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Populärvetenskaplig sammanfattning på svenska

Partikelfysik är läran om materiens allra innersta inre. Dock har det, gång efter annan, vi-
sat sig att det vi trodde var det allra innersta inte alls var det: ur atomer skakade vi fram
kärnor, och ur dessa, protoner och neutroner; snart fann vi även deras släktingar och kallade
dem mesoner och baryoner; därefter insågs det att dessa på svårbegripliga sätt var uppbygg-
da av vad vi fantasifullt kom att kalla kvarkar och gluoner, och som är det innersta vi har
nått hittills; och gradvis sammanställde vi detta och mycket mer i den betydligt mindre
fantasifullt namngivna Standardmodellen, en ganska elegant och mestadels komplett teori
om nästan allt,² och som i sin mest kortfattade form går att skriva ner på en t-shirt el-
ler kaffekopp. Standardmodellen inbegriper många delar med fantasieggande namn såsom
elektrosvag växelverkan och Higgsmekanismen, men vill du veta mer om dem får du läsa en
annan avhandling, för jag kommer ägna min odelade uppmärksamhet åt delen med det
mest fantasieggande namnet av dem alla: kvantkromodynamik (eng. quantum chromodyna-
mics, förkortat QCD), som beskriver just kvarkarna, gluonerna och deras växelverkan.

Att teoretiskt förutsäga partiklars exakta beteende utifrån QCD (eller, för den delen, res-
ten av Standardmodellen) är tyvärr förkrossande svårt. I princip det enda fall vi kan lösa
är detta: en ensam partikel som sitter i tomrum utan att växelverka med andra (och även
där är “lösa” en sanning med modifikation). Räddningen finns dock i form av störningsräk-
ning (eng. perturbation theory), där principen är att du börjar med något du faktiskt kan
hantera—ett fåtal isolerade partiklar—och sedan tillåter du ett, två, kanske tre ögonblick
av växelverkan, bara precis så att den process du vill studera över huvud taget kan hända.
Mellan dessa ögonblick får partiklarna återgå till sina enkla, isolerade jag. Vanligtvis ger
detta en grov men helt okej beskrivning av verkligheten, samtidigt som dessa få växelverk-
ningar är så begränsade—bara en flyktig störning ovanpå den trygga tillvaron hos isolerade
partiklar—att beräkningarna förblir enkla. Räcker inte detta kan en andra störning gö-
ras: tillåts det näst minsta antalet växelverkningar blir beräkningarna förvisso krångligare,
men resultatet korrigeras och hamnar förhoppningsvis ytterligare lite närmre verkligheten.
I denna avhandling stannar jag där, men det går såklart att fortsätta; i vissa extremt precisa
beräkningar kan hela sex störningar, den ena krångligare än den andra, komma på fråga.

Dessvärre fungerar störningsräkning inte alltid. Typexemplet är QCD vid låg energi, där
kvarkar och gluoner binds samman till baryoner och mesoner. Dessa nya partiklar är så full-
komligt olika en samling av isolerade kvarkar och gluoner att det är lönlöst att ta sådana
samlingar som utgångspunkt; försöker du likt förbannat arbeta dig igenom störningsräk-
ningen finner du att varje steg ändrar resultatet till oigenkännlighet istället för att vara den
finjustering det borde vara. Det finns alltså en till synes oöverbryggelig avgrund mellan hur
QCD ter sig i Standardmodellen och hur den yttrar sig i vår lågenergetiska vardag.

Kiral störningsräkning (eng. chiral perturbation theory, förkortat ChPT) är en väg över den-

²Med detta menas, enligt kosmologernas uppskattningar, ungefär 5% av Universums innehåll. Fast resten
är mörk materia, som vi inte har någon aning om vad det är, och mörk energi, som vi vet ännu mindre om.
Så Standardmodellen beskriver i alla fall allt som har någon form av påverkan på vår vardag. Eller, just det—
gravitation är en grej, och lyser med sin frånvaro i Standardmodellen. Attans! Verkar som att vi fysiker har en del
kvar att lista ut trots allt, och då har jag ändå inte kommit till vad jag försöker lista ut i den här avhandlingen.
Vad sägs om att vi avslutar den här fotnoten och går vidare? Bra—tillbaka till texten med dig nu.
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na avgrund. Istället för att utgå från isolerade kvarkar och gluoner utgår vi från isolerade
mesoner, vars inre struktur vi helt sonika sopar under mattan, och eftersom utgångspunk-
ten då ligger i samma härad som verkligheten, fungerar störningsräkning igen! Det kan
tyckas att vi nu fuskar och tappar all teoretisk grund, men icke! Det finns grundläggande
symmetrier hos QCD som, oavsett hur mycket krångel som gömmer sig under mattan,
måste finnas kvar hos mesonerna, och andra symmetrier bryts på mycket regelbundna sätt:
medan kvarkar förekommer i två former som är varandras spegelbilder, precis som vänster
och höger hand,³ är en meson sin egen spegelbild, som en näsa.⁴ Alla dessa symmetrier
sätter stränga matematiska villkor på hur mesoner kan växelverka. Till första störningen
tillåts bara två enkla sätt att växelverka, till andra störningen ytterligare 12, och så vidare.
Till varje växelverkan hör ett tal, en parameter, som mäter dess styrka, och i våra drömmars
land går dessa att teoretiskt härleda från QCD. I praktiken måste de tillföras från experi-
ment eller liknande, men likväl kan ChPT alltså ta oss från närmast total okunnighet till
en beskrivning av verkligheten som är entydig sånär som till en handfull parametrar att
justera. Mycket bättre än så går inte att säga ens om självaste Standardmodellen!

Med detta inte sagt att allt är solsken och fågelkvitter när det kommer till ChPT. Jämfört
med QCD:s rena form är den klumpig, och även enkla beräkningar med den tenderar att
skena iväg till oöverskådliga drivor av formler. Om det introduceras så mycket energi att
mesonerna börjar delas upp i sina beståndsdelar bryter ChPT fullkomligt ihop, precis som
QCD gör i det motsatta fallet när mesoner börjar formas. Redan när du har tre eller fyra
mesoner är denna sammanbrottsenergi föga större än vad som redan finns till hands genom
E = mc2, så ChPT fungerar bara i ett snävt spann av partikelfysikens breda energiskala.
Inom detta spann sker dock många intressanta och viktiga processer, och där verkar även
gitter-QCD (eng. lattice QCD), ett helt annat sätt att korsa QCD-avgrunden.

I gitter-QCD begränsas rummet till en liten låda, stor nog att på sin höjd rymma en hand-
full atomkärnor, och delas sedan upp i ett rutnät, ett gitter, ungefär som när en digitalkame-
ra pixelerar vår i övrigt högst opixliga verklighet. Detta, plus några matematiska konstfär-
digheter, förenklar problemet med lågenergi-QCD så att en väldigt, väldigt kraftfull dator
kan hantera det. På så vis simulerar man från grunden hur kvarkar och gluoner beter sig på
detta gitter, och kan studera saker som är otillgängliga både för teori och experiment, som
till exempel protonens och neutronens inre struktur. Gitter-QCD lider dock av flera pro-
blem kopplade till hur rymden (visar det sig visst) inte består av ett gitter i en låda, och det
är här ChPT, som lever i vår vanliga, oändliga rymd, kommer in. Med viss ansträngning
kan dess förutsägelser översättas till ett språk som gittret förstår och därmed kompensera
för dessa problem. I gengäld bistår gittret med beräkning av ChPT:s parametrar.

Det är i denna symbios mellan ChPT och gitter-QCD som jag kommer in. I den avhand-
ling du nu håller i handen gör jag diverse framsteg, både i beräkningar med ChPT och i
översättningen till gitter-språk. Därmed drar jag med stor glädje mitt strå till den stora,
underbara, ständigt växande (men alltjämt ofullständiga) stack som är vår gemensamma
förståelse av materiens allra innersta inre.

³Ordet “kiral” kommer av grekiskans χείρ, “hand”. Det hela är besläktat med hur “kiral” används inom kemin.
⁴Ordet “meson” kommer dock inte av grekiskans ord för “näsa”, utan istället från μέσος, “mellan”, eftersom

mesoner är lite sådär mellantunga med partikelmått mätt. Som jämförelse kommer “baryon” av βαρύς, “tung”.
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Popular summary in English

Particle Physics is the study of the innermost nature of matter. Or, well, time and again
we have found that what we thought to be innermost wasn’t so at all: from atoms we
pulled nuclei, and from those, protons and neutrons; soon, we also found their cousins and
called them mesons and baryons; then we realized that these were composed, in confusing
ways, of what we imaginatively called quarks and gluons, and which are the deepest level
we’ve reached so far; and gradually we compiled all of this and much more into the much
less imaginatively named Standard Model, a somewhat elegant and mostly complete theory
of almost everything,⁵ and which, in its briefest form, can be written on a t-shirt or a
coffee mug. The Standard Model contains many parts with intriguing names such as the
electroweak interaction and the Higgs mechanism, but you’ll have to read another thesis if
you wish to know more about them, for I will give my undivided attention to the part
with the most intriguing name of them all: quantum chromodynamics (abbreviated QCD),
which describes the quarks, the gluons, and their interactions.

Unfortunately, it is mind-numbingly difficult to theoretically predict the exact behavior of
particles based on QCD (or, for that matter, the rest of the Standard Model). In principle,
the only case we can solve is that of a single particle sitting in a void without interacting
with any others (and even then, “solve” is a bit of an overstatement). Salvation comes in the
form of perturbation theory, in which you start with something you can actually handle—
a few isolated particles—and then allow one, two, maybe three instant interactions, just
enough that whatever process you wish to study can happen at all. Between these instances,
the particles resume their simple, isolated existences. This usually gives a rough but quite
decent description of reality, but at the same time, the few interactions are so limited—
just a fleeting perturbation on top of the safety of isolated particles—that the calculations
remain simple. If this isn’t enough, a second perturbation can be used: allowing the second
smallest number of interactions does complicate the calculations, but the result gets refined
and hopefully ends up even closer to reality. That is where I stop in this thesis, but one can
of course continue; in certain extremely precise calculations, as many as six perturbations—
each more complicated than the last—may be on the agenda.

Unfortunately, perturbation theory doesn’t always work. The classic example is QCD at
low energy, where quarks and gluons fuse into baryons and mesons. These new particles are
so fundamentally different from a collection of isolated quarks and gluons that it is futile to
use that as your starting point; if you nevertheless try to work through the perturbations,
you’ll find that each step changes the result beyond recognition, rather than being the slight
refinement it’s supposed to be. Thus, there is a seemingly insurmountable chasm between
QCD as it appears in the Standard Model and in our low-energy lives.

Chiral perturbation theory (abbreviated ChPT) is a way across this chasm. Instead of start-

⁵By this I mean, according to the cosmologists’ estimates, about 5% of the contents of the Universe. But the
rest is dark matter, of which we know hardly anything, and dark energy, of which we know even less. So at least
the Standard Model describes everything that has any effect on our everyday lives. Or, right—gravity is a thing,
and is blatantly absent from the Standard Model. Damn it! It seems us physicists still have a thing or two to
figure out, and I still haven’t got around to what I’m trying to figure out in this thesis. How about we end this
footnote and move on? Good—get yourself back to the text, now.
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ing from isolated quarks and gluons, we start from isolated mesons, promptly sweeping
their inner structures under the carpet, and since the starting point now lies in the same
ballpark as reality, perturbation theory works again! You may think that in doing this,
we cheat and lose our theoretical footing, but that’s not the case! There are fundamental
symmetries of QCD that, regardless of the mess that hides under the carpet, must remain
with the mesons, and other symmetries are broken in highly regular ways: while quarks
come in two varieties, which are mirror images just like your left and right hand,⁶ a meson
is its own mirror image, like your nose.⁷ All these symmetries impose strict mathematical
conditions on how mesons may interact. For the first perturbation, only two simple kinds
of interaction are allowed, for the second one 12, and so on. Each interaction is associated
with a number, a parameter, determining how strong it is, and in our dreams these can be
derived from QCD. In practice, they must be taken from experiments or the like, but still,
ChPT takes us from near-complete ignorance to a description of reality that is unambigu-
ous except for a few parameters that need adjustment. One couldn’t say much better of
the Standard Model itself!

This is not to say that all is fun and games with ChPT. It is cumbersome compared to QCD,
and even simple calculations tend to snowball into incomprehensible piles of formulae. It
breaks down completely if one introduces enough energy that the mesons start to separate
into their constituents, much like how QCD does in the opposite situation where mesons
start to form. Already with three or four mesons, this breakdown energy is hardly greater
than what is already at hand through E = mc2, so ChPT only works within a narrow
segment of the wide energy range of particle physics. Within that range, though, live many
interesting and important processes, and it is also the realm of lattice QCD, an entirely
different way across the QCD chasm.

In lattice QCD, you limit space to a tiny box, big enough to host a handful of atomic
nuclei at most, and then divide it into a grid, a lattice, like how a digital camera pixelates
our otherwise rather un-pixely reality. This, plus some esoteric mathematics, simplifies
the problem of low-energy QCD so that a very, very powerful computer can handle it.
Thus, you simulate from first principles how quarks and gluons behave on this lattice, and
can study things that are inaccessible both to theory and experiment, such as the inner
structures of protons and neutrons. However, lattice QCD suffers from several issues con-
nected to how space (so it turns out) does not consist of a lattice in a box, and it is here that
ChPT, which lives in our normal, infinite space, enters. With some effort, its predictions
can be translated into a language that the lattice understands, thereby compensating for
these issues. In return, the lattice aids ChPT by calculating its parameters.

It is in this symbiosis between ChPT and lattice QCD that I enter. In the thesis you now
hold in your hand, I make an assortment of contributions, both to ChPT calculations and
to the translation into lattice-speak. Thereby, I gladly do my small part in the great, glori-
ous, steadily progressing (yet still incomplete) quest that is our common understanding of
the innermost nature of matter.

⁶The word “chiral” comes from the Greeek χείρ, “hand”. This is related to the use of “chiral” in chemistry.
⁷The word “meson” does not come from the Greek word for “nose” however, but from μέσος, “middle”, since

mesons are middleweights as far as particles go. For comparison, “baryon” comes from βαρύς, “heavy”.
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Introduction

On a few hundred pages in a book there lived a thesis. Not a massive, dense
monograph thesis, filled with groundbreaking results and an arcane technicality,
nor yet a dry, bare, minimalist compilation thesis with nothing in it but a summary
and a few papers: it was Mattias’ thesis, and that means comfort.

— J. R. R. Tolkien, in “The Hobbit” (1937), somewhat paraphrased

You are holding in your hand the culmination of four and a half years of research, itself
the culmination of almost ten years of studying at Lund University. It is a mighty tome,
thicker than it maybe should be. This is partly because it holds five research papers, none
of which are short and one of which—paper II—is staggeringly long. But it is also because
I have poured a lot of love and effort into this introduction, seeking not to just summarize
and contextualize the papers, but to provide more background and explanation than one
can normally indulge in when writing a paper, and to make it just a little bit less arcane
than theoretical particle physics tends to be.⁸

Writing this thesis, and doing the work behind it, has been great fun, and I hope that the
bit of Feynmannian flair and Bengtssonesque quirks I’ve tried put in some explanations
can help it be fun to read as well. Where it fails to be fun, I of course hope it can at
least be informative; I have often looked to previous theses (especially Johan Thorén’s [1]
and Nils Hermansson-Truedsson’s [2]) for good explanations of things that research papers
gloss over and textbooks never get to, and I dream that for some future doctoral students,
this thesis will be that kind of resource.

I therefore hope that you, dear reader—whether you are a member of my defense commit-
tee who knows more about most things than I do, or one of my young relatives who still
has almost all of the fun learning ahead of you—will read on, at least for a bit. I will start
gently, assuming my reader has very little background knowledge (but hopefully keeping
it interesting also for those who do). I will gradually make things more technical, so that—
like the apocryphal frog in a slowly heated pot which doesn’t notice that it’s boiling until
it’s too late—you find yourself at page 89, feeling like a theoretical particle physicist and
eager to at least taste the contents of the papers.

⁸And maybe—just maybe—because I like using many words and almost as many footnotes.
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1 The bigger picture

We can’t see dark matter, but it doesn’t matter. Matter matters.

— Stefania Xella (2019)

When looking for needles, you need to learn a lot about hay.

— Giulia Repellino (2023)

Particle physics is a broad, sprawling topic, and holds the honor of being the most fun-
damental of the physical sciences. It is highly mature as a field of research, and all the
low-hanging fruit has been picked; progress happens through the collaboration of hun-
dreds or thousands of people, or in tiny increments by many small groups of theorists.
Given this, along with the often obtusely technical nature of the progress, it is easy to lose
sight of the broader context of one’s work.

Particle physics has moved through several stages in its existence. The first few subatomic
particles—the electron, proton, neutron, photon, muon, and so on—were discovered
around the first few decades of the 20th century, and around the same time, the union
of quantum physics and special relativity into quantum field theory (QFT) laid a sound
theoretical groundwork that stands to this day. One specific instance of QFT, quantum
electrodynamics (QED) soon found great success in describing photons and electric charges.

After the world wars, particle physics entered a stage of rapid discovery. A confusing mess
of new particles, which I attempt to survey in section 2.1, was found, and QFT fell short of
explaining their properties and the strong force that governed them. However, theory grad-
ually caught up during the 1960s, and during a short and exciting time in the 1970s, several
theoretical developments and experimental discoveries came together to unlock the puzzle.
A theory not too unlike QED, quantum chromodynamics (QCD, covered in section 2.2)
was at last confirmed to explain the strong force. Thus, QED and QCD, along with an
equally satisfying description of the weak force, formed our current paradigm for particle
physics, the Standard Model (SM). Soon thereafter, lattice QCD (described in section 5)
was born, and helped clarify less easy-to-calculate aspects of QCD.

The subsequent decades were, if less exciting, all the more satisfying. The SM predicted a
number of hitherto unseen particles, and they were all discovered one after the other, as
our ability to search for them progressed at a steady pace. But while our scientific capabil-
ities grew, the stream of discoveries began to dry up. Within my lifetime, the number of
truly groundbreaking discoveries can be counted on my fingers, and the number of newly
discovered fundamental particles (the tau neutrino and the Higgs boson) can be counted
on my thumbs. After passing much scrutiny and having all its key predictions confirmed,
the SM is left only with its glaring inability to explain gravity or dark matter. Gravity is
more of a formal issue—we have a perfectly good understanding of it, theoretically incon-
sistent with QFT but with no clashes that we can actually measure—but dark matter poses
a worse problem, one that can hopefully be solved through a suitable extension of the SM
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without razing its QFT foundations. But without clear hints as to how such an extension
should look, theorists are left formulating a vast variety of tentative beyond-the-SM (BSM)
theories,⁹ with experiments blindly searching for signals that may confirm one of them.

I do not wish to imply that particle physics has entered a period of stagnation, though.
Even though the SM looks almost exactly the same as it did when first written down in
the 1970s, the precision and confidence we have regarding its details are at a completely
different level. Just look at the “history plots” section of the 2022 PDG review [3, p. 19],¹⁰
which summarizes how several important measurements have evolved since they were first
performed. The oldest error bars are as wide as the plots, while the newest ones can barely
be seen at all! Particle physics has truly entered an era of precision.

Particle physics may not look that precise at first—look ahead to page 56, and you will see
that the parameters that govern my work are seldom known to better precision than a per-
cent or so—but one has to bear in mind that particle processes are incredibly complicated
and noisy, so extracting the signal one is looking for is like finding a needle in a haystack.
Modern particle experiments are marvels of data collection and analysis, and the capability
of the biggest detectors to filter out extremely weak signals can be compared to a scale so
robust yet sensitive that you can drive a truck onto it and, engine still running, weigh a
single grain of sand on its trailer with the accuracy of a chemist’s analytical balance.¹¹

The haystack analogy is an apt one, since I am very much studying the hay, not looking for
the needle. This is not a BSM thesis, where I propose some elegant extension of the SM
and extract its most salient predictions, hoping that it may someday be confirmed or at
least confidently excluded. It is also not a thesis studying the “cool” parts of the SM, with
heavy, relatively recently discovered particles at extremely high energy (for that, see Timea
Vitos’ thesis [4]). No, this is a thesis studying some of the most mundane SM particles,
which are so amply produced in high-energy collisions that they are seldom even thought
of as particles, but as anonymous components of particle jets dumped en masse into the
detectors. This is a thesis about light mesons, and especially about the lightest and most
mundane among them, the pions.

Light mesons are rather peculiar manifestations of QCD, and are best studied with a refor-
mulation thereof called chiral perturbation theory (ChPT), which I describe in great detail
in section 3. ChPT only applies in the low-energy regime,¹² but there is plenty of science
to be had there. Take the famous anomalous magnetic moment of the muon, for example.
This aspect of how a certain charged particle interacts with a photon is almost entirely
the domain of QED, and has been both measured and calculated to some of the highest

⁹Here, as in “string theory”, the word “theory” is used more in the mathematical sense of “self-consistent
system constructed by theorists”, and not in the scientific sense of “well-tested description of reality”. The SM,
which by all accounts is a proper scientific theory, humbly calls itself a model.

¹⁰The PDG review authoritatively summarizes virtually all of particle physics every few years. Its contents are
also freely available online at https://pdg.lbl.gov/.

¹¹See https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SM/index.html
and https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsCombined for visualizations of
the vast range in cross-section (i.e., signal strength) measured at the Large Hadron Collider.

¹²“Low-energy” here means that the total energy involved is significantly smaller than 1 GeV, which is small by
particle physics standards but still vastly larger than what is typical for nuclear (a few MeV) or atomic/chemical
(a few eV) processes. (Readers who are unfamiliar with eV should look at page 6.)
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precisions ever achieved in any science. Yet, theoretical predictions do not quite match ex-
perimental results [5],¹³ even when the minute disturbances due to the rest of the SM are
taken into account. Of these, the effect of mesons is among the largest and most uncertain,
bringing these particles to the forefront of a very exciting corner of the haystack. That is
the subject of Nils Hermansson-Truedsson’s thesis [2] though, not mine.

Most ChPT calculations concern few-body processes like decays of a single meson, insert-
ing a meson pair into another process, or the scattering of two mesons. I instead study
processes involving at least three mesons, which is what the “multi-meson dynamics” in
the title refers to. Such processes are much less well-studied, partly because they have fewer
applications (nobody is colliding more than two beams at a time), and partly because they
are difficult: the kinematics of few-body systems are very limited, but there is much more
freedom in larger systems, so everything becomes more complicated.¹⁴

Something being difficult is, of course, its own reward, and multi-meson dynamics in
simplified versions of ChPT has long been of interest in purer theoretical areas. Paper I
operates in that relatively active realm, but when Hans and Tomáš sat down with more
realistic ChPT to calculate the six-pion amplitude [6] that we subsequently generalized
in paper III, they improved on something that had not been substantially worked on for
50 years [7–9]. That is not to say that their effort was uncalled for: six-meson processes
have recently garnered much interest because three-meson systems have become an active
topic in lattice QCD. These are, in turn, particularly relevant for modeling heavy, highly
unstable particles (that is, resonances) that predominantly decay into three lighter ones, of
which there are several interesting examples. As I will explain in section 5.3, the properties
of such a system of three particles can be related to the properties of those same particles
scattering elastically against each other, which is described by a six-particle amplitude (three
in, three out). Such a comparison builds on the strengths of both ChPT and lattice QCD,
and is worked out to great success in papers IV and V.

Well, that just about summarizes it. Gone are the days when we stepped on needles when-
ever we went for a walk; now, the haystack of particle physics is combed ever finer, granting
insights and honing our collective skills as we go. I do not actively search for the needle
of dark matter or whatever comes next, but I do find great joy in digging ever deeper into
whatever my mathematical tools find purchase on. Every development gives the next big
breakthrough fewer places to hide.

¹³For the non-academics reading this: a nice thing about particle physics is that virtually everything published
in my lifetime is made openly available at the arXiv, https://arxiv.org/, with links given under each reference.
The arXiv contains preprints, not actual papers, but these tend to be nearly identical.

¹⁴Some terminology for the non-experts: kinematics concerns the universal rules of how things can move, while
dynamics concerns the specific rules of how they do move. For example, if a particle beam collides with something
stationary, most of the beam’s hard-earned energy has to go into maintaining the momentum of whatever comes
out, since momentum cannot be created or destroyed; this is why we collide beams head on, so that the opposite
momenta cancel out and all the hard-earned energy can be spent on interesting things. All of that is kinematics,
and dynamics only enters when thinking about what those interesting things actually are.
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2 Introduction for the non-experts

Our imagination is stretched to the utmost, not, as in fiction, to imagine things
which are not really there, but just to comprehend those things which are there.

— Richard Feynman, in “The Character of Physical Law” (1964)

Theoretical particle physics is a notoriously difficult topic to familiarize oneself with, and
sadly, my work isn’t of that elegant kind where the results can be understood without much
insight into the technical details. But I’ll be damned if I resort to hiding behind such a
thin excuse as “it’s complicated”! In the following pages, I will do my very best to convey
to you, not the general idea of the concepts as in the popular introduction, but the heart
and soul of the actual machinery. It will be quite a mouthful to digest, but it should give
a bright and curious mind at least a fighting chance against the arcane lore of the main
text. (Experts of that lore are of course free to read on for entertainment, or skip ahead to
page 40.)

Before going about it, let me spend the remainder of this page discussing how I’m going
about it. Particle physicists prefer condensing a lot of information into a few symbols,
with much meaning left unstated in the assumption that the reader already knows it. I
could try to make things accessible by being more explicit, writing out all the details and
carefully working through concrete examples. But then I’d be writing a textbook, which
there certainly isn’t room for in this already-overlong thesis, and textbooks are for students
hoping to learn how to do this themselves, rather than readers hoping to just understand
what it means. Writing out all the details, I’d likely just cause sensory overload. I could
dumb things down instead, and explain the rough ideas in words without formulae, but
then I’d be very far from the true nature of this very mathematical field, and I’d be doing
a disservice to anyone hoping to push a bit further beyond page 40. (So be ye warned:
beyond this page, there be mathematics!)

What I have ended up doing is taking the particle physicist’s preference to the extreme: I
condense the formulae down to their most minimalist forms, eschewing detail for a bird’s-
eye view of their core meaning. With words, I try to highlight the take-home messages
while at the same time exposing the mathematical bones of the arguments. In short, I try
to make statements that are structurally simple and conceptually abstract.

Lacking detail, I advise you to lean on the duck principle: if it walks and swims and quacks
like a duck, you might as well call it a duck. Likewise, if it adds and multiplies and trans-
forms like a vector, you call it a vector, even if what is “under the hood” is vastly more
complicated than the x⃗ = (x, y, z) represented as an arrow on a blackboard. If you hear
me say “vector” while pointing at some mysterious infinite-dimensional thing, you don’t
think “this is a mysterious infinite-dimensional thing, and I’m scared”—you think “ah, I
can manipulate it just like I could (x, y, z), and I shall fear no evil”. Asking what things are
is a dangerous, mind-bending, sometimes unanswerable question, but asking what things
do is easy, especially when you just need them to do some of the things they can. A duck
is a duck, and a superintelligent AI whose sound card only supports quacking is, for many
purposes, also a duck. With that, dear reader, I wish you the best of luck.
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BOxES, SyMBOLS AND UNITS

Throughout the introduction, I will place these boxes containing information on basic
topics. For the non-experts, they should alleviate the problem of not having all the
background knowledge that the main text takes for granted; most things that are still left
unexplained ought to be within Wikipedia’s reach. For the experts, they should help clarify
my notations and conventions.
For a warm-up, in this first box I will remind that ∂ stands for a partial derivative,

∫
for

an integral, and
∑

for summation.i The symbol ≡ means “equal by definition”, and the
complex conjugate of z is written z∗, not z̄ as some silly mathematicians will tell you.
I would also like to declare my use of natural units throughout.ii That is, I choose the
electronvolt, eV, as the unit of energy, and then set the speed of light and the reduced Planck’s
constant to unity: c = ℏ = 1. This equates energy and mass (since E = mc2 is now E = m)
as well as energy and frequency (sinceE = ℏω is nowE = ω). Setting c = 1 also removes the
distinction between distance and time,iii and since time is inverse frequency, all of spacetime
can be measured in inverse eV. The conversions to “ordinary” units are

1 000 000 000 eV = 1 GeV = 0.1602176634 nJ = 1.78266192 yg,

1 GeV−1 = 0.197327 fm = 0.6582119 ys.
(2.1)

Since the 2019 SI redefinition, these relations are exact. Furthermore, I express charges in
units of the elementary charge, i.e. the charge of the proton.

iParticle physics plays rather fast and loose with all three: ∂xf means the same as ∂f/∂x;
∫
d4x the

same as
∫
dt

∫
dx

∫
dy

∫
dz (each from −∞ to ∞); and

∑
i means “sum over whichever i are relevant”,

because something like
∑n

i=1 or
∑

i∈I is too much of a hassle. Note also the convention to write the
integration measure (the dx bit) immediately after the

∫
rather than at the end of the integral, which

makes sense once they grow complicated enough.
iiAt least, I use what most particle physicists call “natural units”, where “natural” means that some

fundamental constants are fixed to 1 so that the number of basic units is reduced from the cumbersome
set of seven that the SI prescribes. In other contexts, different constants may be set to unity, and the
decision to express things in terms of eV’s might be considered a bit queer.

iiiA popular example of this is the unit light-year. If you measure time in years and distance in light-
years, then you automatically have c = 1: light travels one light-year per year! The same happens if you
measure using minutes and light-minutes, seconds and light-seconds, and so on. At some point, you
realize that you can just drop the “light-” and express both time and distance in terms of your chosen
time unit. That c is normally some big, weird number is just an artifact of how our unit of distance
(meter) is much shorter than what light travels in our unit of time (second), which in turn is an artifact
of how slow humans are.

2.1 Invitation: the Particle Zoo

…ἐνεῖναι πολλά τη καὶ παντοῖα ἐν πᾶσι τοῖς συγκρινομένοις καὶ σπέρματα πάντων
χρημάτων καὶ ἰδέας παντοίας ἔχοντα καὶ χροιὰς καὶ ήδονάς.
…there exist many things of all kinds, the seeds of all objects, having all sorts of
forms and colors and flavors.

— Anaxagoras (d. 428 BCE), fragment B4
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Open any thesis from my division in Lund, and you’ll most likely find a thorough descrip-
tion of the SM near the beginning. I have decided not to do one of those, since frankly, the
physics I work on only cares about a very small part of the SM: only half the quarks come
into play, few leptons are mentioned even in passing, and the W , Z and Higgs bosons
could just as well not exist. Therefore, I’ll leave all those particles alone and instead de-
scribe the particles that do figure in my work, and some of their close relatives. In the more
confusing times that were the 1950s, roughly this collection of particles was known as the
particle zoo, before early versions of the SM began to clear things up.

One important thing to note is that none of the zoo particles are fundamental, unlike the
electrons, photons, etc., which (as far as we know) don’t consist of any smaller parts. But
they are very tightly knit together, much more so than atoms or their nuclei, so tightly that
it’s fundamentally impossible to break them apart and study their components in isolation.
Even so, we can glean a bit about the subcomponents by looking at what properties the
bigger particles have. And since this thesis is about studying the properties of the smallest
of these bigger particles—the pseudoscalar mesons—I figured it’d be worth a few pages to
really wrap our minds around them before moving on.

Splitting atoms. Let me begin with an analogy about the biggest particles any particle
physicist would dare to look at, namely atoms. These are electrically neutral, but with a
slight nudge (hitting them with ionizing radiation, or doing whatever it is chemists do all
day) they can be turned into electrically charged ions. Importantly, electric charge is quan-
tized : an ion can be charged +1 or −3 or whatever, but never − 1

7 or +π or anything else
that’sn’t an integer.¹⁵ Also, electric charge can’t be created or destroyed, so these nudgings
must be adding or removing some kind of subcomponent that carries the charge with it.
An ion is also pretty much equal in mass to an atom, so whatever it is we are adding and
removing must be very, very light.

With heavier nudges (whatever it is nuclear physicists do all day), both the charge and
the mass of the atom can be changed in big steps, so it seems we are dislodging some
heavy, charged subcomponent. It must be oppositely charged to whatever that light thing
is, which allows the overall atom to be neutral. Those big mass steps can also be taken
without changing the charge, so there seems to be some heavy, neutral subcomponent as
well. And what do you know: atoms are made from light, negatively charged electrons
(weighing 0.511 MeV), heavy, positively charged protons (938 MeV) and neutral neutrons
(940 MeV)!¹⁶ The mass of an atom never precisely matches the sum of its parts, but that’s
not that strange—an awful lot of energy goes into binding those components together, and
as we know, energy and mass are one and the same.

All of this we could have figured out without ever disassembling an atom to look at the
parts in isolation (although of course we have). For the particles we are about to study,
however, we have no choice but to go about things in that non-disassembly way. I will
actually start with the protons and neutrons, the tamest beasts in the zoo.

¹⁵Remember this whenever quantum physics becomes too scary: at the bottom of it all, the word “quantized”
doesn’t mean anything more than “only available steps”, and a quantum (plural: quanta) is just the size of one of
those steps. I once heard it said (in hard-to-translate Swedish) that “klassisk fysik köps i lösvikt, men för kvantfysik
är det styckpriser som gäller!”

¹⁶Following standard SI prefixes, an MeV is 1 000 000 eV or 1/1000 of a GeV.
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QuANTIZED SpIN

Spinning things carry angular momentum, and like so much else, this gets quantized down in
the quantum world: the orbit of an electron around a nucleus can have angular momentum
1 or 2 or even 0, but never anything inbetween.i
Elementary particles have a kind of built-in angular momentum called spin, which holds
a fixed value for each kind of particle. You should not think that the particles are actually
spinning—they are so tiny that they would have to rotate faster than the speed of light to
achieve enough angular momentum—but rather that they have something mysterious that,
for all intents and purposes, acts like angular momentum. Remember the duck principle!
Things get weirder when considering the fact that angular momentum (or spin) has a direc-
tion, dictated by where the axis of rotation is pointing.ii It is quantized in each direction
separately, but not independently: if you set things up so that the entire spin J points in the
x-direction and then measure in the z-direction, you won’t find 0 as you’d expect—you’d
randomly find any value between +J and −J , in steps of 1. For the lowest couple of total
spins J , the possible directions look something like

Jz = 0

−1

−2

+1

+2

− 1
2

− 3
2

+ 1
2

+ 3
2

J = 0 J = 1
2

J = 1 J = 3
2

J = 2

(2.2)

where the z-direction is vertical, and the horizontal represents some unknowable combina-
tion of x and y. Note that this leaves room for half-integer J-values like 1

2
or 3

2
, and indeed

we find that many common particles—protons, neutrons, and electrons—have spin 1
2
.

Spin gets added up when smaller particles form larger ones, and different combinations can
be formed. For instance, two spin- 1

2
particles make a spin-1 particle if their spins align, or

a spin-0 particle if they don’t—measured along one particle’s spin axis, the other one will
contribute either + 1

2
(aligned) or − 1

2
(not aligned).

iWe don’t notice this in the everyday world, because in everyday units those quantized values are
separated by steps of ℏ, which is absurdly tiny. Even the minuscule and extremely slowly revolving
month hand found on some wristwatches has an angular momentum well in excess of a trillion ℏ.

iiSpecifically, the axis of counterclockwise rotation—if it goes clockwise, point the axis the other way.

Inventing isospin. Electric charge aside, protons and neutrons (collectively called nucle-
ons, since they form atomic nuclei) are remarkably similar—they have the same spin and
almost exactly the same mass. They also readily transform into one another, which is the
mechanism behind radioactive beta decay. Normally, neutrons turn into protons, since
this allows the mass difference to be liberated as energy, but the context of an atomic nu-
cleus can tip this energy balance so that protons turn into neutrons.¹⁷,¹⁸ Then it makes

¹⁷When protons and neutrons turn into each other, they also emit positrons or electrons (seen as β± particles)
and neutrinos or antineutrinos (not seen at all unless you try very hard). These extra particles ensure that total
charge is conserved, and that the liberated energy has somewhere to go.

¹⁸In one nucleus, Thorium-229m, the energy balance is so delicate—a mere 8.3 eV difference [10]—that even
the chemical context can tip the scale. (Normally, chemical forces are far too feeble to affect nuclei.)
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sense to guess that maybe the proton and neutron are mostly the same inside, differing
only by altering one subcomponent. That alteration should account for their difference in
charge, but clearly, charge can’t be the important thing here—whatever force causes nucle-
ons and nuclei to form must be vastly stronger than the electromagnetic force, or else all
those equally-charged protons would fly apart.¹⁹ Instead, there must be some new, deeper
property. But what?

While we are trying to be clever, the duck principle waddles up and quacks at us: what if
it is like spin? What if the proton and neutron are just the + 1

2 and − 1
2 states of a common

particle, the nucleon, which has a total “spin” of 1
2 ? It can’t be spinning in regular space,

not even in the not-really-spinning way of spin—spins flip if you flip space, but protons
don’t turn into neutrons just because you stand on your head²⁰—but if things behave as
if they are spinning in a more-or-less made-up space, then surely we can describe it like
spin? The main forces involved would then be insensitive to the “spin” direction, but less
important ones could give rise to differences in mass and charge.²¹ Thus quacks the duck
principle, and this idea turns out to be a solid one. To distinguish it from spin, we call this
(strong) isospin, I;²² the component that distinguishes protons and neutrons is labelled I3
(similar to the z component of ordinary spin).

The baryons. The isospin- 12 nucleon with components (p+, n0) has some close relatives
in the zoo, and by analogy, they can also be organized by isospin. There is the isospin-1 Σ
with components (Σ−,Σ0,Σ+), the isospin- 12 Ξwith components (Ξ−,Ξ0), and the lonely
isospin-0 Λ0. But all of these particles, besides being a bit heavier than the nucleon (see
table 1), are also somehow… strange. Given their large mass, they should happily decay
into nucleons, and indeed they do, but much slower than they should.²³ It is as if they
possessed some quantity not present in nucleons, one that Nature can create and destroy,
but only reluctantly. This puzzling quantity is—I kid you not—called strangeness, S, and Λ
and Σ have S = −1.²⁴ Ξ is doubly strange, S = −2, and it takes two strangely slow decays

¹⁹That these forces (the nucleon-forming and the nucleus-forming) are one and the same is, perhaps, not
obvious, but sure as eggs are eggs, they are none other than the unimaginatively named strong force. Its purer,
stronger manifestation forms nucleons, and a weaker, indirect manifestation binds them together into nuclei.
This is similar to how purer, stronger electromagnetism forms atoms and assembles them into molecules, while
weaker, indirect forms like the van der Waals force binds them together into liquids and solids.

²⁰This might sound silly, but one of the most profound discoveries ever, the Wu experiment that proved that
Nature fundamentally distinguishes left and right [11], was in essence performed by doing a very precise measure-
ment, and then doing it again after flipping suitable parts of the setup.

²¹In everyday life, a similar thing happens when you wear polaroid sunglasses: the millions of kilometers of
vacuum and dozens of kilometers of air between you and the Sun treat all photons the same regardless of where
their spin points (for the record, photons have spin 1), but the thin sheet of plastic in front of your eyes blocks
some spin directions and lets other ones through.

²²There is also the physically unrelated weak isospin, which goes to show that the idea is good enough to apply
twice. Weak isospin is incredibly important to the SM, but not to this thesis, so I won’t mention it again.

²³A particle decay needs two things to happen: energy to liberate, and a force to do the job. The stronger the
force, and the more energy is liberated, the faster the decay happens. But forces follow rules, and the strong force,
while strong, is forbidden from changing isospin. The electromagnetic force is similar but weaker—it can sense
differences in isospin, which is how protons and neutrons differ in mass and charge, but it can’t change isospin.
The weak force is even weaker, but has fewer restrictions, so it allows protons and neutrons to decay by changing
their isospin. This is a slow process—left alone, a neutron lasts about 20 minutes on average.

²⁴Never mind the minus—it’s a historical artifact from before we had strangeness fully figured out, much
like the minus in the charge of the electron. As you may guess, the weak force is the only one that can change
strangeness, but it’s even worse at it than it is at changing isospin.
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Figure 1: The baryons, arranged by isospin I3, strangeness S, and electric charge Q.

decays, via an intermediate S = −1 particle, before it becomes an S = 0 nucleon.

These close relatives all have spin 1
2 (the regular spin, not the iso kind), but there is also a

family of spin- 32 cousins with a similar layout: the Ξ and Σ are still there, but with stars to
remind us that these are the spinnier versions; there is no Λ0, but instead a triply strange
Ω−, and the nucleon is replaced by an isospin- 32 ∆ with components (∆−,∆0,∆+,∆++).²⁵

Arranging all these baryons (as they are collectively called) by isospin and strangeness, the
beautiful hexagonal pattern of fig. 1a emerges, and the delightful triangle of fig. 1b. Not
only is it pleasingly symmetric, but also electric charge, Q, appears in an orderly fashion,
increasing diagonally through the array.

The quarks. So, can we figure out the subcomponents of the baryons based solely on
this information? Yes, we can! Reasonably, one kind of subcomponent takes care of the
strangeness: Ξ has two of those, Σ/Λ has one, and the nucleon lacks it. Judging from
the similarity between the Ξ and the nucleon, the strange subcomponent doesn’t affect the
isospin at all. Catching a whimsical mood, this subcomponent (purely hypothetical at the
time) was given the name strange quark, s.

Next comes isospin, which is reasonably also carried by quarks, an isospin- 12 pair (u, d)
whose I3 = + 1

2 part is called up and I3 = − 1
2 part down, following how the I3 axis points

in fig. 1. That solves Ξ: if, in addition to the two s quarks, we give Ξ0 an u and Ξ− a d,
both S and I3 look correct. The same u/d difference could be what distinguishes proton

²⁵The spin- 3
2

particles decay extremely quickly, since the strong or electromagnetic forces are perfectly capable
of jettisoning the extra spin, charge and I3. Only Ω− is relatively long-lived, since it takes the weak force to
reduce the strangeness.
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from neutron, but we can’t simply identify p+ = u and n0 = d, since the Ξ’s are vastly
different from what you’d get from a nucleon with two s quarks on top; no, there must
be something more. Reluctant to introduce more kinds of particles, an elegant solution is
to add one u and one d to each nucleon, giving them more substance while keeping the
isospin where we want it.

And there we have it: if each baryon consists of three quarks drawn from u, d and s,
everything falls into place. With one s, the remaining choices of uu, ud and dd perfectly
explain the isospins of the Σ’s. The same exercise can be repeated for the spin- 32 family, and
with the addition of ∆− = ddd, ∆++ = uuu and Ω− = sss, everything checks out. The
electric charges also add up if we suppose that u has Q = + 2

3 while d and s have Q = − 1
3 ,

and the spins add up if all quarks have spin 1
2 : they can be combined either as 1

2+
1
2−

1
2 = 1

2
or 1

2 + 1
2 + 1

2 = 3
2 . The whole layout is summarized in table 1.

Some questions are reasonable to ask. Why is there no Λ∗0, and no spin- 12 versions of ∆−,
∆++ andΩ−? The answer comes down to symmetry: quarks and their spins can be arranged
in ways that are either symmetric or antisymmetric, and the subtle mathematics of spin-
combining dictate different symmetries for spin- 12 and spin- 32 combinations. Nature likes
symmetry and firmly requires that any antisymmetry is cancelled by another antisymme-
try. Λ0 is an antisymmetric arrangement of quarks, and there is an antisymmetric spin- 12
combination to counter it, but no spin- 32 combination. Likewise, arrangements of three
identical quarks are too symmetric to be matched by a spin- 12 combination.²⁶

SyMMETRy AND ANTISyMMETRy
The word “symmetry” carries a broad and important meaning in particle physics.
Given any transformation—mirroring, rotation, rearrangement, or any of the more
abstract ones we will encounter later on—we say that an object is symmetric under
that transformation if it’s not changed by it. A symmetric thing (in the everyday sense)
is symmetric under mirroring, and a sphere is symmetric under both mirroring and rotation.
A thing is antisymmetric under a transformation if it changes sign, but is otherwise
unaffected (this only makes sense for things that have mathematical signs, of course). For
example, A+B is symmetric under the swap A ↔ B, but A−B is antisymmetric.
Anything that can be combined with addition can be symmetrized, i.e., summed over some
transformation, which creates something symmetric. Inserting suitable minus signs results
in something antisymmetric instead. For instance, Σ0 and Λ0 are the symmetrization and
antisymmetrization of uds, respectively, over rearrangement of the quarks:i

Σ0 = (uds+ sdu) + (dsu+ usd) + (sud+ dus) ,

Λ0 = (uds− sdu) + (dsu− usd) + (sud− dus) .
(2.3)

iNever mind what uds actually means—essentially, it’s shorthand for a three-quark quantum state.

Having established that there are quarks, there are of course also antiquarks, which form
antibaryons that look just like the baryons except that they are equal and opposite in charge,

²⁶The details of this explanation, which are fiddly but not too difficult, are given in Griffiths [12, sec. 5.9].
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Table 1: Masses and quark contents of the baryons shown in fig. 1 (values taken from the
2022 PDG review [3, pp. 90-99]). Numbers in parentheses indicate the uncer-
tainty in the last digits, so 1314.86(20) means that Ξ0 probably weighs between
1314.66 MeV and 1315.06 MeV. The ∆ mass isn’t known separately for each
charge/isospin, but only as an average.

Content Spin 1
2 Mass [MeV] Spin 3

2 Mass [MeV]
uuu ∆++ 1 232(2)
uud p+ 938.272 088 16(29) ∆+ 1 232(2)
udd n0 939.565 420 5(5) ∆0 1 232(2)
ddd ∆− 1 232(2)
uus Σ+ 1 189.37(7) Σ∗+ 1 382.83(34)
uds (I = 1) Σ0 1 192.642(24) Σ∗0 1 383.7(1 0)
uds (I = 0) Λ0 1 115.683(6)
dds Σ− 1 197.449(30) Σ∗− 1 387.2(5)
uss Ξ0 1 314.86(20) Ξ∗0 1 531.80(32)
dss Ξ− 1 321.71(7) Ξ∗− 1 535.0(6)
sss Ω− 1 672.45(29)

strangeness and isospin. For instance, anti-Λ0 or Λ̄0 (a bar over a particle symbol indicates
its antiparticle) has S = 1 and contains an antistrange quark, s̄.

The mesons. More interestingly, combinations of a quark and an antiquark give rise to
a new family of particles, the mesons, which exist in spin-0 and spin-1 versions (based on
the spin alignment of the quark and antiquark) as shown in fig. 2. Despite the completely
different recipe, the mesons arrange themselves very similarly to the spin- 12 baryons! Sure,
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Figure 2: The mesons, arranged by isospin I3, strangeness S, and electric charge Q. Note
that this covers both mesons and anti-mesons: anti-π+ is π−, etc.
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the axes are shifted, and there are now three different particles at the center, but this all
makes sense based on the quarks—after all, we have both uū, dd̄ and ss̄ to play with.
Mesons are the main characters in this thesis—the spin-0 or pseudoscalar mesons, to be
precise.²⁷ In fact, almost all my physically applicable work concerns the isospin-1 triplet of
pions, (π−, π0, π+), with some limited attention given to the two isospin- 12 pairs of kaons,
(K0,K+) and (K−, K̄0), and the isospin-0 eta, η.²⁸

VEcTORS AND THEIR fRIENDS
Staying true to the duck principle, anything that behaves remotely like an arrow on a
blackboard is considered a vector. Specifically, they must add and subtract in a sensible way,
and accept rescaling by numbers called scalars. Vectors of the same kind collectively form
a (vector) space, and that space is subject to transformations, which are called linear if they
respect the way vectors add and scale. Vectors may be written in many ways: v, |v⟩, etc.
Every space can be given a basis,i a set of vectors bi such that any vector can be expressed
(uniquely) as a linear combination thereof,

v =
∑
i

vibi , (2.4)

where vi are called the coordinates of v. (Using Einstein’s summation convention, a repeated
index is understood to be summed without

∑
, so v = vibi.) Listing the components allows

any abstract vector to look just as sensible as (x, y, z), although the length of the list—the
dimension of the space—might be infinite.
Every space worth having has an inner product, a way to take two vectors and get a scalar.ii
These are often expressed as combining a vector and a conjugate vector, like in vTu or v†u
or ⟨v|u⟩ (vectors on the right, conjugates on the left). The components of the conjugate are
usually obtained through complex conjugation: u†v = u∗

i vi.
If you switch to a new basis, all coordinates must change accordingly so that the vector
remains the same; this change is a linear transformation, written something like vi → Rijvj .
(In this indexed form, R is a matrix and is conveniently written as a square array.) This
transformation property also applies to the spin components of spin-1 particles, which is
why they—duck goes “quack”—are called “vectors”. Scalars don’t change with the basis, so
if v → Rv then v† → v†R† with R†R = 1, so that scalar products are unchanged. Spin-0
particles also remain unchanged, so they—duck quacks again—are called “scalars”.
Of special note is the parity transformation, multiplying the basis by −1 to mirror the space.
This should also multiply vectors by −1, but leave scalars unchanged. Something that looks
like a scalar but also gets a −1 is called a pseudoscalar, and something that looks like a vector
but doesn’t get its −1 is called a pseudovector, or more commonly an axial vector.

iStrictly speaking, this assertion relies on (and implies) the axiom of choice [13], for those of you
who enjoy such mathematical nitpickings.

iiA product that results in another vector isn’t necessarily a feature of vector spaces, though. The
cross product, for example, is a bonus feature specific to three-dimensional space.

²⁷The reason why they are pseudoscalars instead of scalars has to do with the finer details of how spins are
combined. There are also scalar mesons, but they are heavier and highly unstable.

²⁸If you wonder why I included baryons in the first place, it was because they do a better job of explaining
quarks, and because protons and neutrons are closer to home for most people. Likewise, I include vector mesons
for completeness and context.
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Table 2: Masses and quark contents of the mesons shown in fig. 2 (values taken from the
2022 PDG review [3, pp. 33-42]). As in table 1, numbers in parentheses indicate
the uncertainty in the last digit(s). The contents of π0, η, η′ and their spin-1 coun-
terparts are only approximate due to mixing (see section 3.5).

Content Spin 0 Mass [MeV] Spin 1 Mass [MeV]
uū− dd̄ π0 134.976 8(5) ρ0 775.26(23)
ud̄/dū π± 139.570 39(18) ρ± 775.11(34)
us̄/sū K± 493.677(16) K∗± 891.67(26)
ds̄/sd̄ K0/K̄0 497.611(13) K∗0/K̄∗0 895.55(20)
uū+ dd̄− 2ss̄ η 547.862(17) ω 782.66(13)
uū+ dd̄+ ss̄ η′ 957.78(6) ϕ 1 019.461(16)

Now, have yourself a good, long stare at tables 1 and 2, especially the masses. There is no
way to assign masses to the quarks that even remotely adds up to the masses we see, but this
is expected, since there is probably an overwhelmingly large amount of energy bound up
in such solid particles that the masses of the constituents hardly matter. Adding s quarks
seems to add some mass, so maybe s is a tad heavier than the others, but overall, there just
seems to be a general mass difference between baryons and mesons, a general mass increase
at higher spin, and some smaller variations between individual particles.

But then focus on the pions. They are so light ! Barely a sixth of the nucleon mass, yet
they are supposed to have two thirds the quark content. They are also much lighter than
the kaons, but we don’t see a similar difference between the ρ and K∗. There must be
something special with the pions, something that relaxes the forces and allows them to get
away with less bound-up energy. Come to think of it, the kaons and η also seem to have
some of that mysterios lightness to them: they weigh just over half that of η′, but K∗, ω
and ϕ differ much less dramatically.

The reason for this lightness is a deep, subtle and beautiful one, and one that forms the very
foundation of everything this thesis is built on. The explanation, which I state in section 3,
spontaneously gives birth to a very powerful toolbox for computing the behavior of these
lightest animals in the zoo, and they in turn have a multitude of physical consequences.

With that, I conclude this warm-up section of baryons and mesons, collectively called
hadrons (generally, a hadron is anything that can be built from quarks and antiquarks). It
is only the tip of the iceberg—leaf through the PDG review [3, pp. 33-107] hadron lists,
and you will see that there are many more than the ones I’ve shown, with quarks excited
to higher energy levels and orbiting to add to the spin. There are also three more kinds of
quarks, but they are heavy enough that even the lightest hadrons they form are too heavy
to care about. Then there is the elephant in the room—how on Earth the quarks form
hadrons, and why they can’t be disassembled—but that isn’t healthy to think about now (I’ll
get back to it on page 32). Instead, we should press on to gain a much better understanding
of what quarks are and what they do, and pick up a whole load of mathematics on the way.
Trust me, that’s healthy.
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RELATIvITy AND LORENTZ INDIcES
Things that are vectors in spacetime are written using Greek Lorentz indices running from 0
to 3, like the spacetime coordinate vector or the partial derivative:i

xµ ≡ (x0, x1, x2, x3) ≡ (t, x, y, z) ≡ (t,x) , (2.5)
∂µ ≡ (∂0, ∂1, ∂2, ∂3) ≡ (∂t, ∂x, ∂y, ∂z) ≡ (∂t,∇) . (2.6)

Note that xµ can mean both “the entire x-vector” or “one of its components, labelled by
µ”. The space part of a vector is written as a boldface version of the full spacetime vector,
with the sole exception of ∇ which gets a special symbol.
Unlike other kinds of indices, which can be written either up or down based on convenience,
Lorentz indices strictly distinguish up and down, and Einstein summation requires one index
to be up and one down, which is called a contraction. For example,

∂µx
µ ≡ ∂tt+∇ · x ≡ ∂tt+ ∂xx+ ∂yy + ∂zz = 4 . (2.7)

Upper and lower indices can be exchanged using the metric, g: xµ = gµνx
ν and xµ = gµνxν .

In my sign convention (which may differ from yours), gµν = gµν = diag(+1,−1,−1,−1),
where diag indicates a matrix with the listed elements on the diagonal and zeroes elsewhere.
Going to a new reference frame changes upper-index and lower-index things oppositely:
xµ → Λµ

νx
ν and ∂µ → (Λ−1)νµ∂ν with Λ−1Λ = 1. This also works for things with multiple

indices (called tensors), which take one Λ for each upper index, and one Λ−1 for each lower
one. An expression where all Lorentz indices have been contracted is the same in all reference
frames; in other words, it’s Lorentz-invariant. That’s important: Nature herself is Lorentz-
invariant, so whatever physics we try to do better have all its indices in order.

iTake care not to confuse the indices with exponents. Luckily, I will almost never write out com-
ponents such as x2 explicitly (instead, x2 is short for xµxµ) and will almost never use something that
could be a Lorentz index (such as µ) as an exponent.

ALL THAT quANTuM STuff

Possibly to your surprise, dear reader, there is very little actual quantum mechanics in this
thesis. Suffice it to say, then, that quantum states, written |ϕ⟩ for some descriptive label
ϕ, are just vectors in an infinite-dimensional space, and that they are acted on by linear
operators, such as those seen in eq. (2.9). If for some operator Ô we have Ô|ϕ⟩ = λ|ϕ⟩, then
|ϕ⟩ is an eigenstate of Ô with eigenvalue λ, and can be said to possess a well-defined quantity
of whatever λ represents; if not, then |ϕ⟩ is a superposition of those states and doesn’t have a
well-defined λ of its own.
In QFT, as the name suggests, much of the role of states is taken over by fields, which are
operators that are also functions of spacetime. As operators, fields add or remove one particle
from the state it acts upon.i Any operators that would act on a one-particle state can therefore
equally well act on the field that would create it, which is why eq. (2.9) is written in terms
of a field ϕ instead of a state.

iFor details, see the first few chapters of Peskin & Schroeder [14], which treat the operator nature of
quantum fields in great detail. Zee [15], on the other hand, manages perfectly fine without discussing
states and operators at all.
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2.2 Re-inventing Quantum Chromodynamics

Free quark searches: All searches since 1977 have had negative results.

— The Particle Data Group [3, p. 32],
for once needing only one sentence

to say everything there is to say.

Why QCD, you may ask? After all, my work isn’t in QCD, but in ChPT! Well, look up
any introduction to ChPT—the lecture notes of Pich [16] and Scherer & Schindler [17],
or the book by Donoghue [18, chapter VII], for instance—and they open cold with QCD
and its properties laid out, deriving the rest from there. Therefore, QCD is where we must
get before we’re ready for ChPT, and incidentally, deriving QCD from scratch happens to
make for a wonderful crash course in many useful things.

Quantum field theory from nothing. Imagine, then, that almost all of particle physics
has been lost in some kind of cataclysm, and that all that remains is a well-catalogued set of
experimental observations, and maybe a few charred pages of my favorite textbooks. From
the ashes, we are now tasked with creating something to describe the innards of a hadron.

We can start with a few things we remember from outside particle physics. Any child knows
that E = mc2, and the cool kids who use natural units write it as E = m. The even cooler
kids know that E = m is a special case for stationary things, and that the general form
includes the momentum p like²⁹

m2 = E2 − p2 = pµpµ . (2.8)

Some of the cool natural-units kids may know that if ϕ is some quantum thing (see the
box for what it can be), the operators for extracting its energy and momentum are

−i∂tϕ = Eϕ and − i∇ϕ = pϕ , (2.9)

respectively. Putting eqs. (2.8) and (2.9) together we can conclude that

m2ϕ = −(E2 − p2) = −(∂2t −∇2)ϕ = ∂µ∂
µϕ (2.10)

or, more elegantly,
(∂µ∂

µ +m2)ϕ = 0 . (2.11)

Just like that, we have found the wonderful Klein–Gordon equation. As we will see, it’s
a cornerstone of QFT: loosely speaking, satisfying the Klein–Gordon equation is a basic
requirement for any aspiring quantum field ϕ. Put another way, if (∂µ∂µ +m2)ϕ equals
anything other than 0, there better be a very good motivation for it.

We just casually unified quantum physics with relativity, and the Klein–Gordon equation
simply fell out of that. We can complete this trinity with the holiest of concepts from
classical mechanics, the principle of least action. The action, S, is composed of all physical

²⁹This also handles cases where “momentum” is something less straightforward than “mass times velocity”,
which is good for things like photons, which have momentum but no mass.
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things in such a way that, out of all the ways those things could behave, the way they actu-
ally behave is the way that makes S as small as possible—the way with the least action. (Of
course, in quantum mechanics one can never be sure about precise behaviors, but the most
probable behavior should be the least-action one.) If one lets S be a spacetime integral of
some other thing, S =

∫
d4x L, then some very pretty math (left to the reader’s imagina-

tion) reformulates this least-action requirement into the Euler–Lagrange equation,³⁰

0 =
∑
i

[
∂L
∂ϕi
− ∂µ

∂L
∂(∂µϕi)

]
, (2.12)

where ϕi serve as a stand-ins for those physical things; L, which is called the Lagrangian,³¹
is built out of all of these.

If you want classical physics, it’s not too hard to find the Lagrangian such that the Euler–
Lagrange equation is equivalent to Newton’s laws of motion. But for our purposes, some
playing around reveals that if the Lagrangian is

L = 1
2

[
∂µϕ∂

µϕ−m2ϕ2
]
, (2.13)

then the Euler–Lagrange equation becomes the Klein–Gordon equation! This is the basic
Lagrangian of a quantum field theory, with ϕ being a basic quantum field.

Fancier fields. Dissatisfied with “basic”—QCD is, after all, anything but—we start play-
ing around. Our ϕ is a quantum operator and a function of spacetime, but that’s it, and
there is relatively little we can do without breaking the Klein–Gordon equation. Sure,
nothing stops us from inventing some space and making ϕ a vector in that, promoting the
Lagrangian to

L = 1
2

[
∂µϕ

T∂µϕ−m2ϕTϕ
]
, (2.14)

but all that does is create an array of identical Klein-Gordon equations. Makingϕ complex,
with ϕ† independent of ϕ, doesn’t do much either, besides introducing the concept of an
antiparticle. (Okay, maybe that isn’t such a small deal after all. Let’s move on, though.)

For more excitement, we could make ϕ a vector (or even a tensor!) in spacetime, equipping
it with one or more Lorentz indices and carefully contracting them. What happens then?
Well, here comes something profound: a field with one Lorentz index makes particles with
spin 1, since the vector ϕµ and the spin axis transforms in precisely the same way (the duck
principle quacks happily). This generalizes elegantly: a field with n Lorentz indices gives
spin-n particles.

The thought of spin draws our eyes to one of those charred textbook pages, which carries a
fragmented record of the spin-statistics theorem.³² To our dismay, that theorem states that
any such integer-spin particles will be bosons, with the defining feature that one can pack

³⁰Even though it looks off, the Lorentz indices are not placed wrong in the equation! The derivative with
respect to an upper-index thing behaves like a lower-index thing, and vice versa: just think about ∂/∂xµ = ∂µ.

³¹Strictly speaking, it’s the Lagrangian density. The actual Lagrangian is the spatial integral
∫
d3x L, but since

that non-Lorentz-invariant object isn’t used in particle physics, the “density” is dropped for convenience.
³²Zee [15, chapter II.4] has a nice exposition on the spin-statistics theorem and how catastrophically physics

would fail if it weren’t true. To me, that’s almost more convincing than an actual proof.
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any number of them into the same place and quantum state. That’s certainly not what we
want—experimental data (and common sense) clearly shows that matter takes great offense
at being packed too tightly. The same theorem states that fields with half-integer spin are
fermions, which display a more matter-like refusal to be packed. But how on Earth does
one get a field with half a Lorentz index? It simply doesn’t make sense!

COMMuTATORS AND ANTIcOMMuTATORS
Products of ordinary numbers are not sensitive to the order in which you write them (for
instance, 4 · 3 = 3 · 4), but products of matrices and other higher objects may be. To study
this effect, one defines the commutator and anticommutator,

[A,B] = AB −BA and {A,B} = AB +BA , (2.15)

respectively. If [A,B] = 0, then AB = BA and A and B are said to commute (as is the
case for ordinary numbers), and if {A,B} = 0, then AB = −BA and they are said to
anticommute [as is the case for γµ and γν with µ ̸= ν, according to eq. (2.16)].
Even when things don’t commute, the commutators often have nice properties so that rela-
tions like AB = BA+ [A,B] become convenient (the same goes for anticommutators).

Fancier equations. Disappointed with what playing around with ϕ gave us, we turn back
to the Klein–Gordon equation. Perhaps we can peel it back a layer, pull something simpler
out of it—yes, what if we can find ∆± such that ∆+∆− = ∂µ∂

µ +m2? Then if ∆−ϕ = 0,
the Klein–Gordon equation will automatically be satisfied, since clearly ∆+0 = 0, but
perhaps ∆−ϕ = 0 will impose some neat properties on ϕ. The solution that immediately
jumps out is ∆± = m± i∂µ, but that naked Lorentz index means that ∆−ϕ = 0 can’t be a
physical, Lorentz-invariant equation.

To fix that Lorentz leak, we make up a vector: ∆± = m ± iγµ∂µ. Our plan immediately
springs a new leak: how do we avoid breaking ∆+∆− = ∂µ∂

µ +m2, now that we get a
messy γµ∂µγν∂ν? A little fiddling reveals that the mess unravels if we say

{γµ, γν} = −2gµν , (2.16)

but this means that the components of γµ can’t simply be numbers, but instead something
that multiplies in a fancier way—matrices immediately spring to mind.³³

Frustratingly, this results in yet another leak: eq. (2.16) isn’t compatible with the way γµ
should transform based on its Lorentz index. Desperately, we make ϕ a vector in the
same space that γµ is a matrix (because that makes sense) and guess that maybe spacetime
transformations shuffle its components around a bit? Yes! There is a unique way to do

³³Arguably the simplest objects that have the required behaviour are the 4× 4 matrices

γ0 =

[
0 1
1 0

]
, γi =

[
0 σi

−σi 0

]
,

where σi are the Pauli matrices [see eq. (3.50)] and “0” and “1” are actually 2 × 2 matrices. But following the
duck principle, any objects that satisfy eq. (2.16) can play the role of γµ.
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this—never mind the details³⁴—in such a way that iγµ∂µϕ transforms just the same way
asmϕ, paving the way for something consistent with relativity: an equation can transform
whatever weird way it wants, as long as all parts of it transform the same way. This gives
us the equation

(iγµ∂µ −m)ψ = 0 , (2.17)

which happens to be called the Dirac equation. I have renamed the field to ψ in its honor,
leaving the name ϕ for fields wihtout these extra properties.

To find the Lagrangian for eq. (2.17), which must be invariant under all transformations,
it makes sense to form inner products like ψ†ψ and ψ†γµψ. Doing this almost works, but
there are some signs that don’t come out right. A glance at eq. (2.16) gives the inspiration
to introduce ψ̄ ≡ ψ†γ0, which fixes the signs and enables the Lagrangian

L = ψ̄(iγµ∂µ −m)ψ (2.18)

to give eq. (2.17) as its Euler–Lagrange equation.

Even though this was all terribly ad hoc, in the end the pieces fell into place in such a
neat way that maybe there is some deeper meaning to it. And yep, there is: the weird
transformation properties imposed on ψ by the Dirac equation happen to be just the way
that a spin- 12 object transforms, so we have our fermions! Come to think of it, ψ comes
uncannily close to having “half a Lorentz index”, but in a way that makes sense. Anyhow,
we are now closer to our goal: quarks must be described by some variation of eq. (2.18)!

Fancier transformations. Taking a moment to adore eq. (2.18), we suddenly realize that ψ
has some freedom to it. If we redefine ψ → eiαψ for some real number α, the Lagrangian
(and, therefore, the physics) will be completely unchanged since the change is cancelled
by ψ̄ → ψ̄e−iα. This is of course obvious—multiplying ψ by a constant does absolutely
nothing to the Dirac equation. What if we make α a bit more interesting than a constant,
then? What if we make it a function, α(x), of space and time? But no, that can’t work,
since the derivative will bite into it and produce

L → ψ̄(iγµ∂µ −m)ψ − ψ̄(γµ∂µα)ψ , (2.19)

which isn’t the same as eq. (2.18) unless ∂µα = 0. Even worse, such a transformation doesn’t
even make sense! Just look at the basic definition of a derivative,

∂µψ = lim
ϵ→0

1
ϵ

[
ψ(x+ ϵµ̂)− ψ(x)

]
, (2.20)

where µ̂ is a unit vector (vector of length 1) in the xµ direction. If α depends on x, then
ψ(x + ϵµ̂) and ψ(x) don’t transform the same way, and the transformation of ∂µψ is ill-
defined. If we ever hope to introduce such a ridiculous transformation, we would need

³⁴If you do mind the details, write the transformation of a Lorentz vector like vµ → exp
[
1
2
(ωµ

ν − ων
µ)

]
vν ,

where ωµν = −ωνµ is an antisymmetric tensor defined by this relation, and the exponential of a tensor is inter-
preted as exp(Tµ

ν ) ≡ δµν +Tµ
ν + 1

2
Tµ
ρ T

ρ
ν + . . .. Then the desired transformation is ϕ→ exp

(
1
8
ωµν [γµ, γν ]

)
ϕ.

Note that γµ itself doesn’t transform at all, despite the index, but the way it interacts with [γµ, γν ] ensures the
correct overall behavior. All of this is explained in detail in Peskin & Schroeder [14, chapter 3.2]. See also the
thesis of Andrew Lifson [19] for an elegant exposition, including the deeper group-theoretical motivation.
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some kind of modified derivative,

Dµψ ≡ lim
ϵ→0

1
ϵ

[
ψ(x+ ϵµ̂)− U(x+ ϵµ̂, x)ψ(x)

]
, (2.21)

where U(x, y) is defined to smoothly reach across the gap between x and y and fix the
transformation by itself transforming like

U(x, y)→ eiα(x)U(x, y)e−iα(y) . (2.22)

We then get the nice and consistent Dµψ → eiα(x+ϵµ̂)Dµψ, and the world has a hope of
making sense again. We can Taylor expand U around ϵ = 0, giving

U(x+ ϵµ̂, x) = U(x, x)− iϵµ̂gGµ(x) +O(ϵ2) (no sum on µ) , (2.23)

where gGµ(x) is defined by this, and I snuck in the constant g for later convenience.
Combining this with eq. (2.22), we can tell that Gµ transforms like

Gµ → Gµ − i
g∂µα , (2.24)

and, letting ϵ → 0 in eq. (2.21), that Dµψ = ∂µψ + igGµψ if we make the reasonable
definition U(x, x) = 1. Swapping our old derivative for the new, we get

L = ψ̄
[
iγµ(∂µ + gGµ)−m

]
ψ , (2.25)

which is unchanged under ψ → eiα(x)ψ even when α(x) is a function of spacetime.

BIg-O NOTATION
The notation O(x) captures something’s rough behavior while ignoring unimportant
details. O(x) may stand for x or 500x or x+ 1

3
x3 or x100—it doesn’t matter, but what does

matter is that O(x) goes to zero when x → 0, but 1
x
O(x) has a chance of being finite, and

1
x2O(x) most likely explodes.
In other contexts, O(x) may instead capture rough behavior as x → ∞ in a similar way. The
only reliable convention is that something called ϵ is always small, not large.

The transformation ψ → eiα(x)ψ, which by now has had quite a redemption arc, is called
a gauge transformation,³⁵ and as we will see, it ends up being possibly the most important
transformation in the history of transformations. The fieldGµ just fell out of our search for
consistency, but to really motivate its existence, we should promote it to a proper quantum
field by having it obey the Klein–Gordon equation. A neat way to write the Lagrangian
for such a spin-1 field is LG ≡ GµνGµν , where Gµν ≡ ∂µGν − ∂νGµ is invariant under
eq. (2.24).³⁶ Our combined Lagrangian is then

L = ψ̄
[
iγµ(∂µ + gGµ)−m

]
ψ +GµνG

µν . (2.26)

³⁵The word “gauge”, specifically, refers to the fact that the symmetry transformation is allowed to vary across
space and time, rather than being the same everywhere. For the history of this concept, and the reason why a word
that normally means “measuring device” or “spacing of railroad tracks” came to be used this way, see ref. [20].

³⁶That the Euler–Lagrange equation of LG is the Klein–Gordon equation is easy to see when ∂µGµ = 0, and
no matter what ∂µGµ happens to be, making it zero just requires a gauge transformation, which (as we have
already concluded) doesn’t change LG.
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If we let g → 0, this reduces to ψ and Gµ being individual fields that satisfy the Klein–
Gordon equation in their own way. When g ̸= 0, we get something new and beautiful,
where ψ and Gµ alter each other and deviate from the Klein–Gordon equation in a well
motivated way—maybe this is QCD?

Well, if we sit down and carefully derive the physical consequences of eq. (2.26), it turns
out we actually discovered QCD’s cousin, QED: if Gµ is the photon, ψ the electron and
g its electric charge, eq. (2.26) perfectly describes the electromagnetic force. (Any other
particles with charge gQ can be introduced if they transform with eiQα.)

MORE MATRIx pROpERTIES

Given a matrix M with elements Mij , one can take the transpose (MT)ij ≡ Mij , conjugate
(M†)ij ≡ M∗

ji and trace ⟨M⟩ ≡ Mii; since traces feature so prominently in this thesis,
I typically use this compact angle-bracket notation for them. Note that traces are cyclic:
⟨AB · · ·YZ⟩ = ⟨ZAB · · ·Y⟩ = ⟨YZAB · · ·⟩ = . . ., as is easily proven by looking at the
indices. A matrix with zero trace is called traceless.
A matrix is hermitian if M† = M and unitary if M†M = MM† = 1. Note that the
complex exponential of a hermitian matrix is unitary: eiM

[
eiM

]†
= eiM−iM†

= e0 = 1.
[Matrix exponentials work like regular exponentials, but with a few complications if the
matrices don’t commute; see section 3.4.]

QCD, at last! Okay, let’s try one more thing: ψ → eiαψ and ψ̄ → ψ̄e−iα also works if
α is promoted from a number to an n × n hermitian matrix, as long as ψ is promoted
to a matching vector so that L remains a scalar. In fact, α has to be a traceless hermitian
matrix, because otherwise we can write it as α = α′ + 1

n ⟨α⟩ where α′ is traceless and 1
n ⟨α⟩,

which is again just a number, results in another unwanted copy of QED. We can still let
α be a function of spacetime, but following eq. (2.24), we must then also promote Gµ to a
traceless hermitian matrix. This, in turn, complicates the GµνG

µν , which now fails to be
gauge-invariant since the Gµ don’t commute. This is resolved by redefining

Gµν = ∂µGµ − ∂νGµ − ig[Gµ, Gν ] . (2.27)

With these modifications, a Lagrangian like eq. (2.26) works also for these more general
matrix transformations.

Now, we are close! Then comes the crucial question: which n gives QCD? All we can say
from first principles is that it can’t be 1, since the only traceless 1×1matrix is 0. Well, a hint
comes from section 2.1. Look at ∆++, ∆− or Ω−, for example. As we have established,
they consist of three identical quarks, all with their spins pointing the same way and with
no orbital motion or anything. That is: three fermions are sitting in the same quantum
state! Ah! Nature cries out in disgust!

The solution comes from the space we introduced, where α and Gµ are matrices and ψ is a
vector, since it offers another degree of freedom to separate the otherwise identical states.
If n = 2, there are only two independent directions, which isn’t enough, so n better be at
least 3. By Occam’s razor (and, it turns out, quite a few experimentally measurable things),
we can drop the “at least” and conclude that n = 3 for QCD. Inspired by the “C” in
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“QCD” (from Greek χρῶμᾰ, “color”), we call this space color space and name its three axes
red, green and blue, which breeds many useful analogies (just peek at fig. 3 on page 33).

Now, we have finally found QCD. It should be clear by now that ψ represents the quarks,
which come in several different flavors named up, down, strange, etc.; these must all look
the same in color space, although they can have different mass.³⁷ In light of this, let me
polish up the Lagrangian into

LQCD =
∑
f

q̄f
[
iγµ(∂µ + gGµ)−mf

]
qf +GµνG

µν , (2.28)

where qf is the quark of flavor f , and mf is its mass. The field Gµ represents the gluons,
which have no mass [proof: try to find a “mG” term in eq. (2.28)] and serve to bind quarks
together; since a traceless 3 × 3 matrix has 8 degrees of freedom (3 times 3, minus 1 for
the trace), there are really eight gluons with different color combinations. Which color
combinations, you ask? Well, the gauge transformation is a rotation in color space, so
you can’t really give a gauge-invariant answer. Similarly, you can never claim that a certain
quark is blue—a gauge transformation can make it red—but one can say that all quarks in
the same baryon have different colors.

At this point, the particle zoo makes a bit more sense, but not a lot of it. Why are there
no hadrons that consist of, say, two quarks, or four, or two quarks and an antiquark? Why,
still, are quarks impossible to take out of the hadrons that contain them? To make an
answer that isn’t utter hand-waving, I have to take quite a mathematically involved detour,
but don’t worry—the journey and the destination are their own, separate rewards. (If that’s
too much reward for you, hold your breath and skip to page 32.)

2.3 Getting physics out of QCD

Feynman diagrams make it possible for anybody to do quantum field theory!

— attributed to a supposedly annoyed Julian Schwinger

In the previous section, I may have uttered the weasely words “sit down and work out the
physical consequences”.³⁸ As hinted at in the popular science introduction, doing so in
practice is no mean feat—in fact, almost every single scientific contribution I present in this
thesis is some subtle aspect of “sitting down and working out the physical consequences”!
Therefore, here is a crash course in just that.

The path to physics. Early in the previous section, I talked about the principle of least
action, how the way things behave is whatever way makes the action, S, as small as possible.
There exists a thing, one of the cleverest things any physicist has ever thought of, which

³⁷It can’t be stressed enough that this use of “color” and “flavor” has nothing to do with their everyday meanings.
Particle physics parlance is just silly like that sometimes.

³⁸A close relative to “it is easy to see that…”, which I may also be guilty of using sometimes. I solemnly swear
that I only use it when it’s actually easy!
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captures that principle as a mathematical object, one that can be manipulated, calculated
and thrown about, and which is much better than the Euler–Lagrange equation at surviving
the weirdness that QFT brings to the table. That glorious thing is the Feynman path integral,
and it looks like this:

⟨0|Ô|0⟩ = 1

Z

∫
Dϕ Ô eiS[ϕ] . (2.29)

Here, Ô is an operator: any collection of quantum fields and other stuff that you can
possibly dream up. In quantum notation, ⟨0|Ô|0⟩ roughly means “Ô sets up some physical
system (out of the vacuum, |0⟩), lets physics take its course, and then takes down the system
again (back to the vacuum, ⟨0|)”. That’s an extremely general way to describe any physical
process, and ⟨0|Ô|0⟩ is a number describing the probability that the process will actually
take place.³⁹

Okay, so the left-hand side of eq. (2.29) is just physics. The right-hand side, then, is the
clever bit! The notation

∫
Dϕ tells us to integrate—that is, sum—over all possible ways

the field ϕ can be; if there are multiple fields, we just integrate over all of them in turn.
The factor eiS[ϕ] = cos(S[ϕ]) + i sin(S[ϕ]) tells how much each way contributes to the total
probability. If S[ϕ] changes as the integral scans over similar ways, the sine and cosine will
oscillate rapidly between ±1, and those contributions will more or less cancel out. The
only way that doesn’t suffer any cancellation is the one where S[ϕ] remains perfectly still—
and that, my friend, is the one with the least action: a valley is always perfectly flat at its
bottom.⁴⁰ This is how the path integral makes physics obey the principle of least action.⁴¹

That leaves one piece of eq. (2.29): what is Z? Well, if we let Ô = 1 and assume that the
vacuum (like any good quantum state) is normalized, ⟨0|0⟩ = 1, then clearly⁴²

Z =

∫
Dϕ eiS[ϕ] . (2.30)

If something is weird with the normalization of the vaccum, Z will adjust to hide that.
This is good—the QFT vacuum is not the kind of void you want to stare into for too long.

Particles going from here to there. Suppose we’re after ⟨0|ϕ(x)|0⟩, the probability that
we’ll find ϕ if we look around in the vacuum at x (never mind exactly what that would
mean, physically). For calculations like this, there is an extra bit of cleverness that will let Z
handle everything for us, so that we never have to deal with the path integrals themselves.

³⁹If you’re wondering why we can’t make that probability as large as we please—even larger than 1—by rescaling
Ô → ΛÔ for some large number Λ, it’s because a fundamental law of quantum mechanics—one that exists
precisely so that the idea of probability makes sense—says that any operator that can actually be measured must
be unitary: Ô†Ô = 1. This leaves no room for Λ shenanigans.

⁴⁰Well, a mountain is also perfectly flat on its peak, so this would point us towards the way with the most
action. In general, any way that produces stationary action—that is, S[ϕ] doesn’t change when the way is adjusted
slightly—will be favored in the integral. Sensible, physical actions don’t permit this situation, though.

⁴¹In the everyday world, any action will be a very large number, so those oscillations will be extremely rapid
and the cancellation nearly complete (this is backed by a formal mathematical result known as the stationary phase
approximation). Therefore, only the least-action way contributes anything at all, and physics becomes a clear-cut
chain of cause and effect dictated by the Euler–Lagrange equation. In the quantum world, S[ϕ] may be small, so
the cancellation is less strict, and this perfectly captures all quantum weirdness there can be.

⁴²Z is properly called the generating functional, but I think that name does more harm than good to our odds
of understanding things, so let’s just keep calling it Z.
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FuNcTION SpAcES AND FOuRIER TRANSfORMS
In one of the greatest triumphs of the duck principle, functions (of some given variables)
are vectors! They can be added, subtracted and rescaled, and a perfectly valid inner product
between two functions f(x) and g(x) is the following integral (x can stand for a list of several
variables):

f · g ≡
∫

dx
[
f(x)

]∗
g(x) . (2.31)

An important kind of linear transformation on this space of functions is (linear) differential
operators such as ∂µ, [∂2−m2] or [γµ∂µ−m]. More generally, function transformations can
be with an integral and a two-argument function,i

∆f(x) ≡
∫

dy ∆(x, y)f(y) , (2.32)

which looks very much like the more familiar (Mv)i = Mijvj if you imagine x and y as
continuous versions of the indices i and j. In function space, the role of 1 is played by the
Dirac delta function,ii defined by

f(x) =

∫
dy δ(x− y)f(y) . (2.33)

One can take derivatives with respect to functions; these are called functional deriva-
tives and denoted by δ to distinguish them. For instance, δ(f · g)/δf(x) = g(x) and
δf(x)/δf(y) = δ(x− y). The inverse of a differential operator ∆, i.e. the object ∆−1(x, y)
such that ∆∆−1(x, y) = δ(x− y), is known as a Green’s function.
Function space is infinite-dimensional, but has a useful basis in the form of the functions
eipx/

√
2π for all p (which in general are vectors conjugate to x). This basis is orthonormal

in the sense that eipx · eikx = 2πδ(p− k). The coordinates in this basis are

f̃(p) ≡ 1√
2π

∫
dx e−ipxf(x) , (2.34)

which incidentally is another function, this time of p. This is known as the Fourier transform
of f(x) and is immensely useful; for instance, the Fourier transform of ∂xf(x) is simply
ipf̃(p), as follows from eq. (2.34) through integration by parts.iii The transform is also con-
veniently its own inverse:

f(x) =
1√
2π

∫
dp e−ipxf̃(p) . (2.35)

When x describes position in spacetime, the Fourier transform gains a physical meaning,
with p being the momentum. One often works in this momentum space instead, since
many things (like differential operators) are simpler there.

iStrictly speaking, ∆(x, y) may be a more general kind of entity known as a distribution.
iiCase in point: it’s actually the Dirac delta distribution, but physicists who care about that distinction

are few, far between, and not very popular at physicist parties.
iiiThis requires that f(x) is sufficiently well-behaved, although being physicists, we assume that it is.

Readers with a penchant for mathematical rigor are kindly asked to check that all functions we deal with
are Schwartz functions.
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Let’s pretend for a moment that the Lagrangian contains an extra term that involves just
ϕ, times some function f , and write this made-up Lagrangian as L[ϕ, f ] = L+ ϕ(x)f(x).
Since S =

∫
d4x L, this carries over to S and Z, so we write S[ϕ, f ] and Z[f ]. This is

harmless: to get our actual L, S and Z back, all we have to do is set f = 0 everywhere. But
look:

⟨0|ϕ(x)|0⟩ = 1

Z

∫
Dϕ ϕ(x) eiS[ϕ,f ] =

1

Z

−iδ
δf(x)

∫
Dϕ eiS[ϕ,f ] =

−iδ
δf(x)

logZ[f ]

∣∣∣∣
f→0

.

(2.36)
There’s no integral in the last step, and f → 0 means we undo that made-up change in
the end, so we haven’t broken physics, either. All we needed was δ/δf(x), the functional
derivative. Never mind exactly how it works—what’s important is that on one hand, it can
reach inside an integral and pull out a function, like

δS[ϕ, f ]

δf(x)
= ϕ(x) , (2.37)

and on the other other hand, it behaves just like an ordinary derivative, and we know
that ordinary derivatives do stuff like d

dxe
ax = aeax and d

dx log z = 1
z
dz
dx . Just squint and

pretend δ is d! That’s how eq. (2.36) does its magic.

The neat thing is that now we can build any operator we want by doing the right made-up
changes and taking the right functional derivatives. Let’s look at

D(x, y) ≡ ⟨0|ϕ(y)ϕ(x)|0⟩ = −iδ
δf(y)

−iδ
δf(x)

logZ[f ]

∣∣∣∣
f→0

, (2.38)

which has a clear physical interpretation: it’s the probability that, if we set up a ϕ-particle
at x, it will have moved (propagated) to y by the time we take it down. This earns D(x, y)
the name of propagator. Remember that word—I will say “propagator” a lot from now on.

Let’s try calculating a propagator using a simple action whose Euler–Lagrange equation is
the Klein–Gordon equation. You can check that

L = − 1
2ϕ[∂

2 +m2]ϕ+ fϕ ≡ − 1
2ϕ∆ϕ+ fϕ where ∆ ≡ ∂2 +m2 (2.39)

does the job just as well as eq. (2.13) when f = 0. Since we’ve established a solid duck-
principle relation between functional and ordinary derivatives, we can go through the fol-
lowing algebra by squinting and pretending that ϕ, ∆ and f are numbers instead of scarier
mathematical objects. Let’s start by completing the square:

L = − 1
2

(
ϕ− f

∆

)
∆
(
ϕ− f

∆

)
+ f2

2∆
≡ − 1

2ϕ
′∆ϕ′ + f2

2∆
, (2.40)

where ϕ′ ≡ ϕ − f/∆. Path integrals allow shifting integration variables just like regular
integrals do, so

∫
Dϕ′ =

∫
Dϕ.⁴³ But thanks to our manipulations, ϕ′ and f no longer

⁴³Okay, that’s a risky statement: there are subtle cases where the path integral doesn’t take well to shifting the
fields like that, which I will get back to on page 38. Those subtleties don’t show up in calculations like the one
we’re doing at the moment, though.
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show up together, so we can pull one outside the integral:

D(x, y) =
−iδ
δf

−iδ
δf

log

[
e

if2

2∆

∫
Dϕ′eiS[ϕ′,f ]

]∣∣∣∣
f→0

, (2.41)

The path integral doesn’t care that ϕ has been renamed ϕ′ everywhere inside it, so it simply
gives a Z. Then, thanks to the properties of logarithms,

D(x, y) =
−iδ
δf

−iδ
δf

[
if2

2∆
+ logZ

]∣∣∣∣
f→0

=
−iδ
δf

[
f

∆
+ 0

]∣∣∣∣
f→0

= − i

∆
. (2.42)

How simple! Surely, we can now un-squint and see things for what they actually are: 1/∆ is
of course the Green’s function ∆−1(x, y).⁴⁴ Okay, maybe we shouldn’t have un-squinted so
fast: what horrible function could possibly be the inverse of an operator like ∆ ≡ ∂2+m2?

This is where we must seek refuge in momentum space, taking the Fourier transform of
absolutely everything. This turns D(x, y) into D̃(p), or roughly the probability that a
particle will move with momentum p. No information is lost; momentum space and
spacetime are just two sides of the same coin. But in momentum space, ∂µ becomes ipµ,
so ∆̃ is just m2 − p2, and that is just a number! Or, well, relativity would tell us that
p2 = m2, and if ∆̃ = 0 we certainly can’t just take 1/∆̃. But are we sure that p2 = m2

holds? No! Just look at⁴⁵

D(x, y) =
1√
π

∫
d4p e−ipµ(x−y)µD̃(p) , (2.43)

which clearly involves all possible p. Therefore, we can safely conclude that

D̃(p) =
i

p2 −m2
(2.44)

and trust that someone more careful will work out a way to handle those cases where we
do hit p2 = m2. This turns out to be both easy and elegant, but we don’t have to bother
with it—you get very far in practical calculations before that detail matters.

More particles. Will you be happy or disappointed if I tell you that the above was the
hardest part? There’s less math from here on, because eq. (2.44) embodies a big portion of
what we have to know in order to calculate anything. Generalizing the propagator to more
complicated fields seldom involves more than putting an identity matrix of whatever space
ϕ now lives in in the numerator, and some γµ stuff in the case of fermions.

If you want to describe the situation of n particles moving about, all you have to do is make
a version of eq. (2.38) with n derivatives. And if you work through those derivatives, you
find there is little new to do: pair up the fields two by two, make a propagator for each pair,

⁴⁴The function-space notation presented in the box on page 24 makes it not too hard at all to retrace all these
calculations without squinting: just carefully write ∆−1 instead of 1/∆, express things as inner products of
functions, and keep track of where x and y go. The duck will quack mostly the same.

⁴⁵The reason whyD(x, y) depends only on (x− y) is tanslation invariance: physics is the same everywhere in
the Universe, so D(x, y) can only depend on the separation between x and y, not on their absolute position.
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and sum over all ways of forming the pairs. For instance, with four points x1, x2, x3, x4,
the result is

D(x1, x2)D(x3, x4) +D(x1, x3)D(x2, x4) +D(x1, x4)D(x2, x3) . (2.45)

We can represent this in pictures using our first example of Feynman diagrams, where a line
between two points represents a propagator connecting them:

x1

x2

x3

x4

+

x1x3

x2x4

+

x1

x4 x2

x3

(2.46)

Here, two particles start at x1, x2 on the right and go to x3, x4 on the left.⁴⁶ The last two
diagrams are easy to interpret: the particles move from right to left as expected, possibly
swapping places. The first diagram, though, is a bit weird: do the particles get annihilated
into nothing and then pop back into existence later? We’ll have to think about that.

Interacting particles. Now, a natural instinct is to try our hands on something more
savory than plain Klein–Gordon theory. What about QCD, for example? Unfortunately,
it’s practically impossible to redo pages 25 and 26 with Lagrangians that don’t have the
Klein-Gordon (or Dirac) equation as their Euler–Lagrange equation—just try, and you
will be stuck trying to recover anything resembling eq. (2.39).

Very well, but what if we insist on being able to work with any Lagrangian? A good start
is to split the action (and, similarly, the Lagrangian) like

S = S0 + gS′ , (2.47)

where S0 is the easy part [the one that looks more or less like eq. (2.11)], and gS′ is the rest. I
have separated out a number g, called a coupling, because you usually find one multiplying
the complicated bits of a Lagrangian. QCD is a good example: there, gS′ is just the part
containing the coupling g, namely q̄[gγµGµ]q and so on. In general, there may be many
S′, each with their own coupling.

Now, assume that g is small, so that gS′ too is, in some sense, small. (Exactly how small
depends on what we hope to achieve, but generally, g should be significantly less than 1.)
This allows us to Taylor expand the path integral in g:∫

Dϕ eiS0+igS′
=

∞∑
k=0

∫
Dϕ (igS′)k

k!
eiS0

=

∫
Dϕ eiS0 + i

∫
Dϕ gS′eiS0 − 1

2

∫
Dϕ gS′ gS′eiS0 +O(g3) .

(2.48)

⁴⁶I adhere to the convention of time flowing right-to-left in each Feynman diagram. This is how we draw
diagrams in papers IV and V, and reflects how the initial state is on the right and the final state on the left when
defining the amplitude [see eq. (2.54)]. Other authors may have time flowing in other directions, with left-to-
right probably being the most common. But in most of this thesis, including papers I and III, I draw diagrams
with no time direction at all, as I explain on page 60.
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In each term, we are back to the situation we can handle: an
∫
Dϕ, an eiS0 , and a couple

of fields that look as if they fell down through the application of derivatives like those in
eq. (2.36). With g small enough, we can ignore everything except the first few terms in the
expansion. (What “enough” means is again a bit vague, as is “few”.) The first term that
contributes is called leading-order (LO), the next is called the next-to-leading-order (NLO),
then next-to-next-to-leading-order (NNLO) and so on, with NkLO having k next-to’s.⁴⁷

This is the gist of perturbation theory, most accessible and versatile tool of QFT (and many
other parts of physics): for each term in eq. (2.48), we can keep applying our established
method of pairing points and connecting them with propagators. But there is an impor-
tant difference: all fields present in each S′ are at the same point x.⁴⁸ When viewed like
eq. (2.46), there will be multiple lines connected to one point, and it will look as if mul-
tiple particles met, touched, and then spread out again. Actually, that’s pretty much what
happens: gS′ is how you introduce interactions between particles. There is also an integral
over the interaction point, since S′ =

∫
d4x L′, so it seems like the interaction gets summed

over all the possible locations (in both time and space) where it could take place—let’s not
think too hard about that.

Things become clearer in everyone’s favorite place, momentum space. Fourier transforming
all the fields leaves nothing but a couple of e−ipx’s inside the x integral, leading to∫

d4x e−ip1xe−ip2x · · · = δ(p1 + p2 + . . .) . (2.49)

This Dirac delta is zero unless all the momenta add up to zero, which is easy to interpret:
the momentum flowing into an interaction point must equal the momentum flowing out
of it, which makes heaps of sense! In momentum space, there are no more sums over
locations, but there is flow of momentum along all the lines [which are propagators like
eq. (2.44)], and there is conservation of momentum wherever lines meet. Borrowing a term
from graph theory, such an interaction point is called a vertex.

Momentum space really paints a new and better picture of particle processes. External par-
ticles [those fields that we have control over and insert using derivatives like in eq. (2.38)]
come in from we-don’t-really-care-where carrying momenta that flow through the diagram
much like current in a circuit. The theory gives us the building blocks: S0 gives the prop-
agators, one for each type of particle, and S′ gives the vertices, what kinds of propagators
they connect, and any other details. This all comes together in a list called the Feynman
rules.⁴⁹ With that in place, drawing the diagrams is a fun and intuitive activity.

Let’s look at some examples, where the Feynman rules are a single kind of propagator and a
vertex that joins four of those. Among other things, these Feynman rules are found in the

⁴⁷A bit of a subtlety: normally, LO is defined as the first term that contributes to any given thing, but in some
contexts (including ChPT; see page 46) it has a fixed meaning, and then you will see situations where the first
order that contributes is called NLO or even NNLO.

⁴⁸In principle, one can write an action with fields at different points. Such actions are called nonlocal, and they
have a very hard time getting along with the principles of relativity. The deeper portions of string theory get away
with nonlocality, but good old QFT doesn’t.

⁴⁹Some examples of important Feynman rules can be found in Peskin & Schroeder [14, appendix B]. A
comprehensive, convention-independent list for the entire SM is given in ref. [21].
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gluon-only part of QCD, and (as we will see later) in ChPT. Some of the simplest diagrams
we can draw are

and and . (2.50)

The legs pointing right are where particles come in, and the ones pointing left are where
they go out; lines joining two vertices are propagators. Note the difference between the
first diagram here and the last one in eq. (2.46): the particles don’t just cross here, but meet
and exchange momentum.

Let’s take a closer look at the momentum flow in the middle diagram, with three particles
going in (call their momenta p1, p2, p3) and three particles coming out (call their momenta
p′1, p

′
2, p

′
3):

← q

← p′1

← p′2

← p′3

← p1

← p2

← p3

(2.51)

The “particle” in the middle has momentum q = p1 + p2 + p3 = p′1 + p′2 + p′3 due to con-
servation. Yes, I put quotes around “particle”: the things that move around in Feynman
diagrams aren’t really particles, but they have a lot of particle-like properties, so with the
duck giving a careful half-quack, we call them virtual particles. One un-particle-y thing
about virtual particles is that they don’t obey q2 = m2, like we discussed around eq. (2.43).
In eq. (2.51), you’ll find that q2 ≥ 3m2 no matter what p1, p2, p3 we plug in.

Come to think of it, the last diagram in eq. (2.50) might be a bit upsetting: does the
virtual particle go forward or backward in time? Well, neither! We’re in momentum space,
so there’s no time, just the vague “before” and “after” of in- and outgoing particles. All
that matters is momentum flow, and we can move vertices and bend lines to our hearts’
content. I draw my diagrams the way I do for aesthetic reasons, but I could just as well
have drawn the last one like

or or or (2.52)

or like the heavily stylized ones on the front cover. Remember that in the end, everything
is just a product of propagators and whatever other factors the theory drops in along them.
The rest is just a picture.

Scattering and amplitudes. Let’s not lose sight of what it’s all about—where’s the physics?
Very well, then, let’s put it like this: given some state |X⟩ describing a handful of particles
we’ve set up, what is the probability that some other handful |Y ⟩ comes out? If we hand
the responsibility of implementing all the physics to some operator S, imaginatively called
the S-matrix,⁵⁰ |X⟩ will turn into S|X⟩. There will be a certain “nothing happens” part to

⁵⁰Between this, strangeness, the action, and various other things later on in the thesis, the letter S gets used
for a lot of important things, so be sure to keep them apart. I hope it helps at least a little that I use calligraphic
S for the S-matrix.
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S, which can be taken out and discarded,

S = 1 + iT , (2.53)

where the T-matrix T is the “something happens” part. That is, iT |X⟩ combines all the
new states |X⟩ can become, and we pick out the one we are interested in with ⟨Y |. Let me
rephrase this as

⟨Y |iT |X⟩ ≡ [. . .]M(X → Y ) , (2.54)
where M is the (scattering) amplitude for the process X → Y ,⁵¹ and the “. . .” contains
some normalizations and stuff that I ignore for simplicity.

Given that “scattering” and “amplitude” appears a lot in the title of my thesis and papers,
you could guess thatM is important. Then you’d be correct: it’s the key to several worlds.
On the one hand, it gives the (scattering) cross-section σ through

σ(X → Y ) =

∫
dΦM∗(X → Y )M(X → Y ) . (2.55)

The cross-section is, finally, something tangible: multiply it by the number of X ’s you put
in, and you get the expected number of Y ’s as a result. It is typically measured in terms of
a few parameters, like how much energy there is in total, whileM depends on every single
detail of all particles;

∫
dΦ is the integral over all those less relevant details, hiding them

from σ.

On the other hand, the amplitude is closely related to Feynman diagrams. There is just this
rule: each diagram must be a single, connected piece, where no leg can be separated from the
rest of the diagram by removing a single propagator. It ensures we ignore things that go into
the “nothing happens” part of S, or cancel against 1/Z, or can be absorbed back into |X⟩
and |Y ⟩; Peskin & Schroeder [14, chapter 4] explains the details.⁵² If this rule is followed,
M is the sum of all X → Y Feynman diagrams, and is often approximated well by cutting
of the perturbative series, eq. (2.48), at some point.

Amplitudes are also great labor-saving devices, thanks to something called crossing symme-
try. Note how back in eq. (2.46), I just said that the particles start at x1, x2 and end at
x3, x4, but eq. (2.45) doesn’t care which xi is which. That extends to all the more com-
plicated cases: you can pretty freely switch particles between “incoming” and “outgoing”.
For example, two diagrams in eq. (2.50) are related by such particle-switching, or crossing:

→ → = . (2.56)

Crossing a leg like this doesn’t affect M very much: the momentum carried by the leg
gets reversed (pi → −pi) and the particle it represents gets replaced by its antiparticle (if it

⁵¹Sometimes called a matrix element, and sometimes written A.
⁵²In particular, all three diagrams in eq. (2.46) are disqualified from the amplitude, since they are not a single,

connected piece. They are “nothing happens” diagrams—turns out we didn’t have to think about them at all!
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has one). Therefore, calculating a single diagram automatically gives you the contributions
from many other diagrams. I use this a lot papers I and III, and extract some more clever
relations from it in paper II.

Loops. We’re done now, right? You just draw the Feynman diagrams and get all the
scattering you ever wanted? No: QFT is not that merciful. Feynman diagrams get weird
later on in the perturbative series, where there are too many vertices for the number of legs.
Then we get loops,⁵³ like

or or , (2.57)

where conservation of momentum tells us nothing about the momenta going through the
halves of the loop, except their sum. We have an undetermined momentum—or even two
in the last diagram⁵⁴—and a closer look at the Fourier transforms reveals that there is an
integral over each such undetermined momentum—all four dimensions of it!

Evaluating such loop integrals is a deep and dark art, and its difficulty is usually what pre-
vents us from going too far in the perturbative series. This thesis is limited to one loop for a
good reason, although two [22] and three [23] loops have been handled in ChPT. The state
of the art for physically relevant calculations is five [5, sec. 6.3.4], and for certain highly
symmetric theories it has been pushed to eight [24]. I usually tell you not to be afraid of
whatever mathematics QFT throws at you, but please do be afraid of loop integrals!

But maybe you are foolhardy, and sneak off to calculate a loop integral, just a simple one
[eq. (4.5) is a good example]. Then you’ll find that the result blows up in your face—the
integral is infinite! That’s perhaps not so strange: in most of momentum space, we are
providing something particle-like with more energy and momentum than has ever been
given to a real particle by even the most powerful particle accelerators or cosmic rays. Such
high energies allow the particle to produce innumerable particle-antiparticle pairs out of
the vacuum, or even touch on physics beyond what is currently known—QFT itself is
expected to break down around 1019 GeV, so all of momentum space beyond that (which
is most of it) is a realm of cosmic horror.

To avoid these problems, you should stop integrating at some point before things get bad.⁵⁵
A feature of Fourier transforms is that large momenta in momentum space correspond to
small distances in regular space, so in effect, this means that you leave a tiny zone around

⁵³This is also borrowed from graph theory, but not quite correctly: what we call “loops” are more properly
known as cycles, with the word “loop” reserved for loops that attach to a single vertex (for whimsical reasons, these
are known as tadpoles in Feynman diagrams).

⁵⁴To count the number of loops, or equivalently the number of undetermined momenta, just see how many
propagators can be removed from the diagram without separating it into multiple pieces.

⁵⁵I should mention that just cutting off the loop integrals at some point is a clumsy (but valid) way to go about
it, and there are other ways that are less easy to understand but more practical to use. Arguably the coolest one
(and, incidentally, the one I normally use) is dimensional regularization, where one sets the number of spacetime
dimensions to be slightly less than four, d = 4 − 2ϵ. After taking appropriate care so that this makes sense (trust
me, it does), one finds that the loop integrals are no longer infinite, but instead contain factors of 1/ϵ. One can
then redefine the coupling to have a piece that also contains 1/ϵ, carefully adjusting its size so that all 1/ϵ’s cancel
and ϵ can be safely brought to zero to restore the real-world dimension. Just like that, the infinities go away,
leaving nothing but a modified coupling!
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each particle unexplored. What we view as a particle is then not just the “bare” particle in
the middle, but everything else inside the zone too, whatever it may be.

Of course, there is some freedom in exactly where we stop, and if we venture just a little
further into the zone, the outer layers will just contain more of the physics we know how to
handle; the weirdness is buried deeper. Take an electron in QED, for example. The outer
parts of the zone will just contain more photons and electron-positron pairs. Photons do
little, but the pairs reduce the electric field of the electron, in a way that is strikingly similar
to how certain materials, dielectrics, reduce electric fields inside them. Therefore, as you
peel away more and more of the pairs surrounding an electron by exploring higher energies,
the strength of QED will seem to gradually increase because there is less of that reduction.
That’s right: weird as it may seem, the QED coupling increases when you go to higher
energy.

QCD is similar, with quark-antiquark pairs reducing the strength of the strong force, but
there is a crucial difference between gluons and photons: with no charged particles around,
photons are non-interacting particles that simply satisfy the Klein–Gordon equation, but
with no quarks around, the gluon Lagrangian still contains interactions due to the extra
−ig[Gµ, Gν ] term in eq. (2.27). Therefore, gluons form their own pairs, but due to a subtle
difference in their Feynman rules, they amplify the force instead of reducing it. The effect
of gluons beats that of quarks, so QCD will weaken dramatically when you go to higher
energies.

QCD, unravelled. As a result of this weakening, called asymptotic freedom, high-energy
QCD is a perfectly nice theory where you can draw Feynman diagrams to your heart’s
content. But g gets larger at lower energies, and below a few GeV, it’s so large that each
additional term in the perturbative series, eq. (2.48), contributes more than the last. Then
perturbation theory breaks down, and with it our hopes of understanding things by draw-
ing nice diagrams where it looks like free quarks and gluons are bumping into each other.

So, what is QCD like below this point? Well, the formal word for it is confined, which does
a good job of describing the situation of quarks. Any color-charged object is surrounded
by an immensely strong force field, courtesy of the strong force; this field consists of gluons,
which are color-charged too, continuing the cycle and leading to a QCD soup where the
concept of individual particles loses its meaning. Anything with color charge will be ruth-
lessly bullied by QCD, and anything that QCD allows to exist for any appreciable time
must be color-neutral.

Electrons and their kin are of course color-neutral, since they have nothing to do with
QCD, but quarks and gluons can (or rather, must) also form color-neutral combinations:
these are hadrons, where the QCD soup is confined to the inside and leaves a more sensible
situation outside. Color-neutrality makes plenty of sense for mesons: the color of the
quark cancels the anticolor of the antiquark, leaving nothing. More formally, a quark is a
vector qi in color space, and an antiquark a conjugate vector q̄i, so their product q̄iqi is a
scalar and therefore no different for color purposes than, say, an electron. There is another
way, though: using the Levi-Civita symbol, three vectors can also form a (pseudo)scalar,
ϵijkq

iqjqk, and three quarks is precisely what makes a baryon! Similarly, ϵijk q̄iq̄j q̄k makes
an antibaryon. A more intuitive picture is painted in fig. 3a.
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(a) Illustration of how quark colors combine
to form colorless states (black or white)
in mesons (top), baryons (bottom left)
and antibaryons (bottom right). Com-
plementary colors are used for anticolor:
antired, antigreen and antiblue.

(b) Illustration of how (top to bottom) a
quark is knocked out of a baryon and
forms a gluon string, which breaks and
leaves newly formed mesons behind. Col-
ored dots represent (anti)quarks, and the
gluon field is represented in gray.

Figure 3: Schematic illustrations of some features of QCD, using real-world colors.

THE LEvI-CIvITA SyMBOL
An object with d indices in d-dimensional space that is totally antisymmetric (i.e., antisym-
metric under swapping any two indices) has only one degree of freedom, since any element
is either zero because it has two equal indices, or equal to ±1 times the element with indices
123 · · · d. Therefore, it can be written Cϵij··· where the Levi-Civita symbol ϵ is defined by
ϵ123···d = 1 and the constant C can be extracted with ϵij···ϵ

ij··· = 1.i
The Levi-Civita symbol is intimately tied to the determinant of a matrix:

det(M) = ϵijk···ϵi′j′k′···M
i′
i M j′

j Mk′
k · · · . (2.58)

This can be proven by noting that the right-hand side has all the defining properties of the
determinant, and recalling that the determinant is the unique function with these properties.
Despite its tensor-like appearance, the Levi-Civita symbol is a constant, not a tensor, but it
is close to one: if it was a tensor, a transformation R would act like

Ri′
i R

j′

j Rk′
k ϵi′j′k′··· = det(R)ϵijk... , (2.59)

so it only differs from a tensor by a factor of det(R). This doesn’t matter for rotations, which
have det(R) = 1, but it does for parity transformations, which have det(R) = −1 in odd
dimensions. Therefore, the word “pseudo” tends to appear when ϵ is around.

iNote that ϵij··· is named after Tullio Levi-Civita, not two people named Levi and Civita.

So now that we understand why hadrons are what they are, let’s restate the original question:
why can’t they be disassembled? Can’t a quark be broken free from its hadronic prison,
perhaps by using a particle collider to give it a hard kick so it flies out? Nope—it will
still be connected with a force field carried by gluons, and unlike electromagnetic fields
which weaken with distance as the field lines thin out, gluonic field lines “stick together”
due to gluons interacting with each other, resulting in a taut “string” of force that never
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weakens even as it’s pulled longer and longer by the escaping quark.⁵⁶ The string holds
immense tension—about 1 GeV/fm, or the weight of a fully-loaded truck—so after only a
tiny distance, it has either pulled the quark back or built up enough energy to form several
quark-antiquark pairs, each connected to another by new pieces of string. Once all available
energy is spent on breaking the string this way, all quarks find themselves confined to new
hadrons, never gaining freedom. This tyranny of QCD is roughly illustrated in fig. 3b.

2.4 Symmetries and how to break them

Break a vase, and the love that reassembles the fragments is stronger than that love
which took its symmetry for granted when it was whole.

— Derek Walcott

With QCD behind us, we are now in principle ready to talk about ChPT, at least to the
extent that I could pull its Lagrangian out of a hat and get to work drawing Feynman
diagrams and calculating amplitudes. But that would leave the question of why the ChPT
Lagrangian looks the way it does—it’s pretty peculiar, much more so than those we’ve seen
so far—and why ChPT should be a theory of light mesons at all. The answer to those
questions lies in a remarkably elegant symmetry argument, so it’s well worth spending
some time looking at symmetries.

Noether and her currents. Generally, a current is something that flows around, so we can
describe its flow by a vector field, J(x). All currents worth having (electric current, water
current, etc.) are conserved, meaning that if more J flows into some region than flows
out, some charge Q (electric charge, water, etc.) must build up there, and if Q decreases
somewhere, more J must flow out than flows in. Writing Jµ ≡ (Q,J), the conservation
criterion is neatly and Lorentz-invariantly captured by ∂µJµ = 0.

Consider, then, a transformation. A continuous one, that can be made as small as you like,
like a rotation; not like a permutation, which only happens in steps. If made small enough,
such a transformation will look like ϕ → ϕ + δϕ for some small δϕ. If the Lagrangian is
symmetric under this (that is, unchanged by it), then

0 =
δL
δϕ
δϕ+

δL
δ(∂µϕ)

δ(∂µϕ) = ∂µ

[
δL

δ(∂µϕ)

]
δϕ+

δL
δ(∂µϕ)

δ(∂µϕ) = ∂µ

[
δL

δ(∂µϕ)
δϕ

]
, (2.60)

where I used the Euler–Lagrange equation in the second equality. And would you look at
that! We just found ourselves a current, Jµ ≡

[
δL/(∂µϕ)

]
δϕ, that’s conserved: ∂µJµ = 0.

