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Populärvetenskaplig sammanfattning

År 1897 uppäckte J. J. Thomson en negativt laddad partikel med tusen g̊anger
mindre massa än vad en väteatom har - denna elementära partikel kallas elektron.
Elektroniken avancerade med raska steg fr̊an och med början av 1900-talet med
m̊anga nya komponenter s̊a som transistorer. Transistorer är byggstenar i till-
verkning av mikrochip. George Moore p̊astod år 1965 att antalet transistorer
p̊a ett mikrochip fördubblas vartannat år och denna s̊a kallade Moores lag har
h̊allit fram till i dag. Minskandet av storleken p̊a transistorer har gjort detta
möjligt. P̊a sm̊a skalor, karaktäriserade av nanometer, börjar kvantfysikaliska
effekter spela roll, till exempel tunnling. En människa kan inte se mycket tunna-
re förem̊al än ett h̊arstr̊a, som är hundra tusen g̊anger större än en nanometer.
Tunnling kan beskrivas med följande analogi: Föreställ dig en cyklist en cyklist
som vill cykla över en kulle, men har inte tillräckligt med rörelseenergi för att
ta sig hela vägen upp. Slutsatsen är att cyklisten inte kan hamna p̊a andra si-
dan kullen. Denna bild h̊aller inte alltid i partiklarnas värld där en elektron kan
dyka upp p̊a andra sidan av en barriär även om elektronen inte har tillräckligt
hög energi för att åka över barriären. Det vill säga elektronen tunnlar genom
barriären.

Min avhandling undersöker apparater där rörelse av en enskild elektron har en
mätbar effekt. I en metall elektrisk ström är ett flöde av elektroner. Resistans
är en storhet som karaktäriserar motst̊andet som ett elektronflöde upplever i en
metall. Det är resistansen som gör att strömmen genom metallen ger upphov
till värme. Men om vissa metaller, till exempel aluminium, kyls ner nära till
närheten av den absoluta nollpunkten -273 ◦C leder de ström utan resistans.
Detta tillst̊and kallas supraledande. I en supraledande metall har elektroner bil-
dat par. L̊ater det inte motsägelsefullt - negativt laddade elektroner repellerar
ju varandra? Man kan först̊a detta enligt följande resonemang: En metal best̊ar
av fria elektroner och positivt laddade joner som sitter fast och inte kan röra
sig fritt i materialet utan bara vibrerar kring sina jämviktslägen. Däremot kan
elektroner röra sig fritt i materialet. Temperatur är en storhet som berättar hur
snabbt partiklar rör sig. I l̊aga temperaturer partiklar rör sig l̊angsamt medan
de i höga temperaturer rör sig snabbt. När en fri elektron rör sig i en metall at-
traherar den positiva joner i närheten av sig själv och skapar en ökad densitet av
positiv laddning. I höga temperaturer jämnas den här ökade densiteten ut fort
p̊a grund av termiska vibrationer, medan den ökade densiteten vid l̊aga tempe-
raturer är tillräckligt l̊anglivad för att attrahera en annan elektron i närheten.
P̊a detta sätt kan en elektron med hjälp av joner effektivt sett attrahera en
annan elektron.
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Elektroner har en inneboende storhet som kallas spinn. Denna fysikaliska storhet
kan beskrivas som ett inneboende rörelsemängdsmoment som kan vara anting-
en ↑ eller ↓. Par av elektroner i en supraledare är speciella p̊a ett annat sätt
ocks̊a. Elektronerna av ett par i superledande metal har motsatta spinn men
b̊ada elektroner har sitt spinn ↑ och ↓ samtidigt. Om man mäter spinnet av en
av elektronerna f̊ar den andra elektronen omedelbart motsatta spinnet oberoen-
de av avst̊andet mellan de tv̊a elektronerna. Detta kallas kvantsammanflätning.
Kvantsammanflätning är till exempel viktig i kvantinformation. I en apparat i
mitt arbete, tunnlar elektroner av ett par i supraledande aluminium till separata
metallstrukturer. Därmed genererar apparaten kvantsammanflätning mellan se-
parerade elektroner. Splittring av ett s̊adant par detekterades för första g̊angen
i realtid i detta arbete.

