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Constructive Dissonance in the Cloud: Adaptive
Out-of-Phase Scheduling for Periodic Tasks

William Tärneberg1 and Per Skarin2

1Department of Electrical and Information Technology, Lund University, Sweden
2Ericsson AB, Sweden

Abstract—In the realm of cloud computing, the prevalence
of intra-phase congestion due to concurrent periodic requests
from a multitude of clients frequently results in heightened
resource consumption, elongated queuing times, and prolonged
response durations. To tackle these challenges, this paper presents
a groundbreaking ’Adaptive Out-of-Phase Scheduling’ technique,
utilizing a server-side PID controller to induce constructive
dissonance, strategically phase-shifting clients by delaying sub-
sequent requests based on server feedback, leading to dis-
persed out-of-phase transitions. The hallmark of our method
is its uncomplicatedness, obviating the necessity for intricate
execution analysis or elaborate optimal scheduling decisions.
Empirical evaluation on an operational web server demonstrates
the efficacy of this technique in mitigating resource utilization,
reducing response time by half, and significantly decreasing
response time variability. Our technique offers an efficient and
practical solution to intra-phase congestion in periodic tasks,
optimizing both system performance and resource efficacy in
diverse cloud computing environments. Our method is scalable,
versatile, and aptly adapted for real-world applications, with
potential future research exploring fine-tuning and trade-offs in
various system setups. By proficiently mitigating the ramifications
of simultaneous periodic tasks in an efficient and streamlined
fashion, our approach is primed to advance the evolution of
more responsive and optimized cloud computing infrastructures,
yielding advantages across a wide range of applications and
services.

Index Terms—Cloud computing, Scheduling, Intra-period con-
gestion, Self-adaptive, Response time

I. INTRODUCTION

In the domain of cloud computing, intra-period conges-
tion, characterized by the simultaneous overlap of multiple
clients’ requests within a certain time frame, poses significant
challenges. This coinciding of requests leads to congestion,
subsequently causing elevated resource consumption, extended
queuing times, and notably diminished response times, a phe-
nomenon known as ”destructive harmony.” The repercussions
of this issue are extensive, impacting both the theoretical
and applied aspects of cloud computing. The improper man-
agement of intra-period congestion can escalate operational
costs and degrade system efficiency, especially in critical
applications where reliable and prompt response times are
crucial. Implementing proficient out-of-phase scheduling for
periodic tasks has the potential to enhance the performance and
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on IT and mobile communications, Sweden’s Innovation Agency (VINNOVA)
under the IMMINENCE Celtic Netxt project, the Swedish Foundation for
Strategic Research under the SEC4FACTORY project.

resource allocation of cloud systems, consequently reducing
median response times, minimizing variability, and bolstering
overall system stability.

Addressing intra-period congestion is intricate, primarily
due to the stochastic nature of requests from multiple clients,
which lack inherent phase-shift patterns and often lead to
congestion. The dynamic characteristics of client arrivals,
departures, and varying request frequencies further complicate
workload prediction and management. Solutions need to be
efficient, scalable, and easily integratable, imposing minimal
overhead on the client-side. It is crucial to implement gradual
phase shifts of clients to avoid disrupting the system. Pre-
mature scheduling strategies can jeopardize system stability,
while overly gradual transitions can decelerate control pro-
cesses. Therefore, a profound comprehension of system dy-
namics and the application of appropriate control mechanisms
are imperative to address the fundamental causes of intra-
period congestion effectively. A dynamic approach, which
observes average system behavior and adjusts accordingly over
time, is essential as decisions based on isolated instances may
be ineffective in a sustained context.