What we just found is Noether’s theorem, a strong contender for the most profound and
beautiful result in all of physics: whenever there is a continuous symmetry, there is a conserved

⁵⁶This idea of a string can be put in a mathematically precise form called the Lund string model [25], which is
greatly successful at predicting how hadrons form after particle collisions (see ref. [3, sec. 43] for an overview). It
is not to be confused with string theory, which isn’t successful at predicting anything.
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current. For example, if we take the ψi → eieQiαψi symmetry of the QED Lagrangian,
eq. (2.26), with multiple fields ψi of charge Qi, the current we get is

Jµ
QED =

∑
i

ieQiψ̄iγ
µψi . (2.61)

This is a current, carried by matter particles (fermions), each proportional to their charge.
Of course: this is the plain old electric current! According to Noether, electric charge
can’t be created or destroyed, just moved around, because eq. (2.26) happens to have a
symmetry. If you ever look at an electronic device and wonder how it works, the answer is
always “symmetry of eq. (2.26) under ψi → eieQiαψi” (any extra details are just an exercise
for the engineers). A similar look at QCD shows that each color is conserved in the same
way.

THE fIfTH gAMMA MATRIx
There is a fifth gamma matrix,i

γ5 ≡ iγ0γ1γ2γ3 , (2.62)
which has the easily verifiable properties (γ5)2 = 1 and {γ5, γµ} = 0. A key consequence
of this is that γ5 changes the behavior of parity transformations: q̄q is a scalar, but q̄γ5q is a
pseudoscalar, and q̄γµq is a vector, but q̄γµγ5q is an axial-vector.ii

iThe reason it’s called γ5 and not γ4 is that, in less enlightened times, the time component of a
Lorentz vector had index 4 instead of 0, so γ0 was called γ4 and was naturally followed by γ5.

iiThese four combinations, along with the tensor q̄[γµ, γν ]q, completes the list of possible ways to
combine q̄ and q into something that transforms sensibly. This fact is known as Fierz’ theorem [26].

Chiral symmetry. Perhaps the coolest word in the title of this thesis, chiral, makes its entry
in the form of yet another symmetry of QCD. (Well, of massless QCD, strictly speaking,
but the u, d and s quarks are so light, and the strong force so strong, that it makes sense to
ignore masses for a while.)

Recall from before that “chiral” means two identical but mirrored things. The idea here is
that quarks are chiral in that they meaningfully consist of a left and a right half:

q = qL + qR , where qL = PLq , qR = PRq . (2.63)

You can verify yourself that if PL = 1
2 (1 + γ5) and PR = 1

2 (1 − γ5), they have all
the necessary properties: PL + PR = 1 (the left and right are two halves of a whole),
PLPR = PRPL = 0 (the left half has no right half, and vice versa) and so on.

Because of the ±γ5, PL and PR turn into each other when commuting past γ matrices:

PLγ
µ = γµPR , PRγ

µ = γµPL , q̄L = q̄PR , q̄R = q̄PL . (2.64)

All of this combined means that the structure q̄γµq, which is the only form in which
massless quarks enter the QCD Lagrangian, splits neatly into a left half and a right half:

q̄γµq = q̄(PL + PR)γ
µ(PL + PR)q = q̄Lγ

µqL + q̄Rγ
µqR . (2.65)
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Quarks are not only chiral, but those left and right halves are completely separate as far as
gluons (and photons) are concerned! The could just as well be separate particles.

Another thing to note is that gluons treat all quark flavors the same, so we are free to rotate
the quarks in flavor space: qf → Rff ′qf ′ . And since the left and right halves are separated,
we can do different rotations for qL and qR, giving the fabled chiral symmetry on which
ChPT is built: symmetry under independent left and right flavor rotations.

There is, of course, some rain on this parade: the mass term in the Lagrangian reintroduces
the left and right half to each other, since it contains a pesky

q̄q = q̄(PL + PR)(PL + PR)q = q̄LqR + q̄RqL , (2.66)

and since different quarks have different masses, you can’t really swap the flavors around
all willy-nilly: Nature forces you to write qT = (u, d, s, . . .) and forbids any rotation (“. . .”
are those heavier quarks I keep ignoring). Still, Nature is pretty relaxed when forbidding
this, and as long as you limit yourself to u, d and s quarks, you get a decent description of
reality if you just pretend that chiral symmetry actually works. As I describe in section 3.3,
ChPT is built by pretending this in the most proper and systematic way possible.

Spontaneous symmetry breaking. Noether worked in classical physics, and her theorem
is a classical truth. There are two ways, one subtle and one very subtle, in which QFT can
circumvent it. To see how, let’s recall the path integral from eq. (2.29):

⟨0|Ô|0⟩ = 1

Z

∫
Dϕ Ô eiS , (2.67)

where Ô is any combination of fields and other things, such as the pair ϕ(x)ϕ(y) that gave
us the propagator, or really anything else; eq. (2.67) tells us the probability that, against
the background of the vacuum |0⟩, Ô will do whatever it is it does.

Noether’s theorem gave a prediction based on the assumption that L, and therefore S, has
a symmetry. It doesn’t really matter if Ô has the symmetry or not—we’re free to poke at
whatever non-symmetric nonsense we want—but we have quietly assumed that |0⟩ is also
symmetric. What if it isn’t? To see how a vacuum can be non-symmetric, consider a field
with n components, ΦT = (ϕ1, ϕ2, . . . , ϕn), and give it the Lagrangian

L = 1
2∂µΦ

T∂µΦ−m2ΦTΦ− g(ΦTΦ)2 . (2.68)

If g = 0, this is just eq. (2.14). The expression m2ΦTΦ+ g(ΦTΦ)2 plays the role that
the potential energy plays in classical physics, so reasonably, the lowest-energy state—the
vacuum—is the one that minimizes m2ΦTΦ+ g(ΦTΦ)2. If g ≥ 0, this is simply at Φ = 0,
and L just describes particles of massm on top of that vacuum.⁵⁷ Equation (2.68) is clearly
symmetric under rotation of the n-dimensional space where Φ lives. This symmetry carries
over to the vacuum and to the particles on top of it, since Φ = 0 is the center of those
rotations.

⁵⁷This is known as phi-four theory, which (especially for n = 1) is one of the easiest QFTs. It is, incidentally,
another theory whose Feynman diagrams look like those in eqs. (2.50), (2.52) and (2.57).
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But let’s say g < 0. Then some quick algebra reveals that the potential minimum is now
at ΦTΦ = −m2/g, which isn’t a single point, but an entire sphere of radius v ≡ m/

√
−2g

in Φ-space. If we tried to calculate ⟨0|Φ|0⟩, it would be a vector in Φ-space, pointing who
knows where. That’s just as headache-inducing as it sounds.

Our salvation comes from the symmetry, which lets us choose where it points—after all, all
directions in Φ-space are the same as far as the Lagrangian is concerned. A choice as good
as any is ⟨0|Φ|0⟩T = (0, . . . , 0, v), so let me write

Φ = (ϕ1, . . . , ϕn−1, v + σ) = (ϕ, v + σ) , (2.69)

which introduces a new field σ (not to be confused with the cross-section!). Thanks to the
v I pulled out of the ϕn component, both σ and the remaining ϕ′is are zero in the vacuum.
This v, which is the magnitude of ⟨0|Φ|0⟩, is called the vacuum expectation value (VEV) of
Φ. Formulating eq. (2.68) in terms of these fields gives

L = 1
2

[
∂µσ∂

µσ + ∂µϕ
T∂µϕ

]
−m2σ2 − 4λvσ(σ2 + ϕTϕ)− λ(σ2 + ϕTϕ)2 . (2.70)

Two strange things happened here. Firstly, σ gets mass m, but ϕ1, . . . , ϕn−1 get no mass
at all, since there is no term with mϕTϕ. Secondly, our n-dimensional rotation symme-
try is nowhere to be seen, since ϕ and σ are completely different. There only remains a
(n− 1)-dimensional symmetry when rotating ϕ. I promise that this is not because we did
something wrong: the symmetry has actually spontaneously broken because of the vacuum,
from n-dimensional to (n− 1)-dimensional rotations.

This is an example of a broader concept, Goldstone’s theorem: whenever a symmetry spon-
taneously breaks, a number of new, massless scalar particles, Nambu–Goldstone bosons
(NGBs), appear. The number of NGBs is equal to the number of symmetries lost, and
in our case, the difference in degrees of freedom between n-dimensional and (n − 1)-
dimensional rotations is indeed n− 1.⁵⁸

Spontaneous symmetry breaking inChPT. When confinement sets in, the so-called quark
condensate appears:

0 ̸= ⟨0|q̄q|0⟩ = ⟨0|q̄LqR|0⟩+ ⟨0|q̄RqL|0⟩ . (2.71)

Like ⟨0|Φ|0⟩, this has destructive consequences: it removes the separation between left and
right, breaking chiral symmetry and leaving only symmetry under simultaneous rotations
in both halves of flavor space. Goldstone tells us that there will be some NGBs as a result,
and as I will show more convincingly in the next section, these NGBs are none other than
the pseudoscalar mesons: pions, kaons, and η!

But wait, you say—these can’t be NGBs, since NGBs don’t have mass! Well, remember
that since quarks already have a little mass, chiral symmetry was never a perfect symmetry
in the first place, so the symmetry breaking will also not be perfect. But as I said before,
reality can be closely approximated by one where chiral symmetry is perfect and breaks
perfectly, so we will get particles that are approximately NGBs (called pseudo-NGBs). This

⁵⁸For fans of the fancier parts of the SM, I should mention that this is similar to how the Higgs mechanism
works, with the Higgs boson playing a role similar to σ and the NGBs giving the weak force its structure.
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gives the pions, kaons and η the excuse to be closer to massless (that is, lighter) than the
other hadrons, and the excuse works best for the pions, which don’t involve the heavier
strange quark.

But wait, you say again—what about η′? It’s in the same list as the pions, kaons and η, so
why isn’t it a pseudo-NGB too? Well, that’s a very good question. To answer it, I have to
summon some even deeper, darker parts of QFT—please hold on while I fetch my candles,
pentagrams and sacrificial goats.

Quantum anomalies. Spontaneous symmetry breaking was the subtle way to circumvent
Noether; the very subtle way has to do with the last part of eq. (2.67) we haven’t looked
at yet: Dϕ. When working with eq. (2.39), I said in passing that my change ϕ → ϕ′ just
changed Dϕ→ Dϕ′. But what if our transformation, the one that we hope is a symmetry,
doesn’t do this? What if it actually changes Dϕ? Then the “symmetry” will actually change
any ⟨0|Ô|0⟩ we try to calculate, so it won’t be a symmetry at all!

This most subtle of subtleties is known as an anomaly, because when you accidentally run
into it when trying to calculate Feynman diagrams, it looks like the result of devious cal-
culation mistakes rather than something deeper. Sadly, I don’t know of any anomaly that’s
simple enough to derive here, so you’ll have to take my word for what I’m about to say.⁵⁹

As you can verify, the QCD Lagrangian, eq. (2.28), is symmetric under the axial transfor-
mation q → e−iθγ5

q, so there should be a current, the axial current (so called because it’s
an axial-vector),

Jµ
5 ≡

∑
f

δL
δ(∂µqf )

[−iγ5qf ] ⇒ Jµ
5 = ūγµγ5u+ d̄γµγ5d+ s̄γµγ5s+ . . . . (2.72)

(Again, “. . .” would include those heavier quarks we are consistently ignoring.) According
to Noether, Jµ

5 should be conserved, but if you very, very carefully check how the axial
transformation affectsDq̄Dq, you find that it changes. This change—this anomaly—breaks
Noether’s theorem, so the axial current isn’t conserved at all. Instead, one finds

∂µJ
µ
5 ≡

3g2

32π2
ϵµναβG

µνGαβ . (2.73)

Note how the structure of Jµ
5 matches the quark content of the η′ meson (see table 2). And

yes, it’s as simple as that: this current is carried by η′ mesons, and the anomaly essentially
tells us that η′ is free to transform into gluons,Gµν , and back, which affects its composition
and therefore its mass. Seen from another angle, the anomaly sets a particular combination
of flavors apart from the others, destroying part of the chiral symmetry of QCD. With less
symmetry to break, there is one NGB fewer than there would otherwise have been, and the
excluded one is of course η′. This explains its large mass: since η′ isn’t even approximately
a NGB, it has no excuse for being light.

⁵⁹Zee [15, chapter IV.7] has an exposition that nicely captures the frustrated confusion physicists must’ve felt
the first time they ran into anomalies. Donoghue [18, chapter III-3] has a more sober, thorough treatment, and
Peskin & Schroeder [14, chapter 19] has one with lots of details and examples; both of these are quite advanced.
Pich [16, sec. 7] has a succinct description of what is needed in ChPT.
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The currents carried by η and π0 also have anomalies, but here it’s the photon field that shows
up, not the gluon field. Therefore, η and π0 are still non-anomalous as far as pure QCD
is concerned, but in the full SM, they can decay into photons. This is very important—if
it wasn’t for the anomaly, π0 would be much stabler than we find it to be in experiments,
since becoming two photons is one of the few possible ways for it to decay. That’s how
important symmetries are for particle physics: even when they fail, they tell us something
about the way reality behaves.

Alright, I think that’s plenty of material for even the most diligent non-expert to digest.
It’s about time we let the experts back in.
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3 Chiral Perturbation Theory

Pions! Pions! We don’t understand the electron. Why do you bother with pions?

— Albert Einstein, as quoted by Leon Lederman (2014)

In this section, I present the framework in which essentially all my work has been per-
formed: Chiral Perturbation Theory (ChPT). Unlike the previous section, I assume that
you, the reader, are some kind of particle physicist, or something close enough, or at least
that you took the previous section to heart and are hungry for more.⁶⁰ Nevertheless, I will
keep the pace gentle for the benefit of those who come from completely different corners
of the field (including my friends, the experimentalists), or those who are just a bit rusty.

3.1 Sigma models

To illustrate the structure and emergence of ChPT, let us revisit the basic spontaneous
symmetry breaking discussed in section 2.4; in particular, consider eq. (2.70), the so-called
linear sigma model. In the case n = 4, it can be recast in a more interesting form. Rather
than using the 4-component vector Φ, we use the 2× 2 matrix

Σ = 1
2

[
(v + σ) + iσiϕi

]
, (3.1)

where σi (not to be confused with σ) are the Pauli matrices [see eq. (3.50)]. This is equiva-
lent to theΦ representation: it contains the same four fields, and due to the trace properties
of σi,

⟨Σ†Σ⟩ = ΦTΦ . (3.2)

The unbroken Lagrangian eq. (2.68) can be compactly written

L = 1
2 ⟨∂µΣ

†∂µΣ⟩ − λ
[
⟨Σ†Σ⟩ − v2

]2
. (3.3)

The most general transformation that leaves this Lagrangian invariant is Σ → gLΣg
†
R,

where gL,R are 2× 2 unitary matrices. We thus have a U(2)L ×U(2)R symmetry, which is
quite chiral-looking. This symmetry is broken by the VEV,

⟨0|Σ|0⟩ = v −→ ⟨0|gLΣg†R|0⟩ = vgLg
†
R , (3.4)

so only the subgroup where gL = gR, which we call SU(2)V , remains a symmetry.

In the treatment of section 2.4, SO(4) symmetry was broken to SO(3) symmetry.⁶¹ It
should therefore not come as a surprise that SO(4) ∼= SU(2)× SU(2) and SO(3) ∼= SU(2),

⁶⁰If that is the case: Amazing! Are you sure you don’t want to become a particle physicist?
⁶¹Strictly speaking, eqs. (2.68) and (2.70) have O(n) and O(n − 1) symmetry, respectively, but

O(n) ∼= SO(n)× Z2, where Z2 captures the determinant, ±1, of the transformation; only SO(n) is contin-
uous and relevant to Goldstone’s theorem. [Compare U(n) ∼= SU(n) × U(1), where U(1) captures the now
continuous set of possible determinant values.]
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so that SO(4) → SO(3) and SU(2)L × SU(2)R → SU(2)V are equivalent as symmetry
breaking patterns.

The form of Σ unfortunately makes it inconvenient to write a more explicit Lagrangian like
eq. (2.70). Instead, we once again re-express the fields, this time in a non-linear fashion,
so that

Σ = 1
2 [v + σ̂]U(ϕ̂) , U(ϕ̂) = exp

[
iσiϕ̂i/v

]
, (3.5)

where σ̂, ϕ̂ are defined in terms of σ, ϕ. The transformation properties under SU(2)L × SU(2)R
must be σ̂ → σ̂ and U(ϕ̂)→ gLU(ϕ̂)gR; the complicated transformations of ϕ̂ themselves
are not needed explicitly. With this, the broken Lagrangian, eq. (2.70), becomes

L =
v2

4

[
1 +

σ̂

v

]2
⟨∂µU †∂µU⟩+ 1

2∂µσ̂∂
µσ̂ −m2σ̂2 − m2

2v
σ̂3 − m2

8v2
σ̂4 . (3.6)

This neatly separates the massive and massless fields, and sets the stage for the next step.

3.2 Effective field theory

You can write things much more nicely if you replace formulations like “all kinds
of crap” with the word “effective”.

— Tanja Hinderer (2019)

Although physicists seek to describe nature in as fundamental a way as possible, it is sel-
dom practical to always have in mind everything all the way down to the fundaments.
It would be prohibitively complicated to do nuclear physics with quarks and gluons in
mind, biochemistry with nuclear structures in mind, or atmospheric science with individ-
ual molecules in mind. Omitting details not accessible at one’s working resolution is, on
one hand, usually an extremely good approximation, and on the other, absolutely crucial
for obtaining a manageable theory.

This principle is somewhat formalized by the concept of an effective field theory (EFT): a
theory which ostensibly is not fundamental, but which accurately describes the effective
behavior of things in some limited context. The canonical way to obtain an EFT is by
integrating out massive degrees of freedom. Take, for example, the Lagrangian eq. (3.6)
and consider processes involving energies much smaller than the σ̂ massm. Then σ̂ clearly
cannot appear in the initial or final state, and its presence in intermediate states will be
hidden from view; the propagators i/(q2 − m2) will be indistinguishable from constant
factors i/m2 when q2 ≪ m2. Thus, it will look as if only ϕ̂ fields are involved, although
they will posses additional modes of interactions whose couplings involve factors of 1/m2.
The formal process of integrating out σ̂ is nicely described in Donoghue [18, pp. 112-4],
but here I am content with stating the result: the effective Lagrangian describing only ϕ̂ is

Leff =
v2

4
⟨∂µU†∂µU⟩+ v2

8m2
⟨∂µU †∂µU⟩2 +O(m−4) , (3.7)
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where each additional term in O(m−4) is easy to determine from eq. (3.6), but since m is
assumed to be very large compared to other scales involved, it is safe to truncate the series
rather early. However, one must keep in mind that as the energy approaches m, the EFT
ultimately breaks down and the exact Lagrangian, eq. (3.6), must be restored.

An EFT for QCD. Equation (3.7) is an example of the nonlinear sigma model (NLSM),⁶²
which in a generalized form is the foundation of ChPT. However, ChPT is different in
some very important ways: there is no heavy degree of freedom to integrate out (rather,
the degrees of freedom we wish to hide are quarks and gluons, which are light), and the
degrees of freedom that are supposed to remain are mesons, which are not present in the
QCD Lagrangian. Furthermore, eq. (3.6) [and even more so, eq. (2.70)] are quite easy to
work with, so any results obtained from eq. (3.7) can be checked against the exact results.
With low-energy QCD, Nature has no such mercy, and therefore ChPT must be capable
of sweeping much complexity under the carpet.

The way forward is to put all our trust into spontaneous symmetry breaking. As briefly cov-
ered in section 2.4, massless nf -flavor QCD is symmetric under chiral U(nf )L×U(nf )R ro-
tations in flavor space, with U(nf ) ∼= SU(nf )×U(1), but the axial anomaly, eq. (2.73), de-
stroys one U(1) symmetry, and the other U(1), which causes baryon number conservation,
is irrelevant for our purposes. Thus, our original symmetry is the chiral SU(nf )L × SU(nf )R
symmetry, which we can express as

qL → gLqL , qR → gRqR , gL,R ∈ SU(nf )L,R , (3.8)

where the left- and right-handed quarks qL,R form vectors in flavor space: qT = (u, d, s, . . .).
The emergence of the quark condensate, eq. (2.71), breaks the symmetry into the subgroup
SU(nf )V where gL = gR: that is, SU(nf )L × SU(nf )R → SU(nf )V . A priori, we know
very little about this breaking other than the fact that it happens—its details are a matter
of intractable low-energy QCD—so we must now consider the effects of such a symmetry
breaking on a general, abstract plane.

General symmetry breaking. Consider a symmetry breaking G → H, where H is a sub-
group of G. By Goldstone’s theorem, this will give rise to dim(G/H) NGBs, which we
label ϕ. I write the action of an element g ∈ G on these NGBs as gϕ, but bear in mind
that they may act in an arbitrarily complicated representation. Furthermore, recalling that
before a specific choice of vacuum was made, the entire manifold containing the NGBs
was symmetric under G, it must be possible to reach any ϕ from the vacuum, ϕ0, with an
appropriate transformation gϕ:

ϕ = gϕϕ0 = gϕhϕ0, h ∈ H , (3.9)

where in the second step I used the fact that, by definition, ϕ0 is invariant under H. This
associates ϕ with the entire (left) coset gϕH ≡ {gϕh | h ∈ H}. This association is unique,
for if two different cosets gH, g′H are associated with the same ϕ, then

gϕ0 = g′ϕ0 ⇒ ϕ0 = g′g−1ϕ0 ⇒ g′g−1 ∈ H ⇒ g′ ∈ gH ⇒ g′H = gH
(3.10)

⁶²Note that, despite having “sigma” in its name, it no longer has any field called σ as a degree of freedom, since
it has been integrated out.
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due to the closedness of H.

We have now established that the field ϕ and the coset gϕH are entirely equivalent. Based on
this, we say that ϕ lives in the coset space G/H ≡ {gH | g ∈ G}, which also motivates why the
number of NGBs is dim(G/H), as Goldstone’s theorem states. Since cosets are sets rather
than single group elements, it is simpler to take one arbitrary coset representative ξ(ϕ) ∈ gϕH
to represent ϕ. This runs into consistently issues, though: if ξ(ϕ) is the representative
from gϕH, there is no guarantee that gξ(ϕ) = ξ(gϕ), where ξ(gϕ) is the representative
from ggϕH chosen to represent gϕ. However, there exists some h[ξ(ϕ), g] ∈ H such that
gξ(ϕ) = ξ(gϕ)h[ξ(ϕ), g], and since the ξ-choice was arbitrary to start with, we have the
leeway to simply include this h in the transformation properties of ξ(ϕ):

ξ(ϕ)→ gξ(ϕ)h†
[
ξ(ϕ), g

]
= ξ(gϕ) , (3.11)

Now, let us return to the case relevant for QCD, where G = SU(nf )L × SU(nf )R and
H = SU(nf )V . Then g = (gL, gR) and we correspondingly write ξ(ϕ) =

(
ξL(ϕ), ξR(ϕ)

)
,

with transformation properties

ξL(ϕ)→ gLξL(ϕ)h
† , ξR(ϕ)→ gRξR(ϕ)h

† , (3.12)

where h ≡ h
[
ξ(ϕ), g

]
is the same for both L and R since SU(nf )V is invariant under the

swap L↔ R.

We can now make a curious observation: since SU(nf )L ∼= SU(nf )R ∼= SU(nf )V , the cosets
gL,R SU(nf )V are also isomorphic to SU(nf ).⁶³ Thus, ξ may in fact choose any element of
SU(nf ) as a representative for each ϕ.⁶⁴ We are therefore free to make a choice such as

ξR(ϕ) = ξ†L(ϕ) ≡ u(ϕ) , u(gϕ) = gRu(ϕ)h
† = hu(ϕ)g†L , (3.13)

or—to get rid of that pesky h—use

U(ϕ) ≡
[
u(ϕ)

]2
, U(gϕ

)
= gRU(ϕ)g†L . (3.14)

This is deliberately reminiscent of the U introduced in eq. (3.5). Indeed, we can [possi-
bly after a non-linear rearrangement of the NGBs similar to that which led to eq. (3.5)]
parametrize U(ϕ) as⁶⁵

U(ϕ) = exp
[ iϕata

F

]
. (3.15)

Here, ta are the generators of SU(nf ) (equal to the Pauli matrices for nf = 2, and the
Gell-Mann matrices for nf = 3; see section 3.4), and F is a constant introduced for future
convenience.

⁶³In paper III, we deal with a number of theories (explained in ref. [27]) with a similar structure to ChPT
but different symmetry breaking patterns . These patterns invalidate some parts of this derivation—some are not
even chiral—but rest assured that the end result remains valid.

⁶⁴Counter-intuitively, this does not invalidate the above statements about the ϕ-to-gϕH relation being unique.
The reason for this is essentially the oft-neglected difference between “isomorphic” and “equal”.

⁶⁵This is the most common parametrization, and the one that makes it the most manifest that U ∈ SU(nf ),
but it is far from the only one; generally, any symmmetry-consistent reparametrization ϕ→ ϕ+O(ϕ2) will leave
the physics intact. Appendix B of paper III discusses the most general parametrization of U .
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Terms and coefficients. What we have seen so far is that, based entirely on the chiral
symmetry breaking pattern, our theory must contain NGBs in the shape of U(ϕ). No
mention is made of other fields, so a readily available (and, it turns out, well-motivated)
assumption is that there are no other fields in the theory! Conveniently, this avoids the issue
of integrating anything out. However, we do not yet have a Lagrangian, and without any
further information, the best we can do is to write down the most general Lagrangian built
from U(ϕ) and consistent with its transformation properties. This most general Lagrangian
has an infinite number of terms, but the simplest of them are

L =
F 2

4
⟨∂µU†∂µU⟩+ L̂0⟨∂µU†∂νU∂

µU †∂νU⟩+ L̂1⟨∂µU †∂µU⟩⟨∂νU †∂νU⟩

+ L̂2⟨∂µU †∂νU⟩⟨∂µU †∂νU⟩+ L̂3⟨∂µU †∂µU∂νU
†∂νU⟩+ . . . , (3.16)

where L̂i are unknown constants (more about them shortly) and “. . .” consists of terms
with more than four derivatives. Anything else one can write down is either inconsistent,
part of the “. . .”, or can be reduced to these five terms using identities such as

U †U = 1 , 0 = ∂µ(U
†U) = ∂µU

†U + U†∂µU , (3.17)

etc. Equation (3.16) brings us rather close to our goal: it is, in fact, a basic variant of the
ChPT Lagrangian!

While the symmetry considerations are very powerful in determining the structure of the
possible interactions, they cannot decide their strength, which is why the L̂i appear in
eq. (3.16). In a general EFT context, such constants are commonly called Wilson coefficients,
but in ChPT, their canonical name is low-energy constants (LECs). The LEC of the first term
is related to F by the requirement that, after expanding U in terms of ϕ, the 1

2∂µϕ
a∂µϕa

term shows up with the correct normalization; but the other LECs are only determined by
the details of the underlying theory.

We have already encountered one example of LEC determination: taking eq. (2.70) as the
underlying theory results in eq. (3.7), which is eq. (3.16) with nf = 2, F = v2, L̂1 = v2/8m2

and L̂0 = L̂2 = L̂3 = 0. But for QCD, obtaining the LECs that way is hopeless. Paper II
deals with how self-consistency conditions on ChPT forbid some LEC values, but in gen-
eral, the only way to determine them is through experiments or lattice simulations.

Despite containing this infinite sequence of unknown parameters, ChPT is still quite a
predictive theory: as we will see below, only a limited set of LECs is relevant at any given
level of precision, and to that precision, the same set of LECs must match all measurable
processes. A nice example of this is seen in paper IV, where fitting the LECs directly to
the process at hand agrees reasonably well with the standard set of LECs determined from
a wide array of other processes.

3.3 The ChPT Lagrangian

Having now arrived at the gist of ChPT through a lengthy, mostly-from-scratch derivation,
it is about time I gather all the pieces and present it in the full glory of its modern form.
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Before doing that, let me quickly summarize its history.

The linear and non-linear sigma models were introduced by Gell-Mann and Lévy [28]
before QCD was conceived of, and the latter was taken much of the way toward ChPT
by Weinberg [29] as QCD was gaining acceptance, but it was in the work of Gasser &
Leutwyler [30, 31] that ChPT as such was born. Importantly, they solved an issue I have
avoided ever since first describing chiral symmetry: chiral flavor symmetry is not a symmetry
of QCD. It is broken by by quark masses, and by most non-QCD interactions that the
quarks partake in (for instance, electromagnetism breaks it since the u, c, t and d, s, b quarks
have different charges). This is not an anomaly or spontaneous symmetry breaking giving
rise to interesting physics—it is simply the absence of symmetry.

However, as I argued already in section 2.4, chiral flavor symmetry is an approximate sym-
metry of QCD. Non-QCD interactions are very weak compared to QCD, and can be
mostly ignored. The masses of the u and d quarks are very small, and s is fairly light as
well, so chiral symmetry is an excellent approximation for nf = 2, and a decent one for
nf = 3. For larger nf it is sadly out of the question, at least in our universe’s version of
QCD.

What Gasser & Leutwyler did was to systematically incorporate this slight breaking of
chiral symmetry into the framework built up under the assumption that QCD is chirally
symmetric, using the external field method. It consists in writing down all consistent ways
for quarks to interact with something outside pure, massless QCD,

L = L[m=0]
QCD + q̄

{
γµ(vµ + γ5aµ)− (s− iγ5p)

}
q , (3.18)

where vµ, aµ, s, p (so called because they are vector, axial-vector, scalar and pseudoscalar
fields, respectively) are matrices in flavor space.⁶⁶ They may simply be fixed objects inserted
into the theory, or may be fully dynamic quantum fields; electroweak interactions can be
incorporated through vµ and aµ, and Higgs interactions through s, which is also where
the quark masses enter.

Lagrangian building blocks. In order to build ChPT with these external fields added,
they must be given transformation properties consistent with chiral symmetry. How to do
this is most easily seen by forming the linear combinations

ℓµ ≡ vµ − aµ , rµ ≡ vµ + aµ , χ ≡ 2B(s+ ip) , (3.19)

(I will get back to the meaning of the constant B later) so that

L = L[m=0]
QCD + q̄Lγ

µℓµqL + q̄Rγ
µrµqR − 1

2B

[
q̄RχqL − q̄Lχ†qR

]
. (3.20)

Thus, under g = (gL, gR) they must transform as

ℓµ → gLℓµg
†
L + igL∂µg

†
L , rµ → gRrµg

†
R + igR∂µg

†
R , χ→ gRχg

†
L . (3.21)

⁶⁶This is not an exhaustive list, but it covers all SM interactions and includes all fields normally used in
Lagrangian-building. The consequences of including some further fields are studied in refs. [32, 33].
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The field U(ϕ) remains with the same structure and transformation as above, although the
ϕa are now demoted to pseudo-NGBs and may obtain masses.

These fields are still not entirely convenient for putting together the most general La-
grangian, since their transformation properties—and even more so those of their derivatives—
are not easy to keep track of. One improvement, borrowing forms and terminology from
gauge theory, is the introduction of the field strength tensors

Fµν
L ≡ ∂µℓν − ∂νℓµ − i[ℓµ, ℓν ] → gLF

µν
L g†L ,

Fµν
R ≡ ∂µrν − ∂νrµ − i[rµ, rν ] → gRF

µν
R g†R .

(3.22)

Originally [30, 31], the ChPT Lagrangian was written in terms of U , χ, Fµν
L,R and suitable

derivatives. However, I will present the Lagrangian in terms of the alternative “building
blocks” introduced in ref. [34] , which make the Lagrangian both easier to construct and
to look at. The building blocks all transform like X → hXh†, where h ∈ SU(nf )V is the
compensatory transformation introduced in eq. (3.11). To achieve this, we bring back the
field u introduced in eq. (3.13), and work out that

uµ ≡ i
[
u†(∂µ − irµ)u− u(∂µ − iℓµ)u†

]
,

χ± ≡ u†χu† ± uχ†u , fµν± ≡ uFµν
L u† ± u†Fµν

R u
(3.23)

are the simplest reformulations of u, χ, Fµν
L,R with the desired transformation properties.

Furthermore, one can construct the covariant derivative ∇µ such that if X → hXh†, then
∇µX → h∇µXh

† as well:

∇µX ≡ ∂µX + [Γµ, X] , Γµ ≡ 1
2

[
u†(∂µ − irµ)u+ u(∂µ − iℓµ)u†

]
. (3.24)

Now for the important topic of power counting, which will allow us to systematically orga-
nize the Lagrangian into LO, NLO, NNLO, etc., sections, such that the NkLO Lagrangian
is only needed in NKLO calculations with K ≥ k. The orders are decided by counting
the powers of some small parameter, and since ChPT is a low-energy theory, the relevant
small parameter is the amount of energy involved, which we will express in terms of p2, the
square of some typical momentum. As can be verified through explicit calculations, LO is
at O(p2), NLO at O(p4), NNLO at O(p6), and so on, and one can also verify that⁶⁷

uµ = O(p) , ∇µ = O(p) , χ± = O(p2) , fµν± = O(p2) . (3.25)

To build the NkLO Lagrangian, one simply has to take enough building blocks that they
add up to O(p2k), assemble them with traces and index contractions in all possible ways,
and (less simply) find all possible relations between them so that only the minimal number
of terms is retained. The general procedure is described in ref. [35].

The Lagrangian. The LO Lagrangian is very simple:

LLO =
F 2

4
⟨uµuµ + χ+⟩ , (3.26)

⁶⁷This assignment is not entirely unique, and one can have consistent power counting with, e.g., χ± = O(p).
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where uµuµ is equivalent to the ∂µU†∂µU term in eq. (3.16). The LEC of the χ+ term, B,
is conventionally absorbed into the definition of χ, so it is not visible here.

The NLO Lagrangian, due to Gasser & Leutwyler, is

LNLO = L̂0⟨uµuνuµuν⟩+ L̂1⟨uµuµ⟩⟨uνuν⟩+ L̂2⟨uµuν⟩⟨uµuν⟩+ L̂3⟨uµuµuνuν⟩
+ L̂4⟨uµuµ⟩⟨χ+⟩+ L̂5⟨uµuµχ+⟩+ L̂6⟨χ+⟩⟨χ+⟩+ L̂7⟨χ−⟩⟨χ−⟩

+ L̂8⟨χ2
+ + χ2

−⟩ − iL̂9⟨uµuνfµν+ ⟩+ L̂10⟨fµν+ f+µν − f
µν
− f−µν⟩ , (3.27)

where the first four terms are recognizable from eq. (3.16). In addition to this, one can
write down a few more terms, which (after expansion) only involve the external fields; the
two such contact terms at NLO are

H1⟨χ2
+ − χ2

−⟩+H2⟨fµν+ f+µν + fµν− f−µν⟩ . (3.28)

These do not contribute to physical processes, but are nevertheless important in certain
analyses beyond the scope of this thesis.

The NNLO Lagrangian was derived by Bijnens, Colangelo & Ecker [36], refining earlier
work by Fearing & Scherer [37]. Its general form consists of 112 terms and 3 contact terms,
each with an LEC Ki, which is too much to show here.⁶⁸ However, to get a feel for the
Lagrangian, I will present the subset of it that is relevant for the analyses of paper II:⁶⁹

LNNLO ⊃ 4K1⟨uµuµ∇νuρ∇νuρ⟩+ 4K2⟨uµuµ⟩⟨∇νuρ∇νuρ⟩+ 4K3⟨∇µuνuρ∇µuνuρ⟩
+ 4K4⟨∇µuνuρ⟩⟨∇µuνuρ⟩+ 8K5⟨∇µuνuρ∇µuρuν⟩+ 4K6⟨∇µuνuρ⟩⟨∇µuρuν⟩

+K7⟨uµuµuνuνχ+⟩+K8⟨uµuµuνuν⟩⟨χ+⟩+K9⟨uµuµ⟩⟨uνuνχ+⟩
+K11⟨uµuνuνuµχ+⟩+K13⟨uµuνuµuνχ+⟩+K14⟨uµuνuµuν⟩⟨χ+⟩

+K16⟨χ+⟩⟨uµuν⟩⟨uµuν⟩+ 4K17⟨χ+∇µuν∇µuν⟩+ 4K18⟨χ+⟩⟨∇µuν∇µuν⟩

+K19⟨uµuµχ2
+⟩+K20⟨uµuµχ+⟩⟨χ+⟩+K21⟨uµuµ⟩⟨χ2

+⟩+K22⟨uµuµ⟩⟨χ+⟩2

+K23⟨χ+uµχ+u
µ⟩+ iK28

[
⟨χ−∇µuνu

µuν⟩+ ⟨χ−uµuν∇µuν⟩
]

+ iK29⟨χ−∇µuν⟩⟨uµuν⟩+ iK31⟨χ−uµ∇νu
µuν⟩+ iK32⟨χ−uµ⟩⟨∇νu

µuν⟩
+K33⟨uµuµχ2

−⟩+K35⟨uµuµ⟩⟨χ2
−⟩+K37⟨χ−uµχ−u

µ⟩+K38⟨χ−uµ⟩⟨χ−u
µ⟩ . (3.29)

Here and below, I abuse the ⊃ (superset) symbol as “contains these and other terms”.

The N3LO Lagrangian, derived by Bijnens, Hermansson-Truedsson & Wang [35], has 1840
terms and 21 contact terms. The number of terms (but not their explicit form) is known
to much higher order using Hilbert series [38], although phenomenological relevance de-
creases sharply beyond NNLO.

⁶⁸Note that by “term”, I mean the expression that multiplies exactly one LEC, even if it, like the L̂8 term in
eq. (3.27), strictly speaking consists of more than one term.

⁶⁹In ref. [36], terms containing ∇µuν are instead formulated in terms of hµν ≡ ∇µuν + ∇νuµ. Using the
identity f−µν = ∇µuν −∇νuµ, easily verifiable from eqs. (3.23) and (3.24), I have reformulated these in terms
of ∇µuν , leaving behind some factors of 2 and contributions to terms containing f−µν , which are not shown
here. In the case of K5, there is an additional factor of 2 since its original form consisted of two terms which are
equivalent after applying the identity.
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The Cayley–Hamilton theorem [see eqs. (3.43) and (3.47)] reduces the number of terms in
the nf = 2 and nf = 3 Lagrangians. The reduced LNLO can be found in ref. [39], LNNLO in
ref. [36], and LN3LO in ref. [35]; LLO does not reduce. The LECs are conventionally given
different symbols: L̂i are replaced by Li at nf = 3 and by ℓi (or li) at nf = 2. Paper I uses
a different, nonstandard notation for the LECs.

Lastly, the Lagrangian contains the so-called anomalous sector, which I mention for com-
pleteness but do not use. There is a single O(p4) anomalous term, the Wess–Zumino–
Witten (WZW) term [40, 41], which can be derived geometrically and whose LEC is
fixed. It is not invariant under the chiral symmetry, but is nevertheless permitted in the
Lagrangian since its change under chiral transformations has the form of a total derivative.
It mediates π0 decay and other processes that are contingent on the axial anomaly.⁷⁰ The
O(p6) [42, 43] and O(p8) [44] anomalous Lagrangians are also known; these are chirally
invariant and not directly connected to the axial anomaly, but they are so called because
they, like the WZW term but unlike the “regular” Lagrangian, contain ϵµναβ .

3.4 Lie algebra for ChPT

The power of the SUN, in the palm of my hand! — Hugo Serôdio (2019)

Practical ChPT calculations in this thesis involve a lot of SU(nf ) Lie algebra, i.e., manip-
ulations of the generators ta that appear in eq. (3.15). This algebra is usually introduced
on the fly in introductory ChPT texts, and comprehensive Lie algebra texts are not writ-
ten with ChPT in mind. Here, I will therefore afford the luxury of a comfprehensive,
ChPT-tailored derivation of the necessary algebra once and for all.

Definitions. The starting point is U ≡ eiα ∈ SU(nf ) for some nf ×nf matrix α. As noted
before, the defining SU(nf ) properties

1 = U†U = ei[α−α†] and 1 = det(U) = ei⟨α⟩ (3.30)

imply that α is traceless and Hermitian.⁷¹ Conversely, every traceless and Hermitian n× n
matrix generates an element of SU(n).

Now, let {ta} be a basis for the space of traceless Hermitian matrices; with complex coef-
ficients, this is a basis for the space of all traceless matrices. These ta are the generators of
the SU(nf ) Lie algebra, and we write α = αat

a, etc.

The ta must be traceless, but not necessarily Hermitian. In fact, the Hermitian matrix ϕata
in eq. (3.15) must use non-Hermitian ta if ϕa are to represent the mesons, since some of

⁷⁰See Donoghue [18, chapter VII-5 & 6] or Pich [16, sec. 7] for a detailed description of the WZW term and
its use in calculating anomalous processes.

⁷¹As introduced on page 21, ⟨α⟩ denotes the trace of α. Strictly speaking, ⟨α⟩ andα−α† could be allowed to be
integer multiples of 2π, but unlike the traceless Hermitian matrices, matrices with these more lenient properties
do not form a vector space (simply consider the effect of the scalar 1

2
) and are therefore worthless for all algebraic

purposes.
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these are complex-valued fields [e.g., (π+)† = π−]. I will therefore deviate from convention
and assume ta are non-Hermitian, and adopt the upper-lower index distinction

(ta)† ≡ ta , (ta)
† ≡ ta . (3.31)

As we will see, all algebraic properties of Hermitian ta carry over to the non-Hermitian
case if one enforces the Lorentz-like rule that all contractions involve one upper and one
lower index. For Hermitian generators, this can of course be ignored.

The generators can be chosen to be orthonormal under the trace-product

⟨tatb⟩ = τδab , (3.32)

where τ is a normalization factor (see below). This is what necessitates the upper-lower
convention, since δab is real. The symbols δab ≡ 1

τ ⟨t
atb⟩ and δab ≡ 1

τ ⟨tatb⟩, which may be
neither real nor diagonal in a and b, act as a metric for raising and lowering indices.

(Anti)commutation. To see that the generators have well-defined commutation relations,
note that with eiα, eiβ ∈ SU(nf ), closedness requires that eiαeiβ = eiγ ∈ SU(nf ). The
Baker–Campbell–Hausdorff formula then states that⁷²

γ = α+ β + 1
2 [α, β] +

1
12

[
α− β, [α, β]

]
+ . . . , (3.33)

where “. . .” consists of more nested commutators of α and β. Since γ is traceless and Her-
mitian, [α, β] must be traceless and Hermitian too, which makes all the nested commuta-
tors traceless and Hermitian as well.⁷³ This implies that the commutator of two generators
is a linear combination of the generators, i.e.,

[ta, tb] = iκfabctc , (3.34)

where the coefficients fabc are called structure constants, and κ is another normalization
factor. The fabc are totally antisymmetric in abc, as follows from

iκτfabc = ⟨[ta, tb] tc⟩ = ⟨[tb, tc] ta⟩ = ⟨[tc, ta] tb⟩ , (3.35)

and in the case of Hermitian generators (but not in general), they are real. The structure
constants also obey the Jacobi identity,[

fabef cde
′
+ f bcefade

′
+ f caef bde

′]
δee′ = 0 , (3.36)

which follows from the fact that[
[ta, tb], tc

]
+
[
[tb, tc], ta

]
+
[
[tb, tc], ta

]
=
∑

S(abc)

(tatbtc − tatbtc) = 0 , (3.37)

where S(abc) symbolizes all permutations of abc. The Jacobi identity is a defining feature
of a Lie algebra, so the above essentially shows that what we are working with is, indeed, a
Lie algebra.

⁷²A short, accessible proof is given by Eichler [45]. See also ref. [46] for the historical development of this
formula, which involved many people beyond its three namesakes.

⁷³To see that there are no subtle cancellations spoiling this argument, note that the terms scale differently under
the operation α→ xα, β → yβ.
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Unlike general Lie algebras, SU(nf ) also has a well-defined anticommutation relation: since
⟨{ta, tb}⟩ = 2⟨tatb⟩ = 2τδab, the anticommutator must be proportional to δab plus a trace-
less matrix. Therefore,

{ta, tb} = 2τ
nf
δab + κdabctc , (3.38)

where dabc are similar to the structure constants except that they are totally symmetric in
abc and do not satisfy the Jacobi identity.

Normalization. There are multiple normalization conventions in common use. I gener-
ally follow Hans Bijnens’ convention (τ, κ) = (1, 1), although some of my sources (e.g.,
ref. [47]) use (τ, κ) = (1,

√
2). Zee [15] also uses (τ, κ) = (1, 1), but Peskin & Schroeder [14]

and Donoghue [18] use (τ, κ) = ( 12 , 1), and the Pauli and Gell-Mann matrices, eqs. (3.50)
and (3.51), conventionally have (τ, κ) = (2, 2). I keep the normalization generic through-
out this introduction for easier comparison, but be aware that the papers themselves use
(τ, κ) = (1, 1) and assume Hermitian generators.

The Fierz identity. Another consequence of the completeness and trace-orthogonality of
{ta} is that any matrix M can be written as

M =Mat
a +M0 , where Ma ≡ 1

τ ⟨Mta⟩ and M0 ≡ 1
n ⟨M⟩ (3.39)

Writing this with explicit matrix indices,

Mij =
1
τMℓk(ta)kℓ(t

a)ij +
1
nMkkδij

⇒ 0 =Mℓk

[
1
τ (ta)kℓ(t

a)ij +
1
nδℓkδij − δiℓδjk

]
.

(3.40)

Since Mij is arbitrary, the quantity in square brackets must be zero in general, so
1
τ (ta)kℓ(t

a)ij = δiℓδjk − 1
nδijδkℓ , (3.41)

which is the Fierz identity.⁷⁴ Inserted into traces along with arbitrary matrices X and Y ,
1
τ ⟨Xta⟩⟨Y t

a⟩ = ⟨XY ⟩ − 1
n ⟨X⟩⟨Y ⟩ ,

1
τ ⟨XtaY t

a⟩ = ⟨X⟩⟨Y ⟩ − 1
n ⟨XY ⟩ , (3.42)

it serves as a cornerstone of section 4.4, and of papers I and III.

The Cayley–Hamilton theorem. At fixed nf , further identities follow from the Cayley–
Hamilton theorem, which states that the characteristic polynomial pM (λ) ≡ det(λ −M),
for any nf × nf matrix M , is solved by M itself: pM (M) = 0.⁷⁵ The coefficients of pM (λ)
can in general be written in terms of traces of powers of M . For nf = 1, we get the trivial
statement 0 = M − ⟨M⟩, and for nf ≥ 4, the theorem is impractical, so let us turn our
attention to nf = 2 or 3.

With M a traceless 2× 2 matrix, the theorem gives

0 =M2 − 1
2 ⟨M

2⟩ . (3.43)

⁷⁴Markus Fierz’ original work [26] concerned spinor bilinears (recall page 35), but his name has since been
applied to a wide variety of analogous relations such as eq. (3.42).

⁷⁵Note that this holds when M is substituted for λ in the polynomial pM (λ), not in the determinant
det(λ−M), which would be a trivial result. Cayley and Hamilton only proved special cases, with the gen-
eral statement being due to Frobenius [48].
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Introducing M = A+B with A and B traceless, we get

0 = A2 + {A,B}+B2 − 1
2 ⟨A

2 + 2AB +B2⟩ = {A,B} − ⟨AB⟩ , (3.44)

where we invoked eq. (3.43) on A and B to get rid of the quadratic terms in the last step.
This identity allows for great simplification of the nf = 2 ChPT Lagrangian, and by setting
A = ta, B = tb and comparing to eq. (3.38), it implies that dabc = 0.

With M a traceless 3× 3 matrix, the theorem gives

0 =M3 − 1
2M⟨M

2⟩ − 1
3 ⟨M

3⟩ . (3.45)

Introducing M = A + B + C, all traceless, and applying eq. (3.45) repeatedly, we are left
with

0 =
∑

S(ABC)

ABC −
∑

Z(ABC)

A⟨BC⟩ − ⟨A{B,C}⟩ , (3.46)

where S and Z symbolize permutations and cyclic permutations, respectively. Tracing
eq. (3.46) with a fourth traceless matrix D gives∑

S(ABC)

⟨ABCD⟩ =
∑

Z(ABC)

⟨AB⟩⟨CD⟩ . (3.47)

While not as powerful as its nf = 2 counterpart, it allows for simplification of nf = 3
ChPT. Furthermore, combining eq. (3.47) with{

{ta, tb}, tc
}
+
{
{tb, tc}, ta

}
+
{
{tb, tc}, ta

}
= 2

∑
S(abc)

tatbtc , (3.48)

[compare eq. (3.37)] and applying eq. (3.38) yields the useful, Jacobi-like identity[
dabedcde

′
+ dbcedade

′
+ dcaedbde

′]
δee′ =

2τ

3κ2
(
δabδcd + δbcδad + δcaδbc

)
. (3.49)

Explicit matrices. At nf = 2, the canonical set of Hermitian generators is the Pauli ma-
trices {σa},

σ1 ≡
(
0 1
1 0

)
, σ2 ≡

(
0 −i
i 0

)
, σ3 ≡

(
1 0
0 −1

)
, (3.50)

for which dabc = 0 and fabc = ϵabc, assuming (τ, κ) = (2, 2). At nf = 3, with the same
normalization, the canonical choice is the Gell-Mann matrices {λa},

λ1,2,3 ≡
(
σ1,2,3 0
0 0

)
, λ4 ≡

0 0 1
0 0 0
1 0 0

 , λ5 ≡

0 0 −i
0 0 0
i 0 0

 ,

λ6 ≡

0 0 0
0 0 1
0 1 0

 , λ7 ≡

0 0 0
0 0 −i
0 i 0

 , λ8 ≡ 1√
3

1 0 0
0 1 0
0 0 −2

 .

(3.51)
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Note how the matrices form what I call off-diagonal pairs [e.g., (σ1, σ2) or (λ4, λ5)], consist-
ing of one real symmetric and one imaginary antisymmetric matrix with nonzero elements
in the same position.

The pattern for arbitrary nf is simple: when going to nf + 1, keep all previous matrices,
padded with an extra row and column of zeroes, then add the nf off-diagonal pairs with el-
ements in that row and column, and finally add the unique (up to a sign) traceless diagonal
matrix that is orthogonal to all previous ones.

A particularly useful set of non-Hermitian generators, which I here denote with the addi-
tion of a tilde, is obtained by combining the off-diagonal pairs so that all generators are
real. This generalizes the common combination σ± ≡ 1

2 (σ
1 ± iσ2): λ1,2 are replaced by

λ̃1 = λ̃2 = (λ1 + iλ2)/2, etc., yielding

λ̃1 = λ̃2 =

0 1 0
0 0 0
0 0 0

 , λ̃4 = λ̃5 =

0 0 1
0 0 0
0 0 0

 , λ̃6 = λ̃7 =

0 0 0
0 0 1
0 0 0

 (3.52)

[recall eq. (3.31)]. The most natural normalization for these is τ = 1. The diagonal genera-
tors remain the same up to normalization: λ̃3 = λ̃3 = λ3/

√
2, etc.

Each off-diagonal λ̃a commutes with all other off-diagonal λ̃b except its transpose, λ̃a. They
are also behave more simply when combined inside traces with the diagonal generators, as
we shall see below. These properties hold also for t̃a at general nf .

3.5 Masses and phenomenology

Having established ChPT on theoretical grounds, let me summarize the most salient parts
of its connection to real-world phenomena.

Looking back at eq. (3.18), quark masses are introduced by addingM ≡ diag(mu,md,ms, . . .)
to s. Then, via eqs. (3.15), (3.19), (3.23) and (3.26), the leading mass terms for the NGBs
come from

L ⊃ F 2

4
⟨χ+⟩ =

BF 2

2

〈
M(U + U†)

〉
= BF 2⟨M⟩ − B

2
ϕa
〈
M{ta, tb}

〉
ϕb +O(ϕ4) . (3.53)

Only −Bϕaϕb⟨Mtatb⟩ is of interest for leading-order masses. Likewise, charges are intro-
duced by adding−eAµQ to vµ, whereAµ is the photon field andQ ≡ diag( 23 ,−

1
3 ,−

1
3 , . . .),

so the leading electromagnetic interaction is⁷⁶

L ⊃ F 2

4
⟨uµuµ⟩ = ϕa

{
ieAµ

〈
Q[ta, tb]

〉
∂µ − e2

2 A
µAµ

〈
[Q, ta][Q, tb]

〉}
ϕb +O(ϕ4) . (3.54)

Ideally, the mass and electromagnetic terms should simplify to ϕa(Ma
b +Qa

b )ϕ
b, whereMa

b

andQa
b are diagonal matrices so that the NGBs are mass and charge eigenstates. This is not

⁷⁶Note the similarity to scalar QED, which provides the simplest gauge-invariant coupling between Aµ and a
complex scalar field: LsQED ⊃ −ieAµ(ϕ∂µϕ∗ − ϕ∗∂µϕ) + e2AµϕAµϕ∗.
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the case if ta are Pauli or Gell-Mann matrices:
〈
Q[σ1, σ2]

〉
and

〈
M{λ3, λ8}

〉
are nonzero,

for instance.

The non-Hermitian generators λ̃a introduced in the previous section mostly solve this.
Due to the properties discussed at the end of that section, all traces in eqs. (3.53) and (3.54)
vanish when λ̃a or λ̃b is off-diagonal, except when a = b. Therefore, for nf = 3we can iden-
tify three particle-antiparticle pairs associated with these generators, and from the charges
and the quark content implied by the masses, the identification with real-world mesons is
obvious:

π± =
ϕ1 ∓ iϕ2√

2
, M2

π± = B(mu +md) ,

K± =
ϕ4 ∓ iϕ5√

2
, M2

K± = B(mu +ms) ,

K0, K̄0 =
ϕ6 ∓ iϕ7√

2
, M2

K0 = B(md +ms) .

(3.55)

Here and below, ϕa are the real non-eigenstate fields used when writing U = exp(ϕaλ
a/F )

in terms of Gell-Mann matrices. Equation (3.55) reproduces observed meson mass ratios
well, implying the quark mass ratiosmu : md : ms = 0.55 : 1 : 20.3. Note how the strange
quark is much heavier than the others, as expected.

When nf = 2, ϕ3 is a zero-charge mass eigenstate with the same mass as π±, so it is natural
to identify it with π0. When nf ≥ 3, however,

〈
M{ta, tb}

〉
mixes all fields associated with

diagonal generators. Unlike the off-diagonal ones, there is no “clean” change of basis that
resolves it; instead, some mixing angle must be introduced. With the choice that π0 is
“mostly” ϕ3 and η is “mostly” ϕ8,⁷⁷ the nf = 3 mixing is

π0 = ϕ3 cos θπη − ϕ8 sin θπη , η = ϕ3 sin θπη + ϕ8 cos θπη . (3.56)

The charge terms trivially vanish for diagonal generators, so the small angle θπη is, to leading
order, determined entirely by the masses. With the aforementioned quark mass ratio, the
mass matrix is diagonalized by

1
2 tan

(
2θπη

)
=

√
3

2

mu −md

2ms − (mu +md)
≈ 0.01 ≈ θπη , (3.57)

and the eigenstates obtain the masses

M2
π0 = B(mu+md)−δπη+O(δ2πη) , M2

η = 1
3B(mu+md+4ms)+δπη+O(δ2πη) , (3.58)

where
δπη ≡

B

2

(mu −md)
2

2ms − (mu +md)
≈ 0.0016M2

π± . (3.59)

Again, this gives a fairly accurate value for the masses, up to percent-level discrepancies; for
instance, δπη is smaller than the actual π±-π0 mass-squared difference of about 0.065M2

π± .
There are higher-order corrections to the masses, which also involve LECs such as L̂6,

⁷⁷This also motivates the approximate quark content in table 2, which corresponds to the diagonal elements
of λ3 and λ8.
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L̂7 and L̂8, as well as electromagnetic and other effects; these allow more exact matching
between ChPT and measured masses (see ref. [39] and references therein).

Condensates and decays. At this point, it is relatively straightforward to connect B, and
therefore the masses, to the quark condensate, whose appearance is what breaks chiral
symmetry in the first place. Formulating QCD using eq. (3.18), the exact path-integral
treatment [recall eq. (2.36)] gives

⟨0|q̄q|0⟩ = −iδ lnZ[s, p, . . .]
δs

, (3.60)

restoring s, p, . . . to their physical values after taking the derivative. Assuming that ChPT
models the same low-energy physics, this relation must remain if we replace the QCD
Lagrangian by the ChPT one. Then the first term in eq. (3.53) simply gives

⟨0|q̄q|0⟩ = BF 2 + [corrections] . (3.61)

A similar argument applies to the pion decay rate, ⟨0|Jµ
L |π⟩, where the weak current Jµ

L

mediating the decay is obtained with −iδ lnZ/δℓµ. Such a derivative applied to ⟨uµuµ⟩
shows that F is precisely the leading-order decay constant:

⟨0|Jµ
L |π⟩ = kµF + [corrections] , (3.62)

where kµ is the momentum of the pion.⁷⁸ The NLO corrections to F and the pion mass
can be seen in eq. (III.2.17), and are known up to N3LO [23].

These results finally put to rest the questions about light pseudoscalar mesons discussed
in section 2. If chiral symmetry were exact, the ϕa would be NGBs, and so these mesons
would be massless. Since chiral symmetry is almost exact for nf = 2, the pions are in some
sense close to the NGBs they would be in a chirally symmetric world, and are therefore
rather close to massless; how close is parametrized within ChPT via the fields s, p, etc. The
same applies to the kaons and η, but due to the higher mass of the strange quark, they
are less close to being NGBs and are correspondingly heavier. The other mesons have no
relation to any NGBs, and therefore obtain their masses on the same conditions as the
baryons, which do not rely on chiral symmetry breaking to obtain mass.⁷⁹ In particular,
η′ is non-light due to the axial anomaly [recall section 2.4].⁸⁰

⁷⁸The proportionality to kµ follows from Lorentz invariance; the only thing that needs showing is that the
proportionality constant is F .

⁷⁹This is made clearer by the extensions of ChPT that include baryons, which are briefly reviewed in section 3.7.
See also ref. [49] and references therein for lattice calculations that explicitly demonstrate the properties of baryons
in worlds with unbroken chiral symmetry.

⁸⁰Without the anomaly, chiral symmetry would be U(nf )L × U(nf )R and would break to U(nf )V . Then
η′ would be a ninth pseudo-NGB corresponding to the unit matrix, which along with the SU(nf ) gener-
ators generate U(nf ). Following the calculation outlined in section 3.5, it would have the pion-like mass
M2

η′ = B(mu +md) + δπη +O(δ2πη). It would exist also at nf = 2, serving as the isospin-0 state, as op-
posed to π0 which is the I3 = 0 component of an isospin-1 triplet. [η appears first at nf = 3; the doublet
(π0, η) and singlet η′ then form an arrangement under flavor rotations that is analogous to the I = 1 states
described in eq. (4.24) and in paper V.]
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3.6 The low-energy constants

Absolute truths are expressed by dimensionless numbers.

— Bo “Bosse” Söderberg (2016)

Renormalization. ChPT is, strictly speaking, not a renormalizable theory, in which the
renormalization of a finite number of parameters is enough to cancel loop divergences to all
orders. It is, however, order-by-order renormalizable, where the new LECs entering at each
order cancel any additional divergences and leave renormalized LECs that are physically
observable and different from the “bare” LECs present in the Lagrangian. The LO LECs
F and B likewise get replaced in physical results by the mass and decay constants Fπ, Mπ.
See ref. [50, 51] and references therein for more information on ChPT renormalization,
and page 59 for a more explicit look at loop divergences.

Using dimensional regularization, divergences are captured by the d→ 4 singularity of

Λ ≡ κ

d− 4
, where κ ≡ 1

16π2
, (3.63)

so the NLO and NNLO renormalization is [30, 31, 51]⁸¹

Li = (cµ)d−4
(
Lr
i(µ, d) + Γ̂iΛ

)
, (3.64)

Ki =
(cµ)2(d−4)

F 2

(
Kr

i (µ, d)− Γ̂
(2)
i Λ2 −

[
Γ̂
(1)
i + Γ̂

(L)
i (µ, d)

]
Λ
)
, (3.65)

where µ is the renormalization scale, conventionally set to 770 MeV ≈ Mρ; Lr
i ≡ Lr

i(µ, 4)

andKr
i ≡ Kr

i (µ, 4) are renormalized, physically observable LECs; Γ̂X
i are coefficients listed

in ref. [51, eq. (3.14) & tables 3-4]; and c specifies the renormalization scheme: following
Gasser & Leutwyler’s original work [30], the ChPT-specific convention is

ln c = − 1
2

(
ln 4π + γE + 1

)
, (3.66)

where γE is the Euler–Mascherino constant; this differs from the standard MS scheme by
the extra +1. With ϵ ≡ 2− d/2 and 1/ϵ̃ ≡ 1/ϵ− 2 ln(cµ), eq. (3.64) becomes

L̂r
i = L̂i +

κΓ̂i

2ϵ̃
. (3.67)

The nf = 2, 3 LECs left by the Cayley–Hamilton theorem are renormalized similarly. The
counterparts of Γ̂i are called Γi for nf = 3 and are listed in eq. (III.2.13); at nf = 2 they are
called γi and can be found in eq. (Iv.3.5)or ref. [30, eq. (9.2)]. All NNLO coefficients are
listed in ref. [51, tables 1-2].

Different renormalization scales µ, µ′ are related by (at NLO)

L̂r
i(µ

′) = L̂r
i(µ) +

κΓ̂i

2
log

µ2

µ′2 , (3.68)

⁸¹The analogous renormalization of the N3LO LECs [35] has not yet been carried out.
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and by convention, the nf = 2 LECs are re-expressed as scale-independent ℓ̄i by fixing
µ =Mπ through

ℓri(µ) =
1
2γi
(
κℓ̄i + L

)
, (3.69)

where L ≡ κ ln(M2
π/µ

2).

LEC values. The most recent comprehensive review of the LECs is that of Bijnens & Ecker [39],
and I use values drawn from there whenever needed. They adopt

Fπ = 92.2(1) MeV (3.70)

and the two-flavor LECs

l̄1 = −0.4(6) , l̄2 = 4.3(1) , l̄3 = 2.9(2 4) ,

l̄4 = 4.4(2) , l̄5 = 12.24(21) , l̄6 = 15.24(39) .
(3.71)

Note that the uncertainties range from O(1%) to O(100%); the less uncertain l̄5,6 can be
measured through electromagnetic interactions, whereas the others govern purely hadronic
processes.

The thee-flavor case is more complicated, and ref. [39] presents several different fits. The
one used in paper II gives

103Lr
1 = 1.11(10) , 103Lr

2 = 1.05(17) , 103Lr
3 = −3.82(30) , 103Lr

4 = 1.87(53) ,

103Lr
5 = 1.22(6) , 103Lr

6 = 1.46(46) , 103Lr
7 = −0.39(8) , 103Lr

8 = 0.65(7) .
(3.72)

Reference [39] also presents estimates of the NNLO LECs; these are used in paper II, but
I do not reproduce them here.

3.7 Limits, limitations and extensions of ChPT

Limits. ChPT calculations are very difficult unless some simplifications are made. Com-
mon ones include the chiral limit, where s = p = vµ = aµ = 0 in eq. (3.18) so that unbroken
chrial symmetry is exact and the mesons are actual massless NGBs, not pseudo-NGBs; the
equal-mass limit, where the pseudoscalar mesons are identical in all regards except flavor;
the isospin limit, where isospin symmetry is made exact so that all members of the same
isospin multiplet has the same mass (equivalent at nf = 2 to the equal-mass limit); and
the planar limit, which takes nf → ∞, some effects of which are discussed on page 69.
Papers II-V (and refs. [6, 27], etc.) work in the isospin or equal-mass limits, and paper I
(and ref. [47], etc.) works in the chiral limit. Notable results using non-equal masses in-
clude the NLO 2 → 2 scattering amplitude at nf = 3 [52] and one of the progenitors of
paper II [53].

Limitations. Even without the above simplifications, the EFT nature of ChPT makes it
inherently limited in its applicability. Naïvely, it should be expected to break down around
the energy scale where the lightest state not covered by the theory (typically the ρ meson)
becomes available. It can also be shown [54] that even self-contained ChPT should cease to
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be perturbatively valid around the scale 4πFπ/
√
nf , which is ≈6Mπ at nf = 2 and ≈5Mπ

at nf = 3. It is not clear exactly where breakdown happens or how sharp it is, and part of
my work presses close to the region where the convergence could be questioned. Paper II
discusses this, and in paper IV we find NLO corrections that are large compared to the LO
results, and indications that there may be some large NNLO corrections; see also ref. [39,
sec. 4.7]. It remains an open question how far ChPT can be pushed in these directions.

Extensions. There are multiple ways to extend ChPT; I use none of them here, but I
will briefly survey them for completeness. They are typically quite successful at describ-
ing masses, decays, etc., but constant care has to be taken to assure the validity of the
assumptions and expansions involved.

There are chiral Lagrangians including the vector meson octet in addition to the pseu-
doscalar one [55], and also resonance chiral theory [34, 56, 57], which systematically extends
ChPT to higher energies by coupling the pseudo-NGBs to mesonic resonances of vari-
ous spin, parity and mass, including the pseudoscalar η′ and the broad scalar resonance
σ. Likewise, chiral Lagrangians have been constructed to include the decuplet of spin- 32
baryons up to NLO [58], and the octet of spin- 12 baryons up to NNLO [59] and, in lim-
ited cases, N3LO [60]. The vector mesons and spin- 12 baryons are arranged similarly to
the pseudoscalar mesons, while the spin- 32 baryons form a totally symmetric three-index
tensor in flavor space.

There are even chiral Lagrangians describing baryons and mesons containing heavy (i.e.,
charm or bottom) quarks [61, 62]; these are otherwise the domain of the heavy quark
effective theory [63], which is quite different from ChPT.
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4 ChPT amplitude calculations

The idea […] that I want to describe now is a positive thing. It’s a way that we
actually use to make calculations and understand nature. Excuse me, to make
calculations! […] Understanding real nature, we are unable to do.

— Richard Feynman (1983)

Having firmly established ChPT, I will now cover the methods used for calculating its
scattering amplitudes, including the technical development that form the core of my sci-
entific output. For simplicity, the equal-mass limit (see page 56) is assumed throughout
this section.

4.1 Feynman diagrams in ChPT

The standard Feynman diagram approach needs some modification in ChPT, since it pro-
duces an infinite number of interaction vertices. Only a finite number are needed for a
given process at fixed order, though, as determined by Weinberg’s power-counting for-
mula [29]: a diagram with L loops and nk vertices drawn from the O(pk) Lagrangian will
be O(pm), where⁸²

m = 2 + 2L+
∑
k

nk(k − 2) . (4.1)

Thus, LO diagrams are trees constructed using only the LO Lagrangian; NLO diagrams
have one loop or one NLO vertex; NNLO diagrams have two loops, one loop and one
NLO vertex, two NLO vertices, or one NNLO vertex; and so on.⁸³

Vertices with any even number of legs (odd numbers are forbidden by parity) are available
at all orders, with the exception that there is no LO two-leg vertex. The order of legs around
a vertex does not matter; along with eq. (4.1), this makes it straightforward to draw ChPT
Feynman diagrams, some beautiful examples of which are found in paper III. However, the
vertex factors themselves are unwieldy enough that tables of Feynman rules are not made;
even the four-point vertex provided by the LO Lagrangian, eq. (3.26), is messy:

1

6F 2
⟨tatbtctd⟩

[
ϕaϕb∂µϕ

c∂µϕd − 1
2ϕ

a∂µϕ
bϕc∂µϕd

]
+

B

6F 2
⟨tatbtctd(s+ ip)⟩

[
ϕaϕbϕcϕd

]
.

(4.2)

⁸²This is due to Euler’s formula V −E + L = 1 for a connected graph with V vertices, E edges and L loops:
assign O(p−2) to each edge (propagator) and O(pd) to each loop (integral); eq. (4.1) then follows in the specific
case d = 4. Euler’s formula, in turn, is proven by starting from the simplest nonempty graph, consisting of a
single vertex and no edges or loops, and noting that all ways to extend it (adding a new vertex connected by a
new edge, splitting an edge in two with a new vertex, or adding an edge between two existing vertices to form a
loop) leave V − E + L invariant. Note that this graph does not include the external legs of the corresponding
Feynman diagram.

⁸³More informally, the number of N’s in a NkLO diagram is the sum of all N’s in the vertices, plus the number
of loops.
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It is more practical to extract the vertices “on the fly”, expanding the Lagrangian terms to
the desired order as needed using computer algebra. Hans Bijnens and I invariably use
fORM [64] for this due to its suitability for performing relatively straightforward manipu-
lations of enormously complicated expressions.

Being a scalar theory, ChPT has a simple set of i/(p2 −M2
a ) propagators for the various

particles. In the equal-mass limit, where there is a single mass, Mπ, the propagator further
simplifies to a unit matrix in flavor space:

iδab
p2 −M2

π

. (4.3)

When connecting internal and external legs, care must be taken to sum over all distinct
index contractions on each vertex. Furthermore, a derivative ∂µ acting on a leg becomes a
factor of −ipµ, where pµ is the leg momentum flowing into the vertex.

Loop integrals. A general P -propagator one-loop integral has the d-dimensional form

1

i

∫
ddl

(2π)d
(l · r1)(l · r2) · · · (l · rN )(l2)R

D(q1)D(q2) · · ·D(qP )
, N,R ≥ 0 , (4.4)

where ri and qi are fixed momenta and D(q) ≡ (l − q)2 −M2
π ; by shifting l, one of the

qi can be set to zero. Due to the derivative couplings, ChPT typically results in more
complicated numerators (larger N and R) than are usually encountered in renormalizable
theories. Through Passarino–Veltman reduction [65], the numerators can be systemati-
cally expressed in terms of D(qi), ri · rj and things that vanish by symmetry, reducing the
integrals to ones with trivial numerators. With one propagator, this is⁸⁴

A ≡ 1

i

∫
ddl

(2π)d
1

l2 −M2
π

= −Md−2
π

Γ
(
1− d

2

)
(4π)d/2

=M2
π

(κ
ϵ̃
− L

)
+O(ϵ̃) , (4.5)

using ChPT conventions (recall section 3.6). With two propagators, one gets

B(q2) ≡ 1

i

∫
ddl

(2π)d
1

D(0)D(q2)
=
κ

ϵ̃
− κ− L+ J̄(q2) +O(ϵ̃) . (4.6)

See appendix C.3 of paper II for details on the function J̄ . Two-loop order is also well-
explored for ChPT; see, e.g., ref. [22, 27].

In principle, Passarino–Veltman reduction reduces all three-or-more-propagator one-loop
integrals in terms of a few functions, which in turn can be written in terms of J̄(q2i ), but
we find in paper III (originally, ref. [6]) that these reduced expressions are prohibitively
long for the integrals that appear in multi-meson one-loop amplitudes. See appendix A of
paper III for the formulation used instead.

⁸⁴Readers who may be a bit rusty on the details of one-loop calculations are kindly directed to Pe-
skin & Schroeder [14, pp. 249-51 & appendix A.4].
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4.2 Stripped amplitudes

Aπεκδυσάμενοι τὸν παλαιὸν ἄνθρωπον σὺν ταῖς πράξεσιν αὐτοῦ, καὶ ἐνδυσάμενοι
τὸν νέον τὸν ἀνακαινούμενον εἰς ἐπίγνωσιν…
You have stripped off the old self with its practices and have clothed yourselves with
the new self, which is being renewed in knowledge…

— Colossians 3:9-10

Consider any vertex that can be obtained from the ChPT lagrangian. Like in eq. (4.2),
the fields and derivatives can be pulled out, leaving a product of traces containing SU(nf )
generators, connected to the fields via flavor indices a, b, c, . . .. In general, the traces will
also contain the source fields s, p, vµ and aµ, but in the equal-mass limit, these are pro-
portional to the unit matrix and can be pulled out of the traces as well. These traces, the
flavor structure, can be leveraged to significantly simplify the presentation and calculation
of ChPT amplitudes. Much of this is done in analogy with the use of color structures in
perturbative QCD (see Johan Thorén’s thesis [1] for an overview).

Throughout the rest of this section, I will follow papers I and III (and refs. [27, 47], etc.)
in adopting the all-ingoing convention, where n-point amplitudes are expressed with n in-
going and zero outgoing particles. This puts all momenta on the same footing, making
symmetries more manifest and simplifying conservation of momentum to

∑
i pi = 0. It

also gives more freedom in drawing Feynman diagrams, since the direction of time is ir-
relevant. Physically relevant scattering amplitudes are easily obtained from an all-ingoing
amplitude through crossing, as is done in papers IV-V.

Flavor structures. I will now introduce some concepts first used in paper I, although I
will stay closer to the notation of paper III. I denote a trace of generators carrying r flavor
indices bi by

F{r}
(
b1, b2, . . . , br

)
≡
〈
tb1tb2 · · · tbr

〉
, (4.7)

and more generally, I define a flavor structure FR(b1, . . . , bn) by

F{r1,r2,...}
(
b1, . . . , bn

)
≡
〈
tb1tb2 · · · tbr1

〉
F{r2,...}

(
br1+1, . . . , bn

)
, (4.8)

where R ≡ {r1, . . .} is the flavor split; the ri must add up to n, and by convention,
they are sorted in ascending order. For example, F{2,3}(a, b, c, d, e) = ⟨tatb⟩⟨tctdte⟩, and
F{1,2}(a, b, c) = F{1}(a) = 0 due to tracelessness.

Given a permutation σ ∈ Sn that maps i → σ(i), I define the permuted flavor structure
Fσ

R(. . .) by
Fσ

R

(
b1, b2, . . . , bn

)
≡ FR

(
bσ(1), bσ(2), . . . , bσ(n)

)
. (4.9)

Since traces are cyclic and commute,FR(. . .) is invariant when one cycles the indices within
individual traces, or swaps two traces containing the same number of indices. I denote the
group of all such operations by ZR, so named because Z{r} is the cyclic group Zr. ZR is
non-abelian if two ri are equal, and can in general be written as a semi-direct product, as
shown in paper I (see page 101).
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Stripping. After connecting all legs of a NkLO vertex V , it will be a function of the
momenta pi and flavors bi of the legs. Taking the order of the momenta as fixed, the vertex
will be a sum over all ways to contract the flavor indices into the flavor structure,

V
(
p1, b1; p2, b2; . . . ; pn, bn

)
=
∑
R

∑
σ∈Sn/ZR

Fσ
R

(
b1, . . . , bn)Vσ

R(p1, . . . , pn
)
, (4.10)

which defines the purely kinematic object Vσ
R: it consists of whatever factors happen to

multiply Fσ
R. Here, we sum over all flavor splits R imposed by the NkLO Lagrangian (for

LO, this will just be {n}), and the ZR-symmetry of FR ensures we only have to sum over
Sn/ZR rather than Sn. This implies that Vσ

R(p1, . . .) is also ZR-symmetric.⁸⁵

Due to Bose symmetry, the vertex is totally symmetric in its legs, so simultaneous permu-
tations of the bi and pi may be freely applied. By definition [eq. (4.9)],

Fσ
R

(
bρ(1), . . . , bρ(n)

)
= Fσ◦ρ

R

(
b1, . . . , bn

)
, (4.11)

where σ ◦ρ denotes the composition of the permutations ρ and σ. Consequently, the same
holds for the kinematics:

Vσ
R

(
pρ(1), . . . , pρ(n)

)
= Vσρ

R

(
p1, . . . , pn

)
. (4.12)

In particular,

Vσ
R

(
p1, . . . , pn

)
= V id

R

(
pσ(1), . . . , pσ(n)

)
≡ VR

(
pσ(1), . . . , pσ(n)

)
(4.13)

where id(i) = i is the identity permutation. This object VR, called the stripped vertex,
encodes all relevant information about V , since “dressing” it back to a full vertex using
eqs. (4.10) and (4.13) is a trivial operation. It is also called a flavor-ordered vertex, since it
is obtained from the full vertex by keeping those factors that multiply FR(b1, b2, . . . , bn),
the flavor structure whose flavor indices are in order.

Amplitudes. In the equal-mass limit, the ChPT propagator is a unit matrix in flavor space,
so using the Fierz identity, eq. (3.42), any number of vertices connected with any number
of propagators retains the form of eq. (4.10). Thus, the above arguments for V apply also
to equal-mass ChPT scattering amplitudes, so

M
(
p1, b1; p2, b2; . . . ; pn, bn

)
=
∑
R

∑
σ∈Sn/ZR

Fσ
R

(
b1, . . . , bn

)
MR

(
pσ(1), . . . , pσ(n)

)
, (4.14)

whereMR is the stripped amplitude. This is typically a more manageable object than the
full amplitude, with roughly a factor |Sn/ZR| fewer terms; this ranges from n!/2n for
R = {2, 2, . . . , 2} to (n− 1)! for R = {n}.

The general idea described here is not new; in perturbative QCD, it is common to strip
away the color structure, leaving a color-ordered object called the primitive amplitude (see,

⁸⁵As explained in paper III, objects like Vσ
R(. . .) derived from a charge-conjugation-invariant Lagrangian ac-

tually have a larger symmetry, denoted Z+TR
R , which also includes trace-reversal, i.e., reversing the order of the

indices in each trace. For simplicity, I only use ZR here.
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e.g., refs. [66–69]), and similar concepts are found in older literature (e.g., refs. [8, 70])
using the term “duality”. Stripped amplitudes for massless LO ChPT were introduced in
ref. [47] and generalized beyond LO in paper I, although special cases are much older; for
instance, the standard form of the 4-pion ChPT amplitude is

M4π

(
p1, b1; . . . ; p4, b4

)
=
(
⟨tb1tb2tb3tb4⟩+ ⟨tb4tb3tb2tb1⟩

)
B(s, t, u)

+
(
⟨tb1tb3tb4tb2⟩+ ⟨tb2tb4tb3tb1⟩

)
B(t, u, s)

+
(
⟨tb1tb4tb2tb3⟩+ ⟨tb3tb2tb4tb1⟩

)
B(u, s, t)

+ ⟨tb1tb2⟩⟨tb3tb4⟩C(s, t, u) + ⟨tb1tb3⟩⟨tb2tb4⟩C(t, u, s)
+ ⟨tb1tb4⟩⟨tb2tb3⟩C(u, s, t) (4.15)

(compare eq. (III.3.2) and ref. [27]), where s, t, u are the Mandelstam variables⁸⁶

s ≡ (p1 + p2)
2 , t ≡ (p1 + p3)

2 , u ≡ (p1 + p4)
2 ; s+ t+ u = 4M2

π . (4.16)

We can clearly identify the stripped amplitudes as M{4} = B and M{2,2} = C. The
functions B(s, t, u) and C(s, t, u) are known explicitly to NNLO [27], but note that no
diagrammatic calculations are needed to write down the general form of eq. (4.15).

The Cayley–Hamilton theorem, eqs. (3.43) and (3.47), can reduce the number of distinct
flavor splits, and therefore the number of stripped amplitudes. For instance, the nf = 2
version of eq. (4.15), originally due to Weinberg [72], is

M4π

(
p1, b1; . . . ; p4, b4

)
= ⟨tb1tb2⟩⟨tb3tb4⟩A(s, t, u) + ⟨tb1tb3⟩⟨tb2tb4⟩A(t, u, s)
+ ⟨tb1tb4⟩⟨tb2tb3⟩A(u, s, t) , (4.17)

where A(s, t, u) = C(s, t, u) +B(s, t, u) +B(t, u, s)−B(u, s, t). It is of course possible to
reformat this so that there is aM{4} but noM{2,2} instead.

Papers I and III contain many more examples of flavor splits and stripped amplitudes.
Paper I also proves (in appendix B) that the stripped amplitude is unique, as long as nf is
kept variable; however, fixed nf can lead to relations like that seen above.

4.3 Unitarity, analyticity, and all that

[E]ntre deux vérités du domaine réel, le chemin le plus facile et le plus court passe
bien souvent par le domaine complexe.
[B]etween two truths of the real domain, the easiest and shortest path quite often
passes through the complex domain.

— Paul Painlevé (1900)

A large number of facts can be derived about the scattering amplitude without appealing to
perturbation theory, and these can in turn be used as an aid or complement to perturbative

⁸⁶Introduced by Stanley Mandelstam [71] in essentially their modern form. Also commonly called Mandelstam
invariants, reflecting their Lorentz-invariant nature.
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Figure 4: Schematic representation of cuts (red zigzag lines) through 3-to-3 Feynman di-
agrams, employing the optical theorem, eq. (4.19). Shaded blobs represents the
sum of all diagrams with the appropriate number of legs. Odd numbers of legs
are assumed to be forbidden.

calculations. Firstly, due to conservation of probability, the S-matrix must be a unitary
operator, S†S = 1, which implies for the T-matrix that [recall eq. (2.53)]

−i(T − T †) = T †T . (4.18)

Surrounding this by ⟨X| . . . |X⟩ and inserting between T †T the unit matrix in the form of
the sum over intermediate states,

∑
Y

∫
dΦY |Y ⟩⟨Y | = 1, this results in the optical theorem

[recall eq. (2.55)]:

−2i ImM(X → X) =
∑
Y

∫
dΦY M∗(X → Y )M(X → Y ) ∼

∑
Y

σ(X → Y ) , (4.19)

where “∼” omits kinematic details. Only states |Y ⟩ that are kinematically allowed to be
produced on-shell contribute to the right-hand side.

On the diagram level, this is is naturally interpreted in terms of cuts through diagrams,
separating the inital and final state by cutting some internal lines. Whenever the kinematics
permit the cut lines to go on-shell, eq. (4.19) produces a corresponding contribution to the
imaginary part, as shown schematically in fig. 4.

Analyticity. Another fundamental property is that the amplitude, seen as a complex func-
tion of the momenta, is analytic (this easily follows from the properties of Feynman di-
agrams, but holds also non-perturbatively). Let us therefore writeM as a function of s,
the center-of-mass energy squared, while keeping all other kinematic parameters fixed. If
M is real—i.e.,M∗(s) = M(s∗)—in any region of the complex plane, then by analytic
continuation this relation holds everywhere. Thus, for real s and ϵ > 0,

ReM(s+ iϵ) = ReM(s− iϵ) , ImM(s+ iϵ) = − ImM(s− iϵ) , (4.20)

but if s is sufficient to produce some state |Y ⟩, then eq. (4.19) implies that ImM(s) is
nonzero, so ImM(s) is discontinuous across the real line. Consequently, M(s) has a
branch cut, starting at the threshold for producing the lightest state |Y ⟩ and continuing
along the real line.
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s

−t 4M2
π

(a) Branch cuts (red): the s-channel starts at
s = (2Mπ)

2 and continues to the right;
the u-channel starts at u = (2Mπ)

2 (i.e.,
s = −t) and continues to the left.

s

γ

(b) The contour (blue, solid) used in the dis-
persion relation around a point (blue), and
the deformed contour (blue, dotted).

Figure 5: The analytic structure of the 2π → 2π amplitude, shown in the s complex plane
for fixed t (real and positive here, but that is not necessary as long as the cuts do
not overlap). The lightest possible state is that of two pions at rest.

Specifically, the above describes the s-channel cut. There will be an additional cut in each
channel that can be related to the s-channel through crossing symmetry, so for the 2π → 2π
scattering amplitude, there will also be a t-channel and a u-channel cut. This can be seen
directly in eq. (4.15): for instance, if B(s, t, u) has a cut in s, it must also have one in u,
since B(s, t, u) = B(u, t, s) due to Z{4} symmetry. At fixed t, eq. (4.16) relates s and t via
u = 4Mπ − s − t, giving two branch cuts as shown in fig. 5a.⁸⁷ The branch-cut structure
for 3π → 3π and above is of course much more intricate.

Dispersion relations. The analyticity of M allows the use of dispersion relations, which
follow directly from Cauchy’s integral formula,

dkM(s)

dsk
=

k!

2πi

∮
γ

dz
M(s)

(z − s)k+1
. (4.21)

Here, γ is a small circular contour around z = s, inside of whichM(s) must lack singular-
ities. This contour can be deformed as illustrated for 2 → 2 scattering in fig. 5b, hugging
the branch cuts at a distance ϵ → 0 and sending the circular part to infinity; assuming
k is large enough, this portion of the contour does not contribute due to suppression by
1/zk+1. The real part of the cut-hugging contour cancels due to eq. (4.20), but due to the
discontinuity, the imaginary part remains, leaving

dkM(s)

dsk
=
k!

π

∫ ∞

thr.
dz ImM(z + iϵ) +

∑
[crossings] , (4.22)

where “thr.” is the threshold at which the s-channel cut starts, and “crossings” represents
similar contributions from the other cuts, such as the u-channel in fig. 5b.

⁸⁷The one-loop integral function J̄(q2) [recall eq. (4.6)] has a branch cut starting at q2 = (2Mπ)2, so the
general branch-cut structure of M2π is manifest already at one-loop level.
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The dispersion relations allowM(s) to be related to ImM integrated over a completely dif-
ferent kinematic region than the one s is chosen from. In paper III, this is leveraged along
with the optical theorem, which relates ImM to the real, positive quantity σ(2π → 2π), in
order to obtain non-perturbatively valid relations stating that the left-hand side of eq. (4.22)
is positive. Choosing s, t in a region where fixed-order ChPT is accurate, this places con-
straints on the possible values ofM, and therefore on the LECs that appear in it.

Isospin channels. Many things are simplified by decomposing the amplitude into chan-
nels distinguished by some conserved quantity. For example, the two-flavor ChPT used
in papers III-V conserves charge and isospin, so for each total charge, the kπ → kπ am-
plitude can be decomposed over a basis of k-pion states with definite isospin; since pions
have isospin 1, the total isospin ranges from 0 to k. The details can be worked out either
through group theory or by explicitly constructing states; see ref. [27] for a detailed treat-
ment of k = 2, and paper V for one of k = 3. Each isospin channel may have multiple
components, which can further be categorized by how they transform under permutations
of the initial or final pions; for instance, the k = 2 and k = 3 cases decompose as

3⊗ 3 = 1︸︷︷︸
T

⊕ 3︸︷︷︸
A

⊕ 5︸︷︷︸
T

, (4.23)

3⊗ 3⊗ 3 = 1︸︷︷︸
A

⊕ 3︸︷︷︸
T

⊕3⊕ 3︸ ︷︷ ︸
S

⊕5⊕ 5︸ ︷︷ ︸
S

⊕ 7︸︷︷︸
T

, (4.24)

where (I2 + 1) in boldface represents a multiplet of isospin I. The permutation behavior
is indicated on the right-hand side: T stands for “trivial” (totally symmetric in the initial
or final pions), A for “alternating” (totally antisymmetric), and S for the two-dimensional
standard representation of S3; see ref. [73, appendix C].

With nf flavors, the natural generalization is that mesons transform under the adjoint rep-
resentation of SU(nf ), which for nf = 3 gives the familiar meson octet, 8. This generally
results in far more channels, with five or six appearing in the 2-to-2 amplitude used in
paper II; the details are again given in ref. [27]. A 3-to-3 analysis like that in paper V has
not yet been performed for nf > 2.

After decomposing the amplitude over (generalized) isospin channels, crossing the ampli-
tude becomes a simple linear transformation in the space spanned by these channels. This
allows eq. (4.22) to be put in a useful form in paper II.

Factorization and recursion. As a final application of the topics in this section, consider
the single-particle cut in fig. 4. Since the kinematics of a single on-shell particle is entirely
constrained and has smaller s than any multi-particle state, this produces an isolated pole
in M rather than an extended branch cut. Generally, for any tree-level propagator with
momentum P , the amplitude in the vicinity of P 2 =M2

π must go like

M(p1, . . . , pm; k1, . . . , kn) ∼
ML(p1, . . . , pm,+P )MR(k1, . . . , kn,−P )

P 2 −M2
π

, (4.25)

whereML,R are the halves on the left- and right-hand side of the cut, respectively (cor-
responding to the blobs in fig. 4), and pi, ki are the the corresponding momenta, with
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−
∑m

i=1 pi = +
∑n

i=1 ki = P in the all-ingoing convention. ML andMR are valid (m+1)-
and (n+1)-point amplitudes, respectively.

The factorization property, eq. (4.25), can be used directly to express the amplitude also
away from the poles by extending the definition ofML,R to the case where P is off-shell.
There is no unique way of doing this, and there will in general be a remainder that lacks
poles and does not factorize, but it is nevertheless useful—a significant part of the six-point
amplitude in paper III is expressed in terms of the four-point amplitude by consistently
choosing its off-shell form and summing over all ways of distributing the six momenta
across {p1, p2, p3} and {k1, k2, k3}, with each way producing one pole. The non-facorizing
remainder is still complicated [just look at eq. (III.4.2)!], but simpler than the full ampli-
tude.

However, being analytic,M is entirely described by the residues at its poles, and following
eq. (4.25), those residues are simply MLMR. Therefore, it must be possible to recur-
sively state M in terms of lower-point amplitudes, without the need for off-shell forms
or non-factorizing remainders. This is done in Britto–Cachazo–Feng–Witten (BCFW)
recursion [74, 75], where one deforms all momenta qi into qi(z) such that qi(0) is the orig-
inal, un-deformed qi, and each pole is obtained at some z = zi. AssumingM(z) falls off
sufficiently fast as z →∞, Cauchy’s theorem then gives

0 = Res
z=0

M(z)

z
+
∑
i

Res
z=zi

M(z)

z
, (4.26)

where the z = 0 residue is simplyM, and the remaining residues are equal to the right-hand
side of eq. (4.25), times a zi-dependent factor depending on the scheme used for the de-
formation. This can be applied recursively toML,R until one arrives at simple amplitudes
without poles.

A large class of theories, including QCD, are on-shell constructible, meaning that their tree-
level amplitudes are completely determined by the BCFW procedure. Thus, they only
require knowledge of one or a few simple amplitudes—essentially on-shell equivalents of
Feynman rules—and the pattern of poles that can appear. ChPT is not on-shell con-
structible in the conventional sense, though, since its amplitudes do not fall off sufficiently
fast as z →∞. Nevertheless, recursion relations have been found for chiral-limit ChPT [47,
76, 77] by taking advantage of a property of a large class of EFTs, namely the Adler zero [78,
79] or more generally the soft behavior: as any external momentum qi is sent to zero,M
goes to zero as O(|qi|σ), where σ = 1 for ChPT (see ref. [80] for a classification of EFTs in
terms of σ). This allows for enhanced momentum deformations that suppress the z →∞
behavior; were it not for the soft behavior, these would instead cause problems as z → 0.

Recursion is particularly convenient for constructing stripped amplitudes with R = {n},
due to their flavor-ordered property: poles can only appear where P is a sum of consecu-
tively indexed momenta, andML,R will also be stripped, flavor-ordered amplitudes. This
connects intimately with paper I, which generalizes a complementary, non-recursive ap-
proach developed in ref. [47] to easily handle R ̸= {n}; this is described in the next sec-
tion. It is worth mentioning, though, that recursive methods have successfully handled
R = {2, 4} [81] as well as planar-limit one-loop amplitudes [82]; the z → ∞ suppression
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of ref. [77] works at NLO, but (unlike paper I) breaks down at NNLO.

4.4 Diagrammatic flavor-ordering

Well represented, half solved. — Mathematicians’ proverb

In section 4.2, we took the step from stripped vertex to stripped amplitude by noting that
the equal-mass propagator preserves the general structure via the Fierz identity, eq. (3.42),
which I will reproduce here for convenience:

1
τ ⟨Xta⟩⟨Y t

a⟩ = ⟨XY ⟩ − 1
nf
⟨X⟩⟨Y ⟩ , (4.27a)

1
τ ⟨XtaY t

a⟩ = ⟨X⟩⟨Y ⟩ − 1
nf
⟨XY ⟩ . (4.27b)

Recalling that the stripped vertex is defined by being flavor-ordered, i.e., attached to F id
R ,

we note that eq. (4.27) preserves the ordering of the indices inside X and Y . This makes it
possible to carefully connect together a flavor-ordered amplitude from flavor-ordered ver-
tices, obtaining the stripped amplitude without going through the much more unwieldy
and computationally expensive full amplitude. The method of doing so is called diagram-
matic flavor-ordering (DFO), which was introduced in paper I based on the massless LO
case treated in ref. [47], and named and refined in paper III.

DFO uses modified Feynman diagrams, where the order of legs around a vertex is fixed to
reflect the flavor-ordering. Legs are indexed clockwise around the vertex, with leg i having
momentum pi and flavor bi:⁸⁸

1

2 3

4 1

3 4

6

2 5 (4.28)

The starting point is arbitrary due to ZR symmetry. Vertices with multi-trace flavor struc-
tures are drawn in several pieces, separated by a small gap in the middle, so that bi and bj
are in the same trace precisely when legs i and j are in the same piece. Pieces are indexed
individually, starting with the smaller ones:⁸⁹

1

2 3

4 1

2 3

4

5

6 1

2
3

4

5

6

7
8

(4.29)

⁸⁸The red lines and numbers are included for illustration only. The diagram itself is drawn in black.
⁸⁹The graphical form of a vertex should also reflect its power-counting order, but for simplicity, I omit that

here. Two different conventions for indicating orders are used in papers I and III.
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The ordering of same-size pieces is arbitrary due to ZR symmetry. I stress that the gaps
only indicate the flavor structure and do not hinder momentum flow.

Now, consider joining two vertices with an equal-mass propagator, which in flavor space is
just δab . Setting nf →∞ for the moment, eq. (4.27a) merges the flavor structures by directly
joining one trace from each, preserving their ordering: ⟨Xta⟩δab ⟨Y tb⟩ = ⟨XY ⟩. Repeating
this with more vertices, we find that tree diagrams can be indexed just like single vertices,
following the outline of each part in turn, and the result is guaranteed to be flavor-ordered:

1

3

2

4

6

5

6

2

1

3

5

4 (4.30)

For traces that span several vertices, the starting point for the indexing does matter—just
consider which momenta flow through each propagator—so an un-indexed flavor-ordered
diagram represents the sum of all valid ways to index it, divided by a symmetry factor to
account for not all indexings being distinct. Pieces contained in a single vertex are not
summed due to the symmetry of the vertex, so single-vertex diagrams always have a single
indexing and a symmetry factor of 1. The issue of distinct indexings is discussed more in
paper I; some examples of symmetry factors are⁹⁰

→ 1

2
, → 1

2
, → 1

4
. (4.31)

Re-instating nf <∞, we see that the last term in eq. (4.27a) behaves like a propagator that
does not merge the traces. In DFO, this term is represented as a separate propagator, drawn
with a dashed line ( ) and containing the factor of −1/nf . Dashed lines are ignored
when indexing a diagram, keeping to the rule that only contiguous pieces of a diagram (as
they appear graphically) belong to the same trace:

1

3

2

5

4

6

12

5

4

3

7

6

8 (4.32)

These propagators can be interpreted by noting that the U(nf ) version of eq. (4.27) lacks
the −1/nf terms, as can be derived by including the extra generator t0 ≡

√
τ/nf . Thus,

they represent how a SU(nf ) theory is obtained from a U(nf ) ∼= SU(nf )×U(1) theory by

⁹⁰The symmetry factors shown here assume that all vertices are of the same order; different-order vertices can
break diagram symmetries. The diagrams in eq. (4.31) have some historical significance for the development of
DFO. From left to right, they are the simplest diagram to feature a nontrivial symmetry factor, one that breaks
some naïve assumptions about symmetry factors (which would give it a factor of 1/4), and a pathological example
that broke my first attempt at automated diagram generation. Note that the second and third diagrams are at
least N3LO and N4LO, respectively.
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subtracting the contributions of the the U(1) singlet field ϕ0.⁹¹ Therefore, these dashed
propagators are called singlet propagators. The LO interaction ⟨uµuµ⟩ does not couple ϕ0
to ϕa [47], but the LO mass term ⟨χ+⟩ does, as do the higher-order interactions. Thus,
singlets are normally needed at all orders, but only at NNLO and above in the chiral limit.

When forming loops, a propagator might connect two indices in the same trace, in which
case eq. (4.27b) is used. The non-singlet term introduces a flavor split, separating the
“inside” and “outside” of the loop, while the singlet does not. All cases are consistently
covered when indexing diagrams by following their outline and ignoring singlet lines, even
when non-planar diagrams are introduced at NNLO:

4 5

3

1

6

2
1

2

3

45

6

7

8

910

1

2
3

4 (4.33)

Note that empty traces, giving factors of ⟨1⟩ = nf , may appear due to loops or singlets:

3 4

1

2 5

6

nf

3 4

1

2 5

6

nf

nf

1 2

3

5

4

6

8

7
nf

(4.34)

The planar limit, obtained by discarding subleading terms in a large-nf expansion, removes
singlets, non-planar diagrams, and loops that introduce flavor splits rather than empty
traces. Since multi-trace vertices act as counterterms to loops that introduce flavor splits,
they are removed as well. Calculations simplify significantly in the planar limit; see, e.g.,
ref. [82].

That summarizes DFO. Coupled with a simplified version of the computer algebra for
calculating amplitudes and a suitable diagram generator,⁹² it is extremely powerful at tree-
level in the massless limit, which is covered in paper I; its utility is diminished by loops and
masses, which lead to a large number of diagrams, but it speeds up the algebra and clarifies
some structures, as described in paper III. Note that it is entirely reliant on the equal-mass
limit, and breaks down if the propagator is not proportional to a unit matrix.

⁹¹Naïvely, this singlet field would correspond to the η′, but trying to include η′ in ChPT by just not subtracting
the singlet fails due to the axial anomaly. It is possible to include η′ in the limit of infinitely many QCD colors [83]
or using resonance chiral theory [34, 56, 57].

⁹²Paper I describes a DFO diagram generator called fODgE (flavor-Ordered Diagram gEnerator). In connection
with paper III, I developed a version, LODgE, that supports Loops.
Both are available from https://github.com/mssjo/fodge.
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4.5 Kinematics and deorbiting

Kinematics is a simple matter for 4 or fewer particles, but requires more attention in the
larger systems studied throughout this thesis (except in paper II). Here, I describe the sys-
tematic treatment of many-particle kinematics and how it allows amplitudes to be rewritten
in even simpler forms than the stripped amplitude described above.

The kinematics of n spinless particles is described by n momenta {pi}ni=1. These have
nd components in d dimensions, but are not all independent: the on-shellness condition
p2i = m2

i means each momentum has only (d − 1) degrees of freedom, and conservation
eliminates one momentum through

∑
i pi = 0, bringing the total degrees of freedom,Ndof,

down to d(n−1)−n. Furthermore, Lorentz invariance must be taken into account, which
can be done in two ways. Subtracting the dimension of the Lorentz group, consisting of
d− 1 boosts and (d− 1)(d− 2)/2 rotations, results in

Ndof = (d− 1)n− d(d+ 1)

2
, (4.35)

or 3n − 10 in d = 4. Observing instead that there are n(n + 1)/2 ways to form Lorentz-
invariant products pµi pjµ and accounting for on-shellness and conservation of momentum,
which eliminate n products each, gives

Ndof =
n(n− 3)

2
, (4.36)

independent of d.⁹³ These two ways of counting degrees of freedom disagree except at
n = d + 1. When n > d + 1, eq. (4.36) overestimates the number by assuming that all
remaining products are independent, which they are not. When n < d+1, the up to n−1
linearly independent momenta only span a subspace, so only a part of the full Lorentz
group actually applies to them and eq. (4.35) underestimates the number. Thus, eq. (4.36)
applies for n ≤ d+ 1 and eq. (4.35) for n ≥ d+ 1.

Even though eq. (4.35) gives the number of degrees of freedom for all but the lowest n, it
turns out to be less than useful for general treatment of the kinematics, since it is difficult
to give a minimal set of Lorentz-invariant kinematic parameters; a minimal but frame-
dependent set is given for n = 6, d = 4 in paper IV. The number of parameters stated by
eq. (4.36), on the other hand, is easy to work with, and even though they will in general
not be independent, they are useful for purposes such as papers I and III.

Mandelstams. In the spirit of eq. (4.35), kinematical parameters are conveniently ex-
pressed in terms of generalized Mandelstam variables (or Mandelstams for short),

ŝij... ≡ (pi + pj + . . .)2 , (4.37)

which generalize the n = 4 Mandelstam variables, eq. (4.16),

s ≡ ŝ12 = ŝ34 , t ≡ ŝ13 = ŝ24 , u ≡ ŝ14 = ŝ23 , (4.38)
⁹³I ignore other Lorentz-invariant contractions such as ϵµνρσpµi pνj p

ρ
kp

σ
l , which cannot arise from the (non-

anomalous) ChPT Lagrangian.
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which obey s + t + u =
∑

im
2
i , leaving two independent parameters in accordance with

eq. (4.35). Note that Mandelstams are totally symmetric in their indices, and that each can
be represented in two complementary ways, since

(∑
i∈I pi

)2
=
(∑

i ̸∈I pi
)2 for any list of

indices I due to conservation of momentum.

It is not obvious which Mandelstams to use in order to express an amplitude. Reason-
ably, the choice should include the square of any momentum that appears in an on-shell
propagator—this is s, t and u for 4-point amplitudes in theories with three-particle vertices,
such as QED and QCD—but more subtle conditions arise when considering deorbiting,
which I will cover next.

Deorbiting. Consider an expression X that is invariant under a group G (in practice,
X =MR and G = ZR). There always exists some expression X ′ such that

X = GX ′ ≡
∑
g∈G

gX ′ , (4.39)

since this is trivially true for X ′ = X/|G|, where |G| is the number of distinct g ∈ G. One
can often find an X ′ that is much shorter than X—this was done by hand for the massless
LO ChPT amplitude with n ≤ 10 in ref. [47], and n ≤ 12 in paper I—but in general, it is
not feasible to do this without a more systematic method. Such a method, called deorbiting
for reasons that will be explained shortly, was developed in paper III and used to condense
the main results. Here, I will give a more comprehensive description and a novel proof of
its optimality.

First, I must specify what I mean by “shorter expression”, since the same expression can
be written in a multitude of ways. We must assume that we have chosen a set T of terms,
which can consist of masses, LECs, Mandelstams, loop integrals, propagators, and all pos-
sible products thereof. Importantly, no term may be a linear combination of other terms.
Having chosen T , any expressionX that can be written in terms of t ∈ T will, after all prod-
ucts have been expanded out, take the well-defined form of a vector in the space spanned
by T . The length of the expression, |X |, is then simply the number of nonzero components
in this vector, and serves as a proxy for the actual length of the printed expression.

Now, we must make an important assumption: that our choice of terms is closed under
G. By this, I mean that for any t ∈ T and g ∈ G, we have gt = λ(g, t)t′ where t′ ∈ T
and λ(g, t) ∈ C. This is not true in general; for instance, {s, t} is closed under Z{2,2} and
{s, u} under Z{4}, but not vice versa: t goes to u = −s − t (neglecting masses) under
(p3 ↔ p4) ∈ Z{2,2}. This assumption of closedness is crucial in order for deorbiting to
work, as will be made clear below.

Let me then introduce the orbit of some term t under G:

G[t] ≡
{

gt

λ(g, t)

∣∣∣∣ g ∈ G} ⊆ T . (4.40)

By closedness, G[u] = G[t] for any u ∈ G[t]. Therefore, orbits do not overlap, and T
decomposes into a union of disjoint orbits. Since all terms are linearly independent, each
orbit spans a separate linear subspace, so X splits into a sum of vectors, one for each such
subspace, and these do not mix under G.
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This brings us to deorbiting, which, given X , produces an expression X̃ such that

GX̃ = X , and |X̃ | ≤ |X ′| for all X ′ with GX ′ = X . (4.41)

The procedure is simple:
1. Write down X with the terms ordered in an arbitrary yet consistent fashion.⁹⁴ Let
X̃ = 0 initially.

2. Select the first term ρtt in X , where t ∈ T and ρt ̸= 0. Compute its orbit multiplicity
µt ≡ |G|/|G[t]|, which counts the number of distinct g ∈ G that give the same gt.

3. Modify the expressions:

X̃ → X̃ + ρtt/µt , X → X − ρt(Gt)/µt , (4.42)

which removes fromX the term ρtt and all other terms in the same orbit; meanwhile,
the same terms become part of GX̃ . Now, X projected onto the subspace spanned
by G[t] is zero.

4. Repeat from 2 until X = 0; we will always reach this, since we remove X from one
subspace each iteration while leaving the others unchanged. Now X̃ has the property
eq. (4.41).

Effectively, we collapse each orbit contained in X into a single representative and put it in
X̃ , which is why the method is called “deorbiting”. It is clear that GX̃ = X , but to see
that X̃ is the shortest such expression, assume there is some X ′ with |X ′| < |X̃ |. Then
there must be at least one term t ∈ X̃ that is not present in X ′, but then GX ′ must have
zero projection onto the subspace spanned by G[t]. But X has nonzero projection onto this
subspace, or else it would not have contained ρtt, so GX ′ ̸= X . This completes the proof.

Deorbiting is fast and systematic, and is optimal within its scope, but there are a few
caveats. As mentioned above, all products must be expanded out, so deorbiting cannot
account for factoring—the four-term expression (a + b)(c + d)2 must be treated as the
six-term expression ac2+2acd+ad2+ bc2+2bcd+ bd2, which might throw off the notion
of “shortest expression”. This is the case in paper III, where a seemingly better choice
of G (Z+TR

R instead of ZR) resulted in longer expressions after deorbiting and factoring.
Furthermore, there is no guarantee that there is no different choice of T that allows even
shorter expressions.

The most restrictive caveat, however, is that deorbiting requires X to be closed under G.
To see that this requirement is indeed necessary, consider the case where gtmay be a linear
combination of multiple terms. Then the eq. (4.40) fails, and we must resort to a definition
like G[t] ≡ {gt | g ∈ G}, which is not necessarily a subset of T . Then the separation into
subspaces breaks down, and everything that follows from it.

As a concrete example of the failure not just of the proof of deorbiting, but also of its appli-
cability (and that of any straightforward improvement of it), consider a simple alternating

⁹⁴One way is to, for whatever textual representation one chooses, sort the terms alphabetically. In practice, we
implement deorbiting using fORM [64], so we use fORM’s internal ordering of the terms.
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group G = {1, g} with g2 = 1 and four terms T = {s, t, u, v} that transform like

gs =
t+ u√

2
, gt =

s+ v√
2
, gu =

s− v√
2
, gv =

t− u√
2
. (4.43)

The subspaces they span are no longer separate: G[t] is contained in the span of G[s]∪G[v].
And even with a simple expression like X = Gv, where X̃ = v obviously satisfies eq. (4.41),
how do we find it? After all, X = (t − u)/

√
2 + v (assuming alphabetic ordering), and if

we apply the algorithm above starting at t, it never terminates. One can imagine trying
different starting terms one by one until something works, but that is foiled by even simple
linear combinations like α(Gt)+β(Gv), where the coefficient in front of t will not be equal
to α. Thus, something radically different (and unknown to me) would be needed to achieve
deorbiting-like results without the assumption of closedness.

Closed bases. Let me then conclude this section with a consideration of closedness. For
R = {n}, the set of all Mandelstams with n/2 or fewer consecutive indices (e.g., ŝ123, ŝ456
and ŝn12 but not ŝ135 or ŝ12···n) forms a basis (assuming eq. (4.35) holds) that is closed
under ZR. For n = 4, this basis is {s, u}.

It remains an open question how to find a closed Mandelstam basis for arbitrary ZR, or
if one even exists. Appendix C of paper III presents closed bases for all ZR at n = 6 (as
does appendix D of paper I, but with errors). Using brute-force searches, I have also found
closed bases (not published) for Z{2,6}, Z{2,2,4} and Z{2,2,3,3}, among others, but not for,
e.g., Z{2,3,3}. No basis is closed under Sn = Z{1,...,1} [both {s, t, u} for n = 4 and the
analogous set {ŝijk | i < j < k} for n = 6 have one more element than the Ndof given
by eq. (4.35), and the gap grows with n], so unless some relevant property can be found
that distinguishes those ZR for which R does not contain 1, a general proof of existence is
out of the question. For Z{2,2,2,2} and many n > 8 cases, Ndof is smaller than the number
of distinct squared momenta that can appear in propagators; this does not preclude the
existence of a closed basis, but makes it less convenient.

In conclusion, the kinematic situation is trivial for n = 4 and essentially solved for n = 6,
while there are unsolved issues for n ≥ 8. However, as papers III-V show, plenty of inter-
esting amplitude work remains for n = 6.

73



5 The lattice and its ChPT connections

In a universe that is all gradations of matter, from gross to fine to finer, so that we
end up with everything we are composed of in a lattice, a grid, a mesh, a mist,
where particles or movements so small we cannot observe them are held in a strict
and accurate web, that is nevertheless nonexistent to the eyes we use for ordinary
living…

— Doris Lessing, from “Canopus in Argos” (1979-1983)

ChPT is a fine framework for low-energy QCD, and the bulk of this thesis rests on its
shoulders. However, there is another one, which is perhaps even more powerful and which
lurks in the background of papers I-III before approaching center stage in papers IV and V:
lattice QCD. In a nutshell, lattice QCD is simply the QCD version of a basic idea that oc-
curs all over physics: when some system cannot be solved exactly and cannot be reasonably
approximated by something that can (e.g., through perturbation theory), formulate a dis-
crete version of it and simulate it numerically on a computer. This is easier said than done,
of course; here, I will only give a rather shallow introduction of lattice QCD before turning
to the aspects most relevant to papers IV-V.