Den andra halvan av mitt arbete undersöker ljus-materia interaktion i fasta
tillst̊andet. Ljus best̊ar av sm̊a energipaket som kallas fotoner. I en apparat jag
byggde är fotoner f̊angade i en struktur som kallas resonator. Resonatorn är
en hundra mikrometer l̊ang (tjockleken p̊a ett h̊arstr̊a) och en mikrometer bred
struktur gjord av superledande material. Du kan föreställa dig att i en s̊adan
struktur är en foton en st̊aende elektromagnetisk v̊ag. Apparaten inneh̊aller
ocks̊a tv̊a kvantprickar som är sm̊a bitar av halvledarmaterial. Resonatorn är
elektriskt kopplad till en av kvantprickorna. När en elektron tunnlar mellan
kvantprickorna samverkar den med en foton i resonatorn. Den här samverkan
kan användas till exempel att omvandla information fr̊an kvantprickarna till en
foton.
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Chapter 1

Introduction

Tunneling is a purely quantum mechanical phenomenon without any classical
counterpart [1]. A particle without enough energy to overcome a potential
barrier has a finite probability to permeate the barrier. Tunneling has been ex-
plored in multiple systems ranging from artificial constructed nanoscale devices
such as single-electron transistors [2] to biological environment [3]. Tunneling
provides the basis for many important industrially manufactured technologies
such as Esaki diode [4] and scanning tunneling microscopy [5]. In many of
the applications single-electron tunneling is the operational principle behind
the device functionality and higher-order processes lead to errors [6], e.g. in a
single-electron current source. On the other hand, there exists devices where the
situation is reversed and the higher-order processes are the desired charge trans-
fer mechanisms whereas the single-electron tunneling is a source of errors [7],
e.g. in a Cooper pair splitter.

Hybrid structures of materials with dissimilar charge carriers separated by po-
tential barriers lead to non-trivial transport across the interface. Hence, these
structures provide an ideal platform to study tunneling phenomena. An ex-
ample of such a system is a superconductor tunnel-coupled to a normal-state
metal as electrons can tunnel across the junction either one by one (sequential
tunneling) or two at the same time. The latter process is known as local An-
dreev tunneling [8] in which a bound pair of two electrons (Cooper pair) from
the superconductor tunnels into the normal-state metal filling two electronic
states equidistant above and below the Fermi level. Also the time-reversal of
this process in which two electrons tunnel from the normal-state metal into the
superconductor is called local Andreev tunneling.
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By tunnel-coupling the superconductor to a second normal-state metal struc-
ture gives rise to two more two-electron tunneling processes [9]. In the first
process two electrons forming a Cooper pair are split into two spatially separate
metallic structures. This process and its time-reversal are both known as non-
local Andreev tunneling. In the second process called elastic cotunneling one
electron tunnels directly from one normal-metal structure into the other via a
virtual state in the superconductor. This setup is commonly known as a Cooper
pair splitter (CPS) and the normal-state metals can be replaced by either ferro-
magnets [10], semiconductors [11] or carbon nanotubes [12]. The two electrons
forming a Cooper pair are spin-entangled in the singlet state [13]. Hence, Cooper
pair splitters generate spatially separated entangled spin states by splitting a
Cooper pair from a superconductor into two different normal-state structures.
Harnessing entangled particles from a superconductor is of fundamental interest
to test the foundations of quantum mechanics [14].