Historically, solutions have predominantly aimed at instill-
ing deterministic behavior in cloud systems, often overlooking
explicit consideration of resource consumption and failing
to efficiently alleviate intra-period congestion. Conventional
scheduling strategies usually focus on ensuring fairness and
meeting control objectives on the server-side after requests
are received, rather than addressing the initial overlap of
client requests proactively. In contrast, our innovative pro-
posal, ”Adaptive Out-of-Phase Scheduling for Periodic Tasks,”
distinguishes itself through its simplicity and practicability,
obviating the need for meticulous analysis of application
execution or complex scheduling decisions. It strategically
observes the traffic flow in and out of a service, making
it a practical addition to existing service meshes, including
Kubernetes [11]-based solutions like Istio [10]. By leveraging
constructive dissonance, our method proactively phase-shifts
clients, optimizing resource allocation and mitigating system
congestion.

We employ a lightweight server-side PID (Proportional-
Integral-Derivative) controller in our approach, which monitors
intra-period congestion and subtly phase-shifts each client’s
request periods. Clients need only delay their subsequent
requests as per the server’s guidance, ensuring smooth and
distributed phase-shifting behavior. Our method, rigorously



validated using a live web server, has proven effective in
optimizing resource allocation, halving response times, and
significantly reducing response time variance, indicative of
enhanced system stability and performance. Additionally, our
technique has demonstrated its efficacy and adaptability under
varying system loads and levels of client participation, high-
lighting its applicability across diverse operational contexts.

II. RELATED WORK

A plethora of studies have delved into the realm of schedul-
ing techniques applicable to cloud computing and cyber-
physical systems. Notably, Rajagopalan et al. [15] unveiled
a hybrid firefly-genetic algorithm tailored for task scheduling
within cloud computing environments. Complementing this,
Kumar et al. [12] undertook a detailed survey on static and
dynamic scheduling, meta-heuristics, and genetic algorithms.
Ijaz et al. [9] turned their attention towards optimizing energy-
makespan of workflow scheduling in fog-cloud computing
settings. In the arena of real-time systems, Lehoczky [13]
introduced a fixed priority scheduling algorithm for handling
periodic task sets with arbitrary deadlines. Meanwhile, Cervin
et al. [4] put forth a feedback-feedforward scheduling method
for control tasks, employing feedback control to fine-tune
scheduling decisions based on system behavior. Approaching
performance optimization of control applications on fog com-
puting platforms, Barzegaran et al. [2] relied on scheduling
and isolation techniques.

Houssein et al. [8] provided a meta-heuristic-based review
of task scheduling techniques in cloud computing, offer-
ing a comprehensive taxonomy of existing approaches and
highlighting unresolved challenges and prospective trends. In
contrast, Dai et al. [5] proposed a period adaptation strategy for
real-time control tasks with fixed-priority scheduling in cyber-
physical systems. In the context of web server scheduling,
Harchol-Balter et al. [7] put forward a size-based schedul-
ing approach leveraging the Shortest Remaining Processing
Time (SRPT) policy to enhance web server performance.
Echoing this theme, Bini and Cervin [3] proposed a delay-
aware period assignment technique for control systems, aiming
to allocate suitable periods to control tasks based on their
delay sensitivity. Our approach to overlapping periodic tasks
supplements [3] by introducing a distributed and adaptive
scheduling mechanism for cyber-physical systems in a cloud
computing environment.

A significant body of research has proposed various solu-
tions for managing latency-critical cloud services within data
centers. Nishtala et al. introduced Twig, a scalable Quality
of Service (QoS) conscious task manager that harnesses deep
reinforcement learning to profile tail latency using hardware
performance counters and guide energy-efficient task manage-
ment decisions within data centers [14]. Twig was found to
outshine previous works by reducing energy usage by up to
38% while attaining up to 99% QoS guarantee for latency-
critical services [14]. Alhussian et al. crafted a computing
architecture and algorithms to facilitate soft real-time task

scheduling in a cloud computing environment through dy-
namic provisioning of virtual machines [1]. Their architecture
integrated three modified soft real-time task scheduling algo-
rithms and a deadline look-ahead module to maintain system
criticality and avoid missed deadlines [1]. In another notable
study, Santhosh et al. presented a preemptive online scheduling
approach for real-time tasks using the ”Infrastructure as a
Service” model in cloud computing [16]. Their innovative
algorithm includes task migration to minimize response time
and enhance efficiency, and surpasses traditional scheduling
algorithms like Earliest Deadline First (EDF) in terms of
system performance and utility [16]. However, it is worth
mentioning that such solutions often incur substantial costs and
necessitate deep introspection, without explicitly addressing
the central issue of intra-period congestion.