Lattice QCD was first proposed by Wilson in 1974 [84], shortly after QCD was shown to
be a viable theory for the strong interaction.⁹⁵ It took some theoretical and algorithmic
developments before actual computations could be made, with initial breakthroughs in
1979 by Creutz and others: first a minimalistic proof-of-concept gauge theory [87] and then
something resembling QCD [88].⁹⁶ Even the earliest results were qualitatively successful in
explaining hard-to-study phenomena such as confinement, and quantitatively reasonable
lattice measurements of hadron masses were achieved in 1981 [89, 90], but for a long time,
insufficiently sophisticated methods and computers meant lattice measurements were less
precise and reliable than those performed through experiments. In recent years, however,
lattice QCD has begun to be consistently competitive with experimental measurements
over an ever-wider range of observables (see, for instance, the recent measurement of the
muon anomalous magnetic moment [91]). Much of the state of the art is covered in the
FLAG review [92].

5.1 Overview of Lattice QCD

Here, I will quickly summarize the basics of lattice QCD, which is more comprehensively
covered in notes such as those of Gupta [93] and Hoelbling [94]. Like so much else, lattice
QCD has as its central goal to compute expectation values of observables Ô, for which the

⁹⁵Although Wilson’s paper is recognized as seminal, similar ideas were arrived at independently by others. See
ref. [85] for a comprehensive history of lattice QCD, as well as Wilson’s own account [86].

⁹⁶In particular, ref. [88] remains a very good read: it gives a clear summary of the theory, and then a detailed
description of lattice simulations that are simple enough to easily reproduce on a modern laptop, yet sufficiently
sophisticated to demonstrate confinement.
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path-integral formalism is adopted (recall section 2.3):

⟨0|Ô|0⟩ = 1

Z

∫
DGµDq̄Dq Ô exp

[
i
∫
d4x LQCD

]
. (5.1)

(I omit quark flavors for simplicity.) To make this integral computationally feasible, we
discretize space into a four-dimensional grid (the eponymous lattice) with spacing a, and
confine it to a finite volume, typically a hypercube of side L but sometimes with a longer
time dimension. To avoid boundary effects, periodic boundary conditions are typically
imposed. If everything is done correctly, the discretized result will be a good approximation
of the continuum limit a→ 0.

The finite lattice spacing automatically provides an ultraviolet (UV) cutoff, and the finite
volume an infrared (IR) cutoff. Imposing a lattice breaks Lorentz invariance, but that
is unavoidable. Additionally, a provides a unit in terms of which all other dimensionful
quantities can be measured; this is called lattice units.

The fields must be replaced by discretized versions obtained by averaging over the lattice
cells, the details of which I omit here. The discretized (anti)quark fields have the same
properties as in the continuum, but live only on the lattice points. For gauge invariance,
the gluon field Gµ must be discretized in the same way as ∂µ, which becomes a finite
difference operator between neighboring lattice points. Thus, discretized gluons live on
the links joining neighboring lattice points, i.e.,

Gµ(x) = U(x, x+ aµ̂) = U†(x+ aµ̂, x) ∈ SU(3) , (5.2)

borrowing notation from the introduction to gauge theory on pages 19 and 20. With
the transformation properties of eq. (2.22), the discretized Lagrangian becomes gauge-
invariant. Gauge-invariant objects also include operators like

q̄(x)Gµ(x)q(x+ aµ̂) and Pµν(x) ≡
〈
Gµ(x)Gν(x+ aµ̂)G†

µ(x+ aν̂)G†
ν(x)

〉
, (5.3)

or in general any chain of gluons that is either terminated by a q̄q pair or forms a closed loop.
Ordinary loops are called Wilson loops, with the plaquette Pµν being the simplest example,
while loops that wrap around the periodic boundary conditions are called Polyakov loops;
see fig. 6.

Consider now the QCD Lagrangian in the form

LQCD = GµνG
µν + q̄F q , F ≡ iγµ[∂µ + gGµ]−m, (5.4)

which makes it manifest that the q̄q integral is just a Gaussian integral, leaving⁹⁷

⟨0|Ô|0⟩ = 1

Z

∫
DGµDq̄Dq Ô det(F ) exp

[
i
∫
d4x GµνG

µν
]
. (5.5)

Despite this simplification, the extremely non-local det(F ), which depends on all lattice
points simultaneously, complicates further progress. A simple solution called quenching

⁹⁷This works also in the continuum (see, e.g., Peskin & Schroeder [14, chapter 9] for an introduction) but is
significantly less subtle on the lattice: due to the finite number of degrees of freedom, F is just a (potentially very
large) finite matrix that depends of Gµ. Note that some manipulation will be needed first if Ô contains q̄q.
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µ̂

ν̂

Figure 6: Examples of gauge-invariant operators on a two-dimensional lattice, with
(anti)quarks represented as dots and links (gluons) as directed line segments.
From left to right: q̄Gµq, a more complicated q̄ . . . q chain, a plaquette Pµν , a
more complicated Wilson loop, and part of a Polyakov loop wrapping around in
the ν̂ direction.

is to take det(F ) to be constant, making the quarks non-dynamic. More sophisticated
approaches are frustrated by the Nielsen–Ninomiya no-go theorem [95], which states that
any way of putting fermions on a lattice will have at least one of the following undesirable
properties:

1. the incorrect continuum limit, 2. a non-local fermion operator,
3. violation of chiral symmetry, 4. spurious extra fermion modes.

The last two are survivable if handled correctly, as is done by the several different methods
used in modern lattice QCD; I will not cover them here.

Assuming the quarks are taken care of some way or other, the gluon integral remains chal-
lenging; as remarked by Creutz [96, sec. 8], even tiny lattices like those he used in ref. [88]
would take much longer than the age of the Universe to integrate over naïvely, and fur-
thermore, the complex exponential eiS causes oscillations that would be numerically hard
even with few degrees of freedom. The solution is to perform a Wick rotation, t → it,
so that eiS becomes the more well-behaved e−S . This prevents the lattice from directly
accessing real-time physics, but it is a good trade-off nonetheless: it still allows masses and
may other things to be measured, and it means that

1

Z

∫
DGµDq̄Dq Ô e−S (5.6)

has exactly the same form as a correlation function in thermodynamics, with S playing the
role of βE. Thus, the Wick rotation puts lattice QCD in a class of numerical problems
that also include the Ising model and its variations, and which are amenable to Monte
Carlo integration: the integral is approximated by an average over a set of configurations
of the gluon field randomly drawn from the probability distribution proportional to e−S .
Such a set is straightforward to obtain by means such as the Metropolis algorithm, although
obtaining a sufficiently large set of configurations on a sufficiently large lattice is extremely
computationally intensive.

The computational difficulty tends to rise dramatically the lighter the lightest stable degree
of freedom is (typically, the pion), and while calculations using the physical pion mass (i.e.,
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the real-world value) are now commonly done, they remain something of a luxury; it is
often easier to perform a series of calculations with heavier masses and then extrapolate
to the physical one. This is one of many places where ChPT synergizes with the lattice:
relating a lattice result to one calculated in ChPT, where Mπ is just a parameter, gives a
more reliable connection to the physical mass than that provided by fitting a curve to the
data. In the context of this thesis, this forms a central part of papers IV-V, along with the
topic of the following sections.

5.2 The finite-volume quantization condition

This area is the portal between lattice QCD and my ChPT work, and forms the background
for papers IV and V. Interestingly, it is a variant of the system that is often used as a “Hello,
world!” calculation in introductory quantum physics courses: the particle in a box. Here,
the box is a lattice of side L, assumed to be fine enough that discretization effects are of no
relevance to the analysis, and it contains two or more stable hadrons. (With electroweak
interactions are turned off, the pions, kaons, nucleons, Σ, Λ and Ξ are stable.) In the
infinite-volume (L → ∞) limit, the ground-state energy of such a system will simply be
the sum of the masses of the particles, but the finite volume will induce a shift in the
ground-state energy and give rise to a discrete spectrum of excited states.

The key idea here is that this finite-volume n-particle spectrum is related to the elastic
n-to-n scattering amplitude in the infinite volume. The simplest case, namely the ground-
state energy E0(L) for two identical particles, was derived long before the establishment of
lattice QCD [97]:

E0(L) = 2M +
4πaππ
(2πL)3

+O(L−4) , (5.7)

whereM is the particle mass and a the scattering length, related to the elastic 2-to-2 scatter-
ing cross-section in the limit of zero momentum transfer through 4πa2ππ = limq→0 σ(q

2).

Lüscher [98–100] gave a more general formula for the entire two-particle spectrum at all
orders inL, the finite-volume quantization condition, which has subsequently been extended
to a large number of more general cases; see ref. [101] for a comprehensive review, and
ref. [102] for one focusing on cases closer to papers IV-V. Importantly, finite-volume spectra
can be measured on the lattice, while the inputs to quantization conditions are infinite-
volume amplitudes that can be calculated using continuum theories like ChPT, granted
that they cover the same physical regime as the lattice measurements.

I will now give a greatly simplified derivation of Lüscher’s formula, in the case of a theory
where all particles have the same mass M , based mostly on the more thorough one given
in ref. [102, sec. 2.1.3]. Let us first considerM2, the elastic 2-to-2 scattering amplitude. In
the center-of-momentum (CM) frame, it depends only on the total energy E∗ (in general,
a star indicates a quantity taken in the CM frame) and the angles between the external
momenta, which can be decomposed over spherical harmonics:

M2 =
∑

ℓ′m′,ℓm

4πY ∗
ℓ′m′(p̂

′∗)M2(E
∗)ℓ′m′,ℓmYℓm(p̂∗) , (5.8)
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Here, ±p∗ and ±p′∗ are the in- and outgoing momenta respectively, which are back-to-
back in the CM frame. In the following, everything will be decomposed in a similar way,
and I will leave the ℓm indices implicit.

Now, considerM2 to be computed using Feynman diagrams, to all orders in perturbation
theory, and letM2,L be the same diagrams evaluated in the finite volume. M2,L remains
physically valid, and its poles will give the finite-volume spectrum, so the goal here is to
express the pole positions ofM2,L in terms ofM2.

Since all finite-volume momenta kµ are constrained by the periodic boundary conditions
to kµ = 1

2πLn
µ, where nµ is a vector of integers, all loop integrals inM2 will be discrete

sums in M2,L. For continuous integrands, the Poisson integration formula shows that
the sum and integrand differ only by exponentially suppressed terms, O(e−ML), which I
discard throughout this derivation.⁹⁸ Thus, the non-suppressed finite-volume effects can
only come from singular integrands, i.e., loops containing propagators that can go on-shell.
Assuming a center-of-mass energy of 2M ≤ E∗ < 4M , so that no more than two particles
can simultaneously go on-shell (even-to-odd transitions are assumed to be forbidden), we
can therefore express either amplitude diagramatically as

M2(,L) ≡ = . . . = + , (5.9)

where represents the amplitude and represents a Bethe–Salpeter (BS) kernel, B2, de-
fined as the sum of all 2-to-2 diagrams (including no-scattering diagrams) that have no
two-particle cuts. In other words, no propagator inside a BS kernel can go on-shell when
2M ≤ E∗ < 4M , so its loop integrands are free of singularities. By the arguments above,
all integrals involved in calculating the BS kernels can be ignored; only the two-particle
loops connecting the kernels have singular integrands and give rise to differences between
M2 andM2,L that are not O(e−ML).

In the last equality of eq. (5.9), I have rephrased it as a recursive relation; symbolically,

M2 = B2 +B2 ⊗IM2 , M2,L = B2 +B2 ⊗SM2,L , (5.10)

where ⊗I and ⊗S represent the integral or sum, respectively, over the two-particle loop.
(Bear in mind that all products involve contraction of the ℓm indices.) The sum-integral

⁹⁸The Poisson integration formula states that
∑

k∈Zd f(k) =
∑

x∈Zd f̃(x) for any continuous function f
with Fourier transform f̃ , where Zd is a d-dimensional lattice of integer points. The Fourier transform involves
an integral over an exponential e−2πix·k, which after Wick rotation is dominated by a falling real exponential;
only the x = 0 term is unaffected. Describing position and momentum coordinates as multiples of L and M
and normalizing appropriately, we thus obtain the well-known formula

1

L3

∑
k

f(k) =

∫
d3k

(2π)3
f(k) +O(e−ML) .
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difference can be expressed in terms of some F iϵ
2 ,⁹⁹ which is a function of L and the kine-

matics, but (importantly) does not depend on the field content of the theory, and fixes all
momenta connected to it on-shell (see refs. [102, 104] for derivations of the latter fact):

B2 ⊗SM2,L = B2 ⊗IM2,L +B2F
iϵ
2 M2,L , (5.11)

We can now insert eq. (5.11) into eq. (5.10) and then eq. (5.10) into itself,

M2,L = B2 +B2[⊗I + F iϵ
2 ]M2,L =

∞∑
a=0

B2

(
[⊗I + F iϵ

2 ]B2

)a
=

∞∑
a=0

( ∞∑
b=0

B2[⊗IB2]
b

)(
F iϵ
2

∞∑
b=0

B2[⊗IB2]
b

)a
, (5.12)

where we identify the two b-sums asM2. This leaves a geometric series that can be summed,
giving

M2,L =M2

∞∑
a=0

[F iϵ
2 M2]

a =M2

[
1− F iϵ

2 M2

]−1
. (5.13)

The poles ofM2,L—that is, the finite-volume spectrum—are obtained when [1−F iϵ
2 M2]

is singular. This leads to Lüscher’s quantization condition:

det
[
F iϵ
2 (E,P , L) +M−1

2 (E∗)
]
= 0 , (5.14)

with the determinant taken over the ℓm indices. Note that F iϵ
2 , unlikeM2, is not Lorentz

invariant, so it also depends on the total three-momentum, P .

The above form is somewhat problematic, since M2 possesses branch cuts. However, it
can be shown based on unitarity that, above threshold,

M2(E
∗)−1 = K2(E

∗)−1 − iq∗

16πE∗ , (5.15)

where the K-matrix K2 is real and lacks branch cuts, and q∗ =
√

1
4E

∗2 −M2 is the magni-
tude of the external momenta in the CM frame. This last factor can be absorbed into F iϵ

2 ,
yielding another cut-free quantity called F2, and giving the final form of the two-particle
quantization condition:

det
[
F−1
2 (E,P , L) +K2(E

∗)
]
= 0 . (5.16)

5.3 Three-particle quantization and the K-matrix

Equation (5.16) has a direct generalization as the three-particle quantization condition,

det
[
F−1
3 (E,P , L) +K3(E

∗)
]
= 0 . (5.17)

⁹⁹The “iϵ” refers to the regulator found in the Feynman propagator. The explicit form of F iϵ
2 is stated in

ref. [102, eq. (26)], but is not particularly illuminating for the purposes of the derivation. Reference [103] contains
(using a simpler theory) an explicit calculation of the ground-state energy shift, and therefore deals with sum-
integral differences explicitly, which can be helpful for building an intuition.
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However, the structures of F3 and K3 are vastly more complicated than those of F2 and
K2. There are several formalisms in use for defining and evaluating the three-particle quan-
tization condition, the main ones being relativistic field theory (RFT) [105, 106], nonre-
leativistic field theory (NRFT) [107, 108] and finite-volume unitarity (FVU) [109, 110].
Papers IV-V use only RFT, and I will do the same here; see ref. [102, sec. 3] for a RFT-
centric overview of NRFT and FVU.

Importantly, the three-particle K-matrix is (unlike the amplitude) a smooth function free
from poles and cuts; to signify this, it is written Kdf,3 for “divergence-free”. This makes it
feasible to extract it from finite-volume spectra measured on the lattice, and on the practical
side, the divergence-free condition provides guidance in the calculation of Kdf,3 performed
in papers IV-V. The derivation of F3 and Kdf,3 is unfortunately too complicated for me to
describe here; see ref. [102, sec. 2.2] for a summary of the full derivation [105, 106]. The
conceptual approach is similar to that in section 5.2, but involves both 2-to-2 and 3-to-3
BS kernels. Unavoidably, F3 depends on the 2-to-2 (but not 3-to-3) amplitude, unlike F2

which is a purely geometric quantity. Likewise, the relation betweenM3 and Kdf,3 is not
an algebraic relationship like eq. (5.15), but is an integral equation.

As shown in paper IV, theM3-Kdf,3 relation simplifies when all quantities are restricted
to NLO in the ChPT power counting. This allows Kdf,3 to be calculated by subtracting
fromM3 a small number of expressions, which depend onM2 and cancel the different
divergences of M3. This procedure is well described in sections 2.2 to 2.5 of paper IV,
and I will avoid repeating myself here; papers VIII and IX contain brief summaries of the
calculation.

Let me instead conclude by mentioning the main bigger-picture motivation behind pa-
pers IV-V: the study of hadron resonances. Unlike light pseudoscalar mesons, which are
stable in the absence of weak interactions, resonances retain their extremely large decay
widths on the lattice. Therefore, like in ordinary particle phenomenology, they are neces-
sarily studied in terms of their decay products. Scattering theory assumes these to be well-
separated in space; the lattice equivalent requires determining the volume-dependence of
the finite-volume spectrum so that the L→∞ limit can be reconstructed.

Several of the most interesting resonances have prominent three-particle decay channels,
so accurate lattice simulations thereof require a reliable three-particle finite-volume for-
malism. These resonances include the relatively narrow vector meson ω(782) seen in sec-
tion 2.1, the broad axial-vector meson a1(1260), and the Roper resonance N(1440) [111], a
doubly excited nucleon state that is (somewhat puzzlingly) lighter than the singly excited
state, N(1535). The 3π decay modes of ω(782) and a1(1260) are in principle covered by
paper V, although the results of that paper only apply to energies lower than 5Mπ, whereas
the ππN modes (N being any nucleon) of the Roper resonance lie significantly further
down the road. Nevertheless, the work I present in papers IV-V is an important step to-
wards gaining the ability to understand these states from first principles.
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6 Summary and outlook

We do not yet know how to get correct answers, but we begin to understand which
are the right questions to ask.

— Giorgio Parisi (1977)

This concludes the introduction to this thesis. I hope that by now, the connection be-
tween my papers and the wider context has been clarified a little. Paper IV and its sequel,
paper V, unites the RFT formalism of ref. [105, 106] with the results of paper III and its
predecessor, ref. [6], to produce results that are applicable to the study of three-pion sys-
tems, and therefore interesting resonances, in lattice QCD. Paper III, in turn, extends the
six-pion amplitude [6] in the style of earlier four-meson work [27] while incorporating
methods from paper I (itself stemming from amplitude methods via ref. [47]) to alleviate
the difficulties of multi-meson scattering. Lastly, paper II stands a bit to the side, but has
numerous underlying connections with the other work, as seen at various points through-
out the introduction.

None of the topics covered by the papers are by any means done. Karol Kampf and col-
laborators [82] have continued to develop methods adjacent to DFO, and I maintain a
sporadic exchange of ideas with them. There have been numerous recent developments
(e.g., refs. [112–114]) in the area of paper II, with varying scopes and methods, some of
which could be combined with those of the paper for further improvements. As men-
tioned at the end of the previous section, papers IV and V represent two steps on a ladder
with may rungs left, with the inclusion of kaons, η and nucleons being possible extensions.
Most of these have a corresponding extension of paper III as a prerequisite, and there is
of course the separate possibility to push the amplitude to NNLO or to even more exter-
nal particles. While the phenomenological relevance of an eight-meson amplitude is far
smaller than that of a six-meson one, the tour-de-force calculation it would require would
be interesting in itself.

I have learned incredibly much during the writing of this thesis and the papers it contains,
and along the way I have gathered many useful tools—DFO, linear constraints, deorbiting,
the numerous techniques in papers IV-V, and so on—that I am sure will find purchase on
many problems beyond those they were originally constructed for. Following the conclu-
sion of this Ph.D., I have every intent to carry this toolbox along to help me with the new,
exciting challenges I will face.
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Overview of publications

Look on my works, ye mighty, and despair!

— Percy Bysshe Shelley, from “Ozymandias” (1818)

In the field of theoretical particle physics, all authors are listed alphabetically, rather than
in order of the level of contribution. Below follows a short description of each of the
publications included in this thesis and my contribution to each one.

Paper I
Higher-order tree-level amplitudes in the nonlinear sigma model

Johan Bijnens, Karol Kampf, Mattias Sjö
JHEP 11 074 (2019) [Erratum: JHEP 03, 066 (2021)]

In this paper, we derive the method now called DFO (see section 4.4 in the introduction),
generalizing earlier leading-order work by Kampf, Novotný and Trnka (ref. [36] in the pa-
per). My innovations included the handling of higher-order vertices, split flavor structures
and singlets; the associated graphical notation; the automatic generation of flavor-ordered
diagrams; and an early form of closed Mandelstam bases and deorbiting (see section 4.5
of the introduction), which was not fully developed until paper III. We apply it to the
nonlinear sigma model, i.e., ChPT in the chiral limit.

The paper is based on my master thesis; in comparison, the paper contains a more ma-
ture understanding of the method, a greatly expanded number of amplitudes calculated
with it, and a completely reworked method for diagram generation. With the supervision
and feedback of Hans and Karol, I developed the methods, wrote the code, performed all
analyses, and wrote the entire manuscript except for the introduction, which was mainly
written by them.

Paper II
NNLO positivity bounds on chiral perturbation theory for a general number of flavours

Benjamin Alvarez, Johan Bijnens, Mattias Sjö
JHEP 03 159 (2022)

In this paper, we derive positivity bounds on the LECs based on the principles of uni-
tarity, analyticity, crossing symmetry and perturbativity, extending the existing methods
and creating framework of linear constraints to formalize the management of large sets of
bounds.

It is a substantial reworking and expansion of Benjamin’s master thesis, which in turn
extends the method of Manohar & Mateu (ref. [13] in the paper). I revised the methods to
remove further limitations, extended the scope to NNLO, and introduced above-threshold
integration, based on similar work by Wang, Zhou and collaborators (refs. [19-20] in the
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paper). With Benjamin, I worked on what eventually became appendix B, which in turn
led to new insights and better ways to obtain, view and interpret the results. The work went
on throughout the brunt of the COVID-19 pandemic, which contributed to its extreme
length and level of detail.

The project was suggested by Hans. I wrote all code, performed all analyses and pro-
duced all figures, with input and feedback from Hans. The definitions and proofs in sec-
tion 4 and appendix B were worked out in collaboration with Benjamin. I wrote the entire
manuscript, with thorough feedback from Hans and Benjamin. Paper VII provides a sum-
mary of the work.

Paper III
Six-meson amplitude in QCD-like theories

Johan Bijnens, Tomáš Husek, Mattias Sjö
Phys. Rev. D 106 (2022) 054021

In this paper, we compute the six-meson scattering amplitude at one-loop order in ChPT.
We use nf flavors and a wider set of symmetry breaking patterns beyond that associated
with low-energy QCD, following earlier four-meson work by Hans and Jie Lu (ref. [30] in
the paper). It is a continuation of Hans and Tomáš’ previous work (ref. [19] in the paper),
which covers other ChPT variants including that corresponding to two-flavor low-energy
QCD.

Hans and Tomáš independently calculated the amplitude. I further developed techniques
used in paper I (see sections 4.4 and 4.5 in the introduction), and while their utility for
direct calculations was lesser than expected, they proved useful for simplifying and eluci-
dating the results, bringing it to the compact form seen in the paper. I also assisted Tomáš
with doing the numerics. The manuscript was mainly written in close collaboration be-
tween me and Tomáš, with further contributions and thorough feedback from Hans.

Paper IV
The isospin-3 three-particle K-matrix at NLO in ChPT

Jorge Baeza-Ballesteros, Johan Bijnens, Tomáš Husek, Fernando Romero-López, Stephen
Sharpe, Mattias Sjö
JHEP 05 187 (2023)

In this paper, we use the amplitude from paper III to derive the three-particle K-matrix (see
section 5.3 in the introduction). We do this for three pions at maximum isospin [compare
eq. (4.24) in the introduction], which is the simplest such case, and the only one for which
good lattice data was available.

The project was suggested by Hans. Steve, Fernando and Jorge, experts on the K-matrix
rather than ChPT, independently begun work on it; we later formed a collaboration.

My main concern was the so-called bull’s head subtraction, for which I developed the

90



methods of section 4.3.4 and appendix E; I was involved to a lesser degree in the comple-
mentary methods of sections 4.3.1-2 and 4.3.3, which were mainly Hans’ and Tomáš’ in-
ventions, respectively. I also performed the cutoff-dependence analysis behind appendix A
and produced many of the figures. The manuscript was written in collaboration, with me
and Tomáš taking on somewhat editorial roles. Papers VIII and IX contain summaries of
the work, including some preliminary parts of paper V.

Paper V
The three-particle K-matrix at NLO in ChPT

Jorge Baeza-Ballesteros, Johan Bijnens, Tomáš Husek, Fernando Romero-López, Stephen
Sharpe, Mattias Sjö
In preparation for submission to JHEP

In this paper, we extend the results of paper IV to all isospin channels, in anticipation of
future lattice results. The overall method was derived earlier by Steve, Fernando and their
collaborator Maxwell Hansen (ref. [20] in the paper); Steve and I determined the remaining
terms in the threshold expansion that had not been derived there. I again mainly focused
on the bull’s head subtraction and the cutoff-dependence analysis of appendix A.

Like paper IV, the manuscript was written in collaboration. I took on a driving role in
structuring it and establishing consistent conventions, and in the presentation of the results.
As of the publication of this thesis, the manuscript is still in preparation.
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Higher-order tree-level amplitudes
in the nonlinear sigma model

Johan Bijnens,¹ Karol Kampf ² and Mattias Sjö¹
JHEP 11 074 (2019) [Erratum: JHEP 03, 066 (2021)]

DOI: 10.1007/JHEP11(2019)074, 10.1007/JHEP03(2021)066
LU-TP 19-46

¹Dept. of Astronomy and Theoretical Physics, Lund University,
Sölvegatan 14A, Lund, Sweden

²Institute of Particle and Nuclear Physics, Charles University,
V Holešovičkách 2, Prague, Czech Republic

ABSTRACT: We present a generalisation of the flavour-ordering method applied to the
chiral nonlinear sigma model with any number of flavours. We use an extended Lagrangian
with terms containing any number of derivatives, organised in a power-counting hierarchy.
The method allows diagrammatic computations at tree-level with any number of legs at
any order in the power-counting. Using an automated implementation of the method,
we calculate amplitudes ranging from 12 legs at leading order, O(p2), to 6 legs at next-to-
next-to-next-to-leading order, O(p8). In addition to this, we generalise several properties
of amplitudes in the nonlinear sigma model to higher orders. These include the double
soft limit and the uniqueness of stripped amplitudes.

NOTE: Due to a publishing error, the supplementary material referenced in the text is not
included with the original publication, but rather with the erratum.
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1 Introduction

In 1960, Gell-Mann and Lévy [1] proposed a number of models for mesons and nucle-
ons. Two of these, the linear and nonlinear sigma models, were extended to highly general
quantum field theories with many different applications. One of the most important appli-
cation is interaction of mesons described by the nonlinear sigma model (NLSM) extended
by Weinberg [2] and Gasser and Leutwyler [3, 4] into chiral perturbation theory (ChPT).
A recent introductory review is [5] and more introductory literature can be found at [6].
This effective field theory (EFT) of low-energy QCD is not only widely used today in
many phenomenological applications, but also motivated further theoretical avenues for
the beyond-standard-model physics such as technicolour and little Higgs models. Exam-
ples of recent work in ChPT is the calculation of meson-meson scattering for a general
number of flavours at two loops [7], and masses and decays up to next-to-next-to-leading
order [8]. In this paper, we will push the study of this type of models in a different direc-
tion.

Even at tree-level, diagrammatic many-particle calculations in EFTs become very compli-
cated due to the rapidly increasing number of terms in the effective Lagrangian, but can
be facilitated with tools similar to those used for gluon scattering in perturbative QCD.
In recent years, the renewal of interest in the S-matrix program for the gauge theory and
gravity has in fact led to progress in both simplification of complicated technical calcula-
tions as well as discoveries of new properties [9]. The possibility to apply similar amplitude
methods to EFTs started recently and is mainly connected with studies of the NLSM. First,
it was demonstrated that it is indeed possible to employ recursive methods in [10], further
studied and developed in [11]. The crucial ingredient in developing the recursive formula
is the existence of the so-called Adler zero [12], the vanishing of scattering amplitudes for
soft momenta of Goldstone bosons (pions for NLSM), as a consequence of a spontaneous
symmetry breaking in EFT. The argument can be also inverted and used for classification
of the allowed space of EFT theories based on their soft properties. It turned out that the
leading order of NLSM is one important representative of exceptional EFTs. The excep-
tional status of those theories is connected with the fact that all their interaction vertices
are uniquely fixed by a single coupling constant, most conveniently the lowest four-point
vertex. This can be labelled as a soft-bootstrap program, studied and developed in recent
years by several groups [13–15]. It represents a rebirth of similar attempts at the end of the
1960s [16–18].

The exceptional theories have also appeared in completely different context, the so-called
CHY scattering equation [19], studied more recently also in [20]. This indeed suggests
their uniqueness, and though of completely different nature, it hints to deeper connec-
tions with gauge theory and gravity. It is probably one of the main motivation behind
the recent increase of activities in studying theoretical properties of NLSM: [21–33]. This
effort demonstrates the importance of NLSM; however, these studies mainly concentrated
only on the leading, two-derivative (O(p2)) order. As pointed out in [15], it is important
to expand the on-shell soft bootstrap program to higher orders. Our work aims in this
direction. An early attempt is [34] and one that appeared during the writing up of this
paper is [35].
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We will mainly focus on the problem of calculating scattering amplitudes at tree-level with
increasing number of legs and orders, with possible flavour splitting, i.e. beyond single-
trace amplitudes. Using recursion relations, tree-level amplitudes based on the leading-
order term in the Lagrangian have been computed with up to 10 external particles [36].
Using more general recursion relations based on soft limits [11], 6-particle tree-level inter-
actions have been computed using the next-to-leading-order Lagrangian [15]. These meth-
ods suffer limitations when higher-order Lagrangian terms are used, and can not handle
loops.

In this paper, we generalise an enhanced diagrammatic method called flavour-ordering,
which was introduced in [36]. We apply it to a generalised version of the SU(N) or U(N)
chiral NLSM, which includes terms with arbitrarily high power-counting order in the ef-
fective Lagrangian. This generalisation corresponds to removing all external fields from
the general ChPT Lagrangian. The method allows computation of tree-level amplitudes
with any number of external particles using Lagrangian terms of any order, and is valid
also beyond tree-level. It is significantly more efficient than a brute-force Feynman dia-
gram approach, and the caveats that appear beyond the leading order can be handled with
simple rules. Preliminary results can be found in the Lund university master thesis [37].

In section 2, we describe the NLSM and introduce our notation. Our main new results on
the method side are described in sections 3 and 4. Section 3 discusses our generalization of
flavour-ordering, while section 4 discusses how this can be used to calculate more complex
amplitudes as well as the kinematic methods needed. Section 5 discusses the amplitudes
we have calculated using our methods; the longer expressions are relegated to appendix E
and the supplementary material. Our main conclusions are reviewed in section 6. The
Lagrangians are given in appendix A, together with some results regarding renormalisation
of the amplitudes. Section B contains the proof of the orthogonality of flavour structures.
The double soft limit with multiple traces is derived in appendix C, and appendix D derives
the minimal bases of kinematic variables used in the amplitude calculations.

2 The nonlinear sigma model

The nonlinear sigma model describes the Nambu-Goldstone bosons that arise when a
global symmetry group G is broken to a subgroup H. Each configuration of the Nambu-
Goldstone fields can be uniquely mapped to an element of the coset space G/H, and from
each such coset, a representative ξ(ϕ) may be chosen to represent the field configuration ϕ.

In the context of low-energy QCD, the groupG is the chiral group SU(Nf )L×SU(Nf )R,
which is a global symmetry of the massless QCD Lagrangian with Nf quark flavours. It is
broken to the diagonal subgroupH = SU(Nf )V , so the coset space G/H is isomorphic to
SU(Nf ). With a chiral decomposition of the coset representatives, ξ = (ξL, ξR), we may
represent the Nambu-Goldstone fields with the unitary matrix u(ϕ) = ξR(ϕ) = ξ†L(ϕ)
parametrised as

u(ϕ) = exp

(
iΦ(ϕ)

F
√
2

)
, Φ(ϕ) = taϕa (I.2.1)
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with the flavour index with a running from 1 to N2
f − 1. Here, ta are the generators of

SU(Nf ), and F is a constant.¹ We use Einstein’s summation notation without distinc-
tion between upper and lower flavour indices, and use the following normalisation for the
generators:

⟨tatb⟩ = δab, [ta, tb] = ifabctc, (I.2.2)

where ⟨· · ·⟩ denotes a trace over internal indices. Here, fabc are the totally antisymmetric
structure constants of SU(Nf ). With this convention, the SU(2) generators can be chosen
such that they relate to the Pauli matrices as ta = σa/

√
2, fabc = ϵabc

√
2. Likewise, the

SU(3) generators can be chosen in terms of the Gell-Mann matrices like ta = λa/
√
2.

Under a chiral transformation g = (gL, gR), u(ϕ) transforms as

u
g−→ gR uh

†(u, g) = h(u, g)u gL, (I.2.3)

where the compensating transformation h(u, g) ∈ H is defined by the above relation.

When constructing the most general symmetry-consistent Lagrangian, it is more con-
venient to replace u by

uµ = i
(
u†∂µu− u∂µu†

)
, uµ

g−→ h(u, g)uµh(u, g)
†, (I.2.4)

which was introduced in this context by [38]. Higher derivatives are applied through the
covariant derivative

∇µX = ∂µX + [Γµ, X], Γµ =
1

2

(
u†∂µu+ u∂µu

†) , (I.2.5)

which has the convenient properties

X
g−→ hXh† ⇒ ∇µX

g−→ h∇µXh
†, ∇µuν −∇νuµ = 0. (I.2.6)

Note that we do not include the external fields that are used in chiral perturbation theory.

The Lagrangian is often written using derivatives of U(ϕ) = u(ϕ)2 and its conjugate. It is
possible to convert directly between ∂µU (†) and uµ by using unitarity:

∂µU
†∂νU = −(U †∂µU)(U†∂νU), U †∂µU = u†u†∂µuu− ∂µu†u = −iu†uµu. (I.2.7)

This makes ∂µU†∂νU wholly interchangeable with uµuν inside a trace.

With the above definitions, the simplest valid term in the NLSM Lagrangian is

L2 =
F 2

4
⟨uµuµ⟩, (I.2.8)

where the constant in front is fixed by the canonical normalisation of the kinetic term.

¹The above expression for u(ϕ) is only one of many possible parametrisations, but is the most common.
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Beyond this, there is an infinite sequence of increasingly complex terms permitted by the
chiral symmetries². We also impose parity (P ), charge-conjugation (C) and Lorentz invari-
ance. We restrict to the sector that involves an even number of Levi-Civita tensors (ϵµναβ),
which can always be rewritten in terms of the Minkowski metric only. The terms can be
organised into a hierarchy based on power counting in the momentum scale p. Since each
derivative in the Lagrangian brings down one factor of p into an amplitude, both uµ and
∇µ areO(p) and the power-counting at the Lagrangian level is simply counting derivatives.
Thus, we may split the Lagrangian as

L =

∞∑
n=1

L2n, (I.2.9)

where L2n is O(p2n) and contains 2n derivatives carrying n pairs of Lorentz indices. As-
suming a low momentum scale, we may then ignore all terms above a certain n.

The four-derivative O(p4) Lagrangian is, for general Nf [3, 4, 39],

L4 = L0⟨uµuνuµuν⟩+ L1⟨uµuµ⟩⟨uνuν⟩+ L2⟨uµuν⟩⟨uµuν⟩+ L3⟨uµuµuνuν⟩. (I.2.10)

The Li are independent coupling constants, so-called low-energy constants (LECs). It is
in principle possible to derive the LECs from any underlying theory (e.g. QCD), but in
practice, they are unknown parameters that must be measured by experiments or lattice
simulations.

The Lagrangian is known also at O(p6) and O(p8). The latter is the first 135 terms in the
ChPT Lagrangian of [40]; the former has only been published with different notation and
formulated in a way that gives redundant terms when naïvely reduced to the NLSM [39].
A more compatible version, constructed in conjunction with [40], is given in appendix A.
The Lagrangian at O(p10) and above has not been studied.

2.1 Restrictions due to fixed Nf and dimensionality

The Lagrangians discussed above are the most general ones. They are valid in any dimension
and for a generic number of flavours.

When Nf is small, the Cayley-Hamilton theorem gives additional linear relations that
reduce the number of independent terms. The theorem states that for any Nf ×Nf matrix
M , the characteristic polynomial

p(λ) = det(λ1−M), (I.2.11)

which is zero whenever λ is an eigenvalue of M , is also satisfied byM , i.e. p(M) = 0 when
viewed as a matrix polynomial. When Nf = 2, this implies the identity

{A,B} = ⟨AB⟩, (I.2.12)

²Many authors refer to L2 as the full Lagrangian of the NLSM. We instead use “the NLSM” to refer to the
more general version, which includes also terms with more derivatives.
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for traceless 2× 2 matrices A,B. When Nf = 3, the identity is∑
permutations of

{ABC}

⟨ABCD⟩ =
∑

cyclic permutations
of {ABC}

⟨AB⟩⟨CD⟩, (I.2.13)

for traceless matrices. The relations when ⟨A⟩ ̸= 0 used in [39, 40] contain many more
terms.

As an example, we may choose A = C = uµ and B = D = uν ; these are traceless as a
consequence of the identity ∂µ det(A) = det(A)⟨A−1∂µA⟩, which holds for any invertible
A, and which reduces to ⟨A†∂µA⟩ = 0 when A ∈ SU(Nf ).

TheNf = 2 identity allows for the elimination of all Lagrangian terms containing a product
of two or more traces from any L2n; for instance, L1 and L2 may be eliminated from L4.
The Nf = 3 identity allows for the removal of a single term from L4, 7 terms from L6, and
so on. The standard choice is to remove the L0-term of eq. (I.2.10) for Nf = 3 [4], and the
L0- and L3-terms for Nf = 2 [3].

When the spacetime dimension D is finite, the Schouten identity implies

(fµ1µ2···µkuµ1
uµ2
· · ·uµk

)
2
= 0 if k > D, (I.2.14)

where fµ1µ2···µk is antisymmetric in all its indices. This results in additional linear relations
among the terms in L2k for k > D. For D = 4, this does not affect any of the currently
known orders. In the sector involving a single Levi-Civita tensor it already removes a large
number of terms at O(p6).

3 Flavour-ordering

With the structure of the NLSM established, we are ready to use it for perturbative calcula-
tions of scattering amplitudes. However, the infinite number of interaction terms requires
the use of some scheme for restricting it to a manageable subset. Even then, the resulting
vertex factors are very intricate, both in their dependence on the particle momenta, and in
their group-algebraic structure. This leaves only the simplest Feynman diagrams tractable
by hand, and even computer algebra becomes highly time-consuming when tackling more
complicated cases directly.

In this section, we will direct much effort towards the development of simpler ways to
perform these calculations. As we will see, the group-algebraic structure of the flavour
indices carried by the particles can be used to condense an amplitude into a much more
easily manageable expression, for which simpler calculation rules exist. We will mostly
follow the derivation ofO(p2) flavour-ordering as presented in [36], but insert the notation
to support our own generalisations to higher-order vertices.
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3.1 Some notation

In this section, we will need a compact notation for writing the flavour structures of scat-
tering amplitudes. A flavour structure is a product of one or more traces containing group
generators carrying the flavour indices of the external particles in some order. We will
represent this as

Fσ(r1, r2, . . .) = ⟨taσ(1) · · · taσ(r1)⟩⟨taσ(r1+1) · · · taσ(r1+r2)⟩ · · · . (I.3.1)

The ith trace contains ri generators, ordered by a permutation σ ∈ Sn. For example,
⟨a1a3⟩⟨a2a4⟩ = F1324(2, 2), and ⟨a1a2 · · · an⟩ = Fid(n), where id(i) = i is the identity
permutation.

We encapsulate the ri in R = {r1, r2, . . . , r|R|}. We call R a flavour splitting. |R| is the
number of traces in the flavour structure, and we write Fσ(R) rather than Fσ(r1, . . .). For
a structure with n indices, we impose the restrictions

|R|∑
i=1

ri = n, r1 ≤ r2 ≤ . . . ≤ r|R|. (I.3.2)

The latter limits the number of equivalent ways to write a flavour structure.

Since traces are cyclic, Fσ(R) will be invariant under cyclic permutations of the indices
inside each trace. If ri = rj , it will also be invariant under swapping the contents of the
ith and jth trace. As a generalisation of the cyclic group Zn, we define ZR to be the group
of all permutations under which Fσ(R) is invariant. For instance,

Z{2,2} = {12 34, 21 34, 12 43, 21 43, 34 12, 43 12, 34 21, 43 21},
Z{2,4} = {12 3456, 21 3456, 12 4563, 21 4563, 12 5634, 21 5634, 12 6345, 21 6345},

(I.3.3)

where we label a permutation by how 12 . . . n ends up. We have inserted spaces between
blocks of indices corresponding to different traces to make it more legible.

In this notation, we generalise the notion of two permutations being equivalent modulo a
cyclic permutation: we write σ ≡ ρ (mod ZR) if Fσ(R) = Fρ(R). For instance, 1234 ≡
2341 (mod Z{4}) and 1234 ≡ 2134 (mod Z{2,2}).

Z{2,2} is isomorphic to the dihedral group D4. Other ZR are not isomorphic to such well-
known groups, but Z{2,4} ≃ Z2 × Z4, and in general, ZR ≃ Zr1 × Zr2 × · · · whenever all
ri are different. When some ri are equal (say, m in a row), the group will be non-abelian
and isomorphic to a semidirect product, e.g. Z{2,2,2} ≃ (Z2 × Z2 × Z2)⋊ S3. In general,
ZR ≃ (Zr1 × Zr2 × · · · )⋊ (Sm1

× Sm2
× · · · ), where each mj is the length of a stretch of

equal ri.³

³The proof follows from the following definition of the semidirect product: if a group G has a subgroup H
and a normal subgroupN , thenG = N ⋊H ifG = {nh |n ∈ N,h ∈ H} andN ∩H = e, the identity element.
The groups N ≃ (Zr1 × · · · ) of cyclings within traces and H ≃ (Sm1 × · · · ) of swaps of equal-size traces are
clearly subgroups of G = ZR, and N is normal since gng−1 ∈ N for any n ∈ N , g ∈ G— any trace swaps in g
are cancelled by g−1, leaving only cyclings. Any permutation in ZR is the composition of a cycling and a trace
swap, and the only element shared by N and H is id, which completes the proof.
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3.2 Stripped vertex factors

Each term in the Lagrangian will produce an infinite tower of interaction vertices with
increasingly many legs. Due to parity and the absence of Levi-Civita tensors, only terms
with an even number of legs are produced. If the Lagrangian term contains a product of
several traces, the flavour indices of the corresponding vertices will be distributed between
the same number of traces in multiple ways. If a trace contains an even number of uµ’s in
the Lagrangian, the corresponding trace in the vertices will only contain an even number
of indices, again from parity.

We will organise the vertices by their power-counting order and flavour splitting. For
instance, in the expansion of L2 eq. (I.2.8),

L2 =
1

2
⟨tatb⟩∂µϕa∂µϕb +

1

F 2
⟨tatbtctd⟩

(
1

6
ϕa∂µϕ

bϕc∂µϕd − 1

12
ϕaϕb∂µϕ

c∂µϕd
)
+ . . . ,

(I.3.4)
both terms attached to the 4-index trace will be part of the O(p2) vertex with splitting
R = {4}, which we label Vabcd

2,{4}, a vertex (factor). At order pm, a specific flavour splitting
R for a vertex with n legs, and thus n flavour indices ai, will have a vertex factor Va1...an

m,R . It
will in general contain contributions from many different Lagrangian terms, but we treat
it as a single factor for the purposes of Feynman diagrams.

We can further organise the contents of an n-point O(pm) vertex by flavour structure, i.e.
all possible distributions of the n-flavour indices over the flavour splitting R:

Va1a2···an

m,R (p1, p2 . . . , pn) =
∑

σ∈Sn/ZR

Fσ(R)Vm,R,σ(p1, p2, . . . , pn), (I.3.5)

where Vm,R,σ contains whatever kinematic factors come attached to Fσ(R). Due to the
derivatives, the kinematic factors Vm,R,σ are functions of the momenta pi of the interacting
particles. Here and in all other places, we treat all momenta as ingoing. Since Fσ(R) is
invariant under ZR, the kinematic factors must also have this symmetry, i.e.

Vm,R,σ(p1, p2, . . . , pn) = Vm,R,σ(pρ(1), pρ(2), . . . , pρ(n)) (I.3.6)

for any ρ ∈ ZR. Also, Bose symmetry implies that the act of rearranging the legs of the
vertex by any permutation ρ ∈ Sn must have the effect

Vm,R,σ◦ρ(p1, p2, . . . , pn) = Vm,R,σ(pρ(1), pρ(2), . . . , pρ(n)), (I.3.7)

where ◦ denotes composition of permutations. Specifically,

Vm,R,σ(p1, p2, . . . , pn) = Vm,R(pσ(1), pσ(2), . . . , pσ(n)), (I.3.8)

where Vm,R = Vm,R,id is called a stripped vertex factor.⁴ It contains all the necessary
information of the full vertex factor, but is only a kinematic factor with no flavour structure.

⁴The word “stripped” is typical in the context of EFTs. For the analogous concept in perturbative QCD (where
“flavour” is replaced by “colour”), the word “primitive” is used instead; see e.g. [41, 42]. In older literature, the
word “dual” is common.

102



It can be “dressed” into a full vertex factor by the simple act of multiplying by Fid(R) and
then summing over all σ ∈ Sn/ZR.

A stripped vertex factor has the property of being flavour-ordered, since it is the kinematic
factor attached to Fid(R), where all flavour indices are sorted in ascending order. Thanks
to this, its explicit form can be derived by expanding the relevant Lagrangian terms and
discarding all terms where any flavour index appears out of order. This saves a significant
amount of work for the more complicated vertices.

Stripped vertices serve as the first ingredient in our method. In the following sections, we
treat diagrams and amplitudes along the same lines.

3.3 Stripped amplitudes

Like the vertices, we may organise the diagrams by their power-counting order and flavour
structure. The order can be determined by using Weinberg’s power-counting formula,

D = 2 + 2L+
∑
d

(d− 2)Nd, (I.3.9)

which states that a diagram containing L loops and Nd O(pd) vertices is O(pD) overall.
Due to the form (d − 2), a diagram may contain any number of O(p2) vertices without
changing its order. Each loop

As for the vertex factors, we may decompose the O(pm) n-point amplitude as

Ma1a2···an
m,n (p1, p2, . . . , pn) =

∑
R∈R(m,n)

∑
σ∈Sn/ZR

Fσ(R)Mm,R,σ(p1, p2, . . . , pn), (I.3.10)

whereMm,R,σ carries all kinematic factors, andR(m,n) contains all flavour splittings that
contribute to the amplitude. Its contents will become apparent when drawing diagrams.

The direct analogues of eqs. (I.3.6) to (I.3.8) hold also forMm,R,σ, and we may similarly
define the stripped amplitudeMm,R with the property

MN,R,σ(p1, p2, . . . , pn) =Mm,R(pσ(1), pσ(2), . . . , pσ(n)). (I.3.11)

It is sufficient to compute the stripped amplitude, since summing over flavour splittings
and permutations,

Ma1a2···an
m,n (p1, p2, . . . , pn) =

∑
R∈R(N,n)

∑
σ∈Sn/ZR

Fσ(R)Mm,R(pσ(1), pσ(2), . . . , pσ(n)) ,

(I.3.12)
gives the full amplitude.
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3.4 Flavour-ordered diagrams

Due to its relative simplicity, the stripped amplitude serves as the target of our methods.
Like the stripped vertex factors, it is flavour-ordered, so when calculating it, we may discard
all terms where two flavour indices appear out of order. We can derive further simplifica-
tions by studying how the flavour structures behave when two sub-diagrams are joined by
propagators. The NLSM Feynman rule for a propagator with momentum q is

q

a b
=

iδab

q2 + iϵ
, (I.3.13)

so the flavour structures are simply contracted by the delta. For SU(Nf ), the contraction
can be performed through the Fierz identity,

taijt
a
kℓ = δiℓδjk −

1

Nf
δijδkℓ, (I.3.14)

where ijkℓ are the internal indices of the generators. Inside traces, the identity implies

⟨Xta⟩⟨taY ⟩ = ⟨XY ⟩ − 1

Nf
⟨X⟩⟨Y ⟩, (I.3.15)

⟨XtaY ta⟩ = ⟨X⟩⟨Y ⟩ − 1

Nf
⟨XY ⟩ (I.3.16)

for arbitrary X and Y . For future reference, we will name the first term on the right-hand
side the multiplet term and the second term (containing N−1

f ) the singlet term. In U(Nf ),
the corresponding identities contain only the multiplet term.

For tree-level diagrams, eq. (I.3.15) is the relevant identity. Its multiplet term preserves the
ordering of X and Y ; the singlet term does not, but we will ignore it for now and deal
with it in section 3.5. We then see that the stripped amplitude only gets contributions
from stripped vertex factors (if X or Y is not flavour-ordered, neither is XY ) that are
combined in ways that maintain their flavour-ordering. In a diagrammatic view, this is
rather intuitive to achieve; for instance, the following constitutes all the distinct ways to
assemble two 4-point vertices into an O(p2) 6-point diagram:

1

2

3 4

5

6 2

3

4 5

6

1 3

4

5 6

1

2

. (I.3.17)

The labels on the legs refer to external momenta and flavour indices. Flavour-ordering cor-
responds to having all indices in cyclic order around the diagram labelled counterclockwise;
we will keep this convention in the remainder. These three labellings give distinct kinematic
factors, e.g. they have distinct propagator momenta (p1 + p2 + p3)

2, (p2 + p3 + p4)
2, and

(p3 + p4 + p5)
2, respectively. Due to the symmetry of the diagram, the remaining three

cyclic permutations of the labels are not distinct from these three. All other labellings are
not flavour-ordered, and can be ignored.
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For compactness, we will draw flavour-ordered diagrams with unlabelled legs. These are
defined as the sum over all distinct flavour-ordered ways to label them. Equivalently, they
can be defined as any flavour-ordered labelling, summed over ZR, and divided by the factor
needed to account for symmetry. For 4, 6 and 8 particles at O(p2), the flavour-ordered
diagrams are

,

(I.3.18)

respectively. The second 6-point diagram is the sum of the three in eq. (I.3.17). Stripped
vertex factors are completely symmetric under their respective ZR by virtue of eq. (I.3.6),
so single-vertex diagrams always have only one distinct labelling. Therefore, the 4-point
diagram and the first 6-point diagram in eq. (I.3.18) should not be summed over other
labellings. The 8-point diagrams have 1, 8, 4, and 8 distinct labellings, respectively, as can
be seen from their symmetry. Note that since the order of the legs of a stripped vertex
factor matters, the last two diagrams are distinct.

Above O(p2), we begin to encounter flavour-split vertices, but they can be integrated into
the flavour-ordering routine. We still label the legs according to the identity permutation,
but instead of summing over cyclic permutations, we sum over ZR, and once again only
consider distinct labellings.

At higher orders, we also need to distinguish vertices of different order, which is done by
attaching a number to all vertices above O(p2). In order to distinguish vertices with split
flavour structures, we leave a gap in the vertex, so that each contiguous piece of a diagram
resides in a single trace. For instance, the 4-point O(p4) diagrams are

4 4

(I.3.19)

for R = {4} and R = {2, 2}, respectively. Neither diagram has more than one distinct
labelling, since they contain only a single vertex each. The four lines in the right diagram
are still kinematically connected, but are separated flavour-wise. Since there is a direct
correspondence between traces in a flavour structure and contiguous pieces of a diagram,
we will simply refer to the pieces as traces.

Some adjustment is needed when handling split diagrams. Since ⟨X⟩⟨Y ⟩ = ⟨Y ⟩⟨X⟩, the
traces may “float” to different positions around the same vertex. For instance,

4 4

(I.3.20)
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are the same. By our conventions, the distinct labellings of this diagram are

1

2

3

5

4

6

4

1

2

4

6

5

3

4

1

2

5

3

6

4

4

1

2

6

4

3

5

4

(I.3.21)
Labels 1 and 2 are applied to the smaller trace (as per eq. (I.3.2)), and no cycling is needed
due to the symmetry of the vertex. Labels 3456 must be summed over all four cyclings,
since each cycling gives a different propagator. No other labelling is flavour-ordered; in
particular,

5

6

1

3

2

4

4

(I.3.22)

which would be valid on a single-trace diagram, should not be counted, since it has flavour
structure Fid(4, 2) in disagreement with eq. (I.3.2). Including it would be double-counting
when summing over all σ in eq. (I.3.12), since it is obtained from eq. (I.3.21) via a permu-
tation in S6/Z{2,4}.

Extra caveats sometimes show up. For instance, the two O(p4) diagrams

4

4

(I.3.23)

emerge from different orientations of the same three vertices, but have completely different
flavour structure and properties. In the first diagram, the smaller trace should not be cycled
at all, and the larger trace only halfway, since it is symmetric (compare to theO(p2) 6-point
diagram). In the second diagram, all 4 · 4 combined cyclings of the two traces are distict,
but due to the symmetry of the diagram, swapping them, e.g.

1

3

2

4

7

5

6

8

4

←→
5

7

6

8

3

1

2

4

4

(I.3.24)

does not produce a distinct kinematic structure and should not be counted.

In the O(p6) diagrams

4 4 6

, (I.3.25)

the component of ZR that swaps equal-size traces does play a role. In the first diagram, we
may place either 12 or 34 in the trace straddling the propagator, and we must sum over both
placements. In addition to that, we must sum over cyclings of the trace that straddles the
propagator. In the second diagram, the two smaller traces are equivalent under the Z{2,2,2}
symmetry of the vertex, and we should not sum over both ways of placing the labels 12 and
34.
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3.5 The singlet problem and its solution

The construction of flavour-ordered diagrams hinges heavily on the use of eq. (I.3.15), or
specifically the muliplet term, ⟨XY ⟩. The singlet term, ⟨X⟩⟨Y ⟩/Nf , threatens the notion
that the stripped amplitude is given by exactly the flavour-ordered diagrams. Consider the
diagrams

1

2

3 4

5

6 2

3

4 5

6

1 3

1

2 6

4

5

. (I.3.26)

The first diagram is flavour-ordered according to both the multiplet and singlet terms. The
second diagram is also flavour-ordered according to our definitions, but gives the non-
flavour-ordered structure ⟨234⟩⟨561⟩ under the singlet. The third diagram is not flavour-
ordered, but the singlet gives the flavour-ordered structure ⟨123⟩⟨456⟩. Since the only per-
mutation contained in both Z{6} and Z{3,3} is id, the behavour of the singlet and multiplet
terms is clearly very different and must be treated carefully.

There is, however, an elegant solution. As stated previously, the singlet term in eq. (I.3.15) is
not present in U(Nf ). Therefore, in the U(Nf ) NLSM we may always do flavour-ordering
without singlet issues. We can extend this to SU(Nf ) by using its similarity to U(Nf ).

The U(Nf ) algebra differs from the SU(Nf ) algebra by a non-traceless generator t0 that
commutes with all other generators. Due to the latter property, its associated field ϕ0

forms a U(1) singlet separate from the SU(Nf ) mutliplet ϕa. With this in mind, a more
elucidating form of eq. (I.3.15) is

N2
f−1∑
a=1

⟨Xta⟩⟨taY ⟩ =
N2

f−1∑
a=0

⟨Xta⟩⟨taY ⟩ − ⟨Xt0⟩⟨t0Y ⟩, (I.3.27)

where we temporarily suppress Einstein summation. This expression suggests that aSU(Nf )
propagator (left) represents a U(Nf ) propagator (right) minus the singlet propagator, and
explains our naming of the terms in eq. (I.3.15). The N−1

f is absorbed into t0 since t0 =

1/
√
Nf .

Now, if we extend our Lagrangian-building field like

Φ̂(ϕ0, ϕ) = t0ϕ0 +Φ(ϕ), û(ϕ0, ϕ) = exp

(
iΦ̂

F
√
2

)
= exp

(
iϕ0t0

F
√
2

)
u(ϕ), (I.3.28)

where u(ϕ) ∈ SU(Nf ) and û(ϕ0, ϕ) ∈ U(Nf ), we see that

Û = û2 ⇒ Û†∂µÛ =

(
i
√
2

F
√
Nf

)
∂µϕ

0 + U†∂µU (I.3.29)

(remembering that U†∂µU is equivalent to uµ), and therefore

L̂2 =
1

2
∂µϕ

0∂µϕ0 +
F 2

4
⟨uµuµ⟩. (I.3.30)
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At this order, the singlet decouples from the other fields and forms a free theory. Therefore,
noO(p2) vertex involves the singlet, so there is no distinction between U(Nf ) and SU(Nf )
amplitudes at this order, and we may ignore the singlet term in eq. (I.3.15).

This observation was sufficient in [36], but we must handle the singlet problem beyond
O(p2). L4 and all higher-order Lagrangians introduce vertices that couple the singlet to
the other particles. However, a singlet propagator can only exist if both vertices at its ends
couple to it. Since this requires at least two vertices of at least O(p4), the diagram as a
whole must be at leastO(p6) to include such complications.⁵,⁶ Therefore, flavour-ordering
at O(p4) works with no other complications than the introduction of split vertices.

At O(p6) and above, the singlet term in eq. (I.3.15) can not be avoided in SU(Nf ), but the
interpretation of eq. (I.3.27) still holds. In order to build a SU(Nf ) amplitude, we first
work in U(Nf ) to build flavour-ordered diagrams using only the multiplet term. Then, we
construct all diagrams with singlet propagators in a similar fashion, maintaining flavour-
ordering independently. For instance, the full suite of O(p6) 6-point diagrams is

6 6 6 6

6 4 4 6 4 4 4 4

4 4

,

(I.3.31)
including one singlet propagator, indicated by a dashed line. It implicitly includes a factor
of −N−1

f , and its flavour structure is split {3, 3} over the propagator. All cyclings of the
two traces should be counted as distinct, since the vertices are invariant under Z4, not Z3.
By adding the singlet diagrams to the others, we get the stripped SU(Nf ) amplitude.

The singlet diagram contains all contractions that are flavour-ordered under the singlet
term, like the first and last diagram in eq. (I.3.26). The decoupling of the singlet at O(p2)
means that these contributions must cancel in the amplitude at this order, which is not at all
obvious from the individual diagrams. Still, recasting the singlet terms as flavour-ordered
singlet diagrams is valid, as follows from the uniqueness of the stripped amplitude.

⁵If the singlet forms a loop, only oneO(p4) vertex is necessary, but the loop itself increases the power counting,
so O(p6) is needed in this case as well.

⁶An interesting parallel can be seen in [41], where U(1) gluons similar to our singlets must be introduced in
perturbative QCD. While our singlets only emerge with at least two higher-order vertices, their U(1) gluons can-
cel unless the diagram contains at least two quark lines. In general, there are several intriguing analogies between
the inclusion of quark lines in gluon scattering (where there are no higher-order vertices) and the inclusion of
higher-order vertices in the NLSM (where there are no quark lines).
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3.6 Uniqueness of stripped amplitudes

Above, we have blindly trusted the definition of the stripped amplitude as everything that
comes attached to the flavour-ordered structure Fid(R). If this definition is not unique,
flavour-ordering would not necessarily be valid, and we could not rely on our use of singlet
diagrams. However, we can show that the stripped amplitude is indeed unique, using a
generalisation of a method presented by [43] and adapted to flavour-ordering by [36].

The uniqueness hinges on the orthogonality relation

Fσ(Q) ·
[
Fρ(R)

]∗
= Nn

f

1 +O
(
N−2

f

)
if Q = R and σ ≡ ρ (mod ZR),

O
(
N−γ

f

)
otherwise (γ ≥ 1; see below)

(I.3.32)

using the notation defined in section 3.1. The dot in the left-hand side indicates contraction
over all flavour indices. If Q ̸= R, γ ≥ 1, and if σ ̸≡ ρ (mod ZR), γ ≥ 2; therefore, the
single-trace version (i.e. that given in [36]) has O(N−2

f ) as its second case. The more
different the flavour structures are, the larger γ is. The relation eq. (I.3.32) is proven in
appendix B and states that any given flavour structure Fσ(Q) is orthogonal at leading
order in Nf to all other flavour structures whose permutations are not equivalent to σ, or
whose flavour splittings are not equal to Q.

In the context of stripped amplitude uniqueness, eq. (I.3.32) can be applied as follows. In
analogy with eqs. (I.3.5) and (I.3.12), we write some arbitrary quantity X in the form

X a1···an =
∑
R∈R

∑
σ∈Sn/ZR

Fσ(R)Xσ,R, (I.3.33)

whereR is some appropriate selection of flavour splittings. Then, we use the orthogonality
relation eq. (I.3.32) to perform the projection

X a1···an [Fid(R)]
∗
= Nn

f

[
Xid,R +O

(
1

Nf

)]
. (I.3.34)

This means that we can always project out the stripped X , and that any overlap with other
terms must come suppressed by at least N−1

f . In a stripped amplitude of O(p4) or lower,
the stripped amplitude can not contain any powers of N−1

f due to the decoupling of the
singlet, so there can be no overlap for arbitrary Nf . This proves that stripped amplitudes
are unique at O(p4) or below.

At higher orders, things are not as simple, since there are possibly many factors of N−1
f .

This would allow mixing between different stripped X ’s, threatening to break uniqueness.
However, it can be resolved by expressing X a1···an as a polynomial in N−1

f ,

X a1···an = X a1···an
0 +

1

Nf
X a1···an

1 +
1

N2
f

X a1···an
2 + . . . (I.3.35)

such that each X a1···an
i , and therefore also its stripped counterpart, is independent ofN−1

f .
We then apply the projection to each X a1···an

i independently, and ignore the O(N−1
f )
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completely. Thus, stripped amplitudes, vertex factors, and other analogous quantities are
unique to all orders.⁷

The proof holds for general Nf , but for any specific Nf , there may be additional relations
between the generators that break the uniqueness. The Cayley-Hamilton relations provide
such relations for small Nf . However, we always assume that the relations have been “ex-
hausted” by removing terms from the Lagrangian, so that they do not affect the uniqueness
of stripped amplitudes.

This proof in this section has significant consequences. Most importantly, it guarantees
the correctenss of our method of flavour ordering with split traces and singlets: gathering
all flavour-ordered pieces of the full amplitude is guaranteed to equal the unique stripped
amplitude. Also, uniqueness allows many properties of the full amplitude to carry over to
the stripped amplitude, as is discussed below.

A second consequence is worthy of note. The full amplitude of some O(pN ) n-particle
process is constructed from |R(N,n)| different stripped amplitudes. When summed over
permutations according to eq. (I.3.12), the total number of flavour structures grows to

NN,n ∼
∑

R∈R(N,n)

|Sn|
|ZR|

, (I.3.36)

which is a very rapidly growing number — even at O(p2), N (2, n) ∼ (n − 1)!. Since
the flavour structures are not truly orthogonal, the expression for the cross section of the
process, proportional to Ma1···an

N,n [Ma1···an

N,n ]†, grows in length as (NN,n)
2. However, the

expression for the cross section contracts the flavour structures as in eq. (I.3.32), which sup-
presses products of non-equivalent flavour structures by a factor ofN−1

f for each difference
(orN−2

f in the single-trace case). Therefore, in the limitNf →∞, flavour structures are or-
thogonal, and the cross section only grows asNN,n. Even with finite Nf , most cross-terms
will be heavily suppressed, and can most likely be ignored.

An alternative approach would be to construct other bases for flavour space that are more
orthogonal than the trace bases used here, as is done in perturbative QCD by [44]. Such
methods have so far not been applied in the present context.

4 NLSM amplitudes

In this section, we introduce and generalise several concepts related to NLSM amplitudes
and flavour-ordering.

⁷This uniqueness is of course only up to a permutation in ZR, but since we sum over those in the definition
of the stripped quantity, they are unique for our purposes.
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4.1 Adler zeroes and soft limits

In any effective field theory emerging from the spontanous beaking of a global symmetry,
the amplitude possesses the so-called Adler zero,

lim
ε→0
Ma1···an(p1, . . . , εpi, . . . , pn) = 0, (I.4.1)

for any i [12, 45]. The approach to zero will generally go as εσ, where the soft degree σ ≥ 1
can be used to classify and construct EFTs [13, 46]. The NLSM has σ = 1. Due to
the orthogonality of flavour structures and the uniqueness of stripped amplitudes, Adler
zeroes may only exist in the full amplitude if they also exist, with the same soft degree, in
the stripped amplitudes. Therefore, eq. (I.4.1) and any statement relying on it can equally
well be applied to the stripped amplitudes.

The Adler zeroes may be used as a starting point to construct amplitudes through recursion
relations [11, 15]. For our purposes, however, their main use is in validating the correctness
of complicated stripped amplitudes. Since far from every term in the amplitude is propor-
tional to pi, the Adler zero must manifest itself through intricate cancellations. Therefore,
any error in the amplitude is extremely likely to give a finite right-hand side in eq. (I.4.1).

Beside the Adler zeroes, there also exists the double soft limit, where two momenta are sent to
zero at the same rate. It turns out that the double soft limit of any (n+2)-particle amplitude
can be expressed in terms of n-particle amplitudes with the soft particles removed; for the
NLSM, the specific form is

lim
ε→0
Maba1···an

m,n+2 (εp, εq, p1, . . . , pn) =

− 1

4F 2

n∑
i=1

fabcfaidc
pi · (p− q)
pi · (p+ q)

Ma1···a(i−1)da(i+1)···an
m,n (p1, · · · , pn). (I.4.2)

This was conjectured in [47] and proven in [36]. Like the Adler zero, it can be projected to
a relation for stripped amplitudes, although the projection is not entirely trivial. The result
for single-trace flavour structures is given in [36]. We derive the counterpart for general
flavour structures in appendix C, with the result being as follows. At any order m in the
power counting and for any flavour split R ∈ R(m,n+ 2), the double soft limit

lim
ε→0
Mm,R(p1, . . . , pi−1, εpi, . . . , εpj , pj+1, . . . , pn+2) (I.4.3)

is nonzero if the indices i− 1, i, j and j + 1 are consecutive and lie within the same trace;
we will call this condition C. It is also nonzero if the indices can be made to satisfy C by
applying a permutation in ZR and possibly swapping i and j. In all other cases, the double
soft limit is zero.

SinceMm,R is invariant under ZR, we can without loss of generality assume that C holds
whenever the double soft limit is nonzero. Assuming this, the double soft limit is

lim
ε→0
Mm,R(p1, . . . , εpi, εpj , . . . , p(n+2))
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=
1

4F 2

(
p(j+1) · (pi − pj)
p(j+1) · (pi + pj)

−
p(i−1) · (pi − pj)
p(i−1) · (pi + pj)

)
Mm,R′(p1, . . . , p(i−1), p(j+1), . . . , p(n+2)),

(I.4.4)

where R′ ∈ R(m,n) is R with the location of the soft particles removed and j = i + 1.
The result, which generalises that given in [36], is quite remarkable: for properly chosen
i, j, the double soft limit amounts to removing the soft particles from the amplitude and
multiplying by a simple kinetic factor. The factor is similar to those that arise in IR diver-
gences, which is understandable — both arise from propagators going on-shell in the soft
(IR) limit.

4.2 Generalised Mandelstam invariants

In order to express stripped amplitudes in a way that naturally includes on-shellness and
conservation of momentum, we will employ bases of generalised Mandelstam invariants
in the form

sijk··· = (pi + pj + pk + . . .)2, (I.4.5)

In this notation, the standard 4-particle Mandelstam invariants are

s = s12 = s34, t = s13 = s24, u = s23 = s41. (I.4.6)

Since s + t + u = 0, this basis is overcomplete, and one element can be removed. We
will generally use bases where ijk . . . are consecutive, so we choose to keep {s, u} as the
4-particle basis.

For n particles, the products of momenta are related to the invariants with consecutive
indices through

2pi · pi+1 = si(i+1),

2pi · pi+2 = si(i+1)(i+2) − si(i+1) − s(i+1)(i+2),

j > i+ 2 : 2pi · pj = si···j − si···(j−1) − s(i+1)···j + s(i+1)···(j−1).

(I.4.7)

Based on this, a complete basis of invariants for n = 6 is

B{6} =
{
s12, s23, s34, s45, s56, s61, s123, s234, s345

}
, (I.4.8)

where s456 etc. are not needed due to conservation of momentum in the form

si···(i+k−1) = s(i+k)···(i−1), (I.4.9)

with indices cycling around from n to 1. The form of B{6} can be carried on to any even
n, giving

B{n} =
{
s12, s23, . . . , sn(n−1), sn1, s123, s234, . . . , sn12, . . . ,

s12···(n/2), . . . , s(n/2−1)···(n−1)

}
. (I.4.10)
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This contains n(n−3)/2 invariants, which is also the number of independent products that
can be formed from {p1, . . . , pn}with all p2i = 0.⁸ Note that all invariants have consecutive
indices.

These bases are only linearly independent in sufficiently high spacetime dimensions D. If
D < n + 1, the Gram determinant gives relations among the basis elements. In practice,
these relations are so algebraically messy that we have found it simpler to always work in
arbitrary D.

Mandelstam invariants have further benefits beyond taking care of on-shellness and con-
servation of momentum. In an n-point O(p2) single trace flavour-ordered tree diagram,
all propagators carry a momentum q such that q2 ∈ B{n}. Therefore, O(p2) stripped am-
plitudes will never contain a denominator with a sum of several invariants, making their
algebraic handling simpler. This is not true for diagrams with multi-trace flavour struc-
tures. It is also not possible to find a different basis that contains all squared propagator
momenta in the general case; for instance, the set of all possible q2 under R = {2, 6} is not
linearly independent.

Another use of Mandelstam invariants is the shortening of stripped amplitudes. As a con-
sequence of invariance under ZR, any stripped amplitude can be written in the form

Mm,R(p1, . . . , pn) = (simpler expression) + [ZR], (I.4.11)

where we use a shorthand for the sum over ZR, generalising the familiar idiom “+cycl.”.
The simpler expression is rather obvious for simple amplitudes, but for more complicated
cases, it is an enormous aid to readability.

Any stripped amplitude can be simplified as above by separating it into simple terms, sepa-
rating the terms into cosets under ZR, and picking a single representative from each coset.
The “simpler expression” in eq. (I.4.11) will then be the sum of the representatives. For
R = {n}, this works because for any sij··· ∈ B{n} and σ ∈ Z{n}, applying σ to the indices
of sij··· yields another element in B{n}. Thus, B{n} can be said to be closed under Z{n}.
However, the basis given in eq. (I.4.10) is not closed under any ZR with R ̸= {n} (with
the sole exception of R = {2, 2}), so the separation into cosets fails. Simplifying general
amplitudes therefore requires either painstaking manual work, or a Mandelstam basis that
is closed under ZR. We have no general method of finding such bases. In appendix D, we
present closed bases for Z{2,4}, Z{3,3} and Z{2,2,2}. These cover all flavour structures that
appear for n ≤ 6.

4.3 Diagram generation

For most amplitudes presented here, the number of diagrams is small enough that they are
easily found by hand, but above a dozen or so diagrams, this becomes a slow and error-
prone process. We therefore automated the process by designing a program called fODgE

⁸There are n(n + 1)/2 ways to form products of pairs of pi, i ∈ {1, . . . , n}. Of these, n vanish due to
p2i = 0. Conservation of momentum implies that pn =

∑n−1
i=1 pi, which gives n linear combinations among

the remaining products, reducing the number of independent ones to n(n+ 1)/2− 2n = n(n− 3)/2.

113



(flavour-Ordered Diagram gEnerator) written in C++.⁹ It produces TikZ code for draw-
ing the diagrams, and generates the input to a set of fORM procedures that compute the
amplitudes.¹⁰ The same procedures were used with manual input for computing simpler
amplitudes. Inspiration was taken from the diagram generator used in [50, 51].

The diagram generation works recursively. A list of all O(pM ) N -point diagrams can be
generated by generating all O(pm) n-point diagrams for m ≤M and n ≤ N − 2, and then
listing all ways to attach an O(p2+M−m) (2 + N − n)-point vertex to their external legs.
Adding a list of O(pM ) N -point single-vertex diagram and removing duplicates completes
the list. The number of duplicates can be reduced by restricting m and n.

The number of independent labellings on each diagram must then be determined. Repre-
senting diagrams in a way that shows their symmetries turns out to be very difficult when
complicated flavour structures are involved. This was not entirely successfully tried in the
original fODgE used in [37]. Here, we take a different approach: each diagram is associated
with all flavour-ordered labellings of its external legs that give unique kinematic structures.
This removes the need to explicitly consider its symmetries; internally, the diagrams can
be represented in whatever way is convenient.

As is pointed out below eq. (I.3.17), a kinematic structure is uniquely determined by the
propagator momenta it contains. It is easy to see that this holds for anyO(p2) diagram. At
higher orders, it is sufficient to add the order of the vertices at the ends of each propagator.
The flavour splits of the vertices are not needed if the overall flavour split of the diagram is
provided. For singlet diagrams, we must also specify how the vertex is cycled relative to the
singlet propagator, by writing down the momentum carried by a vertex leg adjacent to the
propagator. In general, any kinematic factor is uniquely determined by listing all vertices
and the momenta carried by their legs, but this can be shown to reduce to these simpler
rules when diagrams are flavour-ordered.

Thus, fODgE generates all diagrams of a given order and size, equips each diagram with
an arbitrary flavour-ordered labelling, and determines the kinematic factor as described
above. ZR is then applied to generate all other labellings, but only a subset that gives
distinct kinematic factors is kept. If the choice of subset is consistent, equivalent diagrams
will always give an identical list of kinematic factors, so duplicates are easily removed.

Knowing the labellings also makes the diagram generation more efficient. There is no need
to attach a vertex to several legs that are equivalent to each other under the symmetries. By
dividing the set of labels into cosets under ZR, it is sufficient to attach vertices to legs that,
in one of the distinct labellings, carries a coset representative as its label. This reduces the
number of generated duplicates.

⁹The source code of fODgE can be found at https://github.com/mssjo/fodge.
¹⁰The fORM procedures can be found at https://github.com/mssjo/flavour-order. For fORM itself, see

[48, 49].
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5 Explicit amplitudes

Using the methods developed in the previous sections, we have computed several stripped
NLSM amplitudes, several of which have not previously been determined. These we discuss
in this section.

5.1 4-point amplitudes

These amplitudes are by far the simplest, since their tree-level diagrams contain no propa-
gators and only carry two flavour structures ({4} and {2, 2}), or only one in theO(p2) case.
At O(p6) and above, they only receive contributions from the Lagrangian terms with no
more than four uµ’s, which is a tiny subset of the total Lagrangian.

TheO(p2) 4-point amplitude is given by a single diagram and a simple stripped amplitude,

− iF 2M2,{4} =
t

2
, (I.5.1)

where t is the Mandelstam invariant (p1 + p3)
2. We have pulled factors of i and F over

to the left-hand side for clarity. The only independent O(p2) kinematic structure that is
invariant under Z{4} is t, so the form of the right-hand side could have been guessed based
on symmetry.

If we plug eq. (I.5.1) into eq. (I.3.12) and apply some SU(2) group algebra, we recover the
familiar Nf = 2 amplitude

Mabcd
2,4 (s, t, u) =

−4i
F 2

[
sδabδcd + tδacδbd + uδadδbc

]
(I.5.2)

with the Mandelstam invariants defined as in section 4.2.

The O(p4) 4-point amplitude consists of the two diagrams

4

− iF 4M4,{4} = 2L3(u
2 + s2) + 4L0t

2, (I.5.3)

4

− iF 4M4,{2,2} = 8L1s
2 + 4L2(t

2 + u2), (I.5.4)

which includes the simplest example of a flavour split. There are now two independent
Z4-invariant kinematic structures, t2 and s2 + u2, and likewise two independent Z{2,2}-
invariant ones, s2 and t2 + u2. All four appear equipped with one LEC each. The full
amplitude is analogous to eq. (I.5.2), but with various linear combinations of the LECs
and Mandelstam variables in place of s, t and u. The full amplitude agrees with the known
results, see [7] and references therein.
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The O(p6) 4-point amplitude, like its O(p4) analogue, has two diagrams,

6

− iF 4M6,{4} = −L6,3t(s
2 + u2)− 2L6,4t

3, (I.5.5)

6

− iF 4M6,{2,2} = −2L6,1(t
3 + u3) +

2

3
L6,2(s

3 + t3 + u3). (I.5.6)

As for O(p4), there are two independent Z4-invariant kinematic structures, t3 and t(s2 +
u2), and two independent Z{2,2}-invariant ones, s3 and s(t2 +u2). These four correspond
to the four LECs — s3 + t3 + u3 is a linear combination of s3 and s(t2 + u2). The full
amplitude agrees with the result in [7].

The O(p8) amplitude, like its lower-order analogues, has two diagrams,

8

− iF 4M8,{4} = L8,4s
2u2 +

1

2
L8,5t

2(s2 + u2) + L8,6t
4, (I.5.7)

8

− iF 4M8,{2,2} = L8,1s
2(t2 + u2) + L8,2(t

4 + u4) + 2L8,3t
2u2, (I.5.8)

There are now three independent Z4-invariant kinematic structures, t4, t2(s2 + u2) and
s2u2, and correspondingly three for Z{2,2}. This is reflected in the six LECs.

Similarly,M10,{4} will be a linear combination of s5, s3tu and st2u2, andM10,{2,2} will
be a linear combination of t5, t3us and tu2s2, since these are the only independent O(p10)
kinematic structures that are invariant under Z{4} and Z{2,2}, respectively. The coefficients
will be linear combinations of the LECs of the terms in L10 that only contain four uµ’s.
These terms, along with the rest of L10, have not yet been studied. The same pattern can
be applied to O(p12) and beyond.

Note that the above discussion is fully compatible with section 5 in [40] where we have two
functions with properties B(s, t, u) = B(u, t, s) and C(s, t, u) = C(s, u, t). Independent
combinations in B at order p2n are made from tn−2i(s−u)2i and in C from sn−2i(t−u)2i.

5.2 The O(p2) 6- and 8-point amplitudes

The leading order in the power counting offers a relatively simple playground for flavour-
ordering, free from splittings and singlets. It is relatively well explored, and the amplitudes
presented here were also calculated in [36] using different methods.

The 6-point amplitude is given by the diagrams

. (I.5.9)
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Each diagram represents the sum of all distinct labellings of its legs, as described in section 3.
The amplitude is

−4iF 4M2,6 = s12 + s23 + s34 + s45 + s56 + s61

− (s12 + s23)(s45 + s56)

s123
− (s23 + s34)(s56 + s61)

s234
− (s34 + s45)(s61 + s12)

s345
,

(I.5.10)
which suggests the simplified form as defined in eq. (I.4.11)

−4iF 4M2,6 =

{
s12 −

1

2

(s12 + s23)(s45 + s56)

s123

}
+ [Z6], (I.5.11)

where [Z6] indicates summation over all cyclic permutations. Note the factor of 1/2, which
expresses that the second term has twofold symmetry under rotation, a trait that is shared
by the second diagram above.

The 8-point amplitude is given by the diagrams

, (I.5.12)

and its stripped amplitude is, in a similarly simplified form,

− 8iF 6M2,8 =

{
4s12 + s1234

2
− (s12 + s23)(s45 + s56 + s67 + s78 + s4567 + s5678)

s123

+
1

2

(s12 + s23)(s1234 + s4567)(s56 + s67)

s123s567

+
(s12 + s23)(s1234 + s45)(s67 + s78)

s123s678

}
+ [Z8]. (I.5.13)

The analogous 10- and 12-point amplitudes, the second of which has not been determined
before, are presented in appendix E.2 and E.3.

5.3 The O(p4) 6-point amplitude

The calculation of this amplitude hinges decisively on the use of split-trace flavour ordering.
It was arrived at independently in a different form by [15] using recursion relations. Our
result agrees with theirs. The amplitude is given by the four diagrams

4 4 4 4

. (I.5.14)

Note that unlike its O(p2) counterpart, the third diagram is not symmetric due to the
asymmetric placement of vertices. The amplitude has a single-trace and a two-trace part.
The single-trace stripped amplitude is
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− iF 6M4,{6} = L3

{
s12 (s12 + s34 + s45)−

(s12 + s23)
(
s245 + s256

)
s123

}
+ [Z6]

+ 2L0

{
s12 (s12 + s34 + 2s45) + s123 (s612 − s61)−

(s12 + s23) (s45 + s56)
2

s123

}
+ [Z6]

(I.5.15)

In order to find the simplified form of the two-trace part, it is extremely helpful to have a
closed Mandelstam basis. In terms of the closed basis B{2,4} = {t1, . . . , t9} of eq. (I.4.1), it
is

− iF 6M4,{2,4} =
L1

2

{
t1
[
t1 + 2t2 + t3 − 3t5

]
+

(t2 + t3 + t4)
2
[
t3 − 2t5

]
2t1

}
+ [Z{2,4}]

+
L2

8

{
t1

[
t1 + 2t2 +

t3
2
− 3t5

]
+ 4t27 − 2t29

+

[
(t2 + t3 + t4)

2 + 4(t7 + t8 + t9)
2
] [
t3 − 2t5

]
2t1

}
+ [Z{2,4}]. (I.5.16)

Note that the summation over cyclic permutations is replaced by summation over Z{2,4}.

5.4 Further amplitudes

We have computed the O(p6) 6-point amplitude, and using the closed Mandelstam bases
presented in appendix D, it is possible to present its reduced form given in appendix E.1.
The O(p6) divergent part is given explicitly in the supplementary material as well as the
O(p8) expression. The O(p2) 10-point is given in appendix E.2. Finally the O(p2) 12-point
amplitude is given in appendix E.3.

We have also computed several amplitudes whose expressions are too large to overview.
They have been verified by checking their Adler zeroes, and in some cases by running brute-
force Feynman diagram calculations. Beyond these amplitudes, we have generated the
flavour-ordered diagrams of many more amplitudes using our program fODgE, described
in section 4.3. Here, we only summarise the number and general properties of the diagrams
to give an idea of how the complexity scales. The summary is given in table I.1.

For all entries labelled “Yes” in table I.1 that are not included in the main text, the flavour-
ordered diagrams are given in the supplementary material. Most of the amplitudes them-
selves are too long to be practically written down, but they can be generated by using the
freely available programs described in section 4.3.

In the table, we note that the number of diagrams grows more rapidly with n (the number
of particles) than withN (the power-counting order). Especially whenN > n, the number
of new diagrams is very small. This is also reflected in the computational effort needed: the
O(p2) 10-point, O(p6) 8-point and O(p8) 6-point amplitudes took approximately 10 min-
utes each to calculate with fORM [48, 49], while the O(p4) 10-point amplitude took almost
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Table I.1: Summary of the number of O(pN ) n-point diagrams. The SU(Nf ) column
shows the general count, and the U(Nf ) column shows the count without sin-
glet diagrams. The SU(3) and SU(2) columns show the number of distinct dia-
grams left when some Lagrangian terms have been eliminated using the Cayley-
Hamilton relation as discussed in section 2.1. Note that the distinction for
Nf = 2 assumes we remove the L1 and L2 term and emerges first at O(p4).
For Nf = 3 it emerges first at O(p6). The distinction between SU and U also
emerges first at O(p6). The rightmost column states whether an amplitude has
been computed by us, and provides references to the explicit amplitudes when
possible. Amplitudes marked with an asterisk have to our knowledge not been
calculated before; the O(p4) 6-point amplitude was recently independently re-
produced by [15]. Amplitudes marked with a dagger have been verified with a
brute-force Feynman diagram calculation; the remainder rely only on Adler ze-
roes for verification.

O(pN ) n
Number of diagrams Computed?

SU(Nf ) U(Nf ) SU(3) U(3) SU(2) U(2)

O(p2)

4 1 Yes (I.5.1)
6 2 [same as SU(Nf )] Yes (I.5.11)
8 4 Yes (I.5.13)
10 16 Yes (I.5.10)
12 73 Yes∗ (I.5.11)
14 414 No

O(p4)

4 2 1 1 Yes (I.5.4)
6 4 [same as SU(Nf )] 2 2 Yes†∗ (I.5.15-I.5.16)
8 18 8 8 Yes†∗ (I.5.2-I.5.9)
10 90 43 43 Yes∗
12 577 283 283 No

O(p6)

4 2 2 2 2 1 1 Yes (I.5.6)
6 10 9 9 8 4 3 Yes†∗
8 50 45 48 43 18 14 Yes∗
10 360 318 348 316 129 98 No

O(p8)
4 2 2 2 2 1 1 Yes∗ (I.5.8)
6 11 10 10 9 4 3 Yes∗
8 105 85 97 77 34 21 No

and hour and the O(p2) 12-point amplitude took over 2 days. At high N , the calculation
of vertex factors takes significant time, while at high n, the conversion to Mandelstam
variables is very time-consuming due to the large dimension of the kinematic space.

As the table shows, we have calculated all amplitudes with less than 100 diagrams, excluding
N ≥ 10, where the Lagrangian is not yet known. If we decide to push the frontier of large
n further in the future, we expect the required computational effort to be severe.
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6 Conclusions

In this work we have extended flavour ordering methods to include multiple traces and
higher orders in derivatives. The uniqueness of the method relies on the extended orthogo-
nality relation eq. (I.3.32). We implemented the constraints in a diagram generator and used
this then to calulate a number of amplitudes in the NLSM with more legs and derivatives
than obtained previously.

Our methods are fairly constrained in which models they can be applied to, since they hinge
on the existence of flavour structures and the contraction identity eq. (I.3.15). On the other
hand, they are readily extended to extremely high-order and many-particle amplitudes.
They may also have some applicability to loop diagrams and massive particles under ChPT.
A tentative discussion of these possibilities can be found in [37].

Flavour-ordering serves as an enhancement of the standard diagrammatic approach, and as
such is rather brute-force in nature. This contrasts with the recursive approach developed
in [11], in which subtler properties such as soft limits play a much clearer role. These
methods can also be applied to a wider range of models. The downside is that practical
calculations require algebraic manipulations that are not entirely obvious. Flavour-ordering
calculations can be very extensive, but are mathematically trivial and easily automated.
Further developments of recursion relations in [15] have offset the algebraic difficulties, but
soft recursion retains the fundamental limitation that recursive calculation of an O(pm) n-
point amplitude requires n > m. Therefore, the O(p6) 6-point can not be reached by such
means, and must be supplied as a seed amplitude if O(p6) amplitudes are to be calculated
for more than 6 particles. For this, our methods seem to be the only viable option other
than brute-force Feynman diagrams.
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A The NNLO NLSM Lagrangian

The NNLO ChPT Lagrangian LChPT
6 was first determined in [39]. It has 21 terms that do

not vanish when external fields are removed, but this turns out to be an overcomplete basis
for the NLSM. In tandem with the NNNLO ChPT Lagrangian L8 in [40], the authors
of that paper produced a version of LChPT

6 where removing external fields yields a minimal

120



NLSM Lagrangian with 19 terms. It was not published there, but we present it in table I.2.
The first 135 terms of the Lagrangian in [40] constitute a minimal NLSM Lagrangian L8.

The Lagrangian of [39] is expressed as

LChPT
6 =

112∑
i=1

KiYi, (I.1.1)

whereKi are LECs and Yi are monomials in the fields. Terms 1–6 and 49–63 remain when
external fields are removed. All monomials except Y1, Y2 and Y6 correspond directly to
monomials in the minimal NLSM Lagrangian

L6 =

19∑
i=1

L6,iO6,i, (I.1.2)

where L6,i are LECs and O6,i are monomials. The remaining Yi can be decomposed in
terms of O6,i using the relations described in [40], which for the NLSM simplify to

∇µuν = ∇νuµ, ∇µu
µ = 0,

[∇µ,∇ν ]uρ =
1

4
[[uµ, uν ], uρ].

(I.1.3)

This yields the relations

Y1 = −3O6,3 +O6,4 +O6,15 − 2O6,16 +
1

2
O6,17 +O6,18 −

1

2
O6,19, (I.1.4)

Y2 = −8O6,2 + 2O6,8 − 2O6,9, (I.1.5)

Y6 = 4
O6,2 −O6,1

3
− 2
O6,9 −O6,8

3
− 2
O6,12 −O6,11

3
. (I.1.6)

Furthermore, some factors of 2 appear since [39] includes higher derivatives in terms of
hµν ≡ ∇µuν +∇νuµ, which is just 2∇µuν in the NLSM.

A.1 Renormalisation

NNLO ChPT was renormalised in [52], based on [39]. For renormalisation in the NLSM,
we transfer those results to the minimal Lagrangian given in table I.2. For details on the
renormalisation, see [52] and sources therein. At NLO, it is performed by splitting the
LECs as

Li = (cµ)d−4 [Lr
i (µ, d) + ΓiΛ] , Λ =

1

16π2(d− 4)
. (I.1.7)

The measurable LECs are given by Lr
i (µ, d) as d→ 4, with

Γ0 =
Nf

48
, Γ1 =

1

16
, Γ2 =

1

8
, Γ3 =

Nf

24
. (I.1.8)
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Table I.2: The terms of the NNLO NLSM Lagrangian L6. The numbering of the terms is
taken from material produced in tandem with [40]; the choice of which terms
to keep at small Nf (see section 2.1) is carried over from [39]. The rightmost
column shows howKi combine to give L6,i when the overcomplete Lagrangian
is decomposed.

Monomial Number in L6 Relation to [39]
SU(Nf ) SU(3) SU(2)

⟨uµ∇νuρ⟩⟨uµ∇νuρ⟩ 1 1 1 K4 − 4
3K6

⟨uµ∇νuρ⟩⟨uρ∇µuν⟩ 2 2 −8K2 +
4
3K6

⟨uµ∇νu
µuρ∇νuρ⟩ 3 3 2 4K5 − 3K1

⟨uµ∇νuρu
µ∇νuρ⟩ 4 4 3 4K3 +K1

⟨uµuµ⟩⟨uνuν⟩⟨uρuρ⟩ 5 K51

⟨uµuµ⟩⟨uνuρ⟩⟨uνuρ⟩ 6 K56

⟨uµuν⟩⟨uνuρ⟩⟨uρuµ⟩ 7 K63

⟨uµuµ⟩⟨uνuνuρuρ⟩ 8 5 K50 + 2K2 +
2
3K6

⟨uµuµ⟩⟨uνuρuνuρ⟩ 9 6 K57 − 2K2 − 2
3K6

⟨uµuµuν⟩⟨uνuρuρ⟩ 10 7 K53

⟨uµuν⟩⟨uµuνuρuρ⟩ 11 K55 +
2
3K6

⟨uµuν⟩⟨uµuρuνuρ⟩ 12 K62 − 2
3K6

⟨uµuνuρ⟩⟨uµuνuρ⟩ 13 K59

⟨uµuνuρ⟩⟨uµuρuν⟩ 14 K61

⟨uµuµuνuνuρuρ⟩ 15 8 4 K49 +K1

⟨uµuµuνuρuνuρ⟩ 16 9 5 K54 − 2K1

⟨uµuµuνuρuρuν⟩ 17 10 K52 +
1
2K1

⟨uµuνuµuρuνuρ⟩ 18 11 K60 +K1

⟨uµuνuρuµuνuρ⟩ 19 12 6 K58 − 1
2K1

Likewise, at NNLO the LECs are split as

L6,i =
(cµ)2(d−4)

F 2

[
Lr
6,i(µ, d)− Γ

(2)
i Λ2 −

(
Γ
(1)
i + Γ

(L)
i (µ, d)

)
Λ
]
. (I.1.9)

The Γ’s for the corresponding renormalisation of the Ki are given in [52]. Using the right-
most column of table I.2, the renormalisation of the minimal L6 is given in table I.3.

A.2 Explicit divergences

In analogy with eq. (I.1.7), we define

M4,R = (cµ)d−4
[
Mr

4,R(µ, d) +M
(1)
4,RΛ

]
, (I.1.10)

whereM4,R is some O(p4) stripped amplitude,Mr
4,R(µ, d) is the corresponding measur-

able amplitude expressed in terms of Lr
i (µ, d), andM(1)

6,R is its divergence.
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Table I.3: The coefficients used to renormalise L6 as per eq. (I.1.9). Lr
i are the renormalised

LECs of L4 as per eqs. (I.1.7) and (I.1.8)). Note how the highest power of Nf in
Γ
(1,2)
i is 3 minus the number of traces in O6,i.

i Γ
(2)
i 16π2Γ

(1)
i Γ

(L)
i

1 − 5
72Nf − 19

864Nf − 4
3L

r
3 − 4Lr

0

2 − 5
9Nf

1
864Nf − 16

3 L
r
3 − 8

3L
r
0 − 8

3NfL
r
2 − 8NfL

r
1

3 − 5
16 −

5
96N

2
f − 1

96 + 35
6912N

2
f − 25

6 L
r
2 − 5

3L
r
1 − 23

12NfL
r
3 − 7

6NfL
r
0

4 5
16 + 5

288N
2
f

1
96 −

17
6912N

2
f

25
6 L

r
2 +

5
3L

r
1 +

3
4NfL

r
3 +

1
6NfL

r
0

5 1
64

5
256

1
4L

r
2

6 − 1
32

3
128 − 1

2L
r
2

7 − 1
8 − 1

32 −2Lr
2

8 1
24Nf

25
576Nf

17
12L

r
3 +

13
6 L

r
0 +

2
3NfL

r
2 − 1

2NfL
r
1

9 − 1
96Nf − 5

1152Nf − 13
24L

r
3 − 29

12L
r
0 +

1
12NfL

r
2

10 − 1
64Nf − 5

256Nf − 5
4L

r
3 + Lr

0

11 − 5
144Nf − 1

1728Nf
2
3L

r
3 +

4
3L

r
0 − 2

3NfL
r
2

12 − 13
144Nf − 53

1728Nf − 7
6L

r
3 − 19

3 L
r
0 − 1

3NfL
r
2

13 − 1
192Nf

65
2304Nf − 3

4L
r
3 + Lr

0

14 7
192Nf − 23

2304Nf
5
4L

r
3 + Lr

0

15 5
48 + 1

144N
2
f − 7

576 −
25

6912N
2
f

5
6L

r
2 +

5
3L

r
1 +

1
6NfL

r
3 +

1
3NfL

r
0

16 − 5
24 −

1
96N

2
f − 19

576 + 5
1152N

2
f − 2

3L
r
2 − 16

3 L
r
1 − 1

4NfL
r
3 − 1

6NfL
r
0

17 5
96 −

1
48N

2
f

43
576 + 49

13824N
2
f

1
4L

r
2 +

7
6L

r
1 − 2

3NfL
r
3 − 2

3NfL
r
0

18 5
48 + 1

64N
2
f − 67

576 −
7

1728N
2
f

1
6L

r
2 + 3Lr

1 +
17
24NfL

r
3 +

1
12NfL

r
0

19 − 5
96 −

1
144N

2
f

25
288 + 5

4608N
2
f − 7

12L
r
2 − 1

2L
r
1 − 1

3NfL
r
3

Using this notation and eq. (I.1.8), the divergence of theO(p4) 4-point amplitude eq. (I.5.4)
is

−iF 4M(1)
4,{4} = Nf

s2 + t2 + u2

12
, −iF 4M(1)

4,{2,2} =
s2 + t2 + u2

2
. (I.1.11)

These kinematic terms are highly symmetric, more so than the amplitude itself. The diver-
gences of the 6-point amplitude eqs. (I.5.15) and (I.5.16)) are

−iF 6M(1)
4,{6} =

Nf

12

{
s12

(
s12 + s34 +

3s45
2

+ s234

)
− s123s234

2

−
(s12 + s23)

(
s245 + s256

)
+ s12s23 (s45 + s56)

s123

}
+ [Z{6}]

−iF 6M(1)
4,{2,4} =

1

64

{
3

(
t21 + 2t1t2 +

t1t3
2
− 3t1t5

)
+ 4t27 − 2t29

+
1

t1

[
3 (t2t3t4 − 2t2t3t5 − 2t2t4t5 − 2t3t4t5) + 3t23(t2 + t4)

+
3(t3 − 2t5)

2

(
T 2
234 + 2T 2

789

)]}
+ [Z{2,4}].

(I.1.12)
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We use the closed basis eq. (I.4.1), and Tijk = ti + tj + tk.

An O(p6) analogue of eq. (I.1.11) can be formed based on eq. (I.1.9):

M6,R =
(cµ)2(d−4)

F 2

[
Mr

6,R(µ, d)−M
(2)
6,RΛ

2 −
(
M(1)

6,R +M(L)
6,R(µ, d)

)
Λ
]
, (I.1.13)

whereM(2,L)
6,R will gain contributions from both eqs. (I.1.7) and (I.1.9).

Using this notation and the above renormalisation, the divergences of the O(p6) 4-point
amplitude are eq. (I.5.6) are

−iF 4M(1)
6,{4} =

1

72

(
2t3 − s3 − u3

)
+

N2
f

5184

[
8t3 + 35(s3 + u3)

]
,

−iF 4M(2)
6,{4} =

5

12

(
2t3 − s3 − u3

)
−

5N2
f

72

(
s3 + u3

)
,

−iF 4M(L)
6,{4} = 10

2Lr
1 + 5Lr

2

9

(
2t3 − s3 − u3

)
+

2NfL
r
0

9

[
2t3 − 7(s3 + u3)

]
− NfL

r
3

9

[
2t3 + 23(s3 + u3)

]
, (I.1.14)

−iF 4M(1)
6,{2,2} =

Nf

1296

[
s3 + 58(u3 + t3)

]
,

−iF 4M(2)
6,{2,2} = −5Nf

108

[
8s3 + 5(u3 + t3)

]
,

−iF 4M(L)
6,{2,2} = −16Nf

3Lr
1 + Lr

2

9

(
s3 + t3 + u3

)
+

2Lr
0

9

[
23(u3 + t3)− 8s3

]
− 8Lr

3

9

(
u3 + t3 + 4s3

)
, (I.1.15)

with the dependence on (µ, d) left out for compactness. These expressions do not share
the simplicity and symmetry of their O(p4) counterparts. The analogous divergences of
the O(p6) 6-point amplitude (appendix E.1) are given in the supplementary material.

B The orthogonality of flavour structures

Here, we prove the orthogonality relation eq. (I.3.32) used in section 3.6 to prove the
uniqueness of stripped amplitudes. It relies on notation defined in that and previous sec-
tions.

Let σ, ρ ∈ Sn be two permutations, and Q,R be two n-index flavour splittings. We use
these to build two flavour structures, and begin by focusing on the trace in Fσ(Q) that
contains aσ(n) and the trace in Fρ(R) that containis aρ(m), where we have picked m such
that ρ(m) = σ(n). If there are more traces present, we leave them as passive “spectators”
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for the time being. Then, we use eq. (I.3.15) to contract aσ(n) in

Fσ(Q) ·
[
Fρ(R)

]∗
=

[
⟨Xaσ(n−1)aρ(m−1)Y ⟩ −

1

Nf
⟨Xaσ(n−1)⟩⟨aρ(m−1)Y ⟩

]
· (spectators),

(I.2.1)
where the product is defined as in eq. (I.3.32).

From here on, we work only to leading order inNf , so we can omit the second term above.
(Note that we do not do this because Nf is necessarily large, but because we wish to use
power counting of Nf to separate orthogonal flavour structures.) We then move on to
contracting σ(n − 1), followed by σ(n − 2), and so on. Each time we contract σ(n − i),
the situation may be one of the following cases:

1. ρ(m− i) = σ(n− i). We carry on through a special case of the contraction identity
eq. (I.3.16), and find

⟨Xaσ(n−i)aσ(n−i)Y ⟩ =
N2

f − 1

Nf
⟨XY ⟩. (I.2.2)

This may be repeated as long as there are indices left, and we gain a factor ofNf (plus
O(N−1

f ), which we ignore) each time.

2. ρ(m − i) ̸= σ(n − i), but ρ(m′) = σ(n − i) is in the same trace as σ(n − i). Here,
eq. (I.3.16) (after some reshuffling of X and Y ) gives

⟨Xaσ(n−i)Y aσ(n−i)⟩ =
[
⟨X⟩⟨Y ⟩ − 1

Nf
⟨XY ⟩

]
. (I.2.3)

the second term is suppressed by a factor of N−1
f , and the first must eventually take

a detour through eq. (I.2.1) before continuing; in any case, this case falls behind case
1 by at least two factors of Nf .

3. ρ(m′) = σ(n− i) is in a different trace than σ(n− i). This forces us to bring in the
spectator trace containing ρ(m′) and go back to eq. (I.2.1), so this case falls behind
case 1 by at least one factor of Nf .

4. The trace is empty. We gain a factor of ⟨1⟩ = Nf , and if there are no spectator traces
left, we are done. Otherwise, we bring in the next pair of spectators and continue
from eq. (I.2.1).

If Q = R = {n} and σ ≡ ρ (mod ZR), we will only encounter case 1 until we finish with
a case 4, and will gain a total factor of Nn

f [1 + O(N−2
f )]. If Q = R ̸= {n} on the other

hand, we will encounter case 4 at each split, but the leading power of Nf stays the same.

If σ ̸≡ ρ (mod ZR), we must eventually encounter case 2, so this falls behind the σ ≡
ρ (modZR) case by at least two powers of Nf . If Q ̸= R, we will encounter case 3 (without
a corresponding case 4) whenever there is a mismatch in the flavour splits, so we will fall
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behind the Q = R case by at least one power of Nf . This is the reason for the values of γ
stated below eq. (I.3.32).

Thus, we have proven

Fσ(Q) ·
[
Fρ(R)

]∗
= Nn

f

1 +O
(
N−2

f

)
if Q = R and σ ≡ ρ (mod ZR),

O
(
N−γ

f

)
otherwise (γ ≥ 1)

(I.2.4)

which is eq. (I.3.32).

C The double soft limit

This appendix provides a derivation of eq. (I.4.4), which is used to calculate the double soft
limit of stripped amplitudes. We start by quoting eq. (I.4.2), which is proven in [36] and
gives the double soft limit of the full amplitude:

lim
ε→0
Maba1···an

m,n+2 (εp, εq, p1, . . . , pn) =

− 1

F 2

n∑
i=1

fabcfaidc
pi · (p− q)
pi · (p+ q)

Ma1···a(i−1)da(i+1)···an
m,n (p1, · · · , pn). (I.3.1)

In order to find the corresponding expression for a stripped amplitude, we project it out
by contracting both sides with [Fid(R)]

∗ over all flavour indices (see eq. (I.3.12) and sec-
tion 3.6). On the left-hand side of eq. (I.3.1), this will project out limϵ→0Mm,R(εp, εq, p1, . . .).
For simplicity, we start withR = {n+ 2} before moving on to the general multi-trace case.
According to eq. (I.3.12), the right-hand side of eq. (I.3.1) has the form (schematically, with
kinematic terms omitted)∑

σ∈Sn/Zn

fabcfaidc⟨aσ(1) · · · aσ(i−1)daσ(i+1) · · · aσ(n)⟩ (I.3.2)

plus flavour-split structures, but those can be ignored due to eq. (I.3.32). We have omit-
ted the algebra generators for readability; ai means tai . The structure constants can be
contracted in using eq. (I.3.15) and fabc = −i⟨ta[tb, tc]⟩, leaving

−⟨aσ(1) · · · aσ(i−1)[[a, b], aσ(i)]aσ(i+1) · · · aσ(n)⟩. (I.3.3)

With appendix B in mind, we immediately see that this is orthogonal to Fid(n+2) unless
σ = id. The nested commutators expand to

[[a, b], ai] = abai − baai − aiab+ aiba. (I.3.4)

Since a comes before b in Fid(n+2), the second and fourth terms vanish under the projec-
tion. Also, ab occurs at the beginning (or, equivalently, the end) of the flavour structure,
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so the first term only contributes when i = 1, and the third term only contributes when
i = n. This collapses the sum in eq. (I.3.1) to those two cases, leaving

lim
ε→0
Mm,{n+2}(εp, εq, p1, . . . , pn) =

1

F 2

{
p1 · (p− q)
p1 · (p+ q)

− pn · (p− q)
pn · (p+ q)

}
Mm,{n}(p1, · · · , pn). (I.3.5)

If we now move on to generalR, we see that a and bmust reside in the same trace, since the
nested commutator on the right-hand side is inside a single trace. This is essentially the con-
dition stated for the validity of eq. (I.4.4), with (pn, p, q, p1)mapping to (pi−1, pi, pj , pj+1).
The trace they reside in can be treated exactly like the single-trace flavour structure of
eq. (I.3.5), and all other traces in the flavour structure follow along as “spectators”, as in a
normal application of eq. (I.3.32). The reduction {n + 2} → {n} in eq. (I.3.5) then gen-
eralises to R → R′ as described below eq. (I.4.4). This generalisation therefore results in
eq. (I.4.4), which is thereby proven.

D Closed Mandelstam bases

Here, we show the derivation of closed Mandelstam bases for all 6-particle flavour struc-
tures as described in section 4.2. Note that neither basis is unique, and that better basis
choices may exist.

D.1 The basis for R = {2, 4}

This is the only basis other than B{6} that is needed at O(p4). This flavour split permits
four different propagator momenta (corresponding to the labellings in eq. (I.3.21)). Since
Z{2,4} is Abelian and rather small, it is simple to handle, and some inspired trial-and-error
gives the closed basis B{2,4} = {t1, . . . , t9} with elements¹¹

t1 = s123, t2 = s124, t3 = s125, t4 = s126,

t5 = s45 + s56 +
s125 − s123

2
, t6 = s45 − s56 +

2s124 − (s124 + s125)

2
,

t7 = s14 + s15 +
s123 + s126

2
, t8 = s15 + s16 +

s123 + s124
2

,

t9 = s14 + s16 +
s123 + s125

2
.

(I.4.1)

Under the action of Z{2,4}, they transform as

21 3456 : {t1, . . . t6, t7, t8, t9} → {t1, . . . t6, −t7,−t8,−t9},
12 4563 : {t1, . . . t6, t7, t8, t9} → {t2, t3, t4, t1, t5,−t6, +t8,−t7,−t9},

(I.4.2)

¹¹This basis is a slight improvement over the one used in [37]. It modifies t5 and t6 so that they map to
themselves under Z{2,4}.
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where the first permutation cycles the 2-trace, and the second cycles the 4-trace; together,
they generate all of Z{2,4}. Note that Z{2,4} does not act as a true permutation on the basis,
since some elements change sign. This appears to be unavoidable, but is not a problem —
in fact, any complex phase can be applied without hindering simplification.

D.2 The basis for R = {3, 3}

The group Z{3,3} is generated by the permutations g1 = 231 456 and g2 = 456 123. The
group is not abelian, which makes its effects less predictable. Among all kinematic invari-
ants, only s123 maps to itself under both generators, and is also the only squared propagator
momentum permitted by this flavour structure. The other 24 invariants decompose into a
sextuplet and two nonets under the group, and can be mapped out in a variant of a Cayley
graph:

45

64 56

12

31 23

⋆
14

⋆
36

⋆
25

•
24

•16

• 35◦34

◦ 26

◦
15

345

135

234145

134

125245

124

235

(I.4.3)
Each node in the graph represents sij··· and is marked with ij · · · . The action of g1 is repre-
sented by following the solid-drawn triangles clockwise, and g2 is represented by following
the dashed lines.

We must now extract 9 basis elements t1, . . . , t9 that are closed under Z{3,3}. In the first
nonet, we have marked three sets of invariants with ⋆, • and ◦. They map to each other
as (⋆, •, ◦) → (•, ◦, ⋆) under g1 and as (⋆, •, ◦) → (⋆, ◦, •) under g2, so suitable linear
combinations of the elements in each set will be closed under Z{3,3}. Similar constructions
taken from the sextet and the other nonet turn out not to be linearly independent from
these.

Unfortunately, it appears impossible to form a basis that contains the propagator momen-
tum s123 as an element, but since there is only one propagator, this is not as much of a
problem as it would be under a group that supports more operators. Also, it appears im-
possible to form real linear combinations without sacrificing either linear independence
or closedness. Guided by the fact that g1 has period 3, we instead insert the third root of
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unity, ω = e2πi/3, and find the closed and complete basis B{3,3} with elements¹²

t1 = −s36 + s14 + s25
3

, t2 = −s24 + s35 + s16
3

, t3 = −s15 + s26 + s34
3

,

t6 =
s36 + ωs14 + ω2s25

3
, t4 =

s24 + ωs35 + ω2s16
3

, t5 =
s15 + ωs26 + ω2s34

3
,

t9 =
ω2s36 + ωs14 + s25

3
, t7 =

ω2s24 + ωs35 + s16
3

, t8 =
ω2s15 + ωs26 + s34

3
,

(I.4.4)
In each row above, the first basis element comes from the ⋆ set, the second from the • set,
and the third from the ◦ set. The propagator momentum is s123 = 3

2 (t1 + t2 + t3). The
basis transforms as

g1 : {t1, t2, t3, t4, t5, t6, t7, t8, t9} → {t2, t3, t1, ωt5, ωt6, ωt4, ω2t8, ω
2t9, ω

2t7},
g2 : {t1, t2, t3, t4, t5, t6, t7, t8, t9} → {t1, t3, t2, t4, t6, t5, t7, t9, t8}.