Traditionally, splitting of Cooper pairs has been detected indirectly by measur-
ing currents at the outputs of a CPS [10, 15, 16, 11, 17, 12, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31] or their low-frequency cross-correlations [18, 20].
In both of these approaches the measured signals contain contributions from not
only Cooper pair splitting but other tunneling processes as well. However, in
Paper i for the first time individual Cooper pair splitting events were resolved
in time domain by charge counting technique. The paper presents statistics
arising from non-local two-electron tunneling in the form of measurements of
correlation functions and waiting time distributions. Paper ii continues using
the same CPS device as Paper i and shows measurements of coupling coefficients
for both local Andreev, nonlocal Andreev and elastic cotunneling. Earlier, the
experiments focused on studying the energy dependence of the dominant trans-
port mechanism [15, 17, 32, 33, 19, 23, 29]. Comparison between the coupling
coefficients of different processes has evaded measurements as distinguishing dif-
ferent charge transfer mechanisms is experimentally difficult. Paper ii provides
the first comparison between the coefficients enabled by charge counting tech-
nique. Comparing the strength of different two-electron processes is not only an
intriguing physics question but also important for quantum technologies relying
on two-electron transport such as superconducting qubits [34, 35, 36, 37, 38], and
CPSs [39, 40, 10, 15, 16, 11, 41, 42]. The coefficients contain information about
the geometry and materials involved in transport and help to design structures
favouring the targeted process.

Another important technique tapping into single-electron devices is to probe
them by radio-frequency measurements. In superconducting coplanar wave-
guide (CPW) microwave resonators a central superconductor is separated from
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a ground plane on both sides by a micrometer scale gap. The resonance fre-
quency depends on the resonator length as well as the inductance and capacit-
ance per unit length. The characteristic impedance of these resonators is set
by the two latter quantities. In simplest CPW resonator central conductor is
a strip of superconducting metal e.g. aluminium and typically the geometry is
designed so that the impedance is 50Ω matching the standard value for cicuits
the resonators are connected to [43, 44]. These resonators have been used for
example as radiation detectors [45, 46, 47] and in quantum information experi-
ments [48, 49, 50].

Strong coupling is an important limit of light-matter interaction where the coup-
ling between the two systems exceeds the losses in the hybrid system [51]. In this
limit the two systems coherently exhange energy quanta. Strong coupling has
been demonstrated in various quantum optics systems such as alkali atoms [52],
Rydberg atoms [53], superconducting qubits [36] and optically probed semi-
conductor single quantum dots in photoluminescence studies [54, 55]. These
systems have attracted interest in the field of quantum information technology
as they can be utilized for example, to coherently couple remote qubits [56, 57]
and for transferring quantum information from qubits to photons [58, 59].

By increasing the inductance of the central conductor, the impedance increases
enhancing the vacuum electric field fluctuations. This can be achieved e.g.
by using an array of Josephson junctions with large inductance as the central
conductor [60]. Other high-impedance materials for building resonators include
arrays of superconducting quantum interference devices (SQUIDs) [61, 60], gran-
ular aluminium [62, 63] and NbTiN [64, 65]. The enhanced electric component
helps to achieve a strong coupling between microwave photons and semicon-
ductor spin [66, 67, 68, 65] and charge [61] qubits.

Paper iii studies two high-impedance resonators made out of Josephson junc-
tions in transmission line geometry. The two resonators are nominally identical
apart from their capacitive couplings to input/output lines. The paper shows
that in the compact geometries of these resonators, coupling capacitances form
a significant portion of the total capacitances. The considerable contribution
of the coupling capacitances to the total capacitance is also shown to limit the
highest attainable coupling to input/output lines in these devices. After char-
acterization of bare resonator devices in Paper iii the next step was to couple a
resonator to a semiconducting DQD. Paper iv studies light-matter interaction
between a Josephson junction array resonator, which is designed based on the
resonators in Paper iii, and a DQD formed in a polytype defined InAs nanowire.
In this hybrid system the strong coupling limit was reached and it was also shown
that in the studied charge qubit coherence was not charge noise limited.
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Chapter 2

Cooper pair splitting

In this chapter, two-electron tunneling in a device known as a Cooper pair
splitter (CPS) is discussed. Papers i and ii use the same CPS device. Section
1 introduces a normal metal - insulator -superconductor junction which is a
basic building block of the device. Section 2 (Paper i) focuses on detection
of Cooper pair splitting in real time and the correlation statistics arising from
this tunneling process. The versatile splitter device also enables measurement
of coupling coefficients of three two-electron tunneling processes discussed in
Section 3 (Paper ii).

