in
[18]. The reason is that close to the optimal solution, it is common for the sensitivity function to
have several sensitivity peaks of equal magnitude. This results in the optimizer discretely jumping
between these peaks in subsequent iterations. The situation is illustrated in Figure 2. One solution
to this problem, as proposed in [18], is to discretize the H∞ constraint on S over a frequency grid
Ω = {ω1 < ω2 < . . . , ωm}, resulting in m (number of grid points) constraints

|S(iωk)| ≤Ms, k = 1, . . . ,m. (9)

Instead of requiring ‖S‖∞ ≤ Ms, it is required that |S(iω)| ≤ Ms,∀ω ∈ Ω. This modification is
adopted for allH∞ constraints in this paper.

For the examples in this paper, a grid based on P is a priorily chosen, consisting of m = 500
logarithmically spaced grid points between the−5◦ and−355◦ phase angles of P . This choice was
motivated by extensive verification, see Section 5.4.

An alternative would be to produce the grid iteratively, using for instance the cutting set method
suggested in [22]. It could also be mentioned that the KYP lemma provides an alternative formu-
lation, altogether avoiding frequency gridding [23]. However, this formulation brakes down for
(continuous) time processes with time delay, which is why it has not been applied in this paper.
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3.3. Exact Gradients

3.3.1. Objective Gradient: The exact gradient of the objective, with respect to the optimization
variable can be expressed

∇IAE =

∫ ∞
0

sign (e(t))∇e(t)dt. (10)

It was shown in [18] that the integral (10) can be evaluated by utilizing the fact that ∇e(t) =
L−1(∇e(s)). From the definition (5) of e, it is clear that ∇e(t) = L−1(P (s)∇S(s)/s), and we
have

∇S = −S2∇G, (11)

∇G = ∇PCF = P (∇C)F + PC∇F, (12)

∇C =
[
1 1 1 0

]
, (13)

∇F =
[
0 0 0 ∂F/∂Tf

]
, (14)

∂F/∂Tf = −F 2Tf

(
2s+ Tf/

√
2
)
. (15)

This allows us to evaluate∇e(t) through a step response simulation of∇S, defined through (11)–
(15), which in term enables the evaluation of (10).

If, instead, the IE is used, the minimization objective becomes −ki (see Section 2.2.1), with
corresponding gradient∇(−ki) =

[
0 −1 0 0

]
.

3.3.2. Robustness Constraint Gradients: The gradients of the discretized robustness con-
straints ∇|S| and ∇|T |, see Section 3.2, were presented in [18]. In this paper, we will utilize the
fact that the constraints represent circular discs, which must be avoided by the open-loop transfer
function G. Expressions for the centra cc and radii rc of these constraint discs, as functions of the
constraint levels Ms and Mt, are found in [2]. This allows for an equivalent reformulation of the
robustness constraints on the form

|G− cc| − rc ≤ 0, (16)

where |S| ≤Ms and |T | ≤Mt corresponds to

cs = −1, rs =
1

Ms

, ct = − M2
t

M2
t − 1

, rt =
Mt

M2
t − 1

. (17)

The advantage of this reformulation is that it yields less complicated expressions for both the
constraints (16) and their gradients

∇|G− cc| − rc =
1

|G− cc|
Re (G∗∇G) , (18)

where ∗ denotes conjugation: G∗(s) = −G(−s), and ∇G can be evaluated using (12)–(15).
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4. Noise Attenuation

4.1. Filter structure

A second order measurement filter, (2), is chosen to guarantee high frequency roll-off. The filter
has a fixed damping ratio as suggested in [3]. (Note that the damping ratio ζ is that of the filter
poles, whereas ζ is used in [11] to denote the damping ratio of the filtered controller zeros.) It is
possible to treat ζ > 0 as a free optimization parameter, but experience has shown that this will
only marginally increase performance, while significantly increasing computation time.

4.2. Variance Bounds

This section is devoted to the last constraint of (8), namely that on the noise amplification ratio
σu/σn. The purpose of the constraint is to limit variance of the control signal u, resulting from the
noise n, not to exceed a user-specified tolerable level σ2

u. The variance σ2
n is assumed to be known

(it can easily be estimated in open-loop). For cases where σ2
n is not known, the constraint level

Mq of (8) can be considered a free tuning parameter, constituting a trade-off between performance
(IAE) and noise attenuation (σu/σn).