(I.4.5)
Since stripped amplitudes are real, the complex basis must be compensated for by complex
coefficients. Still, B{3,3} is just as valid as a real basis, and is useable for simplification.

D.3 The basis for R = {2, 2, 2}

The group Z{2,2,2} is also non-abelian, and can be tackled similarly to Z{3,3}. We choose
the generators g1 = 34 56 12, g2 = 21 34 56 and g3 = 65 43 21 with the hopes that they be
well-behaved, since B{6} is closed under two of them. This flavour structure permits six
propagators that form a sextet under the group. The Cayley graph is

156

126

123

125

134

124 (I.4.6)

where g1 and g2 are represented as in eq. (I.4.3), and the dotted lines represent the action
of g3. The remaining invariants decompose into a triplet, a quadruplet, and a 12-plet:

12 56

34

136 145

235

135

⋆45

⋆
46

⋆ 36

⋆
35

•23

•13

• 24

• 14

◦61 ◦62

◦
51

◦
52

(I.4.7)

¹²The basis presented in [37] was not complete. This mistake was not discovered until after its publication,
and is corrected here at the cost of losing the propagator.
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Like in eq. (I.4.3), we have marked three closed sets of sij ’s. From these, it is possible to
construct three linearly independent elements that close the basis without need for the less
structured triplet and quadruplet. Thus, B{2,2,2} has elements

t1 = s123, t2 = s126, t3 = s156, t4 = s124, t5 = s125, t6 = s134,

t7 =
s61 − s62 + s52 − s51

2
, t8 =

s23 − s24 + s14 − s13
2

, t9 =
s45 − s46 + s36 − s35

2
,

(I.4.8)
where the factors of 1/2 remove some large powers of 2 that show up when writing ampli-
tudes in this basis. Unlike in B{3,3}, there was no need to resort to complex numbers. The
basis transforms as

g1 : {t1, t2, t3, t4, t5, t6, t7, t8, t9} → {t1, t2, t6, t4, t5, t3,−t7,−t8, t9},
g2 : {t1, t2, t3, t4, t5, t6, t7, t8, t9} → {t2, t3, t1, t5, t6, t4, t8, t9, t7},
g3 : {t1, t2, t3, t4, t5, t6, t7, t8, t9} → {t1, t3, t2, t4, t6, t5, t7, t9, t8}.

(I.4.9)

No element is a fixed point, which makes the basis harder to work in.

E Explicit amplitudes

E.1 The O(p6) 6-point amplitude

This amplitude has been simplified using the closed bases of appendix D. The terms were
reduced to coset representatives in fODgE followed by manual post-processing. Greater
simplification might be possible for some terms. The amplitude consists of four stripped
amplitudes with flavour split {6}, {2, 4}, {3, 3}, and {2, 2, 2}.

There are three diagrams with a single-trace flavour structure:

6 6 4 4

(I.5.1)

The corresponding stripped amplitude is

−iF 8M6,{6}

= 2(L3 + 2L0)
2
{
2(s12 + s23)

2(s45 + s56)− s123(s12 + s23)(s45 + s56)
}

+ 16L3L0s12s23(s45 + s56)

− 8(L2
0 + L3L0)

(s12 + s23)
2(s45 + s56)

2

s123
− 2L2

3

(s212 + s223)(s
2
45 + s256)

s123

+ L6,3

{[
s123s34 −

s123s234
2

]
(s12 + [Z6])− s12s23s34

+
2(s12 + s45)

3 + (s312 + s345)

3
−
[
(s12 + s23)

3 + 2(s312 + s323)
]
(s45 + s56)

3s123

}
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+ L6,4

{
s123s234s345 +

s2123
2

(s234 + s345 − 2s34)

− 2s123s234(2s12 + s23 + 2s34)−
s12s45

2
(s123 + s345)

+ s123 [s12 + s56 + 2s12s34 + 2s34s56 + 4s34(s23 + s34 + s45)]

+
(s12 + s45)

3

2
− (s12 + s23)

3(s45 + s56)

s123

}
− L6,15 {s12s45s56}

+ L6,16

{
s12(s34 + s45)(s123 + s345)− s12s123s345 − s12s34s56 −

s12s45
2

(s12 + [Z6])
}

+ L6,17 {s12s45(s123 + s345 − s12 − s45)}
+ L6,18

{
(s12 + s45 + s2234)(s123 + s345)− s12s234(s123 + [Z6])− 4s12s123s345

+2s12s234(s23 + s34 + s45 + s56 + s61)− 2s12s34(s23 + s45 + s56 + s61)}
+ L6,19

{
2s123s234s345 + 3s2234(s123 + s345)− 3s12s234(s123 + [Z6])− 6s12s123s345

+6s12s234(s23 + s34 + s56 + s61)− 6s12s23s34 − 2s12s34s56}
+ [Z6]. (I.5.2)

The “+ [Z6]” acts on all terms in the amplitude.

There are also three diagrams with a {2, 4}-split flavour structure:

6 6 4 4

(I.5.3)

Using the closed basis eq. (I.4.1), the stripped amplitude is

−iF 8M6,{2,4}

= L0L1

{
t1
[
−t21 + t22 + 2t3(3t2 + t3 − 2t5) + t24 + 4t25

]
− T 2

234(t3 − 2t5)
2

t1

}
+ L0L2

{
t1

[
t1

(
2t5 −

5t1
4

)
+ t2

(
t2
4
+

3t2
2

+ 4t5

)
+3t3

(
t3
2
− t5

)
+
t24
4
− 3t25 + T 2

789

]
− (t3 − 2t5)

2(T 2
234 + 4T 2

789)

4t1

}
+ L3L1

{
− t

3
1

2
+ 2t21(t5 − t6)

+ t1

[
2t2(t3 + 2t5 + t6) + t3(5t3 + t5 − 3t6)−

3t24
2

+ t25 + t26

]
+

1

t1

[
−t32(t2 + t3 + 2t4 + 2t6) + t22

(
t23
2
+ t3(t5 − 3t6)− t24 − 4t4t6

)
+ t2(t

2
3t4 + t3t

2
4) + 2t2t3t4(t5 − t6)− 2t2t

2
4t6 −

t43
2

+ t33(−t4 + t5 + t6)−
t23t

2
4

2
+ (t5 + t6)(t3t

2
4 + 2t23t4)− T 2

234(t
2
5 + t26)

]}
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+ L3L2

{
−9t31

8
+ t21

t5 + t6
2

+ t1

[
t2

(
11t2
2

+
t3
2
+ 3t5 +

5t6
2

)
+
t3
4
(5t3 + t5 + t6)−

3(t25 + t26)

4

− 7t24
8

+ t7(t9 − 3t8) + 5t8t9 +
t28 + t9

2

]
+ t5(2t

2
7 + t29) + 2t6t7t8

+
1

t1

[
T 2
789

4

(
[2t2 − t3]2 + [2t5 + 2t6 − t3]2 + 8t6[t2 − t5]

)
− T 2

234

4
(t25 + t26) +

t5 + t6
4

(2t23t4 + t3t
2
4)−

t42
4
− t32

4
(t3 + 2t4 + 2t6)

+
t22
8
(t23 + 2t3t5 − 6t3t6 − 2t24 − 8t4t6)

+
t2
2

(
t23
2
[t4 + 2t5] +

t3
2

[
t24 + 2t4t5 − 2t4t6

]
− t24t6

)]}
+ L6,1H(3) + L6,2H(−1)

+ L6,8

{
t1
4

[
t22 − 2t23 + t24 − 2(t25 + 2t26) + 2t6(t1 + t3)

]}
+ L6,9

{
−t1

[
4t25 +

t22 + t24
2

+ t2t3 − t5(t1 + 2t2 + t3)

]}
+ L6,11

{
t31
16
− t1

16

[
t22 − t23 + t24 + 4(t28 − t27) + 2t2(t5 + t6) + 4t9(t8 + t7)

]
− t5t

2
9

8
− t6t

2
7

4

}
+ L6,12

{
t31
16
− t1

16

[
(t2 + t3)

2 + t24 + 4(t7 + t8)
2 + 4t29 − 4t3t5

]
+ t5

2t27 − t29
4

}
+ [Z{2,4}], (I.5.4)

where Tijk = ti + tj + tk, and

H(η) = 3t31
128
− 3t21t5

32

+ t1

[
9t22
128

+ t2
3t3 − 5t5

32
+
t23
32
− 5t3t5

64
+

9t24
128

+
η

32
(t7 + t8 − t9)2 +

η

8
(t27 + t28 − t29)

]
− ηt5

2t27 + t29
16

+
3

16t1

[
t32
t3 − 2t5

24
+
t22t3
8

(t3 + t4 − 2t5)−
t22t4t5
4

+
t2t

2
3

8
(t3 + 2t4 − 2t5) +

t2t3
8

(t24 − 4t4t5) +
t2t

2
4t5
4

+
t33
24

(t3 + 3t4 + 2t5) +
t23t4
8

(t4 − 2t5) +
t44
24
− t24t5

12
(3t3 + t4)

+
ηT 2

789

6

(
t23 + t2t3 − t2t5 + t3t4 − 2t3t5 − 2t4t5

)]
(I.5.5)
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is used for compactness.

There are two diagrams with a {3, 3} flavour split:

6 4 4

(I.5.6)

Using the closed basis eq. (I.4.4), the stripped amplitude is

−iF 8M6,{3,3}

= 64(L0 + L3)
2

{
(s12 + s23)

(
s245 + s45s56 + s256

)
+
(
s212 + s12s23 + s223

)
(s45 + s56)

−
(
s212 + s12s23 + s223

) (
s245 + s45s56 + s256

)
s123

}

+ L6,10

{
t31
4
− (t44 + t37) +

t1t2t3
2

+ t4t5t6 + t7t8t9 +
3t1t

2
2

2
+ 6ωt1t5(t9 − t8)

}
+ L6,13

{
t31 − (t34 + t37)− 3ωt1t4t7

}
+ L6,14 {t1t2t3 − (t4t5t6 + t7t8t9) + 6ωt1t5t9}
+ [Z{3,3}], (I.5.7)

where ω = e2πi/3 is a third root of unity. The contribution from the singlet diagram turns
out to be simpler to express in the standard basis B{6} than in the closed basis.

Lastly, there are two diagrams for the {2, 2, 2} flavour split:

6 4 4

(I.5.8)

Using the closed basis eq. (I.4.8), the stripped amplitude is

−iF 8M6,{2,2,2}

= L2
1

{
− t

3
1

2
+ t1(2t

2
2 + 6t2t4 + t24)

− 1

t1

[
t44
2
+ (t2 + t5)

2(t24 + 4t3t4t
2
3) + 2t2t3t5t6 + 2t2t

2
3t5 + 8t24t2t3 + 4t34t2

]}
+ L1L2

{
t1t

2
8 +

3t1t
2
4

2
+
t1t2
2

(4t9 + 5t4 − 8t3 − 5t2)−
5t31
4

− 1

t1

[
t22
2

(
t22 + 2t33 + 3t24 − t25 + 4t29 + 2t2t4 + 4t2t9 + 8t4t9 + 8t3t4 + 4t3t6

)
+ t2t3(4t

2
4 + 4t4t5 + t5t6) + 2t2t9(t

2
4 − t25) + 2t2t

2
9(t4 + t5)

+ 2t2t
3
4 +

t2t
2
4t5
2
− t2t4t25 + t24t

2
8 +

t44
4

]}
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− L2
2

{
21t31
32

+
3t1t

2
8

4
− 11t1t

2
4

16
+
t1t2
4

(t4 + 6t3 + t2 − 10t9)

+
1

4t1

[
t22
2

(
t22 + 2[t3 + t4]

2 − t25 + 4[t28 + t29] + 2t2[t4 + 2t9] + 8t4t9 + 8t3t8
)

+ t2t3
(
2t24 + 2t4t5 + t5t6 − 4t5t8 + 8t8t9

)
+ t2t4

(
t24 + 2t4t9 − t25 + 4t29

)
− 2t2t

2
5t9 + 2t2t5

(
t29 − t28

)
+ t28

(
t24 + 2t29 + 8t2t9

)
+
t44
8

]}
+ [Z{2,2,2}] (I.5.9)

This completes the amplitude.

E.2 The O(p2) 10-point amplitude

Due to the absence of flavour splits,O(p2) amplitudes are relatively easy to extend to many
legs. The 10-point amplitude, which is also computed in [36], is given by the 16 diagrams¹³

and has the stripped amplitude

−16iF 8M2,{10} = 5s12 + 2s1234

−
(s12 + s23 + s34 + s45 + s14 + s25)(s67 + s78 + s89 + s9A + s69s7A)

2s15

− s12 + s23
s123

{
2 (s45 + s56 + s67 + s78 + s89 + s9A) + 2 (sA3 + s14)

−
(s67 + s78)(s45 + s9A + sA3 + s14 + s58 + s69)

2s678

−
(s78 + s89)(s45 + s56 + s14 + s47 + s7A + s69)

s789

−
(s89 + s9A)(s45 + s56 + s67 + s14 + s47 + s7A)

s89A

+
s9A + sA3

s48

[
(s67 + s78)(s45 + s58)

2s678
− (s45 + s56 + s67 + s78 + s47 + s58)

]
¹³The circular shape is a result of the automatic diagram drawing in fODgE. The external legs are evenly

distributed around a circle, and the location of each vertex is generated from the mean locations of all legs and
vertices connected to it.
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+
sA3 + s14

s59

[
(s67 + s78)(s58 + s69)

2s678
− (s56 + s67 + s78 + s89 + s58 + s69)

]
+
s14 + s45
s15

[
− (s67 + s78 + s89 + s9A + s69 + s7A)

+
(s67 + s78)(s69 + s9A)

2s678
+

(s78 + s89)(s69 + s7A)

s789
+

(s89 + s9A)(s67 + s7A)

s89A

]
+ s47 + s58 + s69 + s7A +

(s7A + sA3)(s45 + s56)(s78 + s89)

s456s789

}
+ [Z10]. (I.5.10)

To avoid problems with multi-digit indices, we switch to hexadecimal and write A instead
of 10. To abbreviate long index lists, we write ij for i(i + 1) · · · (j − 1)j. Indices wrap
around cyclically; A3 means A123.

E.3 The O(p2) 12-point amplitude

This is a novel amplitude, and takes the most time to compute of all amplitudes presented
in this work. It consists of 73 diagrams:
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and has the stripped amplitude

−32iF 10M2,{12} = 14s12 + 5s1234 + 2s123456

+
s12 + . . .+ s45 + s14 + s25

s15

{
−
(s67 + . . .+ s9A + s69 + s7A) (s69 + s7A)

s6A
× [2(s67 + . . .+ sBC) + (s69 + . . .+ s9C) + 2(s16 + s6B)]

+
(s78 + . . .+ sAB + s7A + s8B) (s16 + s6B)

2s7B

}
+
s12 + s23
s123

{
− [5 (s45 + . . .+ sBC + sC3 + s14) + 2 (s47 + . . .+ s9C + s49 + . . .+ s7C)]

+
s45 + s56
s456

[
2 (s78 + . . .+ sBC + sC3 + s47 + s16) + s7A + s8B + s9C + s49

+
s78 + s89
s789

(
− [sAB + sBC + s7A + sC3 + s16 + s49] +

sAB + sBC

2sABC

+
(s7A + sAB)(s16 + sC3)

s7B
+

(s7A + s49)(sBC + sC3)

sB3

)
+
s89 + s9A
s89A

(
− [sBC + s47 + s7A + s8B + sC3 + s16] +

(s7A + s8B)(sC3 + s16)

s7B

+
(s8B + sBC)(s47 + s16)

s8C
+

(sBC + sC3)(s47 + s7A)

sB3

)
+
s9A + sAB

s9AB

(
− [s47 + s78 + s9C + sC3 + s16] +

(s47 + s78)(s9C + sC3)

s48

+
(s78 + s8B)(sC3 + s16)

s7B
+

(s8B + s9C)(s47 + s16)

s8C

)
+
s47 + s78
s48

(
(s49 + s9A)(sBC + sC3)

sB3

− [s9A + sAB + sBC + s9C + sC3 + s49]

)
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−
(sC3 + s16)(s78 + . . .+ sAB + s7A + s8B)

s7B

−
(s47 + s16)(s89 + . . .+ sBC + s8B + s9C)

s8C

−
(sBC + sC3)(s78 + s89 + s9A + s47 + s7A + s49)

sB3

]
+
s56 + s67
s567

[
2 (s89 + . . .+ sBC + sC3 + s14 + s47 + s58) + s8B + s9C + s49 + s5A

+
s9A + sAB

s9AB

(
(s47 + s58)(s9C + sC3)

s48
− 1

)
+
s47 + s58
s48

(
(s49 + s9A)(sBC + sC3)

sB3

− (s9A + sAB + sBC + s9C + sC3 + s49)

)
+
s58 + s89
s59

(
(sBC + sC3)(s49 + s5A)

sB3

+
(sC3 + s14)(s5A + sAB)

sC4

− (sAB + sBC + sC3 + s14 + s49 + s5A)

)
−

(s14 + s47)(s89 + . . .+ sBC + s8B + s9C)

s8C

−
(sBC + sC3)(s89 + s9A + s47 + s58 + s49 + s5A)

sB3

−
(sC3 + s14)(s89 + s9A + sAB + s58 + s8B + s5A)

sC4

]
+
s67 + s78
s678

[2 (s45 + s9A + sAB + sBC + sC3 + s14 + s58 + s69) + s9C + s49 + s5A + s6B

+
s45 + s14
s15

(
(s69 + s9A)(s6B + sBC)

s6A
− (s9A + sAB + sBC + s69 + s9C + s6B)

)
+
s45 + s58
s48

(
(s49 + s9A)(sBC + sC3)

sB3

− (s9A + sAB + sBC + s9C + sC3 + s49)

)
+
s58 + s69
s59

(
(sBC + sC3)(s49 + s5A)

sB3

+
(sC3 + s14)(s5A + sAB)

sC4

− (sAB + sBC + sC3 + s14 + s49 + s5A)

)
+
s69 + s9A
s6A

(
(s45 + s5A)(sBC + sC3)

sB3

+
(sC3 + s14)(s5A + s6B)

sC4

− (sBC + sC3 + s14 + s5A + s6B)

)
−

(sBC + sC3)(s45 + sBC + s58 + s69 + s49 + s5A)

sB3

−
(sC3 + s14)(s9A + sAB + s58 + s69 + s5A + s6B)

sC4

]
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+
s78 + s89
s789

[
1

2
(s45 + s56 + s14 + s69) + 2(s16 + s49 + s5A + s6B)

+
s14 + s45
s15

(
(s6B + sBC)(s69 + s7A)

s6A
+

(s7A + sAB)(s16 + s6B)

2s7B

− (sAB + sBC + s69 + s7A + s16 + s6B)

)
+
s56 + s69
s59

(
(sBC + sC3)(s49 + s5A)

2sB3

+
(sC3 + s14)(s5A + sAB)

sC4

− (sAB + sBC + sC3 + s14 ++s49 + s5A)

)
+
s69 + s7A
s6A

(
(sC3 + s14)(s5A + s6B)

2sC4

− (s45 + sBC + sC3 + s14 + s5A + s6B)

)]
+
s14 + s45
s15

[
2 (s67 + . . .+ sBC + s16 + s6B) + s69 + . . .+ s9C

−
(s6B + sBC)(s67 + . . .+ s9A + s69 + s7A)

s6A

−
(s16 + s6B)(s78 + . . .+ sAB + s7A + s8B)

s7B

−
(s16 + s67)(s89 + . . .+ sBC + s8B + s9C)

s8C

]
+
s45 + . . .+ s78 + s47 + s58

s48

[
(s9A + sAB + sBC + s9C + sC3 + s49)

−
(s49 + s9A)(sBC + sC3)

sB3

]
+
s56 + . . .+ s89 + s58 + s69

s59

[
(sAB + sBC + sC3 + s14 + s49 + s5A)

−
(s49 + s5A)(sBC + sC3

sB3

−
(s5A + sAB)(sC3 + s14)

sC4

]
+
s67 + . . .+ s9A + s69 + s7A

s6A

[
(s45 + sBC + sC3 + s14 + s5A + s6B)

−
(s45 + s5A)(sBC + sC3)

sB3

−
(sC3 + s14)(s5A + s6B)

sC4

]
+
s78 + . . .+ sAB + s7A + s8B

s7B

[
(s45 + s56 + sC3 + s14 + s16 + s6B)−

(sC3 + s14)(s56 + s6B)

sC4

]
+

(s89 + . . .+ sBC + s8B + s9C)(s56 + s67 + s14 + s47 + s16)

s8C

+
(sBC + sC3) [2(s45 + . . .+ s9A + s49 + s9A) + s47 + . . .+ s7A]

sB3

+
(sC3 + s14) [2(s56 + . . .+ sAB + s5A + s6B) + s58 + . . .+ s8B]

sC4

}
+ [Z12]. (I.5.11)
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We use the same abbreviations as above, with A,B,C = 10, 11, 12. Furthermore, we
contract sums like s12 + s23 + s34 + s45 to s12 + . . .+ s45.
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ABSTRACT: We present positivity bounds, derived from the principles of analyticity, uni-
tarity and crossing symmetry, that constrain the low-energy constants of chiral perturba-
tion theory. Bounds are produced for 2, 3 or more flavours in meson-meson scattering
with equal meson masses, up to and including next-to-next-to-leading order (NNLO),
using the second and higher derivatives of the amplitude. We enhance the bounds by us-
ing the most general isospin combinations posible (or higher-flavour counterparts thereof )
and by analytically integrating the low-energy range of the discontinuities. In addition,
we present a powerful and general mathematical framework for efficiently managing large
numbers of positivity bounds.
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1 Introduction

Chiral perturbation theory (ChPT) is the most widespread theory for low-energy quantum
chromodynamics (QCD). It is an effective field theory (EFT) which reformulates the non-
perturbative behaviour of low-energy QCD as a perturbative theory of new degrees of
freedom, physically interpreted as bound states of quarks. When constructed using n light
quark flavours, the degrees of freedom are the n2− 1 light pseudoscalar mesons: the pions
for n = 2, with the kaons and eta added for n = 3. ChPT was developed by Gasser &
Leutwyler [1, 2] based on earlier work by Weinberg [3]; see [4, 5] for modern introductions
with further references.

At leading order in the low-energy expansion, the only parameters of ChPT are the me-
son mass and decay constant, but higher orders introduce a rapidly increasing number of
Wilson coefficients or low-energy constants (LECs) which, while in principle derivable
from the underlying QCD dynamics, must in practice be seen as unknowns. At next-
to-leading order (NLO), the LECs can be measured reasonably well with experimental or
lattice methods, although the precision is typically only one or two significant digits. At
next-to-next-to-leading order (NNLO), only tentative results are presently available. For
a review of LEC measurements, see [6].

All quantum field theories must obey the axioms of unitarity, analyticity and crossing sym-
metry, and normally do so by construction. However, it turns out that these axioms are
not automatically satisfied by EFTs such as ChPT when perturbativity is assumed at a fixed
order in the expansion. Therefore, imposing the axioms actually adds new information,
typically by placing bounds on the scattering amplitudes. Pioneering work was done by
Martin [7] before the development of ChPT as such. Bounds on NLO two-flavour ChPT
amplitudes, which in turn translate to bounds on the LECs, were first obtained in [8–10]
and extended in [11, 12]. Further improvements were made in [13] and extended to three-
flavour ChPT in [14]. There is ongoing research in extending these methods, both specific
to ChPT and with broader scope; recent examples include [15–18].

The method of [13, 14], which serves as the basis of our method, is to apply dispersion re-
lations (a consequence of analyticity) to a meson-meson scattering amplitude decomposed
into isospin components (for higher flavours, the Clebsch-Gordan decomposition is used).
Then, crossing symmetry and the optical theorem (a consequence of unitarity) are applied
to give a positivity condition on the decomposed amplitude. With the amplitude calcu-
lated in terms of the LECs to some order, this results in bounds on linear combinations
of LECs. More recently, stronger bounds have been obtained in [19, 20] by improving
this method; put extremely simply, this was done with more sophisticated use of disper-
sion relations and crossing symmetry, respectively. Put similarly simply, our work instead
improves the handling of the isospin decompositions and the LEC bounds themselves, al-
though some improvements similar to [19] are also made. Perhaps more importantly, we
perform the first extension to NNLO ChPT with any number of flavours (two flavours
was treated in [19]), albeit with the simplification that all mesons have the same mass. The
LECs are independent of the chosen masses, although the bounds do depend on the mass.
At NLO they depend only on the ratio of the meson mass and the subtraction scale µ, at
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NNLO also on the ratio of the meson mass and decay constant.

Preliminary results of this work are presented in the Lund University master thesis [21].
Our work is structured as follows: section 2 introduces ChPT and its LECs; section 3
(backed by appendix A) presents the 2→ 2 meson scattering amplitude used to obtain the
bounds; section 4 (backed by appendix B) introduces the mathematical framework used
to manage them; section 5 (backed by appendix C) presents the method of [13, 14] and the
improvements made to it; and section 6 displays the most interesting bounds we obtain,
with final remarks given in section 7.

2 Chiral perturbation theory

n-flavour ChPT is based around a non-linear sigma model (NLSM), whose degrees of
freedom are the n2−1 Nambu-Goldstone bosons that arise when the chiral symmetryG =
SU(n)L × SU(n)R of n-flavour massless QCD is spontaneously broken into its diagonal
subgroup H = SU(n)V . The Goldstone bosons live in the coset space G/H, which is
isomorphic to SU(n).

The presence of quark masses, electroweak interactions, etc. can be accounted for by in-
cluding four external n × n flavour-space matrix fields — s (scalar), p (pseudoscalar), vµ
(vector) and aµ (axial vector)¹ — into the massless QCD Lagrangian. These additions
were introduced in [1, 2], and endow the Nambu-Goldstone bosons with masses and in-
teractions that allow them to accurately model the light pseudoscalar mesons, turning the
SU(n) NLSM into ChPT proper.

The Nambu-Goldstone boson fields can be organised into a n × n flavour-space matrix
field u(ϕ) [24, 25]. Under the chiral transformation (gL, gR) ∈ G, u(ϕ) transforms as

u(ϕ) −→ gR u(ϕ)h
[
gL, gR, u(ϕ)

]
= h

[
gL, gR, u(ϕ)

]
u(ϕ) g†L, (II.2.1)

where h ∈ H is defined by this transformation. By requiring that G can be made local
while leaving the extended QCD Lagrangian invariant, it can be shown that

χ ≡ 2B(s+ ip) −→ gRχg
†
L,

ℓµ ≡ vµ − aµ −→ gLℓµg
†
L − i∂µgLg

†
L,

rµ ≡ vµ + aµ −→ gRrµg
†
R − i∂µgRg

†
R,

(II.2.2)

where B is a constant related to the leading-order (LO) meson decay constant and the ⟨q̄q⟩
condensate.

It is possible to rewrite u(ϕ), χ, ℓµ, rµ in a basis of fields that transform entirely in terms of
gL and gR, as is done in [2] to derive the NLO ChPT Lagrangian. We instead choose to

¹One can add more types of externals fields to ChPT. Examples are symmetric or antisymmetric tensors [22,
23]. These extensions are not relevant for this work.
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follow [26–28] and rewrite them in a basis of fields that all transform as X → hXh†:

uµ ≡ i
[
u†(∂µ − irµ)u− u(∂µ − iℓµ)u†

]
,

χ± ≡ u†χu† ± uχ†u,

fµν± ≡ uFµν
L u† ± u†Fµν

R u,

(II.2.3)

where Fµν
L ≡ ∂µℓν − ∂νℓµ − i[ℓµ, ℓν ] and similarly for Fµν

R and rµ. These transformation
properties are conserved under the covariant derivative ∇µ defined as

∇µX = ∂µX + [Γµ, X], Γµ ≡
1

2

[
u†(∂µ − irµ)u+ u(∂µ − iℓµ)u†

]
. (II.2.4)

2.1 The ChPT Lagrangian

There exists an infinite number of possible Lagrangian terms consistent with the symmetries
of ChPT. They can be organised into a power-counting hierarchy in the small energy-
momentum scale p, where uµ,∇µ = O(p) and χ±, f

µν
± = O(p2). Thus,

LChPT = L2 + L4 + L6 + . . . , (II.2.5)

where L2n is O(p2n); odd powers are forbidden by parity. The coefficient of each term in
L2n is a separate LEC.²

The LO Lagrangian is

L2 =
F 2

4
⟨uµuµ + χ+⟩, (II.2.6)

where F is a LEC related to the LO meson decay constant, and ⟨. . .⟩ indicates a trace over
flavour-space indices. The LEC of theχ+ term is BF 2

4 as defined in eq. (II.2.2). By requiring
that the kinetic term is canonically normalised, one can fix u(ϕ) = 1 + itaϕa

F
√
2
+ . . ., where

ta are the generators of SU(n) and Einstein’s summation convention is used. The higher-
order terms depend on the choice of parametrisation, which influences the computation
of amplitudes but not the amplitudes themselves.

The next-to-leading-order (NLO) Lagrangian, which was first determined in [2], is in terms
of our basis³

L4 = L̂0⟨uµuνuµuν⟩+ L̂1⟨uµuµ⟩2 + L̂2⟨uµuν⟩⟨uµuν⟩+ L̂3⟨(uµuµ)2⟩

+ L̂4⟨uµuµ⟩⟨χ+⟩+ L̂5⟨uµuµχ+⟩+ L̂6⟨χ+⟩2 + L̂7⟨χ−⟩2 + L̂8⟨χ2
+ + χ2

−⟩
− iL̂9⟨fµν+ uµuν⟩+ L̂10⟨fµν+ f+µν − f

µν
− f−µν⟩,

(II.2.7)

²Some “terms”, like the one associated with L̂10 in eq. (II.2.7) below, actually consist of several terms. These
transform into each other under the discrete symmetries of the Lagrangian, and must therefore appear with the
same LEC.

³There are two additional contact terms proportional to ⟨χ2
+ − χ2

−⟩ and ⟨fµν+ f+µν + fµν
− f−µν⟩. They are

needed for renormalisation but make no physical contributions to the amplitudes considered here.
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where the LECs are L̂i. The analogous NNLO Lagrangian with 112 LECs Ki was de-
termined in [27]. The 1862-LEC NNNLO Lagrangian, which we do not use here, was
determined in [28].

For small n, the Cayley-Hamilton identity reduces the number of independent terms, and
consequently the number of LECs. At n = 3, it is standard to eliminate L̂0; the remaining
LECs are conventionally labelled Li with i preserved. At n = 2, it is customary to also
redefine the LECs slightly, resulting in the li of the original Gasser-Leutwyler convention
[1]. At NNLO, the 112+3 Ki (ordinary+contact terms) are reduced to 90+4 Ci at n = 3
and 52+4 ci at n = 2 as detailed in [27]. For more details on the Lagrangians for different
n, see [6, 29].

The NLO renormalisation was first carried out in [1, 2], and the extension to NNLO
in [29]; for more information on ChPT renormalisation, see [30]. A slightly altered MS
scheme is conventionally used, with renormalisation scale µ = 0.77 GeV. The renormalised
LECs are denoted Xr

i where X = ℓ, L, L̂, etc. At n = 2 flavours it is conventional to use
ℓ̄i instead, related to ℓri through

ℓri =
γi

32π2

[
ℓ̄i + ln

(
M2

phys

µ2

)]
(II.2.8)

where Mphys is the chosen meson mass and γi are coefficients found in [1]. Effectively,
eq. (II.2.8) sets the renormalisation scale to Mphys for ℓ̄i.

3 Scattering amplitudes

In this section, and in the remainder of the paper, we will restrict ourselves to a simplified
version of ChPT. Firstly, we will not include the external (axial) vector fields aµ, vµ in the
Lagrangian, which essentially amounts to ignoring electroweak corrections to the ampli-
tude. Secondly, we will assume that all mesons have the same mass Mphys, as mentioned
in the introduction. While this limits the phenomenological applicability of three-flavour
ChPT, it is a reasonable approximation that simplifies the procedure for obtaining bounds
(see section 5). More importantly, the full NNLO amplitude is currently not available
in the general-mass case; available results only cover ππ scattering in two- [30, 31] and
three-flavour [32] ChPT, as well as πK scattering [33], and are not expressed in terms of
elementary functions. With equal masses, we normalise all Mandelstam variables so that
s+ t+ u = 4.

For the general equal-mass n-flavour scattering process a + b → c + d, there are nine
independent flavour structures possible: the six distinct index permutations on ⟨tatbtctd⟩
and the three on ⟨tatb⟩⟨tctd⟩. Due to charge conjugation symmetry, a permutation is not
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independent of its reverse. Thus, the scattering amplitude M may be decomposed as

M(s, t, u) =
[
⟨tatbtctd⟩+ ⟨tdtctbta⟩

]
B(s, t, u)

+
[
⟨tatctdtb⟩+ ⟨tbtdtcta⟩

]
B(t, u, s)

+
[
⟨tatdtbtc⟩+ ⟨tctbtdta⟩

]
B(u, s, t)

+ δabδcdC(s, t, u) + δacδbdC(t, u, s) + δadδbcC(u, s, t),

(II.3.1)

where s, t, u are the normalised Mandelstam variables, and crossing symmetry imposes
that only two distinct functions B,C are used.⁴ This is the form used in [34], where the
functions B,C are given to NNLO for SU(n) equal-mass ChPT. The NLO results were
first obtained in [1, 35].

3.1 Other forms of the amplitude

With two flavours, the traces can be evaluated in terms of Kronecker δ’s, giving⁵

M(s, t, u) = δabδcdA(s, t, u) + δacδbdA(t, u, s) + δadδbcA(u, s, t), (II.3.2)

which is the form used in [13] (up to reordering the arguments as permitted by the sym-
metries of A). In terms of the functions above,

A(s, t, u) = C(s, t, u) +B(s, t, u) +B(t, u, s)−B(u, s, t). (II.3.3)

the function A was first determined to NLO in [1].

With n flavours, the traces can be evaluated using the anticommutation relation {ta, tb} =
2
nδ

ab + dabctc to give⁶

M(s, t, u) = dabedcdeB′(s, t, u) + dacedbdeB′(t, u, s) + dadedbceB′(u, s, t)

+ δabδcdC ′(s, t, u) + δacδbdC ′(t, u, s) + δadδbcC ′(u, s, t),
(II.3.4)

where
B′(s, t, u) = 1

2

[
B(s, t, u) +B(t, u, s)−B(u, s, t)

]
,

C ′(s, t, u) = C(s, t, u) + 4
nB

′(s, t, u).
(II.3.5)

⁴These functions have the symmetriesB(s, t, u) = B(u, t, s) and C(s, t, u) = C(s, u, t), which is consistent
with the symmetries of the respective flavour structures. Likewise, A(s, t, u) = A(s, u, t) holds in eq. (II.3.2).

⁵This form can be traced back to the original current-algebra calculation [36] of the ππ amplitude.
⁶The relevant identity is

⟨tatbtctd⟩+ ⟨tatdtctb⟩ = 1
2

(
dabedcde + dadedcbe − dacedbde

)
+ 2

n

(
δabδcd + δadδcb − δacδbd

)
.

It is most easily derived by first using tatb = 1
n
δab + 1

2
(dabc + ifabc)tc repeatedly, and then removing all

occurrences of f with the Jacobi-like identity

fabefcde = dacedbde − dbcedade + 4
n

(
δacδbd − δadδbc

)
,

which is derived from the observation that [[ta, tb], tc] = {{tb, tc}, ta} − {{tc, ta}, tb}.
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With three flavours, the Cayley-Hamilton theorem⁷ allows for the removal of one term at
the expense of symmetry, leaving

M(s, t, u) = δabδcdA1(s, t, u) + δacδbdA2(s, t, u) + δadδbcA3(s, t, u)

+ dabedcdeB1(s, t, u) + dacedbdeB2(s, t, u)
(II.3.6)

where

B1(s, t, u) = B(t, u, s)−B(u, s, t), B2(s, t, u) = B(t, u, s)−B(s, t, u),

A1(s, t, u) = C(s, t, u) +B(s, t, u) + 1
3B1(s, t, u),

A2(s, t, u) = C(t, u, s) +B(u, s, t) + 1
3B2(s, t, u),

A3(s, t, u) = C(u, s, t) +B(s, t, u) +B(u, s, t)−B(t, u, s).

(II.3.7)

This is the form used in [14].

3.2 Structure of the amplitude

The functions B(s, t, u) and C(s, t, u) consist of one part that is polynomial in the Man-
delstam variables and contains the LECs, plus the so-called unitarity correction that is non-
polynomial in the Mandelstam variables.⁸ The polynomial parts are quadratic at NLO and
cubic at NNLO. At NLO, the unitarity correction does not contain any LECs; at NNLO,
the unitarity correction depends on the NLO LECs.

The unitarity correction at NLO depends on the function J̄ , which originates in the loop
integral as shown in [1]. The NNLO unitarity correction introduces four analogous func-
tions ki, i = 1, . . . 4 [31, 32, 34, 37]. More details about these functions can be found in
appendix C.

The LEC content of the amplitude considered here is more limited than that of the full
ChPT Lagrangian. About half of the Lagrangian terms are dropped by not including the
external (axial) vector fields, and a significant part of the NNLO Lagrangian cannot ap-
pear in a 4-particle process below NNNLO. Also, the number of LECs is reduced by
the Cayley-Hamilton theorem in the 2- and 3-flavour case as described in section 2.1.
Lastly, L̂7,K12,K24,K30,K34,K36,K41 and K42, i.e. those whose Lagrangian terms con-
tain ⟨χ−⟩, disappear in the equal-mass limit.⁹ Even with these reductions, there are still
35 (27 at n = 3, 18 at n = 2) NNLO LECs that are involved in the amplitude at hand, in
addition to 8 (7, 4) NLO LECs.

⁷More specifically the n = 3 Cayley-Hamilton theorem, recast as the SU(3)-specific identity
3
(
dabedcde + dbcedade + dcaedbde

)
= 2

(
δabδcd + δbcδad + δcaδbd

)
.

⁸This split is not uniquely defined, but we adhere to the conventions of [34].
⁹This can be understood by noting that χ− has odd parity, so all terms in its expansion contain an odd number

of pseudoscalar fields. If the even-parity Lagrangian term contains two traces of odd-parity objects, it can therefore
only result in six-point vertices or larger, since the trace of a single field vanishes. Therefore,K12,K24 etc. do not
appear in the NNLO four-point amplitude, whereas L̂7 only appears in s, t, u-independent tadpole diagrams.
As will be shown in section 5, we only consider s-derivatives of the amplitude, so also L̂7 disappears for our
purposes.
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3.3 Irreducible amplitudes

The scattered particles are in the adjoint representation of SU(n). The Clebsch-Gordan
decomposition of the initial and final states is therefore¹⁰

Adj⊗ Adj = RI +RS +RA +RA
S +RS

A +RS
S +RA

A, (II.3.8)

where RI is the singlet representation, and the sub(super)scripts on the other represen-
tations indicate lower (upper) index pairs that are symmetric (S) or antisymmetric (A).
Details on the representations and their dimensions can be found in [34, 38]. From this, it
follows that the scattering amplitude can be decomposed in terms of seven corresponding
irreducible amplitudes TJ . In terms of eq. (II.3.1), these are

RI : TI = 2
n2 − 1

n

[
B(s, t, u) +B(t, u, s)

]
− 2

n
B(u, s, t)

+ (n2 − 1)C(s, t, u) + C(t, u, s) + C(u, s, t),

RS : TS =
n2 − 4

n

[
B(s, t, u) +B(t, u, s)

]
− 4

n
B(u, s, t)

+ C(t, u, s) + C(u, s, t),

RA : TA = n
[
B(t, u, s)−B(s, t, u)

]
+ C(t, u, s)− C(u, s, t),

RA
S , R

S
A : TAS = TSA = C(t, u, s)− C(u, s, t),

RS
S : TSS = 2B(u, s, t) + C(t, u, s) + C(u, s, t),

RA
A : TAA = −2B(u, s, t) + C(t, u, s) + C(u, s, t).

(II.3.9)

Only six amplitudes are needed, since TSA and TAS are identical due to crossing symmetry
etc., as mentioned in [14].

In SU(3), the RA
A representation vanishes, so only five amplitudes are needed. In [14], the

representations are labelled by their dimensions, which are 1, 8, 8, 10 and 27 in the order
they appear in eqs. (II.3.8) and (II.3.9).

In SU(2), only RI , RA and RS
S remain and have dimension 1, 3 and 5, respectively. The

corresponding amplitudes can be identified with the isospin components T 0, T 1 and T 2,
respectively. In terms of eq. (II.3.2), they are

T 0 = 3A(s, t, u) +A(t, u, s) +A(u, s, t),

T 1 = A(t, u, s)−A(u, s, t),
T 2 = A(t, u, s) +A(u, s, t).

(II.3.10)

This well-known relation can be derived from eqs. (II.3.3) and (II.3.9).

¹⁰[35] contains an intuitive description of how the decomposition is performed.
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3.4 Eigenstate amplitudes

A general amplitude can be expressed as aJT J , where the index J runs over the representa-
tions in the order they appear in eq. (II.3.8). For a physically applicable scattering process,
however, the initial and final states should typically be taken as a product of mass eigen-
states such as π,K and η. This corresponds to fixing aJ to a small selection of values so
that T (ab→ cd) = aJ(ab→ cd)T J . Here, as in [13, 14], we consider only elastic scattering
of eigenstates, with aJ(ab→ ab) ≡ aJ(ab).

With two flavours, where J runs over I, A, SS (alternatively, isospin 0, 1, 2), the eigenstates
are¹¹

aJ(π
0π0) =

(
1
3 0 2

3

)
, aJ(π

0π±) =
(
0 1

2
1
2

)
, aJ(π

±π±) =
(
0 0 1

)
,

(II.3.11)
and with three flavours, where J runs over I, S,A,AS, SS, they are¹²

aJ(π
0π0) =

(
1
8

1
5 0 0 27

40

)
, aJ(π

±π±,K±K±,K0K0) =
(
0 0 0 0 1

)
,

aJ(π
0π±) =

(
0 0 1

3
1
6

1
2

)
, aJ(K

±π±,K±π∓,K0K±) =
(
0 0 0 1

2
1
2

)
,

aJ(K
0π±) =

(
0 3

10
1
6

1
3

1
5

)
, aJ(Kπ

0) =
(
0 3

20
1
12

5
12

7
20

)
,

aJ(πη) =
(
0 1

5 0 1
2

3
10

)
, aJ(Kη) =

(
0 1

20
1
4

1
4

9
20

)
;

(II.3.12)
see e.g. [13, 14], respectively.¹³ With four or more flavours, ChPT loses its applicability as
low-energy QCD since there are only three light quarks in the Standard Model. Therefore,
there is little sense in considering eigenstates for n flavours, although we can note that
T (π±π± → π±π±) = TSS regardless of n.

One of our extensions over previous work is that we use all possible values for the aJ , rather
than restricting them to eigenstates (see section 5 for what constitutes “possible”). This can
be done without complications, since the mass eigenstates are completely degenerate in the
equal-mass limit. However, it is still useful to view those states that remain mass eigen-
states in the unequal-mass case as special. Below, by “eigenstate” we will specifically mean
scattering between these states. Note that by treating general aJ , we effectively include
inelastic scattering such as aJ(π0π0 → π+π−) =

(
1
3 0 − 1

3

)
. However, it turns out that

inelastic scattering is useless for our purposes by invariably failing to satisfy eq. (II.5.6b).
This (in addition to [13, 14]) is why this section has focused mainly on elastic scattering.

3.5 Crossing symmetry

Since all amplitudes can be expressed as aJT J , crossing symmetry implies that channel
crossing must take the form of a linear transformation of aJ . For s ↔ u crossing, the

¹¹aJ is invariant under particle/antiparticle exchange, so aJ (π+π+) = aJ (π
−π−) ≡ aJ (π

±π±). Note,
however, that aJ (π±π∓) ̸= aJ (π

±π±) — they are instead related by crossing; see eq. (II.3.14).
¹²Here, π without superscript stands for any of π± or π0 (and similarly forK) whenever aJ is agnostic about

the particular choice. We use aJ (ab, cd, . . .) for aJ (ab) = aJ (cd) = . . ..
¹³Equation (II.3.12) differs from the values given in [14]: there was an error or misprint in aJ (π0π±), and all

eigenstates were not included, with aJ (K±π±) given as aJ (Kπ).
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transformation T I(u, t, s) = CIJ
u T J(s, t, u) is given by [21, 38]

CIJ
u =



1
n2−1 1 −1 4−n2

2
n2(n+3)
4(n+1)

n2(n−3)
4(n−1)

1
n2−1

n2−12
2(n2−4) − 1

2 1 n2(n+3)
4(n+1)(n+2)

n2(3−n)
4(n−1)(n−2)

1
1−n2 − 1

2
1
2 0 n(n+3)

4(n+1)
n(3−n)
4(n−1)

1
1−n2

2
n2−1 0 1

2
n(n+3)

4(n+1)(n+2)
n(n−3)

4(n−1)(n−2)
1

n2−1
1

2+n
1
n

n−2
2n

n2+n+2
4(n+1)(n+2)

n−3
4(n−1)

1
n2−1

1
2−n − 1

n
n+2
2n

n+3
4(n+1)

n2−n+2
4(n−1)(n−2)


(II.3.13)

which also works at n = 2, 3 by removing appropriate rows and columns:

CIJ
u

∣∣
SU(2)

=
1

6

 2 −6 10
−2 3 5
2 3 1

 CIJ
u

∣∣
SU(3)

=


1
8 1 −1 − 5

2
27
8

1
8 − 3

10 − 1
2 1 9

8
− 1

8 − 1
2

1
2 0 27

40
− 1

8
2
5 0 1

2
9
40

1
8

1
5

1
3

1
6

7
40

 .

(II.3.14)
These versions can be found in [13, 14] respectively.

4 Linear constraints

In this section, we will introduce a mathematical language of linear constraints. This for-
malism is introduced before positivity bounds (see section 5) so that they can be established
in full generality. In order to make the handling of the bounds as general and powerful as
possible, we dedicate this section to developing some useful mathematical definitions and
results.¹⁴

4.1 Definition and combination of constraints

For a set of parameters bi (e.g. the LECs), a linear constraint takes the general form

α1b1 + α2b2 + . . .+ αnbn − c ≥ 0, (II.4.1)

where c, αi are known coefficients. By treating αi, bi as components of vectors, this is
equivalent to

α · b ≥ c. (II.4.2)

¹⁴In this section employ mathematical notation that, depending on the background of the reader, may not be
entirely familiar. We also define new notation for our own purposes. A glossary covering all potentially unfamiliar
notation is provided in appendix B.7.
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We say that b lives in the parameter space, whereas α lives in the constraint space.¹⁵ Since
α and c can be rescaled by any positive scalar without changing the inequality, any linear
constraint can be described by the pair ⟨α, c⟩ with c ∈ {1, 0,−1}.

We say that a point b satisfies a constraint ⟨α, c⟩ if α · b ≥ c. We denote by B (⟨α, c⟩) the
subset of parameter space that satisfies ⟨α, c⟩. For any α, it is clear that the origin b = 0
is contained in B (⟨α,−1⟩) but not in B (⟨α, 1⟩), and lies on the boundary of B (⟨α, 0⟩)
(except when α = 0).

The LECs will typically be subject to many linear constraints simultaneously. We will nor-
mally use the letter Ω to denote a constraint, either a single one like ⟨α, c⟩ or a combination
of several such constraints. Given two constraints Ω,Ω′, we write the constraint that im-
poses both of them simultaneously as Ω + Ω′. A point b satisfies Ω + Ω′ if and only if it
satisfies both Ω and Ω′; thus, the B notation naturally generalises through B(Ω + Ω′) ≡
B(Ω) ∩ B(Ω′). For combinations of many constraints, we will generalise + into e.g.
Ω =

∑
i ⟨αi, ci⟩.

4.2 Stronger and weaker constraints

A hierarchy can be established among the constraints based on how strong (restrictive) they
are. For instance, b1 ≥ 1 is stronger than b1 ≥ 0. We will write the stronger-than relation
as Ω ≥ Ω′, which holds if all points that satisfy Ω also satisfy Ω′. Thus, Ω ≥ Ω′ is equivalent
to B(Ω) ⊆ B(Ω′). Naturally, we say Ω = Ω′ if B(Ω) = B(Ω′), and say Ω > Ω′ if Ω ≥ Ω′

but Ω ̸= Ω′. Just like subset relations, our stronger-than relation is not a total ordering, as
there exist many pairs of constraints Ω,Ω′ where neither is stronger than the other. From
our definitions, it trivially follows that

(Ω + Ω′) ≥ Ω, (Ω + Ω′) ≥ Ω′,

(Ω + Ω′) = Ω ⇔ Ω ≥ Ω′,
(II.4.3)

so that if Ω ̸≥ Ω′ and Ω′ ̸≥ Ω, their combination Ω + Ω′ is indeed a new, strictly stronger
constraint. Furthermore, we see that, for all λ > 0, κ > 1, and α ̸= 0,

⟨λα, 1⟩ > ⟨λα, 0⟩ > ⟨λα,−1⟩, (II.4.4)
⟨κα, 1⟩ < ⟨α, 1⟩, ⟨λα, 0⟩ = ⟨α, 0⟩, ⟨κα,−1⟩ > ⟨α,−1⟩. (II.4.5)

From the c = 0 version of eq. (II.4.5), we see that ⟨α, 0⟩ is not a unique representation
of the constraint, since we can freely rescale α without changing it. We may remove this
ambiguity by constraining α to be a unit vector.

There exists a constraintΩ∞, equivalent to ⟨0, 1⟩ or e.g. ⟨α, 1⟩+⟨−α, 1⟩, that is not satisfied
by any point. It follows that Ω∞ ≥ Ω and Ω∞ + Ω = Ω∞ for any Ω. A constraint that is
satisfied by all points, i.e. ⟨0,−1⟩ or ⟨0, 0⟩, will be called a trivial constraint.

¹⁵We consistently use Roman letters for vectors in parameter space and Greek letters for vectors in constraint
space. In general, parameter space may be any finite-dimensional real vector space, with constraint space consid-
ered as its dual.
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4.3 Determining the relationship between constraints

b1

b2

b1

b2

b1

b2

Figure II.1: A cropped depiction of twelve random two-dimensional constraints ⟨αi, c⟩ for
c = +1 (left, yellow), c = 0 (middle, blue) and c = −1 (right, red) illustrated
as the parameter-space lines αi · b = c. The side of the line that is excluded by
the constraint is hatched. The region B(ωc) for ωc =

∑
i ⟨αi, c⟩, i.e. the set

of points that satisfy all the constraints, is shaded. The lines corresponding to
relevant constraints (i.e. those that actually delimit B(ωc); this is more closely
defined in section 4.4) are drawn more strongly than the rest.

We will now present a general result, which determines if a given linear constraint ⟨β, c⟩ is
weaker than an arbitrarily complicated constraint Ω. This will serve as the basis for all our
uses of linear constraints.¹⁶ For complete proofs, more details, and practical applications,
see appendix B.

Consider a set of linear constraints ⟨αi, c⟩ for i in some finite set I ⊂ N.¹⁷ Note that c is
the same for all constraints. Then let ωc ≡

∑
i∈I ⟨αi, c⟩;¹⁸ an example of such a constraint

is given in fig. II.1. Then define A(ωc) as the set of all points that can be expressed as∑
i∈I

λiαi, λi ≥ 0,
∑
i∈I

λi ∈ Λc, (II.4.6)
where

Λ1 = [1,∞), Λ0 = [0,∞), Λ−1 = [0, 1]. (II.4.7)
The shape of A(ωc) is illustrated in fig. II.2. With these definitions, the following holds:

Proposition 4.1 (determining if constraint is weaker, special case). Let ⟨β, c⟩ be a single
linear constraint, and let ωc ̸= Ω∞ be defined as above. Then ⟨β, c⟩ ≤ ωc if and only if
β ∈ A(ωc).

¹⁶Proposition 4.1, along with a version of the notation we use here, was defined in [21], although the proof was
completely different. An incorrect version of proposition 4.2 was also presented without proof. To the best of our
knowledge, these results are novel, although the relevant literature is vast and lies outside our area of expertise.
The closest we have found is [39], although their algorithm requires knowing a point that satisfies Ω, relies on
more complicated mathematical machinery, and does not include all the extensions presented further below in
sections B and 4.4.

¹⁷It is crucial that only finite combinations of constraints are considered, and it will normally be tacitly assumed
that all sets like I are finite. A limited extension to infinite sets is covered in appendix B.6.

¹⁸We use lowercase ω here to emphasise that it is not a general constraint. A similar treatment of general Ω is
given below.
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α1

α2

α1

α2

α1

α2

Figure II.2: Examples of the regions A(ω1) (left, yellow), A(ω0) (middle, blue) and
A(ω−1) (right, red) in constraint space, using the same αi as in fig. II.1. The
αi are represented as points ( , , , respectively) in the space, and the relevant
ones are filled (again, relevancy is defined in section 4.4). The convex hulls
(as defined in eq. (II.4.8)) of the αi are outlined. For comparison to fig. II.1,
it is helpful to remember that αi are normal vectors to the lines shown there,
and that larger |αi| correspond to lines passing closer to the origin. Note how,
given identical αi, A(ω0) is the union ofA(ω1) andA(ω−1) (this is easy to see
from eq. (II.4.7)) whereas the set of relevant constraints is the intersection of
the respective sets.

This is proven in appendix B.1. If ωc is a single linear constraint, this result reduces down
to eq. (II.4.5). The condition ωc ̸= Ω∞ is necessary, since there exist corner cases where
ωc = Ω∞ but A(ωc) fails to cover the entire constraint space.¹⁹ However, if A(ωc) does
cover the entire space, then it is certain that ωc = Ω∞.

In fig. II.2, we may note thatA(ωc) is closely related to the convex hull of theαi. In essence,
A(ωc) is obtained by forming the hull, and then also including all points that give weaker
constraints under eq. (II.4.5). We may also note that the convex hull can be defined as

Hull
(
{αi}i∈I

)
=

{∑
i∈I

λiαi

∣∣∣∣∣ λi ≥ 0,
∑
i∈I

λi = 1

}
, (II.4.8)

which is very similar to eq. (II.4.6).

Now, let us handle the general case. The most general combination of a finite number of
linear constraints can be expressed as

Ω =
∑
i∈I1

⟨αi, 1⟩+
∑
i∈I0

⟨αi, 0⟩+
∑
i∈I−1

⟨αi,−1⟩, (II.4.9)

where Ic are some disjoint, finite, and possibly empty sets. We may compactly write this
as Ω =

∑
i∈I ⟨αi, ci⟩ where I ≡ I+1 ∪ I0 ∪ I−1 and ci = c if i ∈ Ic.

Similarly to A(ωc), let Ac(Ω) be the set of all points that can be expressed as (recall that
c ∈ {1, 0,−1}) ∑

i∈I−1

λiαi +
∑
i∈I0

λiαi +
∑
i∈I1

λiαi, λi ≥ 0, (II.4.10)

¹⁹A trivial example of this is ω1 = ⟨0, 1⟩, where A(ω1) = {0}.
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with λi constrained by the condition∑
i∈I1

λi −
∑
i∈I−1

λi ≥ c, (II.4.11)

An illustration of Ac(Ω) can be found in appendix B.4.5. With these definitions, the
following holds:

Proposition 4.2 (determining if constraint is weaker, general case). Let ⟨β, c⟩ be a linear
constraint, and let Ω ̸= Ω∞ be defined as above. Then ⟨β, c⟩ ≤ Ω if and only if β ∈ Ac(Ω).

This is proven in appendix B.1.4. If only one of the Ic is nonempty, this reduces down to
proposition 4.1.

While it is not as useful for the purposes of proposition 4.2, one may note that eqs. (II.4.10)
and (II.4.11) can be more succinctly stated as

Ac(Ω) =

{∑
i∈I

λiαi

∣∣∣∣∣ λi ≥ 0,
∑
i∈I

λici ≥ c

}
. (II.4.12)

This definition of Ac(Ω) works also if c, ci are not constrained to {−1, 0, 1}.

4.4 Representations and degeneracy

Checking if b satisfies Ω becomes computationally expensive if Ω is the combination of
many different linear constraints. However, Ω is usually not uniquely determined by how
it is expressed as a sum of linear constraints, and it is possible to vastly reduce that redun-
dancy. To that end, we define a representation of a constraint Ω as any finite set S of linear
constraints with the property²⁰

Ω =
∑

⟨α,c⟩∈S

⟨α, c⟩. (II.4.13)

If it is implicit which representation is used for Ω, we may call the ⟨α, c⟩ ∈ S the elements
of Ω.

It is clear that there exist minimal representations, i.e. representations with the smallest
number of elements. As we will see below, there is often a unique minimal representation,
which we will labelR(Ω). However, there is an important exception to this: when B(Ω) is
contained in a hyperplane. This happens when there are some δ, d such that δ · b = d for
all b ∈ B(Ω), or equivalently ⟨δ, d⟩ + ⟨−δ,−d⟩ ≤ Ω. We will call Ω degenerate if so is the
case, and non-degenerate otherwise.²¹ With this in mind, we can state the following result:

²⁰Clearly, all Ω also admit representation as a sum of an infinite number of constraints. However, we will not
consider such representations, and proposition 4.3 below generally only holds if Ω can be expressed as a finite
sum. See appendix B.6 for a discussion about infinite sums of constraints.

²¹As defined here, Ω∞ would be considered a special case of a degenerate constraint. In the closer study of
degenerate constraints given in appendix B.2.1, it turns out to be more useful to consider Ω∞ seperately, viewing
it as neither degenerate nor non-degenerate.
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Proposition 4.3 (finding relevant constraints, non-degenerate case). If Ω is a non-degenerate
constraint, there exists a minimal representation R(Ω) that is unique up to the normalisation
of its elements. Furthermore, for any representation S of Ω, the relation R(Ω) ⊆ S is true up
to normalisation.

The elements of R(Ω) are exactly those ⟨α, c⟩ ≤ Ω for which there is some b ∈ B(Ω) such that
α · b = c and β · b > d for all ⟨β, d⟩ ≤ Ω with ⟨β, d⟩ ̸= ⟨α, c⟩.

This is proven in appendix B.3. Due to this uniqueness, and the fact that R(Ω) is a subset
of any representation, we will call the elements of R(Ω) the relevant elements of Ω, and
call all other elements of any representation irrelevant, since they can be discarded without
altering Ω. A more practical way of finding R(Ω), based on proposition 4.2, is given in
appendix B.4.4.

When Ω is degenerate, there is typically no unique minimal representation, although there
is still a straightforward way to find some minimal representation, which we will also label
R(Ω). This generalisation of proposition 4.3 is discussed in appendix B.2.1, along with a
more general method of replacing any degenerate constraint with a non-degenerate ana-
logue in a lower-dimensional space. Note, however, that degenerate constraints are only
a corner case with little practical relevance: a small perturbation, e.g. by numerical error,
to the elements of a degenerate constraint will either render it non-degenerate, or render
it equal to Ω∞.

5 Positivity bounds

Equipped with the notion of linear constraints, we are ready to move on to the main topic
of this paper: positivity bounds. (For a more detailed version of this derivation, see [13];
various generalisations can be found in e.g. [19, 20].) We start by writing down the fixed-t
dispersion relation for the amplitude aJT J :

aJT
J(s, t) =

1

2πi

∮
γ

dz
aJT

J(z, t)

z − s
. (II.5.1)

The amplitude has two branch cuts along the real axis: a right-hand cut starting at z = 4
corresponding to the s-channel, and a left-hand cut starting at z = −t corresponding to
the u-channel. The discontinuity across these cuts is T (z+iε)−T (z−iε) = 2i ImT (z+iε).
For real s in the span −t < s < 4, we deform the contour γ as shown in fig. II.3. We can
then reexpress the integral in terms of the discontinuities, which may require derivatives
(subtractions) to make the contour at infinity vanish. Using the crossing relation derived
in section 3.5 to rewrite the u-channel cut in terms of s, the result is

aJ
dk

dsk
T J(s, t) =

k!

π

∫ ∞

4

dz

[
aJ

(z − s)k+1
+

(−1)kaICIJ
u

(z − u)k+1

]
ImT J(z + iε, t). (II.5.2)
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The Froissart bound [40] shows that the integral converges whenever k ≥ 2, since T J(z +
iε, t) = O(s ln2 s).²² We will discuss specific values for k in section 5.2; here, we keep it
general.

−t 4

γ
−→

s

γ′

Figure II.3: The contour integral in the z-plane around z = s used in the dispersion rela-
tion.

Above threshold, the partial-wave expansion of the amplitude takes the form²³

T J(s, t) =

∞∑
ℓ=0

(2ℓ+ 1)fJℓ (s)Pℓ

(
1 +

2t

s− 4

)
, (II.5.3)

where fJℓ are partial wave amplitudes, Pℓ are Legendre polynomials, and the expression in
parentheses is the cosine of the scattering angle. The optical theorem then gives

Im fJℓ (s) = sβ(s)σJ
ℓ (s), β(s) ≡

√
1− 4

s
, (II.5.4)

which is positive above threshold since the partial-wave cross-sections σJ
ℓ are always posi-

tive. Therefore,

ImT J(s, t) =

∞∑
ℓ=0

(2ℓ+ 1)sβ(s)σI
ℓPℓ

(
1 +

2t

s− 4

)
(II.5.5)

is positive above threshold as long as Pℓ is. Since Pℓ(z) ≥ 0 when z ≥ 1, eq. (II.5.2)
therefore imposes the constraint that, for any t ∈ [0, 4], s ∈ [−t, 4] and any representation
index J ,

aJ
dk

dsk
T J(s, t) ≥ 0 (II.5.6a)

if aI

{
δIJ

[
z − u
z − s

]k+1

+ (−1)kCIJ
u

}
≥ 0 for all z ≥ 4. (II.5.6b)

²²Note that TJ (z+ iε, t) on the right-hand side of eq. (II.5.2) is the exact, non-perturbative amplitude — see
e.g. [13]. Indeed, the perturbative ChPT amplitude at any fixed order grows polynomially with s, so it violates
the Froissart bound. We can insert the fixed-order perturbative amplitude at the left-hand side thanks to the
smallness of s (and t), which guarantees good agreement with the exact one.

²³There is a limited domain of validity for this expansion, but it does not affect the range of s, t used by us.
Again, see [13] for details.
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The region in the s, t plane where this holds is shown in fig. II.4. Note that u ∈ [−4, 4], so
the expression in square brackets above is always positive.

Up to and including NNLO, the second derivative of T J is linear in all LECs, so we obtain
from eq. (II.5.6a) an expression of the form∑

i

αiL̂
r
i +

∑
j

βjK
r
j + γ ≥ 0, (II.5.7)

where the coefficients αi, βi, γ are functions of s, t and aJ , but not of the LECs. This
constitutes a linear constraint, and each valid choice of s, t and aJ potentially yields a
different constraint. The result of combining these constraints will be that only a limited
region in parameter space (B(Ω) in the notation of section 4) satisfies the positivity bounds.
With some luck, the boundary of this region is close enough to the experimentally mea-
sured value to improve on its uncertainty (carefully considering also the uncertainty of the
bounds).

s
=

4

t = 4

u
=
4

u
=
0

s

t

u

Figure II.4: The plane of normalised Mandelstam variables. The red triangle is the region
where the amplitude is real and free from singularities or branch cuts. The
positivity conditions eq. (II.5.6) are valid inside the outlined part. The hatched
regions with s, t or u positive are the physical regions for the respective chan-
nels.

5.1 Conditions on aJ

If we demand that eq. (II.5.6b) holds in the entire allowed s, t region, we see that the factor
in square brackets can be made arbitrarily large or small by varying s, u, z. Therefore, we
obtain the independent conditions aJ ≥ 0 and (−1)kaICIJ

u ≥ 0. However, we may apply
the dispersion relation independently to each fixed s, t. Then, eq. (II.5.6b) can be made
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less restrictive, and a wider range of constraints on the LECs can be generated. This also
includes permitting odd k for some s, t.

While we may fix s and t (which in turn fixes u), we must still allow z to cover its en-
tire range. Therefore, finding all valid aJ for given s, t presents some practical issues.
We solve this by using the technology of section 4, since eq. (II.5.6b) is a set of linear
constraints on the vector aI ; we may write it compactly as a · βJ(z) ≥ 0. Noting that(
z−u
z−s

)k+1 is monotonic as a function of z ∈ [4,∞), we see that it is always possible to
write βJ(z) = µβJ(4) + (1− µ)βJ(∞) for µ ∈ [0, 1]. By propositions 4.1 and 4.3 (see also
proposition B.3), it follows that only βJ(4) and βJ(∞) are relevant constraints on a. Thus,
it is sufficient to evaluate eq. (II.5.6b) at z = 4 and z = ∞, rather than letting z cover its
entire range.

Another practical problem is that the set of allowed aJ is typically unbounded. However,
eq. (II.5.6a) is independent of the magnitude of aJ . The obvious solution is to fix the
normalisation of the vector a, but this is problematic since a linear constraint on a is not
necessarily a linear constraint on 1

|a|a. Instead, we may simply rescale a so that
∑

J aJ = 1.
This does not cover all possible a (for that, we must also look at

∑
J aJ = 0 and

∑
J aJ =

−1), but it turns out that eq. (II.5.6b) is only satisfied by a for which this works. Using
this, constraints on aI are shown in fig. II.5.

5.2 The number of derivatives

As mentioned before, eq. (II.5.6) requires k ≥ 2 to be valid, and k = 2 is sufficient; indeed,
[41] claims that this value produces the best bounds. However, nothing prevents us from
taking more derivatives, and with our generalised methods, we do find new relevant bounds
from larger k; see e.g. figs. II.6 and II.12 below. Also [19] makes use of higher derivatives.

At NLO, the LECs only enter through the second-order polynomial part of the amplitude,
so the third and higher derivatives are parameter-independent and do not generate any
bounds. This is not the case at NNLO, where the polynomial part is third-order, and
where the non-polynomial unitarity correction contains NLO LECs. Therefore, k = 3
should yield another set of bounds on the NNLO LECs, and k ≥ 4 should add bounds on
the NLO LECs not obtainable from the NLO-only amplitude.

It also turns out that odd k cannot be used at any order in the 2-flavour case. To see this,
look explicitly at eq. (II.5.6b) at z =∞:

δIJ − CIJ
u = 1

6c
I
1c

J
2 where c1 =

(
2 1 −1

)
, c2 =

(
2 3 −5

)
(II.5.8)

Due to what seems to be a coincidence, the matrix factorises into a direct product, and
since c2 has different-sign elements, no nonzero aI satisfies (aIcI1)cJ2 ≥ 0 for all J . No
such coincidences hinder odd k at 3 or more flavours, and we have explicitly found aJ that
satisfy eq. (II.5.6b) with odd k at 3 and 4 flavours (these turn out to produce very weak
bounds, though). Even k > 2 remain permitted also at 2 flavours.
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π±π±

π0π0

π0π±

π±π∓

s = +4
s = +0.5
s = −0.5
s = −4

Figure II.5: Illustration of which aI , aA, aSS , normalised so that aI + aA + aSS = 1, are
permitted by eq. (II.5.6b) for n = 2, k = 2 at t = 4 and various fixed s. The
shaded band is the region permitted by the z =∞ bounds (see the discussion
in section 5.1). It is independent of s and extends to infinity. The hatched
triangles are the regions permitted by the z = 4 bounds for various s as indi-
cated. Thus, the aJ permitted at fixed s, t is the overlap between the triangle
and the band. The orange rectangle is the region permitted at all s, t. The
blue points represent the eigenstates, including aJ(π±π∓) = CIJ

u aI(π
±π±)

in addition to those given in eq. (II.3.11). Not shown is the inelastic scatter-
ing aJ(π0π0 → π+π−) =

(
1
3 0 − 1

3

)
, which never satisfies eq. (II.5.6b). For

n ≥ 2, the permitted region has an analogous shape, albeit in 4 (n = 3) and
5 (n ≥ 4) dimensions, respectively. Like for n = 2, the eigenstate scattering
amplitudes are mainly located in the corners of the always-permitted region.

5.3 The value of t

There is no immediately obvious reason to favour any specific part of the allowed s, t re-
gion when producing bounds. However, one may note that at NLO with k ≥ 2, the
only part of dk

dsk
T J(s, t) that depends on s, t is the LEC-independent unitarity correction,

which manifests itself as the term labelled γ in eq. (II.5.7). Therefore, at fixed aJ the most
restrictive bound is obtained by minimising γ. It turns out that given s, the magnitude
of dk

dsk
T J(s, t) tends to increase with t, with minima and maxima always falling along the

t = 4 line. Therefore, it is expected that all relevant constraints should be found with
t = 4. While we see no clear a priori reason for it to be so, we have verified it by scanning
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the entire s, t range for bounds; all relevant ones were found at t = 4, within numerical
uncertainty.

At NNLO, also the αi in eq. (II.5.7) may depend on s, t, so the simple argument above
does not hold. However, the NNLO corrections are far too small to affect the overall shape
of the amplitude, so for NLO LECs, fixing t = 4 should remain sufficient. The situation is
yet more complicated for the NNLO LECs, since it turns out that certain combinations of
them only feature in the amplitude when t ̸= 4 (see the next section). Therefore, complete
NNLO bounds require using the full s, t range.

5.4 Independently bounded parameters

While the parameter space affected by our bounds is technically the full space of (N)NLO
LECs, it is of course impractical to work in such a large and redundant space. Many
LECs do not receive any bounds at all by not appearing in the Lagrangian relevant for
meson-meson scattering (see section 3.2), and others only appear in fixed linear combi-
nations. Specifically, all NLO LECs that appear in the amplitude do so independently,
but the NNLO LECs only appear in combinations; consequently, it is not possible to ob-
tain bounds on the individual Kr

i . For instance, we shall see below that the combination
Kr

4 − 2Kr
2 appears in the amplitude and therefore receives bounds,²⁴ but its complement

2Kr
4 +Kr

2 , which does not appear, is free to assume any value. Therefore, nothing can be
said about the values of Kr

2 and Kr
4 themselves.

We will therefore reexpress our parameter space in terms of NLO LECs in addition to a
new set of independently bounded parameters built from the NNLO LECs. Their form
can be deduced from the polynomial parts of the functions B,C described in section 3,
which, following [34], are

BP (s, t, u) = γ1 + γ2t+ γ3t
2 + γ4(s− u)2 + γ5t

3 + γ6t(s− u)2 + (NLO), (II.5.9a)
CP (s, t, u) = δ1 + δ2s+ δ3s

2 + δ4(t− u)2 + δ5s
3 + δ6s(t− u)2 + (NLO). (II.5.9b)

Here, γi, δi are linear combinations of the NNLO LECs, and “(NLO)” contains all NLO
LECs, constant terms, etc.²⁵,²⁶ Therefore, bounds on the NNLO LECs only come in the
form of bounds on γi, δi. Of course, not all γi, δi are bounded either — those with i < 3
vanish in the second derivative of the amplitude and therefore receive no bounds, and
those with i < 6 vanish in the third. The remaining combinations are also not necessarily
independent, so we will proceed to remould them into a better set of parameters.

²⁴This combination is, up to a scale factor, ∆3 as defined below and explicitly given in appendix A.
²⁵This differs from the convention in [34], where the NLO terms are included in γi, δi. The “NNLO parts”

that we extract here are easily read off from the appendices to that paper.
²⁶[19] use a similar approach in their 2-flavour NNLO bounds, but do not separate NLO and NNLO parts.

This results in a smaller parameter space (6 dimensions compared to our 8; see section 5.4.4), but our approach has
the benefit of separating the relatively well-determined l̄i from the much more uncertain NNLO values, allowing
for figures such as fig. II.8. The fact that our parametrisation remains partly redundant is not a major issue, since
we always fix some parameters rather than working in the full space.
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5.4.1 General number of flavours

As is discussed in section 5.3, all relevant NLO bounds appear at t = 4, so we may expect
that this particular t-value is special also at NNLO. Therefore, we express the polynomial
parts in terms of s and t̄ ≡ 4− t, using u = t̄− s:

BP (s, t, u) = s2Γ1 + t̄s2(Γ4 − 3Γ3) + . . . ,

BP (t, u, s) = s2Γ2 − s3Γ3 + t̄s2Γ4 + . . . ,

BP (u, s, t) = s2Γ2 + s3Γ3 + t̄s2(Γ4 − 3Γ3) + . . . ,

(II.5.10)

where “. . .” consists of terms that vanish in the second derivative of the amplitude. Here,
we have defined the parameters

Γ1 = 4γ4 + 16γ6, Γ2 = γ3 + γ4 + 8γ6,

Γ3 = γ5 + γ6, Γ4 = 3γ5 − γ6,
(II.5.11)

of which Γ4 only receives bounds when t ̸= 4 due to the presence of t̄. Similarly,

CP (s, t, u) = s2∆2 + s3∆3 + t̄s2(∆4 − 3∆3) + . . . ,

CP (t, u, s) = s2∆1 + t̄s2(∆4 − 3∆3) + . . . ,

CP (u, s, t) = s2∆2 − s3∆3 + t̄s2∆4 + . . . ,

(II.5.12)

where ∆i are defined in terms of δi identically to eq. (II.5.11).

These 8 parameters ∆i,Γi constitute a minimal set of parameters for NNLO bounds with
a general number of flavours; explicit expressions are given in appendix A.²⁷ At 2 and
3 flavours, the Cayley-Hamilton identity allows for further reduction of the number of
parameters.

5.4.2 Two flavours

Decomposing the polynomial part of A(s, t, u) using eqs. (II.3.3), (II.5.10) and (II.5.12)
reveals

AP (s, t, u) = s2Θ2 − s3Θ3 + t̄s2Θ4 + . . .+ . . . ,

AP (t, u, s) = s2Θ1 + t̄s2(Θ4 − 3Θ3),

AP (u, s, t) = s2Θ2 + s3Θ3 + t̄s2(Θ4 − 3Θ3) + . . . ,

(II.5.13)

where

Θ1 = 2γ3 − 2γ4 + 4δ4 + 16δ6, Θ2 = 4γ4 + 16γ6 + δ3 + δ4 + 8δ6,

Θ3 = 2γ5 + 2γ6 − δ5 − δ6, Θ4 = 3γ5 − γ6 − 4δ6.
(II.5.14)

Θ4, like Γ4 and ∆4, is only bounded when t ̸= 4. Explicit expressions and experiment-
based reference values for Θi are given in appendix A.

²⁷While they can technically be considered LECs, we will avoid confusion by referring to the Γi,∆i as NNLO
parameters, reserving “LEC” for the coefficients appearing in the standard form of the Lagrangian.
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5.4.3 Three flavours

A similar but less elegant simplification is possible in the 3-flavour case, using eq. (II.3.6):²⁸

B1P (s, t, u) = −2s3Γ3 + 3t̄s2Γ3,

B2P (s, t, u) = s2Ξ1 − s3Γ3 + 3t̄s2Ξ4,

A1P (s, t, u) = s2Ξ2 + s3(∆3 − 2
3Γ3) + t̄s2Ξ4,

A2P (s, t, u) = s2Ξ3 +
2
3s

3Γ3 + t̄s2Ξ4,

A3P (s, t, u) = s2Ξ2 + s3(2Γ3 −∆3) + t̄s2(Ξ4 + 3∆3 − 4Γ3),

(II.5.15)

where

Ξ1 = γ3 − 3γ4 − 8γ6, Ξ2 = 5γ4 + 16γ6 + δ3 + δ4 + 8δ6,

Ξ3 = 4
3γ3 +

16
3 γ6 + 4δ4 + 16δ6, Ξ4 = γ5 − 3γ6 − 4δ6.

(II.5.16)

Again, expressions and values are given in appendix A.

5.4.4 The full parameter space

Table II.1 summarises the parameters affected by our bounds at different orders and number
of flavours. Note how the dimension of the space ranges from 2 (NLO 2-flavour) to 16
(NNLO n-flavour, n ≥ 4). If t is fixed to 4 at NNLO, this is reduced by 1 if n ≤ 3 and
by 2 otherwise; as discussed in section 5.3, t = 4 is the only relevant value at NLO. The
difficulties associated with large parameter spaces are discussed in section 6.

Table II.1: Summary of the NLO LECs and NNLO parameters appearing in the sec-
ond derivative of the amplitude. The parameters Γ′

i,∆
′
i,Θ

′
i,Ξ

′
i as defined in

eqs. (II.5.11), (II.5.14) and (II.5.16). The LECs and parameters that remain in the
third derivative are underlined, and those that remain also in the fourth and
above are doubly underlined. Parameters that only feature in the amplitude
when t ̸= 4 are placed in parentheses.

Flavours NLO NNLO

2 l̄1, l̄2 l̄1, . . . l̄4; Θ1,Θ2,Θ3, (Θ4)

3 Lr
1, L

r
2, L

r
3 Lr

1, . . . , L
r
6, L

r
8; Ξ1,Ξ2,Ξ3, (Ξ4),Γ3,∆3

≥ 4 L̂r
0, . . . , L̂

r
3 L̂r

0, . . . , L̂
r
6, L̂

r
8; Γ1,Γ2,Γ3, (Γ4), ∆1,∆2,∆3, (∆4)

²⁸A more symmetric result would have been obtained by eliminating the dacedbde term in eq. (II.3.4) instead,
but we choose to follow [14].
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5.5 The absence of catastrophic divergences

At NLO and above, the coefficient γ in eq. (II.5.7) diverges in the limit s → 0 or u → 0.
If the divergence is towards positive infinity, this is not a problem — it simply means that
the positivity bound becomes trivial in these limits. However, divergence towards negative
infinity would be catastrophic, since no finite LECs could satisfy the positivity condition.
If there were some value of aJ for which the divergence is in this direction, the theory
would be inconsistent.

The situation becomes more complicated at NNLO, where also αi diverge. If αi diverge
at the same rate or faster than γ, the positivity conditions remain sensible also in these
limits, but if γ were to diverge towards negative infinity faster than αi, we would again
have inconsistencies.

As s approaches 4 from below, the kth derivative of the amplitude diverges as odd powers
(up to 2k − 1) of 1/δ, where s = 4(1 − δ2); see appendix C.2 for details. Let qJ be the
coefficient of the leading divergence dkT J/dsk that contributes to γ. Then consistency
requires aJqJ ≥ 0 for all valid aJ . Since eq. (II.5.6a) requires aJ ≥ 0 in the limit s → 4,
this is satisfied if qJ ≥ 0. At both NLO and NNLO for any number of flavours n, this
turns out to be true for the s → 4 divergence (this was already noted in [13] for n = 2).
Also, the divergences of αi are of equal or lower powers than those of γ.

The same divergence structure appears in the u → 4 limit, but here the coefficients of the
leading divergences are not necessarily positive. However, we may use crossing symmetry
to rewrite

dk

dsk
T I(s, t) = (−1)k dk

duk
CIJ

u T J(u, t). (II.5.17)

Here, we can simply relabel u as s. The coefficient of the leading divergence is here
(−1)kCIJ

u qJ , and since eq. (II.5.6a) requires (−1)kaICIJ
u ≥ 0, in the limit u → 4, the

fact that qJ ≥ 0 in the s→ 4 limit guarantees that there are no catastrophic divergences in
the u→ 4 limit either.

Since dδ/ds = −1/8δ, taking another derivative does not change the sign of qJ . Therefore,
if no catastrophic divergences appear at the first k where γ diverges, they will not appear
at larger k either.²⁹

5.6 Integrals above threshold

The right-hand side of eq. (II.5.2) is, in its standard application, a non-perturbative quan-
tity, about which the only knowledge we have is the fact that it is positive. However, ChPT
is a low-energy theory, so its amplitude at any order should be an excellent approximation
of the true amplitude for energies sufficiently close to threshold. Taking inspiration from
the approach used in [19], we may therefore explicitly evaluate the lowest part of the inte-
gral on the right-hand side of eq. (II.5.2) and subtract it from both sides. Specifically, we

²⁹The first divergence happens at k = 1 for J ∈ {I, S, SS,AA} and at k = 2 for J = A, regardless of n.
There is no divergence for J = AS, since TAS(s, t, u) does not contain J̄(s) or ki(s).
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define
DJ

k (λ, v, t) =
k!

π

∫ λ

4

dz

(z − v)k+1
ImT J(z + iε, t) (II.5.18)

and modify eq. (II.5.2) to

aJ

[
dk

dsk
T J(s, t)−DJ

k (λ, s, t)− (−1)kCJIDI
k(λ, u, t)

]
=
k!

π

∫ ∞

λ

dz [. . .] ImT J(z + iε, t).

(II.5.19)
This has two benefits:

i) When s, t, u and aJ satisfy the conditions of eq. (II.5.6), bothDJ
k and the right-hand

side are positive, so we obtain a stronger positivity bound.

ii) The right-hand side of eq. (II.5.19) is positive under a wider range of conditions than
that of eq. (II.5.2), so we obtain more positivity bounds. (This is because the con-
straint a ·αJ(4) ≥ 0 is replaced by the weaker a ·αJ(λ) ≥ 0, recalling the notation
and discussion in section 5.1). Some of the new bounds are weakened by DJ

k being
negative, but they may still contribute.

The size of λ presents a tradeoff: larger values amplify the benefits of using it, but also
decrease the accuracy of the relation as the fixed-order ChPT amplitude strays from the
exact result. The integral also requires some mathematical machinery; DJ

k is by no means
a simple function, but we determine it up to NNLO in appendix C.3 (of course, it could
also have been done numerically). By evaluating the NNLO corrections, we obtain a good
idea of the accuracy of the NLO result.

An upper bound on λ is provided by [35], which determines the breakdown scale of n-
flavour ChPT to be s ∼ (4πF )2/n. Using the value F = 92.2(1) MeV adopted by [6]
along with Mphys =Mπ, this places the breakdown at λ ≈ 35 for n = 2 and at λ ≈ 25 for
n = 3. Thus, we cannot expect sensible results for λ anywhere close to this, and certainly
not above it.³⁰

6 Results

Here, we present the constraints obtained using the methods described in the preceding
sections.

Following section 4, we will use the letter Ω to denote each collection of constraints, and
B(Ω) to denote the sets of parameter-space points that satisfy these. We will compare each
B(Ω) to a reference point, taken as the central value of the LEC estimates in [6]. These
values can also be found in table II.2 in appendix A.

³⁰Note that (2MK)2 ≈ 14 and (2Mη) ≈ 16 are already quite close to the breakdown scale. This offers some
motivation as to why the equal-mass approximation is reasonable also at 3 flavours: with unequal, real-world
masses, 3-flavour ChPT operates close to the limits of its range of validity even with nonrelativistic particles,
which offsets the accuracy gained by increasing the realism of the model.
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In all but the simplest cases, parameter space has too many dimensions to be visualised as
a whole. Therefore, we will show lower-dimensional slices, with all omitted parameters set
to their reference values. We will primarily show two-dimensional slices, since they are the
easiest to understand, although some three-dimensional slices will be needed as well. It is
not practical to show an exhaustive set of slices, so we will focus on grouping parameters
that are, in some loose sense, related.

As a visual aid and a rough indicator of constraint strength, we define the quantity ρ(⟨α, c⟩)
to be the shortest distance between the reference point and the hyperplane α · b = c.³¹
Alternatively, we may use ρ̂(⟨α, c⟩), which is the analogous distance if the space where all
parameters are rescaled so that their reference values are 1.

6.1 Two flavours

Two-flavour ChPT constraints are in many regards quite simple: there are only 2 parame-
ters at NLO and 7 at NNLO; there is only one reasonable choice for Mphys, namely Mπ;
and as shown in section 5.2, we do not have to consider odd numbers of derivatives. The
NLO constraints have been extensively studied in e.g. [13, 19, 20], whereas the NNLO
constraints are novel to this work.

Figure II.6 shows constraints obtained using 2 derivatives and various amounts of above-
threshold integration. The non-integrated (λ = 4) constraints are slightly stronger than
those in [13], which only considered eigenstate aJ rather than the full space, but the con-
straints do not come close to the experimental uncertainty of the reference point without
using λ that are far too large for the results to be trusted (recall that perturbative break-
down is expected at λ ≈ 35). In [19, 20], comparable bounds are obtained with slightly
less extreme λ, but in both cases, λ needs to be rather large to start cutting into the exper-
imental uncertainty. The large discrepancy between the NLO and NNLO versions of the
constraints indicate that the bounds are highly unreliable for all but the smallest λ used.
Even with λ = 4, the difference is quite significant.

Figure II.7 shows similar NNLO constraints over a more conservative λ range; however,
here we display the effects of higher even derivatives (recall again that odd derivatives need
not be considered with 2 flavours). Unlike the ones shown in fig. II.6, these constraints
impose upper bounds on the LECs as well as lower bounds. Note that in the upper-left
part of the plot, the two-derivative bounds are less restrictive than their NLO counterpart.
This can partly be seen as an artefact of introducing multiple new parameters and fixing
them to imprecise experimental values (for instance, fig. II.9 shows that smaller values of
l̄4 strengthen the bounds on l̄1, l̄2), but one must keep in mind that switching to a more
refined theory can both strengthen and relax the predictions.

Figure II.8 shows similar bounds on l̄3 and l̄4, which are the only NLO LECs other than
l̄1, l̄2 that appear in the NNLO amplitude. The bounds on l̄3 are extremely weak, since
l̄3 figures in the amplitude with much smaller prefactors than the other LECs. It can be

³¹Note that this refers to distance in the full parameter space, which does not directly correspond to distance
in the subspaces shown in the figures.
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Figure II.6: Two-flavour two-derivative constraints on l̄1, l̄2 for various λ, as indicated in
the legend. The presentation is similar to fig. II.1: each version of B(Ω) is out-
lined, with the hatched side indicating the points excluded by the constraints.
The bounds from [13] are also drawn. The reference point l̄1 = −0.4(6),
l̄2 = 4.3(1) is drawn as a dot with an uncertainty region around it. For each
set of constraints, the direct NNLO counterpart (i.e. using the same λ, s, t and
aJ ) is drawn as a dashed outline.

partly understood by noting that the l̄3 term in the Lagrangian, unlike the other terms,
does not contain the field uµ. Interestingly, the upper bounds on l̄4 become weaker as λ is
increased. This does not necessarily contradict the arguments made in section 5.6, due to
the complicated NNLO situation where both α and c in a constraint may depend on λ.
Nevertheless, it is surprising to see, and does not seem to appear in other bounds, such as
those on l̄1,2.

Figure II.9 combines the l̄4 bounds with the l̄1, l̄2 bounds to form a summary of the effective
bounds on the two-flavour NLO LECs obtained in this paper. Unfortunately, only the
k = 2, λ ≈ 4 constraints have a shape that is sensible to show in three dimensions.

Lastly, fig. II.10 shows bounds on the four NNLO parameters Θi, using only two deriva-
tives. Here, the bounds are not entirely consistent with the reference point, although not
too much meaning should be read into this, as the reference values for the NNLO param-
eters are little more than educated guesses. It also showcases the phenomenon where some
constraints become weaker at larger λ, at least at the particular values at which we have
fixed the NLO LECs.

The NNLO parameter bounds are not particularly strong compared to the magnitude of
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Figure II.7: NNLO bounds on l̄1, l̄2 with k = 2, 4, 6 derivatives, displayed similarly to
fig. II.6 but over a slightly wider part of parameter space. For comparison
to fig. II.6, the corresponding NLO bounds are drawn with weak solid lines.
The six-derivative bounds are nearly independent of λ, so all versions are not
drawn.
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Figure II.8: NNLO k-derivative constraints on l̄3, l̄4, displayed like in fig. II.7, using simi-
larly scaled axes (left) or an extreme scale on the l̄3 axis (right) to show the full
constraint structure. In all cases, the bounds are satisfied by the reference point.
The six-derivative bounds (which like in fig. II.6 are nearly λ-independent) ex-
actly overlap with the λ = 4 two-derivative bounds and are not drawn.
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Figure II.9: NNLO two-derivative constraints on l̄1, l̄2 and l̄4 with λ = 4; a cross-section
at l̄4 = 4.4 would yield part of fig. II.6. The constraint surfaces are coloured ac-
cording to their proximity 1/ρ (⟨αi, ci⟩) to the reference point, which is drawn
similar to the 2D plots. The “open space” bounded by the constraint surfaces
is part of B(Ω); the grayed-out region is excluded by the constraints. To clarify
its spatial position, the reference point is connected to the boundaries of the
plotted region with black dotted lines parallel to the coordinate axes, when-
ever doing so is possible without intersecting a constraint surface. It is similarly
connected to neighbouring surfaces with black arrows. These are orthogonal
to the respective surfaces, even though the different scales of the axes makes it
not appear so.

the reference values, but some are still notable. Θ4 has a strict lower bound, with no values
of Θ1,2,3 being permitted if Θ4 ≲ −2.5. Θ3 is bounded from both above and below, and
the bounds are fairly independent of the values of the other parameters in a large part of
parameter space. Thus, we may write down the tentative single-parameter bounds

−1.5 ≲ 103Θ3 ≲ 1, −2.5 ≲ 103Θ4, (II.6.1)

both of which are satisfied, with a margin of about an order of magnitude, by the reference
values in appendix A.

172



−4−2024

−20

0

0

20

40

103Θ3

103Θ2

10
3
Θ

1

−4−2024

−20

0

0

20

40

103Θ3

1

2

3

10
3
/ρ

(〈
α

i,
c i
〉)

−2024

0

10

0

5

10

103Θ4

103Θ2

10
3
Θ

1

−2024

0

10

0

5

10

103Θ4

Figure II.10: NNLO two-derivative bounds on Θi at λ = 4 (left) and λ = 8 (right) for
i = 1, 2, 3 (top) and 1, 2, 4 (bottom, note different Θ1,2-axes). These specific
i choices are used, for if either Θ1 or Θ2 is fixed to its reference value, the
remaining constraint is not satisfied by any value of the other Θi. Note the
rather different scales on the axes; several facets in the top plots (especially for
λ = 8) are in fact nearly perpendicular to theΘ3 axis, placing upper and lower
bounds on Θ3 that do not depend very strongly on the other parameters. The
green facets exclude the reference point. The exclusion is by a rather small
amount (no orthogonal arrow can be sensibly drawn), and varying the Lr

i

within their uncertainties is sufficient to remedy this. Note how increasing
λ to 8 slightly weakens these constraints so that they no longer exclude the
reference point.
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Figure II.11: Two-derivative constraints on the three-flavour NLO LECsLr
i , visualised sim-

ilarly to previous figures. Top: detailed constraints with Mphys =Mπ, λ = 4.
The visualisation is similar to fig. II.9; note the different scales on the axes.
Middle: Constraints with (from left to right) Mphys =Mπ,MK , and Mη, all
with λ = 4. Note that the leftmost figure is just a less detailed version of the
top figure, and that the MK and Mη surfaces only differ from each other by
a very small amount. Both these higher-mass constraints exclude the refer-
ence point (not drawn), although not by much. Bottom: the effect of setting
λ = 4.5 (left) or 5 (right) with Mphys = Mπ, for comparison with the λ = 4
figure above. The λ = 5 constraint excludes the reference point (not drawn)
rather severely.
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6.2 Three flavours

Three-flavour ChPT bounds cover 3 parameters at NLO and 12 at NNLO, and three
choices for Mphys (namely Mπ,MK and Mη) present themselves, with no a priori indi-
cation of which to choose. This would of course be resolved by working with inequal-mass
mesons, but this NLO amplitude is far more complicated (see [42] and references therein)
and its NNLO counterpart is so far undetermined in a simple analytic fashion; further-
more, inequal masses have implications for the construction of bounds that we do not
address here (see [14]).

Figure II.11 shows the bounds on Lr
1, L

r
2 and Lr

3 obtainable at NLO. WithMphys =Mπ, the
bounds are consistent with the reference point and qualitatively similar to the two-flavour
bounds on l̄1, l̄2. Interestingly, the reference point does not satisfy the bounds at the other
choices ofMphys, although only barely — the smallest distance between the reference point
and B(Ω) is 0.5 · 10−3 for Mphys = MK and 0.6 · 10−3 for Mphys = Mη, which is smaller
than the uncertainty in the experimental values (approximately (1-3)·10−3). Therefore,
using these Mphys does not imply any significant inconsistency.

It is worth noting that the three-flavour constraints are much more sensitive to integration
than their two-flavour counterparts. This can be partly understood by noting that integrals
scale as roughly the square of the number of flavours (see fig. II.22).

Figure II.12 shows NNLO bounds on the same three LECs. Interestingly, the four-derivative
constraints alone confine Lr

1, L
r
2, L

r
3 to a bounded region, although it is very large in

most directions. However, the bounds are reasonably strict between the two near-parallel
faces shown in the figure, so we may write down another double-ended bound, similar to
eq. (II.6.1):

−27 ≲ 4.9Lr
1 + 2.8Lr

2 + 2.4Lr
3 ≲ 10 for Mphys =Mπ, (II.6.2)

where the linear combination of the LECs is chosen to be roughly orthogonal to the bound-
ing faces.

Figure II.13 shows NNLO bounds on the remainingLr
i . These are rather weak, even though

Lr
6 obtains a double-ended bound. The weakness is understandable for similar reasons as

the weakness of the l̄3 bounds. With Mphys = MK ,Mη, the bounds are inconsistent, not
only with the reference values for Lr

4,5,6,8, but with all values of these parameters, un-
less Lr

1,2,3 are removed from their experimental values by an amount roughly one order of
magnitude larger than their stated uncertainty (the NNLO parameters have little effect).
This practically renders this version of the theory self-inconsistent, except at experimen-
tally unreasonable points in parameter space. Although the Mphys = Mπ version remains
consistent, only a small amount of integration excludes the reference point, so its validity
is quite dubious.

Lastly, figs. II.14 and II.15 show bounds on the NNLO parameters; for the same reason as
above, we keep Mphys = Mπ. The former shows some features reminiscent of its SU(2)
analogue, fig. II.10, although there is not a clear double-ended bound on either parameter.
The latter is more interesting, since all three parameters are confined to a small bounded
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Figure II.12: NNLO bounds on Lr
1, L

r
2 and Lr

3 with Mphys = Mπ and λ = 4, using two
(left) and four (right) derivatives; three derivatives gives very weak bounds.
Thus, the left figure is essentially the NNLO version of fig. II.11. Its response
to larger λ or Mphys (not shown) is qualitatively similar to that exhibited at
NLO. In the four-derivative case, B(Ω) is actually a bounded region. It is a
lentil-shaped body whose largest dimension is about two orders of magnitude
larger than the region shown in the figure. Note that the axes have been
rotated relative to the left figure in order to make the inside ofB(Ω) reasonably
visible.
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Figure II.13: NNLO bounds on Lr
4, L

r
5 (left) and Lr

6, L
r
8 (right), visualised similarly to

fig. II.6. The uncertainty region around the reference point is hardly visible at
this scale. Note how the four-derivative bounds exclude the reference point
also for rather small λ > 4. However, the integrated two-derivative bounds
are weaker and are not visible at all in the right figure. The corresponding
bounds for Mphys =MK ,Mη are entirely inconsistent with the experimental
values.

region and quite significantly excludes the reference point. The bounds on Γ3,∆3 in par-
ticular are fairly independent of each other and Ξ4, leading to the single-parameter bounds

0.08 ≲ 103Γ3 ≲ 0.34, −0.8 ≲ 103∆3 ≲ 0.25 for Mphys =Mπ. (II.6.3)
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parameters rather than the full parameter space. Like in fig. II.10, the green
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Figure II.15: NNLO two-derivative bounds on Γ3,∆3 and Ξ4 (those NNLO parameters
that obtain additional bounds at t ̸= 4) with λ = 4 and Mphys = Mπ. Note
how they are bounded from all directions and confined to a rather small vol-
ume; this makes three-dimensional representation difficult, so we use two-
dimensional slices instead. Note how the bounds exclude the reference point.
A major source of uncertainty in these bounds is the fixing of the other param-
eters: as the NLO LECs are varied within their uncertainties, the boundary
lines shift in various directions, with the typical amount displacement being
roughly 0.2. However, at no values are the bounds consistent with the refer-
ence values of Γ3,∆3 and Ξ4.
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Figure II.16: Two-derivative constraints on the 4-flavour NLO LECs Lr
0, . . . , L

r
3 with

Mphys = Mπ and λ = 4. The four possible selections of three LECs are
shown, with the top left figure (Lr

1, L
r
2, L

r
3) being almost exactly the 4-flavour

equivalent of fig. II.11 (the LEC and colour ranges differ slightly). No refer-
ence point is shown, and the colour information should not be considered
very meaningful, as discussed in the text; therefore, the colour bar has been
omitted to save space.

6.3 Higher number of flavours

ChPT with more than three flavours are not of direct interest as low-energy QCD, since the
large mass of the charm quark makes it entirely invalid as a model of mesons. An arbitrary
number of flavours is useful when developing the methods, though, and is interesting in
its own right in the context of EFT studies. Furthermore, ChPT has many uses other than
QCD (for a review of some of these, see [43]). Besides various numbers of flavours, these
commonly use different symmetry breaking patterns than SU(n)×SU(n)→ SU(n); some
of these were treated in [34], so their amplitudes would be a drop-in replacement into our
methods. However, that is beyond the scope of this paper, in which we are content to show
some basic high-flavour results in “QCD-style” ChPT.
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Figure II.17: The exact 8-flavour equivalent of fig. II.16.
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Figure II.18: NNLO 4-flavour bounds on Γ′
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i (right), analogous to fig. II.10.
Note the different scales on the axes; Γ′

6 and∆′
6 are bounded by almost parallel

faces.

It turns out that the bounds change quite gradually between different n ≥ 4, to the extent
that the difference between e.g. n = 4 and n = 5 is hardly visible upon first inspection of
figures like those used here. Therefore, we have chosen to only display n = 4 (the “leading”
high-flavour example) and n = 8 (a reasonable “very high flavour” example, also of his-
torical technicolour relevance [44]). Understandably, there are no experimental reference
values for the high-flavour LECs, so to perform two- or three-dimensional slices of parame-
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Figure II.19: NNLO 4-flavour bounds onLr
0, . . . , L

r
3 presented in the same way as fig. II.16,

but with some axes rotated to give a better view. See fig. II.12 for the 3-flavour
counterpart (no analogous 4-derivative version has been produced due to is-
sues with high-dimensional parameter space).

ter space, we provisionally set L̂r
i = Lr

i and use the 3-flavour reference values when possible,
and use 0 as the reference value for e.g. L̂r

0. We also retain the distance-to-reference-point
colouring of the constraint surfaces to make them more visually distinguishable. Of course,
not too much meaning should be read into these distances.

Figures II.16 (n = 4) and II.17 (n = 8) show the basic NLO bounds, similarly to fig. II.11,
to which the bounds are qualitatively similar. There is a trend towards weaker constraints
as n increases, as can be seen from the amplitude: many of the most important terms go as
powers of 1/n (cf. eq. (II.4.5); all constraints have c = −1). Note how we wholly abandon
the Mphys debate and use Mπ throughout.

Figures II.18, II.19 (n = 4) and II.20, II.21 (n = 8) show the most interesting NNLO bounds,
which are again similar to their lower-flavour analogues. The bounds on L̂r

4, L̂
r
5, L̂

r
6 and L̂r

8,
which are even weaker than the corresponding ones for n = 3, are not shown. Likewise,
the bounds on Γ4,∆4 are very weak and have been omitted. Note how the prominent
lower bound on L̂r

1 in fig. II.21 breaks the trend of weaker bounds at larger n.

Finally, one may ask what happens in the limit n → ∞. Looking at the amplitudes in
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Figure II.20: The 8-flavour equivalent of fig. II.18. The axes have been zoomed out to
adequately view the weaker constraints.
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Figure II.21: The exact 8-flavour equivalent of fig. II.19.

[34], we see that they are independent of the LECs at leading order in n: at NLO, the
amplitude is O(n) whereas the LEC parts are O(1), while at NNLO they are O(n2) and
O(n), respectively (this of course indicates convergence problems at high n, in agreement
with [35]). Thus, the bounds, expressed in the schematic form of eq. (II.5.7), will eventually
be dominated by γ, and will therefore asymptotically tend towards either ⟨0, 1⟩ or the trivial
⟨0,−1⟩; the gradual weakening in figs. II.16 to II.21 suggests the latter.
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Figure II.22: The integrals 1
n2

[
DJ

k (s, t;λ) + (−1)kCJIDI
k(u, t;λ)

]
, defined in eq. (II.5.19),

as functions of λ between 4 and 4.5 at k = 2, t = 4, for the six possible J . The
factor 1/n2 roughly cancels the n-dependence, making it possible to show all
n at the same vertical scale. Each function is represented for n = 2 (green),
n = 3 (cyan) and n = 4 (purple) ChPT, with the latter representing the
general n-flavour case reasonably well. Different values of s between 0 and
1.5 (the range of most relevant constraints) in increments of 0.5 are shown
with the colour saturation (brighter colour = smaller s). The NLO result is
drawn with solid lines, and the NNLO result (with the NLO LECs fixed to
their reference values) is drawn with dashed lines. The difference between
them is shaded, and the λ ranges are staggered slightly to improve readability.
The graphs have been vertically shifted to enhance readability; all integrals
are equal to 0 at λ = 4. Note that the vertical scale differs greatly between
different J .
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Figure II.23: Logarithmic plot of the relative size of the different loop integral functions,
covering a rather wide range of λ. Each line represents

∣∣∣∫ λ

4
X(z)dz

∣∣∣ for the
given function X. Note how J̄ ≫ k1 ≈ k3 ≫ k2 ≈ k4 for small λ, which
changes to J̄ ≫ k1 ≈ k2 ≈ k3 ≫ k4 for large λ. In either case, “≫” is by
about two orders of magnitude, and “≈” is within one order of magnitude.

6.4 Considerations about the integrals

Figure II.22 demonstrates the integrals of the components of the amplitude over relevant
s, λ ranges. We may note that despite the great complexity seen in appendix C.3, the graphs
are typically quite simple and qualitatively similar. There is, however, a very wide range of
magnitudes; typically, “lower” J components have larger integrals.

It is interesting to note that the ratio between NLO and NNLO integrals is approximately
constant in λ, varying only with s and J . This is perhaps unexpected since the NNLO
integrand contains terms like z3X(z), where X is one of J̄ or ki, whereas the NLO ampli-
tude only contains z2X(z). Therefore, we would expect the ratio to grow approximately
linearly with λ. However, the z3J̄(z) terms are typically suppressed by small numerical co-
efficients or NLO LECs, and J̄(z) dominates ki(z), as shown in fig. II.23. Therefore, this
effect does not manifest until λ is much larger than the values relevant to this application,
which in practice limits the importance of higher-order corrections to the bounds.

6.5 Considerations about aJ

We have made two innovations in the treatment of aJ :

(i) not restricting aJ to the physical eigenstates (this was done already in [21]),
(ii) employing the fixed-s (as opposed to all-s) constraints eq. (II.5.6b) on aJ .
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This section investigates whether these changes actually give any improvements at all — it
would be conceivable that the physical eigenstates, which are allowed for all s, were special
in a way that guarantees that they generate the strongest bounds.

To measure how significantly (i) is used, we consider aJ as a point on the unit sphere and
find the angle θ(aJ) between it and the closest eigenstate point. Thus, larger θ indicates,
in a sense, more use of (i). Similarly, we may measure (ii) via the fraction of points on
s ∈ [−4, 4] for which eq. (II.5.6b) permits aJ .

In terms of the ad hoc measures together with ρ̂ defined above, fig. II.24 shows the distri-
bution of NLO bounds for 2, 3 and 4 flavours, and fig. II.25 shows a geometrically more
intuitive version in the 2-flavour case.³² We see that relevant constraints tend to have low
ρ̂, albeit with many exceptions — the orientation of the constraint is another important
factor. The relevant constraints are rather evenly distributed over the θ range permitted by
eq. (II.5.6b), indicating that there is, in this regard, nothing special about the eigenstates,
validating (i). Most relevant constraints also occur at aJ that are permitted for very few s
(i.e. coloured very pale in the plots), validating (ii).

There are, of course, severe limitations to the analysis in this section. Apart from the
roughness of the chosen measures discussed above, it is difficult to assess just how great
the benefits of (i) and (ii) are. Stronger constraints are obtained, but not necessarily much
stronger: the improvement in fig. II.6 over [13] is very slight, although it seems that the use
of (i) is limited at n = 2 but more extensive at e.g. n = 3 by comparing the subfigures of
fig. II.24.

7 Conclusions and outlook

To recapitulate, our method has been as follows: We scan over the s, t range depicted in
fig. II.4 (or in many cases just the s range, with t fixed to 4, as discussed in section 5.3).
At each (s, t)-value, we scan over those aJ that are permitted by eq. (II.5.6b), and com-
pute the kth derivative of the n-flavour amplitude to either NLO or NNLO at that point,
possibly with above-threshold integration up to λ, as described in section 5.6. Through
eq. (II.5.6a), this yields positivity bounds on the LECs (or at NNLO, the parameters de-
rived in section 5.4), which can be handled as linear constraints using the language and
methods of section 4 (implemented as discussed in appendix B). In the end, this yields a
manageable set of relevant constraints, which can be visualised and interpreted.

Our results at NLO consist of stronger bounds than in [13, 14], whereas the comparison to
the more recent works [19, 20] is less clear-cut. As in previous works, most bounds consist
of irregularly shaped and usually infinite regions, although some of the nicer cases allow for
more clear-cut bounds such as eqs. (II.6.1) to (II.6.3). Although the bounds themselves are
highly uncertain, basic compatibility suggests that one may assign uncertainties of roughly

³²The points were sampled uniformly over the unit octahedron (i.e. the unit sphere under the 1-norm∑
J |aJ | = 1) and its higher-dimensional analogues in aJ space. This shape was used rather than the unit

sphere to preserve the linearity of bounds on aJ ; compare the discussion in section 5.1.
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Figure II.24: A discrete sample of the full set of aJ permitted by eq. (II.5.6b), plotted over
θ as defined in section 6.5. For each aJ , the closest distance ρ̂ between the ref-
erence point and any constraint generated at that aJ is indicated with a dot.
Relevant constraints are outlined with a blue pentagon. The colour of the
dots indicate the fraction of the full range s ∈ [−4, 4] in which eq. (II.5.6b)
permits that aJ . Top: Two flavours. The eigenstates, i.e. the points at
θ = 0, are, from top to bottom, π0π+, π0π0 and π+π+. Lower left: Three
flavours. The eigenstates are, from top to bottom, π0π+, Kη, π+π+, Kπ0,
K±π±/K0π±/π0π0 (overlapping) and ηπ. Lower right: Four flavours (rep-
resenting n > 3 flavours). Since high-flavour ChPT is not directly applicable
to meson physics, we do not use the full set of “physical” eigenstates, but for
θ to be defined, we retain a single eigenstate: π+π+, whose decomposition
(consisting of the SS component only) is uniquely flavour-independent.
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Figure II.25: The same 2-flavour data as in fig. II.24, but plotted over aI , aA plane with
aI +aA+aSS = 1, like in fig. II.5, rather than as a function of θ. The colours
convey the same meaning as in fig. II.24, whereas the ρ̂ values are indicated
by the size of the points: smaller ρ̂ (higher proximity to the reference point)
corresponds to larger points. Note how the aJ that are permitted at all s can
be clearly seen as a uniformly coloured patch, which is also featured in fig. II.5.
It is interesting to note that most relevant constraints come from the aSS < 0
region (upper right), which is permitted for significantly fewer s than those
points where all aJ are positive.
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200-1000% to Θi,Γi,∆i and therefore also to the NNLO LECs, which are not given any
error estimates in [6]. Obtaining better error estimates is a possible direction for future
work.

The employment of above-threshold integration allows for very strong bounds, but carries
the risk of going too far beyond the low-energy limit; the difference between our NLO
and NNLO bounds, such as in fig. II.6, does not inspire much confidence in integrated
bounds for λ significantly larger than 4. Our improved handling of aJ , which is evalu-
ated in section 6.5, improves bounds without additional assumptions ([19, 20] also uses
assumption-less improvements). Of course, the choice of fixed-order ChPT is itself some-
thing that relies on the low-energy limit, although it is easier to motivate than a particular
choice of λ > 4 is.

At NNLO, our methods suffer some practical problems due to the very high dimension
of the parameter space, so we have only performed rather coarse scans of the available s, t
and aJ ranges. This is remedied by fixing some parameters and focusing on the lower-
dimensional space that remains. However, it is important to keep in mind that, even
though we may fail to obtain many constraints due to limited scans and technical issues
with determining convex hulls (see appendix B.4), it is guaranteed that the constraints
we do find are true — the method automatically errs on the side of caution, so to speak.
In particular, this means that if the bounds are inconsistent with the experimental values,
then the error must lie either with the values, or with the theory itself. In general, the main
problem with our method is not its ability to produce bounds, but our ability to rely on
the assumptions behind them.