1 Normal metal - insulator - superconductor junc-
tion

In this section the device used in Papers i and ii to study two-electron tunneling
processes is theoretically constructed bit by bit. Experiments are introduced
later in Sections 2 and 3. Superconductor as a source of paired electrons is an
indispensable building block of a system exhibiting two-electron tunneling and
thus a natural starting point as Section 1.1. To study tunneling phenomena the
superconductor needs to be coupled to a conductive material in a way where
the two are separated by a potential barrier. Tunneling is probed across this
interface which is known as a tunnel junction. A range of materials suits to
be coupled to the superconductor. Here, a normal-state metal is selected since
normal metal - insulator - superconductor (NIS) junctions were applied in Papers
i and ii due to earlier successful charge counting experiments employing NIS
junctions [69, 33, 70]. Potential barrier can be made out of e.g. an insulating
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oxide layer between the superconductor and the normal-state metal [71].

In order to experimentally detect individual tunneling events, either side of
the interface must contains an electron number which is well-defined and ex-
perimentally accessible. The normal-state metal is made small and it is tunnel-
coupled to the superconductor but isolated galvanically from any other circuitry.
Here, such metallic system is referred to as an island. Hence, the electron num-
ber on the metallic island is only affected by tunneling across the junction con-
necting the island to the superconductor. A gate electrode is brought in the
near vicinity of the metallic island to form a capacitive coupling between the
two. By varying applied voltage to the gate, the electrostatic potential on the
island is changed adjusting the energetically preferred electron number on it. A
system consisting of a small piece of metal with a tunnel-coupling to a reservoir
and a capacitive coupling to a gate electrode is known as a single-electron box
(SEB) [72] which was first studied by Lafarge et al. in 1991 [73].

In Section 1.2 the electrostatic energy on a metallic island is derived and this
result shows that energetically favourable charge states (electron numbers) can
be selected by tuning the gate voltage. This result also shows that a consid-
erable deviation from the energetically lowest-lying charge states is suppressed
as adding or subtracting electrons leads to a considerable energy cost. Hence,
only a few charge states on the metallic island participate in transport across
the junction [74]. This fact is crucial for charge counting which becomes clear
in Section 2.

After discussing the key ingredients of NIS, namely a superconductor and char-
ging effects on metallic island, the charge transfer between the two can be ad-
dressed. In contrast to sequential tunneling in which a single electron tunnels
into or out the metallic island, local Andreev tunneling changes the electron
number on a metallic island by two. This mechanism is described in Section
1.3. Tunnel-coupling the superconductor to a second metallic island so that the
two junctions are in a close proximity of each other enables non-local tunneling
processes to take place. These processes are non-local Andreev tunneling and
elastic cotunneling [9] and they are discussed in Section 1.3. Section 2 introduces
the CPS device used in Papers i and ii and how individual tunneling events are
resolved in time domain. Furthermore, Section 2 discusses statistics arising from
non-local two-electron tunneling presented in Paper i. Coupling coefficients of
the three two-electron tunneling processes, experimentally determined in Paper
ii, are compared against each other in Section 3.