Two cases will be studied: one for (band-limited) white noise in Section 4.2.1, and one for noise
of unknown spectral density in Section 4.2.2.

4.2.1. White Noise: White noise n is characterized by a constant spectral density Φn(ω) = Φ0,
resulting in infinite variance, or equivalently, infinite energy. However, white noise does not occur
in nature, where the bandwidth of any signal is limited by the mechanism by which it is generated
or measured. We will denote by ωB the bandwidth of the sensor used in the control system. (For a
periodically sampled digital controller, the Nyquist frequency constitutes an upper bound on ωB.)
The variance of the noise seen by the sensor is

σ2
n =

1

2π

∫ ωB

−ωB

Φ0dω =
ωB
π

Φ0, . (19)

The resulting control signal variance is

σ2
u =

1

2π

∫ ωB

−ωB

Φ0|Q(iω)|2dω = σ2
n‖Q‖22, (20)

where the last equality holds as a consequence of the aforementioned band-limiting sensor. If the
noise is (assumed to be) white, we consequently choose theH2 constraint

1

π

∫ ∞
0

|Q(iω)|2dω = ‖Q‖22 ≤M2
q , (21)

with corresponding gradient

∇ 1

π

∫ ∞
0

|Q(iω)|2dω =
2

π

∫ ∞
0

|Q(iω)|∇|Q(iω)|dω, (22)

where

∇|Q| = |S|
|CF |

(
|C|2Re(SF ∗∇F ) + |F |2Re(SC∗∇C)

)
. (23)
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4.2.2. Unclassified Noise: If the spectral density of n is unknown, we will instead make use of
the following inequality

σ2
u =

1

2π

∫ ∞
−∞
|Q(iω)|2Φn(ω)dω ≤ ‖Q‖2∞

1

2π

∫ ∞
−∞

Φn(ω)dω = ‖Q‖2∞σ2
n, (24)

which can be rewritten σu/σn ≤ ‖Q‖∞. Consequently, constraining the H∞ norm of Q by Mq

(conservatively) guarantees σu/σn ≤Mq, regardless of the spectral density of n. Upon discretiza-
tion, motivated in Section 3.2, this corresponds to a set of constraints (one for each frequency
ω ∈ Ω) on the form

|Q| = |CF |
|1 +G|

≤Mq, (25)

|CF | −Mq|1 +G| ≤ 0. (26)

The corresponding gradients are given by

∇|CF | −Mq∇|1 +G|, (27)

and can be evaluated using the methodology of Section 3.3.

4.3. Filter Time Constant Bounds

In order to avoid solutions where the filter time constant Tf is unbound from above, it is essential
to achieve high-frequency roll-off within the frequency grid Ω. This is done by constraining the
corner frequency ωf = 1/Tf of F to lie below the highest frequency ωm of the grid. Similarity,
ωf needs to lie above the smallest grid frequency ω1 in order to avoid solutions which are unbound
from below. Consequently, the following hard constraints are imposes:

ω1 ≤ ωf ≤ ωm. (28)

The corner frequency ωd, introduced by derivative action, is

ωd = − arg min
|s|
|C(s) = 0| = 1

2kd
|s0|, (29)

s0 = kp +
√
k2
p − 4kikd. (30)

Derivative action is lost if ωd > ωf , as illustrated in Figure 3. This may cause ambiguity in the
solution of (8). It can be avoided by enforcing ωd ≤ ωf through the equivalent constraint

Tf |s0| − 2kd ≤ 0, (31)

with corresponding gradient

∇ (Tf |s0| − 2kd) =
Tf
|s0|

Re (s∗0∇s0) +
[
0 0 −2 |s0|

]
, (32)

∇s0 =
1

s0 − kp
[
s0 −2kd −2ki 0

]
. (33)
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Fig. 3. Bode magnitude of PID controller with combined measurement filter (solid) and the same
controller with two slower filters resulting in the loss of derivative action (dashed) and proportional
action (dashed-dotted).