The most prominent example of this is the problems encountered at three flavours, as
discussed in section 6.2. The obvious remedy is to replace equal-mass ChPT with the more
realistic unequal-mass version, towards which the main hurdle is some so-far-unsolved two-
loop integrals. The emergence of distinct mass eigenstates, as well as some other features
discussed in [14], could possibly interfere with some of our method innovations, although
we are confident that they can be remedied.

Beyond practical improvements and the use of unequal-mass ChPT, a possible step forward
is to either go beyond 2→ 2 scattering, or to study NNNLO. The former would allow for
bounds on LECs that do not appear in the 2→ 2 amplitude, as well as possibly new bounds
on those covered here. While it would be infeasible to manage all the NNNLO LECs in
the 2→ 2 amplitude, or even all the NNLO LECs in higher-multiplicity amplitudes, it is
not unthinkable that useful results could be obtained by fixing most LECs and studying the
rest. In any case, further explorations in these directions are mainly hindered by the lack
of available amplitudes; the NLO 2-flavour 2→ 4 amplitude was recently calculated [45],
but no higher-order or higher-multiplicity amplitudes are currently known. Furthermore,
section 5 would need to be generalised to handle the 9-dimensional kinematic space of
6-particle amplitudes. Lastly, some parts of the NNNLO amplitude would be nonlinear
in the NLO LECs, necessitating the development of proposition 4.2-like technology for
nonlinear constraints, i.e. αibi+αijbibj + . . . ≥ c. We believe it possible that at least some
of the tools in appendix B can be generalised to handle this, but have not investigated it
much.
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Lastly, these methods could lend themselves to application on EFTs other than ChPT, e.g.
for beyond-the-Standard-Model (BSM) applications. This could be particularly promising
if there are no experimentally measured values for the LECs, or if experiments have only
yielded bounds. An experimental upper bound coupled with an analytic lower bound
could confine the coupling of an unobserved process to a range, or exclude a BSM EFT
altogether.
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A LEC details

This section contains further details about the LECs that are introduced in section 2.1, and
the NNLO parameters Γi,∆i,Θi,Ξi that are defined in section 5.4. Table II.2 contains the
values determined in [6] that are used as references in section 6. Naturally, these do not
include estimates of parameters that only appear above 3 flavours; similarly, the Γi,∆i that
only appear in the n ≥ 3 amplitude are just given provisional values based on the 3-flavour
data.

Equation (II.1.1) shows how the independent NNLO parameters depend on the LECsKr
i ,

for a general number of flavours n.³³

1
8Γ1 = 6Kr

1 − 4Kr
5 +Kr

7 +Kr
11 + 2Kr

31 + nKr
8 + 2nKr

18 (II.1.1a)
1
2Γ2 = 12Kr

1 − 48Kr
3 − 12Kr

5 +Kr
7 +Kr

11 − 16Kr
13 + 32Kr

17 − 8Kr
19 − 8Kr

23 − 16Kr
28

+ 2Kr
31 − 8Kr

33 + 16Kr
37 + nKr

8 − 16nKr
14 + 34nKr

18 − 4nKr
20 (II.1.1b)

1
4Γ3 = Kr

1 − 2Kr
3 − 2Kr

5 (II.1.1c)
1
8Γ4 = −3Kr

3 −Kr
5 (II.1.1d)

1
16∆1 = 6Kr

4 − 2Kr
6 +Kr

15 + 2Kr
29 + nKr

16 (II.1.1e)
1
4∆2 = −48Kr

2 + 12Kr
4 − 4Kr

6 − 16Kr
9 +Kr

15 + 32Kr
18 + 8Kr

20 + 16Kr
21

+ 2Kr
29 − 8Kr

32 + 16Kr
35 − 8Kr

38 − 16nKr
10 + nKr

16 + 16nKr
22 (II.1.1f )

1
8∆3 = −2Kr

2 +Kr
4 (II.1.1g)

1
8∆4 = −6Kr

2 +Kr
6 (II.1.1h)

³³These are generated by fORM with minimal post-processing. Common factors have been extracted to make
the expressions shorter.
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Table II.2: All LECs and parameters covered by the bounds derived in this paper, along
with their experimental reference values, taken from the most general fits in
[6]. The values in parentheses indicate the uncertainties in the last decimal
places. No uncertainties are provided for the NNLO parameters, since none
are given for the NNLO LEC values in [6]; these values are little more than
educated guesses. The values of Γi, ∆i also depend directly on n for i < 3 (see
eq. (II.1.1)); the listed values use n = 4.

NLO LEC NNLO parameter
·103

l̄1 −0.4(6) Θ1 0.34
l̄2 4.3(1) Θ2 0.68
l̄3 2.9(24) Θ3 −0.16
l̄4 4.4(2) Θ4 −0.22

Ξ1 0.29
·103 Ξ2 0.34

Lr
1 1.11(10) Ξ3 0.25

Lr
2 1.05(17) Ξ4 −0.008

Lr
3 −3.82(30) Γ1 0.008

Lr
4 1.87(53) Γ2 −0.71

Lr
5 1.22(06) Γ3 −0.10

Lr
6 1.46(46) Γ4 −0.22

Lr
8 0.65(07) ∆1 −0.032

∆2 −0.83
∆3 −0.048
∆4 −0.14

Equation (II.1.2) shows the same for 3 flavours. The application of the n = 3 Cayley-
Hamilton identity and the numbering of the Cr

i follows [27].

1
4Ξ1 = −6Cr

1 + 12Cr
3 + 4Cr

4 − Cr
5 − 3Cr

6 − Cr
8 + 2Cr

10 + 6Cr
11 − 4Cr

12

− 18Cr
13 + 4Cr

22 − 4Cr
25 (II.1.2a)

3
8Ξ2 = 50Cr

1 + 27Cr
2 + 22Cr

3 − 18Cr
4 − 48Cr

5 + 54Cr
6 + 45Cr

7 − 21Cr
8 + 24Cr

9

+ 3Cr
10 + 9Cr

11 + 6Cr
13 + 6Cr

16 − 4Cr
24 + 12Cr

25 − 4Cr
26 + 4Cr

29 (II.1.2b)
3
8Ξ3 = 70Cr

1 − 18Cr
2 + 68Cr

3 − 16Cr
4 + 43Cr

5 + 21Cr
6 − 30Cr

7 + 25Cr
8

− 24Cr
9 + 10Cr

10 + 30Cr
11 − 8Cr

12 − 18Cr
13 + 12Cr

16 − 4Cr
22

+ 18Cr
23 + 4Cr

24 − 2Cr
25 − 8Cr

26 + 8Cr
29 (II.1.2c)

3
4Ξ4 = −38Cr

1 + 9Cr
2 − 28Cr

3 + 12Cr
4 − 6Cr

16 + 6Cr
22 − 3Cr

23 − 2Cr
24

+ 4Cr
26 − 4Cr

29 (II.1.2d)
1
4Γ3 = Cr

1 − 2Cr
3 − 2Cr

4 (II.1.2e)
1
4∆3 = 4Cr

1 − 5Cr
2 + 2Cr

3 (II.1.2f )
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Lastly, eq. (II.1.3) shows the same for 2 flavours. Again, we have followed [27].
3
16Θ1 = 14cr1 + 40cr2 − 6cr3 + 15cr4 + 30cr5 − 30cr6 + 12cr7 + 9cr12 − 3cr13

− 4cr14 + 4cr16 (II.1.3a)
3
8Θ2 = 104cr1 + 22cr2 − 18cr3 + 93cr4 + 15cr5 + 12cr7 + 12cr13 − 4cr14 + 4cr16 (II.1.3b)
3
16Θ3 = 6cr1 − 9/2cr2 − 3cr3 (II.1.3c)
3
4Θ4 = −14cr1 − 40cr2 − 12cr7 + 3cr12 + 4cr14 − 4cr16 (II.1.3d)

B Details and proofs regarding linear constraints

In this appendix, we prove the propositions stated in section 4 and provide some more
details on how they may be applied.³⁴

B.1 Proof of propositions 4.1 and 4.2

As has already been mentioned, proposition 4.1 is a direct consequence of proposition 4.2,
obtained by leaving all but one Ic empty. However, directly proving proposition 4.2 is
much less straightforward than the following chain of implications,

Proposition 4.1 (c = 0 only) ⇒ Proposition 4.2 ⇒ Proposition 4.1, (II.2.1)

which we will demonstrate in this section. First, however, we will show an easily accessible
partial result (section B.1.1), and then prove some properties that are necessary for the main
proof (section B.1.2).

B.1.1 The trivial half of the proof

One side of proposition 4.2 is easy to prove, namely that ⟨β, c⟩ ≤ Ω if β ∈ Ac(Ω).

Assuming that Ω ̸= Ω∞, take any point b that satisfies Ω. Then by eq. (II.4.10),

β · b =
∑
i∈I1

λiαi · b+
∑
i∈I0

λiαi · b+
∑
i∈I−1

λiαi · b, (II.2.2)

and since αi · b ≥ c for i ∈ Ic, we have

β · b ≥
∑
i∈I1

λi −
∑
i∈I−1

λi ≥ c, (II.2.3)

which uses (and motivates) eq. (II.4.11). The corresponding result for proposition 4.1 fol-
lows immediately.

³⁴Like in section 4, we make use of potentially unfamiliar mathematical notation in this section, so the glossary
(section B.7) may be helpful.
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B.1.2 Proof that A(ω0) is closed and convex

As section B.1.3 will show, these properties of A(ω0) are crucial for the main proof. Con-
vexity is easy to show forA(ω0): given any points β1,β2 satisfying eq. (II.4.6), their convex
combination

µβ1 + (1− µ)β2 =
∑
i∈I

(
µλ1i + (1− µ)λ2i

)
αi, λ1i ≥ 0, λ2i ≥ 0 (II.2.4)

satisfies eq. (II.4.6) as well.

For the proof of closedness, we only need three basic facts: (i) the intersection of closed
sets is closed, (ii) the union of a finite number of closed sets is closed, and (iii) for any α
and c the set B (⟨α, c⟩) is closed.³⁵

Now, we employ Carathéodory’s theorem for convex cones,³⁶ which for our purposes can be
formulated as follows:

Let I ⊂ N be finite, and let {αi}i∈I be vectors in RD. For any point β ∈ RD

fulfilling
β =

∑
i∈I

λiαi, λi ≥ 0, (II.2.6)

there exists a set J ⊆ I with at most D elements such that

β =
∑
j∈J

λjαj , λj ≥ 0, (II.2.7)

where and all αj are linearly independent.
Equation (II.2.6) is clearly equivalent to eq. (II.4.6) for c = 0.

For any such J , there exists a set of vectors {γk} such that {αj}j∈J ∪ {γk} is a basis of
RD. Let AJ be the invertible matrix whose columns are these basis vectors, and let λ be
the vector whose components are λj , where λj = 0 if j ̸∈ J . Then eq. (II.2.7) can be
rewritten as β = AJλ, or equivalently A−1

J β = λ. Since λj ≥ 0, we therefore obtain the
inequalities aj · β ≥ 0, where aj are the column vectors of A−1

J , and aj · β = 0 if j ̸∈ J .
In other words,³⁷

β ∈ B

∑
j

⟨aj , 0⟩+
∑
j ̸∈J

⟨−aj , 0⟩

 . (II.2.8)

³⁵This last fact is easy to prove: take a point b ̸∈ B (⟨α, c⟩), i.e. α · b < c. Then for any vector d such that
|d| < ε,

α · (b+ d) ≤ α · b+ |α · d| < α · b+ ε|α|, (II.2.5)
where we used the Cauchy-Schwarz inequality in the last step. For ε > 0 sufficiently small, this is still less
than c, so b + d ̸∈ B (⟨α, c⟩), proving that it is closed. (Note that this also works for B

(
⟨0, 1⟩

)
= ∅ and

B
(
⟨0,−1⟩

)
= RD .)

³⁶In common mathematical nomenclature, A(ω0) is a convex cone, A(ω1) is an affine cone, and A(ω−1) is a
convex hull. We have chosen not to use these classifications, partly because neither applies to the general Ac(Ω).

³⁷Note that β, which normally is part of a linear constraint, is itself constrained here. This is not a problem;
in fact, the expression α · b ≥ c and be interpreted both as b ∈ B (⟨α, c⟩) and as α ∈ B (⟨b, c⟩). We will return
to this symmetric interpretation many times below.
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By facts (i) and (iii), this set is always closed. Therefore, the set of all β ∈ B(ω0) associated
with the same J is closed. A(ω0) must then be the union of all such sets, but since I is
finite, there are finitely many different subsets J , so A(ω0) is the union of a finite number
of closed sets. By fact (ii), it is therefore closed. □

Let us remark that this proof extends to the other cases, so thatAc(Ω) is closed and convex
for any Ω and c.

B.1.3 Proof of proposition 4.1 in the c = 0 case

We will now turn our attention to the statement that ⟨β, 0⟩ ̸≤ ω0 if β ̸∈ A(ω0), which will
complete the proof of proposition 4.1 for c = 0.³⁸ We employ the separating hyperplane
theorem, which can be formulated as follows:

Let X and Y be disjoint convex sets, with X closed and Y compact. Then there
exists a nonzero vector h and a real number d such that

χ · h > d and ψ · h < d (II.2.9)

for all χ ∈ X ,ψ ∈ Y . (The set {π | π · h = d} is a hyperplane that separates X
from Y , hence the name.)

Since A(ω0) is closed and convex, and because the set consisting of the single point β /∈
A(ω0) is compact and convex, the separating hyperplane theorem implies that there exists
⟨h, d⟩ such that

∀α ∈ A(ω0), h ·α > d and h · β < d. (II.2.10)

Since 0 ∈ A(ω0), we know that d < 0. However, we claim that for any α ∈ A(ω0), we in
fact have h ·α ≥ 0. Indeed, if we assume that there exists α ∈ A(ω0) such that h ·α < 0,
then for any λ ≥ |d|

|α·h| , eq. (II.4.6) implies that λα ∈ A(ω0). But λα · h ≤ −|d|, which
contradicts the fact that α · h > d. Therefore, we have α · h ≥ 0 and β · h < 0, implying
that ⟨β, 0⟩ ̸≤ ω0. This proves proposition 4.1. ■

B.1.4 Proof of proposition 4.2

In order to reduce the general Ω defined in eq. (II.4.9) to one that can be handled by
proposition 4.1 for c = 0, we define the “lifted” vector

ℓx(v) = (v1, v2, . . . , vD, x) , (II.2.11)

where D is the dimension of the original vector v. Then we note that

α · b ≥ c ⇔ ℓ−c(α) · ℓ1(b) = α · b− c ≥ 0. (II.2.12)

³⁸The same method is easy to apply to the c = −1 case and, with some slight complications, the c = 1
case. With considerable effort, it can also be extended to proposition 4.2. However, we will follow the outline
eq. (II.2.1) and only prove what is necessary.
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Thus, any D-dimensional linear constraint ⟨α, c⟩ can be lifted into a (D+1)-dimensional
linear constraint ⟨ℓ−c(α), 0⟩. We can now show that proposition 4.1 in the lifted space,
where we only ever have c = 0, is equivalent to proposition 4.2 in the original space. Define

ωℓ
0 =

∑
i∈I1

⟨ℓ−1(αi), 0⟩+
∑
i∈I0

⟨ℓ0(αi), 0⟩+
∑
i∈I−1

⟨ℓ1(αi), 0⟩+ ⟨ℓ1(0), 0⟩, (II.2.13)

where the extra constraint ⟨ℓ1(0), 0⟩ imposes that ℓx(b) only satisfies ωℓ
0 if x ≥ 0. ωℓ

0 can be
thought of as a lifted version of Ω, and as indicated by the notation, it fulfils the definition
of ω0 so that proposition 4.1 for c = 0 applies to it.

Now, assume that ℓ−c(β) ∈ A(ωℓ
0). Looking at eq. (II.4.6), we find that

β =
∑
i∈I1

λiαi +
∑
i∈I0

λiαi +
∑
i∈I−1

λiαi,+λ
′0,

−c =
∑
i∈I−1

λi −
∑
i∈I1

λi + λ′, λi ≥ 0, λ′ ≥ 0.
(II.2.14)

These exactly reproduce eqs. (II.4.10) and (II.4.11), so we have shown that ℓ−c(β) ∈ A(ωℓ
0)

implies β ∈ Ac(Ω).

Conversely, let us now assume, ℓ−c(β) ̸∈ A(ωℓ
0). Proposition 4.1 then implies the existence

of some ℓx(b) ∈ B(ωℓ
0) with x ≥ 0 such that ℓ−c(β) · ℓx(b) < 0, and for any i ∈ I,

ℓ−ci(αi) · ℓx(b) ≥ 0. We may moreover assume that x > 0, for if x = 0, we may choose
any a ∈ B(Ω) and consider ℓε(b′) = (1 − ε)ℓ0(b) + εℓ1(a) for 0 < ε < 1. By convexity,
ℓε(b

′) ∈ B(ωℓ
0), and

ℓ−c(β) · ℓε(b′) = β · b+ ε [β · (a− b)− c] , (II.2.15)

so for ε small enough, ℓ−c(β) · ℓε(b′) < 0. Consequently,
αi · b ≥ x, i ∈ I1,
αi · b ≥ 0, i ∈ I0,
αi · b ≥ −x, i ∈ I−1,

β · b < xc. (II.2.16)

Thus, 1
xb is a point that satisfiesΩ but not ⟨β, c⟩, which means that ℓ−c(β) ̸∈ A(ωℓ

0) implies
β ̸∈ Ac(Ω).

We have now shown that ℓ−c(β) ∈ A(ωℓ
0) is equivalent toβ ∈ Ac(Ω), and since ⟨ℓ−c(β), 0⟩ ≤

ωℓ
0 is equivalent to ⟨β, c⟩ ≤ Ω, we have therefore proven proposition 4.2 as a consequence

of the c = 0 version of proposition 4.1. As mentioned before, proposition 4.1 for c = ±1
follows easily. ■

B.1.5 An important corollary

The following interesting result is a consequence of proposition 4.2:
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Corollary B.1 (boundedness of B(Ω)). For Ω ̸= Ω∞, the region B(Ω) is bounded if and only
if the origin, 0, is in the interior of A−1(Ω). This happens if and only if {αi}i∈I spans the full
D-dimensional space and there are λi such that

0 =
∑
i∈I

λiαi, λi > 0 (II.2.17)

PROOf. We will show the converse, namely that B(Ω) being unbounded is equivalent to 0
not being in the interior of A−1(Ω).

First assume that 0 is not in the interior of A−1(Ω). Then for all ε > 0, there exists some
βε such that |βε| < ε and βε ̸∈ A−1(Ω). Since ⟨βε,−1⟩ ̸≤ Ω, there consequently exists a
point bε ∈ B(Ω) such that βε · bε < −1. Now, the Cauchy-Schwarz inequality gives

1 < |βe · be| ≤ |βe| |be| < ε|bε|. (II.2.18)

Since this holds for arbitrarily small ε, there can be no upper bound on |bε|; therefore,
B(Ω) is unbounded.

Conversely, assume that B(Ω) is unbounded. Then for all M > 0, there must exist some
bM ∈ B(Ω) such that |bM | > M . Now define

βM ≡ −
bM
|bM |3/2

⇒ |βM | =
1

|bM |1/2
<

1√
M
, βM · bM = −|bM |1/2 < −

√
M.

(II.2.19)
For sufficiently large M , the last inequality implies that ⟨βM ,−1⟩ ̸≤ Ω, so βM ̸∈ A−1(Ω).
However, the inequality before that tells us that βM may lie arbitrarily close to the origin.
Therefore, 0 ∈ A−1(Ω) must lie on the boundary, not the interior, of A−1(Ω).

That completes the main proof, but we must also prove condition about the span of
{αi}i∈I . If the span was lower-dimensional, then there would exist some vector β lin-
early independent of all αi, and then clearly εβ ̸∈ A−1(Ω) for all ε > 0, implying that 0
is not in the interior of A−1(Ω). Lastly, we must prove eq. (II.2.17), which is essentially
eq. (II.4.12) with λi > 0 rather than λi ≥ 0. Since {αi}i∈I spans the full space, any vector
v of sufficiently small magnitude satisfies

v ∈ Hull
(
{αi}i∈I ∪

{
−
∑

i∈I αi

})
. (II.2.20)

Thus, 0 is in the interior of A−1(Ω) if and only if for sufiiciently small ε > 0³⁹

−ε
∑
i∈I

αi ∈ A−1(Ω) ⇔ −ε
∑
i∈I

αi =
∑
i∈I

λiαi ⇔ 0 =
∑
i∈I

(λi + ε)αi (II.2.21)

for λi ≥ 0, which implies λi + ε > 0, thereby producing eq. (II.2.17). ■

³⁹Here, we neglect the condition
∑

i∈I λici ≥ −1 in the second equality, since it is always possible to multiply
both sides by a positive factor to rescale the λi appropriately.
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B.2 Some mathematical tools

Before moving on with proving proposition 4.3 and deriving further results, we need to
establish some tools and terminology that range from useful to crucial in subsequent sec-
tions.

B.2.1 The degenerate constraint framework

In this section, we properly define what it means for a constraint to be degenerate, and
derive notations and results that are not only useful for the proof of proposition 4.3 and its
generalisation, but also for many other things later in this appendix.

In a D-dimensional space, consider an affine subspace E of dimension d. There exists two
sets of vectors {gj}dj=1, {δk}

D−d
k=1 whose union forms an orthonormal basis for RD, that,

given an arbitrary point e ∈ E, allow E to be expressed in two complementary ways:⁴⁰

E =

{
e+

d∑
j=1

xjgj

∣∣∣∣ xj ∈ R
}
, E = B

[
D−d∑
k=1

(
⟨δk, δk · e⟩+ ⟨−δk,−δk · e⟩

)]
. (II.2.22)

Up to the choice of e and the basis vectors, any vector b in parameter space can be uniquely
decomposed as

b = e+

d∑
j=1

xjgj +

D−d∑
k=1

zkδk. (II.2.23)

We then define ⌊b⌋E ≡ (x1, x2, . . . xd) and ⌈b⌉E ≡ (z1, z2, . . . , zD−d). These are d-
and (D − d)-dimensional vectors, respectively, and live in spaces separate from the D-
dimensional space in which E, e, etc. live. Note that if b ∈ E, then ⌈b⌉E = 0 and b is
uniquely determined by ⌊b⌋E . For constraint-space vectors, we instead make the decom-
position

α =

d∑
j=1

ξjgj +

D−d∑
k=1

ζkδk (II.2.24)

and analogously define ⌊α⌋E ≡ (ξ1, ξ2, . . . ξd) and ⌈α⌉E ≡ (ζ1, ζ2, . . . ζD−d).⁴¹ These can
form constraints acting on ⌊b⌋E and ⌈b⌉E , respectively. As an extension, for any set X we
define

⌊X⌋E ≡
{
⌊x⌋E

∣∣∣ x ∈ X}, ⌈X⌉E ≡
{
⌈x⌉E

∣∣∣ x ∈ X}. (II.2.25)

⁴⁰Note that we have written gj as parameter-space vectors, and δk as constraint-space vectors. This is consistent
with their use in eq. (II.2.22), but eqs. (II.2.23) and (II.2.24) are in a sense breaking our conventions by adding
vectors of different types. This is of course no problem when both parameter and constraint space are just RD ,
but if we considered constraints in more general spaces, we would have to make appropriate adjustments to our
formulae.

⁴¹Our notation does not make the choice of reference point e explicit, and it is arbitrary for all purposes.
Replacing e → e′ simply entails translating all ⌊b⌋E → ⌊b⌋E + ⌊e′ − e⌋E while leaving ⌈b⌉E , ⌊α⌋E and
⌈α⌉E unchanged. Likewise, altering {gj}dj=1, {δk}

D−d
k=1 just corresponds to a change of basis in the spaces.
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We reiterate how important it is to view X , ⌊X⌋E and ⌈X⌉E as living in three different
spaces. There is of course a straightforward mapping between ⌊X⌋E and X ∩E — indeed,
the d-dimensional space can be seen as the vector space underlying the affine subspace E
— but the notion of separate spaces makes the proofs below clearer.

Before moving on to constraints, let us make the folloing definition:
The dimension of any nonempty set X , written dim(X ), is the affine dimen-
sion of the smallest (i.e. lowest-dimensional) affine subspace that contains X .
Equivalently, dim(X ) is the dimension of the affine span of the points in X .⁴²

This smallest affine subspace is clearly unique, for if it is not, the intersection of all such
subspaces is even smaller. For any nonempty convex set C ∈ RD, D > 0, the following
basic fact holds:

dim(C) < D ⇔ int(C) = ∅, (II.2.26)
where int(C) is the interior of C.

Consider now a constraint Ω ̸= Ω∞ and define dΩ ≡ dim
[
B(Ω)

]
. We formalise the defi-

nition of degeneracy stated in section 4.4 as follows:
A constraint Ω ̸= Ω∞ in D-dimensional space is degenerate if dΩ < D and
non-degenerate otherwise. Ω∞, for which dΩ∞ is undefined, does not fall into
either category.

Let EΩ be the unique dΩ-dimensional affine subspace that contains B(Ω). Given linear
constraint ⟨α, c⟩, we define⌊
⟨α, c⟩

⌋
Ω
≡ ⟨ ⌊α⌋EΩ

, c−α · e⟩,
⌈
⟨α, c⟩

⌉Ω
≡ ⟨⌈α⌉EΩ , c−α · e⟩. (II.2.27)

For these, the following holds:

Lemma B.1. For any point b,
(a) If ⌈b⌉EΩ = 0, then ⌊b⌋EΩ

satisfies ⌊⟨α, c⟩⌋Ω if and only if b satisfies ⟨α, c⟩.

(b) If ⌊α⌋EΩ
= 0, then ⌈b⌉EΩ satisfies ⌈⟨α, c⟩⌉Ω if and only if b satisfies ⟨α, c⟩.

PROOf. This follows directly from eqs. (II.2.23), (II.2.24) and (II.2.27) and the ortho-
normality of {gj}dj=1 ∪ {δk}

D−d
k=1 . □

Using this, we define for any Ω ̸= Ω∞ with representation S

⌊Ω⌋ ≡
∑

⟨α,c⟩∈S

⌊⟨α, c⟩⌋Ω . (II.2.28)

This constraint, which acts on the dΩ-dimensional space of vectors ⌊b⌋EΩ
, has three im-

portant properties. Firstly, ⌊Ω⌋ is satisfied by ⌊b⌋EΩ
if Ω is satisfied by b, and the converse

holds when ⌈b⌉EΩ = 0 (this follows from lemma B.1), so

B(⌊Ω⌋) = ⌊B(Ω)⌋EΩ
. (II.2.29)

⁴²Note that this definition agrees with the usual affine/linear dimension when X is itself an affine/linear sub-
space.
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Secondly, ⌊Ω⌋ is independent of S as a consequence of this. Lastly, ⌊Ω⌋ is, by construc-
tion, non-degenerate.⁴³ Thanks to these properties, ⌊Ω⌋ is key to all further treatment of
degenerate constraints.

B.2.2 K-faces

In this section, we introduce K-faces, which will be highly useful in subsequent sections;
especially corollary B.2 and propositions B.3 and B.4 rely heavily on them. Like several
other things introduced here, it is partially based on standard concepts and nomenclature,
but has been adapted and extended to fit the context of linear constraints. K-faces are
defined as follows:

LetF be a non-empty convex subset of a closed convex set C, withK = dim(F).
Then F is called a K-face of C if the following holds: For every φ ∈ F , if there
exists η1,2 ∈ C such that φ = µη1 + (1− µ)η2 with µ ∈ (0, 1), then η1,2 ∈ F .
The single point in a 0-face of C is called an extreme point or vertex of C; it is a
point that cannot be expressed as a convex combination of any two points in
C distinct from itself.
A 1-face of C is called an edge.
A (D − 1)-face of C is called a facet.

For convex polygons, polyhedra, etc., these definitions agree with the usual concepts of
vertices, edges and facets. A number of useful properties of K-faces easily follow from the
definitions:

(i) No K-face of C is a strict subset of another K-face of C with the same K.

(ii) There is a unique dim(C)-face of C, namely C itself.

(iii) All K-faces of C (except possibly C itself ) are contained in the boundary of C.

(iv) If F is a K-face of C, then for all K ′ ≤ K the K ′-faces of F are also K ′-faces of C.
Specifically, an edge may have up to two vertices, which are its endpoints.

(v) If F is aK-face of C and C′ ⊆ C, then if F∩C′ is non-empty, it is aK ′-face (K ′ ≤ K)
of C′.

We will now prove some less obvious properties. In the remainder of this section, let C be
any convex set such that there exists a finite set of constraints {⟨gℓ, cℓ⟩}ℓ∈L fulfilling⁴⁴

C = B

(∑
ℓ∈L

⟨gℓ, cℓ⟩

)
. (II.2.30)

We then begin with the following technical lemma:
⁴³If dΩ = 0, so that B(Ω) is a single point, then ⌊Ω⌋ is a zero-dimensional constraint. This is not conceptually

a problem for proposition B.1 below: ⌊Ω⌋ is satisfied by 0, which is the only point in zero-dimensional space,
and R(⌊Ω⌋) = ∅.

⁴⁴This class of sets includes all convex hulls of finite sets, all linear and affine subspaces, as well as most other
sets we work with, including Ac(Ω) as we will prove in section B.4. For convenience, we express C as a subset of
constraint space, but all results hold equally well if C is a subset of parameter space.
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Lemma B.2. Let C be a convex set defined as in eq. (II.2.30), and let F ⊆ C be non-empty with
dimensionK < D. Then F is aK-face of C if and only if there exists J ⊂ L with |J | = D−K
such that {gj}j∈J are linearly independent and

∀φ ∈ F , ∀j ∈ J, gj ·φ = cj . (II.2.31)

Note that there may be ℓ ∈ L \ J such that gℓ · φ = cℓ. All such gℓ are contained in the
span of {gj}j∈J , though.

PROOf. If such a J exists, then F ′ ≡ {φ ∈ RD | ∀j ∈ J, gj · φ = cj} is clearly an affine
subspace of dimension K. Let φ ∈ F ′ and η1,2 ∈ C, and assume φ = µη1 + (1 − µ)η2

with µ ∈ (0, 1). Then
gj ·φ = d = gj ·

[
µη1 + (1− µ)η2

]
(II.2.32)

and since gj · η1,2 ≥ cj , this implies gj · η1,2 = cj . Therefore η1,2 ∈ F ′, so F = F ′ ∩ C is
a K-face.

For the less straightforward converse, let ω =
∑

ℓ∈L ⟨gℓ, cℓ⟩, with C = B(ω). If ω is
degenerate, then C clearly has no K-faces forK > dω, and the unique dω-face is C itself by
property (ii). In that case, the proof follows trivially from eq. (II.2.22). For the remaining
cases, we may substitute ω → ⌊ω⌋ , C → ⌊C⌋ω = B(⌊ω⌋) and thus assume without loss of
generality that ω is non-degenerate.

Let us then note that J cannot be empty. Indeed, if it were the case, then φ ∈ F would
be in the interior of C which via property (iii) contradicts the fact that F is a K-face with
K < D. Also, |J | ≤ D −K, since otherwise the set {χ ∈ C | ∀j ∈ J,χ · gj = cj}, being
the intersection of more thanD−K independent hyperplanes, would have dimension less
than K. We will then proceed by induction on D > K. The result is trivial in K + 1
dimensions, since |J | = 1 is guaranteed by J being nonempty.

Assume then that the lemma holds in n dimensions, and consider C,F in (n+1)-dimensional
space. Since J ̸= ∅, there is some i ∈ L such that ∀φ ∈ F , gi ·φ = ci. Then consider

Ei ≡ B
(
⟨gi, ci⟩+ ⟨−gi,−ci⟩

)
, ⌊C⌋Ei

= B

(∑
ℓ∈L

⌊⟨gℓ, cℓ⟩⌋Ei

)
. (II.2.33)

By construction, ⌊F⌋Ei
is a K-face of ⌊C⌋Ei

. Since these are sets in a n-dimensional
space, we know by the induction hypothesis that we have J ′ with |J ′| = n − K such
that {

⌊
gj
⌋
Ei
}j∈J ′ are linearly independent and eq. (II.2.31) is satisfied. Furthermore,

⌊gi⌋Ei
= 0, which cannot be expressed as a linear combination of {

⌊
gj
⌋
Ei
}j∈J ′ with

nonzero coefficients. Therefore, gi is linearly independent of {gj}j∈J ′ . Thus, J = J ′∪{i}
has |J | = n+1, {gj}j∈J linearly indpendent and satisfies eq. (II.2.31). This proves that the
lemma holds in n+ 1 dimensions, and completes the induction. □

Based on this, we can prove two more interesting lemmata:
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Lemma B.3. Let C be a convex set satisfying eq. (II.2.30). Let F be a nonempty convex subset
of C, and let K = dim(F). Then F is a K-face of C if and only if there is some constraint
⟨h, d⟩ such that C ⊆ B(⟨h, d⟩) and {χ ∈ C | h · χ = d} = F .⁴⁵
PROOf. First note that this trivially holds when {χ ∈ C | h · χ = d} = C (compare
property (ii)), which may happen even when C is not contained in any hyperplane if
⟨h, d⟩ = ⟨0, 0⟩.

Setting aside the trivial cases, assume that such a ⟨h, d⟩ exists. Then F is a K-face by
essentially the same argument that was made around eq. (II.2.32).

Conversely, if F is a K-face then lemma B.2 holds. In the notation of that lemma, let

h =
∑
ℓ∈J

gℓ, d =
∑
ℓ∈J

cℓ, (II.2.34)

so that ∀φ ∈ F ,h · φ = d. Let us now consider any η ∈ C such that h · η = d. Let EJ be
defined as in eq. (II.2.33). Then by construction, ⌊F⌋EJ

has the same dimension as its native
space, i.e.D−K, and has nonempty interior by eq. (II.2.26) (recall thatD−K > 0). Thus,
there exists φ ∈ F such that ⌊φ⌋EJ

is in the interior of ⌊F⌋EJ
. For ε > 0 small enough,

we therefore have

⌊ηε⌋EJ
≡ ε ⌊η⌋EJ

+ (1− ε) ⌊φ⌋EJ
∈ ⌊F⌋EJ

. (II.2.35)

Since by construction ⌈χ⌉EJ = 0 for all χ such that h · χ = d, lemma B.1 implies that

ηε = εη + (1− ε)φ. (II.2.36)

By the definition of a K-face, this implies that η ∈ F , which concludes the proof.⁴⁶ □
Lemma B.4. Let C ⊆ C′ be convex sets satisfying eq. (II.2.30), and let F be a K-face of C.
Then there exists a K-face F ′ of C′ with F ⊆ F ′ if there is some φ ∈ F and ε > 0 such that
{χ ∈ C′ | ε ≥ |χ−φ|} ⊆ C.

Note how this complements property (v). Note also that F ′ ⊃ F may exist even if F fails
to satisfy the given conditions.

PROOf. By lemma B.3, there exists ⟨h, d⟩ such that and {χ ∈ C | h · χ = d} = F and
C ⊆ B(⟨h, d⟩). We moreover claim that C′ ⊆ B(⟨h, d⟩). Indeed, let φ ∈ F and ε > 0 such
that {χ ∈ C′ | ε ≥ |χ − φ|} ⊆ C. For any η ∈ C′ it follows from the triangle inequality
that ∣∣∣φ− [(1− ε

|φ|+|η|

)
φ+ ε

|φ|+|η|η
]∣∣∣ = ε

|φ− η|
|φ|+ |η|

≤ ε, (II.2.37)

⁴⁵Although we do not use it, this holds forK = D−1 for any convex set C, not just those satisfying eq. (II.2.30)
(this is proven in a later footnote). This is not the case for smallerK: take e.g. theD = 2 example C = {(x, y) ∈
R2 | y ≥ max(0, x3)}, for which (0, 0) is an extreme point but ⟨h, d⟩ does not exist.

⁴⁶WhenK = D−1, the following proof, which does not use lemma B.2 and therefore holds for all convex sets
C, works for the converse: Let F ′ be the affine span of F , which is a hyperplane. By a variant of the separating
hyperplane theorem (for any disjoint convex setsX andY (no closedness/compactness needed), there exists ⟨h, d⟩
with h · χ ≤ d′ for all χ ∈ X and h · ψ ≥ d′ for all ψ ∈ Y) applied to the disjoint convex sets F ′ and C \ F ,
we immediately find our desired ⟨h, d⟩. This hinges on the properties of hyperplanes: the separating hyperplane
must be parallel to F ′, or else they would intersect. Therefore, this does not work if K < D − 1.
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so
(
1− ε

|φ|+|η|

)
φ+ ε

|φ|+|η|η ∈ C. In particular,

h ·
[(

1− ε
|φ|+|η|

)
φ+ ε

|φ|+|η|η
]
≥ d ⇒ h · η ≥ d. (II.2.38)

Therefore, lemma B.3 guarantees that F ′ = {η ∈ C′ | h · η = d} is a K ′-face for some K ′.
Since F ⊆ F ′ we have K ≤ K ′, so it remains to prove that K ≥ K ′. For any φ′ ∈ F ′,
we have φ + ε φ′

|φ′| ∈ F since
∣∣φ − (φ + ε φ′

|φ′|
)∣∣ ≤ ε. However, since −φ belongs to the

span of F , we can deduce that ε φ′

|φ′| , and therefore also φ′, belongs to the span of F . Thus,
the span of F ′ is included in the span of F , implying that K ≥ K ′, which completes the
proof. □

B.3 Proof and generalisation of proposition 4.3

To simplify this proof, we will introduce the following terminology:
A linear constraint ⟨α, c⟩ with α ̸= 0 supports a point b if α · b = c.⁴⁷
A linear constraint ⟨0, c⟩ supports no point (this is natural for c = ±1, but we
define it to be so also for c = 0; this simplifies most statements expressed in
terms of support).
Given Ω, a linear constraint ⟨α, c⟩ uniquely supports a point b ∈ B(Ω) if it sup-
ports b, and there is no other ⟨β, d⟩ ≤ Ω with ⟨β, d⟩ ̸= ⟨α, c⟩ that supports b.
A constraint representation S is non-redundant if it contains no trivial con-
straints, and there are no two elements ⟨α, c⟩ ∈ S and ⟨β, d⟩ ∈ S such that
⟨α, c⟩ = ⟨β, d⟩.

Reducing a representation to a non-redundant one is of course trivial. Noting that the
second paragraph of proposition 4.3 can be reduced to “The elements of R(Ω) are exactly
those ⟨α, c⟩ ≤ Ω that uniquely support a point b ∈ B(Ω)”, we will then begin with the
following lemma:

Lemma B.5. Let Ω =
∑

i∈I ⟨αi, ci⟩ be a non-degenerate constraint, as defined in section 4.4,
and let the representation {⟨αi, ci⟩}i∈I be non-redundant. Then for any j ∈ I and b ∈ B(Ω),
⟨αj , cj⟩ uniquely supports b if and only if αj · b = cj and αi · b > ci for all i ̸= j.

Note that compared to the definition of unique support, this only concerns the elements
of a non-redundant representation rather than all ⟨β, c⟩ ≤ Ω.

PROOf. Assume that αj · b = cj and αi · b > ci for all i ̸= j, and assume there is some
⟨β, c⟩ < Ω that supports b, i.e. that ⟨αj , cj⟩ does not support it uniquely. By proposi-
tion 4.2, there exist some positive numbers {λi}i∈I such that

c = β · b =
∑
i∈I

λiαi · b ⇒

{
c = λjcj if λi = 0 for all i ̸= j,

c >
∑

i∈I λici ≥ c otherwise.
(II.2.39)

⁴⁷This is inspired by the standard concept of a supporting hyperplane.
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The second case is a contradiction, so β = λjαj and c = λjcj with λj ≥ 0. If cj = ±1,
then either β = −αj and c = −cj (contradicting non-degeneracy), or β = 0 (impossible
since ⟨0,±1⟩ supports no point), or β = αj and c = cj (contradicting non-redundancy).
If cj = 0, then c = 0 and β is proportional to αj (again contradicts non-rendundancy, via
eq. (II.4.5)). With no non-contradictory cases left, we have proven that ⟨αj , cj⟩ supports
b uniquely if αj · b = cj and αi · b > ci for all i ̸= j. The converse is trivial. □

Let us then prove the following more significant lemma:

Lemma B.6. Let ⟨α, c⟩ be a linear constraint, and let Ω be a constraint such that Ω+ ⟨α, c⟩ is
non-degenerate. Assume that Ω uses a non-redundant representation S and that S ∪ {⟨α, c⟩}
is a non-redundant representation for Ω + ⟨α, c⟩. Then Ω + ⟨α, c⟩ > Ω if and only if ⟨α, c⟩
uniquely supports some point b ∈ B[Ω + ⟨α, c⟩].
PROOf. Assume that ⟨α, c⟩ uniquely supports some point b ∈ B(Ω+⟨α, c⟩), so thatα·b = c
and β · b > d for all ⟨β, d⟩ ∈ S. Then define

bε ≡ b− ε
α

|α|2
, ε > 0 (II.2.40)

so that
α · bε = c− ε < c, β · bε > d− εβ ·α

|α|2
. (II.2.41)

Thus, bε ̸∈ B(Ω + ⟨α, c⟩), but bε ∈ B(Ω) for sufficiently small ε. Then by definition,
Ω+ ⟨α, c⟩ > Ω.

Conversely, assume that Ω + ⟨α, c⟩ > Ω. Then there exists some b ∈ B(Ω) such that b ̸∈
B(Ω+⟨α, c⟩). Furthermore, sinceΩ+⟨α, c⟩ is non-degenerate, the interior of B(Ω+⟨α, c⟩)
is non-empty;⁴⁸ therefore, it contains some point n. These points have the properties

α · b < c, β · b ≥ d,
α · n > c, β · n > d.

(II.2.42)

where again ⟨β, d⟩ ∈ S. By the intermediate value theorem, there must therefore exist
some µ ∈ (0, 1) such that⁴⁹

α ·
[
µb+ (1− µ)n

]
= c, β ·

[
µb+ (1− µ)n

]
> d, (II.2.43)

which, through lemma B.5, proves that ⟨α, c⟩ supports µb+ (1− µ)n uniquely. □

We now move on to proving proposition 4.3. Let a non-degenerate constraint Ω be ex-
pressed as

Ω =
∑
i∈I

⟨αi, ci⟩ =
∑
j∈J

⟨γj , dj⟩ (II.2.44)

⁴⁸Recall that Ω being degenerate is equivalent to B(Ω) being contained in a hyperplane, and a convex set has
empty interior if and only if it is contained in a hyperplane; see also eq. (II.2.26). In general, the existence of a
point in the interior of B(Ω) is the only property of non-degenerate constraints used in this proof. Circumventing
this requirement is key to proposition B.1 below.

⁴⁹Specifically, µ =
α · n− c

α · n−α · b
.
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where {⟨αi, ci⟩}i∈I is any representation, whereas {⟨γj , dj⟩}j∈J is minimal. A minimal
representation must exist, since Ω can be written as a sum of a finite number of constraints.
For any k ∈ J , minimality implies that∑

j∈J

⟨γj , dj⟩ >
∑
j∈J
j ̸=k

⟨γj , dj⟩, (II.2.45)

but by lemma B.6, ⟨γk, dk⟩ must then uniquely support some b ∈ B(Ω). Then, there
must also be some ik ∈ I such that ⟨αik , cik⟩ also supports b. To see this, assume that no
⟨αi, ci⟩, i ∈ I supports b, and consider

bε ≡ b− ε
γk

|γk|2
⇒ αi · bε > c− ε

α · γj

|γj |2
, (II.2.46)

so that for sufficiently small ε, αi · bε > c for all i ∈ I, and thus bε ∈ B(Ω). On the other
hand,

γk · bε = dk − ε (II.2.47)
implying b ̸∈ B(Ω), a contradiction. Therefore, ik ∈ I does exist. By the definition of
unique support, we must then have ⟨γk, dk⟩ = ⟨αik , cik⟩; that is, they are identical up to
normalisation. By repeating this argument, we see that a distinct ik exists for each k ∈ J ,
so {⟨γj , dj⟩}j∈J ⊆ {⟨αi, ci⟩}i∈I up to normalisation. Having shown this, we may without
loss of generality normalise and re-index ⟨γj , dj⟩ so that J ⊆ I. Then

Ω =
∑
i∈I

⟨αi, ci⟩

=
∑
i∈J

⟨αi, ci⟩+
∑

i∈I\J

⟨αi, ci⟩

= Ω+
∑

i∈I\J

⟨αi, ci⟩.

(II.2.48)

By lemma B.6, the sum in the last line can only contain constraints that do not uniquely
support any point. Thus, the minimal representation R(Ω) = {⟨αi, ci⟩}i∈J consists (up
to normalisation) of exactly those elements of any representation that uniquely support a
point. From this it follows that R(Ω) consists of exactly all those ⟨γ, d⟩ ≤ Ω that uniquely
support a point, since {⟨αi, ci⟩}i∈I could be made to include all ⟨α, c⟩ ≤ Ω, and from that
it follows that R(Ω) is unique up to normalisation. ■

B.3.1 The treatment of degenerate constraints

The following result generalises proposition 4.3 to all Ω:

Proposition B.1 (finding relevant constraints, general case). Let Ω be any constraint in D-
dimensional space. Then a minimal representation R(Ω) can be determined as follows:

(i) If Ω is non-degenerate, then proposition 4.3 applies. R(Ω) is therefore unique up to
normalisation, and is a subset of any representation of Ω.
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(ii) If Ω = Ω∞, then trivially R(Ω) = {⟨0, 1⟩}. This is unique, but not necessarily a subset
of other representations.

(iii) If Ω is degenerate, let EΩ be the unique dΩ-dimensional affine subspace that contains
B(Ω). Let

{
⟨αi, ci⟩

}
i∈I

be any set such that
{
⌊⟨αi, ci⟩⌋Ω

}
i∈I

= R(⌊Ω⌋), with
⌊⟨αi, ci⟩⌋Ω ̸= ⌊⟨αj , cj⟩⌋Ω for all i ̸= j. Let {σk}dΩ

k=0 be any set of (D − dΩ + 1) vectors
with the following properties:

• ⌊σk⌋EΩ
= 0;

• The dimension of span
(
{σk}D−dΩ

k=0

)
is D − dΩ;

• There exists a solution to

0 =

D−dΩ∑
k=0

λkσk, λk > 0. (II.2.49)

Then for arbitrary e ∈ EΩ,

R(Ω) =
{
⟨αi, ci⟩

}
i∈I
∪
{
⟨σk,σk · e⟩

}D−dΩ

k=0
. (II.2.50)

This R(Ω) is generally not unique, and is not neccesarily a subset of any given represen-
tation of Ω. However, there is no minimal representation of Ω that is not of this form.

The non-unqiueness in case (iii) comes about in two ways. Firstly, ⌈α⌉EΩ is arbitrary for
⌊⟨α, c⟩⌋Ω ∈ R(⌊Ω⌋). Secondly, there is clearly freedom in the choice of {σk}D−dΩ

k=0 . Given
{δk}D−dΩ

k=1 as defined above eq. (II.2.22), a straightforward choice is

{σk}D−dΩ

k=1 = {δk}D−dΩ

k=1 , −σ0 =

D−dΩ∑
k=1

σk. (II.2.51)

PROOf. We only need to prove case (iii). For brevity, we will omit some sub/superscripts:
⌊⟨α, c⟩⌋ should be read as ⌊⟨α, c⟩⌋Ω, ⌈b⌉ as ⌈b⌉EΩ , and so on.

Let
{
⟨αi, ci⟩

}
i∈J

be a minimal representation of Ω, and subdivide it as

J1 ≡ {i ∈ J | ⌊⟨αi, ci⟩⌋ ̸= ⟨0, 0⟩}, J2 ≡ {i ∈ J | ⌊⟨αi, ci⟩⌋ = ⟨0, 0⟩}, (II.2.52)

for which the following holds:

Lemma B.7. {⌊⟨αi, ci⟩⌋}i∈J1
= R(⌊Ω⌋) (up to normalisation).

PROOf. By proposition 4.3, it is clear that {⌊⟨αi, ci⟩⌋}i∈J ⊇ R(⌊Ω⌋), since it it a represen-
tation of ⌊Ω⌋. Then, for some i ∈ J , consider

Ω′ ≡
∑
j∈J
j ̸=i

⟨αj , cj⟩. (II.2.53)
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Let us assume that ⌊⟨αi, ci⟩⌋ ̸∈ R(⌊Ω⌋), so that ⌊Ω′⌋ = ⌊Ω⌋. However, Ω′ ̸= Ω, since
{⟨αi, ci⟩}i∈J is minimal. Thus, by lemma B.1, Ω′ must be satisfied by some point a ̸∈ EΩ.
For each b ∈ B(Ω), consider then xa + (1 − x)b for x ∈ (0, 1]. This point satisfies Ω′ but
not Ω, since it lies outside EΩ. From this, we conclude that it does not satisfy ⟨αi, ci⟩.
Thus, the continuous function

fb(x) = αi · [xa+ (1− x)b] (II.2.54)

has fb(x) < ci for x > 0. However, fb(0) ≥ ci since b satisfies ⟨αi, ci⟩, and this is
only consistent with continuity if fb(0) = ci, i.e. that αi · b = ci, for all b ∈ B(Ω).
Then B(Ω) ⊆ B(⟨αi, ci⟩ + ⟨−αi,−ci⟩), so it follows from eq. (II.2.22) that αi is a linear
combination of {δk}D−dΩ

k=1 , i.e. that ⌊αi⌋ = 0. Equation (II.2.27) then shows that i ∈ J2,
completing the proof. □

Now, let
Ω =

∑
i∈J1

⟨αi, ci⟩+
∑
i∈J2

⟨αi, ci⟩. (II.2.55)

Lemma B.7 connects the J1 part withR(⌊Ω⌋), so it remains to study the J2 part. We claim
that eq. (II.2.55) holds true if and only if

B

(∑
i∈J2

⌈⟨αi, ci⟩⌉

)
= {0}. (II.2.56)

It follows immediately from lemma B.7 that

0 ∈ B

(∑
i∈J2

⌈⟨αi, ci⟩⌉

)
. (II.2.57)

Assume then that this set also contains some ⌈v⌉ ̸= 0. Since ⌊Ω⌋ is non-degenerate, there
exists ⌊b⌋ ∈ int

[
B(⌊Ω⌋)

]
; choosing ⌈b⌉ = 0, it follows that ∀i ∈ J1, αi · b > ci. Therefore,

for ε > 0 small enough we have ∀i ∈ J1, αi · (b + εv) ≥ ci. Since ⌈b+ εv⌉ = ε ⌈v⌉, we
also have ∀i ∈ J2, αi · (b + εv) ≥ ci. Thus, b + εv ∈ B(Ω), but since ⌈v⌉ ̸= 0, we have
b + εv ̸∈ EΩ, a contradiction. Along with its trivial converse, this proves the equivalence
between eqs. (II.2.55) and (II.2.56).

What is then the minimal set {⟨αi, ci⟩}i∈J2
that produces eq. (II.2.56)? Since {0} is a

bounded set, corollary B.1 states that {⌈αi⌉}i∈J2
spans the full (D − dΩ)-dimensional

space, and that there are λi > 0, i ∈ J2 such that

0 =
∑
i∈J2

λiαi. (II.2.58)

The span condition requires |J2| ≥ D − dΩ, but in order for there to be a nontrivial linear
combination equal to zero, we must in fact have |J2| ≥ D − dΩ + 1. It is easy to see that
this bound is sufficient (for details, see the proof of corollary B.1), so the minimal set must
have |J2| = D − dΩ + 1. Identifying {αi}i∈J2

with {σk}D−dΩ

k=0 , we see that we have just
derived all conditions stated in the proposition, so the proof is complete. ■
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B.3.2 An important corollary

The following interesting result, which is also our first use of the K-faces defined in sec-
tion B.2.2, is a consequence of proposition 4.3:

Corollary B.2 (facet supported by relevant element). Let Ω ̸= Ω∞ be a non-degenerate
constraint, and let ⟨α, c⟩ ≤ Ω. Then ⟨α, c⟩ ∈ R(Ω) (up to normalisation) if and only if the
set F ≡ {b ∈ B(Ω) | α · b = c} is a facet of B(Ω).⁵⁰
PROOf. It is guaranteed via lemma B.3 that F is a K-face; we only need to show that
K = D − 1 so that it is a facet.

Assume ⟨α, c⟩ ∈ R(Ω). Let ⟨β, d⟩ be any constraint that supports all of F , and construct
the constraints

Ω′ ≡
∑

⟨α′,c′⟩∈R(Ω)

⟨α′, c′⟩+ ⟨β, d⟩, Ω′′ ≡
∑

⟨α′,c′⟩∈R(Ω)

⟨α′, c′⟩+ ⟨−β, d⟩. (II.2.59)

Then it is clear thatB(Ω) = B(Ω′)∪B(Ω′′), so at least one ofΩ′,Ω′′ must be non-degenerate.
Without loss of generality, assume Ω′ is non-degenerate. Since ⟨α, c⟩ does not uniquely
support any point in B(Ω′) (all points supported by it are also supported by ⟨β, d⟩), propo-
sition 4.3 (or rather lemma B.6) gives

Ω′ =
∑

⟨α′,c′⟩∈R(Ω)
⟨α′,c′⟩̸=⟨α,c⟩

⟨α′, c′⟩+ ⟨β, d⟩. (II.2.60)

Recall that ⟨α, c⟩, viewed as an element of Ω, uniquely supports some point b ∈ F . There-
fore, α′ · b > c′ for all ⟨α′, c′⟩ ∈ R(Ω) \ {⟨α, c⟩}. By eq. (II.2.60), ⟨β, d⟩ then uniquely
supports b ∈ B(Ω′), but since ⟨α, c⟩ ≤ Ω′ and α · b = c, the definition of unique support
gives ⟨α, c⟩ = ⟨β, d⟩. Thus, the only constraints that support all of F are, up to normal-
isation, ⟨α, c⟩ and ⟨−α,−c⟩, confirming via lemma B.2 that dim(F) = D − 1 (compare
also eq. (II.2.22)). The converse is trivial. □

B.4 Practical construction of Ac(Ω) and R(Ω)

This section describes how to leverage propositions 4.2 and 4.3 for the practical manage-
ment of linear constraints. The results stated here, namely propositions B.2 and B.3 along
with their corollaries, double as the algorithms which we used in practice to obtain the
results presented in section 6.⁵¹

⁵⁰It may seem obvious that this condition is equivalent to uniquely supporting a point, but is in fact rather
subtle, and crucially depends on Ω having a finite representation. For instance, if B(Ω) were a closed unit ball,
then every point b on its surface would be uniquely supported by the constraint ⟨−b,−1⟩. For such a constraint,
F = {b}, which is not a facet in D > 1 dimensions.

⁵¹The implementation code is available from Mattias Sjö upon request.
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B.4.1 Construction of Ac(Ω)

When using proposition 4.2 to determine if ⟨β, c⟩ ≤ Ω for some β, c and Ω, the rather
indirect definition in eq. (II.4.10) is of little practical use. Instead, we will take the approach
of finding a constraint that is satisfied by β if and only if β ∈ Ac(Ω).

To understand why such a constraint exists and has a finite representation, note that
eq. (II.4.11) along with λi ≥ 0 are nothing more than an obfuscated set of linear constraints
on the set A(Ω). Provided a finite set of αi, a considerable amount of linear algebra will
determine a finite representation this way. Here, however, we present a simpler method in
which the only complicated operation is the determination of the convex hull of a set of
points. Highly efficient algorithms for determining convex hulls exist; we use the Quick-
Hull algorithm [48] and the associated qhull implementation.⁵²

The key to the construction is that, given a finite set of points {βj}j∈J , a side-effect of the
QuickHull algorithm is the creation of a set of constraints {⟨nℓ, rℓ⟩}ℓ∈L such that

B
(∑

ℓ∈L ⟨nℓ, rℓ⟩
)
= Hull

(
{βj}j∈J

)
, (II.2.61)

since nℓ, rℓ are the normals and offsets of the facets of the hull.⁵³ This is, by construction,
a minimal representation. If we choose βj such that Hull

(
{βj}j∈J

)
is a suitable subset of

Ac(Ω), we will see that it is possible to write a simple rule that selects a subsetM ⊆ L such
that

B
(∑

ℓ∈M ⟨nℓ, rℓ⟩
)
= Ac(Ω). (II.2.62)

In order to do this, let Ω be given as in eq. (II.4.9). Importantly, assume without loss of
generality that ⟨αi,−1⟩ = ⟨0,−1⟩ for some i ∈ I−1, but that αi ̸= 0 for all i ∈ I0.⁵⁴ Then,
define the following sets of points:

P±(Ω) = {αi | i ∈ I±1},

Z(p)
± (Ω) = {αi + (p− 1)αj | i ∈ I±1, j ∈ I0},

N (p)
± (Ω) = {pαi + (p− 1)αj | i ∈ I±1, j ∈ I∓1}

(II.2.63)

for integer p > 1. Also define

H(p)
± (Ω) = Hull

[
P±(Ω) ∪ Z(p)

± (Ω) ∪N (p)
± (Ω)

]
, (II.2.64)

where Hull denotes the convex hull; see eq. (II.4.8). From now on, we will often drop the
“(Ω)” for brevity. In terms of these, we have the following result:

⁵²For up-to-date information about qhull, see http://www.qhull.org/.
⁵³qhull uses a different sign convention, but the conversion to the format given above is trivial.
⁵⁴For maximum efficiency, the representation used for Ω should otherwise have as few elements as possible.

The best easily accessible one is

R
(∑

i∈I1
⟨αi, ci⟩

)
∪R

(∑
i∈I0

⟨αi, ci⟩
)
∪R

(∑
i∈I−1

⟨αi, ci⟩
)
∪ ⟨0,−1⟩,

where the minimal representations are determined with proposition B.3 applied to corollary B.4.
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Proposition B.2 (constructingAc(Ω)). Let Ω be a constraint, and arbitrarily select an integer
p > 1. Construct a minimal representation {⟨nℓ, rℓ⟩}ℓ∈L

(p)
±

such that ⁵⁵

B

[ ∑
ℓ∈L

(p)
±

⟨nℓ, rℓ⟩

]
= H(p)

± (Ω). (II.2.65)

with H(p)
± (Ω) defined as in eq. (II.2.64). Let M (p)

± ⊆ L(p)
± be the set of all ℓ for which ⟨nℓ, rℓ⟩

supports at least one point π ∈ P±. Then

B

[ ∑
ℓ∈M

(p)
±

⟨nℓ, rℓ⟩

]
= A±1(Ω), B

[ ∑
ℓ∈M

(p)
±

⟨nℓ, 0⟩

]
= A0(Ω). (II.2.66)

Note that A0(Ω) can be constructed from either M (p)
+ or M (p)

− . The exception is when I1 = ∅,
in which case the construction of A1(Ω) fails; A1(Ω) = ∅ trivially, and A0(Ω) can only be
constructed from M

(p)
− .

This result (along with corollaries B.3 and B.4 and proposition B.3 below) outlines the
procedure we use in practice to obtain minimal representations. An example of this con-
struction for c = −1 is given in fig. II.26.

PROOf. For brevity, we will write

℧(p)
± ≡

∑
ℓ∈M

(p)
±

⟨nℓ, rℓ⟩. (II.2.67)

The goal is then to show that B(℧(p)
± ) = A±1(Ω), which we will do by showing that

B(℧(p)
± ) ⊇ A±1(Ω) followed by B(℧(p)

± ) ⊆ A±1(Ω). We will then show the c = 0 case as a
consequence of the others. First, however, we will establish some lemmata.

Lemma B.8. rℓ ≥ 0 for all ℓ ∈M (p)
+ , and rℓ ≤ 0 for all ℓ ∈M (p)

− .

PROOf. The latter inequality is trivial, since 0 ∈ H(p)
− . In the M (p)

+ case, recall that by
definition, nℓ · αiℓ = rℓ for some iℓ ∈ I1. We must also have rℓ ≤ nℓ · (pαiℓ + 0) = prℓ
since (pαiℓ + 0) ∈ N (p)

+ , but rℓ ≤ prℓ for p > 1 implies that rℓ ≥ 0. □

Lemma B.9. nℓ ·αi ≥ ci|rℓ| for all i ∈ I, ℓ ∈M (p)
± .

PROOf. For ℓ ∈ M (p)
± , let iℓ ∈ I±1 be such that nℓ · αiℓ = rℓ. Then consider two specific

points in Z(p)
± and N (p)

± :

∀j ∈ I0, nℓ · (αiℓ + (p− 1)αj) ≥ rℓ ⇒ nℓ ·αj ≥ 0 (II.2.68)

⁵⁵To avoid clutter, we do not indicate any p-dependence on ⟨nℓ, rℓ⟩, but one should bear in mind that they
may be entirely different constraints for different p (and different ±). To remember this, it can be useful to think
of L(p)

± as disjoint sets for different p,±.

207



Figure II.26: Example of the construction ofA−1(Ω) as described in proposition B.2. Left:
Three sets of points αi for i ∈ I−1 ( ), i ∈ I0 ( ) and i ∈ I1 ( ). The sets are
the same up to rescaling and rotation about the origin, and the addition of
⟨0,−1⟩. The relevant elements of the respective ωc are marked as filled points,
and the rest are left empty; compare to the similar sets in fig. II.2. Middle:
The sets P− ( ), Z(2)

− ( ) and N (2)
− ( ) constructed using only the relevant

elements, as remarked above eq. (II.2.63). Right: The convex hull thereof
(red), i.e.H(2)

− . The segments of its boundary correspond to ⟨nℓ, rℓ⟩, ℓ ∈ L(2)
− .

The ones for which ℓ ∈ M
(2)
− are highlighted in red. Removing the other

segments leaves behind the unbounded region A−1(Ω), which can be seen
in fig. II.27 below. The relevant elements of Ω have been marked as filled
points. They follow from proposition B.3, although it can be intuitively seen
that they alone influence the shape of A−1(Ω).

∀j′ ∈ I∓1, nℓ · (pαiℓ + (p− 1)αj′) ≥ rℓ ⇒ nℓ ·αj′ ≥
1− p
p− 1

rℓ = −rℓ. (II.2.69)

This, together with lemma B.8, implies lemma B.9. □

Now for the main proof. Let β ∈ A±1(Ω) (note that this excludes the exceptional case
A1(Ω) = ∅). Using eq. (II.4.12), it can therefore be written

β =
∑
i∈I

λiαi, λi ≥ 0,
∑
i∈I

λici ≥ c, (II.2.70)

so for all ℓ ∈M (p)
± , lemma B.9 gives

nℓ · β ≥ |rℓ|
∑
i∈I

λici ≥ |rℓ|c. (II.2.71)

Since |rℓ|c = rℓ for c = ±1 by lemma B.8, this means that all β ∈ A±1(Ω) satisfy ⟨nℓ, rℓ⟩
for all ℓ ∈M (p)

± , thereby proving that A±1(Ω) ⊆ B(℧(p)
± ).

For the converse, we first note a direct consequence of eqs. (II.2.63) and (II.4.10),

H(p)
± (Ω) ⊆ A±1(Ω), H(p)

± ⊆ H(q)
± if q ≥ p. (II.2.72)

Then, the proof hinges on the following deceptively simple result:
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Lemma B.10. For any β ∈ B(℧(p)
± ), there is some q such that β ∈ H(q)

± .

We will postpone its lengthy proof until after the main proof is complete. Lemma B.10,
along with eq. (II.2.72), shows that

B
(
℧(p)

±
)
⊆

∞⋃
q=p

H(q)
± ⊆ A±1(Ω). (II.2.73)

This proves that B(℧(p)
± ) = A±1(Ω).

For A0, let us turn to eq. (II.4.12), which lets us straightforwardly generalise Ac(Ω) to
non-integer c. One easily finds the following generalisation of eq. (II.4.4):

⟨α, 0⟩ ≤ Ω ⇔ ∃ε > 0, ⟨α,+ε⟩ ≤ Ω ⇔ ∀ε > 0, ⟨α,−ε⟩ ≤ Ω, (II.2.74)

from which it follows that
∞⋃

n=1

A+ 1
n
(Ω) = A0(Ω) =

∞⋂
n=1

A− 1
n
(Ω). (II.2.75)

Using that we have proven proposition B.2 for c = ±1, which generalises to all c ̸= 0 by
rescaling, we have for all positive integers n

A± 1
n
(Ω) = B

(∑
ℓ∈M

(p)
±
⟨nl,

1
nrl⟩

)
, (II.2.76)

so by extension,
∞⋃

n=1

A± 1
n
(Ω) =

∞⋃
n=1

B
(∑

ℓ∈M
(p)
±
⟨nl,

1
nrl⟩

)
,

∞⋂
n=1

A± 1
n
(Ω) =

∞⋂
n=1

B
(∑

ℓ∈M
(p)
±
⟨nl,

1
nrl⟩

)
.

(II.2.77)

With the sign of rℓ given by lemma B.8, we have
∞⋃

n=1

B
(∑

ℓ∈L′
+
⟨nl,

1
nrl⟩

)
= B

(∑
ℓ∈L′

+
⟨nl, 0⟩

)
,

∞⋂
n=1

B
(∑

ℓ∈L′
−
⟨nl,

1
nrl⟩

)
= B

(∑
ℓ∈L′

−
⟨nl, 0⟩

)
,

(II.2.78)

so by eqs. (II.2.75) and (II.2.77), both of these sets are equal toA0(Ω), which completes the
proof. ■

B.4.2 Proof of lemma B.10

This lemma is the key to proving proposition B.2, and relies on several other lemmata that
we will now establish. They also serve to elucidate some aspects of the proposition and its
proof; for instance, lemma B.14 explains why the choice of p is arbitrary.
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Lemma B.11. Let ⟨m, s⟩ be a constraint such that H(p)
± ∈ B(⟨m, s⟩), and which supports a

point αi + (p− 1)αj ∈ Z(p)
± or a point pαi + (p− 1)αj′ ∈ N (p)

± . Then ⟨m, s⟩ either sup-
ports αi ∈ P± for that same i ∈ I±1, or supports no point in P± at all.
PROOf. Assume ⟨m, s⟩ supports some π ∈ P±, but that it does not support αi. Then

m · (pαi + (p− 1)αj) = s ⇒ m · (pπ + (p− 1)αj) < s, (II.2.79)

sincem ·αi >m · π = s. This is a contradiction, since

pπ + (p− 1)αj ∈ N (p)
± ⊆ H(p)

± ⊆ B(⟨m, s⟩). (II.2.80)

The argument for αi + (p− 1)αj ∈ Z(p)
± is the same. □

Lemma B.12. Let ⟨m, s⟩ be a constraint withH(p)
± ⊆ B(⟨m, s⟩), and let it support at least one

point in P±. Then if it supports αi+(p−1)αj ∈ Z(p)
± , it also supports αi+(q−1)αj ∈ Z(q)

±

for all q > 1. Likewise, if it supports pαi+(p−1)αj ∈ N (p)
± , it also supports qαi+(q−1)αj ∈

N (q)
± for all q > 1.⁵⁶

PROOf. Assumem · [pαi + (p− 1)αj ] = s. Then by lemma B.11, ⟨m, s⟩ also supports αi,
and thusm·(αi+αj) = 0. Adding (q−p)(αi+αj) therefore givesm·[qαi+(q−1)αj ] = s.
The argument for αi + (p− 1)αj ∈ Z(p)

± is the same. □

Lemma B.13. dim(H(q)
± ), as defined in section B.2.1, is independent of q for q > 1. Further-

more, for any Jc ⊆ Ic, dim [Jq(J±1, J0, J∓1)] is independent of q for q > 1, where

Jq(J±1, J0, J∓1) ≡
{
αi

}
i∈J±1

∪
{
αi+(q−1)αj

}
i∈J±1

j∈J0

∪
{
qαi+(q−1)αj

}
i∈J±1

j∈J∓1

. (II.2.81)

PROOf. The main statement is actually a special case of the “furthermore” statement, since
P± ∪ Z(q)

± ∪N (q)
± = Jq(I±1, I0, I∓1), and since for any set X , dim[Hull(X )] = dim(X )

because convex combinations are a special case of affine combinations.

By definition, the affine span of Jq(J±1, J0, J∓1) has the same dimension as the linear span
of {α− β | α,β ∈ Jq(J±1, J0, J∓1)}; according to eq. (II.2.81), this set consists of

αi −αj for i, j ∈ J±1,

(q − 1)αj for j ∈ J0,
(q − 1)(αi −αj) for i ∈ J±1 ∪ J0 ∪ J∓1 and j ∈ J0 ∪ J∓1,

various linear combinations of the above.

(II.2.82)

The linear span is unaffected by the inclusion of extra linear combinations or nonzero scale
factors, so as long as (q − 1) ̸= 0 we can drop these and be left with the span of

{αi −αj | i, j ∈ J±1 ∪ J0 ∪ J∓1} ∪ {αj | j ∈ J0}, (II.2.83)

which is clearly q-independent. □
⁵⁶Lemmas B.12 and B.13 actually work for all q ̸= 1. The only places where proposition B.2 actually requires

p > 1 rather than p < 1 are in lemmas B.8 and B.9 and in eq. (II.2.72).
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Lemma B.14. If dim(H(q)
± ) = D for some q > 1, then ℧(q)

± is non-degenerate for all q > 1

and ℧(p)
± = ℧(q)

± for all p, q > 1.

This makes it quite clear why p is arbitrary in proposition B.2.

PROOf. By lemma B.13, dim(H(q)
± ) equals D for all q > 1 if it does for some q > 1. Then

℧(q)
± is non-degenerate, since H(p)

± ⊆ B(℧(p)
± ) has dimension D.

Now for the converse. Given ℓ ∈M (p)
± , p > 1, define

G(p)ℓ = {π ∈ P± ∪ Z(p)
± ∪N (p)

± | nℓ · π = rℓ}. (II.2.84)

By the definition of M (p)
± along with lemma B.11, there are some Jℓ

c ⊆ Ic such that
G(p)ℓ = Jp(Jℓ

±1, J
ℓ
0, J

ℓ
∓1) as defined in eq. (II.2.81). Then by lemma B.12, that same ⟨nℓ, rℓ⟩

also supports G(q)ℓ ≡ Jq(Jℓ
±1, J

ℓ
0, J

ℓ
∓1) for all q > 1. From this and eq. (II.2.72), it follows

that ⟨nℓ, rℓ⟩ ≤ ℧(q)
± .

Recall now that ⟨nℓ, rℓ⟩ ∈ R
(
℧(p)

±
)
, so corollary B.2 implies that dim

[
G(p)ℓ

]
= D − 1.⁵⁷

Then by lemma B.13, dim[G(q)ℓ ] = D − 1 for all q > 1, so again by corollary B.2, ⟨nℓ, rℓ⟩ ∈
R(℧(q)

± ). By doing this for all ℓ ∈M (p)
ℓ and repeating with p and q exchanged, we see that

R(℧(q)
ℓ ) = R(℧(p)

ℓ ) up to normalisation. This implies ℧(q)
ℓ = ℧(p)

ℓ . □

Thanks to lemma B.14, we will drop the “(p)” superscript on ℧± from now on. However,
we face the problem that ℧± may be degenerate, which would make lemma B.14 inap-
plicable. It can be circumvented by using the notion of induced constraints developed in
section B.2.1: just substitute

℧± → ⌊℧±⌋ , A±1(Ω)→ ⌊A±1(Ω)⌋E℧±
, (II.2.85)

since it follows from lemma B.1 (along with A±1(Ω) ⊆ E℧± which we proved earlier)
that⁵⁸

⌊A±1(Ω)⌋E℧±
⊇ B(⌊℧±⌋) ⇔ A±1(Ω) ⊇ B(℧±) . (II.2.86)

Thus, we may for the remainder assume that ℧± is non-degenerate.

We are now, at long last, ready to prove lemma B.10 itself. Consider H(q)
± for arbitrary q,

and presume β ̸∈ H(q)
± . Select some α ∈ H(q)

± , and draw the line segment joining α and
β. It must intersect the boundary of H(q)

± in some point γ, which is supported by one or
more ⟨nℓ, rℓ⟩, ℓ ∈ L(q)

± , at least one of which is not satisfied by β. We therefore have some
ℓ ∈ L(q)

± such that

nℓ ·α ≥ rℓ, nℓ · β < rℓ, nℓ · γ = rℓ. (II.2.87)

⁵⁷What corollary B.2 calls “F” is here Hull
(
G(p)
ℓ

)
, but dim[X ] = dim

[
Hull(X )

]
for any set X since convex

combinations are a special case of affine combinations.
⁵⁸For practical applications, there is the additional problem that qhull does not function properly when its

output would be degenerate. This has not been a problem for us, and is of course no issue for the present proof,
but if needed, one could identify the affine subspaceE containing all points defined in eq. (II.2.63), apply ⌊· · · ⌋E
to them, and work entirely in the lower-dimensional space where there are no degeneracies.
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If ℓ ∈M (q)
± , thenβ ̸∈ B(℧±); this is where the q-independence of℧± proven in lemma B.14

is crucial. Thus, we can assume that ℓ ̸∈M (q)
± .

The magnitude of γ is bounded from above by |γ| ≤ max(|α|, |β|). We will now attempt
to prove that |γ| > max(|α|, |β|), which leads to a contradiction, proving that γ does not
exist and consequently that β ∈ H(q)

± .

For any ℓ ∈ L(q)
± , let G(q)ℓ ⊆

(
P± ∪ Z(q)

± ∪ N (q)
±
)

be defined as in eq. (II.2.84), and let us
think about the structure of G(q)ℓ . Each of its elements is of the form αi+(q−1)α′, where
i ∈ I±1 and α′ may take the form 0,αj or αi +αj depending on whether the element is
part of P±, Z(q)

± or N (q)
± . This observation allows us to write the Minkowski sum

Hull
(
G(q)ℓ

)
= U (q)

ℓ + (q − 1)V(q)
ℓ , (II.2.88)

where U (q)
ℓ ⊆ Hull

(
P±
)
. V(q)

ℓ is the convex hull of a subset of {αi}i∈I ; the details are
messy and unimportant, so we will not write it explicitly, but the important thing is that
it only depends on q and ℓ through the specific choice of subset. This means that when
counted over the infinitely many choices of q and ℓ, there is only a finite number of distinct
V(q)
ℓ that appear: at most as many as there are subsets of I.

Now, focus on the case ℓ ∈ L(q)
± \M

(q)
± , where we find that 0 ̸∈ V(q)

ℓ : otherwise,Hull
(
G(q)ℓ

)
∩

Hull
(
P±
)
̸= ∅, which straightforwardly leads to a contradiction of the definition of M (q)

± .
We may also observe that V(q)

ℓ (and U (q)
ℓ ) are closed sets, being the convex hulls of finite

sets of points.

Consider then the finite set

{V | V(q)
ℓ = V for some q ≥ 2, ℓ ∈ L(q)

± \M
(q)
± }, (II.2.89)

and let W± be the union of all elements of this set. By the observations we have made
about V(q)

ℓ , this is a closed set (being the finite union of closed sets) that does not contain
0. Consequently, there is some m > 0 such thatW± contains no vector of magnitude less
than m.

Recall now that γ ∈ G(q)ℓ for some ℓ ∈ L(q)
± \M

(q)
± . Thus, eq. (II.2.88) gives

γ = π + (q − 1)η, π ∈ Hull
(
P±
)
,η ∈ W±, (II.2.90)

and this is true no matter the value of q and no matter which α,β are used to obtain γ.
As derived above, |η| ≥ m, and since Hull

(
P±
)

is a bounded set, |π| ≤M for sufficiently
large M . For q sufficiently large that (q − 1)m > M , the triangle inequality then gives

|γ| ≥ (q − 1)m−M, (II.2.91)

which can be made arbitrarily large by further increasing q, thereby providing the desired
contradiction and completing the proof. □
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B.4.3 Some important corollaries of proposition B.2

We can refine the treatment of A0(Ω) with the following:⁵⁹

Corollary B.3 (construction of A0(Ω)). Let Ω, M (p)
± , etc. be as in proposition B.2. Let

N
(p)
± ⊆M (p)

± be the set of those ℓ for which ⟨nℓ, rℓ⟩ also supports at least one point in
(
Z(p)

± ∪N (p)
±
)
.

If
∑

ℓ∈M
(p)
±
⟨nℓ, 0⟩ is a non-degenerate constraint,⁶⁰ then

A0(Ω) = B
( ∑

ℓ∈N
(p)
±

⟨nℓ, 0⟩
)
. (II.2.92)

As in proposition B.2, the M (p)
+ construction does not work when I1 = ∅.

PROOf. For ℓ containted in M (p)
± but not in N (p)

± , lemma B.9 more specifically gives

∀i ∈ I±1, nℓ ·αi ≥ rℓ, ∀i ∈ I0, nℓ ·αi > 0, ∀i ∈ I∓1, nℓ ·αi > −rℓ (II.2.93)

with lemma B.8 dictating the sign of rℓ. Then if nℓ · β = 0 for β ∈ A0(Ω), a look at
eq. (II.4.10) tells us that all λi, i ∈ I0 ∪ I1 must be zero due to the above inequalities,
and eq. (II.4.11) then implies that also λi, i ∈ I−1 must be zero. Thus, the only point
β ∈ A0(Ω) supported by ⟨nℓ, 0⟩ is the trivial β = 0, which is supported by ⟨α, 0⟩ for
all α ̸= 0. Therefore, ⟨nℓ, 0⟩ does not uniquely support any point, so by proposition 4.3
(which requires non-degeneracy), it can be omitted. ■

One also easily finds the following simplification:

Corollary B.4 (construction of Ac(ωc)). For those ωc covered by proposition 4.1, proposi-
tion B.2 reduces down to the following:

c = +1 : H(p)
+ = Hull ({αi, pαi}i∈I). M (p)

+ consists of those ℓ for which rℓ ≥ 0.

c = 0 : H(p)
− = Hull ({0} ∪ {pαi}i∈I). N (p)

− =M
(p)
− consists of those ℓ where rℓ = 0.

c = −1 : H(p)
− = Hull ({0} ∪ {αi}i∈I). All ⟨nℓ, rℓ⟩ are kept, since M (p)

− = L
(p)
− . ■

An alternative to using proposition B.2 is to apply corollary B.4 to ωℓ
0 as defined in sec-

tion B.1.4, and then “unlifting” the result. This requires the treatment of a much smaller

⁵⁹An intuitive understanding of the construction of A0(Ω) can be gained by noting that in a sense, one can
make c→ 0 by “zooming out” on constraint space. This is the principle that is formalised in the end of the proof
of proposition B.2. Each facet of the body Ac(Ω), consisting of the points supported by one ⟨nℓ, rℓ⟩, is thereby
shifted so that it passes through the origin (hence rℓ → 0), and if it was bounded, it shrinks down to a point.
Corollary B.3 identifies those bounded facets and removes them. It is easy to see why it works: all facets of H(p)

±
are bounded, and only by being adjacent to a facet that is removed in the restriction L(p)

± →M
(p)
± can a facet

become unbounded. The removed facets are those that only support points in Z(p)
± ∪N (p)

± , so their neighbours
are the ones that support at least one point in these sets.

⁶⁰This is not equivalent to
∑

ℓ∈M
(p)
±

⟨nℓ, rℓ⟩ being non-degenerate. Consider as a counterexample

Ω = ⟨
(1
1

)
,−1⟩+ ⟨

( 1
−1

)
,−1⟩+ ⟨

(1
0

)
, 0⟩, for which A0(Ω) is contained in a hyperplane (i.e. a line) whereas

A−1(Ω) is not.
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number of points, which makes the QuickHull algorithm run faster; on the other hand,
lifting increases the dimension, which makes the QuickHull algorithm run slower and be
less numerically stable. The time complexity of the qhull implementation suggests that
asymptotically, lifting should be the faster method, but since qhull is vastly more efficient
in 2 and 3 dimensions, not lifting should be preferable when the number of dimensions is
small. In practice, we only used proposition B.2 directly without lifting.

B.4.4 Construction of R(Ω)

The marriage of propositions B.2 and 4.3 makes for a practical way of determining the
minimal representation R(Ω) of any non-degenerate constraint Ω. As remarked before,
degenerate constraints are of little practical relevance, although if needed, the degenerate
case can be covered by adapting proposition B.1.

When forming a convex hull, qhull produces a list of its vertices and readily checks if two
vertices form the endpoints of an edge. Based on that, we devise the following:

Proposition B.3 (constructing R(Ω)). Let Ω be a non-degenerate constraint, and let H(p)
± ,

M
(p)
± , etc. be defined as in proposition B.2. Then the unique minimal representation R(Ω) is

determined as follows:

• For i ∈ I±1, ⟨αi,±1⟩ ∈ R(Ω) if and only if αi is an extreme point of A±1(Ω). (The
exception is ⟨0,−1⟩, which is of course not in R(Ω).)

Equivalently, ⟨αi,±1⟩ ∈ R(Ω) if and only if αi ∈ P± is an extreme point of H(p)
± for

some p > 1, with the same exception.

• For j ∈ I0, ⟨αj , 0⟩ ∈ R(Ω) if and only if there is some i ∈ I±1 such that the ray
{αi + λαj | λ ≥ 0} is an edge of A±1(Ω) that contains no point in N (p)

± (Ω). (This is
up to normalisation; several equivalent ⟨αi, 0⟩ may satisfy this condition.)
Equivalently, ⟨αj , 0⟩ ∈ R(Ω) if and only if there is some i ∈ I±1 such that the line
segment between αi and αi + (p − 1)αj is an edge of H(p)

± (Ω) that contains no point
in N (p)

± (Ω). (This breaks the normalisation ambiguity: if several ⟨αj , 0⟩ are equivalent
under eq. (II.4.5), then only the one with the largest |αj | will form the endpoint of their
edge and be included in R(Ω).)

Note how this can be applied to corollary B.4 without modification. Illustrations can be
found in figs. II.26 to II.29.

PROOf. We will prove that the stated conditions are equivalent to ⟨αi, ci⟩ uniquely support-
ing a point; the rest follows from proposition 4.3. We will focus on proving the conditions
based onH(p)

± rather thanA±1(Ω); that they are equivalent follows easily from property (v)
of K-faces along with lemma B.4 (αi ∈ P± serves as the point φ).⁶¹

⁶¹There is one subtlety for ⟨αj , 0⟩ ∈ R(Ω): the line segment between αi and αi + (p− 1)αj may fail to be
an edge of H(p)

± even though {αi + λαj | λ ≥ 0} is an edge of A±1(Ω), if it is contained in the line segment
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Consider first i ∈ I±1. If ⟨αi,±1⟩ ∈ R(Ω), then there is some h uniquely supported by
⟨αi,±1⟩; in particular, for any β ∈ A±1(Ω),β ̸= α we have β ·h > αi ·h = ±1. Since by
eq. (II.2.73)

A±1(Ω) =

∞⋃
p=2

H(p)
± (II.2.94)

we have that for any p > 1

{η ∈ H(p)
± | η · h = ±1} = {αi}. (II.2.95)

From lemma B.3, we conclude that αi is an extreme point of H(p)
± .

Conversely, if αi is an extreme point of H(p)
± , then eq. (II.2.95) holds. In particular, if

j ∈ I∓1 then h ·
(
pαi+(p− 1)αj

)
> ±1 so αj ·h > ∓1. Similarly, for any j ∈ I0 we have

αj · h > 0. It then follows from lemma B.5 and proposition 4.3 that ⟨αi,±1⟩ ∈ R(Ω).

Consider then j ∈ I0. If the line segment between αi and αi + (p − 1)αj is an edge of
H(p)

± , then by lemma B.3 there exists ⟨h, d⟩ such that

{η ∈ H(p)
± | η · h = d} = {αi + λαj | λ ∈ [0, (p− 1)]} (II.2.96)

and H(p)
± ⊆ B(⟨h, d⟩). We then immediately find that h ·αi = d,h ·αj = 0.

What about the other αk, k ∈ I? If k ∈ I∓ then pαi + (p − 1)αk ∈ N (p)
± which is by

assumption not supported by ⟨h, d⟩, so it follows that h · αk > −d. In the same way, for
any k ∈ I0 we have αi + (p − 1)αk ∈ Z(p)

± , implying that h · αk ≥ 0. If h · αk = 0 then
it follows that αk is collinear with αj , so either ⟨αi, 0⟩ = ⟨αk, 0⟩ or ⟨αi, 0⟩ = ⟨−αk, 0⟩
under eq. (II.4.5); the latter is excluded by non-degeneracy. Therefore, we can without loss
of generality assume h · αk > 0 for all k ∈ I0 \ {j} by omitting equivalent constraints.
Lastly, if k ∈ I± then h · αk ≥ d; here, the non-strict inequality is unavoidable but does
not pose a problem.

If i ∈ I+, then the fact that pαi ∈ N (p)
+ implies that d > 0. If i ∈ I−, we can use the fact

that 0 ∈ P− to prove that d ≤ 0, with equality only if αi = 0. Combining this with the
previous paragraph, we conclude that

∀k ∈ I \ {i, j}, h ·αk ≥ ck|d| (II.2.97)

(equality only possible if k ∈ I±). For sufficiently small ε > 0, we may replace it by
|d| → |d| ∓ ε without invalidating the above inequality; this also guards against problems
when d = 0. Then

1
|d|∓εh ·αi > ±1, 1

|d|∓εh ·αj = 0, ∀k ∈ I \ {i, j}, 1
|d|∓εh ·αk > ck. (II.2.98)

Thus, ⟨αj , 0⟩ uniquely supports 1
|d|∓εh by lemma B.5.

between αi and some αi′ , i
′ ∈ I±1. This can be remedied by using sufficiently large p. For ⟨αi,±1⟩ ∈ R(Ω),

all p work equally well, as should be apparent from the proof.
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Conversely, assume αj uniquely supports a point b. Then

b ·αj = 0, ∀i ∈ I \ j, b ·αi > ci. (II.2.99)

In particular,
F = {β ∈ A0(Ω) | b · β = 0} = {λαj | λ ≥ 0}. (II.2.100)

(Non-degeneracy ensures λ ≥ 0). By lemma B.3 and proposition B.2, F is an edge of
A0(Ω) = B

(∑
ℓ∈M

(±)
p
⟨nℓ, 0⟩

)
. Therefore, lemma B.2 guarantees that there existsQ± ⊆M (p)

±

such that

∀ℓ ∈ Q±, nℓ ·αj = 0, ∀ℓ ∈M (p)
± \Q±, nℓ ·αj > 0 (II.2.101)

where {nℓ}ℓ∈Q± contains a subset of D − 1 linearly independent vectors. Now, consider
the set

C ≡ B
( ∑

ℓ∈Q±

⟨nℓ, rℓ⟩
)
⊇ A±1(Ω). (II.2.102)

This set must have at least one edge, since the intersection ofD−1 independent hyperplanes
is a line. By lemma B.2, there is then a subset J± ⊆ Q± with |J±| = D − 1 and {nℓ}ℓ∈J±

linearly independent, that describes that edge according to eq. (II.2.31) (if there are several,
we choose one arbitrarily). By construction, C has no extreme points: {nℓ}ℓ∈Q± has no
subset of D linearly independent vectors. Therefore, the chosen edge can be written like

F± ≡ {β ∈ RD | ∀ℓ ∈ J±, nℓ · β = rℓ}. (II.2.103)

We now claim that

F± ∩ A±1(Ω) = F± ∩ B
( ∑

ℓ∈M
(p)
±

⟨nℓ, rℓ⟩
)
̸= ∅. (II.2.104)

All points in F± are satisfied by ⟨nℓ, rℓ⟩ for ℓ ∈ Q± by the arguments made above about
C. For ℓ ̸∈ Q±, we note that for any β ∈ F , we also have β + λαj ∈ F for all λ ∈ R,
so since nℓ · αj > 0, nℓ · (β + λαj) ≥ rℓ for sufficiently large λ no matter what nℓ · β
is. Therefore, at least some subset of F± is satisfied by all ⟨nℓ, rℓ⟩, ℓ ∈ M (p)

± \ Q±, which
proves eq. (II.2.104). By then considering the constraint

⟨h, d⟩ ≡ ⟨
∑
ℓ∈J±

nℓ,
∑
ℓ∈J±

rℓ⟩, (II.2.105)

it follows from lemma B.3 that F± ∩ A±1(Ω) is a K-facet of A±1(Ω).

Let us now note that F± ∩A±1(Ω) is an edge, not an extreme point, since for any β ∈ F±
and λ ≥ 0,⁶²

β + λαj ∈ F± ∩ A±1(Ω). (II.2.106)

⁶²It also follows from this that F± ∩A±1(Ω) is not a line segment. That it is a ray rather than a full line is not
difficult to prove from non-degeneracy, and it is then possible to show that F±∩A±1(Ω) = {αi+λαj | λ ≥ 0}
which completes the proof, but we choose an easier path.

216



From eqs. (II.2.72), (II.2.94) and (II.2.104), there is some q > 1 such that F± ∩ H(p)
± ̸= ∅

for all p ≥ q, and by property (v) of K-facets, F± ∩ H(p)
± is an edge of H(p)

± . Unlike
A±1(Ω), H(p)

± is always a compact set, so all its edges must be line segments with exactly
two endpoints, which are extreme points of H(p)

± by property (iv). Thus, F± ∩H(p)
± is the

line segment between two extreme points of H(p)
± , and these must clearly be elements of

P± ∪ Z(p)
± ∪N (p)

± .⁶³

Then, let us prove that at least one of these endpoints of F±∩H(p)
± is in P± by considering

the alternatives. ForN (p)
± , i.e. if pαi+(p−1)αk is one endpoint for some i ∈ I±1, k ∈ I∓1,

then it follows from lemma B.11 thatαi ∈ F±∩H(p)
± , but also (see the proof of lemma B.12)

that (p−1)(αi+αk) = λαj for some λ. This contradicts the fact that λ uniquely supports
a point, since any point in B(Ω) it supports is also supported by αi and αk. For Z(p)

± , i.e.
if αi + (p − 1)αk is one endpoint for some i ∈ I±1, k ∈ I0, then it similarly follows that
αi ∈ F± ∩H(p)

± , and that αk = λαj , where λ > 0 by non-degeneracy.

Thus, N (p)
± is excluded and Z(p)

± can account for at most one endpoint of F± ∩H(p)
± , since

the line segment between αi + λ(p− 1)αj and αi′ + λ′(p− 1)αj cannot contain both αi

and αi′ , which are clearly contained in F± ∩H(p)
± . Hence, at least one of the endpoints is

αi for some i ∈ I±1, and the other may either be αi′ , i
′ ∈ I±1 or αi + (p− 1)αj (possibly

after exchanging ⟨αj , 0⟩ for an equivalent constraint). The former case was covered in the
first paragraph of this proof, and is removed by considering sufficiently large p; the latter
completes our proof. ■

B.4.5 Visualisation of Ac(Ω)

We provided fig. II.2 for illustration along with the statement of proposition 4.1, since the
shapes ofA(ωc) are quite simple to interpret, and provide some insight into the result. The
same cannot be said for the general Ac(Ω), however, so we have put off a similar display
until now. Figure II.26 showed a single example in great detail, and now figs. II.27 to II.29
illustrate Ac(Ω) in a similar manner to how fig. II.2 illustrated A(ωc). For legibility, we
have omitted the supporting sets P±, Z(p)

± and N (p)
± , but if one wishes, it is not difficult

to imagine them in the figures like in fig. II.26 to make sense of the shapes.

B.5 The duality between Ac(Ω) and B(Ω)

As has been used many times above, parameter space and constraint space are dual in the
sense that points in one correspond to hyperplanes in the other. This extends to B(Ω) and
Ac(Ω), which are similarly related in ways we will explore in this section.

⁶³This is made rigorous by comparing eq. (II.2.64) with the Krein-Milman theorem:
Let C be a compact convex set and E be the set of its extreme points. Then C = Hull(E), and if
C = Hull(E ′) then E ′ ⊇ E .
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Figure II.27: Example of the region A−1(Ω) (red). The αi, identical (up to ci = 0 rescal-
ing) to those in fig. II.26, are marked with for i ∈ I−1, for I0 and for I1,
and have their convex hulls outlined. The αi that are identified as relevant
from the construction of A±1(Ω), as per proposition B.3, are filled; the rest
are left empty. Note how the ci = +1 ones can strictly speaking only be
deduced from A1(Ω) (fig. II.28 below), although their relevance can be easily
seen in “nice” cases such as this. In the large figure, the fullA−1(Ω) is drawn.
The smaller figures demonstrate the effect of omitting αi from the definition
of Ω, with i in various combinations of I1, I0 and I−1. The only-I−1 figure
(bottom left) is thus analogous to A(ω−1) in fig. II.2. Note how in the only-
I1 figure (bottom right), proposition B.2 still works since P−1 = {0} rather
than being empty.

A taste of this duality can be found in the following result, which will also be useful further
on:

Corollary B.5 (duality). With Ω ̸= Ω∞, let ℧± be defined as in eq. (II.2.67), so that B(℧±) =
A±1(Ω). Then B(Ω) = A1(℧+) ∩ A−1(℧−) if I1 ̸= ∅, and B(Ω) = A−1(℧−) otherwise.
Loosely, one can think of this as “proposition B.2 is its own inverse”: applying it to Ω gives
℧±, and applying it to ℧± gives Ω.

PROOf. By definition and proposition B.2,

b ∈ B(Ω) ⇔ ∀⟨α, c⟩ ≤ Ω, α · b ≥ c,
b ∈ A±1(℧±1) ⇔ A±1(Ω) ⊆ B(⟨b,±1⟩).

(II.2.107)

Looking at eq. (II.4.12), we see that the latter is equivalent to

∀{λi}i∈I with λi ≥ 0 and
∑
i∈I

λici ≥ ±1, b ·
∑
i∈I

λiαi ≥ ±1. (II.2.108)

This is true if ∀i ∈ I, b · αi ≥ ci, but it only implies ∀i ∈ I \ I∓1, b · αi ≥ ci, as some
straightforward algebra shows. By using A1(℧+) ∩ A−1(℧−), we avoid this shortcoming
and complete the proof. When I1 = ∅, we cannot use ℧+ but also do not need it, since
I \ I1 = I. □
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Figure II.28: Example of the region A1(Ω) (yellow), with the same αi and analogous pre-
sentation as in fig. II.27. Note how some relevantαi, i ̸∈ I1 lie outsideA1(Ω);
this is also possible for A0(Ω), but not for A−1(Ω), since it contains all αi.
As in fig. II.27, the smaller figures illustrate the effect of omitting some αi.
The only-I1 figure (bottom right) is thus analogous toA(ω1) in fig. II.2. Note
how A1(Ω) = ∅ when i ∈ I1 are omitted, as can be seen from eq. (II.4.11)
with

∑
i∈I1

λi = 0 (this is the exception to proposition B.2).

This relation can be extended into a geometric duality between B(Ω) and Rc(Ω): the
vertices of one correspond directly to the facets of the other.⁶⁴

Proposition B.4 (precise duality relations). Let M (p)
± , etc. be defined as in proposition B.2,

and let ℧± be defined as in eq. (II.2.67). Let ±1 = 1 if I1 ̸= ∅ and ±1 = −1 otherwise, as in
corollary B.5. If Ω and ℧± are non-degenerate, then the following correspondences hold:

(i) αi for i ∈ I±1 is a vertex of A±1(Ω) if and only if ⟨αi,±1⟩ ∈ R(Ω).

(ii) 1
|rℓ|nℓ is a vertex of B(Ω) if and only if ℓ ∈M (p)

± and rℓ ̸= 0.

(iii) F ≡ {β ∈ A±1(Ω) | nℓ · β = rℓ} is a facet of A±1(Ω) if and only if ℓ ∈M (p)
± .

(iv) F ≡ {b ∈ B(Ω) | α · b = c} is a facet of B(Ω) if and only if ⟨α, c⟩ ∈ R(Ω).

All relations are exhaustive: there is no vertex of A±1(Ω) that is not covered by correspon-
dence (i), etc. There is the single exception that 0 may be a vertex without corresponding to a
facet.⁶⁵ Also, the exceptions to proposition B.2 apply.

This was used to obtain the visualisations of B(Ω) in section 6. An illustrative example is
given in fig. II.30.

⁶⁴This is closely related to the concept of dual polytopes, where a polytope is a D-dimensional generalisation
of a polygon or polyhedron; B(Ω) and Ac(Ω) are polytopes, if the definition is relaxed to permit unbounded
polytopes.

⁶⁵The origin is a vertex of B(Ω) if I1 = ∅ and {αi}i∈I0 is a basis of RD . It is never a vertex of (or even
contained in) A1(Ω), but is always a vertex of A−1(Ω) if Ω is non-degenerate.
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Figure II.29: Example of the region A0(Ω) (blue), with the same αi as in figs. II.27
and II.28. A±1(Ω) are outlined to demonstrate howA0(Ω) can be constructed
by taking their unbounded facets and shifting them so they pass through the
origin, as discussed in section B.4.3. Note that unlike in figs. II.27 and II.28,
not all relevant αi influence the shape of A0(Ω). As in figs. II.27 and II.28,
the smaller figures illustrate the effect of omitting some αi. The only-I0 fig-
ure (bottom centre) is thus analogous to A(ω0) in fig. II.2. Note how in the
only-I−1 figure (bottom left),A0(Ω) = {0} sinceA−1(Ω) has no unbounded
faces (this is one of the exceptions to corollary B.3).

Note how proposition B.4 is rather negligent of c = 0 constraints, partly because they are
complicated to handle, and partly because an exact zero is an unlikely thing when con-
straints are generated with numerical inaccuracies. For similar reasons, we do not consider
the degenerate case.

PROOf. Correspondence (i) is just proposition B.3.

Correspondence (ii), which is the most useful correspondence for visualisation, follows by
applying proposition B.3 to ℧± instead. To do this, we first apply the normalisation

⟨nℓ, rℓ⟩ →

{
⟨ 1
|rℓ|nℓ,±1⟩ if rℓ ̸= 0,

⟨nℓ, 0⟩ otherwise,
(II.2.109)

recalling lemma B.8. Granted that ℧± is non-redundant, proposition B.3 therefore states
that the extreme points (vertices) ofA±1(℧±), except 0, are exactly 1

|rℓ|nℓ, since ⟨ 1
|rℓ|nℓ,±1⟩

are exactly the relevant elements of ℧± with rℓ ̸= 0. The correspondence then follows from
corollary B.5, as long as we can ensure that the intersection does not introduce any new
vertices that are not vertices of A±1(℧±). Such a vertex would, by lemma B.3, be uniquely
supported by some constraint that is unaccounted for by proposition B.3, so it does not
exist.

Correspondences (iii) and (iv) both follow from proposition 4.3, since each facet contains
all points that are uniquely supported by some relevant constraint. It follows from corol-
lary B.2 and lemma B.3 that a point b is uniquely supported by some constraint if and
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Figure II.30: Example of how A±1Ω are dual to B(Ω). A different, simpler Ω than in
previous figures is used. Left: Constraint space, with A−1(Ω) constructed
in a similar way to fig. II.26. The points αi are marked with filled dots and
labelled; points in P−(Ω), Z(2)

− (Ω) andN (2)
− (Ω) are marked with empty dots.

The facets corresponding to constraints ⟨nℓ, rℓ⟩ are also labelled. Middle:
Constraint space, with A1(Ω) constructed similarly. Right: Parameter space,
drawn similarly to fig. II.1. B(Ω) is shaded; the six constraints ⟨αi, ci⟩ and
vertices vℓ = nℓ

±1
rℓ

are labelled. Vertices from A−1(Ω) are marked with ,
and those fromA1(Ω) with . Note that two vertices sharing an edge of B(Ω)
corresponds to two constraints supporting a common point in A±1Ω. In the
case of c = 0 edges, it corresponds to supporting (αi + pαj) ∈ Z(p)

+ (Ω) and
(αi′ + pαj) ∈ Z(p)

− (Ω) for a common j ∈ I0. Note also how corollary B.5
applies (compare fig. II.2).

only if b is contained in some (D − 1)-face, but not in any K-face for K < D − 1. It also
follows from the definition of a K-face that all K-faces contain at least one point that is
not contained in anyK ′-face,K ′ < K. Thus, every facet gives rise to a relevant constraint,
and no constraint can be relevant if it does not give rise to a facet. ■

B.5.1 Duality with a bounding box

It would be possible to extend proposition B.4 to relate the nℓ with rℓ = 0 to unbounded
edges of B(Ω) by equating them to the ray { 1

|rk|nk + λnℓ | λ ≥ 0} for some k (see
proposition B.3). However, it is not obvious how to find k, and it is not guaranteed that
we exhaustively cover the unbounded edges this way. In either case, unbounded edges are
far less pleasant to deal with than vertices, even though they do provide shape information
that the vertices alone cannot provide.

Unbounded edges can be wholly avoided by artificially introducing 2D extra constraints
that constrain B(Ω) to a D-dimensional bounding box. All unbounded facets of B(Ω) are
cropped, and proposition B.4, correspondence (ii) seamlessly provides all the vertices that
define the intersections betweenB(Ω) and the walls of the box. This method, demonstrated
in fig. II.31, was used extensively in section 6.

Everything mentioned here can of course be applied equally well to R±1(Ω).
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Figure II.31: Example of how B(Ω) = ⟨α1, 1⟩+ ⟨α2, 1⟩, which would normally have a sin-
gle vertex v1 and two unbounded edges corresponding to rk = 0 constraints,
is made more manageable by imposing an artifical set of bounding-box con-
straints ( ), giving rise to some points inN (2)

+ (Ω) ( ). Like in fig. II.30,A1(Ω)
is shown on the left, and B(Ω) is shown on the right.

B.6 A note on infinite sums of constraints

It is extremely important that we only ever consider sums of a finite number of con-
straints, not only for the validity of our proofs, but also for the validity of the proposi-
tions themselves. Consider as a counterexample the following countably infinite sum of
one-dimensional constraints:

ω−1 =

∞∑
k=1

⟨1− 1
k ,−1⟩ ⇒ A(ω−1) = [0, 1), B(ω−1) = [−1,∞). (II.2.110)

Here, A(ω−1) is not a closed set. On the other hand, B(ω−1) is closed, since for any ε > 0,
the point−(1+ε) fails to satisfy the element ⟨1− 1

k ,−1⟩ for sufficiently large k (specifically,
larger than 1+ε

ε ). Thus, B(ω−1) = B(⟨1,−1⟩), so ⟨1,−1⟩ ≤ ω−1 even though 1 ̸∈ A(ω−1).
Thus, proposition 4.1, and therefore proposition 4.2, fails.

There is, however, a straightforward generalisation. We let eqs. (II.4.9) and (II.4.10) define
Ω andAc(Ω) as before, but now with infinite sums permitted, so that {αi}i∈Ic may be any
subset of RD. Then we have the following:

Proposition B.5 (determining if constraint is weaker, generalised). Let ⟨β, c⟩ be a linear
constraint, and let Ω ̸= Ω∞ be a possibly infinite sum of linear constraints. Then ⟨β, c⟩ ≤ Ω if
and only if β ∈ cl [Ac(Ω)].

The simple introduction of the closure solves all issues with infinite combinations, such as
the counterexample above. Note how the only part of sections B.1.2 to B.1.4 that relies on
the finiteness of I is the proof that Ac(Ω) is closed. The closure is by definition closed, so
the remaining arguments in these sections remain valid when applied to cl [Ac(Ω)] instead.

The only part of the proof of proposition 4.2 that does not immediately carry over is sec-
tion B.1.1. However, by the limit definition of closure, for any β ∈ cl[Ac(Ω)] there exists
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a sequence βn in Ac(Ω) such that limn→∞ βn = β. Since the function β → β · b is con-
tinuous, it follows that for any b, limn→∞ βn · b = β · b. Thus, since the arguments of
section B.1.1 hold for all βn, they also hold for β ∈ cl[Ac(Ω)]. ■

Corollary B.1 does not require any adjustment, since the interior of any convex set in RD

is equal to the interior of its closure.

The generalisation of proposition 4.3, for which counterexamples abound, is less straight-
forward, partly because there does not necessarily exist a minimal representation if all rep-
resentations are infinite. However, the notion of a minimal representation is mainly mo-
tivated as being the most practical format of a constraint, so it is not very useful in the
infinite case, which is anyway only of theoretical interest. For the same reason, it is not
relevant to our study to attempt to generalise any of the propositions presented in this
appendix.

B.7 Mathematical glossary

The table below contains a list of notations and terms that may be unfamiliar to some
readers, depending on their background. (We have chosen to employ such notation, since
it makes some things much more brief and expressive, even though it necessitates this
table.)

CONcEpT DEScRIpTION
□, ■ End of proof. We use ■ for main proofs and □ for lemmata.
∀ The universal quantifier. Informally, short for “for all”.
∃ The existence quantifier. Informally, short for “there exists”.
x ∈ X The object x is contained in (is an element of ) the set X . We

typically denote sets using a calligraphic font, but use ordinary italics for sets of
indices.

∅ The empty set. The set that contains no elements.
|X |, |v|, |s| Cardinality or magnitude. For a set, this indicates its cardinarlity (num-

ber of elements). For a vector or scalar, the same notation indicates its magni-
tude

√
v · v or

√
s2.

X ⊆ Y X is a subset of Y . All elements of X are also contained in Y . Just X ⊂ Y
means the same, except that X ̸= Y ; that is, Y has at least one element not
contained in X .

X ∪ Y The union of two sets. The set that contains all elements contained in
either X or Y , or both. Clearly, X ⊆ X ∪ Y and Y ⊆ X ∪ Y .

X ∩ Y The intersection of two sets. The set that contains all elements contained
in both X or Y . Clearly, X ⊇ X ∪ Y and Y ⊇ X ∪ Y .

Disjoint sets Said of two sets X ,Y if X ∩ Y = ∅.
X \ Y Relative complement. Consists of all elements of X that are not also

elements of Y . Has the properties (X \ Y) ∩ Y = ∅, (X \ Y) ∪ Y = X .
Complement The complement of X consists of all elements not contained in X ; equal to

U \X where U is the implicit “universal” set, e.g. RD for sets ofD-dimensional
vectors.⋃

,
⋂

The union/intersection of many sets. Used similarly to
∑

,
∏

.
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CONcEpT DEScRIpTION
{x | A,B, . . .} Set-builder notation. Denotes the set of all objects x for which all con-

ditions A,B, . . . are true. {x | x ∈ X , A, . . .} is more compactly written
{x ∈ X | A, . . .}.

{a, b, c}, {ai}i∈I ,
{an}Nn=0

Various shorthands used to define sets. The latter two are equivalent
to {ai | i ∈ I} and {an | 0 ≤ n ≤ N}, respectively.

Open set A subset X ⊆ RD is open if for each χ ∈ X , there is some ε > 0 such that
ξ ∈ X for all |ξ − χ| < ε. This is for subsets of RD ; definitions of openness
exist for more general sets, but we do not use them.

Closed set A set whose complement is open.
Finite set A set that contains a finite (or zero) number of elements. Many

intuitive properties, such as the existence of a smallest subset with a given prop-
erty, are only guaranteed for finite sets.

Bounded set A set X ⊆ RD is bounded if there is someM such that |χ| < M for allχ ∈ X .
Compact set A set that is closed and bounded. This is for subsets of RD ; we do

not use the more general versions. Many properties of finite sets carry over
to compact sets, such as having a (not necessarily unique) element that is the
minimum or maximum of some property.

cl(X ) Closure. The smallest closed set that has X as a subset. Equal to X itself if it
is closed.

int(X ) Interior. The largest open set that is a subset of X . Equal to X itself if it is
open.

Boundary The boundary of X is cl(X ) \ int(X ). Note that a non-closed set does
not necessarily contain its boundary, and that boundary and boundedness are
unrelated concepts.

(a, b), [a, b), [a, b] Open, half-open and closed intervals. Denotes the range between a
and b. A square bracket indicates that the endpoint is included in the interval,
a parenthesis that it is not. Note the imperfect agreement with the concept of
open and closed sets: (a, b) is open and [a, b] is closed for finite a, b, but [a, b)
is neither open nor closed. Also, intervals such as [a,∞) and (−∞,∞) are
closed.

Linear/affine/convex
combination

A sum of vectors of the form
∑

i aivi. It is a linear combination for
all ai. It is an affine combination if

∑
i ai = 1. It is a convex combination if∑

i ai = 1 and ai ≥ 0 for all i.
Convex set A set that contains all convex combinations of its elements.
Hull(X ) Convex hull. The set of all convex combinations of the elements of X .

Equivalently, the smallest convex set that contains X .
Linear/affine span Of a set of vectors: the set of all linear/affine combinations

thereof. The linear span is often just called “span”.
Linear/affine
dimension

The linear/affine dimension of a set X ⊆ RD is the smallest number of vectors
whose linear/affine span contains X . The dimension is ≤ D. When it is clear
from context, just “dimension” is often used.

Linear/affine
subspace

A subset of RD that contains all linear/affine combinations of
its elements. Equivalently, the linear/affine span of some set of vectors.