6



1.1 Superconducting energy gap

In this section the emergence of the energy gap in the superconducting density of
states (DoS) is shown by following the Ref. 75. The superconducting gap sets the
relevant energy scale in a superconductor and it is an important parameter later
when tunneling involving a superconductor is considered. The DoS is derived
in the framework of BCS theory. The superconducting material in Papers i
and ii is aluminum in which superconductivity is explained by the BCS theory.
Second quantization with fermionic creation ĉ†k,σ and annihilation ĉk,σ operators
is applied. The pairing Hamiltonian is given by

Hpairing =
∑

k,σ

ϵkn̂k,σ +
∑

k,l

Vk,lĉ
†
k,↑ĉ

†
−k,↓ĉ−l,↓ĉl,↑, (2.1)

where the first summation stands for the kinetic energy and the second one sets
the interaction between electrons of opposite momentum and spin orientation.
The first summation is over momentum k and spin σ =↑, ↓. The particle number
operator n̂k,σ = ĉ†k,σ ĉk,σ yields either 0 and 1 when operated on electronic states
due to Pauli exclusion principle. ϵk is the kinetic energy of an electron with
momentum k. The second summation in Equation 2.1 is taken over momenta
k and l. Vk,l =

1
Ω

∫
V (r)ei(l−k)·rdr are the matrix elements of the interaction

potential, where Ω is the normalization volume and r the distance between
electrons.

The goal is to find out the coefficients in Equation (2.1). Operators of the form
ĉ−k,↓ĉk,↑ in normal state average out to zero in the absence of coherence. The
superconducting ground state is a coherent superposition of paired electrons
and the expectation value of the product ĉ−k,↓ĉk,↑ can be finite. By adding and
subtracting the expectation value xk ≡ ⟨ĉ−k,↓ĉk,↑⟩, the product can be written
as

ĉ−k,↓ĉk,↑ = xk + (ĉ−k,↓ĉk,↑ − xk). (2.2)

Adding the term −µ
∑

k,σ n̂k,σ to the pairing Hamiltonian allows the particle
number to change, µ is the chemical potential. This term can be combined with
the kinetic term in Equation (2.1) as

∑
k,σ Ekn̂k,σ, where Ek ≡ ϵk − µ is the

single-particle energy.

The term with parentheses around it in Equation (2.2) is a fluctuation around
xk. This fluctuation can be assumed small in the presence of many particles. In-
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serting Equation (2.2) into the pairing Hamiltonian of Equation (2.1), including
the chemical potential and dropping terms bilinear in the fluctuation yields

H̃pairing =
∑

k,σ

Ekn̂k,σ +
∑

k,l

Vk,l(ĉ
†
k,↑ĉ

†
−k,↓xl + x†kĉ−l,↓ĉl,↑ − x†kxl). (2.3)

By comparing this new Hamiltonian to Hpairing one notices that by assuming
fluctuations to be small all terms are at most quadratic in creation and annihil-
ation operators in contrast to fourth order earlier. The product of the pairing
potential Vk,l and the expectation value xk can be written as ∆k ≡ −∑l Vk,lxl.
Rewriting the Hamiltonian, this time the one given by Equation (2.3), gives

H̃pairing =
∑

k,σ

Ekn̂k,σ −
∑

k

(∆kĉ
†
k,↑ĉ

†
−k,↓ +∆†

kĉ−k,↓ĉk,↑ −∆kx
†
k). (2.4)

Equation (2.4) is a sum of single-particle energies and energies of pairs of two
electrons as in the second sum products of operators with opposite momentum
and spin are multiplied by ∆k which is a characteristic energy of paired elec-
trons. Hamiltonian quadratic in creation and annihilation operators can be
diagonalized by Bogoliubov-Valatin transformation [76, 77]

(
ĉ−k,↓
ĉ†k,↑

)
=

(
u∗k −vk
v∗k uk

)(
γ̂−k,↓
γ̂†k,↑

)
(2.5)

where γ̂†k,↑ is a fermionic quasiparticle excitation creation operator. The complex

coefficients satisfy |uk|2 + |vk|2 = 1 as the transformation is canonical. By
inserting the quasiparticle operators of Equation (2.5) into the Hamiltonian
in Equation (2.4) the following expression is obtained