Duan [6] conducted a comprehensive survey on the perfor-
mance evaluation of cloud services, shedding light on current
trends, challenges, and opportunities, which aligns closely with
our scheduling techniques within cloud computing. Despite
these strides, existing strategies fall short as they fail to address
the crux of overlapping periodic tasks and only focus on
scheduling admitted tasks. In stark contrast, our methodology
eradicates overlapping tasks through a distributed and adaptive
scheduling mechanism. Furthermore, traditional approaches
overlook distributed and voluntary task scheduling. How-
ever, our methodology thrives on the basis of voluntary task
scheduling, thereby facilitating adaptive participation accord-
ing to individual requirements. In summation, our strategy
triumphs over these limitations by offering a distributed,
adaptive, and voluntary scheduling mechanism for overlapping
periodic tasks, catering to both cloud computing and cyber-
physical systems.

III. PROBLEM DESCRIPTION

The system in focus consists of a service receiving peri-
odic requests from multiple clients. Operating within a cloud
platform, this service is subject to inherent uncertainties [6]
and allows shared information access and collective decision-
making among all clients. Clients, operating independently,
generate requests and process responses, with their effective
functioning contingent upon the receipt of concise and con-
sistent response times.

A. System Model

The model of our target system is illustrated in Figure 1.
It comprises N autonomous clients, denoted as ci, i ∈ N ,
which periodically transmit requests to a shared service. Each
client follows the same request period, denoted as h, yet their
requests are not necessarily synchronized in time. The kth

request sent by the ith client is referred to as rik. The point
in time when this request is transmitted by the client is given
by tc(r

i
k).

For each request, the client receives a corresponding re-
sponse, denoted as r̂ik, with tc(r̂

i
k) indicating the moment this

response is received by the client. The moments of arrival
of the request at the service and the subsequent response’s
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Client 1
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Client N
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Fig. 1. System Model Representation: The figure represents a scenario where
N clients transmit requests, denoted as r1k, r

N
k , to a server via a network, and

in return, the server sends responses, denoted as r̂1k, r̂
N
k , back to the clients.

This illustrates the interaction and communication between multiple clients
and the server in the system.
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B. Challenge

The principal challenge arises when the arrival times of re-
quests from different clients are closely aligned, i.e., ts(rik) ≈
ts(r

j
k), for any pair of clients i and j. This scenario can

precipitate intra-period congestion at the service, resulting in
protracted response times.

This issue emanates from the concurrent execution of tasks
on shared resources, such as shared memory models, execution
within disparate virtual machines, fair scheduling devoid of
real-time support, or shared networks, among other factors.
When multiple requests converge nearly simultaneously on the
service, a competition for system resources ensues, inducing
processing delays and subsequently, extended response times
for all the implicated requests.

IV. PROPOSED SOLUTION

Overlapping requests in periodic workloads can be mitigated
by adopting a simple and dynamic approach that does not
require complex and deep introspection for optimal schedul-
ing. As the systems are stochastic, our solution focuses on the
average behavior and chooses to adopt a dynamic approach
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Fig. 2. Illustration of Desired and Undesired Intra-Period Congestion Sce-
narios. The top panel depicts an undesired situation where requests from
clients c1 and cN overlap, leading to intra-period congestion and extended
residence time in the server. This overlap results in increased competition for
resources and longer response times. Conversely, the bottom panel represents
a desired scenario where requests are staggered in time, preventing overlap
in the server and reducing residence time. This optimal spacing of requests
alleviates competition for resources, improves response times, and enhances
overall system performance.

with a PID (Proportional-Integral-Derivative) controller. The
PID controller observes the system load and gradually phase-
shifts clients’ request periods to reduce or eliminate overlap,
effectively phasing them apart in time to reduce intra-period
congestion and improve system performance due to resource
contention.