Hyperplane An affine subspace of affine dimensionD−1. Generalises the notion
of a plane in 3D space and a line in 2D space. Given a nonzero vector v, the
set {x | v · x = u} is a distinct hyperplane for each u. The intersection of K
hyperplanes in RD with linearly independent v vectors is an affine subspace of
dimension D −K.

A+ B Minkowski sum. The set {a+ b | a ∈ A, b ∈ B} (assuming the elements
of A,B support addition).

xA The set {xa | a ∈ A} (assuming the elements of A support scalar multiplica-
tion).
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C The loop integral functions

This appendix contains details on the functions appearing in the NLO and NNLO ampli-
tudes, which originate in loop integrals. Sections C.1 and C.2 contain expansions impor-
tant to their numerical evaluation, and section C.3 contains the derivation of their analytic
integrals over the Mandelstam variables.

Using the conventions of [34],⁶⁶ the function J̄ can be defined as

J̄ = π16(β
2h+ 2), h =

1

β
ln
β − 1

β + 1
, β =

√
1− 4

s
, (II.3.1)

where π16 ≡ 1/16π2. To reduce clutter, we define Ĵ ≡ J̄/π16. Similarly, with k̂i ≡ ki/π2
16

for brevity, the additional functions at NNLO are defined as

k̂1 = β2h2, k̂3 =
β2h3

s
+
π2h

s
− π2

2
,

k̂2 = β4h2 − 4, k̂4 =
1

sβ2

[
k̂1
2

+
k̂3
3

+ Ĵ +
(π2 − 6)s

12

]
.

(II.3.2)

J̄ and ki are real below threshold, and are finite as s→ 4 from below. However, β is not real
when 0 < s < 4, which poses a problem for numerical evaluation. This can be remedied
by defining β̃ = −iβ and rewriting h as

h =
2 tan−1(1/β̃)

β̃
, (II.3.3)

which can be evaluated for 0 < s < 4 using only real numbers.

The functions have further numerical problems. β diverges at s = 0, which leaves J̄ and
ki with removable singularities there. These are rendered harmless with a series expansion,
as shown below. As s → 4 from below, h diverges while J̄ and ki stay finite. Reliable
evaluation of this limit also requires series expansion. The derivatives of J̄ and ki diverge
in this limit (starting at the second derivative for k2 and the first derivative for the others),
which also necessitates series expansion for reliable handling.

C.1 Expanding around s = 0

Near s = 0, we make an expansion in s = 4ε2, where ε may be complex. To make the
NNLO unitarity corrections numerically well-behaved in all cases used by us, an O(ε8) =
O(s4) expansion is needed. For β and 1/β, it is

β =

√
ε2 − 1

ε
=

i

ε

(
1 − ε2

2
− ε4

8
− ε6

16
− 5ε8

128
+O(ε10)

)
, (II.3.4)

⁶⁶We use β rather than σ for consistency with eq. (II.5.4).
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1

β
=

ε√
ε2 − 1

= −iε
(
1 +

ε2

2
+

3ε4

8
+

5ε6

16
+

35ε8

128
+O(ε10)

)
. (II.3.5)

By using the expansion

h = −2
∞∑

n=1

1

(2n− 1)β2n
, (II.3.6)

it follows that

h = 2ε2 + 4
3ε

4 + 16
15ε

6 + 32
35ε

8, (II.3.7a)
Ĵ = 2

3ε
2 + 4

15ε
4 + 16

105ε
6 + 32

35ε
8 (II.3.7b)

k̂1 = −4ε2 − 4
3ε

4 − 32
45ε

6 − 16
35ε

8 (II.3.7c)
k̂2 = − 8

3ε
2 − 28

45ε
4 − 64

63ε
6 − 592

175ε
8 (II.3.7d)

k̂3 =
(

π2

3 − 2
)
ε2 +

(
4π2

15 − 2
)
ε4 +

(
8π2

45 −
28
15

)
ε6 + 328

189ε
8 (II.3.7e)

k̂4 =
(
1− π2

9

)
ε2 +

(
19
15 −

π2

15

)
ε4 +

(
464
315 −

16π2

105

)
ε6 +

(
820
567 −

16π2

105

)
ε8, (II.3.7f )

where we have omitted “+O(ε10)” for brevity. These functions are real, so only even powers
of ε appear. Note also how all numerical coefficients stay roughly order 1.

C.2 Expanding around s = 4

As s→ 4 from below, we expand s = 4(1− δ2) with δ > 0, and again need an eighth-order
expansion at NNLO. The expansion of β and 1/β is

β =
δ√

δ2 − 1
= −iδ

(
1 + 1

2δ
2 + 3

8δ
4 + 5

16δ
6 + 35

128δ
8+O(δ10)

)
, (II.3.8)

1

β
=

√
δ2 − 1

δ
=

i

δ

(
1 − 1

2δ
2 − 1

8δ
4 − 1

16δ
6 − 5

128δ
8+O(δ10)

)
. (II.3.9)

By using the expansion

h = − iπ
β

+ 2i

∞∑
n=0

β2n

2n+ 1
, (II.3.10)

it follows that (suppressing “+O(δ10)”)

h =
π

δ
− 2

[
1 + 1

3δ
2 + 2

15δ
4 + 8

105δ
6 + 16

315δ
8
]
− πδ

2

[
1 + 1

4δ
2 + 1

8δ
4 + 5

64δ
6
]
,

(II.3.11a)

Ĵ = 2
[
1 + δ2 + 2

3δ
4 + 8

15δ
6 + 16

35δ
8
]
− πδ

[
1 + 1

2δ
2 + 3

8δ
4 + 5

16δ
6
]
,

(II.3.11b)

k̂1 = − 4
[ π2

4
+ δ2 + 1

3δ
4 + 8

45δ
6 + 4

35δ
8
]
+ πδ

[
4 + 2

3δ
2 + 3

10δ
4 + 5

28δ
6
]
,

(II.3.11c)
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k̂2 = − 4
[
1 − δ4 − 4

3δ
6 − 68

45δ
8
]
− πδ

[
4δ2 + 14

3 δ
4 + 149

30 δ
6
]

+ π2
[

δ2 + δ4 + δ6 + δ8
]
, (II.3.11d)

k̂3 = 2
[

δ2 + δ4 + 14
15δ

6 + 164
189δ

8
]
− πδ

[
3 + 5

2δ
2 + 259

120δ
4 + 3229

1680δ
6
]

+ π2
[

1
2 + 2

3δ
2 + 8

15δ
4 + 16

35δ
6 + 128

315δ
8
]
, (II.3.11e)

k̂4 = − 1

3

[
2 + δ2 + δ4 + 128

105δ
6 + 844

945δ
8
]
+
πδ

4

[
1 + 17

18δ
2 + 311

360δ
4 + 2227

2800δ
6
]

+
π2

3

[
1
12 −

2
15δ

2 − 4
35δ

4 − 32
315δ

6 + 187
1260δ

8
]
− π3δ

4

[
121
1536δ

6
]
.

(II.3.11f )

Since δ is real, odd powers of δ are permitted. Note again how the coefficients stay roughly
order 1. Due to dδ/ds = −1/8δ, the derivative of the linear terms diverges as δ → 0. Since
k̂2 lacks a linear term, its derivative remains finite. Since the derivative changes the powers
in steps of two, only odd negative powers appear in derivatives of any order.

C.3 Integrals above threshold

Here, we seek to analytically determine the function DJ
k (λ, v, t) defined in eq. (II.5.19). In

the relevant z range, β(z) remains real while h(z) obtains an imaginary part.⁶⁷ The most
convenient form of h is

h(z) =
H(β) + iπ

β
, H(β) ≡ ln

1− β
1 + β

= − 1
2 tanh

−1(β), (II.3.12)

where we take the branch with positive imaginary part. We make the following easily
verifiable observations about the real function H(β):

H ′ =
−2

1− β2
= − 1

2z, (II.3.13a)

H ′′ = −βH ′2, (II.3.13b)

β2 = 1 +
2

H ′ , (II.3.13c)

dz = −2H ′′dβ = 2βH ′2dβ. (II.3.13d)

DJ
k (λ, v, t)will be a linear combination of integrals of the form

∫ λ

4
zn dz

(z−v)k+1 ImX(z), where
X is one of J̄ and ki. We will ignore the denominator for now, and show later how to reduce
all integrals to the form

∫
zn ImX(z) dz. This will involve a wide range of values for n, so

it is easiest to treat general n and then read off the special cases. Reading from eqs. (II.3.1)
and (II.3.2), we find that above threshold,

Im Ĵ = πβ, Im k̂1 = 2πH, Im k̂2 = 2πβ2H,

Im k̂3 =
3πH2

zβ
, Im k̂4 =

1

zβ2

[
H +

H2

zβ
+ β

]
.

(II.3.14)

⁶⁷We will drop the dependence on z from now on; everything in this section implicitly depends on it unless
otherwise specified.
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Using eq. (II.3.13), we see that everything can be expressed in terms of the functions

Zm,n
p (β) ≡

∫
ζm,n
p (β) dβ, ζm,n

p (β) ≡ HmH ′n

βp
. (II.3.15)

Thanks to eq. (II.3.13b), the family of functions ζm,n
p is closed under derivatives:

d

dβ
ζm,n
p = mζm−1,n+1

p − nζm,n+1
p−1 − pζm,n

p+1 . (II.3.16)

It is therefore our hope that the highly nontrivial integral Zm,n
p can mostly be expressed as

a sum of ζm
′,n′

p′ , plus some special cases (for instance, ζm,0
p is not the derivative of another

ζm
′,n′

p′ ). We will therefore attempt to find recurrence relations on m,n, p that allow Z to
be reduced to ζ’s and a few special cases.

C.3.1 The integral Zm,n
p for p = 0

First, we note that n can be assumed non-negative, since

Zm,n
p = 1

2

[
Zm,n+1
p−2 − Zm,n+1

p

]
, (II.3.17)

according to eq. (II.3.13c).⁶⁸ Then, before treating general p, we consider Zm,n ≡ Zm,n
0 for

n,m ≥ 0. The integral of eq. (II.3.16) gives

ζm−1,n−1 = (m− 1)Zm−2,n − (n− 1)Zm−1,n
−1 ,

ζm,n−1
−1 = mZm−1,n

−1 − (n− 1)Zm,n
−2 + Zm,n−1,

(II.3.18)

where the second line allows for the removal of Zm−1,n
−1 in the first. Equation (II.3.17)

can be invoked to turn Zm,n
−2 into 2Zm,n−1 + Zm,n, and after extracting Zm,n, we get a

recurrence relation where both m and n decrease:

Zm,n =
3− 2n

n− 1
Zm,n−1 −

ζm,n−1
−1

n− 1
+

m

(n− 1)2
[
(m− 1)Zm−2,n − ζm−1,n−1

]
. (II.3.19)

This is valid for all m ≥ 0, n > 1. The n = 1 case is covered by the trivial identity⁶⁹

Zm,1 =
ζm+1,0

m+ 1
. (II.3.20)

Zm,0 requires some more thought and will be treated later (see eq. (II.3.26)).

⁶⁸We will not need to treat negative m when integrating the loop integral functions. As we will see below,
Zm,n
p is tractable for all integer n and p, but m has to stay non-negative.
⁶⁹We suppress the constant of integration here and everywhere else.
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C.3.2 Reduction of Zm,n
p to Zm,n

0 and Zm,n
1

We can integrate and restructure eq. (II.3.16) into the recurrence relation

Zm,n
p =

m

p− 1
Zm−1,n+1
p−1 − n

p− 1
Zm,n+1
p−2 −

ζm,n
p−1

p− 1
, p ̸= 1. (II.3.21)

This allows any p > 0 to be reduced to the cases p = 0 and p = 1. When p is negative,
(II.3.17) furnishes the simpler relation

Zm,n
p = Zm,n

p+2 + 2Zm,n−1
p+2 . (II.3.22)

This reduces any p < 0 to p = 0 and p = 1, as long as n stays positive. In the n = 0 case,
we again turn to eq. (II.3.16):

Zm,0
p = (p+ 1)Zm,−1

p+2 −mZ
m−1,0
p+1 − ζm,−1

p+1 . (II.3.23)

Using eq. (II.3.17) to treat the n = −1 terms, we arrive at

Zm,0
p =

p+ 1

p− 1
Zm,0
p+2 +

2m

p− 1
Zm−1,0
p+1 +

ζm,0
p+1 − ζ

m,0
p−1

p− 1
, (II.3.24)

which works for n = 0, p ̸= 1.⁷⁰

In the case p = 1, n > 0 we integrate by parts:

Zm,n
1 =

Zm,n

β
+

∫
Zm,n

β2
dβ. (II.3.25)

Through eqs. (II.3.19) and (II.3.21), the integral will reduce to p = 0 terms that are easy
to handle, plus various Zm′,n′

1 where m′ ≤ m,n′ ≤ n. At least one of the inequalities is
strict, so we will eventually arrive at Z0,n′′

1 and Zm′′,0
1 . The former can be run through the

recurrence again, but the latter requires separate consideration.

C.3.3 Special cases for n = 0

The relations above are capable of reducing almost all Z’s to ζ’s, but they are unable to get
rid of Zm,0

p for p = 0, 1, 2. If we could define a function Φ
(p)
ℓ with derivative −H ′Φ

(p)
ℓ−1

and base case d
dβΦ

(p)
0 = β−p, then an elegant solution to this would be

Zm,0
p =

m∑
ℓ=0

m!

(m− ℓ)!
Φ

(p)
ℓ Hm−ℓ, m, p ≥ 0. (II.3.26)

Such a function can be constructed using polylogarithms, since

d

dβ
Liℓ[f(β)] = Liℓ−1[f(β)]

f ′(β)

f(β)
. (II.3.27)

⁷⁰It could also be adapted to other n ̸= 1−p
2

, but in those cases eq. (II.3.22) is simpler.
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The correct recurrence relation is obtained by solving a simple differential relation for f(β),
which gives

f(β) = K
1 + β

1− β
, Li0[f(β)] =

K(1 + β)

(1−K)− β(1 +K)
. (II.3.28)

We immediately see that K = −1 is suitable for p = 0, and K = 1 for p = 2:⁷¹,⁷²

Φ
(0)
ℓ = −2Liℓ

(
β + 1

β − 1

)
, Φ

(2)
ℓ = 2Liℓ

(
1 + β

1− β

)
, (II.3.29)

We cannot handle p = 1 directly this way, but using the close connection between Li1(x)
and the natural logarithm, we find that

Φ
(1)
ℓ = −

Φ
(0)
ℓ+1 +Φ

(2)
ℓ+1

2
(II.3.30)

gives the correct result.⁷³

C.3.4 The treatment of (z − v)

The factors that arise due to the dispersion relations are highly problematic when v ̸= 0
(which corresponds to s ̸= 0 or u ̸= 0 in eq. (II.5.2)). We only need to consider k = 0,
since ∫

ζm,n
p

(z − v)k+1
dz =

1

k!

dk

dvk

∫
ζm,n
p

z − v
dz; (II.3.31)

the derivative can be taken after evaluating the integral. Trying to get rid of the last power
of (z − v) is futile, so we instead change variables to β and find∫

ζm,n
p

z − v
dz = 2

∫
4

zv

ζm,n+2
p−1
4
v −

4
z

dβ =
−4
v

∫
ζm,n+1
p−1

β2 − β2
v

dβ, (II.3.32)

where βv ≡ β(v) =
√
1− 4/v.⁷⁴ This relation is singular when v = 0, but then zn

(z−v)k+1 =

zn−(k+1) so it is not needed.⁷⁵
⁷¹This process can in principle be continued to treat all p ≥ 2, but it is more practical to rely on the recurrence

relations to get rid of larger p.
⁷²Note that Φ(2)

ℓ is complex-valued for ℓ > 0, since 1+β
1−β

> 1 for z above threshold.
⁷³Although d

dβ
Φ

(1)
0 = 1/β, we have Φ(1)

0 = ln(−β), not lnβ, so one must be careful to place β on the correct
side of the branch cut.

⁷⁴The same relation is useful if one wishes to explicitly evaluate a partial-wave expansion like eq. (II.5.3), since
the Legendre polynomials consist of powers of 1/(z − 4). It is further simplified by β(4) = 0.

⁷⁵Note that βv is imaginary for v ∈ (0, 4), which forces a more involved detour through the complex plane
than above. For instance, the functions Ψ±

ℓ below will be complex-valued, although in the end the integral will
of course remain real.
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It turns out that
∫
Hm/(β2 − β2

v) dβ is tractable, so the strategy is to separate that from
the rest of the integral by repeatedly applying partial fractions:

ζm,n
p

β2 − β2
v

=
v

4

[
ζm,n
p −

2ζm,n−1
p

β2 − β2
v

]
. (II.3.33)

If n is negative, we instead use eq. (II.3.17). Once n has been reduced to zero in the (β2 −
β2
v)-containing term this way, we remove p similarly:

ζm,0
p

β2 − β2
v

= ζm,0
p+2

[
β2
v

β2 − β2
v

+ 1

]
=

1

β2
v

[
ζm,0
p−2

β2 − β2
v

− ζm,0
p

]
. (II.3.34)

This reduces p to 0 or −1; the latter can be handled with the expansion

β

β2 − β2
v

=
1− βv

(1− β)(β − βv)
− βv
β2 − β2

0

+ 1
2 (1 + β)H ′. (II.3.35)

The second term on the right-hand side corresponds to p = 0, and the third does not
involve βv at all. In the spirit of eq. (II.3.26), the first is equal to d

dβΨ
−
0 if we identify

Ψ±
ℓ = −Liℓ+1

[
(1 + β)(1± βv)
(1− β)(1∓ βv)

]
(II.3.36)

guided by eq. (II.3.28). Since d
dβΨ

±
ℓ = −H ′Ψ±

ℓ−1,∫
ζm,0
−1

β2 − β2
v

dβ =
Zm,1 + Zm,1

−1

2
−
∫

βvζ
m,0

β2 − β2
v

dβ +

m∑
ℓ=0

m!

(m− ℓ)!
Ψ−

ℓ H
m−ℓ. (II.3.37)

This leaves p = 0, for which a similar solution is∫
βvζ

m,0

β2 − β2
v

dβ =

m∑
ℓ=0

m!

(m− ℓ)!
Ψ−

ℓ −Ψ+
ℓ

2
Hm−ℓ. (II.3.38)

The very last piece in the puzzle of evaluatingDJ
k (λ, v, t) is the conceptually simple deriva-

tive in eq. (II.3.31):

dβv
dv

=
2

βvv2
,

d

dv
Ψ±

ℓ = ± v

βv
Ψ±

ℓ−1,
dβ

dv
=

d

dv
Zm,n
p = 0. (II.3.39)

C.3.5 The completed integral

The above recurrence relations allow for the integration of all terms that appear inDJ
k (λ, v, t).

Zm,n
p diverges at z → 4 for some values of p,m, n (in particular those that contain Φ

(2)
1 or

negative powers of β), so obtaining a finite lower limit of the overall integral requires care-
ful (albeit straightforward) extraction and cancellation of those divergences. The resulting
expressions are very lengthy in most cases, so we do not reproduce them here.⁷⁶

⁷⁶The fORM implementation of the relations, and the expressions produced by it, are available from Mattias
Sjö upon request.
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ABSTRACT: We calculate the relativistic six-meson scattering amplitude at low energy
within the framework of QCD-like theories with n degenerate quark flavors at next-to-
leading order in the chiral counting. We discuss the cases of complex, real and pseudo-real
representations, i.e. with global symmetry and breaking patterns SU(n) × SU(n)/ SU(n)
(extending the QCD case), SU(2n)/ SO(2n), and SU(2n)/ Sp(2n). In case of the one-
particle-irreducible part, we obtain analytical expressions in terms of 10 six-meson sub-
amplitudes based on the flavor and group structures. We extend on our previous results
obtained within the framework of O(N + 1)/O(N) non-linear sigma model, with N be-
ing the number of meson flavors. This work allows for studying a number of properties of
six-particle amplitudes at one-loop level.
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1 Introduction

Quantum chromodynamics (QCD), the fundamental theory of the strong interaction, be-
comes non-perturbative at low energy and it is therefore impractical for phenomenology
in that regime. From the large-distance perspective, the fundamental quark and gluon
degrees of freedom are effectively replaced by composite colorless states, the lightest of
which are the mesons. These can be approximately interpreted as the Nambu–Goldstone
bosons of the associated spontaneous breaking of the chiral symmetry of massless QCD.
With appropriate explicit symmetry breaking added to account for quark masses and non-
strong interactions, the resulting effective field theory (EFT) is known as chiral perturba-
tion theory (ChPT) [1–3] and is commonly used with great success for low-energy hadron
phenomenology. See Refs. [4, 5] for modern introductions to ChPT.

There has been recent interest in the 3→ 3 meson scattering amplitude driven by advances
in lattice QCD [6–18]. While many ChPT observables are known to high loop level, the
six-meson amplitude was only recently calculated to one-loop level [19], and then only for
two quark flavors, i.e. a meson spectrum of only pions. The case of three or more flavors
is largely unexplored; the tree-level part is known up to next-to-next-to-next-to-leading
order (N3LO) in the massless case [20]. The leading-order (LO) massless pion case was
initially done with current algebra methods and predates ChPT [21, 22].

While QCD is the canonical example, strongly coupled gauge theories can have different
patterns of spontaneous symmetry breaking. These were first discussed in the context of
technicolor theories [23–25]. When the gauge group is vector-like and all fermions have
the same mass, only three patterns show up as discussed in ref. [26]; earlier work can be
traced from there. If all n fermions are in a complex representation, the global symmetry
group is SU(n)×SU(n) and is broken spontaneously to the diagonal (vector) SU(n), which
corresponds to the n-quark QCD case. If the fermions are in a real or pseudo-real represen-
tation, the global symmetry group is SU(2n) and is spontaneously broken to SO(2n) and
Sp(2n), respectively. We will refer to these cases as SU, SO and Sp, respectively, and collec-
tively dub them ‘QCD-like theories’. ChPT has been extended to these, and results can be
found e.g. in refs. [27–29]. The similarity between all cases, and a number of calculations
to two-loop order (vacuum expectation value, mass and decay constant, and four-meson
amplitudes), were worked out in refs. [30–32].

In the context of studying general properties of amplitudes, much attention has been paid
to the structure of (massive) nonlinear sigma models (corresponding to ChPT without
additional fields) at tree level including higher orders using various techniques [20, 33–36].
However, not all of these properties generalize to loop level. Some loop-level progress can
be found in ref. [37–39]. In this work, we calculate the six-meson amplitude to next-to-
leading order (NLO) for the three symmetry-breaking patterns. This generalizes the earlier
work of ref. [19] for the symmetry-breaking pattern O(N + 1)/O(N).

In section 2, Chiral Perturbation Theory for QCD-like theories is shortly discussed; a more
extensive discussion can be found in ref. [30]. We introduce here also a notation that ex-
plicitly brings out the similarities for the three cases. We do not describe the calculation in
great detail; it follows the standard Feynman diagram method and does sums over flavor
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indices using eqs. (III.2.7) and (III.2.8). The flavor structure of the general four- and six-
meson amplitudes is discussed in Sec. III–A. The expressions can be very much simplified
by using all symmetry properties of the amplitudes, as expected from general considera-
tions. This is described later in section 3. We have checked that our results are UV finite
and independent of the parametrization of the Nambu–Goldstone boson manifold, and
that they reduce to the results of refs. [19, 31] in the appropriate cases. At the end of sec-
tion 3, we also present a limit of the six-meson amplitude in which the three-momenta of
the particles of modulus p go symmetrically to zero. In this particular kinematic setting, we
plot the flavor-stripped amplitudes with respect to p and show the results in section 4. Our
conclusions are shortly discussed in section 5, followed by several technical appendices that
fix the notation and explain further subtleties and broader context. Explicit expressions for
our main result — the NLO six-meson amplitude — in terms of deorbited group-universal
subamplitudes can be found in appendix D.

The analytical work in this manuscript was done both using Wolfram Mathematica with
the FEyNCALc package [40–42] and a FORM [43] implementation. The numerical results
use LOOpTOOLS [44, 45].

2 Theoretical setting

2.1 Lagrangian

We consider a theory of n fermions with some symmetry group G, which is spontaneously
broken to a subgroup H. This gives rise to an EFT whose degrees of freedom are pseudo-
Nambu–Goldstone bosons transforming under the quotient group G/H. In analogy with
the QCD case, we will refer to these as ‘mesons’.

We chooseG/H from the patterns of symmetry breaking present in the QCD-like theories
described in the introduction. The mesons are parametrized through a flavor-space matrix
field u, also called the Nambu–Goldstone boson matrix. In addition, the Lagrangian can be
extended in terms of vector, axial-vector, scalar and pseudoscalar external fields [2, 3]. These
correspond to vector and scalar sources for conserved and broken generators in general. The
symmetry may be explicitly broken by introducing quark masses in the scalar external field.
Except for the definition of the decay constant and the introduction of quark masses, we
do not need external fields in this work.

The Lagrangian for the meson–meson scattering at NLO relevant for all the discussed
theories can be written as

L = L(2) + L(4) , (III.2.1)
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separating the LO and NLO terms in the chiral counting.¹,² These take the form

L(2) =
F 2

4
⟨uµuµ + χ+⟩ , (III.2.2)

L(4) = L0⟨uµuνuµuν⟩+ L1⟨uµuµ⟩⟨uνuν⟩+ L2⟨uµuν⟩⟨uµuν⟩+ L3⟨uµuµuνuν⟩

+ L4⟨uµuµ⟩⟨χ+⟩+ L5⟨uµuµχ+⟩+ L6⟨χ+⟩2 + L7⟨χ−⟩2 + 1
2L8⟨χ2

+ + χ2
−⟩ . (III.2.3)

Above, ⟨· · ·⟩ denotes a flavor-space trace over n×nmatrices for the SU and 2n×2nmatrices
for the SO and Sp cases. Moreover,

uµ ≡ i
(
u†∂µu− u∂µu†

)
, (III.2.4)

χ± ≡ u†χu† ± uχ†u . (III.2.5)

Under G, both uµ and χ± transform as X → hXh†, where h ∈ H. Above, as usual,
χ ≡ 2B0M, withM = s− ip, where s(p) are the (pseudo)scalar external fields and B0 is a
parameter related to the scalar singlet quark condensate ⟨0|q̄q|0⟩ (not to be confused with
the integral B0 in appendix A). For our application and in the case with all the mesons
having the same (lowest-order) mass M , we can simply put χ =M21.

The Nambu–Goldstone boson matrix u can be parametrized as

u = exp
(

i√
2F

ϕata
)
, (III.2.6)

where ϕa denote the pseudoscalar meson fields and ta are Hermitian generators of G/H
normalized to ⟨tatb⟩ = δab. Besides the ‘exponential’ parametrization (III.2.6), there are
other options available in the literature. For practical calculations, it is useful to employ
several different parametrizations in parallel. This serves as a neat cross-check since, as
anticipated, the final amplitude should be parametrization-independent. We discuss the
most general reparametrization in appendix B. In the case of the six-meson amplitude at
NLO, 18 free parameters appear in the expansion of u in terms of ϕata. We have checked
that all our physical results are independent of these parameters.

2.2 Flavor structures

Each meson ϕa carries a flavor index a, which appears in the amplitude carried by a G/H
generator residing in a flavor-space trace. When a pair of fields is Wick contracted, the
corresponding flavor indices are summed over; under SU, the resulting expressions are
evaluated using the Fierz identities

⟨taA⟩⟨taB⟩ = ⟨AB⟩ − 1
n ⟨A⟩⟨B⟩ , (III.2.7a)

¹The next-to-next-to-leading-order (NNLO) terms L(6) [46] and N3LO terms L(8) [47] are also known but
not used here.

²Recall that the chiral counting order of an ℓ-loop diagram with nk vertices from L(k) is m = 2 + 2ℓ +∑
k nk(k − 2). Thus, NLO (m = 4) diagrams have either one loop or one vertex from L(4).
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⟨taAtaB⟩ = ⟨A⟩⟨B⟩ − 1
n ⟨AB⟩ , (III.2.7b)

where A and B are arbitrary flavor-space matrices. The analogous identities for SO and
Sp are quite similar, so we will use the abbreviation SO

p in correlation with ±: SO is paired
with +, and Sp with −. Thus, for SO

p one uses

⟨taA⟩⟨taB⟩ = 1
2

[
⟨AB⟩ + ⟨AB†⟩

]
− 1

2n ⟨A⟩⟨B⟩, (III.2.8a)
⟨taAtaB⟩ = 1

2

[
⟨A⟩⟨B⟩ ± ⟨AB†⟩

]
− 1

2n ⟨AB⟩ . (III.2.8b)

Here, B must be a string of generators ta or the unit matrix, so † effectively denotes rever-
sal.³

Note that the implicitly summed index a has different dimensions in eqs. (III.2.7) and (III.2.8),
corresponding to the number of mesons: n2−1 under SU and 2n2±n−1 under SO

p. Note
also, that due to the formally identical Lagrangians, eqs. (III.2.7) and (III.2.8) are the only
source of formal dissimilarity between the amplitudes for the different cases.

2.3 Low-energy constants and renormalization

At LO, we have two low-energy parameters: the mass M (related to the aforementioned
B0) and decay constant F . At NLO, 9 more constants (LECs) Li accompanying additional
allowed chirally symmetric structures (operators) relevant for our application appear, as
shown in eq. (III.2.3). These constants contain UV-divergent parts represented by coeffi-
cients Γi, which are uniquely fixed from the requirement that physical NLO amplitudes
should be finite, and UV-finite parts Lr

i ≡ Lr
i(µ), renormalized at a scale µ, that are free

parameters in the theory:

Li = (cµ)d−4

(
1

16π2

1

d− 4
Γi + Lr

i(µ)

)
. (III.2.9)

Above, d is the space-time dimension in the vicinity of 4 and c is such that

log c = −1

2
(1− γE + log 4π) . (III.2.10)

Consequently, in terms of ϵ = 2− d/2 and

1

ϵ̃
≡ 1

ϵ
− γE + log 4π − log µ2 + 1 , (III.2.11)

one writes (to NLO)
Li = −κ

Γi

2

1

ϵ̃
+ Lr

i , (III.2.12)

with κ ≡ 1
16π2 . The extra ‘+1’ term in eq. (III.2.11) with respect to the standard MS

renormalization scheme is customary in ChPT.

³The general version is given in ref. [31]. The version here follows since the generators are Hermitian:
(tatb · · · tc)† = tc · · · tbta.
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Studying and renormalizing the four-meson amplitude at NLO (i.e. considering one-loop
diagrams with vertices from L(2) and tree-level counterterms from L(4)) determines all
the Γi except for one: The divergent part of L7 remains unset. It can, however, be fixed
from the six-meson amplitude. Using the heat-kernel technique, all NLO divergences were
derived in ref. [30]. For the reader’s convenience, we list the Γi here in a group-universal
form:

Γ0 = 1
48 (n+ 4ξ) , Γ5 = n

8 ,

Γ1 = 1
16ζ , Γ6 = 1

16ζ + 1
8ζ2n2 ,

Γ2 = Γ4 = 1
8ζ , Γ7 = 0 ,

Γ3 = 1
24 (n− 2ξ) , Γ8 = 1

16 (n+ ξ − 4
ζn ) .

(III.2.13)

Above, ξ and ζ ≡ (1 + ξ2) parametrize the groups as follows:

ξ ≡

{
0

[
SU
]
,

±1
[
SO

p

]
,

ζ =

{
1

[
SU
]
,

2
[
SO

p

]
.

(III.2.14)

Another check on our calculation is that, with the expressions in eq. (III.2.13), all our results
are finite.

2.4 Mass and decay constant

The Z factor used for the wave-function renormalization is related to the meson self-energy
Σ as

1

Z
= 1− ∂Σ(p2)

∂p2

∣∣∣∣
p2=M2

π

, (III.2.15)

with −iΣ being represented by a tadpole graph with two external legs plus counterterms
stemming from the Lagrangian (III.2.3). Note that in our application the physical mass
of all mesons is equal and denoted as Mπ. At NLO, the LO vertex and propagator are
extended in terms of the replacements

Mk →Mk
π

(
1− k

2

Σ

M2
π

)
,

1

F k
→ 1

F k
π

(1 + kδF ) ,

(III.2.16)

at the given order equivalent to the standard M2
π =M2 +Σ, Fπ = F (1 + δF ), with

Σ =
M4

π

F 2
π

{
−8
[
Lr
5 − 2Lr

8 + nζ(Lr
4 − 2Lr

6)
]
+

(
1

ζn
− ξ

2

)
L

}
+O

(
1

F 4
π

)
,

δF =
M2

π

F 2
π

[
4(Lr

5 + nζLr
4)−

n

2
L
]
+O

(
1

F 4
π

)
.

(III.2.17)

Here, we again present the group-universal form. Above and later on, we useL ≡ κ log M2

µ2 .
Needless to say, in the final result one only retains the terms relevant at order O(p4). Thus,
in the rest of the NLO expressions one simply takes M →Mπ and F → Fπ. Note that we
recalculated the results of eq. (III.2.17) and that they agree with refs. [27, 29, 30].
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3 The amplitudes

In terms of Feynman diagrams, loop integrals, etc., the present calculation proceeds along
the same lines as the one performed in ref. [19]. However, the result is considerably more
cumbersome, largely because the flavor indices are carried by more structures beyond Kro-
necker δ’s. There is also the matter of treating the SU, SO and Sp variants in parallel
without tripling the amount of material to present. We will therefore devote much of this
section to simplifying the amplitude expressions.

3.1 Flavor structure of the four- and six-meson amplitudes

The general flavor structure of the SU case for meson–meson scattering is well-known; see
e.g. refs. [28, 30]. We consider four incoming mesons with flavor indices b1, . . . , b4 and
momenta p1, . . . , p4. The usual Mandelstam variables are defined as⁴

s = (p1 + p2)
2
, t = (p1 + p3)

2
, u = (p2 + p3)

2
. (III.3.1)

The amplitude is then conventionally decomposed as

A4π(s, t, u) =
(
⟨tb1tb2tb3tb4⟩+ ⟨tb4tb3tb2tb1⟩

)
B(s, t, u)

+
(
⟨tb1tb3tb4tb2⟩+ ⟨tb2tb4tb3tb1⟩

)
B(t, u, s)

+
(
⟨tb1tb4tb2tb3⟩+ ⟨tb3tb2tb4tb1⟩

)
B(u, s, t)

+ δb1b2δb3b4C(s, t, u) + δb1b3δb2b4C(t, u, s)

+ δb1b4δb2b3C(u, s, t) . (III.3.2)

The functions satisfy B(s, t, u) = B(u, t, s) and C(s, t, u) = C(s, u, t). This structure
follows from requiring invariance under the unbroken group, Bose symmetry and charge
conjugation for SU. Under SO

p, ⟨tatbtctd⟩ = ⟨tdtctbta⟩ without relying on charge conjuga-
tion.

A similar decomposition for the six-meson amplitude in terms of six flavor labels and mo-
menta is

A6π(p1, . . . , p6) =
∑
S6

{
1
12

[
⟨tb1 · · · tb6⟩+ ⟨tb6 · · · tb1⟩

]
D(p1, . . . , p6)

+ 1
16δ

b1b2
[
⟨tb3 · · · tb6⟩+ ⟨tb6 · · · tb3⟩

]
E(p1, . . . , p6)

+ 1
36

[
⟨tb1tb2tb3⟩⟨tb4tb5tb6⟩+ ⟨tb3tb2tb1⟩⟨tb6tb5tb4⟩

]
F (p1, . . . , p6)

+ 1
48δ

b1b2δb3b4δb5b6G(p1, . . . , p6)

}
, (III.3.3)

where S6 represents the 6! = 720 permutations of {1, . . . , 6} and the symmetry factors
correspond to how many permutations leave the traces and δ’s (the ‘flavor structure’) un-
changed; thus, D, E, F and G are summed over 60, 45, 20 and 15 distinct permutations,

⁴We have chosen the specific definition here to later define an off-shell extension.
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respectively, just likeB and C are summed over 3. Charge conjugation and group structure
imply the following properties:

D(p1, . . . , p6) = D(p2, p3, p4, p5, p6, p1)

= D(p6, p5, p4, p3, p2, p1) , (III.3.4a)
E(p1, . . . , p6) = E(p2, p1, p3, p4, p5, p6)

= E(p1, p2, p4, p5, p6, p3)

= E(p1, p2, p6, p5, p4, p3) , (III.3.4b)
F (p1, . . . , p6) = F (p4, p5, p6, p1, p2, p3)

= F (p2, p3, p1, p4, p5, p6)

= F (p1, p3, p2, p4, p6, p5) , (III.3.4c)
G(p1, . . . , p6) = G(p2, p1, p3, p4, p5, p6)

= G(p3, p4, p5, p6, p1, p2)

= G(p3, p4, p1, p2, p5, p6) . (III.3.4d)

These are discussed in a more formal and general way in the next subsection.

3.2 General flavor-based simplification

In order to formalize the structure seen in eqs. (III.3.2) and (III.3.3), we follow the notation
of ref. [20] and define a k-particle flavor structure as

FR(b1, . . . , bk) = ⟨tb1tb2 · · · tbr1 ⟩⟨tbr1+1 · · · tbr1+r2 ⟩ · · · ⟨tbk−r|R|+1 · · · tbk⟩ , (III.3.5)

where R = {r1, . . . , r|R|} with
∑
ri = k is a flavor split: The flavors are split across

|R| traces, each containing ri indices. Without loss of generality, we may impose r1 ≤
r2 ≤ · · · ≤ r|R|. For a permutation σ that maps i → σi, we define Fσ

R(b1, . . . , bk) ≡
FR(bσ1

, . . . , bσk
) and denote by ZR the group of permutations that preserve FR: For all

σ ∈ ZR, Fσ
R(b1, . . . , bk) = FR(b1, . . . , bk).⁵ The group ZR is, of course, related to the

symmetries in eq. (III.3.4).

In general, an amplitude can be decomposed as

Akπ(p1, b1; p2, b2; . . . ; pk, bk) =
∑
R

∑
σ

Aσ
R(p1, . . . , pk)Fσ

R(b1, . . . , bk) , (III.3.6)

where σ is summed over all permutations that do not preserve FR, i.e. Sk/ZR. It follows
from Bose symmetry that Aσ

R(p1, . . . , pk) = Aid
R(pσ1 , . . . , pσk

) where id is the identity
permutation. It is therefore sufficient to work with AR ≡ Aid

R , the stripped amplitude, for
all R; the full amplitude follows from eq. (III.3.6).

The stripped amplitude is easily obtained from the full amplitude by taking the coefficient
of FR. In SU, it is guaranteed to be unique, as was proven in ref. [20]. This carries

⁵ZR is the cyclic group Zk when R = {k}, hence the notation. In general, it combines cyclic symmetry of
each trace with exchanging the contents of same-size traces. It is Abelian as long as all ri are different.
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over to SO and Sp; the ambiguity created by ⟨X⟩ = ⟨X†⟩ is easily resolved by applying
⟨X⟩ → 1

2 [⟨X⟩+ ⟨X
†⟩] before extracting AR.

In a four-meson amplitude, the stripped amplitudes A{4} and A{2,2} are the functions
called B(s, t, u) and C(s, t, u), respectively, in eq. (III.3.2). For six mesons, one has A{6},
A{2,4},A{3,3} andA{2,2,2}, which correspond toD,E, F andG in eq. (III.3.3), respectively.
In the SU(n = 2) case (equivalent to the O(4)/O(3) case treated in ref. [19]), the Cayley–
Hamilton theorem allows all the trace structures to be reduced to R = {2, 2, 2}. When
n = 2, 3, 4, 5 for SU and n = 1, 2 for SO

p, respectively, the FR satisfy a number of linear
relations (see ref. [48] for explicit expressions), which in turn relate the AR to each other.
Otherwise, FR are linearly independent for different R.⁶

As follows from its definition, AR inherits ZR symmetry (acting on {p1, . . . , pk}) from FR.
We must also consider another permutation of the external particles, which we dub trace-
reversal (TR). It is the permutation which reverses the product of generators in each trace:
⟨tatb · · · tc⟩ → ⟨tc · · · tbta⟩. Under SU, this is not a symmetry of FR, but CP invariance
nevertheless requires it to be a symmetry of AR: Charge conjugation maps ta → (ta)T,
and thus ⟨tatb · · · tc⟩ → ⟨taTtbT · · · tcT⟩ = ⟨tc · · · tbta⟩. This is why eqs. (III.3.2) and (III.3.3)
pair each trace with its reverse (except for the reversal-symmetric ⟨tatb⟩). We will denote
the general symmetry group of AR, i.e. ZR plus TR, by Z+TR

R .

Under SO
p, Z+TR

R is a symmetry also of FR; in fact, ⟨tatb · · · tc⟩ = ⟨tc · · · tbta⟩ makes FR

symmetric under the reversal of any single trace (CP only requires symmetry under the
simultaneous reversal of all traces). This enhanced symmetry is inherited by AR, and is
very important for the relation between the amplitudes of the different QCD-like theories
(see appendix E).

The size of the amplitude expressions can be further reduced by writing them in terms of
a quantity ÃR such that

AR(p1, . . . , pk) =
∑

σ∈Z+TR
R

ÃR(pσ1 , . . . , pσk
) . (III.3.7)

This clearly exists (consider e.g. ÃR = AR/|Z+TR
R |) but is not unique. A method for obtain-

ing a minimal-length ÃR, the deorbited stripped amplitude, is described in appendix C.

3.3 Group-universal formulation

One can expect the amplitudes of the SU, SO and Sp theories to have many similarities,
since the only differences relevant to the amplitude are the variations of the Fierz iden-
tity, eqs. (III.2.7) and (III.2.8), and the substitution n → ζn. In fact, comparison of the
amplitudes suggests that one might introduce four subamplitudes A(i) such that

A =

{
A(1) + ξA(ξ) + ξ2A(ξ2) +

A(ζ)

ζ

}
n→ζn

, (III.3.8)

⁶They are in fact orthogonal in a certain sense, as shown in ref. [20].
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Figure III.1: The single LO four-meson diagram, with the vertex stemming from L(2). In
formulae we refer to it as iM(2)

LO or, after NLO mass and decay-constant re-
definitions (III.2.17) are applied, iM(4)

LO.

where (ξ, ζ) = (0, 1) for SU and (±1, 2) for SO
p, as defined in eq. (III.2.14). This decompo-

sition is clearly redundant: Three amplitudes are expressed as a combination of four sub-
amplitudes. However, we find it natural and choose it for its simplicity and clarity; very
few terms appear in more than one subamplitude, andA(ξ2) is a relatively short expression.
The decomposition (III.3.8) can be combined with stripping and deorbiting, allowing the
amplitude to be formulated using the very concise quantities Ã(i)

R . Furthermore, many
of these are actually zero. The patterns for which (R, i) combinations are allowed, what
LECs, loop integrals and powers of n may appear where, etc., are studied in appendix D
and explained in appendix E.

3.4 The four-meson amplitude

The notation of the previous sections allows the four-meson amplitude to be written very
compactly. We will use the ordinary Mandelstam variables (III.3.1). At LO, there is a single
nonzero subamplitude, stemming from the diagram in fig. III.1,⁷

A(LO,1)
{4} = 8Ã(LO,1)

{4} = − t− 2M2
π

2F 2
π

. (III.3.9)

At NLO, one has one-loop diagrams (two topologies of four one-loop diagrams in total)
combined with counterterms, as shown in fig. III.2. Moreover, one needs to take into
account NLO wave-function renormalization (Z1/2−1) applied for every external leg, and
mass and decay-constant redefinitions [at the given order based on eq. (III.2.17)] applied
to the LO graphM(2)

LO, givingM(4)
LO. Schematically, this can be summed up as

A
(NLO)
4π =M1-loop +MCT + 4(Z1/2 − 1)M(2)

LO +M(4)
LO . (III.3.10)

Note that while the above combination is parametrization-independent and UV finite, the
separate terms are not. Altogether, the nonzero stripped and deorbited group-universal
NLO subamplitudes read

F 4
π Ã

(NLO,1)
{4} =

M4
π

4n

{
L+ κ− J̄(s)

}
+ 2M4

π(L
r
0 + Lr

8)

− M2
πt

2
(4Lr

0 + Lr
5) +

t2

8
(4Lr

0 + Lr
3) +

s(s − u)

4
Lr
3 , (III.3.11a)

⁷We remind the reader that the R = {. . .} subscript indicates stripping according to eq. (III.3.6), the tilde
indicates deorbiting according to eq. (III.3.7), and the calligraphic A indicates group-universal formulation ac-
cording to eq. (III.3.8), with the subamplitude label ‘1’ sharing the superscript with the ‘LO’ label. All three
simplifications can be applied independently and commute with each other.

248



(a) 1× (b) 1× (c) 3×

Figure III.2: NLO topologies for the four-meson amplitude. The unmarked vertices
stem from L(2), while the square vertices stem from L(4) and contain Li,
i = 1, . . . , 8. The numbers (diagram multiplicities) indicate the number of
distinct diagrams with the same topology but different permutations of the
external legs. Diagram (a) corresponds to iMCT and diagrams (b,c) sum up
to iM1-loop.

F 4
π Ã

(NLO,ξ)
{4} = J̄(t)

64

{
(t− 2M2

π)
2
}
+ J̄(s)

192

{
(4M2

π − s)(3s+ t− u)
}

− 6L + 5κ

1152

{
28M4

π − 16M2
πt+ 3t2 − 2s(s− u)

}
− M4

πκ

96
, (III.3.11b)

F 4
π Ã

(NLO,ζ)
{4} = nJ̄(s)

192

{
4M2

π(t− u) + s(3s− t+ u)
}

− n(3L + 2κ)

1152

{
32M4

π − 20M2
πt+ 3t2 + 2s(s− u)

}
− nκ

288

{
4M4

π −M2
πt+ s(s− u)

}
, (III.3.11c)

F 4
π Ã

(NLO,1)
{2,2} =

M4
π

4n2

{
J̄(s)− (L+ κ)

}
+ u(u − t)

2
Lr
2 + 4M4

π(L
r
1 − Lr

4 + Lr
6)

+ s2

4
(4Lr

1 + Lr
2)− 2M2

πs(2L
r
1 − Lr

4) , (III.3.11d)

F 4
π Ã

(NLO,ζ)
{2,2} = s2J̄(s)

32
+ J̄(u)

16

{
(u− 2M2

π)
2
}
− L + κ

64

{
3s2 − 2u(t− u)

}
. (III.3.11e)

(Recall κ and L from section 2; J̄ is defined in appendix A.) This is identical to the results
given in ref. [31].

3.5 Poles and factorization

The six-meson amplitude has a simple pole whenever an internal propagator goes on-shell,
i.e. p2ijk = M2

π with pijk = pi + pj + pk for any indices i, j and k. As in ref. [19], the
amplitude can therefore be separated into a part containing the pole and a nonpole part,

A6π = A
(pole)
6π +A

(nonpole)
6π , (III.3.12)

where the pole part can be factorized in terms of four-meson amplitudes:

A
(pole)
6π =

∑
P10,bo

A4π(pi, bi; pj , bj ; pk, bk;−pijk, bo)

× −1
p2ijk −M2

π

A4π(pℓ, bℓ; pm, bm; pn, bn; pijk, bo) . (III.3.13)
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(a) 1× (b) 10×

Figure III.3: LO topologies for the six-meson amplitude. As in fig. III.2, multiplicities are
indicated.

Above, P10 represents the 10 distinct ways of distributing the indices 1, . . . , 6 into two
triples i, j, k and ℓ,m, n, and bo is the flavor of the off-shell leg, i.e. the propagator.

This factorization can also be done at the stripped-amplitude level. With eq. (III.3.13)
schematically summarized as A(pole)

6π ∼ A4π ×A4π, we correspondingly have

2
(
A

(pole)
{6} − 1

nA
(pole)
{3,3}

)
∼ A{4} ×A{4} ,

A
(pole)
{2,4} ∼ A{2,2} ×A{4} ,

2A
(pole)
{2,2,2} ∼ A{2,2} ×A{2,2} ,

(III.3.14)

with each A(pole)
R summed over ZR instead of P10, causing some symmetry factors.⁸

In eq. (III.3.13), the four-pion subamplitude is defined as usual, although s + t + u =
3M2

π + p2ijk since one leg is off-shell. The residue at the pole is unique (since the on-shell
four-meson amplitude is), but the extrapolation away from p2ijk =M2

π is not. Correspond-
ingly, the distribution of terms between the parts in eq. (III.3.12) is not unique. We choose
to expressA4π in exactly the form (III.3.11), which in turn fixesA(nonpole)

6π . This choice by def-
inition leaves both A(pole)

6π and A(nonpole)
6π parametrization-independent. However, the dis-

tribution of contributions from individual one-particle-reducible (1PR) diagrams remains
parametrization-dependent, while one-particle-irreducible (1PI) diagrams only contribute
to A(nonpole)

6π .

By suitably deforming A4π, it is in fact possible to make the tree-level A(nonpole)
6π vanish.

This is the principle underlying Britto–Cachazo–Feng–Witten recursion [49, 50] and sim-
ilar techniques, wherein many-particle amplitudes are recursively built up from smaller
ones. This technique was used for the first published calculation of the NLO tree-level
six-meson amplitude [33], but at least its standard configuration suffers from convergence
problems at NNLO [20]. Significant work has been done on the topic of loop-level recur-
sion techniques but is typically limited to loop integrands rather than complete amplitudes;
see ref. [38, 39] and references therein. We make no use of such techniques here.
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(a) 1× (b) 20× (c) 10×

(d) 1× (e) 20× (f) 10×

(g) 15× (h) 60× (i) 15×

Figure III.4: NLO topologies for the six-meson amplitude. As in fig. III.2, multiplicities
are indicated.

3.6 The six-meson amplitude

The nonpole LO six-meson amplitude contains only two nonzero subamplitudes, stem-
ming from the 1 + 10 tree diagrams in fig. III.3:

A(LO, nonpole, 1)
{6} =

p1 · p3 + p3 · p5 + p5 · p1
2F 4

π

, (III.3.15a)

A(LO, nonpole, 1)
{3,3} =

M2
π − p1 · p2 − p1 · p3 − p2 · p3

2nF 4
π

. (III.3.15b)

The pole part is given by eq. (III.3.13). Note that eq. (III.3.15) is group-invariant, i.e. equal
for SU and SO

p up to n → ζn. This is true for all analogous LO k-meson amplitudes, and
indeed all tree-level contributions, as is proven in appendix E.

The NLO amplitude, which is the main result of this work, stems from the diagrams in
fig. III.4. Even when maximally simplified, it is rather lengthy, so we leave its explicit
expressions to appendix D.

Let us now describe briefly the renormalization procedure for the NLO six-meson am-
plitude analogously to eq. (III.3.10). Regarding the 1PI diagrams [figs. III.4a, III.4d, III.4g
and III.4i] which only contribute to the nonpole part, we can again write, schematically,

A
(NLO)
6π

∣∣
1PI =M

(6π)

1-loop,1PI +M
(6π)
CT,1PI + 6(Z1/2 − 1)M(a)(2)

LO +M(a)(4)
LO . (III.3.16)

The discussion of the 1PR part is a bit more involved. The double-pole partM2-pole stem-
ming from the contributions represented by diagrams depicted in figs. III.4c and III.4f

⁸Note that A(pole)
{2,4} = 0 at LO and A(pole)

{2,2,2} = 0 at NLO, since A{2,2} = 0 at LO.
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cancels with the piece due to the NLO propagator mass renormalization in the LO pole
contributionM(b)(2)

LO from fig. III.3b, denoted asM(b)(4)
LO

∣∣
prop, and consequently

M2-pole + 6(Z1/2 − 1)M(b)(2)
LO +M(b)(4)

LO
∣∣
prop = 8(Z1/2 − 1)M(b)(2)

LO . (III.3.17)

This, together with the LO contribution itself,M(b)(2)
LO , with vertices promoted to NLO in

the same contribution,M(b)(4)
LO

∣∣
vert, and contributions stemming from the 1PR topologies

shown in figs. III.4b, III.4e and III.4h gives, schematically,

A
(LO+NLO)
6π

∣∣
1PR =M(6π)

1-loop,1PR +M(6π)
CT,1PR + 8(Z1/2 − 1)M(b)(2)

LO +M(b)(4)
LO

∣∣
vert +M

(b)(2)
LO ,

(III.3.18)
which is the equivalent of two up-to-NLO ππ scatterings [analogous to A(LO)

4π +A
(NLO)
4π as

from eqs. (III.3.9) and (III.3.10)] connected with the propagator, i.e. precisely the structure
of eq. (III.3.13). Choosing the particular form of A(pole)

6π as discussed earlier, the remainder
with respect to A(LO+NLO)

6π

∣∣
1PR is deferred to A(nonpole)

6π . What we call the nonpole part of
the six-meson amplitude is thus the combination of such a remainder and the contributions
of the 1PI diagrams from eq. (III.3.16).

3.7 Zero-momentum limit

In what follows, we choose a symmetric 3→ 3 scattering configuration given by the four-
momenta

p1 = (Ep, p, 0, 0) , p2,3 =
(
Ep,− 1

2p,±
√
3
2 p, 0

)
,

p4 = (−Ep, 0, 0, p) , p5,6 =
(
−Ep,±

√
3
2 p, 0,−

1
2p
)
,

(III.3.19)

with Ep =
√
p2 +M2

π . These only depend on a single parameter p, the modulus of
three-momenta of all the mesons. In this kinematic setting, the zero-momentum limit of
the stripped nonpole amplitudes up-to-and-including NLO take a simple group-universal
form

F 2
π lim

p→0
A{6} = −1

2

M2
π

F 2
π

+
M4

π

F 4
π

{
ξ

4
(8L− κ) + (3L− 5κ)

(
10n+ ξ

36
− 1

ζn

)
+

κ

2ζn
− 4(8Lr

0 − Lr
5 + 6Lr

8)

}
,

F 2
π lim

p→0
A{2,4} =

M4
π

F 4
π

{
1

ζ
(3L+ κ) + 2(L− 2κ)

1

ζ2n2
− 16(Lr

2 + Lr
4 + 2Lr

6)

}
,

F 2
π lim

p→0
A{3,3} =− 1

ζn

M2
π

F 2
π

+
M4

π

F 4
π

{
3

2ζ
L− 3

2
(L− κ)

(
ξ

ζn
− 4

ζ2n2

)
− 16Lr

7

− 48

ζn
(Lr

5 − Lr
8)

}
,

F 2
π lim

p→0
A{2,2,2} =

M4
π

F 4
π

{
4κ

ζ3n3

}
. (III.3.20)
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Due to the Adler zero limϵ→0A(p1, . . . , ϵpi, . . .) = 0, which holds for any i in the massless
case [51, 52], the zero-momentum limit is proportional to M2

π also in the general case.

It seems that eq. (III.3.20) is valid also for general momentum configurations rather than
just eq. (III.3.19); this is explained in the next section. However, it is specifically the zero-
momentum limit of AR(p1, . . . , p6) where particles 1, 2, 3 are in the initial state and 3, 4, 5
in the final state. Different assignments of initial- and final-state particles will yield differ-
ent zero-momentum limits. After accounting for Z+TR

R symmetry, time-reversal symmetry,
and the freedom to exchange particles within the initial and final states (which changes
the stripped amplitude but not its zero-momentum limit⁹), there are 10 distinct limits,
produced by the following:

lim
p→0

AR(p1, p2, p3, p4, p5, p6) ,

lim
p→0

AR(p1, p4, p2, p5, p3, p6) ,

 for all R ,

lim
p→0

A{6}(p1, p2, p4, p3, p5, p6) ,

lim
p→0

A{2,4}(p1, p4, p2, p3, p5, p6) .

(III.3.21)

Note that the first line reproduces eq. (III.3.20); in the interest of space, we do not reproduce
the other cases. Also note that this is for 3→ 3 scattering, and that different limits will be
obtained for 2→ 4 scattering.

4 Numerical results

We only present a few numerical results here since the full analysis of the finite volume
and the subtraction of the two-body rescatterings is very nontrivial; see refs. [53, 54] and
references therein. The numerical inputs we use are

Mπ = 0.139570GeV , µ = 0.77GeV ,

Fπ = 0.0927GeV , n = 3 .
(III.4.1)

For LECs, we use the p4 fit from Table 1 of ref. [55]:

Lr
1 = 1.0× 10−3 , Lr

5 = 1.2× 10−3 ,

Lr
2 = 1.6× 10−3 , Lr

6 = 0 ,

Lr
3 = −3.8× 10−3 , Lr

7 = −0.3× 10−3 ,

Lr
4 = 0 , Lr

8 = 0.5× 10−3 .

(III.4.2)

For n = 3, we use Lr
0 = 0. Throughout this section, we use the kinematic setting of

eq. (III.3.19).

⁹This is not necessarily true if the limit depends nontrivially on how it is approached. This seems not to be
the case for this amplitude, although the analytic structure of C could hide some subtleties.
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Figure III.5: Stripped amplitudes at NLO in the kinematic setting of eq. (III.3.19). The
solid line stands for SU, the dashed line for SO and the dotted line for Sp.
The dash-dotted line used in the two bottom panels represents the cases in
which SO and Sp coincide. Note the extra factor of 10−3 for theR = {2, 2, 2}
stripped amplitude.

The resulting plots are shown in fig. III.5. Interestingly,A(NLO,ξ2)
{3,3} vanishes in this kinematic

setting and hence does not contribute to the top right panel of fig. III.5.

We use the following shorthand notation for the value at p = 0.1GeV:

A(p) −→ Â ≡ F 2
π × ReA(p = 0.1GeV) . (III.4.3)

Note that Â is dimensionless. Using this notation, values for general n are given in ta-
ble III.1. As fig. III.5 shows, the relative sizes of these values are representative across a
broader energy range.

The pole part is clearly the dominant contribution, but in a sense the nonpole part is
the interesting one, since it is not directly related to the previously known four-meson
amplitude. The NLO part is smaller than the LO part, but not by much; perturbative
convergence is understandably poor, with breakdown expected at a scale of 4πFπ/

√
n [28],

i.e. ≈ 5Mπ at n = 3.

Among the NLO nonpole subamplitudes, neither is clearly dominant: A{6}, A{2,4} and
A{3,3} are comparable in magnitude, as are A(1), A(ξ) and A(ζ). Among the NLO pole
subamplitudes, A(1)

{6}, A
(ζ)
{6} and A(1)

{2,4} dominate. Thus, the results of the three QCD-like

254



Table III.1: The different contributions to the six-meson amplitude, evaluated at p =
0.1GeV as described in eq. (III.4.3), using the momentum configura-
tion (III.3.19). Note that we only quote the real part, and that we multiply
by a suitable power of Fπ to make the result dimensionless. We omit subam-
plitudes that are identically zero.

Pole part Non-pole part

Â(LO,1)
{6} 86.4 −1.68

Â(LO,1)
{3,3} 5.06 1

n −4.89 1
n

Â(NLO,1)
{6} −36.2− 10.2 1

n −0.0119 + 0.477 1
n

Â(NLO,ξ)
{6} 0.248 −0.363

Â(NLO,ζ)
{6} 12.4n −0.264n

Â(NLO,1)
{2,4} 20.5 + 4.84 1

n2 −0.492− 0.293 1
n2

Â(NLO,ζ)
{2,4} 24.4 −0.584

Â(NLO,1)
{3,3} 1.75 1

n + 0.624 1
n2 0.0247− 0.606 1

n − 0.741 1
n2

Â(NLO,ξ)
{3,3} −0.328 1

n 0.357 1
n

Â(NLO,ξ2)
{3,3} — 0

Â(NLO,ζ)
{3,3} −0.501 −0.258

Â(NLO,1)
{2,2,2} — 0.0935 1

n3

theories are of similar magnitude. In the large-n limit, we expect A{6} to dominate due to
the positive power of n in A(ζ)

{6}; following eq. (III.3.8), this also implies that the stripped
amplitudes of the three theories will become equal in this limit.

Besides the kinematic configuration (III.3.19), we have numerically evaluated the amplitude
for a random sample of 3→ 3 scattering events generated with the RAMBO algorithm [56].
These samples confirm that A(NLO,ξ2)

{3,3} is not generally zero. We obtained zero-momentum
limits by uniformly scaling the random three-momenta by a factor ϵ→ 0while keeping the
particles on-shell.¹⁰ This consistently resulted in the same numerical values as eq. (III.3.20),
allowing us to conclude that eq. (III.3.20) is the general uniform zero-momentum limit of
AR(p1, . . . , p6) in 3→ 3 scattering, rather than a special case for the configuration (III.3.19).
The same is true for the other limits described in eq. (III.3.21).

¹⁰This introduces an energy-conservation-violating term of order ϵ2. Violating either on-shellness or conser-
vation of energy (or momentum) is inevitable when taking such a zero-momentum limit. It would be simpler to
scale the four-momenta, but that would give the massless zero-momentum limit, which is zero and therefore not
very interesting.
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5 Conclusions

In this paper, we calculated the meson mass, decay constant, four-meson and six-meson
amplitudes to NLO in the QCD-like theories, i.e. besides the QCD-related case SU, we
also consider the SO and Sp symmetry-breaking patterns. In section 2, we introduced the
relevant NLO Lagrangian in analogy with three(-quark)-flavor ChPT [2, 3]. The mass,
decay constant and the four-meson amplitude agree for n = 3 with refs. [2, 3, 27, 29, 30,
57, 58] and with the general-n results of refs. [28, 31, 59–61].

Our main result is the six-meson amplitude, which can be written in terms of four inde-
pendent flavor-stripped amplitudes [for detailed structure, see eq. (III.3.3)], as compared to
a single amplitude in the O(N +1)/O(N) case studied in ref. [19]. We split the whole am-
plitude into pole and nonpole parts; see eq. (III.3.12). The pole part is given in eq. (III.3.13),
where we chose to employ the off-shell four-meson amplitude in the form of eqs. (III.3.9)
and (III.3.11) generalizing (beyond n = 3) the amplitude given in refs. [57, 58] and exactly
matching that in ref. [31].

The expression for the nonpole part is rather lengthy. We thus further divide the four
flavor-stripped amplitudes into group-universal subamplitudes in order to account for all
the three QCD-like theories in a concise way. By employing symmetries through the
deorbiting procedure described in appendix C, we obtain the resulting 10 non-vanishing
subamplitudes presented in appendix D. The nontrivial choice of a redundant but highly
symmetric basis of tensor triangle loop integrals (for details, see appendix A) and of kine-
matic invariants (appendix C) allows for a fairly compact expression. While the result is
still too lengthy and complicated to be grasped fully, the division into subamplitudes along
with further analysis in appendix E allows many of its features to be understood.

In the kinematic setting of eq. (III.3.19), we present the analytical results for the zero-
momentum limit in eq. (III.3.20). Some numerical results for this particular momentum
configuration are presented in section 4.

In the process of our calculations, we devised a systematic procedure (deorbiting) for sim-
plifying amplitudes beyond what is possible with stripping alone. Previous work, e.g.
refs. [19, 31, 35], manually structure their results in similar ways, but this quickly becomes
difficult with larger numbers of kinematic variables and more complicated symmetries.
These issues are, at least partly, resolved by our simplification scheme, which should be
applicable also beyond the present scope.

We see limited interest in computing the NNLO counterpart of this result. Several LECs
(terms 49–63 in L(6) [46]) that do not appear in lower-multiplicity amplitudes enter here
and are so far undetermined. All relevant two-loop integrals are known (see e.g. ref. [31])
except for the five-propagator sunset topology, which we expect to be very difficult. There
is also the matter of expressing the two-loop integrals in a symmetry-compliant way like
in appendix A.

We believe that our techniques would make the NLO eight-meson amplitude accessible,
but such a calculation is currently not motivated by lattice developments. Besides the
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larger number of diagrams and longer expressions, the main technical hurdles would be
extending appendix A to a similar treatment of box integrals, and extending appendix C
to Z+TR

{8},Z
+TR
{2,6},Z

+TR
{2,3,3}, etc.

Work is in progress to combine our results with the methods for extracting three-body
scattering from finite volume in lattice QCD. We expect that our results may also be of
interest for the amplitude community.
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A Conventions for the loop integrals

Throughout the paper, we treat the momenta (p1, . . . , p6) as incoming, and we introduce
the following independent combinations of momenta:

q1 = p1 + p2 , q2 = p3 + p4 , q3 = p5 + p6 ,

r1 = p1 − p2 , r2 = p3 − p4 , r3 = p5 − p6 .
(III.1.1)

Note that we use the same notation and conventions as in ref. [19]. In particular, the
integrals are defined in Appendix A therein; here, we restate them along with some clarifi-
cations.

The functions we use to represent our results are very closely related to the standard Passarino–
Veltman one-loop integrals A0, B0 and C0. To fix our notation, let us present explicitly
the simpler integrals with one and two propagators. In what follows, we use the compact
notation for the Feynman denominators with loop momentum l,

D(qi) ≡ (l − qi)2 −M2 , (III.1.2)

while setting D0 ≡ D(0) = l2 −M2. Having in mind eq. (III.2.11),

1

ϵ̃
≡ 1

ϵ
− γE + log 4π − log µ2 + 1 , (III.1.3)

and that we, like in section 2, set

κ =
1

16π2
, L = κ log

M2

µ2
, (III.1.4)

the integrals read

A ≡ κA0(M
2) =

1

i

∫
ddl

(2π)d
1

D0
=M2κ

1

ϵ̃
−M2L , (III.1.5)
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B(q2) ≡ κB0(q
2,M2,M2) =

1

i

∫
ddl

(2π)d
1

D0D(q)
= κ

1

ϵ̃
− κ− L+ J̄(q2) . (III.1.6)

We employ the standard definition for J̄(q2):

J̄(q2) ≡ κ
(
2 + β log

β − 1

β + 1

)
, (III.1.7)

with β ≡ β(q2) =
√
1− 4M2

q2 . The terms L and J̄(q2) we use to express our results thus
absorb the factors of 1

16π2 .

Let us emphasize that it is the tensor triangle one-loop integrals of higher ranks which
generate lengthy expressions upon reduction to the scalar ones. It therefore turned out to
be more convenient to use a specific basis for the tensor integrals with particular symmetry
properties. Regarding the rank-3 integrals, the combination

C3(p1, p2, . . . , p6) =
1

3

1

i

∫
ddl

(2π)d
l · r1 l · r2 l · r3

D0

×
[

1

D(q1)D(−q2)
+

1

D(q2)D(−q3)
+

1

D(q3)D(−q1)

]
(III.1.8)

has more symmetries than the first term only and is UV finite. It is antisymmetric under
the interchange of the momenta inside each pair [pairs being here (p1, p2), (p3, p4) and
(p5, p6)] and antisymmetric under the interchange of two pairs. The rank-2 integral can
be defined as

C21(p1, p2, . . . , p6) =
1

i

∫
ddl

(2π)d
l · r1 l · r2

D0D(q1)D(−q2)
. (III.1.9)

It is antisymmetric under the interchange p1 ↔ p2 and symmetric under (p1, p2)↔ (p3, p4)
and p5 ↔ p6. The integral with one product l · ri in the numerator can be defined as

C11(p1, p2, . . . , p6) =
1

i

∫
ddl

(2π)d
l · r3

D0D(q1)D(−q2)
. (III.1.10)

It is antisymmetric under the interchange p5 ↔ p6, (p1, p2) ↔ (p3, p4) and is symmetric
under p1 ↔ p2 and p3 ↔ p4. Owing to the symmetries, other integrals of ranks 2 and 1
can be expressed in terms of C21 and C11 and integrals with lower ranks, respectively, so
we only need those to write out our final result. Finally, we define

C(p1, p2, . . . , p6) =
1

i

∫
ddl

(2π)d
1

D0D(q1)D(−q2)
, (III.1.11)

which is symmetric under p1 ↔ p2 and under all pair interchanges. It is related to C0 as

C(p1, p2, . . . , p6) = κC0(q
2
1 , q

2
2 , q

2
3 ,M

2,M2,M2) , (III.1.12)

in which case the mentioned symmetries are seen trivially due to equal masses.
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We express the amplitude in terms of C3, C21, C11 and C. As already mentioned, the
former three can be expressed in terms of C, but the expressions are cumbersome and lead
to a very long expression for the amplitude. We have therefore kept all these four, among
which only C21 contains a UV-infinite part:

C21(p1, p2, . . . , p6) = κ
r1 · r2

4

1

ϵ̃
+ C21(p1, p2, . . . , p6) . (III.1.13)

B General parametrization

In this appendix, we show how to parametrize a special unitary matrix u in full generality.
Special cases of what follows give parametrizations such as the four used in ref. [62].

A special unitary matrix Û can always be written as an exponential of a Hermitian traceless
matrix ϕ:

Û = exp(iϕ) , ϕ† = ϕ , ⟨ϕ⟩ = 0 . (III.2.1)
The obvious way to write a general parametrization is

Û −→
∞∑

m=0

bmϕ
m , (III.2.2)

with unitarity conditions relating the bm. As proven in ref. [63], the only generally valid
solution where bm are c-numbers is Û = exp(iϕ), although sufficiently low order, other
such parametrizations are valid and useful; see e.g. refs. [35, 64]. Generally, however, bm
are functions of traces of powers of ϕ, as seen in ref. [62]; this complicates the unitarity
conditions.

Here, we take the alternative approach of redefining ϕ to ϕ′(ϕ) with ϕ′† = ϕ′ and ⟨ϕ′⟩ = 0,
and keeping Û = exp(iϕ′). Under the unbroken (vector) part of the chiral transformation,
ϕ→ gVϕg

†
V, and we want ϕ′ → gVϕ

′g†V. The redefined ϕ′ is thus a series in ϕ and traces of
powers of ϕ:

ϕ′ = ϕ+
∑

m≥2, j≥0,
i0+···+ij=m,

i0≥0; i1≥i2≥ ··· ij≥2

ai0...ijϕ
i0⟨ϕi1⟩ · · · ⟨ϕij ⟩ . (III.2.3)

Further restrictions follow from using intrinsic parity, i.e. employing ϕ′ → −ϕ′ if ϕ→ −ϕ,
thus allowing only for odd values of m, and applying ϕ′† = ϕ′, which requires the ai0...ij
to be real. The condition ⟨ϕ′⟩ = 0 determines all the a0i1...ij (those with i0 = 0) to be
a0i1...ij = −ai1...ij/ζn. Hence, all terms relevant for the six-meson amplitude discussed in
this work, introducing 18 extra unconstrained parameters,¹¹ are in group-universal form

ϕ′ = ϕ+ a3

(
ϕ3 − 1

ζn ⟨ϕ
3⟩
)
+ a12 ϕ⟨ϕ2⟩

¹¹In general, the number of free parameters at order ϕm is equal to the number of ways to partition m − 1
into positive integers, i.e. Online Encyclopedia of Integer Sequences (OEIS) sequence A058696 starting with
2, 5, 11, 22, 43, 77, 135. Let us briefly sketch the proof of this. Let i0 ≥ 1 since a0i1...ij = −ai1...ij /ζn. Then,
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+ a5

(
ϕ5 − 1

ζn ⟨ϕ
5⟩
)
+ a32

(
ϕ3⟨ϕ2⟩ − 1

ζn ⟨ϕ
3⟩⟨ϕ2⟩

)
+ a23

(
ϕ2⟨ϕ3⟩ − 1

ζn ⟨ϕ
3⟩⟨ϕ2⟩

)
+ a14 ϕ⟨ϕ4⟩+ a122 ϕ⟨ϕ2⟩

2

+ a7

(
ϕ7 − 1

ζn ⟨ϕ
7⟩
)
+ a52

(
ϕ5⟨ϕ2⟩ − 1

ζn ⟨ϕ
5⟩⟨ϕ2⟩

)
+ a43

(
ϕ4⟨ϕ3⟩ − 1

ζn ⟨ϕ
4⟩⟨ϕ3⟩

)
+ a34

(
ϕ3⟨ϕ4⟩ − 1

ζn ⟨ϕ
4⟩⟨ϕ3⟩

)
+ a322

(
ϕ3⟨ϕ2⟩2 − 1

ζn ⟨ϕ
3⟩⟨ϕ2⟩2

)
+ a25

(
ϕ2⟨ϕ5⟩ − 1

ζn ⟨ϕ
5⟩⟨ϕ2⟩

)
+ a232

(
ϕ2⟨ϕ3⟩⟨ϕ2⟩ − 1

ζn ⟨ϕ
3⟩⟨ϕ2⟩2

)
+ a16 ϕ⟨ϕ6⟩+ a142 ϕ⟨ϕ4⟩⟨ϕ2⟩+ a133 ϕ⟨ϕ3⟩

2
+ a1222 ϕ⟨ϕ2⟩

3

+O
(
ϕ9
)
. (III.2.4)

The presence of traces in all terms except the first confirms and generalizes the conclusions
of ref. [63].

Taking this general form to define u via eq. (III.2.6) with ϕ ≡ ϕata/
√
2F and plugging

it into the Lagrangian (III.2.1) adds an extra cross-check of one’s calculations, since the
physical amplitude cannot depend on ai0...ij .

C Deorbiting and closed bases of kinematic invariants

In this appendix, we briefly describe the method used for the final simplification step of
reducing A(i)

R to Ã(i)
R with the property (III.3.7). This is a development of an ad hoc tech-

nique used in ref. [20]. Recall that Ã(i)
R is not unique and that our aim is to make its

expression as short as possible.

Consider some class of objects x and a group G (in our case, x are products of one-loop
integral functions and kinematic invariants, and G = Z+TR

R ). In standard nomenclature, the
set of objects obtained by acting with G on x is called the orbit of x, denoted G ·x; formally,

G · x = {g · x | g ∈ G} . (III.3.1)

Consider then an expression X composed of a sum of objects x. Reducing it to X̃ such
thatX =

∑
g∈G g · X̃ (where g · X̃ indicates acting with g on each term in X̃) is done using

the following algorithm:

1. Start with X̃ = 0.
rewrite each term in eq. (III.2.3) as

ai0i1,...ijϕ⟨ϕ
i1 ⟩⟨ϕi2 ⟩ · · · ⟨ϕij ⟩ ϕϕ · · ·ϕ︸ ︷︷ ︸

i0 − 1 ϕ’s

In total, there are m factors of ϕ, of which all but the first can be arbitrarily partitioned like m − 1 →
i1, . . . , ij , 1, . . . , 1. Since ⟨ϕ⟩ = 0 and i1 ≥ i2 ≥ · · · ij ≥ 2, we can unambiguously associate the 1’s with
ϕ’s outside traces and the other elements of the partition with i1, . . . ij . This demonstrates the one-to-one corre-
spondence between independent parameters ai0i1,...ij and partitions of m− 1.
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2. Select the first term x in X, under some arbitrary but consistent ordering of the
terms.¹²

3. Compute the orbit G · x and the symmetry factor S = |G|/|G · x| (this is always an
integer).

4. Add x to X̃, and subtract 1
S

∑
g∈G g · x from X. (Now, no element of G · x appears

in X.)

5. Repeat from step 2 until X = 0.
The symmetry factor compensates for how each element of G · x appears S times in the
sum

∑
g∈G g · x.

Optimally, each object x that appears in any orbit should be a single term, not a sum of
other objects. We will call this property being closed under G. Without this property, the
algorithm may yield poor results or not terminate at all. However, if the class of objects
is closed under G, it is easy to see that no orbits overlap and that the algorithm results in
an X̃ that is the shortest possible subexpression of X, granted that there are no additional
symmetries that are not taken into account.

In the context of our amplitudes, we therefore need to carefully choose our basis of kine-
matic invariants. We define them in terms of generalized Mandelstam variables

ŝij... ≡ (pi + pj + . . .)2 , (III.3.2)

which relate to the usual ones as

s = ŝ12, t = ŝ13, u = ŝ23. (III.3.3)

Thus, the pairs s, u and t, u form closed bases under Z+TR
R for R = {4} and {2, 2}, respec-

tively. The former generalizes straightforwardly to all R = {2k}, including the R = {6}
basis s1, . . . , s9 with¹³

s1 = ŝ12, s2 = ŝ23, . . . , s5 = ŝ56, s6 = ŝ61, s7 = ŝ123, s8 = ŝ234, s9 = ŝ345. (III.3.4)

Finding closed bases is much harder in the other cases. For R = {2, 4} we use the basis¹⁴

t1 = ŝ123, t2 = ŝ124, t3 = ŝ125, t4 = ŝ126,

t5 = ŝ234, t6 = ŝ245, t7 = ŝ256, t8 = ŝ263,

t9 = ŝ135 − ŝ146,
(III.3.5)

¹²In practice, we use the internal ordering of FORM, with some modifications.
¹³This basis is valid for 5 or more space-time dimensions; with 4, the correct number of kinematic degrees of

freedom is 8, not 9. However, the 9th variable is related to the other 8 through the nonlinear Gram determinant
relation, so for the sake of simplicity we ignore this and use 9-element bases.

For a k-particle process in d dimensions, a similar basis of generalized Mandelstam variables will have k(k−3)/2
elements, as is easily found by counting products pi · pj and accounting for p2i = M2

π and
∑

i p
µ
i = 0. This is

redundant when k < d−1; then, with only d−1 independent components in each pi, the number of kinematic
degrees of freedom after accounting for

∑
i p

µ
i = 0 and subtracting the dimension of the Lorentz group gives

(d − 1)k − d(d + 1)/2, i.e. 3k − 10 when d = 4. This naïve counting does not apply for large d, since the
momentum vectors live in a (k − 1)-dimensional subspace; thus, there are k(k − 3)/2 degrees of freedom when
k ≥ d− 1.

¹⁴This is a new basis; the one in ref. [20] is not closed under trace-reversal. It was obtained using similar
methods to the {3, 3} and {2, 2, 2} bases derived in that paper (note that Z+TR

{2,4}, unlike Z{2,4}, is non-Abelian).
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and for R = {3, 3}¹⁵

u1 = ŝ14, u4 = ŝ25, u7 = ŝ36,

u2 = ŝ24, u5 = ŝ35, u8 = ŝ16,

u3 = ŝ34, u6 = ŝ15, u9 = ŝ26.

(III.3.6)

No basis is needed for R = {2, 2, 2} here due to the simplicity of A{2,2,2}. References [19,
20] provide two different R = {2, 2, 2} bases.

There is no need to apply similar considerations to the loop integrals J̄ and CX , since the
inherent symmetries of these functions are much simpler than those imposed on ŝ by the
kinematics. C (C3) is (anti)symmetric under Z{2,2,2} acting on its arguments, while C11

and C21 are symmetric or antisymmetric under various subgroups thereof. The symmetries
of CX and those of the stripped amplitudes interplay nontrivially, giving rise to several or-
bits. Denoting by i · · · j(p) the orbit that has p distinct elements including CX(pi, . . . , pj),
the orbits of C and C3 under various ZR are

Z6 : 123456(2),142536(1), 152436(3),162435(6),162534(3),

Z{2,4} : 123456(2), 123546(1), 162435(4),162345(8),

Z{3,3} : 123456(9),142536(3),162534(3),

Z{2,2,2} : 123456(1), 162435(8), 162534(6),

(III.3.7)

and those of C11 and C21 are

Z6 :

{
123456(6),235614(3), 253614(3), 254613(6), 263415(6), 263514(3),

264513(6), 354612(6), 364512(6),

Z{2,4} :

{
123456(4), 124635(2), 162435(4),132456(8), 263415(8), 263514(8),

264513(8),354612(1),345612(2),

Z{3,3} : 123456(18),234516(9), 263415(9), 263514(9),

Z{2,2,2} : 123456(3), 263415(12), 264513(24), 364512(6).

(III.3.8)

Only those marked in bold actually appear in the amplitude. This can be understood from
the limited arrangements of legs around the diagram fig. III.4i that produce FR(b1, . . . , b6)
as a flavor structure, as is clarified by the technology of appendix E.

D The six-meson amplitude: expressions

In this appendix, we explicitly present the subamplitudes Ã(i)
R , whose relation to the full

amplitude is given in section 3. Note that we only present the nonpole part here; the
pole part is implicitly expressed in eq. (III.3.12). We use kinematic variables si, ti, ui (i =

¹⁵This is quite different from the one used in ref. [20] and is much simpler — it is just one of the nonets formed
under Z{3,3}. The reason for it being overlooked can be traced back to ref. [37], where an effort was made to
include the element ŝ123 in the basis.
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1, . . . , 9) which are motivated and defined in appendix C. With these, the LO amplitude
of eq. (III.3.15) can be deorbited to

F 4
π Ã

(LO,1)
{6} =

M2
π − 2s1 + s9

16
, (III.4.1a)

F 4
π Ã

(LO,1)
{3,3} =

9u9 − 8M2
π

288n
, (III.4.1b)

and the NLO part is¹⁶,¹⁷,¹⁸

F 6
π Ã

(NLO,1)
{6} =

M4
π

4n

{
J̄(p1, p2)− L− κ

}
+

M4
π

8n

{
2C11(p1, . . . , p6) + 2C(p1, . . . , p6)

[
s7 −M2

π

]
+ C(p1, p6, p2, p5, p3, p4)

[
s8 − 2s6 + s9

]}
− Lr

0

{
2M4

π + 4M2
π(s7 − 2s1) + s1(s1 + 2s4 + 3s5 + 2s6 − 3s7)

− s7(3s2 + 2s3 − s7 − s9)
}

− 1

4
Lr
3

{
7M4

π − 2M2
π(7s1 − 4s7) + s1(2s1 + 2s4 + 2s5 − 3s7 − 3s9) + s27

}
+M2

πL
r
5

{
2M2

π − 2s1 + s7
}
− 2M4

πL
r
8 (III.4.2a)

F 6
π Ã

(NLO,ξ)
{6} = − 1

48
C3(p1, . . . , p6)

− 1

96

{
C21(p1, . . . , p6)

[
4M2

π − s1 − s3 + 4s5 + 2s9
]

− 3C21(p2, p3, p5, p6, p1, p4)
[
2s5 − s7 − s8

]}
− 1

64

{
C11(p1, . . . , p6)

[
2M2

π(s1 + s3)− s1s3
]

+ 8C11(p3, p5, p4, p6, p1, p2)
[
(p3 · p5)(p4 · p6)

]}
+ 1

384
C(p1, . . . , p6)

{
24M4

πs1 + 12M2
πs1(s1 − s3 − s9 − s7)

− 3(s21s3 + s1s
2
3) + 2s1s3(2s5 + 3s9)

}
+ 1

128
C(p1, p6, p2, p5, p3, p4)

{
s3s6(2s6 − s8 − s9)

}
+ 1

16
C(p1, p6, p2, p4, p3, p5)

{
(p2 · p4)(p3 · p5)

× (4M2
π − 2s1 − s2 − s4 − 2s5 − 2s6 + 2s7 + s8 + s9)

}
+ 1

192
C(p1, p4, p2, p5, p3, p6)

{
6s3s4s5 + 2s2s4s6 + 6s1(s

2
8 − s6s7)

− s9
[
6s2s4 + 6s5(s3 + s4) + s8

(
2s7 − 6(s3 + s4 + s5) + 3(s8 + s9)

)]}
¹⁶In many of the terms below, deorbiting has been carried out with ZR rather than Z+TR

R : Although the fully
expanded expressions are shorter in the latter case, they turned out to factorize more neatly in the former, making
it better for presentation. We have inserted appropriate factors of 2 so that the full amplitude is obtained using
eq. (III.3.7) with Z+TR

R in all cases (recall that Ã is not unique).
¹⁷Note that we freely mix the deorbiting-optimized bases si, ti, ui with each other, and with pi · pj and ŝij···,

whenever doing so allows the expressions to be written more compactly. Unlike deorbiting, this rewriting is not
systematic and we do not claim that the result is optimal.

¹⁸Computer-readable versions of these expressions, as well as the stripped and full amplitudes and the programs
used to obtain them, are available from the authors upon request.
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− 1

384
J̄(p1, p2)

{
32M4

π −M2
π

[
2s1 + 8s2 + 5s3 + 5s5 + 2(4s6 + s7 − 2s8 + s9)

]
− s1(3s1 − 2s2 − 5s3 − 12s4 − 5s5 − 2s6 + 4s7 + s8 + 4s9)

}
− 1

32
J̄(p1, p3)

{
(p1 · p3)(ŝ46 + ŝ135 − 5M2

π)
}

+ 1

256
J̄(p1, p4)

{
2M2

π(2s2 − s7 − s8) + s8(2s5 + 4s1 + 4s3 − s8 − 4s9)

− 4s2(s1 + s3 + s4 + s6 − 2s9)

+ s7(4s1 + 2s2 + 4s3 − s7 − 2s8 − 4s9)
}

+ L + κ

384

{
20M4

π +M2
π(26s7 − 68s1) + s1(32s4 + 54s5 + 40s6 + 9s1 − 47s7)

+ s9(27s8 − 47s4 − 49s5 + 15s9)
}

− κ

1152

{
10M4

π − 2M2
π(23s1 − 8s9) + s1(16s4 + 18s5 + 8s6 + 3s1 − 16s7)

− 2s7(8s2 + s3 − 3s7)
}

(III.4.2b)

F 6
π Ã

(NLO,ζ)
{6} = − n

48
C3(p1, . . . , p6) +

n

96
C21(p1, . . . , p6)

{
2M2

π + s1 + s3 − 4s5 − 2s9
}

− ns1s3
64

C11(p1, . . . , p6)

+ n

384
C(p1, . . . , p6)

{
3s21s3 + 3s3s5(2M

2
π + s5)− 2s1s5(2s3 + 3s7)

}
− n

384
J̄(p1, p2)

{
20M4

π −M2
π

[
5s1 + 8s2 + 2s3 + 2s5 + 8s6 − 4(s7 + s8 + s9)

]
+ s1(9s1 + 2s2 − s3 − s5 + 2s6 − 4s7 − s8 − 4s9)

}
+ n(3L + κ)

1152

{
2M4

π +M2
π(8s9 − 23s1) + s1(9s1 + 20s4 + 18s5 + 4s6 − 20s7)

− s7(20s5 + s6 − 6s7)
}

− nκ

384

{
2M4

π − s1(5s1 + 8s4 + 6s5 − 8s7 − 8s9)− 2s27
}

(III.4.2c)

F 6
π Ã

(NLO,1)
{2,4} =

M4
π

8n2

{
L+ κ− 2M2

πC(p1, . . . , p6)− J̄(p1, p2)
}

+ Lr
1

{
4M4

π + t1t6 + t4t8 − 2M2
π(t1 + 2t8)

}
+ 1

2
Lr
4

{
2M2

π(M
2
π − t1 + t8)

}
+ 1

16
Lr
2

{
16M4

π − 8M2
π(2t1 + t5) + 4t1t6 + 4t4t8 − t29

}
− 2M4

πL
r
6 (III.4.2d)

F 6
π Ã

(NLO,ζ)
{2,4} = 1

32
C21(p3, . . . , p6, p1, p2)

{
2M2

π − t1 − t4
}

− 1

4
C11(p1, p3, p2, p4, p5, p6)

{
(p1 · p3)(p2 · p4)

}
+ 1

512
C(p1, . . . , p6)

{
32M6

π − 32M4
π(t1 + t2 + t5)

− t21(t3 + t4 + 2t5)− t2
[
t2t4 + 2(t2 + t4)t5

]
− 2t4t5t7 − 2t4t

2
7

+ 2M2
π

[
2t21 + 4t1t2 + 2t22 + 3t2(t4 + 4t5)

+ 3t1(t3 + 2t4 + 4t5) + 2t7(t5 + t7)
]

− t1
[
t24 + 4t4t5 + 2t2(t3 + t4 + 2t5) + 2t5(t3 + t5 + t7)

]}
+ 1

8
C(p1, p6, p2, p3, p4, p5)

{
(p1 · p6)(p2 · p3)(2M2

π + s2 − 2s8 − 2s4 + s6)
}

+ 1

128
J̄(p1, p2)

{
M2

π(6t1 − 2t5) + t1(t6 − 2t2 − t3) + t4(t8 − t4)− 2M4
π

}
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− 1

16
J̄(p1, p3)

{
(p1 · p3)(ŝ46 + ŝ246 − 5M2

π)
}

+ L + κ

256

{
4M2

π(t1 + 3t5) + 2t1(t1 + 2t2 + t3 − 3t6)− 6t4t8 + t29 − 12M4
π

}
(III.4.2e)

F 6
π Ã

(NLO,1)
{3,3} =

M4
π

6n2

{
L+ κ− J̄(p1, p2)

}
− 1

16n
(4Lr

0 + Lr
3)
{
4M2

πu1 + 2u1(u4 + u5)− u9(4u8 + 3u9)
}

− 1

2n
Lr
3

{
u1(u4 + u5)− u9(u8 + u9)

}
+ 1

6n
Lr
5

{
M2

π(3u9 − 8M2
π)
}

+
4M4

π

3

{
1

n
Lr
8 −

1

3
Lr
7

}
(III.4.2f )

F 6
π Ã

(NLO,ξ)
{3,3} =

M4
π

24n
J̄(p1, p2)− M4

πκ

144n

− 6L + 5κ

2304n

{
16M4

π − 12M2
πu1 + 2u1(u4 + u5) + u9(4u8 + u9)

}
(III.4.2g)

F 6
π Ã

(NLO,ξ2)
{3,3} =

u8 − 2M2
π

32
C21(p2, . . . , p5, p1, p6)

+ 1

384
C(p1, p6, p2, p5, p3, p4)

{
8M6

π − 12M4
πu8 + 6M2

πu4u8 − u3u4u8
}

− 1

384
C(p1, p4, p2, p5, p3, p6)

{
8M6

π − 12M4
πu7 + 6M2

πu4u7 − u1u4u7
}

− 1

128
J̄(p1, p4)

{
(p1 · p4)(u4 + u7 − 2u9)

}
− L + κ

128

{
u1u5 − u6u9

}
(III.4.2h)

F 6
π Ã

(NLO,ζ)
{3,3} = −p1 · p6

8
C21(p2, . . . , p5, p1, p6)

+ 1

256
C(p1, . . . , p6)

{
2(p3 · p4)

[
64M4

π − 2(u1 + u2)
2 + u23 + 2u24

+ 2u1u5 + 4u4u6 + u26

− 2u3(2u4 + u6) + 2u7(2u1 + u2)

+ 2u4u8 + 16M2
π(u3 − 2u4 − u6)

]
+ u9

[
32M4

π − 4M2
π(3u3 + 2u4 + u6)

+ 2u3(u6 − u3 + 2u8) + u9(u3 − 2M2
π)
]}

− 1

96
C(p1, p6, p2, p5, p3, p4)

{
8M6

π − 12M4
πu8 + 6M2

πu4u8 − u3u4u8
}

+ 1

384
J̄(p1, p2)

{
32M4

π − 36M2
π(u1 + u2 − u3)

+ 3
[
u21 + u23 + 2u3u5 − 2u2(u3 − u4 + u5 + u7)

+ 2u8u9 + u29 + 2u1(u4 − u3 − u5 + u6 − u7 + u9)
]}

+ 1

64
J̄(p1, p4)

{
(p1 · p4)(u4 + u7 − 2u9)

}
+ 3L + 2κ

2304

{
32M4

π − 12M2
πu1 + 2u1(u4 + 13u5)− u9(20u8 + 17u9)

}
+ κ

576

{
8M4

π − 6M2
πu1 + u1(u4 + 7u5)− 4u9(u8 + u9)

}
(III.4.2i)

F 6
π Ã

(NLO,1)
{2,2,2} =

M6
π

6n3C(p1, . . . , p6) (III.4.2j)

Here, J̄(pi, pj) ≡ J̄
(
(pi + pj)

2
)
. A few features can be observed:

• The NLO LECs only appear in A(NLO,1).
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• A(NLO,ξ2)
R only exists for R = {3, 3}.

• A(NLO,ζ)
R andA(NLO,ξ2)

R are independent of n for R ̸= {6}, whileA(NLO,ζ)
{6} is propor-

tional to n and is the only place where positive powers of n appear.

• A(NLO,1)
{2,2,2} is the only R = {2, 2, 2} subamplitude, is proportional to n−3, and is the

only place where this power appears.
These features and their generalizations are derived in appendix E.

E Symmetries and group-dependent features
of the amplitude

In this appendix, we derive the features described in the previous section using the tech-
nique we here dub diagrammatic flavor-ordering, wherein modified Feynman diagrams al-
low direct calculation of stripped amplitudes without going through the full amplitude.
Simpler cases of the technique have been used for a long time [21, 22, 35], but the ex-
tension beyond LO and R = {k} is more recent [20, 37]. A somewhat similar approach
can be found in ref. [33]. In the preparation of this paper, we refined the technique and
performed the first loop calculations using it, but it turned out that the proliferation of
diagrams caused by the inclusion of loops and nonzero masses — nearly 200 distinct
topologies compared to 9 without flavor-ordering — outweighed any efficiency advan-
tages the technique had over standard Feynman diagrams, rendering it impractical for our
purposes. Nevertheless, the manifest relation between kinematics and flavor structure in
flavor-ordered diagrams can be used to illuminate some features that are obscured with the
standard approach.

E–1 Diagrammatic flavor-ordering

Here, we give a brief summary of this technique; see ref. [20] for a detailed version, and
ref. [37] for one including loops.

By ‘flavor-ordered’, we mean a quantity whose flavor structure is FR for someR, i.e. whose
flavor indices are in natural order (up to ZR). Such a quantity is invariant under ZR acting
simultaneously on its flavor indices and momenta. The stripped amplitude is obtained
by keeping only the flavor-ordered parts of the amplitude and then dropping the flavor
structure. Diagrammatic flavor-ordering is based on the observation that the Fierz identity,
eqs. (III.2.7) and (III.2.8), generally preserves flavor-ordering: if two sub-diagrams contain
⟨taA⟩ and ⟨taB⟩, joining them will result in ⟨AB⟩, ⟨A⟩⟨B⟩ or ⟨AB†⟩, all of which keep the
(possibly reversed) order of flavor indices inA andB. Therefore, a diagram is flavor-ordered
only if its sub-diagrams, all the way down to the vertices, are flavor-ordered.

We now desire a set of modified diagram-drawing rules that make diagrams inherently
flavor-ordered, with the flavor structures manifest from the graphical shape of the diagram.
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(a) 1× (b) 4× (c) 1×

Figure III.6: Flavor-ordered variants of figs. III.4a and III.4b with split vertices. Note that
the multiplicities given here refer to permutations in ZR. Diagrams (a) and
(b) have flavor structure F{2,4} and contain Li, i = 1, 2, 4, 6. Diagram (c)
has F{3,3} and contains L7. Flavor-ordered diagrams identical to figs. III.4a
to III.4c have F{6}, contain Li, i = 0, 3, 5, 8, and have multiplicity 1×, 6×
and 3×, respectively.

We think of each external leg as labeled by an index i, corresponding to momentum pi and
flavor index bi. We will call two legs flavor-connected if their flavor indices reside in the
same trace in the flavor structure.

For single-vertex diagrams, we indicate the flavor structure by adding gaps in the vertex
between the groups of legs that are not flavor-connected, as is done in figs. III.6a and III.6c.
We treat the vertices in multi-vertex diagrams like fig. III.6b similarly. Since the two terms
on the right-hand side of eq. (III.2.7a) treat flavor structures differently, we represent them
by different propagators as if there were two species of particles: ordinary (solid line) and
singlets (dashed line), the latter of which carry a factor of − 1

ζn .¹⁹

When combined with eq. (III.2.7b), these rules allow the flavor structure of any SU dia-
gram to be read off, as illustrated in fig. III.7. Two legs are flavor-connected if and only if
the following conditions hold:

• They are joined by an uninterrupted path through the diagram (vertex gaps and
singlet propagators interrupt it).

• They can be joined by a line that does not intersect the diagram at any point (it can
pass through vertex gaps and singlet propagators).

This is illustrated in fig. III.7b.

To read the indices, follow the outline of each flavor-connected set of legs, keeping the
diagram to the right of the path (thus reading the indices of tree diagrams in clockwise
order), as illustrated in fig. III.7c.²⁰ The starting point is arbitrary due to ZR symmetry.

¹⁹The name “singlet” stems from how adding a singlet field ϕ0, whose associated generator t0 = 1√
ζn

com-
mutes with all ta, results in the removal of the 1/n terms from the Fierz identity since e.g. ⟨t0A⟩⟨t0B⟩ =
1
ζn

⟨A⟩⟨B⟩. Thus, the 1/n terms can be interpreted as the subtraction of diagrams with internal singlet lines,
allowing other contractions to be done using only the n-independent terms. The singlet decouples from the
other fields in ⟨uµuµ⟩, so LO singlet vertices stem from ⟨χ+⟩ and therefore depend on the mass but not on the
momenta [this is easiest to see in the exponential parametrization (III.2.6)]. This simplifies LO and NLO singlet
diagrams and causes them to vanish in the massless limit.

²⁰These rules become more complicated at two-loop level and above, where non-planar diagrams may appear.
However, all diagrams can be drawn without self-intersections on a surface of sufficiently high topological genus
(planar diagrams on a sphere, non-planar two-loop diagrams on a torus, etc.). One must then imagine the diagram
drawn on such a surface (but not one of higher genus than necessary) when determining flavor-connectedness or
assigning indices.
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1
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3
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6
7

8

910

11 12

(a) (b)

(c) (d)

Figure III.7: An illustration of how indices are read from a flavor-ordered diagram. (a)
The diagram with indices assigned (up to Z{3,3,6}). (b) Examples of paths
connecting legs without intersecting the diagram (dotted) and paths within
the diagram (solid, with the rest of the diagram grayed out). (c) Paths showing
the order in which the indices are read to give the indexing in (a). (d) The
alternative path giving the ξ/2 term under SO

p. Note that this results in a
different indexing than in (a) and flavor structure F{3,9}.

When a loop is ‘empty’, like those in fig. III.8, a factor of ⟨1⟩ = ζn is added.

For the purposes of momentum flow, flavor-ordered diagrams are treated just like ordinary
diagrams, and the two kinds of propagators are kinematically identical. However, flavor-
ordered diagrams are typically sensitive to the order in which legs are arranged around a
vertex (see e.g. fig. III.9). This, along with the combination of singlet and ordinary prop-
agators, leads to the proliferation mentioned earlier. All diagrams must be summed over
ZR (with appropriate symmetry factors) and added up to obtain AR.

The above rules hold for SU, and to a large extent also for SO
p. In fact, the cases where they

are equivalent (up to the substitution n→ ζn) exactly correspond to A(1) of eq. (III.3.8).

E–2 Differences between the groups

We will now discuss all contexts in which differences between SU and SO
p may arise. The

following fully accounts for the patterns seen in the six-meson amplitude:

Tree diagrams. View a SO
p diagram as being built by adding vertices one by one. With A

belonging to the partially completed diagram andB to the vertex, ⟨taA⟩⟨taB⟩ → 1
2 [⟨AB⟩+

⟨AB†⟩] gives one flavor-ordered term and one that is discarded. Adding a structurally iden-
tical diagram but with some indices permuted so that B is reversed gives ⟨taA⟩⟨taB†⟩ →
1
2 [⟨AB

†⟩ + ⟨AB⟩]: Again, one term is kept and one discarded. However, ⟨taB⟩ = ⟨taB†⟩
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(a) 18× (b) 18× (c) 9×

Figure III.8: A few of the flavor-ordered diagrams that contribute to A(ξ)
{3,3}. The multi-

plicities refer to permutations in Z{3,3}. All diagrams contain a single factor
1/n from singlets; in (c) the 1/n from the second singlet propagator is can-
celed by ⟨AB†⟩ = ⟨1⟩ = n (such a factor appears whenever a loop is not
flavor-connected to any external leg). In their contributions to A(ζ), all n-
dependence is canceled by ⟨A⟩⟨B⟩ = ⟨A⟩⟨1⟩ for (a,b) and ⟨A⟩⟨B⟩ = ⟨1⟩⟨1⟩
for (c).

under SO
p, so the kinematic structure of the vertex must be invariant under that index

permutation. Thus, the two flavor-ordered terms are identical and add up to the same
⟨AB⟩ given by SU. This proves, to all orders in the chiral counting, that eqs. (III.2.7a)
and (III.2.8a) fail to introduce any differences between SU and SO

p. In other words, SU and
SO

p are equivalent at tree level (up to n → ζn), so all tree diagrams go into A(1). The only
caveat is if any differences are introduced at the Lagrangian level, but this happens first at
NNLO (see below).

Loops. Viewing the loop as being formed by joining two legs of a tree diagram, we see
that eqs. (III.2.7b) and (III.2.8b) must be applied if those legs are part of the same trace.
The term ⟨taAtaB⟩ → ⟨A⟩⟨B⟩ is the same in SU and SO

p, up to a factor 1
ζ , giving rise to

A(ζ). The term ⟨taAtaB⟩ → ⟨AB†⟩ is unique to SO
p and contains ±, giving rise to A(ξ).²¹

Since this term gives a single trace, it almost always results in R = {6}, which explains why
A(ξ)

{6} is the longest subamplitude. A few singlet diagrams, including those in fig. III.8, give
A(ξ)

{3,3} instead.

When B = 1 in the A(ζ) case, we get a factor of n = ⟨1⟩; this corresponds graphically to
an ‘empty’ loop as mentioned above. This is the only source of positive powers of n, and
explains why they only appear in A(ζ). Those diagrams still contribute to A(ξ) without a
factor of n.

Singlets. The 1
ζn terms of the Fierz identity are the same for SU and SO

p, so singlet propa-
gators behave the same in both cases. When a singlet is part of a loop, one can let the singlet
propagator ‘close’ the loop, thereby avoiding all differences stemming from eqs. (III.2.7b)

²¹This necessitates the extra rule illustrated in fig. III.7d. In detail, it is as follows: Starting from the regular
index-assigning path [fig. III.7c], create arbitrarily located ‘gaps’ in loop propagators until all legs can be joined
by lines that do not intersect the diagram. Following the path, split the diagram into two terms every time a gap
is reached. In one term, continue on the original path and multiply by 1/ζ. In the other, go through the gap and
multiply by ξ/2. Do this recursively if you come across another gap, but the second time a given gap is reached,
go through it unconditionally. Every time you go through a gap, swap the orientation of your path (clockwise to
counterclockwise, and vice versa).
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(a) 9× (b) 9× (c) 9×

Figure III.9: A few of the flavor-ordered diagrams that contribute to A(ξ2)
{3,3}. The multi-

plicities are for SU; SO
p permits more permutations, which is exactly why they

give A(ξ2)
{3,3}.

and (III.2.8b). Therefore, such diagrams go into A(1). This does not apply when a singlet
is outside a loop, but for our amplitude this only happens with R = {3, 3} diagrams like
in fig. III.8 and variations thereof. The ‘empty’ loop cancels the n-dependence in their
contributions to A(1) and A(ζ). Therefore, negative powers of n, which only arise from
singlets, only show up in A(1) and (due to these diagrams) A(ξ)

{3,3}.

Trace-reversal. The greatest differences come from the fact that ⟨tatb · · · tc⟩ = ⟨tctb · · · ta⟩
under SO

p but not SU. Therefore, AR is invariant under reversal of individual traces under
SO

p, but only under simultaneous reversal of all traces under SU. Among the cases considered
here, these types of reversal are only inequivalent when R = {3, 3}.²² For instance, in the
diagrams in fig. III.9, the “inside” of the loop can be read both clockwise and counter-
clockwise under SO

p, but only one way under SU, and the momentum dependence will be
correspondingly different. Such disorganized difference is what gives rise to A(ξ2)

{3,3}. In all
R = {3, 3} diagrams involving singlets, at least one trace can be reversed as a symmetry of
the diagram (i.e. reversing a single-trace vertex), so they do not contribute to A(ξ2)

{3,3}.

E–3 More particles, higher orders

The patterns discussed here are straightforward to generalize. At NℓLO (i.e. ℓ loops),
eq. (III.3.8) becomes

A =

{
A(1) + ξA(ξ) + ξ2A(ξ2) +

ℓ∑
j=1

A(ζj)

ζj

}
n→ζn

, (III.5.1)

since each loop can give another factor of 1
ζ . Most of the features discussed above remain,

although some are softened: Negative powers of n can appear in A(ζj) and A(ξ2), and
positive powers of n in most subamplitudes except A(1). A(ξ2)

R exists for R = {2, 3, 3},
{4, 4}, etc. In an NℓLO amplitude, AR with |R| > ℓ + 1 requires singlets breaking loops,
which severely restricts the structure of that subamplitude; specifically, if R = {2, . . . , 2},
it will be similarly simple to our A(1)

{2,2,2}.

As mentioned above, the equivalence of SU and SO
p at tree level can only be broken by

Lagrangian effects. The first such effect is in the NNLO Lagrangian L(6) [46], where the

²²In general, R must contain at least two elements greater than 2, since ⟨tatb⟩ = ⟨tbta⟩ under all groups.
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59th term ⟨uµuνuρ⟩⟨uµuνuρ⟩ and the 61st term ⟨uµuνuρ⟩⟨uρuνuµ⟩ are distinct under SU
but equal under SO

p. (The N3LO Lagrangian L(8) [47] contains several such cases.) This
only results in additional relations between the LECs; the functional form of A is retained,
and eq. (III.5.1) remains valid, albeit a bit more redundant.
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ABSTRACT: The three-particle K-matrix, Kdf,3, is a scheme-dependent quantity that
parametrizes short-range three-particle interactions in the relativistic-field-theory three-
particle finite-volume formalism. In this work, we compute its value for systems of three
pions at maximal isospin through next-to-leading order (NLO) in Chiral Perturbation
Theory (ChPT). We compare the values to existing lattice QCD results and find that the
agreement between lattice QCD data and ChPT in the first two coefficients of the thresh-
old expansion of Kdf,3 is significantly improved with respect to leading order once NLO
effects are incorporated.
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1 Introduction

Lattice QCD provides a systematically improvable approach to calculate strongly-inter-
acting processes, including several that are inaccessible in experiment. One example is
the scattering of three particles, e.g., 3π+ → 3π+. Experimentally, such processes can be
very difficult due to the challenge of creating and scattering three beams and because all
hadrons (except the nucleons) are short-lived. By contrast, lattice QCD provides a method
for obtaining multihadron scattering amplitudes and allows one to treat the strong force
in isolation, thus rendering the lightest mesons (and some other hadrons) stable due to the
absence of weak and electromagnetic interactions.

The extraction of scattering amplitudes from lattice QCD is a very active topic of research
(see refs. [1–8] for recent reviews), and, in particular, three-particle processes have recently
received a lot of attention. The formalism to extract these amplitudes from the three-
particle finite-volume spectrum computed on the lattice has been developed over the last
decade [9–39], using three main approaches, and has been applied to results from lattice
simulations for a number of scattering amplitudes [40–53]. So far, the system that has
been most extensively explored is that of three pions at maximal isospin, i.e., 3π+ → 3π+

scattering. Several of these works (refs. [44, 47, 48, 52]) use the relativistic-field-theory
(RFT) three-particle finite-volume formalism, which parametrizes short-range three-body
interactions via an intermediate cutoff-dependent quantity, the three-particle K-matrix,
Kdf,3. As explained in ref. [14], Kdf,3 is related to the physical three-particle amplitude,
M3, via integral equations.

An alternative approach to QCD is the use of effective field theories, with Chiral Pertur-
bation Theory (ChPT) [54, 55] being the paradigm for meson dynamics at low energies.
Besides its many phenomenological applications, the synergy between ChPT and lattice
QCD is indeed frequently exploited in the literature. ChPT expressions allow one to
address the quark-mass dependence, discretization effects, and finite-volume effects for
certain quantities. To highlight one example, the ππ scattering lengths can be very well
constrained by combining lattice QCD results at heavier-than-physical pion masses with
ChPT extrapolations to the real-world value of the mass; see the dedicated chapter in the
FLAG report [56] and refs. [57–59]. Given the recent progress in three-particle scattering
amplitudes [60, 61], one hopes that a similar path can be followed for three-pion quanti-
ties. So far, however, comparisons between ChPT and lattice QCD results for three-pion
systems have only been qualitative.

The leading-order (LO) ChPT prediction for Kdf,3 for the 3π+ system was determined
in ref. [44]. When compared to lattice QCD results from refs. [44, 47, 52], however, a
significant disagreement was observed. This finding was surprising, given how well the
two-particle counterpart, the maximal-isospin ππ K-matrix, is described by LO ChPT. It
is thus important to understand the cause of this discrepancy. One source could be sys-
tematic errors in the lattice QCD calculation, since extractingKdf,3 from the finite-volume
spectrum is numerically challenging as the shifts in the finite-volume energy levels from
their free values are primarily determined by two-particle interactions. Another source
could be the importance of higher-order ChPT corrections. In this work, we address the
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latter possibility by determining the next-to-leading-order (NLO) predictions for Kdf,3.

The first step in this direction was carried out in refs. [60, 61], where the three-meson
scattering amplitude, M3, was determined to NLO for a number of mesonic effective
theories, including the one relevant for pions, i.e., ChPT with two quark flavors. It is,
however, not obvious how to connectM3 to Kdf,3, since their relation, based on integral
equations, needs to be inverted. The aim of this work is to combine the results of ref. [60]
with the RFT approach to provide the NLO ChPT prediction for Kdf,3. We focus here on
the case of three pions at maximal isospin, where most of the lattice QCD data is available.