H̃pairing =
∑

k

Ek((|uk|2 −|vk|2)(γ̂†k,↑γ̂k,↑ + γ̂†−k,↓γ̂−k,↓) + 2|vk|2 + 2u∗kv
∗
kγ̂−k,↓γ̂k,↑

+ 2ukvkγ̂
†
k,↑γ̂

†
−k,↓) +

∑

k

((∆kukv
∗
k +∆∗

ku
∗
kvk)(γ̂

†
k,↑γ̂k,↑ + γ̂†−k,↓γ̂−k,↓ − 1)

+ (∆kv
∗2
k −∆∗

ku
∗2
k )γ̂−k,↓γ̂k,↑ + (∆∗

kv
2
k −∆ku

2
k)γ̂

†
k,↑γ̂

†
−k,↓ +∆kx

†
k).

(2.6)
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By setting 2Ekukvk + ∆∗
kv

2
k − ∆ku

2
k = 0 the terms proportional to γ̂†k,↑γ̂

†
−k,↓

or γ̂−k,↓γ̂k,↑ vanish leaving only a constant and terms proportional to number

operator γ†k,σγk,σ. The diagonalized Hamiltonian reads as

Hdiag =
∑

k

(Ek − Ek +∆kx
∗
k) +

∑

k,σ

Ekγ̂
†
k,σγ̂k,σ, (2.7)

where Ek ≡
√
E2
k +|∆k|2 is the quasiparticle energy. For such an excitation the

minimal required energy is |∆k| which is the superconducting gap. To derive
the density of states the gap is assumed to be independent of k as k values are
close the Fermi wavevector.

The excitations in superconductor correspond to electrons in normal state.
Hence the relation NS(E)dE = NN(E)dE holds between the superconducting
NS(E) and NN(E) normal-state DoS. Electronic temperatures in this thesis re-
main below 200mK. The superconducting material used throughout this thesis
is aluminium with superconducting gap of ∆ = 200µeV [78] corresponding to
the temperature of 2.3K. Thus the energy range around the Fermi level is
small and for the purposes of this thesis the normal-state DoS is constant, e.g.
NN(E) = NN(0) if the Fermi level is given the value zero. The superconducting
DoS normalized by the normal-state DoS is

nSC(E) =
NS(E)

NN(0)
=

dE
dE

=





|E|√
E2−∆2

, |E| > ∆

0 , |E| < ∆
. (2.8)

1.2 Charging of a small metallic island

Charging an isolated system by a known number of excess elementary charges
was first carried out by R. A. Millikan in 1911 in Millikan’s oil drop experi-
ment [79]. Here, charging effects on a small metallic island are considered and
electrostatic energy of a metallic island is derived. The following discussion is
inspired by Ref. [80]. Starting point is an island completely isolated from the
environment. The total charge on the island is zero Qisland = 0. By bringing
a gate electrode in the near vicinity of the island, a capacitive coupling CG is
introduced between the island and the electrode. As voltage VG is applied to the
electrode the island is polarized. Positive gate voltage draws mobile electrons
on the island to the edge close the electrode creating a local negative net electric
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charge and a local positive charge on the opposite edge as the lattice ions stay
put.

The process of varying the gate voltage so far only affects the charge distribution
on the island and does not alter the total charge as electrons have nowhere to
go. Tunnel-coupling the island to a grounded conducting electrode allows the
electron number on the island to fluctuate as electrons now can tunnel into or
out of the island via the tunnel junction. This grounded electrode acts as an
electron reservoir and either emits an electron to the island or absorbs from
it. Let n be the excess electron number on the island with the neutral state
Qisland = 0 as reference. Schematics for this configuration is shown in Fig. 2.1.