In this section, we present a scalable, lightweight, and adap-
tive solution that utilizes a feedback controller to dynamically
adjust the start of each client’s request periods, as illustrated
in Figure 2. The upper part of the figure shows an example of
overlapping requests within a single period, while the lower
half shows the desired effect achieved by the proposed solu-
tion. This approach allows for efficient and effective mitigation
of overlapping requests in periodic workloads without the need
for complex introspection or optimal scheduling decisions,
making it a simple yet powerful solution for improving system
performance.

The solution dynamically phase-shifts clients’ request peri-
ods based on the degree of overlap at the server/service. The
degree of overlap is denoted as oik for client ci at period k
and is evaluated at every ingress request using Equation 1.
This equation gives the sum of the fraction of overlap with all
other present clients. si,jk is the sign ±1 that gives the offset
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a direction. This ensures that clients, on average, move in
opposite directions. The nominator in Equation 1 calculates the
difference between the minimum of the observed time stamps
of the requests and the maximum of the observed time stamps
of the responses. This value is divided by the processing time
of the request of client i.

oik =

j∈N−i∑
si,jk

min(ts(r
j
k), ts(r

i
k))−max(ts(r̂

j
k), ts(r̂

i
k))

∆ts(rik)
(1)

The sign is determined as

si,jk =

 1 if ts(r
j
k) ≤ ts(r

i
k)

−1 if ts(r
j
k) ≥ ts(r

i
k)

{−1, 1} otherwise

(2)

The feedback controller used in the proposed solution is
a Proportional-Integral (PI) controller, which gradually and
dynamically adjusts the phase offset for each client. The
PI-controller produces a unique offset for each client that
is included in the response, without making instantaneous
corrections. The reactivity of the controller can be tuned to
achieve a more rapid correction if needed.

The proposed solution utilizes a PI-controller for feedback
control to dynamically and gradually phase-shift clients’ re-
quest periods based on the degree of overlap, addressing
the challenge of overlapping requests. This approach offers
a scalable and adaptive solution for reducing or eliminating
overlap in the system, resulting in improved response times
and efficient resource utilization.

As discussed in Section III, the proposed solution involves
dynamically and gradually phase-shifting clients’ periods to
reduce or eliminate request overlap and minimize response
times. A scalable, lightweight, and adaptive solution is needed
to handle multiple independent dynamic systems. The solution
evaluates the degree of overlap for each client at every ingress
request and incorporates the resulting phase offset in the
response. A feedback controller, specifically a PI-controller, is
employed at the service to calculate a unique offset, composed
of both a magnitude and offset, for each client, which is then
applied dynamically and gradually. The PI-controller can be
tuned to produce a more rapid correction if desired.

To reduce the impact of noise, the overlap is averaged over
a window of a set of consecutive samples. The offset for client
i at period k is denoted as ϕi

k and is calculated based on the
following PI-controller equation:

ϕi
k = Kp · ôik +Ki

k∑
k=0

ôik ·∆t (3)

where ôik represents the averaged overlap for client i at
period k, Kp is the controller proportional gain, Ki is the
controller integral gain, and ∆t is the time interval between
samples.

Finally, for cik+1, the kth + 1 phase is offset by ϕi
k using

the following equation:

tik+1 = min(max(tik + h+ ϕi
k, 0), t

i
k + 2 · h) (4)

where tik is the current phase of client i, and the phase-shift
is bounded to prevent it from being projected back in time or
exceeding a whole period. Additionally, if no other offset is
applied, ϕi

k = 0 is used.

V. EXPERIMENTAL SETUP

In this part, we carry out a number of experiments. Our aim
is to assess the effectiveness of our solution, which we outlined
in Section IV, in addressing the problem that we discussed
in Section III. We’ve established a test-bed that mirrors real-
world scenarios. The solution’s performance will be assessed
based on a series of metrics that represent the outcomes of the
experiments.