The derivation of the RFT formalism in ref. [13] leads to Kdf,3 having the key properties of
being real, smooth, and invariant under the same symmetries asM3 (i.e. Lorentz, parity,
and time-reversal symmetries). In particular, all the branch cuts present in M3 due to
unitarity (two- and three-particle cuts), as well as the single-particle pole due to one-particle
exchange (OPE), are absent in Kdf,3 by construction.¹ An important aspect of an NLO
ChPT calculation is that it can provide a check of these properties (and the RFT derivation)
much more extensively than the LO result.

Since Kdf,3 is smooth, it can be expanded about threshold, constrained only by the above-
mentioned symmetries. Such a “threshold expansion” is the three-particle analog of the
effective-range expansion for the two-particle phase shift (orK-matrix). It has been worked
out for the 3π+ scattering amplitude up to quadratic order as an expansion in relativistic
invariants. As described in ref. [22], at this order there are only five unknown constants²
in Kdf,3, i.e., K0, K1, K2, KA, and KB; see eq. (Iv.2.2). The leading two orders, K0 and
K1, give rise only to isotropic terms, i.e., those that are independent of the angles between
particles. Angular dependence enters through the KA and KB terms. At LO in ChPT,
ref. [44] finds that all terms but K0 and K1 vanish. At NLO, all five terms are expected to
be nonzero, and our aim here is to determine their values.

Several technical complications need to be addressed to obtain the NLO result for Kdf,3.
First, a relation between Kdf,3 andM3 that is valid at NLO in ChPT has to be established.
As we will show, both at LO and NLO, the relation between Kdf,3 andM3 is algebraic and
linear, which simplifies the subsequent calculation. Second, Kdf,3 depends, in general, on a
cutoff function, and is thus unphysical. This cutoff function appears in the subtraction to
cancel the aforementioned divergences inM3, and evaluating its contribution requires a
tailored numerical approach. Third, a strategy to isolate the different terms in the threshold
expansion ofKdf,3 is needed, both in the contributions that are analytical as well as in those
that can only be evaluated numerically. Here, we succeeded in having an essentially fully
analytical result checked by numerical calculations.

Once the NLO results for the different terms in the threshold expansion of Kdf,3 have
been worked out, we can compare to lattice QCD data. In particular, we use the results
of ref. [52], which provides values for different coefficients of the threshold expansion at
three values of the pion mass. As we will see, the agreement in K0 and K1 between lattice

¹The absence of the OPE pole is the reason why this is denoted a df = “divergence-free” quantity.
²In ref. [22], the constants are called Kiso

df,3, K
iso,1
df,3 , Kiso,2

df,3 , K(2,A)

df,3 and K(2,B)

df,3 , respectively, where “iso” marks
the coefficients of the isotropic terms. We have chosen to use an abbreviated notation here.
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QCD results and ChPT is significantly improved once NLO effects are incorporated. It is,
however, interesting to note that NLO effects seem to be rather large, in particular in K1.

The remainder of this paper is structured as follows. In section 2, we provide the necessary
background to compute Kdf,3 in ChPT at NLO. Section 3 then presents the central results
of this paper, while we leave the technical part of the calculation to section 4. Finally,
some conclusions are presented in section 5. This paper contains 5 appendices, detailing
the cutoff dependence of Kdf,3 (appendix A) and the loop integrals inM3 (appendix B),
verifying the cancellation of imaginary parts in Kdf,3 (appendix C), and supplementing
section 4.2 (appendix D) and section 4.3 (appendix E).

2 The three-particle K-matrix from ChPT

In this section, we provide the necessary background to compute Kdf,3 at NLO in ChPT.
Section 2.1 introduces Kdf,3 and describes its role in the three-particle formalism, and sec-
tion 2.2 establishes its connection toM3 at NLO in ChPT. Then, an explicit calculation
of Kdf,3 at LO is provided in section 2.4, and the strategy to follow at NLO is outlined in
section 2.5. We defer all technical details of the computation to section 4.

2.1 The role of Kdf,3 in the three-particle formalism

The three-particle finite-volume formalism for identical scalar particles without two-to-
three transitions was derived in ref. [13]. In (isospin-symmetric) QCD, it applies for three
pions or three kaons at maximal isospin, I = 3. We will focus here on the former case.
The central equation of the formalism is the quantization condition, whose solutions cor-
respond to the energy levels En of a three-pion system with total three-momentum P in a
box of side L,

det
[
F−1
3 (E,P , L) +Kdf,3(E

∗)
]
= 0 at E = En . (Iv.2.1)

This is valid in the energy range where only three-pion intermediate states can go on shell,
i.e.,Mπ < E∗ < 5Mπ,³ with E∗ the total energy in the center-of-mass frame (CMF). F3 is
a quantity that depends on the volume, kinematic functions and two-particle interactions,
and Kdf,3 is a real, Lorentz-invariant and smooth function of E∗ that parametrizes short-
range three-particle interactions. Both quantities are matrices in a space that describes
the kinematics of three on-shell particles, and the determinant is taken over those indices.
In particular, the choice in the RFT formalism is to describe the three-particle system as
composed by a pair of particles with angular momentum indices ℓ andm, usually called the
interacting pair or dimer, plus a third particle with three-momentum k, called the spectator.

³In the following, Mπ will denote the renomalized mass of the pions, i.e., p2i = M2
π for on-shell pions

of momenta pi. In amplitude calculations, this is called the “physical” mass to distinguish it from the non-
renormalized mass appearing in the Lagrangian. In the lattice community, the “physical” mass typically refers to
the real-world value Mphys ≈ 139.570 MeV. In this work we will use the latter convention, and so Mπ will in
general be different from Mphys.
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Note that Kdf,3 is a scheme-dependent quantity, with the scheme being determined by
the choice of a cutoff function applied to the momentum of the spectator particle. This
function ensures that the matrices appearing in the quantization conditions have finite size.
For more details on the implementation of the formalism, we refer the reader to refs. [20,
22, 26, 36].

The key feature of eq. (Iv.2.1) needed for this work is that, given a set of 3π+ finite-volume
energy levels, Kdf,3 can be extracted by fitting the predicted spectrum to the measured one.
For this, one needs a parametrization of Kdf,3 in terms of few independent quantities. A
systematic approach is to expand Kdf,3 in terms of relativistic invariants organized by the
distance to the three-particle threshold. To reduce the number of independent parame-
ters, one can use the fact that Kdf,3 has the same symmetries as the scattering amplitude,
i.e., parity, time-reversal and particle-exchange symmetries. This leads to the threshold
expansion worked out in ref. [22]. As explained in that work, only five independent terms
contribute to the expansion up to quadratic order:

M2
πKdf,3 = K0 +K1∆+K2∆

2 +KA∆A +KB∆B +O(∆3) , (Iv.2.2)

where the following kinematic quantities have been defined:

∆ ≡ −1

2

∑
i,j

t̃ij =
P 2 − 9M2

π

9M2
π

,

∆A ≡
∑
i

(
∆2

i +∆′2
i

)
−∆2 , ∆B ≡

∑
i,j

t̃2ij −∆2 .
(Iv.2.3)

Here, P = (E,P ) is the total four-momentum of the system, and we define

t̃ij ≡
(pi − kj)2

9M2
π

,

∆j ≡
∑
i

t̃ij +∆ =
(P − kj)2 − 4M2

π

9M2
π

,

∆′
i ≡

∑
j

t̃ij +∆ =
(P − pi)2 − 4M2

π

9M2
π

.

(Iv.2.4)

We choose k1, k2, k3 to be the incoming momenta, and p1, p2, p3 the outgoing ones, so
that P = k1 + k2 + k3 = p1 + p2 + p3 . We reiterate that KX with X = 0, 1, 2,A,B are
unknown, dimensionless constants to be determined. As noted in the introduction, the
only terms that lead to nontrivial dependence on the relative angles in the initial or final
three-particle state are ∆A and ∆B. Moreover, only ∆B leads to contributions with overall
angular momentum differing from zero.

Once the coefficients of eq. (Iv.2.2) are determined from lattice QCD simulation, one has
to connect the scheme-dependent Kdf,3 to the physical scattering amplitude, M3. The
relation between both quantities was derived in ref. [14] and involves integral equations.
In this paper, we use that relation extensively, so as to obtain Kdf,3 at a consistent order in
ChPT provided the corresponding prediction forM3. Therefore, we reproduce here the
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key results from ref. [14]. For numerical solutions of the integral equations, see refs. [62,
63].

We begin by recalling the kinematic variables used in the RFT approach. As already an-
ticipated, the configuration of three on-shell particles is described by singling out one as
a spectator with three-momentum k, and boosting the interacting pair to their CMF, in
which the two particles of the pair have three-momentum a∗

k and −a∗
k, respectively.⁴ The

magnitude of these momenta is denoted q∗2,k ≡ |a∗
k| and is given by

q∗22,k =
1

4

(
E∗2

2,k − 4M2
π

)
, with E∗2

2,k = (P − k)2 , (Iv.2.5)

whereE∗
2,k is the energy of the pair in their rest frame. Expressing the initial-state kinemat-

ics this way, and expressing the final state analogously as a spectator and an interacting pair
with three-momenta p and ±a′∗

p , respectively, the three-particle amplitude can be written
as a function of the spectator momenta and the directions of the pair momenta,

M3(p, â
′∗
p ;k, â

∗
k) , (Iv.2.6)

since magnitudes are fixed by eq. (Iv.2.5); the hats denote unit vectors. Here and in what
follows, the dependence on P is left implicit. This description is somehow redundant, as
it involves 10 (11 if we include P 2) variables, while there are only 8 independent kinematic
quantities describing a general three-to-three process. In particular, the rotational invari-
ance of the amplitude in, say, the overall CMF is not taken into account.⁵ Nevertheless,
these variables are the natural choice in the RFT approach.

A further step is to decompose the angular dependence in the pair CMFs into spherical
harmonics:⁶

M3(p, â
′∗
p ;k, â

∗
k) =

∑
ℓ′m′ℓm

4πY ∗
ℓ′m′(â

′∗
p )M3(p,k)ℓ′m′;ℓmYℓm(â∗

k) . (Iv.2.7)

This is needed because, as will be seen shortly, some of the subtractions that appear in the
definition of the divergence-free version ofM3 depend on the pair angular momenta. Sub-
sequent relations will be written forM3(p,k)ℓ′m′;ℓm, with the angular momentum indices
treated as matrix indices and often left implicit. Other three-particle quantities entering
the following equations, such as Kdf,3 itself, are also written in this hybrid notation. For
two-particle quantities, in which the spectator is unchanged, we follow ref. [14] and label

⁴Here ∗ indicates that quantities are expressed in the CMF of the interacting pair, and the subscript is used
to emphasize that the quantity is expressed in the CMF of the pair for which the spectator has that particular
momentum.

⁵A convenient set of 8 parameters, from which the 11-parameter set {P 2,p, â′∗
p ,k, â

∗
k} is easy to obtain, is

{E∗, |p|, |k|, ψ, â′∗
p , â

∗
k}, where E is the total CMF energy and ψ is the angle between p and k in the overall

CMF. The remaining three degrees of freedom correspond to rotations of the full system.
⁶Later in this paper, we discuss the real and imaginary parts of quantities like M3. When doing so, the

fact that, in the standard basis, the spherical harmonics are complex should be ignored. One can show that
the spherical harmonics arise as overall factors in the unitarity-like relations, and it is the imaginary part of the
remainder of the expression that matters. To avoid this issue in numerical calculations, one can use the real
spherical harmonics, as is done in present implementations of the three-particle quantization condition (see, e.g.,
ref. [22]).
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them with a single spectator momentum,⁷ e.g.,

M2(p)ℓ′m′;ℓm = δℓ′ℓδm′mM2,ℓ(q
∗
2,p) , (Iv.2.8)

and similarly for the two-particle phase-space factor,

ρ(p)ℓ′m′;ℓm = δℓ′ℓδm′m ρ̄(q∗2,p) , ρ̄(q∗2,p) ≡ −i
q∗2,p

16πE∗
2,p

, (Iv.2.9)

which we only define above threshold, i.e., for E∗
2,p ≥ 2Mπ, as this is all we need in this

work. A full definition of ρ(p) is given in ref. [14], including its subthreshold behavior,
where it is real and cutoff-dependent.

We are now ready to define the divergence-free three-particle amplitude,Mdf,3:

Mdf,3(p,k) =M3(p,k)− S
{
D(u,u)(p,k)

}
. (Iv.2.10)

Here, S indicates symmetrization over choices of initial and final spectators (9 terms in
total), while D(u,u) is the unsymmetrized subtraction term, with (u, u) indicating unsym-
metrized for both final and initial states. This symmetrization procedure is explained in
detail in ref. [14], and we give only specific examples below. It is important to keep in mind
thatM3 and Kdf,3 are, by definition, fully symmetrized quantities.

The subtraction term solves an integral equation that can be expanded in powers ofM2 to
the order we need as

D(u,u)(p,k) = −M2(p)G
∞(p,k)M2(k)+

∫
r

M2(p)G
∞(p, r)M2(r)G

∞(r,k)M2(k)+. . . ,

(Iv.2.11)
where

∫
r
≡
∫
d3r/[2ωr(2π)

3], with ωr =
√
r2 +M2

π , and⁸

G∞(p,k)ℓ′m′;ℓm =

(
k∗p
q∗2,p

)ℓ′ 4πYℓ′m′(k̂
∗
p)H(xp)H(xk)Y

∗
ℓm(p̂∗k)

b2pk −M2
π + iϵ

(
p∗k
q∗2,k

)ℓ
. (Iv.2.12)

Here, bpk ≡ P − p− k, and H(x) is a smooth cutoff function that is 0 when x ≤ 0 and 1
when x ≥ 1, with xk ≡ (P − k)2/(4M2

π) and similarly for xp.⁹ Note that k∗p refers to the
magnitude of k taken in the CMF of the pair associated with p, and analogously for p∗k.
We stress that the cutoff functions do not violate Lorentz symmetry, because xk and xp are
both Lorentz invariant.

⁷An alternative notation involving two variables and an adjustment of factors of the energy, 2ω, has been used
in some subsequent works, e.g., ref. [32].

⁸Comparing to eq. (81) of ref. [14], we note that here we use the relativistic form of the denominator, which
is needed to obtain a relativistically invariant Kdf,3.

⁹In the range 0 < x < 1, we let

H(x) = exp
[
− 1

x
exp

(
− 1

1−x

)]
in accordance with, for example, eqs. (28) and (29) of ref. [13], but any smooth function that interpolates between
the constant values may be used. Some other choices of H(x) are studied in appendix A.
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The factors of k∗p/q∗2,p and p∗k/q∗2,k inG∞ result from the analysis of the power-law volume-
dependent contributions to the finite-volume correlator. In particular, it is important in
that analysis that the dependence on k∗p and p∗k is smooth near threshold, and this requires
the presence of the harmonic polynomials, e.g., (k∗p)ℓYℓm(k̂

∗
p), rather than the spherical

harmonics alone. We stress that the factors of k∗p/q∗2,p and p∗k/q∗2,k imply that the sum over
angular momentum indices cannot be performed analytically.

Some features of D(u,u) will be important below and we comment on them here. First, it
depends only on the on-shell two-particle amplitudes. Second, while in general one needs
to keep the entire infinite series in D(u,u) to determine Mdf,3, when working at some
fixed order in a perturbative expansion such as ChPT, only a finite subset of the terms in
eq. (Iv.2.11) appear. Finally, we stress that D(u,u) depends on the choice of cutoff function,
and is thus not a physical quantity.

WithMdf,3 in hand, the full relation to Kdf,3 is given by¹⁰

Mdf,3(p,k) = S
{∫

s

∫
r

L(u,u)(p, s)T (s, r)R(u,u)(r,k)

}
, (Iv.2.13)

where

L(u,u)(p,k) ≡
[
1

3
−M2(p)ρ(p)

]
δ̄(p− k)−D(u,u)(p,k)ρ(k) , (Iv.2.14)

R(u,u)(p,k) ≡ δ̄(p− k)
[
1

3
− ρ(p)M2(p)

]
− ρ(p)D(u,u)(p,k) , (Iv.2.15)

with δ̄(p− k) ≡ 2ωk(2π)
3δ(3)(p− k), and, finally,

T (p,k) ≡ Kdf,3(p,k)−
∫
s

∫
r

Kdf,3(p, s)ρ(s)L(u,u)(s, r)Kdf,3(r,k) + . . . (Iv.2.16)

The last equation shows the first two terms in the expansion of the integral equation for T
in powers of Kdf,3.

2.2 Relation betweenM3 and Kdf,3 in ChPT

ChPT describes the low-energy regime of QCD in terms of mesonic degrees of freedom.
It allows a perturbative determination of mesonic observables in terms of momenta and
masses and as a function of some a priori unknown parameters—the so-called low-energy
constants (LECs). These can be determined from experiment or first principles (the latter
usually via matching to lattice QCD). We refer the unfamiliar reader to refs. [64, 65] for
an introduction to ChPT and to refs. [60, 61] for brief summaries of what is needed for
NLO three-meson scattering. In this work, we restrict ourselves to the case of two-flavor
ChPT.

¹⁰Here and below, we have rearranged some factors of 2ωr relative to ref. [14] in order to simplify the notation.
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Regarding the integral equations that are part of the RFT formalism, we can implement
the usual ChPT power counting by expanding in powers of 1/F 2

π , where Fπ is the pion
decay constant.¹¹ From here on, we will focus on the 3π+ system, and soM2 andM3 will
refer to the two-particle I = 2 and three-particle I = 3 scattering amplitudes, respectively.
We note thatM2 = O(1/F 2

π ) andM3 = O(1/F 4
π ). Since L and R begin at O(1),

L(u,u)LO(p,k) =
1

3
δ̄(p− k) = R(u,u)LO(p,k) , (Iv.2.17)

we have that Kdf,3 = O(1/F 4
π ), and thus that T LO = KLO

df,3. Putting this together and
noting that the symmetrization ofKdf,3/9 simply yieldsKdf,3, the LO version of eq. (Iv.2.13)
reduces to

KLO
df,3(p,k) =M

LO
df,3(p,k) =M

LO
3 (p,k)− S

{
D(u,u)LO(p,k)

}
, (Iv.2.18)

D(u,u)LO(p,k) = −MLO
2 (p)G∞(p,k)MLO

2 (k) . (Iv.2.19)

The second equation can be further simplified by noting thatMLO
2 is purely s-wave, so we

can make the replacement

G∞(p,k) −→ G∞
ss(p,k) , G∞

ss(p,k)ℓ′m′;ℓm ≡ δℓ′0δm′0δℓ0δm0
H(xp)H(xk)

b2pk −M2
π + iϵ

.

(Iv.2.20)
We can also rewrite the expression for Kdf,3 as

KLO
df,3(p,k) = S

{
K(u,u)LO

df,3 (p,k)
}
= S

{
M(u,u)LO

3 (p,k)−D(u,u)LO(p,k)
}
, (Iv.2.21)

where M(u,u)
3 is the unsymmetrized amplitude. This form was used to perform the LO

calculation of Kdf,3 in ref. [44], which we reproduce below in section 2.4. We note that the
subtraction produces a divergence-free quantity that is automatically real.

Moving to NLO, we need to keep terms up to O(1/F 6
π ). We note that the second term in

the right-hand side of eq. (Iv.2.16) is O(1/F 8
π ), so we still have T = Kdf,3 at NLO. Since

D(u,u) = O(1/F 4
π ), the NLO expressions for L(u,u) and R(u,u) are equal and given by

L(u,u)NLO(p,k) = −MLO
2 (p)ρ(p)δ̄(p− k) = R(u,u)NLO(p,k) . (Iv.2.22)

Here, we are adopting the notation, also used below, that NLO indicates the next-to-
leading-order contribution alone rather than the sum of LO and NLO contributions. Ap-
plying these results to eq. (Iv.2.13), we find

MNLO
df,3 (p,k) = KNLO

df,3 (p,k)− 1

3
S
{
KLO

df,3(p,k)ρ(k)M
LO
2 (k) +MLO

2 (p)ρ(p)KLO
df,3(p,k)

}
.

(Iv.2.23)
Using the equality of Kdf,3 andMdf,3 at LO, this can be reorganized into

KNLO
df,3 (p,k) =MNLO

df,3 (p,k)+
1

3
S
{
MLO

df,3(p,k)ρ(k)M
LO
2 (k)+MLO

2 (p)ρ(p)MLO
df,3(p,k)

}
.

(Iv.2.24)
¹¹Regarding what is considered “physical”, Fπ is treated the same way as Mπ . Its real-world value is Fphys ≈

92.2 MeV.
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The final quantity that we need is the NLO part of the subtraction term D(u,u), which is
given by

D(u,u)NLO(p,k) = −MLO
2 (p)G∞(p,k)MNLO

2 (k)−MNLO
2 (p)G∞(p,k)MLO

2 (k)

+

∫
r

MLO
2 (p)G∞

ss(p, r)MLO
2 (r)G∞

ss(r,k)MLO
2 (k) . (Iv.2.25)

Note that we have made the replacement G∞ → G∞
ss in the final term since there all two-

particle interactions are LO and thus purely s-wave. Accordingly, this replacement cannot
be made in the other two terms, sinceMNLO

2 contains all (even) partial waves.

The final equation we need to completely specify the NLO contribution to Kdf,3 is

MNLO
df,3 (p,k) =MNLO

3 (p,k)− S
{
D(u,u)NLO(p,k)

}
. (Iv.2.26)

The procedure is thus, givenMNLO
3 , to subtract D(u,u)NLO, eq. (Iv.2.25), after symmetriza-

tion, and then add in the “ρ terms” on the right-hand side of eq. (Iv.2.24). In fact, the
latter are purely imaginary since both LO amplitudes are real, and thus, given the fact that
Kdf,3 is real, we obtain a simplified result

KNLO
df,3 (p,k) = ReMNLO

df,3 (p,k) . (Iv.2.27)

In principle, we do not need to calculate the ρ terms. However, an important cross-check
on the formalism and the calculations can be obtained by showing explicitly that the imag-
inary part of Kdf,3 vanishes based on the unitarity of off-shell amplitudes. This is presented
in appendix C.

2.3 A note on off-shell conventions

The subtraction term D naturally separates into a part that cancels the OPE poles, namely
the symmetrization of the first line of eq. (Iv.2.25), and a remainder. Below, we will find
it useful to similarly separateM3 into an OPE and a non-OPE part. The same separation
ofMdf,3 and Kdf,3 follows from this. However, this separation (unlike that of D) is not
unique.

Feynman diagrams can be categorized as either OPE (e.g., figs. Iv.1a and Iv.10) or non-OPE
(e.g., figs. Iv.1b, Iv.8 and Iv.9), but the contribution of each diagram in ChPT depends on
the parametrization of the Nambu–Goldstone manifold.¹² This dependence must cancel
when all contributions are summed into a physical amplitude, but separating based on
diagrams does introduce parametrization dependence into the OPE and non-OPE parts.

Alternatively, one may view the OPE part as two four-point amplitudes with one leg off-
shell, with the OPE propagator joining the off-shell legs. The off-shell four-point ampli-
tude can be modified by the addition of a smooth function of the kinematic variables that

¹²See appendix B of ref. [61] for an in-depth discussion on parametrizations.
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vanishes on shell, and the remainder of the complete amplitude is deferred to the non-OPE
part. Thus, we say that the separation is determined by an off-shell convention. Note that
each parametrization will naturally give rise to a specific off-shell convention, as can be
seen in appendix E.

Here, we follow the off-shell convention of ref. [60], where the off-shell amplitude is de-
fined by directly replacing the on-shell Mandelstam variables by their off-shell counter-
parts in a particular form of the on-shell four-pion amplitude.¹³ In this approach, the
off-shell amplitude is unique up to the freedom to rewrite the on-shell amplitude using
s+ t+ u = 4M2

π , which does not hold off-shell. This prescription leads to the same OPE
and non-OPE parts independently of the underlying initial parametrization, and both parts
are separately scale-independent. Nevertheless, we stress that the separation into parts de-
pends on a choice, and that only their sum is physical; also, contributions from individual
diagrams remain parametrization dependent. This is in contrast to the subtraction terms,
which are unique up to the choice of cutoff function, since they are built from on-shell
quantities.

2.4 Explicit calculation of KLO
df,3 for 3π

+ scattering

To illustrate the subtractions needed to obtain a divergence-free quantity, we work through
the calculation ofMLO

df,3 = KLO
df,3 for the 3π+ system, the results of which were first pre-

sented in ref. [44]; see also the calculation of the corresponding quantities for π+π+K+

and π+K+K+ systems in ref. [36]. This calculation also illustrates how intermediate results
may depend on the convention used for off-shell amplitudes, as described in the previous
section, although the final result should be (and is) independent of such conventions.

k3

k1

k2

p1

p2

p3

b

(a) OPE diagram

k1

k2

k3

p1

p2

p3

(b) Contact diagram

Figure IV.1: Feynman diagrams contributing to M3 at LO for maximal isospin. For di-
agram (a), there are an additional eight diagrams corresponding to the sym-
metrization of initial and final momenta.

To calculate MLO
df,3, we use eq. (Iv.2.21). Only two diagrams contribute to MLO

3 , which
are shown in fig. Iv.1, and only the first of them, the OPE diagram, requires a subtraction,

¹³This form is presented in eqs. (18) and (23) of ref. [60] and repeated (for maximum isospin) in eqs. (Iv.2.31)
and (Iv.4.58) here. Ultimately, it comes from the form used in ref. [66], which is not entirely arbitrary but rather
based on crossing symmetry considerations.
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that is given by eq. (Iv.2.19). We consider the OPE contributions first.

The results are simplified by the fact thatMLO
2 is purely s-wave, so we need only keep the

ℓ′ = ℓ = 0 contribution to Kdf,3. We obtain (with the s-wave limitation indicated by the
subscripts s and using the momentum labeling of fig. Iv.1)

K(u,u)LO,OPE
df,3,s (p3,k1)

= −MLO
2,off(p3)

1

b2 −M2
π + iϵ

MLO
2,off(k3) +M

LO
2s (p3)G

∞
ss(p3,k3)MLO

2s (k3) . (Iv.2.28)

Here,MLO
2,off is the two-particle amplitude with a single leg off shell. Since both p3 and k3

are on shell, the H functions in G∞
ss both equal unity, and we can combine the terms to

find the following result:

K(u,u)LO,OPE
df,3,s (p3,k3) = −δMLO

2,off(p3)
1

b2 −M2
π + iϵ

δMLO
2,off(k3)

− δMLO
2,off(p3)

1

b2 −M2
π + iϵ

MLO
2s (k3)−MLO

2s (p3)
1

b2 −M2
π + iϵ

δMLO
2,off(k3) , (Iv.2.29)

where we define the difference between the off- and on-shell amplitudes,

δMLO
2,off(p) =M

LO
2,off(p)−M

LO
2s (p) . (Iv.2.30)

As we will see explicitly below, this quantity is proportional to b2 −M2
π and thus cancels

the poles appearing in eq. (Iv.2.29).

Using the results and notation of ref. [60], the I = 2 ππ off-shell amplitude is

MLO
2,off(p3) = A(2)(t2, u2, s2) +A(2)(u2, s2, t2)

=
1

F 2
π

(t2 + u2 − 2M2
π) (Iv.2.31)

=
1

F 2
π

[
−s2 + 2M2

π + (b2 −M2
π)
]
=

1

F 2
π

[
−2p1 · p2 + (b2 −M2

π)
]
,

where we use the subscript 2 on the Mandelstam variables to indicate that these are two-
particle quantities, while (b2 −M2

π) is the off-shellness of one of the legs. For example,
using the labeling of momenta given in fig. Iv.1a and focusing on the left vertex, we have
s2 = (p1 + p2)

2, t2 = (k3 − p1)2, and u2 = (k3 − p2)2, with s2 + t2 + u2 = 3M2
π + b2.

The on-shell amplitudeMLO
2s is then obtained by setting b2 = M2

π . Given these results,
eq. (Iv.2.29) yields

F 4
πK

(u,u)LO,OPE
df,3,s (p3,k3) = 2p1 · p2 + 2k1 · k2 − (b2 −M2

π) . (Iv.2.32)

To symmetrize, we use the following relations:

S{2p1 · p2} = S{2k1 · k2} = 3P 2 − 9M2
π , S{b2 −M2

π} = 9M2
π − P 2 , (Iv.2.33)
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and we arrive at the final OPE contribution toMLO
df,3,

F 4
πM

LO,OPE
df,3 = 6(P 2 − 3M2

π)− (9M2
π − P 2) = 7P 2 − 27M2

π . (Iv.2.34)

The contribution from the contact term (six-point vertex) of fig. Iv.1b can be read off
from eqs. (30), (33), and (34) of ref. [60] which, however, describes the interaction of six
pion fields πf1(p1)π

f2(p2)π
f3(p3)π

f4(p4)π
f5(p5)π

f6(p6), with flavor indices fi = 1, 2, 3,
in the “all-incoming” convention. In this language, our amplitude corresponds to the
interaction of π+(k1)π

+(k2)π
+(k3)π

−(−p1)π−(−p2)π−(−p3). The connection between
our conventions and those of ref. [60] is given by using π± = (π1± iπ2)/

√
2 and replacing

{p1, . . . , p6} by {k1, k2, k3,−p1,−p2,−p3}. Thus,

MLO,6pt
df,3 = A(2)(k1,−p1, k2,−p2, k3,−p3) +A(2)(k1,−p2, k2,−p1, k3,−p3)

+A(2)(k1,−p1, k2,−p3, k3,−p2) +A(2)(k1,−p2, k2,−p3, k3,−p1)
+A(2)(k1,−p3, k2,−p1, k3,−p2) +A(2)(k1,−p3, k2,−p2, k3,−p1) , (Iv.2.35)

with

F 4
πA

(2)(k1,−p1, k2,−p2, k3,−p3) = −2k1 · p1 − 2k2 · p2 − 2k3 · p3 + 3M2
π . (Iv.2.36)

Here, no subtraction or symmetrization is needed. Summing all six terms, we find

F 4
πM

LO,6pt
df,3 = −4P 2 + 18M2

π . (Iv.2.37)

Combining the OPE and contact terms, we finally obtain

F 4
πMLO

df,3 = 3P 2 − 9M2
π =M2

π(18 + 27∆) , (Iv.2.38)

which agrees with the result of ref. [44]. However, we note that the values for the separate
OPE and contact contributions are not the same as in that reference, due to our different
off-shell conventions.

2.5 Procedure to calculate Kdf,3 at NLO

Thanks to eq. (Iv.2.27), the determination of our main result, KNLO
df,3 , is equivalent to cal-

culating ReMNLO
df,3 . We subdivide the calculation into multiple pieces according to the

following schematic equation, which is also represented graphically in fig. Iv.2:¹⁴

ReMNLO
df,3 = ReMNLO,non-OPE

3 − ReDBH +Re
{
MNLO,OPE

3 −DNLO,OPE
}
. (Iv.2.39)

Employing this separation, the one-particle-reducible diagrams contribute to the term
MNLO,OPE

3 , while the remainder of the full I = 3 amplitude is denoted MNLO,non-OPE
3 .

¹⁴Colorblind- and monochrome-safe colors, courtesy of P. Tol (https://personal.sron.nl/~pault/), are
used in figs. Iv.2, Iv.7 and Iv.11.
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Figure IV.2: Sketch of eq. (Iv.2.39). Solid lines represent on-shell pions, while dotted lines
are off-shell propagators. Square boxes indicate fully on-shell amplitudes,
while oval boxes have one leg off shell (factors of G∞ ensure only on-shell
amplitudes are needed in D). Finally, blue and pink filling indicate, respec-
tively, LO and NLO quantities. We leave implicit that we take only the real
parts of all quantities.

Recall from section 2.3 that MNLO,non-OPE
3 and MNLO,OPE

3 , while parametrization- and
scale-independent, depend on our choice of off-shell convention.

We find that the real part ofMNLO,non-OPE
3 is smooth at threshold, so it can be expanded

directly without first subtracting any divergences, unlike for the imaginary part. Since the
non-OPE contribution is smooth, the corresponding part of the subtraction must also be
smooth, and can be calculated individually. This contribution, given by the third term in
eq. (Iv.2.25), is the subtraction corresponding to the “bull’s head” (BH) triangle diagram
shown below in fig. Iv.9a. In eq. (Iv.2.39), DBH is the symmetrization of this term. It is
the only piece that depends on the cutoff function H(x).

Calculating each of these pieces leads to distinctive difficulties and methods of solution.
Since the full calculation is rather long and technical, we first present the main results in
section 3, and then describe the full calculation in section 4: In section 4.1, we provide a
general form of the threshold expansion of Kdf,3; section 4.2 then covers the full threshold
expansion of ReMNLO,non-OPE

3 , section 4.3 deals with ReDBH, and section 4.4 covers the
Re
{
MNLO,OPE

3 −DNLO,OPE} term. All pieces can be computed analytically exceptReDBH.
Since the real part is applied term-by-term in eq. (Iv.2.39), each of sections 4.2 to 4.4 gives
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a real, finite result. We explicitly verify the cancellation of imaginary parts in appendix C.

3 Summary of results

We now present, in section 3.1, the threshold expansion of Kdf,3 at NLO in ChPT for the
3π system at maximal isospin, which constitutes the main result of this work. Some of the
coefficients are then compared against lattice results from ref. [52] in section 3.2. Finally,
we compare the threshold expansion to the full NLO result for a particular kinematic
configuration in section 3.3.

3.1 Complete results

Including both LO and NLO contributions from ChPT, i.e., combining eqs. (Iv.2.38),
(Iv.4.17), (Iv.4.47) and (Iv.4.86), the results are

K0 =

(
Mπ

Fπ

)4
18 +

(
Mπ

Fπ

)6[
−3κ(35 + 12 log 3)−D0 + 111L+ ℓr(0)

]
, (Iv.3.1a)

K1 =

(
Mπ

Fπ

)4
27 +

(
Mπ

Fπ

)6[
− κ

20
(1999 + 1920 log 3)−D1 + 384L+ ℓr(1)

]
, (Iv.3.1b)

K2 =

(
Mπ

Fπ

)6[
207κ

1400
(2923− 420 log 3)−D2 + 360L+ ℓr(2)

]
, (Iv.3.1c)

KA =

(
Mπ

Fπ

)6[
9κ

560
(21809− 1050 log 3)−DA − 9L+ ℓr(A)

]
, (Iv.3.1d)

KB =

(
Mπ

Fπ

)6[
27κ

1400
(6698− 245 log 3)−DB + 54L+ ℓr(B)

]
. (Iv.3.1e)

Here, κ ≡ 1/(16π2), L ≡ κ log(M2
π/µ

2), DX are cutoff-dependent numerical constants
related to the bull’s head subtraction (see section 4.3),¹⁵

D0 ≈ −0.0563476589 , D1 ≈ 0.129589681 , D2 ≈ 0.432202370 ,

DA ≈ 9.07273890 · 10−4 , DB ≈ 1.62394747 · 10−4 ,
(Iv.3.2)

and we have defined the following linear combinations of LECs:

ℓr(0) = −288ℓ
r
1 − 432ℓr2 − 36ℓr3 + 72ℓr4 , ℓr(1) = −612ℓ

r
1 − 1170ℓr2 + 108ℓr4 ,

ℓr(2) = −432ℓ
r
1 − 864ℓr2 , ℓr(A) = 27ℓr1 +

27

2
ℓr2 , ℓr(B) = −162ℓ

r
1 − 81ℓr2 .

(Iv.3.3)

A numerical comparison of the different contributions to each coefficient at the physical
point is given in table Iv.1. Above, ℓri ≡ ℓri(µ) are scale-dependent LECs, with µ being the

¹⁵All digits shown are exact, and we have computed the values numerically to much higher precision, with
the first twenty digits being verified by at least two independent methods. Higher-precision values and codes for
calculating them are available upon request.
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Table IV.1: Numerical comparison of the different contributions to Kdf,3 presented in
eq. (Iv.3.1), evaluated at the physical point, Mphys = 139.57 MeV, Fphys =
92.2 MeV. Errors inherited from the LECs, as listed in eq. (Iv.3.7), are given
where applicable; the BH (bull’s head subtraction) numbers are exact up to
rounding. The top part of the table covers the NLO contributions, with fac-
tors of Mπ/Fπ removed. In the bottom part, these factors are included so that
LO and NLO can be compared; the uncertainty ofMπ/Fπ is not taken into ac-
count. The LO piece comes from eq. (Iv.2.38). Of the NLO pieces, non-OPE
comes from eq. (Iv.4.17), OPE from eq. (Iv.4.86), and BH from eq. (Iv.4.47),
with the numerical residues DX , also given in eq. (Iv.3.2), separated out.

(
Fπ

Mπ

)6K0

(
Fπ

Mπ

)6K1

(
Fπ

Mπ

)6K2

(
Fπ

Mπ

)6KA
(

Fπ

Mπ

)6KB

non-OPE −2.04(28) −3.75(61) 1.43(37) 3.00(14) 0.25(28)
OPE 0.50(53) −1.8(1.0) −5.11(58) −2.76(15) −0.22(37)
BH, excl. DX −1.16234 −3.35289 −1.67334 1.97425 0.08225
BH, only DX 0.05635 −0.12959 −0.43220 −0.00091 −0.00016
Total NLO −2.65(26) −9.04(46) −5.79(24) 2.212(16) 0.118(93)

K0 K1 K2 KA KB

LO 94.5186 141.778 0 0 0
NLO −31.9(3.1) −108.8(5.5) −69.6(2.9) 26.62(19) 1.4(1.1)
Total 62.6(3.1) 34.0(5.5) −69.6(2.9) 26.62(19) 1.4(1.1)

renormalization scale. Different scales are related via

ℓri(µ2) = ℓri(µ1) +
γiκ

2
log

µ2
1

µ2
2

, (Iv.3.4)

with
γ1 = 1/3 , γ2 = 2/3 , γ3 = −1/2 , γ4 = 2 . (Iv.3.5)

In combination with the L terms, this ensures the scale independence of the results in
eq. (Iv.3.1) and thus of Kdf,3. Often, scale-independent variants of the LECs, ℓ̄i, are used.
They are related to ℓri via

ℓri(µ) = κ
γi
2

(
ℓ̄i + log

M2
phys

µ2

)
, (Iv.3.6)

where Mphys ≈ 139.57 MeV is the real-world pion mass. The ℓ̄i are fairly well known,
either from phenomenology or from lattice QCD.

3.2 Comparison to lattice results

We are now in position to compare our results to lattice determinations of Kdf,3. Several
works [44, 47, 48, 52] have applied the RFT formalism to the study of three pions at max-
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imal isospin, and in all cases similar qualitative disagreement with LO ChPT predictions
was found. We will see that this can be explained by NLO ChPT contributions. In partic-
ular, we compare to ref. [52], which studied the scattering process for pion masses of 200,
280 and 340 MeV. Note this is the only work in whichKdf,3 has been (partially) determined
to quadratic order. The disagreement with LO ChPT in K0 and K1 is seen also in ref. [47]
and is resolved similarly at NLO, but we do not include this in the plots due to its large
uncertainties.

We take the following reference values for the scale-independent LECs,

ℓ̄1 = −0.4(6) , ℓ̄2 = 4.3(1) , ℓ̄3 = 3.07(64) , ℓ̄4 = 4.02(45) , (Iv.3.7)

where ℓ̄1 and ℓ̄2 are determined by combining experiment, ChPT and dispersion relations
[67], while ℓ̄3 and ℓ̄4 come from the averagedNf = 2+1 lattice QCD results [56], based on
refs. [68–72]. We also take into account correlations between ℓ̄1 and ℓ̄2 using the covariance
matrix from ref. [67]:

Cov(ℓ̄1, ℓ̄2) =

(
0.35 −0.033
−0.033 0.012

)
. (Iv.3.8)

Although the results in eq. (Iv.3.1) are independent of the choice of µ, it is customary in
lattice computations to choose µ such that the results depend only onMπ/Fπ. In our case
this can be achieved by taking µ = 4πFπ in the L terms of eq. (Iv.3.1), and approximating
it as µ ≈ 4πFphys in eq. (Iv.3.6). This approximation only impacts the results for Kdf,3 at
NNLO since Fπ is independent of Mπ at LO. With this choice, for example, eq. (Iv.3.1a)
can be rewritten as

K0 =

(
Mπ

Fπ

)4
18 +

(
Mπ

Fπ

)6[
−3κ(35+12 log 3)−D0+111κ log

ξ

ξphys
+κℓ̄(0)

]
, (Iv.3.9)

with ℓ̄(0) = −48ℓ̄1− 144ℓ̄2 +9ℓ̄3 +72ℓ̄4, ξ ≡M2
π/(4πFπ)

2 and ξphys ≡M2
phys/(4πFphys)

2.

In fig. Iv.3, we compare the ChPT predictions forK0 andK1 including NLO contributions
to lattice results. We also show the LO predictions for comparison. We observe how the
agreement with the lattice results is vastly improved by the inclusion of NLO terms. For
K0 the addition of the NLO term leads to smaller values that are closer to the lattice results,
while forK1 the correction produces a change of sign (for all except very small pion masses)
that brings the sign and rough magnitude into agreement with that of the lattice results.
A conservative interpretation of these results could be that, since the NLO corrections are
so large, particularly for K1, the convergence of the chiral expansion is poor in the regime
where lattice results have been obtained and the ChPT results cannot be trusted. A more
optimistic interpretation is that the NLO results are, for some reason, larger than the LO
contributions, but are nevertheless reliable. This could be because new classes of diagrams,
such as the bull’s-head diagram, appear at NLO. In either view, however, the discrepancy
between lattice results and LO ChPT is resolved.

Due to the similarity between the ChPT prediction and the lattice results, as an exercise
we perform a fit to the lattice data for K0 and K1 to estimate how well the values of the
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Figure IV.3: LO (dashed black line) and NLO (grey line and band) ChPT predictions for
K0 (left) and K1 (right) as functions of (Mπ/Fπ)

4, using LECs from refs. [56,
67] [see eq. (Iv.3.7)]. These are compared to lattice results from ref. [52] (or-
ange points); for reference, the physical point is at (Mphys/Fphys)

4 ≈ 5.25.
We also present the best fit to the lattice data (dotted orange line and orange
band).

LECs in eq. (Iv.3.3) can be constrained. We obtain the following results:

ℓr(0) = 1.55(11) , χ2/dof = 2.93/2 ,

ℓr(1) = 4.09(25) , χ2/dof = 0.36/2 ,
(Iv.3.10)

which are not that dissimilar to those computed using eq. (Iv.3.7),

ℓr(0) = 1.19(25) , ℓr(1) = 2.71(46) . (Iv.3.11)

These fits are also shown in fig. Iv.3.

We show the predictions for K2, KA and KB in fig. Iv.4. Here there are only NLO contri-
butions, since these quantities vanish at LO in ChPT. In the case of KB, we also compare
the expectations to results from ref. [52]. This time, however, we observe a much larger
discrepancy, with the ChPT prediction taking the opposite sign to the lattice results, al-
though the magnitude is roughly correct. This discrepancy is superficially similar to that
between K1 and its leading nonzero prediction in ChPT, so it is possible that it is resolved
by NNLO terms.

3.3 Range of validity of the threshold expansion

The determination of Kdf,3 in ref. [52] assumes that the threshold expansion truncated at
quadratic order provides an accurate representation of the full amplitude up to the inelastic
threshold at E∗ = 5Mπ. Our results allow a test of this assumption, as we can compare
the threshold expansion against the full result evaluated numerically for a particular kine-
matical configuration. Throughout this section, we make use of momentum family 1 (see
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Figure IV.4: NLO ChPT predictions for K2 (left panel, solid line), KA (left panel, dashed
line) and KB (right panel, solid line) as a function of (Mπ/Fπ)

6, using LECs
from refs. [56, 67] [see eq. (Iv.3.7)]. In the case of KB, we compare to lat-
tice results from ref. [52] (blue points); for reference, the physical point is
at (Mphys/Fphys)

6 ≈ 12.0. Note that all three coefficients vanish at LO in
ChPT.

M
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Figure IV.5: Comparison between numerical results and the threshold expansion for Kdf,3,
evaluated for momentum family 1 (see table Iv.2). The comparison is presented
forMπ =Mphys andMπ = 340 MeV, the latter corresponding to the heaviest
pion mass used in ref. [52]. The dashed vertical line indicates the inelastic
threshold, which occurs at E∗ = 5Mπ.

table Iv.2 in appendix D). We have checked that the results for other kinematic families
are comparable.

In fig. Iv.5 we perform this test for the total KNLO
df,3 , both for the physical pion mass and

for Mπ = 340 MeV, the latter being the heaviest pion mass used in ref. [52]. In both
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Figure IV.6: Comparison between numerical results and the threshold expansion for the
different terms in the right-hand side of eq. (Iv.2.39), evaluated for momen-
tum family 1 (see table Iv.2). The panels correspond to the terms in the right-
hand side of eq. (Iv.2.39): the non-OPE (top left), the BH subtraction (top
right) and the OPE (bottom) contributions to Kdf,3. The black vertical line
indicates the inelastic threshold, which occurs at E∗ = 5Mπ. The comparison
is made for Mπ = 340 MeV, corresponding to the heaviest pion mass used in
ref. [52].

cases, we observe that the threshold expansion works reasonably well up to the inelastic
threshold, where the discrepancy is ∼ 10% for physical pions, and ∼ 20% in the heavier
case. As expected, the convergence is better for smaller pion masses.

We can perform the same comparison separately for each of the three components appear-
ing in eq. (Iv.2.39) and fig. Iv.2. This is presented in fig. Iv.6 forMπ = 340 MeV. We recall
from section 2.3 that each of the three components is independent of the renormalization
scale in ChPT, although they do depend on the off-shell convention. Of the three, only the
BH subtraction depends on the cutoff function H. We observe that the difference is ≲ 5%
at the inelastic threshold in the case of the non-OPE and the BH subtraction contribution,
while for the OPE part it is ∼ 30%.

For the OPE contribution we can also study the convergence as higher partial waves of the
interacting pair are included. The threshold expansion contains only s- and d-waves, while
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Figure IV.7: Comparison of contributions toKNLO,OPE
df,3 from different interacting pair par-

tial waves, numerically evaluated for momentum family 1 (see table Iv.2). Re-
sults are shown for Mπ = 340 MeV, corresponding to the heaviest pion mass
in ref. [52]. The black solid line is the full result including all partial waves,
and the dashed vertical line indicates the inelastic threshold. Contributions
for ℓ ≳ 4 are negligible.

the full result contains all even pair partial waves.¹⁶ In fig. Iv.7 we show the contributions
of the first three nonzero partial waves to the numerical result for the OPE contribution
for Mπ = 340MeV. We find a rapid convergence with ℓ. In particular, the contribution is
negligible below the inelastic threshold for ℓ ≥ 4. A similar result holds for smaller pion
masses.

4 Details of the calculation of KNLO
df,3

In this section, we go in detail through the calculation outlined in section 2.5 to obtain
the results of section 3. Given the length of the expressions, the algebra is done with either
Wolfram Mathematica [Mathematica] or FORM [73], and is cross-checked independently
by several of the authors. Likewise, all numerical calculations are performed using Math-
ematica or C++, using CHIRON [74], LoopTools [75] and GSL [76], with independent
cross-checks and preferably using several different methods.

¹⁶The decomposition into partial waves is obtained by evaluating ReM(u,u)NLO,OPE
df,3 using eq. (Iv.4.49), and

decomposing MNLO
2,ℓ,off into partial waves by numerical integration.

299



4.1 General form of the threshold expansion

Throughout the calculation of KNLO
df,3 , it will often be useful to work with K(u,u)

df,3 , the un-
symmetrized version of Kdf,3. These quantities are related by Kdf,3 = S

{
K(u,u)

df,3
}
, where

S indicates symmetrization of both initial and final states, as in eq. (Iv.2.10). It is thus
necessary to identify the form of the terms that can contribute to K(u,u)

df,3 up to quadratic
order.¹⁷

The symmetries that constrain K(u,u)

df,3 are the same as those for a 2 + 1 theory (i.e., with
two identical particles and one that is different). Thus, we can use the threshold expansion
for the latter theories derived in ref. [34]:¹⁸

K(u,u)

df,3 = c0 + c1∆+ c2∆
S
3 + c3t̃33

+ c4∆
2 + c5∆∆S

3 + c6∆t̃33 + c7∆3∆
′
3 + c8(∆

S
3 )

2 + c9∆
S
3 t̃33 + c10t̃

2
33

+ c11Q−− + c12Q+− + c13Q3− + c14Qtu +O(∆3) . (Iv.4.1)

Some quantities used above have already been defined in eq. (Iv.2.4). Moreover, ∆S
3 ≡

∆3 +∆′
3 and

Q−− ≡ 4

[
p− · k−
9M2

π

]2
, Q+− ≡ 2

(
p+ · k−
9M2

π

)2

+ 2

(
p− · k+
9M2

π

)2

,

Q3− ≡ 4
p− · k+
9M2

π

p− · k3
9M2

π

+ 4
p+ · k−
9M2

π

p3 · k−
9M2

π

, Qtu ≡ t̃13t̃23 + t̃31t̃32 ,

(Iv.4.2)

with p± = p1 ± p2 and k± = k1 ± k2. Here, the initial and final spectators are taken to
have momenta k3 and p3, respectively. We note that, in eq. (Iv.4.1), only terms on the final
line contain values of ℓ other than zero.

Symmetrizing K(u,u)

df,3 then leads to the following contributions to Kdf,3:

K0 = 9c0 , (Iv.4.3a)
K1 = 9c1 + 6c2 − 2c3 , (Iv.4.3b)
K2 = 9c4 + 6c5 − 2c6 + c7 + 5c8 − c9 + c10 + 4c11 + 2c12 − 2c13 +

1
2c14 , (Iv.4.3c)

KA = 3c8 + c9 − 3c11 + c12 + 4c13 +
1
2c14 , (Iv.4.3d)

KB = c10 + 9c11 + 3c12 − 6c13 − c14 . (Iv.4.3e)

As expected, several terms from K(u,u)

df,3 are often combined in each term in Kdf,3 because
of the larger symmetry of the latter. Note that some of the terms that are purely s-wave
in eq. (Iv.4.1) can lead to nontrivial angular dependence after symmetrization, and thus

¹⁷Note that in this subsection, all statements concerning Kdf,3/K
(u,u)

df,3 apply equally well to Mdf,3/M
(u,u)

df,3
or D/D(u,u), for those cases in which divergences are absent such that the threshold expansion is well-defined.

¹⁸Two operators are missed by the analysis of ref. [34], Q3− and Qtu. Note that we have used a somewhat
different basis than in ref. [34].
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contribute to KA and KB, because there can be nonzero angular momentum between the
spectator and the pair.

We also make use of another basis of operators, in which all quantities are expressed in
terms of t̃ij [defined in eq. (Iv.2.4)], for expanding the symmetrized K-matrix directly.
We can write

Kdf,3 = c′0 + c′1Q′
0 + c′2Q′

1 + c′3Q′
2 + c′4Q′

3 +O(∆3) , (Iv.4.4)
where

Q′
0 ≡ S[t̃11] = −2∆ ,

Q′
1 ≡ S[t̃11t̃11] = ∆2 +∆B ,

Q′
2 ≡ S[t̃11t̃12 + t̃11t̃21] =

1
2 (2∆

2 +∆A − 2∆B) ,

Q′
3 ≡ S[t̃11t̃22 + t̃21t̃12] =

1
2 (2∆

2 −∆A +∆B) .

(Iv.4.5)

Here, we have indicated the relation to the basis used in eq. (Iv.2.2). Employing these
relations, we find that the coefficients in eq. (Iv.2.2) are given by

K0 = c′0 , K1 = −2c′1 , K2 = c′2 + c′3 + 2c′4 ,

KA = c′3 − c′4 , KB = c′2 − 2c′3 + c′4 .
(Iv.4.6)

The requirement for the two methods of expansion to agree serves as a cross-check. Specif-
ically, eqs. (Iv.4.3) and (Iv.4.6) [or, equivalently, eqs. (Iv.2.2) and (Iv.4.4)] must match.

4.2 Threshold expansion of the non-OPE part ofM3

k1

k2

k3

p1

p2

p3

r k1

k2

k3

p1

p2

p3

k1 + k2 + r

−r

Figure IV.8: Examples of non-OPE NLO diagrams for which no subtraction is needed.

In this section, we focus on threshold-expanding the non-OPE piece of the amplitude in
eq. (Iv.2.39). This is the piece related to one-particle-irreducible diagrams, like those in
figs. Iv.8 and Iv.9, for which the contribution to Kdf,3 can be computed independently of
any subtraction. For the I = 3 system, this contribution is given by

MNLO,non-OPE
df,3 = A(4)(k1,−p1, k2,−p2, k3,−p3) +A(4)(k1,−p2, k2,−p1, k3,−p3)

+A(4)(k1,−p1, k2,−p3, k3,−p2) +A(4)(k1,−p2, k2,−p3, k3,−p1)
+A(4)(k1,−p3, k2,−p1, k3,−p2) +A(4)(k1,−p3, k2,−p2, k3,−p1) ,

(Iv.4.7)
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where A(4) is defined in eq. (35) of ref. [60], and we have converted to our conventions as
described above eq. (Iv.2.35).

This part of the amplitude can be divided as

A(4) = AC +AJ +Aπ +AL +Al , (Iv.4.8)

where the division is similar to that in eq. (35) of ref. [60], although here we group some
terms together. In particular, AC is the part that contains the C functions, i.e., C, C11

and C21 (C3 does not contribute to I = 3), AJ contains all terms with J̄ functions, and
Aπ, AL, and Al are terms containing only factors of κ, L or LECs, respectively (see sec-
tions B and 3.1 for definitions). Some of these amplitudes have imaginary parts, but we
only need to calculate the real parts since the imaginary parts do not contribute to Kdf,3
[see eq. (Iv.2.27)].

The computation of c′i [following eq. (Iv.4.4)] is straightforward for Al, AL, and Aπ. The
results for the latter two are given in eq. (Iv.4.19). The remaining parts, which contain
loop integrals, require more care. As is shown in the following subsections, they can be
expanded in terms of squared momenta that are either small or close to threshold. These
can then be straightforwardly related to t̃ij and ∆

(′)
i through eq. (Iv.2.4). Alternatively,

one can use (at least) three different particular kinematic configurations to numerically
determine the corresponding coefficients in the ∆ variables. This cross-check is described
in appendix D.

4.2.1 Threshold expansion of AJ

Terms containing J̄(q2) functions must be expanded about either q2 = 0 or q2 = 4M2
π

(the two-particle threshold). In the notation of ref. [60], AJ = A
(1)
J + A

(2)
J , where all J̄

functions in A
(1)
J are expanded about q2 = 4M2

π , while in A
(2)
J both cases appear. It is,

however, easy to separate A(2)
J in two parts, each of which contains one single case. Using

again the notation of ref. [60] [in particular eq. (B9) thereof ],

A
(2)
J = (R132456 +R241356 +R152634 +R152634 +R261543 +R536412 +R645321

+R142356 +R231456 +R251634 +R162543 +R635421 +R546312)A
(2)
J,0 , (Iv.4.9)

where Rijklmn indicates an operator, acting on A(2)
J,0, that permutes p1 → pi, p2 → pj , etc.,

with {p1, . . . , p6} = {k1, k2, k3,−p1,−p2,−p3} as described above eq. (Iv.2.35). It is easy
to check that, after projecting to I = 3, the first line above leads to terms that contain J̄
functions that have to be expanded about the two-particle threshold, while the second has
those that need to be expanded around q2 = 0.

Using the definition (Iv.2.3), the expansions in the two cases are

1

κ
Re J̄(4M2

π + s̄) = 2− 1

2

s̄

M2
π

+
1

12

s̄2

M4
π

− 1

60

s̄3

M6
π

+O(s̄4) , (Iv.4.10)
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1

κ
J̄(t) =

1

6

t

M2
π

+
1

60

t2

M4
π

+
1

420

t3

M6
π

+O(t4) . (Iv.4.11)

Note that only Re J̄ , not Im J̄ , is smooth at threshold. After conversion to threshold-
expansion parameters, the results are given in eq. (Iv.4.20).

4.2.2 Threshold expansion of AC

All C, which are functions of three pairs of momenta as defined in appendix B, can be
expanded either for all three pairs being small or one small and the other two near threshold.
Given that the expansions are analytic, for ReMNLO,non-OPE

df,3 the Feynman integrals can be
performed naïvely with a principal-value prescription. For C, defined in eq. (Iv.2.4), the
starting point is the Feynman-parameter representation

C ≡ C(p1, p2, . . . , p6) = −κ
∫ 1

0

dx dy dz
δ(1− x− y − z)

M2
π − xyq21 − yzq22 − zxq23

, (Iv.4.12)

with q1 = p1+p2, q2 = p3+p4 and q3 = p5+p6. For the three q2i small, we straightforwardly
expand the denominator and then perform the Feynman integrals, arriving at

C

κ
= − 1

2M2
π

− 1

24M4
π

(
q21 + q22 + q23

)
− 1

180M6
π

(
q41 + q42 + q43 + q21q

2
2 + q22q

2
3 + q23q

2
1

)
+ · · ·

(Iv.4.13)

For the expansion about threshold, take for example q21 , s̄2, and s̄3 small, where s̄2 =
q22 − 4M2

π and s̄3 = q23 − 4M2
π . We can write the Feynman parametrization of C as

C = −κ
∫ 1

0

dx dy dz
δ(1− x− y − z)

M2
π − 4M2

π(yz + zx)− xyq21 − yzs̄2 − zxs̄3

= −κ
∫ 1

0

dx dy dz
δ(1− x− y − z)

M2
π(1− 2z)2 − xyq21 − yzs̄2 − zxs̄3

. (Iv.4.14)

Since we know the integral is analytic above threshold, we expand naïvely in q21 , s̄2, and
s̄3 and perform the Feynman integrals, first doing the x, y integrals and then the z integral
using the principal-value prescription, discarding the imaginary part. In particular, after
expanding and performing the x, y integrals, one obtains integrals of the type

P
∫ 1

0

dz
1

(1− 2z)n
=

1

2
P
∫ 1

−1

dv
1

vn
=

1

4

∫ 0

π

e−inθ deiθ +
1

4

∫ 0

π

einθ de−iθ , (Iv.4.15)

where we changed variables to v ≡ 1 − 2z and implemented the principal-value (P) pre-
scription as the average of the contours above and below the singularity at v = 0 in the
complex plane, letting v = e±iθ.¹⁹ The integrals vanish for odd values of n and are equal
to −1/(n− 1) for even values. This way, the result for eq. (Iv.4.14) becomes

¹⁹We refer readers unfamiliar with principal values for multiple poles to ref. [77].
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C

κ
=

1

2M2
π

+
1

M4
π

(
5

72
q21 −

1

24
s̄2 −

1

24
s̄3

)
+

1

M6
π

[
2

225
q41 −

1

90
q21(s̄2 + s̄3) +

1

180

(
s̄22 + s̄23 + s̄2s̄3

)]
+ · · · (Iv.4.16)

The other triangle integrals are expanded using the same methods. We have checked the
expansions numerically against LoopTools [75]. The contributions to Kdf,3 from AC are
given in eq. (Iv.4.21).

4.2.3 The full non-OPE threshold expansion

Performing the expansion described above to second order, we find that the total contri-
butions from ReMNLO,non-OPE

df,3 are

F 6
π

M6
π

K0 ⊃ 14κ+ 33L+ 36(8ℓr1 + ℓr3 − 2ℓr4) , (Iv.4.17a)

F 6
π

M6
π

K1 ⊃ −
35

2
κ+ 12L+ 36(20ℓr1 + ℓr2 − 4ℓr4) , (Iv.4.17b)

F 6
π

M6
π

K2 ⊃ −
9747

50
κ− 216L+ 324(2ℓr1 + ℓr2) , (Iv.4.17c)

F 6
π

M6
π

KA ⊃
576

5
κ− 54L− 81(2ℓr1 − 3ℓr2) , (Iv.4.17d)

F 6
π

M6
π

KB ⊃ −
13797

50
κ− 162L+ 243(2ℓr1 + ℓr2) . (Iv.4.17e)

For comparison, the LO results from the non-OPE diagram in fig. Iv.1b are

F 4
π

M4
π

K0 ⊃ −18 ,
F 4
π

M4
π

K1 ⊃ −26 . (Iv.4.18)

This is specific to our off-shell convention (see section 2.3).

The results for the separate parts of A(4) in eq. (Iv.4.8) are as follows. The part stemming
from Al can be directly read from eq. (Iv.4.17) as the terms containing ℓri. The remaining
parts not containing J̄ or C loop functions, i.e., Aπ and AL, give

F 6
π

M4
π

KNLO,non-OPE
df,3 ⊃ 17κ+ 33L+∆

(
10κ+ 48L

)
+∆2

(
−387

2
κ− 351

2
L

)
+∆A

(
−495

8
κ− 675

8
L

)
+∆B

(
−1323

8
κ− 1215

8
L

)
. (Iv.4.19)

The part AJ containing solely J̄ functions, using the results from section 4.2.1, reads

F 6
π

M4
π

KNLO,non-OPE
df,3 ⊃ −72κ+∆(−223κ)+∆2

(
−243

4
κ

)
+∆A

(
1233

4
κ

)
+∆B

(
−117

2
κ

)
,

(Iv.4.20)
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and the C functions of AC , calculated employing the methods presented in section 4.2.2,
all together give

F 6
π

M4
π

KNLO,non-OPE
df,3 ⊃ 69κ+∆

(
−36L+

391

2
κ

)
+∆2

(
−81

2
L+

5931

100
κ

)
+∆A

(
243

8
L− 5247

40
κ

)
+∆B

(
−81

8
L− 10413

200
κ

)
. (Iv.4.21)

The sum of eqs. (Iv.4.19) to (Iv.4.21), plus the ℓri terms, gives eq. (Iv.4.17).

4.3 Bull’s head subtraction contribution

k1

k2

k3

p1

p2

p3

r

k1+k2−rp1+p2−r

(a) The “bull’s head” diagram.

k1

k2

k3

p1

p2

p3

r

p1−k2+rk1−p2+r

(b) The “crossed bull’s head” diagram.

Figure IV.9: Two configurations of the triangle-loop diagram, of which only (a) requires
subtraction [in the form of D(u,u)BH, eq. (Iv.4.23)]. There are a total of 15
diagrams with the triangle topology, of which 9 correspond to the configura-
tion (a) [so their sum corresponds to the symmetrization of (a)] and 6 to the
configuration (b).

The BH piece of the subtraction, DBH in eq. (Iv.2.39), concerns the symmetrization of the
final term in eq. (Iv.2.11), which subtracts the “bull’s head” diagram in fig. Iv.9a. This is the
only cutoff-dependent contribution toKNLO

df,3 , and due to the integral overH(x), it requires
numerical evaluation.

Since there are only s-wave contributions, the subtraction term reduces to

D(u,u)BH(p3,k3) = −
1

F 6
π

(2p1 · p2) I(p3,k3)(2k1 · k2) , (Iv.4.22)

I(p3,k3) ≡
∫
r

H(xr)
[
(P − r)2 − 2M2

π ]H(xr)[
(p+ − r)2 −M2

π + iϵ
][
(k+ − r)2 −M2

π + iϵ
] , (Iv.4.23)

where p+ ≡ p1 + p2, k+ ≡ k1 + k2, and xr ≡ (P − r)2/(4M2
π). For brevity, we define

G(r; p+, k+) (not to be confused with G∞ above) such that

D(u,u)BH = − 1

F 6
π

(2p1 · p2)(2k1 · k2)
∫
r

H2(xr)G(r; p+, k+) . (Iv.4.24)

We stress that r is on-shell and that the integral is Lorentz-invariant.
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4.3.1 Threshold expansion

The integrand of eq. (Iv.4.23) can be expressed to any order in the threshold expansion
using ∆,∆3,∆

′
3, and t̃33 only. Since the amplitude is free of singularities in the real part, it

follows that the real part of the subtraction is also singularity-free. However, due to possible
singularities in the integrand, some manipulations need to be done before the coefficients
can be evaluated.

Starting with eq. (Iv.4.23), we stay in the CMF of the whole system, whereP = 0 and (P−
r)2 = E2 − 2Eωr +M2

π , and set d3r = r2dr dcos θ dϕ. We rewrite the first denominator
as

(p+−r)2−M2
π = p2+−2p+ ·r = p2+−2Ep+

ωr+2p⃗+ ·r ≡ 4M2
π−4Mπωr+∆p+

, (Iv.4.25)

which defines ∆p+
; ∆k+

is defined similarly from the second denominator. Note that
p+ = (Ep+

, p⃗+) is the momentum of the two-pion system. We then expand naïvely in
∆p+ and ∆k+ , which are both O(

√
∆), so

I(p3,k3) =

∫
r

H2(xr)
[
E2 − 2Eωr −M2

π

] ∞∑
a,b=0

∆a
p+

∆b
k+

(4M2
π − 4Mπωr)a+b+2

, (Iv.4.26)

and cut off the sums at a suitable order. After that, we can perform all angular integrals
using ∫

dcos θ dϕ (p⃗+ · r)(k⃗+ · r) = 4π
r2

3
p⃗+ · k⃗+ (Iv.4.27)

and its generalizations.²⁰ Finally, we expand the explicit and implicit [viaE = 3Mπ

√
1 + ∆

and xr = (E2 − 2Eωr +M2
π)/4M

2
π] dependence on ∆ to the order needed. We will show

in section 4.3.2 that naïvely expanding H(xr) this way is valid, despite the non-analyticity
of H.

The remaining integral over r can be rewritten as an integral over ωr. Introducing the vari-
able z, defined via ωr =Mπ(1 + 2z2) so that r2dr/[2ωr(2π)

3] =M2
πz

2
√
1 + z2 dz/(2π3),

leads to integrals of the type

Hm,n ≡
1

π2

∫ 1/
√
3

0

dz

√
1 + z2

zm
dn

dxn
[
H2(x)

]
. (Iv.4.28)

Since x = 1− 3z2, the integration limits are x = 1 at z = 0 and x = 0 at z = 1/
√
3. Due

to H and all its derivatives vanishing at x = 0, the E-dependence in the upper limit of

²⁰The general case can be compactly written as∫
dcos θ dϕ

2n∏
a=1

(pa · r) = 4π
r2n

(2n+ 1)!!
δi1i2···i2npi11 p

i2
2 · · · pi2nn

(the case with an odd number ofpa vanishes by symmetry). Repeated indices are summed, and δi1···in generalizes
the Kronecker δ to the totally symmetric tensor obtained by summing all distinct ways of distributing the indices
i1, . . . , i2n among n Kronecker δ’s, i.e., δijkl = δijδkl + δikδjl + δilδjk, etc.
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the integral is not captured by the expansion, meaning this is an expansion of asymptotic
nature. However, as can be seen in the upper-right panel of fig. Iv.6, the expansion to
quadratic order approximates the full numerical result very well for the range of energies
of interest.

We will return to the evaluation of Hm,n in section 4.3.2. For now, we use it to state the
result, which to second order in the threshold expansion is

F 6
π

M4
π

ReD(u,u)BH =
(
3
2H0,0 − 1

4H2,0

)
+
(
21
4 H0,1 +

1
8H4,0

)
∆+

(
81
16H0,0 − 9

32H2,0 − 3
32H4,0

)
∆S

3

+
(

9
16H0,0 +

15
32H2,0 − 3

32H4,0

)
t̃33 +

(
63
8 H0,2 − 33

64H0,1 − 13
256H6,0 − 19

64H4,0

)
∆2

+
(
63
4 H0,1 +

3
64H6,0 +

3
32H4,0

)
∆∆S

3 +
(

9
128H6,0 − 63

128H4,0 +
27
64H2,0

)
∆t̃33

+
(
− 9

32H4,0 +
81
32H2,0 − 81

16H2,0

)(
∆S

3

)2
+
(
891
32 H0,0 − 243

64 H2,0 − 9
64H4,0

)
∆3∆

′
3

+
(
− 9

128H6,0 +
9
64H4,0 +

189
128H2,0 +

81
64H0,0

)
∆S

3 t̃33

+
(
− 27

640H6,0 +
27
160H4,0 +

297
640H2,0 +

81
320H0,0

)
t̃ 233 . (Iv.4.29)

This is the same expansion as in eq. (Iv.4.1), but only a subset of the terms is needed. The
integration-by-parts relation

Hm,n+1 +Hm−2,n+1 =
1

6

[
(2−m)Hm,n − (m+ 1)Hm+2,n

]
− 1

6

[(
f ′m−1(z) + f ′m+1(z)

) dn

dxn
H2(x)

]1/√3

0

, (Iv.4.30)

where fn is defined in eq. (Iv.4.32), has been used extensively in simplifying eq. (Iv.4.29);
the “surface terms” [the second line of eq. (Iv.4.30)] vanish identically, but are revisited in
section 4.3.3. After symmetrization over all 9 possibilities, analogous to eq. (Iv.4.3), we get

F 6
π

M4
π

ReDBH =
[
27
2 H0,0 − 9

4H2,0

]
+∆

[
117
4 H0,0 − 21

8 H2,0 +
3
4H4,0 +

189
4 H0,1

]
+∆2

[
243
160H0,0 +

2241
320 H2,0 − 423

160H4,0 − 369
1280H6,0 +

5751
64 H0,1 +

567
8 H0,2

]
+∆A

[
− 891

64 H0,0 +
1161
128 H2,0 − 45

64H4,0 − 9
128H6,0

]
+∆B

[
81
320H0,0 +

297
640H2,0 +

27
160H4,0 − 27

640H6,0

]
, (Iv.4.31)

where DBH = S{D(u,u)BH} is the bull’s head term in eq. (Iv.2.39).

4.3.2 Hadamard finite-part integration

Equation (Iv.4.28) for n = 0 and m > 0 has a troublesome singularity in the endpoint
z = 0, so it is not possible to naïvely apply the Cauchy principal value to evaluate Hm,n.
However, it is possible to use the Hadamard finite-part prescription. Let us present its
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(rather simple) application before turning to the question of its validity. We define the
functions fm(z) via

d

dz
fm(z) =

1

π2

√
1 + z2

zm
. (Iv.4.32)

Using partial integration on eq. (Iv.4.28), we arrive at

Hm,0 = fm(z)H2(x)
∣∣1/√3

z=0
−
∫ 1/

√
3

0

dz fm(z)(−6z) d

dx
H2(x) , (Iv.4.33)

an expression that is independent of the integration constant in fm(z). The z = 0 limit
of the first term is singular, whereas the second term (the integral) is non-singular since
derivatives of H(x) vanish exponentially as z → 0 or x→ 1. The z = 1/

√
3 or x = 0 limit

vanishes by construction since H and its derivatives all vanish at x = 0. The Hadamard
finite part ofHm,0 is obtained by dropping the singular z = 0 limit, and if the prescription
is valid, D(u,u)BH is obtained by replacing all divergent Hm,n with their finite parts.

It is at first not obvious that the Hadamard finite-part prescription is valid in our case, since
the standard proofs involve complex integrals that break down due to the non-analyticity
of H(x). However, ref. [78] presents a proof using only smoothness criteria, which our
integrands do satisfy. It also requires m > 1, but H0,0 is non-singular, and we do not need
H1,0 (which only has an integrable singularity). Lastly, the prescription of course requires
D(u,u)BH to be finite, but we know from section 4.2 that such is the case, at least for the
real part: ReM3 lacks the divergences that D(u,u)BH would subtract.

As a last remark, we note that the Hadamard finite-part integration validates the naïve
threshold expansion used to obtain eq. (Iv.4.28), which involved Taylor expanding H(x).
This Taylor series converges for 0 < x < 1, but the convergence is extremely poor in the
vicinity of the essential singularities at the endpoints. However, after applying eq. (Iv.4.33),
all integrands contain a derivative of H(x), which is exponentially suppressed near those
endpoints. Therefore, nothing remains that is sensitive to the Taylor expansion in the
region where it converges poorly. Thus, the non-analyticity of H(x) causes no problems
for our method.

4.3.3 Analytic approximation

The result eq. (Iv.4.33) is sufficient to obtain a numerical result for DBH: One simply eval-
uates the Hadamard finite part of Hm,n numerically. However, it is possible, at least for a
wide class of functionsH(x), to find an analytic approximation to eq. (Iv.4.28) that approx-
imates DBH well, leaving a cutoff-dependent residue that must be evaluated numerically.
Doing this, we are able to express Kdf,3 almost entirely as an analytic, cutoff-independent
expression, with small numerical cutoff-dependent corrections.

Letting H2(x) ≡ 1 + H̃2(x), we get

Hm,n = H̃m,n + δn,0
1

π2

∫ 1/
√
3

0

dz

√
1 + z2

zm
, (Iv.4.34)
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where H̃m,n is obtained by substituting H(x)→ H̃(x) in eq. (Iv.4.28), and the remaining
integral can be evaluated analytically, taking the Hadamard finite part when m ̸= 0. Thus,
making the choice f0(0) = 0, we have

Hm,n = H̃m,n + fm(1/
√
3) δn,0 . (Iv.4.35)

The analytic approximation is then obtained by setting H̃m,n = 0, which allows everything
to be expressed in terms of fm ≡ fm(1/

√
3). We may thus rewrite eq. (Iv.4.31) as follows:

F 6
π

M4
π

ReDBH =
[
27
2 f0 −

9
4f2 +D0

]
+∆

[
36f0 − 6f2 − 15

16f4 +D1

]
+∆2

[
2313
160 f0 +

171
320f2 −

1677
640 f4 −

519
1280f6 +D2

]
+∆A

[
− 891

64 f0 +
1161
128 f2 −

45
64f4 −

9
128f6 +DA

]
+∆B

[
81
320f0 +

297
640f2 +

27
160f4 −

27
640f6 +DB

]
. (Iv.4.36)

Here, DX areH-dependent numerical corrections stemming from H̃m,n. They are defined
by the requirement that eq. (Iv.4.36) equals eq. (Iv.4.31), and their values are given in
eq. (Iv.3.2). In appendix A, we investigate the dependence of the DX upon the choice of
cutoff function. Note that H̃m,n → 0 is not a good approximation for individual Hm,n,
but as the smallness of DX shows, it clearly works at the level of DBH for our choice of H.

We stress that eq. (Iv.4.36) is not obtained by substitutingHm,n → fm δn,0 in eq. (Iv.4.31),
because the surface terms in eq. (Iv.4.30) do not vanish for H̃m,n and fm δn,0 separately.
In other words, Hm,n → fm δn,0 must be applied before eq. (Iv.4.30).

However, looking at eq. (Iv.4.30) for the fm δn,0 terms alone, we find that

(m+ 1)fm+2(z) + (m− 2)fm(z) = −(1 + z2)f ′m+1(z) . (Iv.4.37)

This allows eq. (Iv.4.30) to be restated in a more symmetrical form as

Hm,n+1 +Hm−2,n+1 =
1

6

[
(2−m)Hm,n − (m+ 1)Hm+2,n

]
− 1

6

[[
(2−m)fm(z)− (m+ 1)fm+2(z)

] dn
dxn

H2(x)

]1/√3

0

, (Iv.4.38)

but more importantly, since f ′m+1(1/
√
3) is just a rational number times κ, we can use

eq. (Iv.4.37) to reduce eq. (Iv.4.36) entirely in terms of κ and f0 ≡ f0(1/
√
3) = 4

3κ(4 +
3 log 3):

F 6
π

M4
π

ReDBH =
[
96κ+ 9f0 +D0

]
+∆

[
296κ+ 24f0 +D1

]
+∆2

[
5661
50 κ+ 621

40 f0 +D2

]
+∆A

[
− 1764

5 κ+ 135
32 f0 +DA

]
+∆B

[
− 612

25 κ+ 189
160f0 +DB

]
. (Iv.4.39)
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4.3.4 Direct numerical evaluation

For a cross-check of the above results and for determining D(u,u)BH further away from
threshold, it is necessary to evaluate eq. (Iv.4.23) numerically without expansion. It is pos-
sible to evaluate it directly using numerical integration with a suitably chosen small ϵ > 0,
but the singularities in the integrand can lead to poor convergence or errors. Neverthe-
less, we have successfully performed this direct integration with 20 digits of accuracy, more
than sufficient to reproduce eq. (Iv.3.2). In this subsection, however, we present a less nu-
merically demanding approach, which complements and validates the direct evaluation.
Another approach, making no assumptions about the smoothness ofM3, is presented in
appendix E.

We note that the singularities in the integrand of eq. (Iv.4.23) occur only where H(xr) =
1,²¹ so we separate∫
r

H2(xr)G(r; p+, k+) =

∫
r

H̃2(xr)G(r; p+, k+) θ(R− |r|) +
∫
r

G(r; p+, k+) θ(R− |r|) ,

(Iv.4.40)
for some suitable cutoff R such that H(xr) = 0 when |r| > R. Here, θ is the Heaviside
step function and H̃2(xr) ≡ H2(xr)−1 is the same as in section 4.3.1. The first term on the
right-hand side is free from singularities and safe to evaluate numerically, while the second
term, now free from H(xr), admits further simplification. This is easier in the CMF of
p+ + k+, similar to the Breit frame in scattering, which we mark by ⋄. Setting up the
r⋄-integration in spherical coordinates with suitably aligned axes, i.e.,

r⋄ = (r sin θ cosϕ, r sin θ sinϕ, r cos θ) ,

−p⃗⋄+ = k⃗⋄+ = (0, 0, q) , P ⋄ = (0, Q sin γ,Q cos γ) ,
(Iv.4.41)

where we reuse the symbol r as |r⋄|, we find

G⋄(r; p+, k+) =
a1 + a2 cos θ + a3 sin θ sinϕ

(b1 − c cos θ)(b2 + c cos θ)
, (Iv.4.42)

where
a1 = E2 −M2

π − 2E⋄ωr , a2 = 2rQ cos γ , a3 = 2rQ sin γ ,

b1 = p2+ − 2p⋄+0 ωr + iϵ , b2 = k2+ − 2k⋄+0 ωr + iϵ , c = 2rq .
(Iv.4.43)

Equation (Iv.4.42) is a convenient parametrization for evaluating the first term in eq. (Iv.4.40),
which must be performed in the same frame as the second in order for the integration lim-
its to match. More importantly it allows the angular integrals in the second term to be

²¹This follows from the construction of Kdf,3, but can also be proven directly as follows. At the pole where
(p+ − r)2 =M2

π ,
4M2

πxr = (P − r)2 = (p3 + p+ − r)2 = p23 + (p+ − r)2 + 2p3 · (p+ − r) = 2M2
π + 2ωp3ωp+−r ,

where in the last equality we dropped the spatial part by going to the rest frame of either momentum. We have
ωp3 ≥ m and |ωp+−r| ≥ m, so as long as (p+ − r) has positive energy, this proves that xr ≥ 1. At threshold,
ωp+−r = 2m−m is positive, and since it is an analytic function of the kinematics, there is a path from threshold
to any other configuration, and such a path clearly does not involve a switch to the negative-energy branch. The
same holds for (k+ − r)2 =M2

π .
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performed analytically, leaving∫
r

G⋄(r; p+, k+) θ(R− r) =
∫ R

0

2πr2dr

2ω⋄
r (2π)

3
g(a1, a2; b1, b2; c) , (Iv.4.44)

where

g(a1, a2; b1, b2; c) =


2a1
b1b2

, if c = 0 ,∑
i=1,2

Ai

c(b1 + b2)

[
log(bi + c)− log(bi − c)

]
otherwise ,

(Iv.4.45)

with
A1 = a1 +

a2b1
c

, A2 = a1 −
a2b2
c

. (Iv.4.46)

There are singularities at b1 + b2 = 0 and bi = ±c, both of which are regulated by the +iϵ
from the propagators. Even without regulation, the singularities are integrable, except at
threshold where actual divergences develop at b1+b2 → 0 and r → 0. These cancel to keep
D(u,u)BH finite, but nevertheless present a numerical problem.

We have used three successful approaches to numerically evaluating eq. (Iv.4.44), providing
cross-checks against each other, against the brute-force evaluation of eq. (Iv.4.23), and
against the semi-analytic threshold expansion in the previous sections.

One method is to keep ϵ small but finite, giving an integrand with narrow spikes rather
than singularities, which is numerically manageable with the right precautions. For suf-
ficiently small ϵ, the ϵ-dependence of the result is very weak, and the ϵ → 0 limit is well
approximated. It suffers stability issues near threshold, and we find that

√
ϵ ≲ ∆ is re-

quired.

Another method is to deform the integration path into the complex plane, using, e.g.,
r = z − iαz(1 − z) for z ∈ [0, R], where α > 0 is arbitrary. With reasonably large α (but
smaller than 4Mπ to avoid the ωr = 0 pole at r = iMπ), the path avoids the singularities
by a wide margin, allowing ϵ = 0 and giving a smooth integrand that is easy to integrate.
The deformation crosses some branch cuts if near thresholds, so it is only usable for the
real part, and it cannot reach the threshold limit due to the divergence at r → 0.

The third method is to express the ϵ → 0 limit in terms of Cauchy principal values, i.e.,
we replace the arguments of the logarithms in eq. (Iv.4.45) with their absolute values. This
approach is full of subtleties, requiring careful consideration of the details in ref. [77].
Basically, in addition to the principal-value part, we need to add the naïve double-pole
contribution multiplied by a factor of 2.

4.3.5 The full bull’s head subtraction

Evaluating f0 in eq. (Iv.4.39), the contributions of DBH to Kdf,3 are

F 6
π

M6
π

K0 ⊃ −36κ(4 + log 3)−D0 , (Iv.4.47a)
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F 6
π

M6
π

K1 ⊃ −8κ(53 + 12 log 3)−D1 , (Iv.4.47b)

F 6
π

M6
π

K2 ⊃ −
27κ

50
(363 + 115 log 3)−D2 , (Iv.4.47c)

F 6
π

M6
π

KA ⊃
9κ

40
(1468− 75 log 3)−DA , (Iv.4.47d)

F 6
π

M6
π

KB ⊃
9κ

200
(404− 105 log 3)−DB . (Iv.4.47e)

The numerical values of these contributions are given in table Iv.1. From there, we find
that DX are indeed quite small compared to the full bull’s head contributions: With the
exception of D2, they differ by more than an order of magnitude.

It is perhaps unexpected that the analytic approximation, which effectively amounts to
the invalid cutoff choice H(x) = θ(x − 1), should be so accurate. However, as seen in
section 4.3.4, the integral is dominated by the pole at small r, and H(xr) is very close to 1
in the vicinity of this pole. Conversely, the region where H(xr) differs meaningfully from
1 contributes very little. Section A looks more closely at this.

4.4 OPE diagrams

k3

k1

k2

p1

p2

p3

b

−r

p1+p2+r

k3

k1

k2

p1

p2

p3

b

rk3−p1+r

Figure IV.10: Examples of OPE NLO diagrams. There are also diagrams where the loop
appears on the lower right.

The contributions of the OPE diagrams, such as those in fig. Iv.10, can be computed an-
alytically by directly performing the pertinent subtractions. Unlike in the LO case de-
scribed in section 2.4, an additional challenge here is how to deal with the higher two-pion
partial waves in the two-pion scattering subamplitude. While all partial waves appear in
this subamplitude, it is possible to show that only two types of contributions are relevant
at quadratic order: purely s-wave ones (ℓ = ℓ′ = 0) and those with d-wave on one side
(ℓ = 2, ℓ′ = 0 or vice versa).

The starting point is the unsymmetrized version of the “master equation” (Iv.2.27), which
we now restrict to OPE contributions:

K(u,u)NLO,OPE
df,3 (p3,k3)ℓ′m′,ℓm = ReM(u,u)NLO,OPE

df,3 (p3,k3)ℓ′m′,ℓm . (Iv.4.48)
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In turn, we need the definition of the divergence-free three-particle amplitude

M(u,u)NLO,OPE
df,3 (p3,k3)ℓ′m′,ℓm

=M(u,u)NLO,OPE
3 (p3,k3)ℓ′m′,ℓm −D(u,u)NLO,OPE(p3,k3)ℓ′m′,ℓm , (Iv.4.49)

whereM(u,u)NLO,OPE
3 is given by one-particle-reducible diagrams like those shown in fig. Iv.10.

Before projection onto pair angular momenta, we have

M(u,u)NLO,OPE
3 = −MNLO

2,off (s̄
′
2, t

′
2, u

′
2)

1

b2 −M2
π + iϵ

MLO
2,off(s̄2, t2, u2) (Iv.4.50)

−MLO
2,off(s̄

′
2, t

′
2, u

′
2)

1

b2 −M2
π + iϵ

MNLO
2,off (s̄2, t2, u2) , (Iv.4.51)

where b is the momentum of the exchanged particle and

s̄′2 ≡ (p1 + p2)
2 − 4M2

π , t′2 = (p1 − k3)2 , u′2 = (p2 − k3)2 ,
s̄2 = (k1 + k2)

2 − 4M2
π , t2 = (k1 − p3)2 , u2 = (k2 − p3)2 .

(Iv.4.52)

The off-shell amplitudes have a single leg off shell (that of the exchanged particle), thus

s̄2 + t2 + u2 = b2 −M2
π ≡ b̄2 = s̄′2 + t′2 + u′2 . (Iv.4.53)

The quantities s̄2, s̄′2, and b̄2 are defined so that they vanish at threshold (as do t2, u2, t′2
and u′2), and are thus convenient in a threshold expansion.

For the subtraction term, D(u,u)NLO,OPE, we must use the {ℓ,m} basis, where (keeping the
indices implicit) we have

D(u,u)NLO,OPE(p3,k3)

= −MNLO
2 (p3)G

∞(p3,k1)MLO
2 (k3)−MLO

2 (p3)G
∞(p3,k1)MNLO

2 (k3) , (Iv.4.54)

recalling eqs. (Iv.2.8) and (Iv.2.12) for relevant definitions. The absence of the subscript
“off” on the factors ofM2 in eq. (Iv.4.54) indicates that these amplitudes are all evaluated
on shell.

Next, we note thatMLO
2 contains only s-waves and is purely real,

F 2
πMLO

2,off(s2, t2, u2) = −2M
2
π − s̄2 + b̄2 . (Iv.4.55)

Since the poles at b̄2 = 0 in M(u,u)
3 and D(u,u) cancel, we are able to set ϵ → 0. Thus,

to obtain the real part ofM(u,u)

df,3 , we can use the expressions above withMNLO
2 replaced

by its real part. Furthermore, since we are matching to the threshold expansion of K(u,u)

df,3 ,
keeping up to quadratic terms, we can expandReMNLO

2 about threshold and drop terms of
higher-than-cubic order in the quantities that vanish at threshold. Cubic order is required
because of the b̄2 in the denominator coupled with the fact thatMLO

2 does not vanish at
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threshold. It then turns out, as shown explicitly below, that the only term that contains
other than s-waves is that proportional to t2u2. Thus, we write

F 4
π ReMNLO

2,off (s̄2, t2, u2) = F 4
π ReMNLO

2s,off(s̄2, t2, u2) + etut2u2 + e′tu
(b̄2 − s̄2)
M2

π

t2u2 ,

(Iv.4.56)
where the first term on the right-hand side contains the purely s-wave contributions. We
treat the purely s-wave and the “t2u2” terms separately. The coefficients etu and e′tu are
real by construction.

4.4.1 Expression for ReMNLO
2,off

As explained in section 2.3, we use the choice of off-shell two-particle amplitude given in
ref. [60]. For the I = 2 channel, the NLO amplitude is

F 4
πMNLO

2,off (s, t, u) = A(4)(t2, u2, s2) +A(4)(u2, s2, t2) , (Iv.4.57)

where

A(4)(s2, t2, u2) = d1(t2 − u2)2 + d2M
2
πs2 + d3s

2
2 + d4M

4
π

+ f1(s2)J̄(s2) + f2(s2, t2)J̄(t2) + f2(s2, u2)J̄(u2) , (Iv.4.58)
f1(s) = d5s

2
2 + d6M

2
πs2 + d7M

4
π , (Iv.4.59)

f2(s, t) = d8t
2
2 + d9t2M

2
π + d10s2M

2
π + d11s2t2 + d12M

4
π , (Iv.4.60)

with the function J̄ defined in eq. (Iv.2.3). We revert to the standard Mandelstam variable
s2 rather than s̄2 = s2 − 4M2

π in order to simplify the comparison with ref. [60]. The
constants in the above expressions are [60]

d1 = − 5
36κ−

1
6L+ 1

2ℓ
r
2 ,

d2 = (N − 29
9 )κ+ (N − 11

3 )L− 8ℓr1 + 2ℓr4 ,

d3 = ( 1112 −
1
2N)κ+ (1− 1

2N)L+ 2ℓr1 +
1
2ℓ

r
2 ,

d4 = ( 209 −
1
2N)κ+ ( 83 −

1
2N)L+ 8ℓr1 + 2ℓr3 − 2ℓr4 ,

d5 = 1
2N − 1 , d6 = (3−N) , d7 = 1

2N − 2 ,

d8 = 1
3 , d9 = − 5

3 , d10 = − 2
3 , d11 = 1

6 , d12 = 7
3 ,

(Iv.4.61)

with N = 3, and remaining definitions are given below eq. (Iv.4.17). Imaginary parts arise
only from the J̄ function. Its real part is analytic above threshold, and the expansions that
we need are given in eq. (Iv.4.11). Combining these results, we obtain

F 4
π ReMNLO

2,off (s̄2, t2, u2) = e0M
4
π + e1M

2
π s̄2 + e2s̄

2
2 + e3M

2
π b̄

2

+ e4s̄2b̄
2 + e5(b̄

2)2 + etut2u2

+ e6
s̄22b̄

2

M2
π

+ e7
s̄2(b̄

2)2

M2
π

+ e8
(b̄2)3

M6
π

+ e′tu
(b̄2 − s̄2)
M2

π

t2u2 ,

(Iv.4.62)
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where the constants ei and etu are known in terms of the di. Cubic terms s̄32 are not needed
for the quadratic threshold expansion, since they give rise only to higher-order terms. The
on-shell amplitude is obtained by setting b̄→ 0.

4.4.2 Decomposition of t2u2

As noted above, only the t2u2 term in eq. (Iv.4.62) contains nonzero angular momenta in
the pair CMF. To show this explicitly, we consider the final-state pair (with momenta p1
and p2) for which

t′2u
′
2 = 1

4 (s̄
′
2 − b̄2)2 − 4(a ∗

p · k
∗
p)

2 , (Iv.4.63)

where a ∗
p and k∗p are the three-momenta p1 and k3 boosted to the CMF of the final-state

pair. Their magnitudes are given by

|a ∗
p |2 = q∗22,p = 1

4 s̄
′
2 , k∗2p =

(s′2 − b̄2)2

4s′2
−M2

π . (Iv.4.64)

To pull out the d-wave part, we use

(a ∗
p · k

∗)2 = q∗22,pk
∗2
[
8π

15

∑
m

Y ∗
2m(â ∗

p )Y2m(k̂
∗
p) +

1

3

]
. (Iv.4.65)

Thus, we can separate s- and d-wave parts as t′2u′2 = [t′2u
′
2]s + [t′2u

′
2]d, where

[t′2u
′
2]s =

1
4 (s̄

′
2 − b̄2)2 − 4

3q
∗2
2,pk

∗2
p , [t′2u

′
2]d = q ∗2

2,pk
∗2
p

8π

15

∑
m

Y ∗
2m(â ∗

p )Y2m(k̂∗p) .

(Iv.4.66)
An analogous expression holds for t2u2.

In the following, we will need the expansion of k ∗2
p about threshold, which is given by

k ∗2
p = 1

4 s̄
′
2 − 1

2 b̄
2 + 1

16 (b̄
2)2 + . . . , (Iv.4.67)

where the ellipsis contains terms of higher order that do not contribute at the order we
work. Note that the partial-wave decomposition of the term (b̄2 − s̄2)t2u2 is analogous
since (b̄2 − s̄2) is purely s-wave.

4.4.3 s-wave contributions

Including the [t2u2]s and (b̄2 − s̄2)[t2u2]s terms, the s-wave part of the real part of the
NLO amplitude becomes

F 4
π ReMNLO

2s,off(s̄2, b̄
2) = e0M

4
π + e1M

2
π s̄2 + e′2s̄

2
2 + e3M

2
π b̄

2 + e′4s̄2b̄
2 + e′5(b̄

2)2

+ e′6
s̄22b̄

2

M2
π

+ e′7
s̄2(b̄

2)2

M2
π

+ e′8
(b̄2)3

M2
π

+ . . . , (Iv.4.68)
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where

e′2 = e2 +
1
6etu , e′4 = e4 − 1

3etu , e′5 = e5 +
1
4etu ,

e′6 = e6 +
1
2e

′
tu , e′7 = e7 − 1

48etu −
7
12e

′
tu , e′8 = e8 +

1
4e

′
tu .

(Iv.4.69)

We thus have

RNLO
s (s̄2) ≡ F 4

π ReMNLO
2s,on(s̄2) = e0M

4
π + e1M

2
π s̄2 + e′2s̄

2
2 + . . . , (Iv.4.70)

δNLO
s (s̄2, b̄

2) ≡ F 4
π ReMNLO

2s,off(s̄2)− F
4
π ReMNLO

2s,on(s̄2)

= b̄2
(
e3M

2
π + e′4s̄2 + e′5b̄

2 + e′6
s̄22
M2

π

+ e′7
s̄2b̄

2

M2
π

+ e′8
(b̄2)2

M2
π

+ . . .

)
. (Iv.4.71)

The LO result from eq. (Iv.4.55) gives

RLO
s (s̄2) ≡ F 2

πMLO
2s,on(s̄2) = −2M2

π − s̄2 , (Iv.4.72)
δLO
s (b̄2) ≡ F 2

πMLO
2s,off(s̄2, b̄

2)− F 2
πMLO

2s,on(s̄2) = b̄2 . (Iv.4.73)

We can now perform the required subtraction. Since we are considering purely s-wave
terms, the projection onto pair angular momenta is trivial, and we can work with Mandel-
stam variables. Thus, the contribution of s-wave two-particle amplitudes is

−b̄2F 6
πK

(u,u)NLO,OPE,s
df,3

= RNLO
s (s̄′2)δ

LO
s (b̄2) + δNLO

s (s̄′2, b̄
2)RLO

s (s̄2) + δNLO
s (s̄′2, b̄

2)δLO
s (b̄2)

+RLO
s (s̄′2)δ

NLO
s (s̄2, b̄

2) + δLO
s (b̄2)RNLO

s (s̄2) + δLO
s (b̄2)δNLO

s (s̄2, b̄
2) . (Iv.4.74)

Substituting the results above, we obtain

F 6
πK

(u,u)NLO,OPE,s
df,3 = gs0M

4
π + gs1M

2
π(s̄

′
2 + s̄2) + gs2s̄

′
2s̄2 + gs3(s̄

′
2 + s̄2)

2

+ gs4M
2
π b̄

2 + gs5 b̄
2(s̄′2 + s̄2) + gs6(b̄

2)2 + . . . , (Iv.4.75)

where the coefficients gsi are known in terms of the ei, and the ellipsis indicates higher-order
terms that are not needed.

The final step is to convert the variables to those used in the threshold expansion forK(u,u)

df,3 ,
eq. (Iv.4.1), using the results

s̄′2 + s̄2 = 9M2
π∆

S
3 , s̄′2s̄2 = 81M4

π∆
′
3∆3 , b̄2 = 9M2

π(∆
S
3 −∆− t̃33) . (Iv.4.76)

In this way, we obtain the contributions to the coefficients c1–c10 in eq. (Iv.4.1) from the
s-wave parts ofM2.

4.4.4 d-wave contributions

First, we consider the etu term, which gives a contribution of [tu]d to the NLO matrix
element. Here, we must use the {k, ℓ,m} basis for Kdf,3 since the subtraction is given in
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this basis. Specifically, the d-wave contribution to the subtraction of eq. (Iv.4.54) is, after
recombining with spherical harmonics,

ReD(u,u)NLO,OPE,d({pi}, {ki})

= −
∑
m′

√
4πY2m′(â∗p)Re

{
MNLO

2,ℓ′=2(p3)
}( k∗p

q∗2,p

)2 √4πY2m′(k̂∗p)

b̄2
MLO

2s (k3) +↔ .

(Iv.4.77)

Here,↔ indicates the term in which the roles of the LO and NLO vertices are interchanged
and the notation is as in section 4.4.2. The factor of (k∗p/q∗2,p)2 arises fromG∞, eq. (Iv.2.12).
This contribution to D(u,u) is to be subtracted from

ReM(u,u)NLO,OPE,d
3 ({pi}, {ki})

= −
∑
m′

√
4πY2m′(â∗p)Re

{
MNLO

2,ℓ′=2,off(p3)
} √4πY2m′(k̂∗p)

b̄2
MLO

2s,off(k3) +↔ . (Iv.4.78)

The key observation now is that, using the decomposition of the tu term given by eqs. (Iv.4.63)
and (Iv.4.65),

MNLO
2,ℓ′=2,off(p3) = −

8

15
q∗22,pk

∗2
p and MNLO

2,ℓ′=2(p3) = −
8

15
q∗42,p , (Iv.4.79)

implying that

MNLO
2,ℓ′=2(p3)

(
k∗p
q∗2,p

)2
=MNLO

2,ℓ′=2,off(p3) . (Iv.4.80)

In other words, the barrier factor from G∞ converts the on-shell amplitude appearing in
the subtraction term into exactly the off-shell amplitude. Thus, the subtraction only picks
out the difference between on- and off-shell values of F 2

πMLO
2 , given by δLO

s (b̄2) = b̄2, and
simply cancels the pole. One therefore obtains the contribution

F 6
πK

(u,u)NLO,OPE,d
df,3 ⊃ −etu

(
[t′2u

′
2]d + [t2u2]d

)
. (Iv.4.81)

The two terms on the right-hand side contain {ℓ′, ℓ} = {2, 0} and {0, 2}, respectively. To
convert to our standard basis, we use

[tu]d = tu− [tu]s , (Iv.4.82)

with [tu]s given by eq. (Iv.4.66), and observe that t′2u′2+t2u2 = 81M4
πQtu [see eq. (Iv.4.2)],

so that

F 6
πK

(u,u)NLO,OPE,d
df,3 ⊃ etu

(
−81M4

πQtu + [t′2u
′
2]s + [t2u2]s

)
. (Iv.4.83)

The [tu]s terms can be expanded in powers of s̄′2, s̄2, and b̄2, and lead to additional con-
tributions of the form of eq. (Iv.4.75), with gsi → gdi . These can then be converted to the
standard variables of the threshold expansion as explained above and thus contribute to
c1 − c10 in eq. (Iv.4.1).
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Next, we consider the e′tu term, which has the form (b̄2 − s̄2)[tu]d. The analysis for the
s̄2[tu]d part is the same as for [tu]d alone, leading to

F 6
πK

(u,u)NLO,OPE,d
df,3 ⊃ −e′tu

s̄2
M2

π

(
−81M4

πQtu + [t′2u
′
2]s + [t2u2]s

)
. (Iv.4.84)

Recalling that the subtraction has already been done, we note that all terms are of too high
order to contribute.

Finally, we consider the b̄2[tu]d part of the NLO amplitude. Since this vanishes on shell,
there is no subtraction term and we easily find

F 6
πK

(u,u)NLO,OPE,d
df,3 ⊃ 2e′tu

(
[t′2u

′
2]d + [t2u2]d

)
+ . . . , (Iv.4.85)

where the overall factor of 2 comes from the value of the LO amplitude at threshold. The
remainder of the analysis is as for the [tu]d term above, except that etu → 2e′tu.

4.4.5 The full OPE contribution

Combining s- and d-wave contributions computed in sections 4.4.3 and 4.4.4, we end up
with expressions for c1 through c10 and c14 in terms of the coefficients di; there are no
contributions to c11, c12, and c13. We can now symmetrize using eqs. (Iv.4.3a) to (Iv.4.3e).
We find that the contributions of the OPE diagrams at NLO are

F 6
π

M6
π

K0 ⊃ 25κ+ 78L− 72(8ℓr1 + 6ℓr2 + ℓr3 − 2ℓr4) , (Iv.4.86a)

F 6
π

M6
π

K1 ⊃ 6831
20 κ+ 372L− 18(74ℓr1 + 67ℓr2 − 14ℓr4) , (Iv.4.86b)

F 6
π

M6
π

K2 ⊃ 230481
280 κ+ 576L− 108(10ℓr1 + 11ℓr2) , (Iv.4.86c)

F 6
π

M6
π

KA ⊃ − 53199
560 κ+ 45L+ 27

2 (14ℓr1 − 17ℓr2) , (Iv.4.86d)

F 6
π

M6
π

KB ⊃ 54171
140 κ+ 216L− 324(2ℓr1 + ℓr2) . (Iv.4.86e)

For comparison, the LO results from the OPE diagram in fig. Iv.1a are

F 4
π

M4
π

K0 ⊃ 36 ,
F 4
π

M4
π

K1 ⊃ 63 . (Iv.4.87)

Like eq. (Iv.4.18), this is specific to our off-shell convention (see section 2.3).

5 Conclusions and outlook

This work presents the NLO ChPT result for the isospin-3 three-particle K-matrix, Kdf,3,
which parametrizes three-particle interactions in the RFT three-particle finite-volume for-
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malism [13, 14]. In particular, we have focused on the leading five terms in the threshold ex-
pansion. To determine Kdf,3, we have used the three-pion amplitude calculated in ref. [60]
combined with the relation between this amplitude andKdf,3 derived in ref. [14]. The main
results of this work are summarized in section 3.1 and, in particular, in eq. (Iv.3.1).

Various simplifications play an important role in obtaining these results. The first is the
result of eq. (Iv.2.27) that, at NLO in ChPT, Kdf,3 is simply given by ReMNLO

df,3 , rather
than requiring the solution of integral equations. The second simplification is that, al-
though various contributions toMNLO

df,3 can be singular at threshold, these singularities are
absent in the real part of the total result. This allows us to obtain analytic results for the
threshold expansion for almost all parts, the exception being the cutoff-dependent parts of
the integrals appearing in the BH subtraction. The latter turn out to be numerically small.

One of the motivations for this work was to address the substantial discrepancy between
lattice results for Kdf,3 and the LO ChPT prediction [44, 47, 52]. Focusing on the results
for the first two terms in the expansion of Kdf,3, namely K0 and K1, we find that the
NLO corrections are able to resolve the large disagreement between lattice QCD and LO
ChPT, thus increasing confidence on the extractions of Kdf,3 from lattice calculations. We
observe, however, that NLO effects are somewhat large in these two quantities. Regarding
the term in the threshold expansion of Kdf,3 that couples to d-waves, KB, we find a sign
disagreement between the lattice QCD result and NLO ChPT result. While we do not
have a definitive answer, we stress that the NLO ChPT contribution is the leading effect
for KB. Potentially, NNLO effects could be large and account for the discrepancy.

Since we are using an expansion of Kdf,3 about threshold, it is important to verify its con-
vergence. This is necessary since at NLO in ChPT, Kdf,3 has contributions to all orders in
the threshold expansion due to the presence of loop integrals. To do so, in section 3.3, we
address the validity of the truncation of Kdf,3 at quadratic order. We find that for a pion
mass of Mπ = 340 MeV (the heaviest used in ref. [52]), the corrections beyond quadratic
order account only for a 20% of the total at the 5π inelastic threshold. The corrections
are even smaller for lighter masses. Similarly, two-pion partial waves with ℓ > 2 in OPE
diagrams, which do not enter the threshold expansion at quadratic order, only add a neg-
ligible contribution to the full Kdf,3. We conclude that truncating the threshold expansion
at quadratic order provides a good approximation to Kdf,3.

Another timely question that we address is the cutoff dependence ofKdf,3. All lattice QCD
calculations using the RFT formalism have adopted the same choice of cutoff function.
However, this choice is not unique. In appendix A, we discuss how the NLO ChPT result
varies for different cutoffs. Overall, we find that for a wide set of cutoff functions, the
dependence is small, provided that the function does not drop to zero very rapidly below
the two-pion threshold.

The results of this work can be extended to other systems, higher orders, or other EFTs.
For instance, in preparation for future lattice QCD calculations, Kdf,3 for other three-pion
isospin channels could be derived since ref. [60] provides results for the six-pion amplitude
for general isospin. A potential issue is that, due to the presence of resonances in two-
particle subchannels and in the three-particle channel itself, the convergence of ChPT
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might be poor. Examples include σ and ρ in two-particle and ω and h1 in three-particle
channels. Kdf,3 could also be computed for other systems of mixed mesons at maximal
isospin, such as π+π+K+ and K+K+π+. In this case, the full amplitude is not available
yet, and the results from ref. [60] would need to be extended to SU(3) ChPT. This is a very
compelling follow-up in light of the recent lattice QCD results for such systems [79] and
the observed tension with the LO ChPT prediction.

As shown by this work, the combination of EFTs and lattice QCD continues to be a potent
tool for studying the hadron spectrum. This synergy has already yielded valuable insights
into the three-hadron problem and will certainly keep contributing in the future.
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A Dependence on the cutoff

The cutoff functionH(x) is arbitrary so long as it is smooth and satisfiesH(x) = 0 if x ≤ 0
and H(x) = 1 if x ≥ 1. Throughout this paper, we have been using the standard version

H(x) = exp
[
− 1

x exp
(
− 1

1−x

)]
, when 0 < x < 1 , (Iv.1.1)

but ref. [15] and others consider a generalization thereof, corresponding to the replacement

x→ 1 +
4

3− α
(x− 1) , −1 ≤ α < 3 , (Iv.1.2)

with α = −1 corresponding to eq. (Iv.1.1). Larger α give sharper cutoffs, with the limit
α→ 3 being a step function, H(x)→ θ(x− 1). There is also the symmetric version

H(x) =
[
1 + exp

(
1
x −

1
1−x

)]−1

, when 0 < x < 1 , (Iv.1.3)
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which commonly appears in other areas, and which is more numerically well-behaved due
to the lack of nested exponentials.

At NLO in ChPT,Kdf,3 depends onH(x) through the coefficientsDX , defined in eq. (Iv.4.36).
These are effectively the remainders of DBH after removing the analytic approximation ob-
tained withH(x) = θ(x). With the stardard cutoff choice, eq. (Iv.1.1), we obtain the values
in eq. (Iv.3.2), which we restate here:

D0 ≈ −0.0563476589 , D1 ≈ 0.129589681 , D2 ≈ 0.432202370 ,

DA ≈ 9.07273890 · 10−4 , DB ≈ 1.62394747 · 10−4 .
(Iv.1.4)

For comparison, with eq. (Iv.1.3) one instead obtains

D0 ≈ −0.0470650424 , D1 ≈ 0.107630347 , D2 ≈ 0.583361673 ,

DA ≈ −0.118643915 , DB ≈ −0.0400284275 .
(Iv.1.5)

In fig. Iv.11 we show the result for these quantities as a function of α in eq. (Iv.1.2).

A few features can be noted. Using the standardH, eq. (Iv.1.1), the analytic approximation
is very good, in the sense that |DX | ≪ |KX |. It is especially good for X = A,B. With
larger α, the approximation of the quadratic order in the threshold expansion (X = 2,A,B)
quickly grows worse, but in the leading orders (X = 0, 1) it grows better: Near α = 0.875,
K0 and K1 are almost exactly approximated. All DX diverge as α → 3, corresponding to
extremely sharp cutoffs.

B Loop integrals

Let us bring up some basic definitions. Our notation, which follows ref. [60], differs from
the standard Passarino–Veltman integrals by extra factors of κ = 1/(16π2). For the bubble
integrals we use

B(q2) =
1

i

∫
ddℓ

(2π)d
1

(ℓ2 −M2
π) [(ℓ− q)2 −M2

π ]

= κ
1

ϵ̃
− κ− L+ J̄(q2) .

(Iv.2.1)

Following ChPT conventions, dimensional regularization in 4− 2ϵ dimensions uses

1

ϵ̃
≡ 1

ϵ
− γE + log 4π − log µ2 + 1 , (Iv.2.2)

where γE is the Euler–Mascheroni constant. We employ the standard definition for J̄(q2):

J̄(q2) ≡ κ
(
2 + β log

β − 1

β + 1

)
, (Iv.2.3)
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Figure IV.11: The numerical remainders DX as functions of the parameter α, employing
eq. (Iv.1.1) together with eq. (Iv.1.2). All DX diverge as α → 3, while the
standard H(x) and the numerical values of eq. (Iv.3.2) are recovered at α =
−1. For comparison, the values obtained with the symmetryicH, eq. (Iv.1.3),
are shown to the left of α = −1. The line DX = 0 corresponds to the analytic
approximation in section 4.3.1 being exact.

with β ≡ β(q2) =
√
1− 4M2

π

q2 . Regarding the scalar triangle integrals, we have

C(p1, p2, . . . , p6) =
1

i

∫
ddℓ

(2π)d
1

(ℓ2 −M2
π)[(ℓ− q1)2 −M2

π ][(ℓ+ q2)2 −M2
π ]
, (Iv.2.4)

where q1 = p1 + p2, q2 = p3 + p4; for completeness, we also define q3 = p5 + p6. The
expressions forMNLO

3 also include the tensor integralsC11 andC21 (andC3, which does not
contribute at I = 3); their definitions and properties are found in appendix A of ref. [60].
In all cases, CX denotes the UV-finite part of CX , although among these integrals, only
C21 is UV-divergent.