Charge Qisland = −en on the island is quantized, e is the elementary charge. In
addition to resistance the tunnel junction has capacitance CJ. The island can
now be considered as a volume containing one plate of each capacitor (gate and
junction). The charges on the capacitor plates are ±QJ and ±QG. Naturally
Qisland = QJ − QG. Kirchhoff’s voltage law gives VG − QG/CG − QJ/CJ = 0
where the two latter terms on the left hand side are the voltage drops over the
capacitors. The two conditions for the charge and the voltage form the basis for
electrostatics

{
Qisland −QJ +QG= 0

VG −QG/CG −QJ/CJ= 0
(2.9)

Island
VG

CGCJ
n

Figure 2.1: Single-electron box circuit diagram. Metallic island is the area enclosed by the blue dashed line containing the
charge −en. The island is coupled to a gate electrode by the capacitance CG and the electrode is connected
to voltage VG. Grounded electrode acts as an electron reservoir which emits electrons to the island or absorbs
from it through the tunnel junction which has the capacitance CJ.

The total energy stored in the circuit is given by the capacitor energies subtrac-
ted by the work provided by the gate voltage,
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Estored =
Q2

J

2CJ
+

Q2
G

2CG
− VGQG. (2.10)

By writing this energy as a function of the excess electron number n one can
see the effect of adding or removing electrons from the island. For this purpose,
the capacitor charges QJ and QG in Equation (2.9) need to be written with
the help of n. To make the expressions more compact, the capacitances can be
grouped as CΣ ≡ CJ + CG which is the capacitance between the island and its
environment. Hence, the charges read as

{
QJ=

CJ
CΣ

(CGVG − en)

QG=
CG
CΣ

(CJVG + en)
(2.11)

By plugging in the charges from Equation (2.11) to the energy in Equation
(2.10),

Estored =
1

2CΣ

(
e2n2 − 2CGVGen− CJCGV

2
G

)
. (2.12)

The energy stored in the circuit is now constructed as a function of n and VG

which is an experimentally tunable parameter. nG ≡ CGVG/e is a dimensionless
parameter and known as the normalized gate-offset charge. It is a convenient
parameter for describing the effect of the gate voltage to the electronic popula-
tion on the island. By adding e2n2

G/2CΣ to and subtracting it from the right
hand side of Equation (2.12) yields

Estored =
e2

2CΣ

(
(n− nG)

2 − CΣ

CG
n2
G

)
. (2.13)

Energetics of electrons tunneling into and out of the island only depend on terms
containing n in Equation 2.13. Hence, this energetics is described by

Eisland(n) = EC(n− nG)
2, (2.14)

where EC ≡ e2/2CΣ is commonly known as the charging energy and describes
the energy scale of adding one electron to or removing it from the island. Now
one is well-prepared to study the energy changes of tunneling. The energy cost
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of either adding an electron to (in) or subtracting an electron from (out) an
island is given by

δE
in/out
1e = Eisland(n)− Eisland(n± 1) = ∓2EC

(
n± 1

2
− nG

)
. (2.15)

For the terms with two sign choices, the upper sign is for ’in’. If instead two
electrons are either added to or subtracted from an island the cost becomes

δE
in/out
2e = Eisland(n)− Eisland(n± 2) = ∓4EC (n± 1− nG) . (2.16)

1.3 Tunneling across normal metal - insulator - superconductor
junction

In Figs. 2.2 (a) and (b) local tunneling processes across a NIS junction are dis-
played. The density of states in a superconductor is given by Equation (2.8)
which contains an energy gap of the width 2∆ which is located symmetric-
ally around the Fermi level EF. Panel (a) shows a sequential tunneling event
in which a single electron tunnels from normal metal to superconductor. The
superconducting gap is free of single-particle states and therefore sequential tun-
neling requires energies at least ∆ above the Fermi level. The Fermi function
f gives the electronic occupation probability and reads at a finite temperature
T as f(T ) = (1 + exp((E − EF)/kBT ))

−1, where kB is the Boltzmann con-
stant. The tail of the Fermi function can be approximated by an exponential
exp(−(E − EF)/kBT ) when E − EF ≫ kBT . At the superconducting gap edge
E − EF = ∆ which for aluminium is 200µeV [78]. The electronic base temper-
ature of a dilution refrigerator used in the experiments done in all papers of this
thesis is 50mK [81] which corresponds to a thermal energy of 4µeV. Thus our
assumption E −EF ≫ kBT is sound. The sequential tunneling processes across
the NIS junction are exponentially suppressed by the superconducting gap and
decreasing temperature [82].