A. Metrics

To assess the solution, we have chosen the following met-
rics:

• Response time, ∆t: This is expressed in milliseconds
and is shown as the 95th, 75th, and 50th percentiles
of all request and response exchanges over a 1-second
sliding window. A lower response time is preferable as
it suggests quicker processing of requests. A drop in
response time from t = 0 would be an indicator of our
solution’s success in improving system performance.

• Overlap, ô: This is given as a percentage and shown as
the 95th, 75th, and 50th percentiles of all calculated over-
laps over a 1-second sliding window. Overlap measures
the degree of overlap between clients’ periods, and we
desire a lower value of overlap. A drop in overlap from
t = 0 would suggest that our solution is successful in
reducing competition among clients.

• Offset, ϕ: This is displayed as the 95th, 75th, and
50th percentiles of all calculated offsets over a 1-second
sliding window. Offset measures how far the clients’
periods deviate from the ideal, non-overlapping periods,
with an ideal offset of 0. We desire that the offset ap-
proaches 0 over time, suggesting that the overlap has been
eliminated. A drop in offset from t = 0 would suggest our
solution’s success in achieving non-overlapping periods
for clients.

B. Experiments

The following experiments are designed to validate the
solution’s ability to reduce overlap, decrease response times,
and adapt to changes dynamically. The computational time
required by the solution is also evaluated in each experiment
to assess its efficiency.

A client is considered to be participating if it alters its period
based on the offset ϕi

k returned by the service (as detailed in
Equation 4). When a client does not participate, it does not
alter its period. Note that the participation of each client is
independent, hence, other clients can continue to participate.
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All experiments start with the proposed solution activated
at t = 20s, where t denotes the experiment time. Each experi-
ment is performed 200 times to ensure statistical significance.

• Participation: The purpose of this experiment is to
validate the solution by comparing outcomes with the
solution being active and inactive. Ten clients, denoted
as N = 10, participate in the system. The experiment
is run in seven stages, each time increasing the number
of participating clients from 0 to 6. The outcome with
no participation serves as a benchmark for comparison,
allowing us to evaluate the effectiveness of the solution
by contrasting the reduction in response time achieved as
participation increases.

• Load: This experiment is designed to assess the system’s
capacity with and without the solution enabled. It aims
to determine the point at which the system reaches its
capacity (when the number of incoming requests matches
the system’s capacity, ρ = 1). Additionally, we explore
if our solution has a positive effect on throughput, as
theoretically, phase-shifting clients’ periods could allow
for a higher system capacity.

• Disturbance: This experiment is designed to assess the
solution’s adaptability. Here, all clients are participating.
The experiment starts with three clients and the solution
is given sufficient time to phase-shift and improve the
system’s response time. At t = 120s, an additional four
participating clients are introduced, simulating a sudden
change in the system’s state. Our solution should be able
to handle this disturbance and achieve a net improvement
in response time.

Finally, we used pidstat in our experiments to monitor a
range of performance metrics including waiting time, context
switching, page faults, and memory footprint, along with CPU
utilization. Although we did not anticipate a significant reduc-
tion in CPU usage, we did expect to observe reductions in the
other metrics. Lower values in these metrics indicate improved
system performance and efficient resource utilization.

C. Experimental Setup

The experiments were meticulously designed to compre-
hensively evaluate the proposed solution, focusing on the PI-
controller’s effectiveness and the generalizability of the results
in real-world scenarios.

Test-Bed and Network Simulation: A test-bed was con-
figured using Python scripts with the AIOHTTP library for
both clients and the service, conducted on a dedicated Ubuntu
machine to ensure stability and reliability. Communication be-
tween clients and the service was simulated over the loopback
interface, with a one-way delay of 10 ms added using Netem
to emulate network traversal effects and assess the solution’s
adaptability to varied network conditions.

Service Load and Client Variability: A CPU-intensive
Python benchmark was utilized to simulate the computational
demands of cloud services and analyze the solution’s scalabil-
ity. Clients were not assigned specific start times, introducing

variability and randomness to the experiments, reflecting the
unpredictability of real-world client requests.