For the numerical evaluation of the triangle integrals we use LoopTools [75]. We also use the
following analytic expression, which can be utilized once the tensor integrals are reduced to
the scalar ones through the Passarino–Veltman reduction. The one-loop triangle function
C (related to the standard C0) can be written in terms of 12 dilogarithms as

1

κ
C(p1, p2, . . . , p6) = C0(q

2
1 , q

2
2 , q

2
3 ,M

2
π ,M

2
π ,M

2
π)

=
∑

α1,α2∈{−1,1}

α1

ξ1ξ2
Li2

{(
1− α1ξ2

)[ 1

1− α2β1ξ2
+ iα2 sgn{q21}ϵ

]}
+ cycl. , (Iv.2.5)

with λ ≡ λ(q21 , q22 , q23) > 0 the Källén triangle function, β1 =
√
1− 4M2

π

q21
, ξ1 ≡ q21 − q22 − q23 ,

ξ2 ≡
√

1− 4q22q
2
3/ξ

2
1 , and “cycl.” standing for cyclic permutations in {q21 , q22 , q23}.
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C Cancellation of imaginary parts

To confirm that the formalism is working as it should, we would like to check that KNLO
df,3 ,

defined by eqs. (Iv.2.24) and (Iv.2.26), is indeed real, so that it is correct to use the master
equation (Iv.2.27). This should be possible at a diagram-by-diagram level, with each small
set of contributions to MNLO

3 matched with corresponding subtraction terms in Mdf,3
and corresponding ρ terms in eq. (Iv.2.24). In the following subsections, we show that this
holds as long as the contributing amplitudes, both on and off shell, satisfy unitarity. This
is the case if a consistent off-shell convention is used throughout (see section 2.3).

All cancellations proven here have been verified using direct calculation at a selection of
kinematic configurations detailed in appendix D.

C.1 Bull’s head diagram

The BH diagram contributing toM3 (fig. Iv.12 and its crossings) leads to imaginary con-
tributions due to the presence of two two-particle cuts in the s-channel. Here, we address
the issue of how these imaginary contributions are canceled in the transition to Kdf,3. This
requires both the subtraction term D(u,u)NLO and the ρ terms in eq. (Iv.2.24), and can be
broken down diagrammatically in such a way that the cancellation is straightforward.

We consider the BH diagram in fig. Iv.9a as a contribution to the unsymmetrized ampli-
tude,M(u,u)NLO

3 (p,k), since the cancellation can be seen before symmetrization. We start
with the NLO subtraction. The relevant part of this term is the one corresponding to the
BH diagram,

D(u,u)NLO(p,k) ⊃ DBH
ss (p,k) ≡MLO

2s (p)

∫
r

{
G∞

ss(p, r)MLO
2s (r)G

∞
ss(r,k)

}
MLO

2s (k) .

(Iv.3.1)

In the main text, all quantities were implicit matrices in ℓ,m space. Here, sinceMLO
2 is

purely s-wave, we can drop the ℓ,m indices in all quantities and leave it implicit that DBH
ss

is nonzero only for ℓ′ = ℓ = 0 (as indicated by the subscripts). This means that G∞
ss is

different here than in eq. (Iv.2.20):

G∞
ss(p, r) =

H(xp)H(xr)

b2pr −M2
π + iϵ

, bpr = (P − p− r)2 . (Iv.3.2)

Note that in our calculation,H(xp) = 1 because p is a momentum for which both particles
in the interacting pair can be on shell. SinceMLO

2 is real, the imaginary part of DBH
ss arises

only from the iϵ in G∞
ss , and can be pulled out using the standard Cauchy principal value,

1

z + iϵ
= P 1

z
− iπδ(z) . (Iv.3.3)

To proceed, we assume that p and k are chosen such that the poles in G∞
ss(p, r) and

G∞
ss(r,k) occur for non-overlapping values of r. Then we get two distinct contributions
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to the imaginary part, one from the left-hand cut and the other from the right-hand cut.
The case where the poles overlap can be handled with a more careful application of the
principal value, following ref. [77], and we have done so as a cross-check. However, it can
be circumvented with the following argument: An infinitesimal deformation of p and k is
enough to remove the overlap, so by the smoothness of Kdf,3, if the imaginary parts cancel
in the deformed case, they must also cancel without the deformation.

Thus, assuming that the poles do not overlap, we can change to the pair CMF variables
r∗p and r∗k (in the notation of section 2.1) separately for the two delta-function contribu-
tions, and it is then straightforward to evaluate them. We focus on the left-hand (LH) cut
contribution, as all the following holds separately for the right-hand (RH) cut.

Although the explicit form of the imaginary part is not needed in the following, it is still
instructive to compute it. We find that the LH cut contribution to the imaginary part is

i ImDBH,LH
ss (p,k) =MLO

2s (p)
(−iπ)
(2π)3

q∗2,p
4E∗

2,p

∫
dΩ(r̂∗p)

{
MLO

2s (ron)G
∞
ss(ron,k)

}
MLO

2s (k) ,

(Iv.3.4)
where ron is the on-shell projection of r obtained using the prescription of ref. [13]. The
integral in this equation runs over the directions of r∗p, and bothMLO

2 (ron) andG∞
ss(ron,k)

depend on this direction. The no-overlap assumption implies that the latter quantity is
real, i.e., we do not have simultaneous contributions from both delta functions. We now
observe that

q∗2,p
E∗

2,p

= 16iπρ(p) , (Iv.3.5)

so the contribution from the LH cut has the form of anM2ρKdf,3 term, namely

i ImDBH,LH
ss (p,k) = 2MLO

2s (p)ρ(p)

∫
dΩ(r̂∗p)

4π

{
MLO

2s (ron)G
∞
ss(ron,k)

}
MLO

2s (k) .

(Iv.3.6)

Next, we consider the following unsymmetrized term appearing in eq. (Iv.2.24), which has
the sameM2ρKdf,3 form,

1

3
MLO

2s (p) ρ(p)MLO
df,3(p,k) . (Iv.3.7)

Again, this is purely s-wave (sinceMLO
2 andMLO

df,3 are), so we just need to consider the
ℓ = ℓ′ = 0 part. Only a subset of the terms inMLO

df,3 contribute to the cancellation of the
imaginary part of the BH diagram. These are all contained in the OPE contribution

MLO,OPE
df,3 (p,k) = −S

{
MLO

2,off(p)
1

b2pk −M2
π + iϵ

MLO
2,off(k)−M

LO
2s (p)G

∞
ss(p,k)MLO

2s (k)

}
.

(Iv.3.8)
Here, as in the main text, bpk = P − p− k and the subscript “off” indicates that the bpk leg
is off shell. Note it is important that a consistent off-shell convention is used throughout
the calculation.
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We now note that the initial-state symmetrization in eq. (Iv.3.8) (i.e., that over k1, k2,
k3) will be repeated when the M2ρKdf,3 term is symmetrized. Thus, one can drop the
initial-state symmetrization in eq. (Iv.3.8) and remove the factor of 1/3 in eq. (Iv.3.7). The
final-state symmetrization then yields three terms,

MLO,OPE
df,3 (p,k) ⊃M(u,u)LO

df,3 (p,k) +M(u,u)LO
df,3 (ap,k) +M(u,u)LO

df,3 (bp,k) , (Iv.3.9)

where −M(u,u)LO
df,3 (p,k) is the expression in braces in eq. (Iv.3.8) and ap, bp are the mo-

menta of the final-state interacting-pair particles. Note that while the symmetrizedMLO,OPE
df,3

is a function of the total center-of-mass energy alone, the individual terms are not. The
first term,M(u,u)LO

df,3 (p,k), will contribute to the cancellation of the imaginary part of the
NLO OPE diagram (to be discussed in the following subsection), while the other two
contributions, M(u,u)LO

df,3 (ap,k) and M(u,u)LO
df,3 (bp,k), are needed for the cancellation of

the imaginary part of the BH diagram.

In fact, sinceMLO
2 (p) is purely s-wave, there is an implicit angular integral over the first

argument in both these BH contributions, arising from the projection onto ℓ′ = 0. It then
follows from a∗

p = −b∗p thatM(u,u)LO
df,3 (ap,k) =M(u,u)LO

df,3 (bp,k). We thus keep only one
of these two terms and multiply by a factor of 2. This leads to the final contribution to the
unsymmetrized left-hand cut part of [M2ρKdf,3]BH:

−2MLO
2s (p)ρ(p)

∫
dΩ(â∗

p)

4π
MLO

2,off(ap,on)
1

b2kr −M2
π + iϵ

MLO
2,off(k)

+ 2MLO
2s (p)ρ(p)

∫
dΩ(â∗

p)

4π
MLO

2s (ap,on)G
∞
ss(ap,on,k)MLO

2s (k) . (Iv.3.10)

This is purely imaginary, as the pole in the bkr propagator is not crossed, given our as-
sumptions about p and k. Since D enters with a minus sign, we see that the second term in
eq. (Iv.3.10) exactly cancels the imaginary part of DBH,LH(p,k) given in eq. (Iv.3.6). This
leaves the first term in eq. (Iv.3.10), which itself exactly cancels the LH cut contribution to
the imaginary part of the full BH diagram in the amplitudeM3 (using the cutting rules).

Exactly analogous arguments hold for the RH cut part, in which one must use theKdf,3ρM2

term from the relation between M3 and Kdf,3. Thus, altogether, we have seen how the
imaginary parts must cancel in the full BH contributions to Kdf,3.

C.2 OPE diagrams

We now consider the OPE diagrams in which the initial interaction is of NLO in ChPT
and the final one of LO. The arguments are identical for the “flipped” time ordering.

Since we are here interested in the imaginary part, several simplifications occur. By con-
struction, the OPE pole is canceled in Mdf,3, so the only source of a imaginary part is
MNLO

2 , and this is present only in the s-wave, so only the ss part of G∞ contributes. The
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contribution to the unsymmetrizedMdf,3 is thus given by

i ImM(u,u)NLO
df,3 (p,k) ⊃ −i Im

[
MNLO

2,off (p)
] 1

b2pk −M2
π + iϵ

MLO
2,off(k)

+ i Im
[
MNLO

2s (p)
]
G∞

ss(p,k)MLO
2s (k) , (Iv.3.11)

where, as usual, p and k are final and initial spectator momenta, respectively, and “off”
indicates that the bpk leg is off shell. As above, here we are using the notation without
implicit ℓm indices. To this must be added the contribution from theM2ρKdf,3 term in
eq. (Iv.2.24), in which the OPE part of KLO

df,3 =MLO
df,3, i.e., the first term of eq. (Iv.3.9), is

included. This contribution, which is purely imaginary, is

−MLO
2s (p)ρ(p)MLO

2,off(p)
1

b2pk −M2
π + iϵ

MLO
2,off(k)

+MLO
2s (p)ρ(p)MLO

2s (p)G
∞
ss(p, k)MLO

2s (k) . (Iv.3.12)

Now, we use unitarity and cutting rules to obtain

i ImMNLO
2,off (p) = −M

LO
2s (p)ρ(p)MLO

2,off(p) , (Iv.3.13)

which applies also for the on-shell amplitude. Using this, we find that the sum of eqs. (Iv.3.11)
and (Iv.3.12) vanishes.

C.3 Remaining diagrams

The remaining diagrams with an imaginary part involve a LO six-point vertex and an s-
channel loop closed by a LO four-point vertex, either in the initial or final state. An
example is shown in fig. Iv.8. These diagrams are divergence-free by themselves. Thus,
the imaginary parts must be canceled byM2ρKdf,3-like terms appearing in the six-point
vertex contribution to Kdf,3. That this is the case follows from unitarity, which introduces
a factor of −ρ, and the double symmetrization, which cancels the 1/3. No off-shell am-
plitudes appear in the imaginary parts, so the cancellation is independent of the off-shell
convention.

D Threshold expansion using single-parameter kinematic
configurations

In this appendix, we explain a method that we use to cross-check several of the calculations
presented in the main text, and also for plotting the numerical behavior of the full NLO
contribution in section 3.3. In particular, it provides an alternative analytic approach for
obtaining the contributions of AJ , Aπ, AL, and Al toMNLO,non-OPE

df,3 , which are discussed
in section 4.2. It has also been use to perform a numerical check of all other contributions
to Kdf,3.
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Table IV.2: The five families used in the calculations, labeled by a. We use ωp ≡√
p2 +M2

π , and, for brevity, Ω3 ≡ ω√
3p, Ω5 ≡ ω√

5p and Ω7 ≡ ω√
7p/2.

All momenta are on-shell with invariant mass Mπ, and in all cases, P =
p1 + p2 + p3 = k1 + k2 + k3 = 0. For compactness, p3 and k3 have been
omitted but are easily inferred using P = 0 and the on-shell condition.

a p
(a)
1 (p) p

(a)
2 (p) k

(a)
1 (p) k

(a)
2 (p)

1
(
ωp, p, 0, 0

) (
ωp, − 1

2p,
√
3
2 p, 0

) (
ωp, 0, 0, −p

) (
ωp,

√
3
2 p, 0, 1

2p
)

2
(
ωp, p, 0, 0

) (
ωp, − 1

2p,
√
3
2 p, 0

) (
ωp, −p, 0, 0

) (
ωp, 1

2p,
√
3
2 p, 0

)
3

(
ω2p, 2p, 0, 0

) (
Ω7, −p,

√
3
2 p, 0

) (
ω2p, 0, 0, −2p

) (
Ω7,

√
3
2 p, 0, p

)
4

(
ω2p, 2p, 0, 0

) (
Ω3, −p,

√
2p, 0

) (
ω2p, 0, 0, −2p

) (
Ω3,
√
2p, 0, p

)
5

(
Ω5, p, −2p, 0

) (
ω2p, 0, 2p, 0

) (
Ω5, 0, p, 2p

) (
ω2p, 0, 0, −2p

)
As described in the main text, Kdf,3 is a function of eight kinematic degrees of freedom,
so it is not straightforward to explore its general momentum dependence. Near threshold,
however, its behavior is characterized by a few parameters, five if we work to quadratic order
in ∆ [see eq. (Iv.2.2)]. In order to determine these coefficients from a given contribution
to Kdf,3, one approach is to use families of momenta, each of which is a one-dimensional
projection of the full momentum dependence. If one uses enough such families and con-
trols the momentum dependence of Kdf,3 to high-enough order for each family, then the
coefficients KX of the threshold expansion can be determined.

Each family depends on a single parameter p that has dimension of momentum and, by
design, vanishes at threshold. We use the five families listed in table Iv.2. While this
is more than the minimum number of families needed for our applications, using this
number provides redundancy and cross-checks. Family 1 is the one used in ref. [60], while
family 2 is a variant thereof, with the momenta arranged as equilateral triangles. Families
3–5 use isosceles triangles instead.

To use the families to determine the coefficients in the threshold expansion, we note that

Kdf,3
(
Fa

)
= ca0 + ca1p

2 + ca2p
4 +O(p6) , (Iv.4.1)

where a labels the family and Fa ≡
{
p
(a)
i (p), k

(a)
i (p)

}
. The coefficients cai can be deter-

mined numerically or analytically. We also need the expansions

∆
(
Fa

)
= da1 p

2 + da2 p
4 +O(p6) ,

∆A
(
Fa

)
= daA p

4 +O(p6) , ∆B
(
Fa

)
= daB p

4 +O(p6) .
(Iv.4.2)

A closely related approach replaces the expansion in p2 with one in E∗2. We have used
both and checked that the results agree.

A single family is sufficient to determine

K0 = ca0 , K1 = ca1/d
a
1 , (Iv.4.3)
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with other families providing cross-checks. To obtain the quadratic constants, we need
three families of momenta, from which we can construct the matrix

Q =

(da1
1 )2 da1

A da1

B

(da2
1 )2 da2

A da2

B

(da3
1 )2 da3

A da3

B

 . (Iv.4.4)

We also collect the quadratic coefficients of Kdf,3 into a vector and subtract the p4 term
arising from K1:

V =

ca1
2 − c

a1
1 d

a1
2 /d

a1
1

ca2
2 − c

a2
1 d

a2
2 /d

a2
1

ca3
2 − c

a3
1 d

a3
2 /d

a3
1

 . (Iv.4.5)

Then, K2

KA
KB

 = Q−1V . (Iv.4.6)

This assumes that Q is invertible, which is true for some triplets of families. In particular,
for the expansion of the matrix element, it is convenient to use the triplets of families
{1, 2, 3} and {1, 2, 4}. For numerical cross-checks, on the other hand, the triplet {1, 4, 5}
turned out to be the most convenient.

E An integration method for less well-behavedM3

Section 4.3.4 covers the method used to calculate D(u,u)BH without first performing a
threshold expansion. The applicability of this calculation relies on the finiteness ofD(u,u)BH,
which in turn follows from the finiteness of the corresponding part of the amplitude,
M(u,u)BH

3 . If that were not the case, one would have to regularize the divergences on
both sides in a consistent way before the subtraction can take place, and it is not obvious
how to do that. The same situation also invalidates the threshold expansion of sections 4.3.1
to 4.3.3 unless the divergent parts can be isolated first.

In this appendix, we present an alternative approach, which computes the difference
M(u,u)BH

3 −D(u,u)BH without explicitly dealing with the individual terms. In the present
case of NLO scattering at maximum isospin, this is nothing but an overly complicated
cross-check procedure (and, in earlier stages, a contingency in case the finiteness turned out
to be wrong), but it is conceivable that when the scope is generalized, one will eventually
encounter a sufficiently pathological subtraction that this approach becomes worthwhile.
Despite this more general outlook, we will present it as it would be applied to the present
calculation, so that the technical details can be shown in full.

The goal is to writeM(u,u)BH
3 as similarly as possible to D(u,u)BH, and then manipulate its

expression to obtain a piece identical to D(u,u)BH plus compensatory terms, which must
then equalM(u,u)BH

3 −D(u,u)BH. Since this quantity is always divergence-free, its evalua-
tion should be unproblematic. To specifyM(u,u)BH

3 , which is parametrization-dependent,
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p4

p3

p6

p1

p2

p5

r

r−p3−p4r+p1+p2

Figure IV.12: The bull’s head diagram, showing the momentum routing used in eq. (Iv.5.4).
All momenta are ingoing, following the conventions of ref. [60]; the routing
of fig. Iv.9 is straightforwardly obtained through crossing.

it turns out that the most convenient parametrization for our purposes is the 5th among
the ones presented in ref. [60], for which the O(N + 1)/O(N) Lagrangian is

L =
F 2
π

2
∂µΦ

T∂µΦ+ F 2
πχ

TΦ , Φ = Φ5 =
1

1 + 1
4
ϕϕϕTϕϕϕ
F 2

π

(
1− 1

4

ϕϕϕTϕϕϕ

F 2
π

,
ϕϕϕT

F

)T
, (Iv.5.1)

where ϕϕϕ is a real vector of fields transforming linearly under the unbroken part of the
symmetry group. In this representation, the 4-point vertex for flavors fi and incoming
off-shell momenta pi reads²²

F 2
πMLO

(5)(p1, f1; p2, f2; p3, f3; p4, f4) = δf1f2δf3f4
(
M2

π + p1 · p2 + p3 · p4
)

+ δf1f3δf2f4
(
M2

π + p1 · p3 + p2 · p4
)

+ δf1f4δf2f3
(
M2

π + p1 · p4 + p2 · p3
)
. (Iv.5.2)

Now, we let M(u,u)BH
3 be precisely the contribution from the diagram fig. Iv.12 in this

parametrization. Assembling the diagram and fixing all external flavors to

|π+⟩ = |π−⟩∗ =
|1⟩+ i|2⟩√

2
, (Iv.5.3)

we get considerable cancellation among the terms in the sum over internal flavors, leaving

M(u,u)BH
3 =

1

F 6
π

(2p1 · p2)(2p5 · p6)

× 1

i

∫
d4r

(2π)4
r2 −M2

π − 2r · p3[
r2 −M2

π

][
(r + p1 + p2)2 −M2

π

][
(r − p3 − p4)2 −M2

π

] . (Iv.5.4)

²²With the momenta on-shell, this of course reduces to the parametrization-independent LO 4-particle ampli-
tude, but the off-shell form presented here is precisely the 4-point vertex in theΦ5 parametrization. Note that this
is a different off-shell convention than anywhere else in this paper. They are compatible, however, since our main
convention only separates OPE from non-OPE, whereas the one presented here separates the BH contribution
from the rest of the non-OPE part (and is more convenient for that purpose).
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Replacing {p1, . . . , p6} by {k1, k2, k3,−p1,−p2,−p3} as described above eq. (Iv.2.35), this
bears a striking resemblance to eq. (Iv.4.23). Indeed, comparing to eq. (Iv.4.24) reveals

M(u,u)BH
3 =

Ω

F 6
π

1

i

∫
d4r

(2π)4
G(r; p+, k+)

r2 −M2
π + iϵ

, D(u,u)BH = − Ω

F 6
π

∫
r

H2(xr)G(r; p+, k+) ,

(Iv.5.5)
where Ω ≡ (2p1 · p2)(2k1 · k2) for brevity.

The key step is now to place the r0 integral ofM(u,u)BH
3 in the complex plane, and close the

integration contour from below. This picks up three poles, one for each of the three prop-
agators going on-shell with positive energy (closing it above would pick up the negative-
energy poles). The residue at r2 = M2

π contributes −ΩF−6
π

∫
r
G(r; p+, k+); that is, it is

precisely D(u,u)BH except that there is no H(xr). However, this absence is not straightfor-
ward to compensate for, since without a cutoff the on-shell integrals become UV-divergent.
Let us therefore look closer at G, whose numerator is

(P − r)2 − 2M2
π = (r2 −M2

π) + (P 2 −M2
π)− 2P · r . (Iv.5.6)

The first term on the right-hand side vanishes on-shell, while inM(u,u)BH
3 it cancels one

propagator and gives a simple, UV-divergent B integral [see eq. (Iv.2.3)]. The second
term is UV-finite. The third is also UV-finite for the purposes of M(u,u)BH

3 , but under
an
∫
r

integral it diverges logarithmically. These divergences must ultimately cancel, but
those cancellations are very difficult to handle numerically. Therefore, we apply tensorial
Passarino–Veltman reduction, replacing r with p+ and k+:

−2P · r −→
([

(p+ − r)2 −M2
π ]− [r2 −M2

π ]− p2+
)
ξ(p+, k+)

+
([

(k+ − r)2 −M2
π ]− [r2 −M2

π ]− k2+
)
ξ(k+, p+) ,

(Iv.5.7)

where we define ξ to also handle the case p+ = k+:

ξ(p, k) ≡


p2(P · k)− (p · k)(P · p)

p2k2 − (p · k)2
, if p ̸= k ,

P · p
2p2

, if p = k .
(Iv.5.8)

Each term in square brackets in eq. (Iv.5.7) cancels a propagator in M(u,u)BH
3 and gives

another B integral.

With this in mind, we define the fully UV-safe integrand

G̃(r; p, k) ≡
P 2 −M2

π − p2+ξ(p+, k+)− k2+ξ(k+, p+)[
(p− r)2 −M2

π + iϵ
][
(k − r)2 −M2

π + iϵ
] (Iv.5.9)

(note that it is p, k in the denominator but p+, k+ in the numerator; this will be important
later). Compensating for the modified numerator results in
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M(u,u)BH
3 =

Ω

F 6
π

{
1

i

∫
d4r

(2π)4
G̃(r; p+, k+)

r2 −M2
π + iϵ

+
[
1−ξ(p+, k+)−ξ(k+, p+)

]
B
(
(p+−k+)2

)
+ ξ(p+, k+)B(k2+) + ξ(k+, p+)B(p2+)

}
, (Iv.5.10)

where it is now manifest what carries the UV divergence [namely B
(
(p+ − k+)2

)
, which

matches the result obtained by evaluating eq. (Iv.5.4) the standard way], while

D(u,u)BH = − Ω

F 6
π

∫
r

H2(xr)

{
G̃(r; p+, k+)+

ξ(p+, k+)

(k+ − r)2 −M2
π + iϵ

+
ξ(k+, p+)

(p+ − r)2 −M2
π + iϵ

}
.

(Iv.5.11)
Here, each term in the integral is individually convergent: We have moved the problematic
cancellations to the extra B’s in eq. (Iv.5.10), where they are no problem at all. The extra ξ
terms have at most simple poles.

Now, we apply the contour integration discussed above eq. (Iv.5.6) to the first term in
eq. (Iv.5.10). The r = Mπ residue now contributes −ΩF−6

π

∫
r
G̃(r; p+, k+), which mostly

cancels against the first term in D(u,u)BH, while the remaining residues (from G̃) can either
come from two simple poles or one double pole. Covering both cases, their contribution
is²³

GP (r) ≡

G̃(r;−k+, p+ − k+) + G̃(r; k+ − p+,−p+) , if p+ ̸= k+ ,

−G̃(r;−p+,−p+)
[
1 +

2r · p+ + p2+ + 2ωrp+0

2ω2
r

]
, if p+ = k+ ,

(Iv.5.12)

so that

Ω

F 6
π

∫
d4r

(2π)4
G̃(r; p+, k+)

r2 −M2
π + iϵ

−D(u,u)BH = − Ω

F 6
π

∫
r

[
GH(r) +GP (r)

]
, (Iv.5.13)

where we defined

GH(r) ≡ G̃(r; p+, k+)−H2(xr)G(r; p+, k+)

=
[
1−H2(xr)

]
G̃(r; p+, k+)−

H2(xr)ξ(p+, k+)

(k+ − r)2 −M2
π + iϵ

− H2(xr)ξ(k+, p+)

(p+ − r)2 −M2
π + iϵ

.

(Iv.5.14)

Equation (Iv.5.13), along with eq. (Iv.5.10), is the master formula for this subtraction.

The right-hand side of eq. (Iv.5.13) can be dealt with by modifying the methods of sec-
tion 4.3.4. First, we numerically evaluate∫ (⋄)

r<R

[
1−H2(xr)

]{
G̃(r; p+, k+) +

ξ(p+, k+)

(k+ − r)2 −M2
π + iϵ

+
ξ(k+, p+)

(p+ − r)2 −M2
π + iϵ

}
,

(Iv.5.15)

²³There is no kinematic configuration that gives a triple pole; the r = Mπ pole is always separate from the
others. In particular, the p+ = k+ version of GP is appropriate at threshold.

331



where (⋄) indicates that the integral is evaluated in the Breit frame, i.e.,
∫ (⋄)

G̃(r; p, k) is
taken in the CMF of p + k. By design, the integrand is entirely free from singularities.
Then,∫

r

GH(r) = (Iv.5.15) +
∫ (⋄)

r>R

G̃(r; p+, k+)

−
∫ (⋄)

r<R

{
ξ(p+, k+)

(k+ − r)2 −M2
π + iϵ

+
ξ(k+, p+)

(p+ − r)2 −M2
π + iϵ

}
, (Iv.5.16)

where the angles can be integrated out of the remaining integrals as in eq. (Iv.4.44). Note,
however, that a1,2,3 are now different than in eq. (Iv.4.43), while for ξ we get∫ (⋄)

r<R

ξ(p, k)

(k − r)2 −M2
π + iϵ

=

∫ R

0

2πr2dr

2ωr(2π)3
ξ(p, k) gξ(k

2 − 2k⋄0ωr + iϵ; c) , (Iv.5.17)

where c is given by eq. (Iv.4.43), and

gξ(b; c) ≡


2

b
, if c = 0 ,

1

c

[
log(b− c)− log(b+ c)

]
otherwise .

(Iv.5.18)

Likewise, the angles can be integrated out of
∫
r
GP . Note, however, that each individual

G̃ in eq. (Iv.5.12) is integrated in a different frame, as described below eq. (Iv.5.15). With
that clarified, and with eq. (Iv.4.43) used in each frame separately,∫ (⋄)

r

G̃(r; p, k) =

∫
2πr2dr

2ωr(2π)3
N g(1, 0; b1, b2; c) , (Iv.5.19a)∫ (⋄)

r

G̃(r;−p+,−p+)N ′ =

∫
2πr2dr

2ωr(2π)3
N g

[
1 +

p2+ + 4p⋄+0 ωr

2ω2
r

,− 2rq

2ω2
r

; b1, b2; c

]
,

(Iv.5.19b)

where [taken from eqs. (Iv.5.9) and (Iv.5.12), respectively]

N ≡ P 2 −M2
π − p2+ξ(p+, k+)− k2+ξ(k+, p+) ,

N ′ ≡ 1 +
2r · p+ + p2+ + 2ωrp+0

2ω2
r

.
(Iv.5.20)

Most of the integrands in eqs. (Iv.5.16) and (Iv.5.19) have singularities, but they are, in a
sense, less severe than those encountered in section 4.3.4, and all give finite integrals at
threshold (this is obvious for gξ but quite subtle for GP ). Our efforts with the numera-
tor also ensure that the integrals to infinity can be safely done using a suitable numerical
method. Assembling all these pieces completes the subtraction.
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ABSTRACT: The three-particle K-matrix, Kdf,3, is a scheme-dependent quantity that
parametrizes short-range three-particle interactions in the relativistic-field-theory three-
particle finite-volume formalism. In this work, we compute its value for systems of three
pions in all isospin channels through next-to-leading order (NLO) in Chiral Perturbation
Theory, generalizing previous work done at maximum isospin. We obtain analytic expres-
sions through quadratic order (or cubic order, in the case of zero isospin) in the expansion
about the three-pion threshold.

NOTE: This paper, although mostly complete, is still in preparation for publishing. The
results presented here have not been fully cross-checked and may therefore contain errors,
and the conclusions drawn from them are still preliminary. The reader is directed to the
finished version of the paper, which will likely be published soon after this thesis.
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1 Introduction

First-principles studies of three-hadron physics from Quantum Chromodynamics (QCD)
are finally becoming possible after a number of theoretical, numerical and algorithmic
developments [1–33]. While only simple three-meson systems at maximal isospin have
been studied using lattice QCD [34–46], it is to be expected that more complicated ones
will be investigated soon. The scattering of three generic pions constitutes a potential next
milestone for lattice QCD, since some relevant low-lying resonances such as the ω(782)
can be found.

The extraction of three-particle scattering amplitudes from lattice QCD utilizes the three-
particle finite-volume formalism, which connects finite-volume energies obtained in lat-
tice QCD to the three-particle scattering amplitude. Mainly following three different ap-
proaches, the formalism has been developed for a number of relevant three-hadron systems.
The approach that we will consider in this work, the so-called relativistic-field-theory (RFT)
three-particle formalism [5, 6], has been frequently used in the literature for numerical
studies [37, 40, 41, 45]. In the RFT formalism, the central object parametrizing short-
range three-particle interactions is the three-particle K-matrix, Kdf,3.

The interface between lattice QCD and Chiral Perturbation Theory (ChPT) has proven
to be a valuable source of insights for first-principles predictions of multi-pion quantities.
A recent example is the comparison between lattice QCD results and ChPT for three-
pion results [47], which has provided useful understanding of the chiral dependence of
three-pion quantities. In particular, in ref. [47] we computed the three-pion maximum-
isospinK-matrix at next-to-leading order (NLO) in ChPT. We showed that the previously
observed tension between leading-order (LO) predictions and lattice QCD results forKdf,3
was significantly reduced when comparing against the NLO prediction. This improved
agreement was also an important check of the RFT formalism itself.

In the present work, we aim at generalizing the NLO ChPT results of ref. [47] to the case
of three pions in any possible isospin channel. This result will be useful for future lattice
QCD calculations, either by providing constraints in the near-threshold energy region of
Kdf,3 or by inspiring parametrizations of the three-particle K-matrix. Note, however, that
the presence of resonances when the isospin is not maximal will reduce the energy range
of validity with respect to the maximal-isospin case.

The strategy followed in this work is similar to that followed for the computation at max-
imal isospin [47]. We make use of the 3π → 3π amplitude computed in refs. [48, 49] at
NLO in ChPT. We relate this amplitude to the K-matrix of the three-pion generalization
of the RFT formalism, derived in ref. [20]. Several complications due to the presence of
nonidentical pions are present in this calculation. These include additional structures in
the threshold expansion of Kdf,3, the presence of odd partial waves in certain channels, a
more complicated symmetrization procedure needed to account for all diagrammatic con-
tributions, and the presence of a s-channel diagram of the form 3π → π → 3π, which
contributes to the isospin-1 3π K-matrix.

This paper is organized as follows. In section 2, we present the structure of Kdf,3, the three-
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pion states in the various isospin channels, and the structure of the threshold expansion.
Most details of the relation betweenKdf,3 and the ChPT amplitude are deferred to ref. [47],
since they are the same there as in the present cases. In section 3, we go through the
calculation of Kdf,3, first at LO and then at NLO. We present the results in section 4,
and state some preliminary conclusions in section 5. This paper contains 2 appendices,
detailing the cutoff dependence of Kdf,3 (appendix A) and giving some insight into the
threshold expansion based on group theory (appendix B).

2 Theoretical background

2.1 The three-particle K-matrix from ChPT

MNLO
df,3 = A(4)

MNLO,non-OPE
3

−
MLO

2MLO
2

MLO
2

DBH

+

 MNLO,off
2

MLO,off
2

MNLO,OPE

−
MLO

2

MNLO
2

DNLO,OPE


+ MNLO,off

2MLO,off
2

MNLO,s-OPE

Figure V.1: Sketch of eq. (v.2.1) (compare fig. 2 in ref. [47]). Solid lines represent on-
shell pions, while dotted lines are off-shell propagators. Square boxes indicate
fully on-shell amplitudes, while oval boxes have one leg off shell (factors of G∞

ensure only on-shell amplitudes are needed in D). Finally, blue and pink filling
indicate, respectively, LO and NLO quantities. We leave implicit that we add
(LO↔ NLO) for OPE and s-OPE, and take the real parts of all quantities.

In order to compute Kdf,3 at NLO we will use the same master equation as in ref. [47],
Kdf,3 = ReMdf,3, with the main exception being that quantities in boldface denote ma-
trices in isospin space, as described in the next section. In the case of generic three-pion
isospin, this calculation is split in several parts:

ReMdf,3 = ReMnon-OPE
df,3 −ReDBH +

(
ReMOPE

df,3 − ReDNLO,OPE
)
+ReMs-OPE

df,3 . (v.2.1)
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This decomposition, schematically shown in fig. v.1, is similar to the one in ref. [47], except
that the we explicitly account for the ‘s-channel OPE’ (s-OPE) contribution, which is
only present at I = 1 since the entire 3-particle isospin is transferred to a single pion. The
other contributions are the non-OPE part that does not require subtraction, the bull’s head
subtraction and the OPE part with its subtraction.

2.2 States and channels

Single pions are typically presented in the isospin or charge basis, which is the one used
to define multi-pion states, as they can be easily combined using Clebsh-Gordan coeffi-
cients. However, one usually needs to relate them to the flavor basis (in which the matrix
of pseudo-Nambu–Goldstone boson states is |ϕ⟩ =

∑
i σ

i|i⟩ with σi being the Pauli ma-
trices) in order to determine scattering amplitudes from effective models. The two bases
are related through

|π±⟩ = ∓|1⟩ ± i|2⟩√
2

, |π0⟩ = |3⟩ . (v.2.2)

where we use the Condon–Shortley sign convention.

To study three-pion states, we will follow the approach presented in ref. [20] and use states
with zero electric charge, since these occur for all three-particle isospins.¹ Assuming isospin
is an exact symmetry, exactly the same results will be obtained from states of different charge
within the same isospin multiplet. Thus, in the charge basis we order the 7 zero-charge states
as

|πππ⟩ =



|π−π0π+⟩
|π0π−π+⟩
|π−π+π0⟩
|π0π0π0⟩
|π+π−π0⟩
|π0π+π−⟩
|π+π0π−⟩


. (v.2.3)

This implies that all quantities appearing in this derivation, unless otherwise stated, are
7× 7 matrices in the space of three-pion states.

In many parts of the calculation, it is more useful to rotate to a basis of states with definite
three-particle isospin. This rotation is not unique, however; the choice made for the most
part in ref. [20] is to let the first two particles form states of definite two-particle isospin,
which we label |σ⟩ (Iππ = 0, the channel where the σ resonance is present), |ρ⟩ (Iππ = 1,
where the ρ resonance is present) and |Π⟩ (Iππ = 2, with no resonances). In this isospin

¹We have used higher-charge states for some cross-checks, including of course the maximum-isospin
|π+π+π+⟩ state studied in ref. [47].
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basis,

|πππ⟩ =



|Ππ⟩3
|Ππ⟩2
|ρπ⟩2
|Ππ⟩1
|ρπ⟩1
|σπ⟩1
|σπ⟩0


=



1√
5

(
|Π+π−⟩+

√
3|Π0π0⟩+ |Π−π+⟩

)
1√
2

(
|Π+π−⟩ − |Π−π+⟩

)
1√
6

(
|ρ+π−⟩+ 2|ρ0π0⟩+ |ρ−π+⟩

)
1√
10

(√
3|Π+π−⟩ − 2|Π0π0⟩+

√
3|Π−π+⟩

)
1√
2

(
|ρ+π−⟩ − |ρ−π+⟩

)
|σπ0⟩
1√
3

(
|ρ+π−⟩ − |ρ0π0⟩+ |ρ−π+⟩

)


, (v.2.4)

where the subscripts indicate three-particle isospin, and the specific two-pion states are

|σ⟩ = |π
+π−⟩+ |π−π+⟩ − |π0π0⟩√

3
|Π0⟩ = |π

+π−⟩+ |π−π+⟩+ 2|π0π0⟩√
6

|ρ0⟩ = |π
+π−⟩ − |π−π+⟩√

2
|Π±⟩ = |π

±π0⟩+ |π0π±⟩√
2

|ρ±⟩ = ±|π
±π0⟩ − |π0π±⟩√

2
|Π±±⟩ = |π±π±⟩ .

(v.2.5)

Kdf,3 and all other relevant quantities block-diagonalize in this basis, as is described in
detail in ref. [20].

Yet another basis, which relates more directly to the threshold expansion, aligns the states
with irreps of the S3 group describing permutations of the three particles, still with definite
isospin. States are denoted |χs⟩ for the trivial (symmetric) irrep, |χa⟩ for the alternating
irrep, and |χ1⟩, |χ2⟩ for the two-dimensional standard irrep; the details of the irreps are
given in appendix C of ref. [20]. Of these irreps, I = 3 is in the trivial, I = 0 in the
alternating, I = 2 in the standard, and I = 1 in a direct sum of the trivial and standard.
Thus, only for I = 1 does the isospin basis differ from this symmetric basis, where²

|πππ⟩ =



|χs⟩3
|χ1⟩2
|χ2⟩2
|χs⟩1
|χ1⟩1
|χ2⟩1
|χa⟩0


=



|Ππ⟩3
|Ππ⟩2
|ρπ⟩2
2
3 |Ππ⟩1 +

√
5
3 |σπ⟩1

|ρπ⟩1
−

√
5
3 |Ππ⟩1 +

2
3 |σπ⟩1

|χa⟩0


. (v.2.6)

The rotation from the charge basis to the irrep and symmetric bases is given by the orthog-
onal matrices CI and CS, respectively (the former stated in eq. (2.60) of ref. [20]), given

²This is eqs. (C.11) to (C.19) of ref. [20], and eq. (v.2.4) is eqs. (C.1) to (C.9). Note the ordering of the I = 1
states, which is consistent with most of ref. [20] but not with eqs. (C.11) to (C.19) threof. Note also the differing
sign conventions.
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by

CI = C



1 1 1 2 1 1 1
−1 −1 0 0 0 1 1
−1 1 −2 0 2 −1 1
3 3 −2 −4 −2 3 3√
3 −

√
3 0 0 0 −

√
3
√
3

0 0 2 −2 2 0 0
−1 1 1 0 −1 −1 1


,

CS = C



1 1 1 2 1 1 1
−1 −1 0 0 0 1 1
−1 1 −2 0 2 −1 1
2 2 2 −6 2 2 2
−1 −1 2 0 2 −1 −1√
3 −

√
3 0 0 0 −

√
3
√
3

−1 1 1 0 −1 −1 1


,

(v.2.7)

with C = diag
(

1√
10
, 12 ,

1√
12
, 1√

60
, 1√

12
, 1√

12
, 1√

6

)
pulling out common coefficients.

2.3 The threshold expansion

Here, we write down the parametrization of the threshold expansion. The fundamental
building blocks of this parametrization are, following ref. [14],

t̃ij ≡
(pi − kj)2

9M2
π

, ∆i ≡
(P − ki)2 − 4M2

π

9M2
π

, ∆ ≡ P 2 − 9M2
π

9M2
π

, (v.2.8)

plus ∆′
i, which is the analogue of ∆i obtained by substituting ki → pi.³ All of these are

considered to be O(∆) in the expansion. They are related through

∆ = − 1
2

∑
i,j

t̃ij , ∆j = ∆+
∑
i

t̃ij , ∆′
i = ∆+

∑
j

t̃ij ,

where all sums run from 1 to 3.

In the following, we restate the threshold expansions derived in refs. [14, 20], plus a few
terms not present in those publications. Similarly to ref. [47], we somewhat simplify the
notation for the K coefficients, and furthermore depart from ref. [20] in defining all oper-
ators (∆, ξ⃗, etc.) to be dimensionless.

2.3.1 Iπππ = 3

Through quadratic order in ∆, we have the five terms computed in ref. [47]:

M2
πK

[I=3]

df,3 = K0 +K1∆+K2∆
2 +KA∆A +KB∆B +O(∆3) , (v.2.9)

³Throughout the following, a prime always refers to this substitution.
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where
∆A ≡

∑
i

(
∆2

i +∆′2
i

)
−∆2 , ∆B ≡

∑
i,j

t̃ 2ij −∆2 . (v.2.10)

2.3.2 Iπππ = 2

This channel involves a two-dimensional flavor space, so all operators need to be doublets
that transform under the standard representation of S3. Following the basis choice of
ref. [20], the initial-state doublet at linear order in momenta is

ξ⃗ µ =
(
ξµ1 , ξ

µ
2

)
, where ξ1 ≡

2k3 − k1 − k2√
6Mπ

, ξ2 ≡
k2 − k1√
2Mπ

. (v.2.11)

Still following ref. [20], quadratic order introduces three Lorentz tensor doublets, of which
only the following two are relevant here:

ξ⃗(S)µν ≡ ξ⃗ µP ν + ξ⃗ νPµ

Mπ
, ξ⃗(S̄)µν ≡

(
ξµ2 ξ

ν
2 − ξ

µ
1 ξ

ν
1 , ξ

µ
1 ξ

ν
2 + ξµ2 ξ

ν
1

)
. (v.2.12)

There is also one Lorentz scalar doublet,

ξ⃗ (2) =
(
ξ
(2)
1 , ξ

(2)
2

)
, where ξ

(2)
1 ≡ 2∆3 −∆1 −∆2√

6
, ξ

(2)
2 ≡ ∆2 −∆1√

2
, (v.2.13)

which has the property ξ⃗ (2) = − 2
9Mπ

ξ⃗ µPµ. The ξ’s and their primed counterparts form
four independent tensors in isospin space (one at linear order and three at quadratic); here,
we label these using

Ξ1 ≡ ξ⃗ ′µ ⊗ ξ⃗µ , Ξ2 ≡ ξ⃗ ′(2) ⊗ ξ⃗ (2) ,

Ξ3 ≡ 1√
6

[
ξ⃗ ′(S̄)µν ⊗ ξ⃗(S)µν + ξ⃗ ′(S)µν ⊗ ξ⃗(S̄)µν

]
, Ξ4 ≡ ξ⃗ ′(S̄)µν ⊗ ξ⃗(S̄)µν

(v.2.14)

where ⊗ indicates a tensor product like

ξ⃗ ′µ ⊗ ξ⃗µ =

(
ξ′1 · ξ1 ξ′1 · ξ2
ξ′2 · ξ1 ξ′2 · ξ2

)
= Ξ1 (v.2.15)

and we have pulled out a factor of
√
6 in the definition of Ξ3, since this would otherwise

appear in all our results. This allows the threshold expansion to be written

M2
πK

[I=2]

df,3 =
(
KT

0 +KT
1∆
)
Ξ1 +

∑
n=2,3,4

KT
n Ξn +O(∆3) , (v.2.16)

where ‘T’ stands for ‘isotensor’.
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2.3.3 Iπππ = 1

Here, the flavor space is three-dimensional. Following ref. [20], we decompose the states
into a singlet and a doublet, transforming under the trivial and standard representation of
S3, respectively, and put the singlet as the first component. Thus, in block form, we have

K
[I=1]

df,3 =

(
K

[I=1,SS]
df,3 K

[I=1,SD]

df,3
K

[I=1,DS]
df,3 K

[I=1,DD]

df,3

)
. (v.2.17)

The singlet-singlet (SS) sector is similar to the I = 3 case, eq. (v.2.9):

M2
πK

[I=1,SS]
df,3 = KSS

0 +KSS
1 ∆+KSS

2 ∆2 +KSS
A ∆A +KSS

B ∆B +O(∆3) , (v.2.18)

whereas the doublet-doublet (DD) sector is similar to the I = 2 case, eq. (v.2.16):

M2
πK

[I=1,DD]

df,3 =
(
KDD

0 +KDD
1 ∆

)
Ξ1 +

∑
n=2,3,4

KDD
n Ξn +O(∆3) . (v.2.19)

At O(∆), the sole operator that fits the singlet-doublet (SD) mixing sector is ξ⃗ (2), defined
in eq. (v.2.13). At O(∆2), new operators are needed that are not included in ref. [20].
They are constructed by taking the following building blocks, which are singlets under
permutations of the final-state momenta,

∆∆i , ∆i∆j ,
∑
i

t̃ij t̃ik , (v.2.20)

and forming doublets under permutations of the initial-state momenta. From ∆∆i, we
simply obtain ∆ξ(2), while ∆i∆j and

∑
i t̃ij t̃ik yield two operators each:⁴

ξ⃗ (4,n) =
(
ξ
(4,n)
1 , ξ

(4,n)
2

)
, where n = 2, 3, 4 and



ξ
(4,2)
1 ≡ 2∆2

3 −∆2
1 −∆2

2√
6

, ξ
(4,2)
2 ≡ ∆2

2 −∆2
1√

2
,

ξ
(4,3)
1 ≡

∑
i

(t̃i1 + t̃i2)t̃i3 − 2t̃i1t̃i2√
6

, ξ
(4,3)
2 ≡

∑
i

(t̃i2 − t̃i1)t̃i3√
2

,

ξ
(4,4)
1 ≡

∑
i

2t̃ 2i3 − t̃ 2i1 − t̃ 2i2√
6

, ξ
(4,4)
2 ≡

∑
i

t̃ 2i2 − t̃ 2i1√
2

.

(v.2.21)

Thus,

M2
π√
30

K
[I=1,SD]

df,3 =
(
KSD

0 +KSD
1 ∆

)
ξ⃗ (2) +

∑
n=2,3,4

KSD
n ξ⃗ (4,n) +O(∆3) . (v.2.22)

⁴Throughout, we use the sign convention established by ref. [20] with ξ⃗ (2), so that the format of ξ(4,n)
2 is

‘2 − 1’ rather than ‘1 − 2’. It is also possible to form the analog of ξ⃗ (4,3) using ∆i∆j , but that is equal to
ξ⃗ (2)∆− ξ⃗ (4,2) and is therefore redundant.
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K
[I=1,DS]
df,3 is obtained from this by exchanging pi ↔ ki and taking the transpose. We have

pulled out a factor of
√
30 in the definition of K[I=1,SD]

df,3 , since this would otherwise appear
in all our results.

2.3.4 Iπππ = 0

Here, all operators must be totally antisymmetric under permutations of the momenta,
which puts the leading order at O(∆2) and makes O(∆3) contributions simple enough to
include, unlike in the other channels (see appendix B). The threshold expansion is

M2
πK

[I=0]

df,3 =
(
KAS

0 +KAS
1 ∆

)
∆

(2)
AS +KAS

3 ∆
(3)
AS +KAS

4 ∆
(4)
AS +O(∆4) , (v.2.23)

where ‘AS’ stands for ‘antisymmetric’, and the operators are

∆
(2)
AS ≡

∑
i,j,k
m,n,r

ϵijkϵmnr t̃imt̃jn ,

∆
(3)
AS ≡

∑
i,j,k
m,n,r

ϵijkϵmnr t̃imt̃jnt̃kr , ∆
(4)
AS ≡

∑
i,j,k
m,n,r

ϵijkϵmnr t̃imt̃jn
(
t̃im + t̃jn

)
,

(v.2.24)

of which ∆
(4)
AS was missed in the analysis of ref. [20].

3 The calculation of Kdf,3

Here, we describe the explicit calculation of Kdf,3. It largely follows the same lines as that
performed in ref. [47], and we refer the reader there for most of the procedural details.

3.1 Leading-order calculation

We start with the calculation at LO. Some of the details are the same for the NLO case,
but it is illustrative to show them explicitly in the simpler case. In particular, the bull’s
head subtraction in eq. (v.2.1) is absent at LO. We thus split the calculation in three-parts,
each with a subsection: the OPE contribution, the s-channel OPE contribution, and the
non-OPE part.

3.1.1 OPE contributions

In terms of flavor indices, the two-particle amplitude for ϕa(k1)ϕb(k2) → ϕc(p3)ϕ
d(b)

decomposes as [50]

M2(s, t, u) = δabδcdA(s, t, u) + δacδbdA(t, u, s) + δadδbcA(u, s, t) , (v.3.1)
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where
s ≡ (k1 + k2)

2 , t ≡ (k1 − p3)2 , u ≡ (k2 − p3)2 , (v.3.2)

and the functionA(s, t, u) is symmetric in its last two arguments. The leg with momentum
b may be off-shell, in which case we use the off-shell convention of ref. [48] to express A.
Since the choice of the first argument of A completely fixes A, we abbreviate: A(t) ≡
A(t, u, s), and similarly for A(s) and A(u).

Letting M2 act on the first two particles in a three-pion state with the third particle as
spectator, considering which particle exchanges are valid reveals a block-diagonal form in
the charge basis, eq. (v.2.3):

M2 =

M+
2

M0
2

M−
2

 , with M+
2 = M−

2 =

(
A(t) A(u)
A(u) A(t)

)
(v.3.3)

and M0
2 =

A(s) +A(t) −A(s) A(s) +A(u)
−A(s) A(s) +A(t) +A(u) −A(s)

A(s) +A(u) −A(s) A(s) +A(t)

 .

k3

k1

k2

p1

p2

p3

b

(a) OPE diagram

k1

k2

k3

p1

p2

p3

(b) Contact diagram

k1

k2

k3

p1

p2

p3

P

(c) s-channel OPE diagram

Figure V.2: Feynman diagrams contributing toM3 at LO. For diagram (a), there are an
additional eight diagrams corresponding to the symmetrization of initial and
final momenta. Diagram (c) only contributes at I = 1.

At LO, the OPE contributions come from the symmetrization of fig. v.2a, and from
the matching subtraction term. Thus, the OPE contribution to the unsymmetrized and
divergence-free amplitude, M(u,u)

df,3 , is

M
(u,u),OPE
df,3 = −M2,off

TG

b̄2 + iϵ
M2,off +

∑
ℓ′ℓ

Mℓ′

2,onTGG
∞
ℓ′ℓM

ℓ
2,on , (v.3.4)

where b̄2 ≡ b2−M2
π , Mℓ

2,on is the partial-wave projected on-shell scattering amplitude, and
the definition of G∞

ℓ′ℓ can be found in eq. (2.12) of ref. [47]. Note that in this equation,
the momentum dependence of the two-pion amplitudes is left implicit: the amplitudes to
the left⁵ depend on the outgoing {pi} momenta, and those to the right on the incoming
momenta {ki}. We also emphasize that inM2,off, the momentum of the exchanged particle

⁵Strictly speaking, it should appear transposed in eq. (v.3.4), but we have chosen our bases such that it is
symmetric.
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bmay be off-shell, while inM2,on everything is kept on-shell. The matrixTG indicates valid
exchanges between states; in the charge basis, it is

TG =



□ □ □ □ □ □ ■
□ □ □ □ ■ □ □
□ □ □ □ □ ■ □
□ □ □ ■ □ □ □
□ ■ □ □ □ □ □
□ □ ■ □ □ □ □
■ □ □ □ □ □ □


, □ = 0 , ■ = 1 , (v.3.5)

using squares rather than numbers for legibility. Expanding A to leading order in ChPT,
we find

MLO
2 = k0 + k2s̄+ k2(t+ u) + k3(t− u) , (v.3.6)

where s̄ ≡ s − 4M2
π , and the coefficients ki are straightforward to compute in the charge

basis for a givenA amplitude. In the subtraction, we need to separate the on-shell two-pion
amplitude into partial waves. At LO, only s and p waves appear. The separation can thus
be performed simply by dividing the amplitude into a symmetric and an antisymmetric
part,

Ms
2(s, t, u) =

1
2

[
M2(s, t, u) +M2(s, u, t)

]
= k0 + k2s̄+ k2(t+ u),

Mp
2(s, t, u) =

1
2

[
M2(s, t, u)−M2(s, u, t)

]
= k3(t− u).

(v.3.7)

To the ChPT order we are working (and also at NLO) the p-wave amplitude is proportional
to t− u, which can be expanded using the addition theorem for spherical harmonics to

t− u = 4p∗k · a∗
k = 4p∗kq

∗
2k

[
4π

3

∑
m

Y ∗
1m(â∗

k)Y1m(p̂∗k)

]
. (v.3.8)

In our off-shell prescription, this implies that, as is the case for d-waves [47], that the
difference between the on- and off-shell p-wave amplitudes is entirely made up of the barrier
factors:

Mp
2,off({ki}) = Mp

2,on({ki})
(
p∗k
q∗2k

)
, Mp

2,off({pi}) = Mp
2,on({pi})

(
k∗p
q∗2p

)
. (v.3.9)

In order to compute the subtracted result, we separate the s-wave part into an on-shell and
an off-shell part, the latter of which is proportional to b̄2 as can be seen by applying the
off-shell relation t+ u = 4M2

π − s+ b̄2. Taking this into account, we write

M2,off = Ms
2,on +Mp

2,off + b̄2 δMs
2 . (v.3.10)

Then, the unsymmetrized divergence-free OPE amplitude is

M
(u,u),OPE,LO
df,3 = −δMs

2

b̄2

b̄2
TGM2,off −M2,off

b̄2

b̄2
TGδM

s
2 + δMs

2

b̄4

b̄2
TGδM

s
2. (v.3.11)
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This can be computed easily, but we need not show this intermediate result.

To obtain the full contribution, the symmetrization procedure must be performed. In the
case of general three-pion isospin, it is slightly more complicated than in ref. [47], since it
must be done for momentum and flavor simultaneously. This is achieved by using

Mdf,3 =

2∑
m=0

2∑
n=0

(
Rm

)T
M

(u,u)

df,3
(
Rm{pi}, Rn{ki}

)
Rn , (v.3.12)

where R{p1, p2, p3} = {p2, p3, p1} is a cyclic permutation (due to the symmetry of the
interacting pair, only the cyclic subgroup of S3 needs to be considered) and R enacts the
same permutation on the space of three-pion states. Following ref. [20], its form in the
charge basis is

R =



□ □ □ □ ■ □ □
□ □ □ □ □ □ ■
□ ■ □ □ □ □ □
□ □ □ ■ □ □ □
□ □ □ □ □ ■ □
■ □ □ □ □ □ □
□ □ ■ □ □ □ □


, □ = 0 , ■ = 1 . (v.3.13)

In the symmetric basis, it instead takes the block-diagonal form

R = diag
(
1,R2, 1,R2, 1

)
, R2 =

1

2

(
−1 −

√
3

+
√
3 −1

)
. (v.3.14)

corresponding to the distribution of one- and two-dimensional irreps.

After symmetrization and conversion of the kinematical variables to t̃ij , we can identify
the terms in the threshold expansion. At LO, this can be done by inspection since there is
only one term per order in the threshold expansion in each isospin sector; at higher orders,
it requires the solution of systems of equations. The results are listed in table v.1. Note that
most of the contributions are pure s-wave; all pure p-wave contributions cancel, and only
KT

0 and KDD
0 get contributions from mixed s- and p-wave diagrams (amounting to 9 out

of the total 21/2 in both cases).

3.1.2 s-channel OPE contributions

The s-channel OPE diagram, fig. v.2c, needs no subtraction since the exchanged momen-
tum P = k1 + k2 + k3 is off-shell in the kinematic range of interest. This contribution
appears only in the I = 1 channel, and for zero-charge states, the exchanged particle must
be a π0. Thus, the s-channel OPE amplitude can be factorized as follows:

Ms-OPE,LO
df,3 = −vLO

(
{pi}

) 1

P 2 −M2
π

v†LO
(
{ki}

)
, (v.3.15)
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where v is a column vector of πππ → π0 amplitudes from all seven states in the charge basis,
with the π0 off-shell. It can be computed from the amplitude introduced in eq. (v.3.1),
giving

F 2
πMLO

2 [π0(k1)π
0(k2)π

0(k3)→ π0(P )] = s12 + s23 + s13 − 3M2
π ,

F 2
πMLO

2 [π+(k1)π
0(k2)π

0(k3)→ π0(P )] =M2
π − s13 ,

(v.3.16)

where sij ≡ (ki + kj)
2. After taking the relevant permutations, rotating to the symmetric

basis and converting to threshold expansion parameters, we get in the I = 1 sector of the
symmetric basis

vLO
(
{ki}

)
=
M2

π

F 2
π

−3
√
15(1 + ∆)

81ξ
(2)
1 /
√
2

81ξ
(2)
2 /
√
2

 , (v.3.17)

where ξ⃗ 2 is given in eq. (v.2.13). We also need the threshold expansion of the single-particle
propagator,

1

P 2 −M2
π

=
1

M2
π(8− 9∆)

=
1

8M2
π

(
1− 9

8
∆ +

81

64
∆2 +O(∆3)

)
. (v.3.18)

Note that this expansion formally sets the radius of convergence of the threshold expansion
at |∆| ≤ 8/9.

Using these expressions we can directly identify the coefficients in the threshold expansion
after multiplication. The results up to quadratic order are listed in table v.1. Note that some
terms will appear at higher orders in the threshold expansion, but we will not consider them
here; work to check their effect numerically is ongoing.

3.1.3 non-OPE contributions

At leading order, the non-OPE part comes from the diagram fig. v.2b, and has a simple
form given in ref. [48]. In the charge basis, the amplitude matrix follows by crossing from

M3[π
0π0π0 → π0π0π0] = 27M2

π ,

M3[π
0π0π0 → π+π0π−] = 5M2

π − 3s′13 − t12 − t22 − t32 ,
M3[π

+π0π− → π+π0π−] = −6M2
π + s13 + s′13 + t11 + 2t22 + t33 ,

(v.3.19)

where the momenta are k1, k2, k3 → p1, p2, p3 (in that order), and

sij = (ki + kj)
2 , s′ij = (pi + pj)

2 , tij = (ki − pj)2 . (v.3.20)

The result is non-divergent, so no subtraction is needed. Identifying the coefficients of the
threshold expansion yields the results, given in table v.1.
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Table V.1: LO contributions to Kdf,3, and the contributions from different parts. There
is no bull’s head subtraction or cutoff dependence at this order. Note that ‘s-
channel OPE’ is not a part of ‘OPE’, but a separate contribution.

Total OPE s-channel OPE non-OPE
I
=
3 F 4

π

M4
π
K0 18 36 0 −18

F 4
π

M4
π
K1 27 63 0 −36

I
=
2 F 4

π

M4
π
KT

0
9
2

21
2 0 −6

I
=

1

F 4
π

M4
π
KSS

0 − 111
8 −54 − 135

8 57
F 4

π

M4
π
KSS

1 − 1137
64 −27 − 945

64 24
F 4

π

M4
π
KSS

2 − 135
512 0 − 135

512 0

F 4
π

M4
π
KSD

0 − 3
8 −9 − 27

8 12
F 4

π

M4
π
KSD

1
27
64 0 27

64 0

F 4
π

M4
π
KDD

0
1
2

21
2 0 −10

F 4
π

M4
π
KDD

2 − 81
4 0 − 81

4 0

I
=
0 (there are no I = 0 contributions at this order)

3.2 Next-to-leading-order calculation

Unlike at LO, the NLO amplitude depends on the low-energy constants (LECs) of ChPT.
The four LECs that are relevant to our calculations are denoted ℓri for i = 1, 2, 3, 4, with the
‘r’ indicating that they are renormalized, as described more closely in ref. [47]. The renor-
malization scale µ appears through the quantity L ≡ κ log(M2

π/µ
2), with κ ≡ 1/(16π2).

3.2.1 OPE contributions

These contributions are calculated in a similar way to what is described in section 3.1.1, ex-
cept that one ππ amplitude is promoted to NLO. Similar to eq. (v.3.6), it can be expressed
as

MNLO
2 = a1 + b1s̄+ b2(t+ u) + b3(t− u)

+ c1s̄
2 + c2s̄(t+ u) + c3s̄(t− u) + c4(̄t+ u)2 + c5(t+ u)(t− u) + c6ut

+ d1s̄
3 + d2s̄

2(t+ u) + d3s̄
2(t− u) + d4s̄(t+ u)2 + d5s̄(t+ u)(t− u)

+ d6s̄ut+ d7(t+ u)3 + d8(t+ u)2(t− u) + d9(t+ u)ut+ d10(t− u)ut
+O(s̄4, t4, u4) .

(v.3.21)
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All the coefficients ai,bi, ci,di can be computed analytically from ref. [50]. The central
equation for this computation is eq. (v.3.4), with a contribution with the incoming ampli-
tude at LO and the outgoing amplitude at NLO, and vice versa:

M
(u,u),OPE
df,3 = −MLO

2,off
TG

b̄2 + iϵ
MNLO

2,off +
∑
ℓ′ℓ

MLO,ℓ′

2,on TGG
∞
ℓ′ℓM

NLO,ℓ
2,on + (LO↔ NLO).

(v.3.22)
For simplicity, we will subdivide the calculation into multiple parts based on these coeffi-
cients and their contributions to different partial waves, up to and including ℓ = 3.

Terms with a1, b1 and c1 are completely on-shell and pure s-wave. The only contribution
that survives after subtraction comes from the (t+u) part of the LO amplitude; specifically,

M
(u,u)

df,3 ⊃ −
(
a1 + b1s̄+ c1s̄

2
)
Gk2b̄

2 + (in↔ out) . (v.3.23)

Terms with b2, c2 and d2 contain both on and off-shell parts and are pure s-wave. All terms
in the LO amplitude contribute, but the cubic term d2 only survives in combination with
k0. Specifically,

M
(u,u)

df,3 ⊃−
(
b2 + c2s̄

)
b̄2 G

(
k0 + k1s̄+ k3(t− u)

)
−
(
b2 + c2s̄

)
Gk2b̄

2
(
b̄2 − s̄− s̄′

)
− d2s̄

2b̄2 Gk0

+ (in↔ out) .
(v.3.24)

Terms with b3, c3 and d3 are pure p-wave, and no off-shellness remains after accounting
for barrier factors. Terms with d3 do not contribute at quadratic order, and those with b3

and c3 contribute only in combination with k2, leading to contributions with s-p wave
mixing; specifically,

M
(u,u)

df,3 ⊃−
(
b3 + c3s̄

)
(t− u)Gk2b̄

2 + (in↔ out) . (v.3.25)

The term with c4 contains both on- and off-shell parts, and is pure s-wave, with all terms in
the LO amplitude contributing. Terms with d4 and d7 are pure s-wave and have off-shell
parts that contribute only in combination with k0. Specifically,

M
(u,u)

df,3 ⊃− c4b̄
2(b̄2 − 2s̄)G

(
k0 + k1s̄+ k3(t− u)

)
− c4s̄Gk2b̄

2
(
(b̄2)2 − b̄2s̄′ + 2s̄s̄′ − 2s̄b̄2 + s̄2

)
− d4s̄b̄

2(b̄2 − 2s̄)Gk0 − d7b̄
2
(
(b̄2)2 − 3b̄2s̄− 3s̄2

)
Gk0

+ (in↔ out) .

(v.3.26)

Terms with c5, d5 and d8 are pure p-wave and the contain off-shell parts even after ac-
counting for barrier factors. They contribute as

M
(u,u)

df,3 ⊃− c5b̄
2(t− u)G

(
k0 + k1s̄+ k3(t− u)

)
− c5(t− u)b̄2 Gk2(b̄

2 − s̄− s̄′)
−
(
d5s̄+ d8(b̄

2 − 2s̄)
)
b̄2(t− u)Gk0 + (in↔ out) .

(v.3.27)
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Terms with c6, d6 and d9 contain s and d waves and contribute

M
(u,u)

df,3 ⊃− c6b̄
2
(
1
4 b̄

2 − 1
3 s̄−

1
48 s̄b̄

2
)
G
(
k0 + k1s̄+ k3(t− u)

)
− c6[ut]s Gk2(b̄

2 − s̄) + c6[ut]
on
s Gk2(−s̄)

− c6[ut]d Gk2(b̄
2)− d9[ut]d Gk0(b̄

2)− d6s̄b̄
2
(
1
4 b̄

2 − 1
3 s̄
)
Gk0

− d9b̄
2
(
1
4 (b̄

2)2 − 7
12 s̄b̄

2 + 1
2 s̄

2
)
Gk0 + (in↔ out) ,

(v.3.28)

where tu = [tu]s + [tu]d,

[tu]s =
1

4
(s̄− b̄2)2 − 4

3
q∗22,pk

∗2
p , [tu]d = q∗22,pk

∗2
p

8π

15

∑
m

Y ∗
2m(â∗

p)Y2m(k̂
∗
p), (v.3.29)

and [tu]on
s = 1

4 (s̄)
2 − 4

3q
∗4
2,p.

The term with d10 is cubic, so it only contributes in combination with k0, and since k0

terms are on-shell, only the off-shellness of the d10 term survives after subtraction. It
contains both p- and f -waves (ℓ = 3), which requires the decomposition

(a∗
p · k

∗
p)

3 = q∗32,pk
∗3
[
3

5

4π

3
Y ∗
1m(â∗

p)Y1m(k̂
∗
p) +

2

5

4π

7
Y ∗
3m(â∗

p)Y3m(k̂
∗
p)

]
, (v.3.30)

which is the f -wave counterpart of eq. (v.3.8). Guided by this, we split the coefficient as
(t−u)ut = [(t−u)ut]p+[(t−u)ut]f , of which the latter cancels exactly in the subtraction.
The remaining p-wave part is

[(t− u)ut]p =
1

4

(
(s̄− b̄2)2 − 48

5
q∗22,pk

∗2
)
q∗2,pk

∗ 16π

3
Y ∗
1m(â∗

p)Y1m(k̂
∗
p) . (v.3.31)

Analogously to eq. (v.3.9), the on-shell version is obtained by setting b̄ = 0 and multiplying
by a factor of k∗p/q∗2p, which theG in the subtraction changes to (k∗)2. Thus, the subtracted
result is

M
(u,u)

df,3 ⊃
1
4d10

(
b̄2 − 2s̄+ 6

5 s̄
)
b̄2(t− u)Gk0(in↔ out) . (v.3.32)

Lastly, the cubic-order terms for I = 0 require only the pure p-wave part of the LO ampli-
tude, namely k3(t− u), and we likewise require only the part of the NLO amplitude that
is proportional to (t− u), namely

MNLO
2 ⊃ d3s̄

2(t− u) + d5s̄(t+ u)(t− u) + d8(t+ u)2(t− u) + d10(t− u)ut , (v.3.33)

of which d3 vanishes after subtraction, and the coefficient d5 is found to be zero at NLO.
The contributions from d5 and d8 are simple to evaluate:

M
(u,u)

df,3 ⊃ −
(
d5s̄+ d8(b̄

2 − 2s̄)
)
b̄2(t− u)Gk3(t

′ − u′) + (in↔ out) , (v.3.34)

while for d10 we obtain, after similar manipulations to those above,

M
(u,u)

df,3 ⊃
1
4d10

(
b̄2 − 2s̄+ 6

5 s̄
)
b̄2(t− u)Gk3(t

′ − u′) + (in↔ out) . (v.3.35)

The complete OPE contributions, including the cubic-order ones for I = 0, are listed in
table v.2.
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Table V.2: All NLO OPE contributions up to quadratic order in the threshold expansion
(excluding the s-channel OPE). The cubic-order contributions to I = 0 are also
included.

I
=

3
F 6

π

M6
π
K0 25κ + 78L − 576ℓr1 − 432ℓr2 − 72ℓr3 + 144ℓr4

F 6
π

M6
π
K1

6831κ
20 + 372L − 1332ℓr1 − 1206ℓr2 + 252ℓr4

F 6
π

M6
π
K2

230 481κ
280 + 576L − 1080ℓr1 − 1188ℓr2

F 6
π

M6
π
KA − 53 199κ

560 + 45L + 189ℓr1 − 459
2 ℓr2

F 6
π

M6
π
KB

54 171κ
140 + 216L − 648ℓr1 − 324ℓr2

I
=

2

F 6
π

M6
π
KT

0
207κ
40 − 2L − 210ℓr1 − 15ℓr2 + 42ℓr4

F 6
π

M6
π
KT

1
351 251κ

3360 + 125L
2 − 483

2 ℓr1 − 267
4 ℓr2

F 6
π

M6
π
KT

2 − 47 109κ
160 − 387L

2 + 837
2 ℓr1 +

1485
4 ℓr2

F 6
π

M6
π
KT

3
138 043κ
20 160 + 27L

4 −
45
4 ℓ

r
1 − 117

8 ℓr2
F 6

π

M6
π
KT

4 − 2693κ
630 + 11L

3 − 17ℓr1 − 5
2ℓ

r
2

I
=

1

F 6
π

M6
π
KSS

0 − 1475κ
6 + 303L − 96ℓr1 − 312ℓr2 − 132ℓr3 − 216ℓr4

F 6
π

M6
π
KSS

1 − 12 773κ
40 + 362L − 522ℓr1 − 501ℓr2 − 108ℓr4

F 6
π

M6
π
KSS

2
304 767κ

560 + 516L − 1170ℓr1 − 963ℓr2
F 6

π

M6
π
KSS

A
489 117κ

1120 + 1365L
4 − 1917

2 ℓr1 − 1089
2 ℓr2

F 6
π

M6
π
KSS

B
95 097κ

280 + 351L − 648ℓr1 − 729ℓr2

F 6
π

M6
π
KSD

0
154κ
5 + 59L − 72ℓr1 − 33ℓr2 − 36ℓr4

F 6
π

M6
π
KSD

1 − 53 775κ
896 − 99L

4 −
171
8 ℓr1 +

1359
16 ℓr2

F 6
π

M6
π
KSD

2
24 123κ

224 + 237L
4 − 837

4 ℓr1 − 585
8 ℓr2

F 6
π

M6
π
KSD

3
3729κ
320 + 75L

4 −
351
4 ℓr1 − 99

8 ℓ
r
2

F 6
π

M6
π
KSD

4 − 61 143κ
1120 −

3L
2 −

351
4 ℓr1 +

387
8 ℓr2

F 6
π

M6
π
KDD

0 − 857κ
120 − 18L − 126ℓr1 − 9ℓr2 + 42ℓr4

F 6
π

M6
π
KDD

1
926 543κ
10 080 + 305L

6 − 309
2 ℓr1 − 301

4 ℓr2
F 6

π

M6
π
KDD

2 − 134 797κ
1120 − 93L

2 −
405
2 ℓr1 +

963
4 ℓr2

F 6
π

M6
π
KDD

3
398 287κ
60 480 + 149L

36 + 13
4 ℓ

r
1 − 337

24 ℓ
r
2

F 6
π

M6
π
KDD

4
37 577κ
7560 + 13L

3 − 17ℓr1 − 9
2ℓ

r
2

I
=

0

F 6
π

M6
π
KAS

0
693κ
20 + 54L − 324ℓr1

F 6
π

M6
π
KAS

1 0
F 6

π

M6
π
KAS

3 − 1215κ
32

F 6
π

M6
π
KAS

4 − 26 487κ
1120
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3.2.2 s-channel OPE contributions

This calculation is done as described in section 3.1.2, but instead of eq. (v.3.15), we use

Ms-OPE,NLO
df,3 = −v†NLO

(
{pi}

) 1

P 2 −M2
π

vLO
(
{ki}

)
+ (in↔ out) , (v.3.36)

where, in the I = 1 sector of the isospin basis,

vNLO
(
{ki}

)
=
M2

π

F 2
π

 cS0 + cS1∆+ cS2∆
2 + cSA∆A

cD1 ξ
(2)
1 + cD21∆ξ

(2)
1 + cD22ξ

(4,2)
1

cD1 ξ
(2)
2 + cD21∆ξ

(2)
2 + cD22ξ

(4,2)
2

 , (v.3.37)

and
1√
15
cS0 = − 1

2 (19κ− 19L+ 16ℓ1 + 16ℓ2 + 4ℓ3 + 12ℓ4) ,

1√
15
cS1 = − 1

12 (181κ− 168L+ 288ℓ1 + 144ℓ2 + 72ℓ4) ,

1√
15
cS2 = 201

16 κ+ 9L− 27ℓ1 − 27
2 ℓ2 ,

1√
15
cS3 = 405

16 κ+ 27
2 L− 27ℓ1 − 27ℓ2 ,

1√
2
cD1 = 125

4 κ+ 42L− 72ℓ1 − 36ℓ2 − 18ℓ4 ,

1√
2
cD21 = − 9

2κ+ 27L− 81ℓ2 ,

1√
2
cD22 =

513

8
κ− 162ℓ1 + 81ℓ2 .

(v.3.38)

Combining these results and expanding the propagator, the contributions up to quadratic
order in the threshold expansion are summarized in table v.3.

3.2.3 non-OPE contributions

At NLO, the non-OPE contribution encompasses the large number of diagrams not cov-
ered by the OPE or s-channel OPE parts, including the “bull’s head” triangle diagrams
shown in fig. v.3. These contributions are all regular in the real part, so they can be added
directly to Kdf,3 without considering any subtractions. The highly nontrivial threshold
expansion of the loop integral functions is described in section 4.2 of ref. [47]; it is done in
the same way here, although a larger number of cases must be considered. The complete
contributions are summarized in table v.4.

3.2.4 Bull’s head subtraction

The bull’s head subtraction term, shown schematically in fig. v.1 and corresponding to the
topology fig. v.3a, is given by

D(u,u)BH =

∫
r

MLO
2,on(p3)TGG

∞(p3, r)M
LO
2,on(r)TGG

∞(r,k3)M
LO
2,on(k3) , (v.3.39)

358



Table V.3: NLO s-OPE contributions up to quadratic order in the threshold expansion for
the I = 1 channel. They are not present in the other channels.

I
=

1

F 6
π

M6
π
KSS

0 − 855κ
8 + 855L

8 − 90ℓr1 − 90ℓr2 − 45
2 ℓ

r
3 − 135

2 ℓr4
F 6

π

M6
π
KSS

1 − 10005κ
64 + 9225L

64 − 1035
4 ℓr1 − 495

4 ℓr2 +
45
16ℓ

r
3 − 945

16 ℓ
r
3

F 6
π

M6
π
KSS

2
75525κ
512 + 49455L

512 − 9045
32 ℓr1 − 4725

32 ℓr1 − 405
128ℓ

r
3 − 135

128ℓ
r
4

F 6
π

M6
π
KSS

A
18225κ

64 + 1215L
8 − 1215

4 ℓr1 − 1215
4 ℓr1

F 6
π

M6
π
KSS

B 0

F 6
π

M6
π
KSD

0
33κ
32 + 423L

16 − 36ℓr1 − 45
2 ℓ

r
2 − 9

4ℓ
r
3 − 27

2 ℓ
r
4

F 6
π

M6
π
KSD

1 − 2073κ
256 + 1521L

128 −
27
2 ℓ

r
1 − 513

16 ℓ
r
2 +

81
32ℓ

r
3 +

27
16ℓ

r
4

F 6
π

M6
π
KSD

2
1539κ
64 − 243

4 ℓr1 +
243
8 ℓr2

F 6
π

M6
π
KSD

3 0
F 6

π

M6
π
KSD

4 0

F 6
π

M6
π
KDD

0 0
F 6

π

M6
π
KDD

1 0
F 6

π

M6
π
KDD

2
1125κ

8 + 189L − 324ℓr1 − 162ℓr2 − 81ℓr4
F 6

π

M6
π
KDD

3 0
F 6

π

M6
π
KDD

4 0

where
∫
r
≡
∫
d3r/[2ωr(2π)

3] is the Lorentz-invariant integral over the on-shell loop mo-
mentum r, and partial-wave indices are implicitly summed over.

Unlike the OPE contributions, the bull’s head contribution lacks singularities in the real
part, so there is no need to cancel DBH against a matching off-shell expression. Only
leading-order two-particle amplitudes are present, so following the on-shell version of
eq. (v.3.7), there is only the s-wave component MLO,s

2,on (q) = k0 + (k1 − k2)(sq − 4Mπ)
where

sk3
= 2(M2

π + k1 · k2) , sp3
= 2(M2

π + p1 · p2) , sr = (P − r)2 , (v.3.40)

and the p-wave component MLO,p
2,on (q) = k3(t− u)q where [compare eq. (v.3.8)]

(t− u)q = 4a∗
q · a′∗

q = 4
(
q∗2q
)2[4π

3

∑
m

Y ∗
1m(â∗

k)Y1m(p̂∗k)

]
. (v.3.41)

The (q∗2q)2 cancels the denominators of the barrier terms inG∞, so the sum rule for spheri-
cal harmonics leaves expressions of the kind p∗q ·k∗q = (p·q)(k·q)

M2
π
−p ·k. Thus, the numerator

of the integral D(u,u)BH is expressed entirely in terms of Lorentz products between r and
the external momenta. The procedure for evaluating such an integral is described in detail
in section 4.3 of ref. [47], and requires no modification here, although the number of terms

359



k1

k2

k3

p1

p2

p3

r

(a) The “bull’s head” diagram.

k1

k2

k3

p1

p2

p3

r

(b) The “crossed bull’s head” diagram.

Figure V.3: Two configurations of the triangle-loop diagram. There are a total of 15 dia-
grams with the triangle topology, of which 9 correspond to the configuration
(a) [so their sum corresponds to the symmetrization of (a)] and 6 to the config-
uration (b). Neither diagram is singular in the real part, and only (a) is singular
in the imaginary part, which cancels against ImDBH.

in each component of D(u,u)BH or DBH is much larger than in the maximum-isospin case.⁶
The integration is easier to perform in the symmetric basis, where the matrices are more
sparse, but before the expressions are symmetrized, which limits the number of terms.

Following ref. [47], the result is expressed in terms of

Hm,n ≡


1

π2

∫ 1/
√
3

0

dz

√
1 + z2

zm
dn

dxn
[
H2(x)

]
, n > 0 ,∫ 1/

√
3

0

dz 6zfm(z)
d

dx

[
H2(x)

]
, n = 0 ,

(v.3.42)

where x = 1− 3z2 and
d

dz
fm(x) =

1

π2

√
1 + z2

zm
. (v.3.43)

This is separated into
Hm,n = H̃m,n + fm(1/

√
3)δn,0 , (v.3.44)

where only H̃m,n is cutoff-dependent; setting H̃m,n = 0 corresponds to setting H(x) = 1

everywhere. fm(1/
√
3) can be expressed entirely in terms of rational numbers and log 3.

Thus, each coefficient in the threshold expansion can be separated like

KX = K[H̃m,n=0]
X +DX , (v.3.45)

where the cutoff-independent K[H̃m,n=0]
X can be expressed similarly to the OPE and other

contributions. The cutoff-dependent term DX must be evaluated numerically, but is well-
behaved and often relatively small. The contributions from the bull’s head subtraction are
listed in table v.5, and the cutoff dependence of DX is studied in appendix A.

⁶Specifically, the method described in section 4.3.1-3 of ref. [47] works as-is also for general isospin. The
complementary methods of section 4.3.4 and appendix E would require some modifications to account for the
more complicated numerators. We do not use those methods here, sacrificing cross-check capability for simplicity,
since we are by now confident in the correctness of the methods we do use.
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Table V.4: All NLO non-OPE contributions up to quadratic order in the threshold expan-
sion, including cubic order for I = 0. Note that the non-OPE contributions
do not include the bull’s head subtraction.

I
=

3

F 6
π

M6
π
K0 14κ + 33L + 288ℓr1 + 36ℓr3 − 72ℓr4

F 6
π

M6
π
K1 − 35κ

2 + 12L + 720ℓr1 + 36ℓr2 − 144ℓr4
F 6

π

M6
π
K2 − 9747κ

50 − 216L + 648ℓr1 + 324ℓr2
F 6

π

M6
π
KA

576κ
5 − 54L − 162ℓr1 + 243ℓr2

F 6
π

M6
π
KB − 13 797κ

50 − 162L + 486ℓr1 + 243ℓr2

I
=

2

F 6
π

M6
π
KT

0
85κ
12 + 2L + 120ℓr1 + 6ℓr2 − 24ℓr4

F 6
π

M6
π
KT

1 − 988κ
25 − 36L + 144ℓr1 + 36ℓr2

F 6
π

M6
π
KT

2
2052κ
25 + 108L − 324ℓr2

F 6
π

M6
π
KT

3
501κ
50

F 6
π

M6
π
KT

4
451κ
150 − 2L + 12ℓr1

I
=

1

F 6
π

M6
π
KSS

0
1522κ

3 − 1129L
2 + 528ℓr1 + 840ℓr2 + 126ℓr3 + 228ℓr4

F 6
π

M6
π
KSS

1 545κ − 888L + 1440ℓr1 + 1656ℓr2 + 96ℓr4
F 6

π

M6
π
KSS

2 − 30 441κ
25 − 846L + 1728ℓr1 + 1674ℓr2

F 6
π

M6
π
KSS

A − 22 461κ
20 − 459L + 1188ℓr1 + 783ℓr2

F 6
π

M6
π
KSS

B − 63 039κ
100 − 387L + 756ℓr1 + 783ℓr2

F 6
π

M6
π
KSD

0 − 23κ
2 − 84L + 144ℓr1 + 36ℓr2 + 48ℓr4

F 6
π

M6
π
KSD

1
597κ
10 + 108ℓr1 − 54ℓr2

F 6
π

M6
π
KSD

2 − 1041κ
10 − 54L + 270ℓr1 + 27ℓr2

F 6
π

M6
π
KSD

3
231κ
20 + 108ℓr1 − 54ℓr2

F 6
π

M6
π
KSD

4 − 4179κ
100 − 18L + 162ℓr1 − 27ℓr2

F 6
π

M6
π
KDD

0 − 239κ
4 + 46L + 72ℓr1 − 54ℓr2 − 40ℓr4

F 6
π

M6
π
KDD

1 − 21 158κ
225 − 20L

3 + 80ℓr1 − 20ℓr2
F 6

π

M6
π
KDD

2 − 7607κ
25 − 204L + 1152ℓr1 + 36ℓr2

F 6
π

M6
π
KDD

3 − 7897κ
1350 + 64L

9 −
64
3 ℓ

r
1 − 32

3 ℓ
r
2

F 6
π

M6
π
KDD

4 − 6409κ
1350 −

14L
9 + 44

3 ℓ
r
1 − 8

3ℓ
r
2

I
=

0

F 6
π

M6
π
KAS

0
1017κ

5 − 54L + 162ℓr1 + 81ℓr2
F 6

π

M6
π
KAS

1 − 972κ
5

F 6
π

M6
π
KAS

3 − 14 499κ
70

F 6
π

M6
π
KAS

4
88 371κ
2240
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Table V.5: Contributions from the bull’s head subtraction up to quadratic order in the
threshold expansion, including cubic order for I = 0. The contributions are
separated into a cutoff-independent analytic part (containing L3 ≡ log 3) and
a cutoff-dependent numerical part according to eq. (v.3.45). The latter is com-
puted using the standard cutoff choice, shown in eq. (v.1.1).

I
=

3

F 6
π

M6
π
K0 −36κ( 4 + L3) + 0.056 347 6589

F 6
π

M6
π
K1 −8κ( 53 + 12L3) − 0.129 589 681

F 6
π

M6
π
K2 − 27κ

50 ( 363 + 115L3) − 0.432 202 370
F 6

π

M6
π
KA

9κ
40 ( 1468 − 75L3) − 0.000 907 273 890

F 6
π

M6
π
KB

9κ
200 ( 404 − 105L3) − 0.000 162 394 747

I
=

2

F 6
π

M6
π
KT

0
κ

108 ( 764 + 1593L3) − 0.258 397 947
F 6

π

M6
π
KT

1 − κ
7200 ( 658 852 − 627 165L3) − 0.211 171 132

F 6
π

M6
π
KT

2 − κ
4800 ( 7 561 228 + 1 085 625L3) + 5.782 919 28

F 6
π

M6
π
KT

3 − κ
10 800 ( 451 052 + 13 185L3) + 0.044 568 092 9

F 6
π

M6
π
KT

4 − κ
21 600 ( 75 148 + 19 935L3) + 0.002 735 915 74

I
=

1

F 6
π

M6
π
KSS

0 − 3κ
4 ( 1252 + 423L3) + 1.717 963 97

F 6
π

M6
π
KSS

1 −κ
8 ( 7972 + 9093L3) + 2.571 033 92

F 6
π

M6
π
KSS

2
173κ
1600 ( 27 296 − 13 545L3) − 5.430 530 16

F 6
π

M6
π
KSS

A
63κ
640 ( 3764 + 5775L3) − 7.227 961 67

F 6
π

M6
π
KSS

B
27κ
3200 ( 106 228 − 33 985L3) + 5.445 771 06

F 6
π

M6
π
KSD

0
κ
16 ( 236 + 225L3) − 0.270 266 343

F 6
π

M6
π
KSD

1
κ
16 ( 1004 − 153L3) + 0.751 221 968

F 6
π

M6
π
KSD

2
54κ
5 ( 7 + 20L3) + 1.896 052 35

F 6
π

M6
π
KSD

3
κ
64 ( 6829 + 297L3) + 0.023 118 1459

F 6
π

M6
π
KSD

4
κ

1600 ( 356 908 − 108 135L3) + 1.032 569 94

F 6
π

M6
π
KDD

0
κ

108 ( 5564 + 1593L3) − 0.114 901 505
F 6

π

M6
π
KDD

1 − κ
2400 ( 6316 − 5895L3) + 0.301 860 448

F 6
π

M6
π
KDD

2 − κ
4800 (16 008 412 + 2 096 685L3) + 3.900 275 64

F 6
π

M6
π
KDD

3 − κ
7200 ( 229 132 − 19 215L3) − 0.129 770 638

F 6
π

M6
π
KDD

4
κ

7200 ( 9436 − 19 395L3) + 0.054 453 6019

I
=

0

F 6
π

M6
π
KAS

0 − 3κ
2 ( 68 + 27L3) + 0.301 063 917

F 6
π

M6
π
KAS

1
3κ
320 ( 786 604 + 138 105L3) − 30.496 932 4

F 6
π

M6
π
KAS

3
9κ
640 ( 766 996 + 153 495L3) − 46.550 976 1

F 6
π

M6
π
KAS

4 − 81κ
1280 ( 604 + 2205L3) + 1.367 998 92
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4 Results

Our full results are stated in table v.6, supplemented by tables v.1 and v.5 for the LO
contributions and cutoff-dependent remainders, respectively. A numerical comparison of
the different contributions toKdf,3 is given in table v.7. The results are plotted as functions
of Mπ in fig. v.4.

5 Conclusions and outlook

This work presents the NLO ChPT result for the three-particle K-matrix, Kdf,3, in all
isospin channels, thereby extending the maximum-isospin results of ref. [47]. The main
results are stated in tables v.1, v.6 and v.7 and fig. v.4. They are qualitatively reminiscent
of those at maximum isospin, although several coefficients are numerically rather large.
Similarly, NLO contributions are not necessarily small compared to LO contributions,
especially at larger-than-physical pion masses.

With the list of K-matrix components now complete for purely pionic three-particle sys-
tems up to the given orders, we eagerly await the availability of lattice results against which
our values can be compared; currently, no results exist beyond those already covered in
ref. [47]. We also note that, although the technical complexity of the calculation has in-
creased compared to that at maximum isospin, there have been no new hurdles that could
not be dealt with effectively. This provides an encouraging outlook toward further de-
velopments within this ongoing program, for which next steps involve the inclusion of
particles other than pions.
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Table V.6: The full NLO results for Kdf,3 up to quadratic order in the threshold expan-
sion (cubic for I = 0), combining the OPE, s-OPE, non-OPE and bull’s head
contributions, i.e., tables v.2 to v.5. The corresponding LO results are given in
table v.1. For compactness, we use L3 ≡ log 3 and omit the cutoff-dependent
remainders DX ; they are given in table v.5 and further studied in appendix A.

I
=

3

F 6
π

M6
π
K0 −3κ (35 + 12L3) + 111L − 288ℓr1 − 432ℓr2 − 36ℓr3 + 72ℓr4

F 6
π

M6
π
K1 −κ 1999+1920L3

20 + 384L − 612ℓr1 − 1170ℓr2 + 108ℓr4
F 6

π

M6
π
K2 207κ 2923−420L3

1400 + 360L − 432ℓr1 − 864ℓr2
F 6

π

M6
π
KA 9κ 21 809−1050L3

560 − 9L + 27ℓr1 +
27
2 ℓ

r
2

F 6
π

M6
π
KB 27κ 6698−245L3

1400 + 54L − 162ℓr1 − 81ℓr2

I
=

2

F 6
π

M6
π
KT

0 κ 20 879+15 930L3

1080 − 90ℓr1 − 9ℓr2 + 18ℓr4
F 6

π

M6
π
KT

1 −κ 1 335 007−4 390 155L3

50 400 + 53L
2 −

195
2 ℓr1 − 123

4 ℓr2
F 6

π

M6
π
KT

2 −κ 8 580 514+1 085 625L3

4800 − 171L
2 + 837

2 ℓr1 +
189
4 ℓr2

F 6
π

M6
π
KT

3 −κ 7 528 763+369 180L3

302 400 + 27L
4 −

45
4 ℓ

r
1 − 117

8 ℓr2
F 6

π

M6
π
KT

4 −κ 717 748+139 545L3

151 200 + 5L
3 − 5ℓr1 − 5

2ℓ
r
2

I
=

1

F 6
π

M6
π
KSS

0 −κ 6275+2538L3

8 − 1237L
8 + 342ℓr1 + 438ℓr2 − 57

2 ℓ
r
3 − 111

2 ℓr4
F 6

π

M6
π
KSS

1 −κ 296 689+363 720L3

320 − 24 439L
64 + 2637

4 ℓr1 +
4125
4 ℓr2 − 225

4 ℓr3 − 12ℓr4
F 6

π

M6
π
KSS

2 κ 217 322 699−131 223 960L3

89 600 − 119 505L
512 + 2043

16 ℓr1 + 711ℓr2 − 405
128ℓ

r
3 − 135

128ℓ
r
4

F 6
π

M6
π
KSS

A −9κ 15 458−282 975L3

4480 + 273L
8 − 378ℓr1 +

477
2 ℓr2

F 6
π

M6
π
KSS

B 9κ 1 507 124−713 685L3

22 400 − 36L + 108ℓr1 + 54ℓr2

F 6
π

M6
π
KSD

0 3κ 1871+750L3

160 + 23L
16 + 36ℓr1 − 39

2 ℓ
r
2 − 9

4ℓ
r
3 − 3

2ℓ
r
4

F 6
π

M6
π
KSD

1 κ 486 847−85 680L3

8960 − 1647L
128 + 585

8 ℓr1 − 9
8ℓ

r
2 +

81
32ℓ

r
3 +

27
16ℓ

r
4

F 6
π

M6
π
KSD

2 27κ 1713+3584L3

448 + 21L
4 − 63

4 ℓ
r
2

F 6
π

M6
π
KSD

3 κ 8314+297L3

64 + 75L
4 + 81

4 ℓ
r
1 − 531

8 ℓr2
F 6

π

M6
π
KSD

4 κ 1 418 878−756 945L3

11 200 − 39L
2 + 297

4 ℓr1 +
171
8 ℓr2

F 6
π

M6
π
KDD

0 −κ 16 603−15 930L3

1080 + 28L − 54ℓr1 − 63ℓr2 + 2ℓr4
F 6

π

M6
π
KDD

1 −κ 79 771−41 265L3

16 800 + 265L
6 − 149

2 ℓr1 − 381
4 ℓr2

F 6
π

M6
π
KDD

2 −κ 121 601 602+14 676 795L3

33 600 − 123L
2 + 1251

2 ℓr1 +
459
4 ℓr2 − 81ℓr4

F 6
π

M6
π
KDD

3 −κ 3 133 679−269 010L3

100 800 + 45L
4 −

217
12 ℓ

r
1 − 593

24 ℓ
r
2

F 6
π

M6
π
KDD

4 κ 77 296−135 765L3

50 400 + 25L
9 −

7
3ℓ

r
1 − 43

6 ℓ
r
2

I
=

0

F 6
π

M6
π
KAS

0 3κ 907−270L3

20 − 162ℓr1 + 81ℓr2
F 6

π

M6
π
KAS

1 3κ 765 868+138 105L3

320
F 6

π

M6
π
KAS

3 9κ 5 246 968+1 074 465L3

4480
F 6

π

M6
π
KAS

4 −81κ 496+3087L3

1792
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Table V.7: Numerical values of the expressions given in tables v.1 to v.6. Note that only
the “Total” column depends on the ratioMπ/Fπ (here evaluated at the physical
point, Mπ/Fπ ≈ 1.50), and only the “BH” (bull’s head) column depends on
the cutoff [here using the standard choice, eq. (v.1.1)]. Numbers in parentheses
indicate errors; entries without errors are exact up to rounding. Identically zero
entries are left blank.

Total LO× F 4
π

M4
π

NLO× F 6
π

M6
π

NLO×F 6
π/M

6
π︷ ︸︸ ︷

OPE s-OPE non-OPE BH

I
=

3

K0 61.6(3.0) 18 −2.65(26) 0.50(53) −2.04(28) −1.11
K1 33.4(5.3) 27 −9.04(46) −1.8(1.0) −3.75(61) −3.48
K2 −67.4(2.8) −5.79(24) −5.11(58) 1.43(37) −2.11
KA 25.77(18) 2.21(2) −2.76(15) 3.00(14) 1.97
KB 1.4(1.1) 0.12(9) −0.22(37) 0.25(28) 0.08

I
=

2

KT
0 27.56(88) 4.5 0.38(8) 1.05(18) −0.56(10) −0.11
KT

1 −0.12(67) −0.01(6) −0.16(14) −0.02(9) −0.18
KT

2 −79.9(3.0) −6.86(26) 1.33(23) −2.42(7) −5.77
KT

3 −2.91(7) −0.25(1) −0.085(6) −0.064 −0.23
KT

4 −0.63(3) −0.054(3) −0.04(1) 0.014(7) −0.03

I
=

1

KSS
0 −105.1(2.8) −13.88 −2.90(24) −9.21(63) −3.06(20) 15.81(72) −6.44
KSS

1 −139.5(4.2) −17.77 −4.14(36) −9.10(42) −3.71(16) 20.32(82) −11.65
KSS

2 62.3(1.6) −0.26 5.47(14) −4.80(65) 0.44(27) 6.75(94) 3.07
KSS

A −29.2(3.1) −2.51(27) −1.77(55) 0.70(38) −0.51(67) −0.93
KSS

B 90.04(72) 7.73(6) −4.19(35) 2.80(41) 9.13
KSD

0 −3.90(30) −0.38 −0.17(3) −0.99(11) −0.52(4) 1.42(16) −0.08
KSD

1 14.03(54) 0.42 1.02(5) 0.40(3) −0.31(1) −0.16(7) 1.08
KSD

2 45.54(4) 3.910(4) 0.11(12) 0.45(4) −0.53(17) 3.88
KSD

3 3.11(28) 0.27(2) −0.00(5) −0.46(7) 0.73
KSD

4 17.79(51) 1.53(4) 0.13(6) −0.58(10) 1.97
KDD

0 −4.51(35) 0.5 −0.61(3) 1.00(14) −1.92(13) 0.31
KDD

1 −6.34(47) −0.54(4) −0.04(9) −0.81(5) 0.30
KDD

2 −376.0(5.2) −20.25 −23.34(44) 1.51(16) −2.51(30) −2.09(72) −20.26
KDD

3 −6.11(11) −0.52(1) −0.087(5) −0.12(1) −0.31
KDD

4 −0.22(2) −0.019(2) −0.002(10) −0.06(1) 0.04

I
=

0

KAS
0 19.6(1.3) 1.68(11) 0.36(20) 1.95(9) −0.63
KAS

1 279.317 23.979 −1.231 25.21
KAS

3 410.220 35.216 −0.240 −1.312 36.77
KAS

4 2.974 0.255 −0.150 0.250 0.16
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Figure V.4: LO+NLO ChPT predictions for Kdf,3, plotted as functions of (Mπ/Fπ)
4; for

reference, the physical point is at (Mphys/Fphys)
4 ≈ 5.25. Colored bands rep-

resent uncertainties inherited from the LECs (see ref. [47]), and thin lines rep-
resent LO-only contributions when present. The coefficients are grouped by
isospin, and the lines are drawn so that the number of dots reflects the numeric
index on KX when applicable. Some coefficients have been rescaled for leg-
ibility. Note that the top left panel corresponds to figs. 3 and 4 in ref. [47],
although no fits to lattice data are shown.
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Figure V.5: Illustration of the size of the numerical bull’s head remainders DX . Each
line shows abs(DX/KBH

X ), where KBH
X is the complete bull’s head contribu-

tion to KX , plotted logarithmically as a function of the parameter α defined
in eq. (v.1.2). The standard cutoff eq. (v.1.1) is recovered at α = −1; the value
using eq. (v.1.3) is shown to the left of that. The coefficients are grouped and
displayed similarly to fig. v.4. Horizontal lines are drawn at the ratio 1, roughly
indicating the border between ‘small remainders’ and ‘large remainders’.
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A Dependence on the cutoff

The cutoff functionH(x) is arbitrary as long as it smoothly interpolates betweenH(x ≤ 0) = 1
and H(x ≥ 1) = 0, with the standard choice for Kdf,3 being

H(x) = exp
[
− 1

x exp
(
− 1

1−x

)]
, 0 < x < 1 , (v.1.1)

A generalization corresponds to the replacement [7]

x→ 1 +
4

3− α
(x− 1) , −1 ≤ α < 3 , (v.1.2)

with α = −1 recovering eq. (v.1.1). In ref. [47], we also used the symmetric function

H(x) =
[
1 + exp

(
1
x −

1
1−x

)]−1

, 0 < x < 1 . (v.1.3)

The numerical bull’s head remaindersDX defined in eq. (v.3.45) are the only cutoff-dependent
terms in the threshold expansion of Kdf,3. Figure v.5 shows their dependence on the cutoff
choice; the upper left panel displays similar information to fig. 11 in ref. [47].

Note that, unlike the monotonous α-dependence seen at maximum isospin, some coeffi-
cients such as DSS

2 and DSD
3 have local minima or maxima; DDD

2 even has one of each (near
α = 0.6 and α = 1.9). This is likely related to the larger size of the remainders compared to
the maximum-isospin case: bull’s head integrands involving p-waves typically have larger
powers of r in the numerator compared to those that are pure s-wave, making the integral
more sensitive to regions far away from r = 0. On one hand, this makes the analytic ap-
proximation worse, since these are the regions whereH(xr) differs the greatest from 1, and
on the other hand, it allows more interesting behavior as varying α cut off larger or smaller
parts of these regions, with cancellations causing the slope of DX to change sign. Interest-
ingly, though, no coefficients show as strong a discrepancy between eqs. (v.1.1) and (v.1.3)
as the maximum-isospin KA, for which we have no explanation.

B Group-theoretical enumeration of operators

In this appendix we describe how group-theoretical considerations can be used to deter-
mine the number of operators at each order in the threshold expansion.

As described in the main text, operators in this expansion can be written as products of
the quantities tij = (pi − kj)

2, where pi and kj are, respectively, the final and initial
momenta. We are interested here in operators that are linear, quadratic and cubic in the
tij . Such products can be decomposed into irreps of the group S′

3 × S3, where S′
3 and

S3 act, respectively, on the outgoing and incoming particle momenta. As explained in
ref. [20], and recalled in the main text, operators of a given isospin lie in (in general a sum
of) particular irreps of S′

3 × S3. By counting the number of different irreps that appear
in products of the tij , we can determine the number of independent operators for each
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Table V.8: Character table of S3.

Class 1 (12) (231)

Dim 1 3 2

1 1 1 1
−1 1 −1 1
D 2 0 −1

isospin at each order in the threshold expansion. This is a more systematic approach than
an explicit enumeration, and, indeed, has led to the discovery of additional operators, as
noted in the main text.

In fact, there is an additional symmetry that must be considered, namely the PT symmetry
that interchanges initial and final momenta (and which holds exactly in QCD). Thus the
operators must be decomposed into irreps of the groupG ≡ (S′

3×S3)⋊Z2, which involves
a semidirect product. To see this, we consider the defining representation, which acts on
the vectors {p1, p2, p3, p′1, p′2, p′3}. The matrices forming the individual subgroups are, in
block form,

S3 →
(
S3 0
0 1

)
, S′

3 →
(
1 0
0 S3

)
, Z2 →

(
0 1
1 0

)
. (v.2.1)

Thus we have (
0 1
1 0

)(
S3 0
0 1

)(
0 1
1 0

)
=

(
1 0
0 S3

)
, (v.2.2)

showing that the Z2 acts nontrivially. Our tasks are thus to determine the character table
of G, and then to decompose operators of a given order in the tij into irreps using the
standard character decomposition.

We first recall some results for the permutation group. The character table of S3 is given in
Table v.8. Here we label the irreps 1, −1 (the sign irrep), and D, the standard or doublet
irrep. The character table of S′

3×S3 is then given in the standard way for tensor products,
leading to 9 classes and 9 irreps. Classes are given simply by combining classes for the
individual S3’s, e.g. {(12)′, (231)}, while irreps are products of the individual irreps, e.g.
(−1)′ ⊗ D. Characters or product irreps are simply the products of the characters of the
individual irreps.

The inclusion of Z2, which interchanges S′
3 and S3, leads to some of the conjugacy classes

of S′
3 × S3 being combined, and introduces additional classes. The combined classes are

(12)S = (12)′, 1 + 1, (12) , (v.2.3)
(231)S = (231)′, 1 + 1, (231) , (v.2.4)

(12)(231)S = (12)′, (231) + (231)′, (12) , (v.2.5)

which reduces the 9 classes of S′
3×S3 down to 6. There are three additional classes, which

involve the Z2 element in combination with other transformations. In the defining irrep,
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these are represented by elements of the form

z1 =

{(
0 S3

S−1
3

)}
, (v.2.6)

z2 =

{(
0 even

odd

)
,

(
0 odd

even

)}
, (v.2.7)

z3 =

{(
0 even−1

even′

)
,

(
0 odd−1

odd′

)}
. (v.2.8)

Here S3 means any element of the group, “even” and “odd” refer to an arbitrary even and
odd element, and the prime indicates a different element. In particular, in the class z3,
“even” and “even′” are arbitrary but different even elements. These three classes have 6, 18,
and 12 elements, respectively.

The character table is given in Table v.9. The notation for irreps is as follows: SD is a
combination of a singlet from S′

3 and doublet from S3, together with the PT-conjugate;
DD is the combination of two doublets; the superscript ± indicates the sign obtained
under the action of Z2; and the subscript ± indicates the sign obtained if the combined
parity of the S′

3 × S3 permutation is odd. The notation SD and DD mirrors that used in
the main text, while the singlet (here called “1”) is also denoted SS in the main text.

The mapping from isospin irreps to those of G has been explained in ref. [20], and is
recalled in section 2.2. Operators with I = 3 lie in the singlet irrep, 1++, those with I = 2

lie in the DD+
+ irrep, those with I = 1 lie in the singlet, SD+

+ and DD+
+ irreps, and those

with I = 0 lie in the 1+− irrep.

We now decompose operators composed of the tij . At linear order, there are 9 such oper-
ators, and the character vector is {9, 3, 0, 1, 0, 0, 3, 1, 0}, which decomposes as

(1++) + (SD+
+) + (DD+

+) . (v.2.9)

It follows that, at this order, there is a single contribution to I = 3 [that given by the
K1 term in Equation (v.2.9)], a single contribution to I = 2 [that given by the KT

0 term
in Equation (v.2.16)], and three contributions to I = 1 [given by the KSS

1 term in Equa-
tion (v.2.18), the KDD

0 term in Equation (v.2.19), and the KSD
0 term in Equation (v.2.22)].

There are no contributions to I = 0 at this order.

Moving now to quadratic order, there are 9× 10/2 = 45 distinct terms of the form tijtkℓ.
We find the character vector to be {45, 9, 0, 5, 0, 0, 9, 1, 0} , which decomposes as

3(1++) + (1−+) + (1+−) + 4(SD+
+) + 4(DD+

+) + (SD+
−) + (DD−

+) . (v.2.10)

Thus there are three singlets, leading to the the K2, KA, and KB (I = 3) terms in Equa-
tion (v.2.9), and the corresponding three I = 1 SS terms in Equation (v.2.18). Simi-
larly, there are four DD terms in I = 2 and I = 1, given by the KT

1,2,3,4 terms in Equa-
tion (v.2.16), and the corresponding terms in Equation (v.2.19). There are four SD terms
in I = 1, given by the KSD

1,2 terms in Equation (v.2.22). Finally, there is a single I = 0

contribution, with coefficient KAS
0 in Equation (v.2.23).
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Table V.9: Character table of (S′
3 × S3)⋊ Z2.

Class 1′, 1 (12)S (231)S (12)′, (12) (12)(231)S (231)(′) z1 z2 z3

Dim 1 6 4 9 12 4 6 18 12

1++ 1 1 1 1 1 1 1 1 1
1−+ 1 1 1 1 1 1 −1 −1 −1
1+− 1 −1 1 1 −1 1 1 −1 1
1−− 1 −1 1 1 −1 1 −1 1 −1
2++ 2 0 2 −2 0 2 0 0 0

SD+
+ 4 2 1 0 −1 −2 0 0 0

SD+
− 4 −2 1 0 1 −2 0 0 0

DD+
+ 4 0 −2 0 0 1 2 0 −1

DD−
+ 4 0 −2 0 0 1 −2 0 1

Moving lastly to cubic order, there are 9× 10× 11/6 = 165 distinct terms that are cubic in
the t̃ij . With some effort, one finds that the character vector is {165, 19, 3, 5, 1, 3, 19, 1, 1}.
For example, in the class (12)(231)S , picking the element (12)′(231), only the term t̃31t̃32t̃33
is invariant. The most tricky case is the class z3. Picking the element where even = 1 and
even′ = (231), the single invariant term is t̃12t̃31t̃23.

The decomposition of this character vector is

7(1++) + 3(1−+) + 3(1+−) + 4(2++) + 12(SD+
+) + 12(DD+

+) + 6(SD+
−) + 6(DD−

+) . (v.2.11)

Given the large numbers of irreps, we focus on the I = 0 case, for which we learn that there
are 3 independent 1+− irreps, and thus three coefficients at this order. These correspond to
the coefficients KAS

1 , KAS
3 , and KAS

4 , in Equation (v.2.23). The final coefficient was missed
in the enumeration of ref. [20].
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List of abbreviations

Abbreviation Meaning Introduced

1PI One-particle irreducible p. 250
1PR One-particle reducible p. 250
BCFW Britto–Cachazo–Feng–Witten p. 66
BH Bull’s head p. 292
BS Bethe–Salpeter p. 78
BSM Beyond the Standard Model pp. 3, 188
ChPT Chiral perturbation theory pp. 3, 240
CM(F) Center-of-momentum (frame) pp. 77, 282
DFO Diagrammatic flavor-ordering p. 67
EFT Effective field theory pp. 41, 96, 146, 240
eV Electronvolt (also kilo-, mega-, giga-, etc.) pp. 6, 7
FVU Finite-volume unitarity p. 80
IR Infrared (zero-energy limit) pp. 75, 112
LEC Low-energy constant pp. 44, 146, 243, 286
LO Leading order pp. 28, 147, 240, 280
NLO Next-to-leading order pp. 28, 146, 240, 281
NNLO Next-to-next-to-leading order pp. 28, 146, 242
NkLO similarly, with ‘next-to’ repeated k times pp. 28, 240
NGB Nambu–Goldstone boson p. 37
NLSM Non-linear sigma model pp. 42, 96, 147
NRFT Nonrelativistic field theory p. 80
OPE One-particle exchange p. 281
RFT Relativistic field theory pp. 80, 280, 342
SM (the) Standard Model p. 2
QCD Quantum chromodynamics pp. 2, 146, 240
QED Quantum electrodynamics p. 2
QFT Quantum field theory p. 2
UV Ultraviolet (infinite-energy limit) p. 75
VEV Vacuum expectation value p. 37
WZW Wess–Zumino–Witten p. 48
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