For controllers with kd = 0, integral action is lost if ωp > ωf , where ωp = ki/kp is the corner
frequency corresponding to the zero introduced by proportional action. However, this situation
never arises if (31) is imposed. For kd = 0, (31) then becomes 2kpTf ≤ 0, which can only be
fulfilled with kp = 0 due to (28). Either the optimization will produce a controller with kd > 0, for
which case (31) is valid, or an I (purely integrating) controller, for which (28) provides sufficient
bounds on Tf , since the I controller lacks zeros.

It should be noted that the above does not exclude any PID controller subtypes. For instance,
filtered PI behavior is achieved at the limit ωd → ωf . More importantly, the user does not have to
make an a priori PID subtype selection (such as to include or exclude derivative action), as this is
handled implicitly by the optimization.

5. Results

5.1. Method Summary

Before considering a case example in Section 5.2, the method outlined in Section 2 through Sec-
tion 4, is briefly summarized below.

1. Obtain a model P of the plant to be controlled (using any method).

2. Impose robustness constraint levels Ms and (possibly) Mt.

3. Decide on an upper bound on the control signal variance σ̄2
u, induced by measurement noise.

Obtain a measurement or estimate σ̂2
n of the noise variance, and set the constraint level Mq =

σ̄u/σ̂n. If n can be assumed to be white, impose an H2 constraint on the noise sensitivity Q,
otherwise anH∞ constraint.

4. Construct a frequency grid Ω, and discretize allH∞ constraints according to Section 3.2.

5. Solve (8) using a gradient method, and provide it with exact gradients, as defined throughout
the paper.
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Fig. 4. Pareto front, relating σ2
u/σ

2
n, constrained by M2

q , to performance decrease IAE/IAE0.
The objective IAE0 results from the unconstrained case Mq = ∞. Markers correspond to the
controllers evaluated in Figure 6.

5.2. Case Example

The proposed synthesis method is demonstrated through a realistic example, in which the plant to
be controlled is

P (s) =
e−s

s+ 1
. (34)

This structure is a commonly used model in process industry, where higher-order dynamics are
often lumped together and distributed between the time constant and delay. It should, however,
be noted that the method proposed herein can be used directly on higher-order dynamical models,
when such are available – see Section 5.3 for an example.

In order to demonstrate the effects of the noise constraint, the system is subject to white noise
of standard deviation σn = 0.1, band-limited by the Nyquist frequency corresponding to the con-
troller sampling period h = 0.02 (chosen to give 100 samples per average residence time of P ).
Robustness constraints are fixed at industrially relevant values of Ms = Mt = 1.4, and it is (cor-
rectly) assumed that the noise is white, i.e., the case of Section 4.2.1 is considered.

The optimization problem (8) and corresponding constraint gradients were provided to a solver
(invoked through the Matlab fmincon command). The solution for unconstrained noise sensitivity
(Mq =∞) is shown on the last row of Table 1. The large corresponding value ‖Q‖2 ≈ 125 results
in high noise amplification from n to u, as shown in the light grey curve of Figure 5.2. For most
industrial scenarios, this would result in unacceptable, actuator wear.

By solving (8) for additional values of Mq, we obtain the Pareto front shown in Figure 4.
It relates the (variance ratio) constraint level M2

q to the corresponding increase in optimization
objective. The controller and filter parameters corresponding to the design cases shown in Figure 4
are enlisted in Table 1. Bode plots for CF of Table 1 are shown in Figure 5. They clearly show
how smaller values of Mq result in more aggressive filtering, at the cost of losing phase advance.

In order to illustrate the trade-off, controllers corresponding to the (variance ratio) constraint
levels M2

q ∈ {0.01, 0.1, 1,∞}, marked in Figure 4, were evaluated in a load unit step test. The
resulting plant outputs y and control signals u are shown in Figure 6.

11



10−1 100 101 102
10−2

100

102

M2
q = 0.01

M2
q = 0.1

M2
q = 1

M2
q = ∞

ω

|CF |

10−1 100 101 102

−90

0

90
M2

q =∞

M2
q = 1

M2
q = 0.1

M2
q = 0.01

ω

∠CF

Fig. 5. Bode plots of Pareto-optimal controller with filter, CF , from Table 1.
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Fig. 6. Simulated response to load step disturbances for four Pareto optimal controllers, obtained
with M2

q = 0.01 (black), M2
q = 0.1 (dark grey), M2

q = 1 (grey) and M2
q = ∞ (light grey,

truncated). Dashed line shows open-loop disturbance response (with u = 0).
a Plant output y
b Control signal u
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Table 1 Parallel form (4) PID parameters and filter time constant Tf , together with increase in IAE compared
with IAE0, resulting from Mq =∞.