Controller Configuration and Optimization: The PI-
controller was configured with general parameters, Kp = 0.05
and Ki = 0.005, but specific tuning proportional to the
size of the phase was applied, acknowledging that further
optimization could enhance performance. This configuration
was aimed at demonstrating the solution’s versatility and broad
applicability.

Openness and Reproducibility: To ensure the research
community can validate and extend our work, the source code
for the solution and the experiments will be publicly available
through a Git repository upon publication.

Conclusion of Setup: This setup was intended to provide
a robust and valid foundation for evaluating our solution,
addressing concerns about the reproducibility and validity of
the results and contributing valuable insights to the field of
task scheduling and cloud computing.

VI. RESULTS

This section delivers an in-depth analysis of our experi-
mental findings, as set out in Section V. We delve into the
crucial performance metrics obtained from our experiments,
and offer a comprehensive evaluation of our proposed schedul-
ing approach. Further, we position our results in contrast to
the baseline and comparable studies, elucidating the distinct
advantages and effectiveness of our method.

Our research addresses the pertinent issue of overlapping
periodic tasks. By employing our proposed approach, we
have witnessed considerable improvement in the management
of such tasks. This advance highlights the capability of our
method to effectively address this common problem in task
scheduling, enhancing overall system performance.

Additionally, our approach exhibits significant strengths in
facilitating distributed and adaptive scheduling. As evidenced
by our experimental results, our methodology demonstrates
robustness in dynamic environments, adapting seamlessly to
varying workloads and system demands. This ability to adapt
distinguishes our approach, making it an attractive solution for
distributed environments.

We also propose a voluntary approach for task scheduling in
real-time systems. By providing more flexibility, our method
allows for a better distribution of tasks based on system needs
and task priorities, leading to improved system responsiveness
and overall performance.

In contrast with the baseline and related studies, our method
provides superior outcomes, underlining the merits of in-
tegrating feedback control theory into task scheduling for
cloud computing environments. These experimental results
underscore the potential of our approach in optimizing task
scheduling, offering notable advancements over traditional
methods.

A. Participation

To evaluate our proposed phase shifting solution, we exe-
cuted a series of experiments, comparing outcomes with and
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Fig. 3. Illustration of Client Participation Levels: This figure represents the enhancement in system performance with the increased number of clients
participating in the phase-shifting solution, illustrating its scalability and effectiveness in reducing intra-period congestion. Scheduling is not applied until
t = 20, demonstrating the solution’s adaptability.
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Fig. 4. Comparison of Client Request Duration and Overlap: This figure offers
a snapshot of the system before and after the activation and convergence of
phase shift, depicting the substantial reduction in request duration and overlap,
illustrating the effectiveness of the phase-shifting solution in mitigating intra-
period congestion and optimizing system performance.

without our method’s implementation. Within these experi-
ments, we had a total of ten clients (|N | = 10) continually
dispatching requests to the server. These clients participated
in the phase shifting algorithm to varying degrees.

Figure 3 displays the results, wherein the level of client
participation ranged from 0 to 10 out of 10 clients. The left
chart depicts a baseline system where no clients were engaged
in the phase shifting solution, while the right chart illustrates
the scenario where all clients were involved. It is pertinent to
note that the phase shifting solution was not activated until 20
seconds into the experiment, which is denoted by the vertical
dashed line in the charts.

As anticipated, the baseline system without phase shifting
saw a fairly constant response time throughout the experiment,
suggesting overlapping requests and consequent elevation in
response times. Conversely, with the phase shifting solution’s
activation (at t=20), the response time started to decrease
rapidly and consistently, as demonstrated in the right chart.
Remarkably, the median response time was reduced by 60ms,
and the 95th percentile response time was halved, signaling
substantial system performance enhancement.
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Fig. 5. Response to Disturbance: This figure demonstrates the system’s
resilience and adaptability to disturbances, with phase shifting initiated at
t = 20. It contrasts system performance under varied loads, underscoring
the improved stability and resilience provided by phase shifting in dynamic
environments.

Even with partial participation in the phase shifting algo-
rithm, such as one or five out of ten clients, all clients noticed
an improvement in response times, as depicted in Figure 3.
This underscores the robustness of our proposed solution and
its capability to alleviate request overlaps, even when not all
clients are participating.

To further highlight the phase shifting solution’s impact,
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Fig. 6. Performance under Varying Load: This figure delineates the system’s response to different loads by varying the number of clients. Scheduling is not
applied until t = 20, highlighting the considerable improvement in system stability and response times achieved through phase shifting under increased loads.

Figure 4 provides a comparison of the start and end times of
a subset of requests from each client before and after activating
the phase shifting solution. The left chart in Figure 4 reveals
overlapping requests from clients. In contrast, the right chart
presents more scattered requests throughout the experiment
period once the phase shifting solution has been initiated.
This scattering of requests leads to shorter average request
durations, providing additional evidence of our proposed solu-
tion’s effectiveness in lessening request overlap and enhancing
overall system performance.

B. Load

This experiment aimed to evaluate the performance of our
proposed solution under varying server loads. We anticipated
that temporal separation of clients could become more chal-
lenging as the server load increased.

Figure 6 illustrates the recorded response times at different
server loads, where the load was adjusted by varying the
number of clients interacting with the server. During periods
of low server load, with ρ ≈ 0.33, the clients experienced
improved response times, approaching the combined execution
and network delay more rapidly. As the server load intensified,
the overlap between clients also increased, providing a greater
potential for improvement. This trend is clearly observed when
comparing the leftmost and rightmost charts in Figure 6, where
the relative improvement in response time was significantly
greater when the server load approached capacity.

These results highlight the capability of our proposed solu-
tion to successfully phase shift the requests of multiple clients,
demonstrating its effectiveness across different server loads.
Despite the increase in load, the system achieved consistent
response times. The only observed penalty was the additional
time required to resolve overlaps. For a low server load of
ρ ≈ 0.33, the transition was almost instantaneous. At half
capacity, ρ ≈ 0.5, convergence was achieved after 15 seconds,
and for a high server load of ρ ≈ 0.9, convergence occurred
after 30 seconds. It is important to note that the control
action’s magnitude in these experiments was moderate, and

the convergence time could be further adjusted by fine-tuning
the PI-controller parameters as discussed in Section IV.

In conclusion, these results demonstrate the effectiveness
of our proposed solution in achieving temporal separation of
clients, irrespective of varying server loads. Despite increased
loads, the system maintains consistent response times, show-
casing the robustness and reliability of our solution.

C. Disturbance

In this experiment, we evaluated the ability of the proposed
solution to successfully converge to the expected median
response time, as established in Section VI-B, when subjected
to a disturbance. The disturbance in this case was simulated
as a sudden increase in the number of clients, leading to
overlapping requests. It’s worth noting that in the previous
experiment, it was established that the solution was able to
converge to the same median response time regardless of load.

The time-series outcome of the experiment is shown in
Figure 5. As in the previous experiments, the phase-shift
solution was activated at t = 20. At t = 40, additional users
were admitted, causing the load to increase to ρ ≈ 0.5, and
the response times were significantly improved due to the
phase-shift solution. However, when the 5 additional clients
were admitted, the load increased to ρ ≈ 0.9, resulting in
an instantaneous increase in response times, followed by a
gradual improvement over a period of 30 seconds. Notably,
the outcome for the clients when using the phase-shift solution
was better than when not using the solution, as evidenced by
improved quantiles in the middle chart in Figure 5. Although
the overlap is not entirely eliminated, this is due to the
heterogeneity and noise in the system, and it is non-trivial
to mitigate. This can be seen as the 75th and 95th quantiles
are not yet at 0, but converging to 0. It should be noted
that this convergence will happen beyond the time frame of
the experiment. Similarly, in the bottom chart in Figure 5,
the controller attempts to mitigate the overlap, as seen by
the non-zero values of ϕ. This experiment demonstrates the
effectiveness of the proposed solution in mitigating the impact
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of sudden disturbances and maintaining improved response
times compared to the baseline scenario.