M2
q K Ti Td Tf IAE/IAE0

0.01 0.461 0.748 0.530 0.478 1.57

0.1 0.566 0.796 0.374 0.155 1.18

1 0.612 0.806 0.341 0.068 1.07

∞ 0.651 0.809 0.333 1/ωm ≈ 0 1.00

5.3. Case Example 2

In order to demonstrate the usefulness of the method on more complicated dynamics, a process
with two poles, one zero and time delay is considered:

P (s) =
s+ 2

(s+ 1)(s+ 5)
e−3s. (35)

We will again consider σ2
n = 0.1. For this example, the noise constraint is fixed to Mq = 1,

while different levels or robustness, constituted through M = Ms = Mt ∈ {1.2, 1.4, 1.6}, are
evaluated. The load disturbance responses of resulting control systems are shown in Figure 7. In
this particular case, there is no major performance loss associated with an increase in robustness
margin from M = 1.6 to M = 1.2.

5.4. Verification

For the very simple case of unconstrained PI control of P (s) = e−sL/s (delayed integrator), the
problem (8) has been shown to be convex [24]. The likely lack of convexity for other instances
of (8) is, however, not sufficient for the existence of local minima. Furthermore, it is possible
to construct cases which do hold local minima. One example is conditionally stable plants, as
described in [25]. To the knowledge of the authors there exists no complete classification of which
cases result in local minima.

In order to verify optimality of solutions provided by the proposed method, it was evaluated
over a set industrially representative process dynamics. This set constitutes the AMIGO test batch,
found in [2]. Optimal PID and filter parameter for several constraint levels for the set were recently
reported in [21]. The proposed method found the optimal solution (within numerical tolerance
imposed by Ω) for all test cases. Execution times ranged 2–10 s on a standard desktop computer.
(The code was not optimized for speed.) In all cases, including the examples of Section 5.2 and
Section 5.3, the method was initialized with the IE-optimal PID controller with fixed F = 1, found
using the convex-convave procedure presented in [26].

6. Conclusion

A method for simultaneous PID controller and measurement filter design has been proposed. The
method minimizes the load step IAE, under constraints enforcing robustness and noise attenuation.
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Fig. 7. Simulated response to load step disturbances. Three controllers were synthesized for the
plant (35), with M2

q = 1 and M = 1.2 (light grey), M = 1.4 (grey), M = 1.6 (dark grey).
a Plant output y
b Control signal u

The corresponding constraint level can be viewed as a free design parameter, constituting a trade-
off between performance and noise attenuation from the control signal. Typically, as illustrated
by Figure 6, an increase in noise attenuation performance comes at the cost of decreased load
attenuation performance.

The main novelty lies in the use of explicit gradient of the objective and constraint functions
with respect to the optimization variable. This makes the proposed method more robust than if
finite difference approximations would be utilized.

Selection of PID subtype (such as PI, P, or PID) is handled implicitly by the optimization - no
a priori selection is necessary.

Numeric robustness and optimality of the proposed method has been demonstrated through
evaluation over a large set of industrially relevant design scenarios, for which the optimal solutions
have been previously reported.
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[1] Hast, M. and Hägglund, T.: ‘Optimal proportional–integral–derivative set-point weighting
and tuning rules for proportional set-point weights’, IET Control Theory & Applications,
2015, 9, (15)
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[4] Šekara, T. B. and Mataušek, M. R.: ‘Optimization of PID Controller Based on Maximization
of the Proportional Gain Under Constraints on Robustness and Sensitivity to Measurement
Noise’, IEEE Transactions on Automatic Control, 2009, 54, (1), pp. 184–189
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[19] Garpingar, O. and Hägglund, T.: ‘A Software Tool for Robust PID Design’. Proc. 17th IFAC-
World Congress, Seoul, Korea, 2008
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16