D. Resource utilization

Our experiment results clearly indicate that using phase
shifting has several beneficial effects on the performance of the
server process. By comparing the performance metrics of the
server process with and without using our proposed method,
we observed the following benefits:

Elimination of Waiting Time: Without phase shifting,
the server process had an average waiting time of about
10% during the experiment, which indicates that the process
was frequently waiting for resources to become available. In
contrast, when using our proposed method, the server process
had 0% waiting time, indicating that the process was able
to execute without any delays. This demonstrates that phase
shifting effectively eliminates waiting time, allowing the server
process to utilize system resources more efficiently.

Reduced Context Switching: Context switching, which
refers to the process of switching between different tasks or
processes, can introduce overhead and impact the performance
of the server process. Without phase shifting, the context
switch rate (cswch/s) was just above 100, indicating a
relatively high rate of context switching. However, with phase
shifting, the context switch rate was reduced to just above 10,
indicating a significant reduction in context switching. This
suggests that our proposed method minimizes the overhead of
context switching, allowing the server process to focus on its
execution and improving overall performance.

Decreased Page Faults and Memory Footprint: Page
faults, which occur when a process requests a page that is
not in physical memory, can result in performance degradation
due to disk I/O operations. Without phase shifting, the rate of
minor page faults (minflt/s) was around 12, indicating a
moderate level of page faults. However, with phase shifting,
the rate of minor page faults was reduced to just below 3,
indicating a significant reduction in page faults. Addition-
ally, the virtual memory size (VSZ) of the server process
was reduced from around 500,000 to below 140,000 with
phase shifting, indicating a substantial reduction in memory
footprint. This suggests that our proposed method helps to
minimize page faults and reduce memory usage, resulting in
improved performance.

No Adverse Impact on CPU Utilization: It is important
to note that our proposed method of using phase shifting did
not adversely impact CPU utilization. The CPU utilization
in general was indistinguishable between the two methods,
indicating that our proposed method does not introduce any
additional CPU overhead. This suggests that the benefits of
using phase shifting, as observed in the reduction of waiting
time, context switching, page faults, and memory footprint,
are achieved without sacrificing CPU performance.

Note on Results Indicative Nature: It should be noted
that these results are indicative and may vary depending on
the specific platform, implementation, and experimental con-
ditions. Different system configurations, hardware setups, and

workload characteristics may yield different results. Therefore,
it is important to thoroughly evaluate the performance of
phase shifting in the specific context of the target system and
workload to fully assess its effectiveness.

VII. CONCLUSIONS

This study introduces a novel, feedback control theory-
based approach to optimize task scheduling in cloud com-
puting, utilizing a Proportional Integral Derivative (PID) con-
troller. This innovative methodology dynamically adjusts task
execution timings, showing significant improvements in sys-
tem performance compared to traditional methods, validated
by detailed experimentation using pidstat.

Innovative Advancements: Our solution brings forth mul-
tiple advancements. It eliminates waiting time, optimizing
system throughput and efficiency. It reduces context switching
overhead and system latency, and mitigates page faults while
optimizing memory usage, maintaining optimal CPU utiliza-
tion and ensuring balanced resource allocation.

Dynamic Adaptation and Enhanced Responsiveness: The
dynamic and adaptive nature of our approach is a defining
feature, allowing dynamic adjustment of task timings based
on real-time feedback. Our experiments validate the robustness
of our solution in mitigating server contention effectively and
reducing response times significantly.

Applicability, Variability, and Future Directions: The
applicability of our method may vary with different system
configurations, hardware, and workloads. Comprehensive eval-
uations are crucial to fully ascertain its versatility. Future
research should explore the adaptability of our methodology
in various conditions, considering the limitations of tools like
pidstat.

Final Remarks: In conclusion, our methodology represents
a significant advancement in cloud computing task scheduling.
It fosters enhanced resource utilization and system perfor-
mance, presenting a paradigm shift towards developing effi-
cient and adaptable cloud services. This study lays the foun-
dation for future research on refining and expanding dynamic,
feedback-based scheduling solutions in cloud computing.
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