Unlike sequential tunneling the local Andreev tunneling in panel (b) takes place
at subgap energies. In this phenomenon first discovered by A. F. Andreev in
1964 [8] an electron with the energy between EF and EF + ∆ incident to the
interface from the normal-state metal can propagate into superconductor as an
evanescent wave and eventually condensate as a part of a Cooper pair to the
superconducting ground state at the Fermi level [75]. The span inside which the
wave decays is given by the superconducting coherence length. The condens-

12



ation demands another electron which is found in the normal-state metal an
equidistant energy below the Fermi level as the incident electron was above [83].
This second electron has an opposite spin compared to the first one as Cooper
pairs consist of electrons with opposite spins. Thus a charge −2e is transmitted
through the interface.

Local Andreev requires both spin types to be present in the material contacted
to superconductor [84] which is fulfilled for materials with spin-rotation sym-
metry such as a normal-state metal [85]. If the normal-state metal was replaced
with e.g. spin-polarized ferromagnet the local Andreev tunneling would become
forbidden [86, 87]. The time-reversal of this process where a Cooper pair from
the superconductor tunnels into one metallic contact is also called local Andreev
tunneling.

The local tunneling processes described above occur across a single NIS junc-
tion. Cooper pair has a finite size characterized by the superconducting co-
herence length. By introducing a second NIS junction to the system so that
the separation of the two junctions is comparable to the superconducting co-
herence length enables an incident electron from one metallic contact to pair
with an electron from the same contact as earlier or even in the other metallic
contact [88]. The latter non-local tunneling process is shown in panel (c) where
two electrons from different spatially separated metallic contacts tunnel into the
central superconductor virtually simultaneously forming a Cooper pair. In the
time-reversal version a Cooper pair inside the central superconductor splits as
the two electrons constituting it tunnel into separate normal metal contacts.
These two processes are known as non-local Andreev tunneling.

Another non-local two-electron tunneling process known as an elastic cotun-
neling is shown in panel (d) where an electron from the left metallic contact
tunnels directly into the right one via an intermediate virtual state. Unlike in
sequential tunneling the electron now can have its energy inside the gap. The
first description of elastic cotunneling was given by D. V. Averin and Yu. V.
Nazarov in 1990 [89]. Elastic cotunneling can be conceptually understood by the
time-energy uncertainty relation ∆t∆E ≥ ℏ/2 [90]. According to this inequality
an electron from a metallic contact can tunnel to a higher energy virtual state
in the superconductor as long as the time spent at this state is short enough.
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(a)

(c)

(b)

(d)

e-

EF

Δ

Δ

Δ

Δ

S I N

N I S I N

Sequential tunneling Local Andreev tunneling

Non-local Andreev tunneling Elastic cotunneling

S I N

N I S I N

Figure 2.2: One and two-electron tunneling in NISIN structure. Schematics of local (a)-(b) and non-local (c)-(d) tun-
neling processes by graphs where the vertical direction denotes the energy. ∆ is the superconducting gap and
EF the Fermi level. (a), A sequential tunneling event where an electron in the normal-state metal tunnels
out of the metallic contact to the superconductor. (b), Two electrons from the normal-state metal tunnel
into the superconductor forming a Cooper pair. (c), An electron from the left metallic contact pairs with
another electron from the right metallic contact to form a Cooper pair in the superconductor. (d), An electron
tunneling from the left metallic contact directly to the right one via a virtual state in the superconductor. N
= normal-state metal, I = insulator and S = superconductor.

14



The sequential tunneling rate is derived in Paper ii (Supplementary information
for details) at zero energy cost to be

Γ1e(δE → 0, T ) =
1

e2RT

√
2π∆kBT e

−∆/kBT . (2.17)

From Equation (2.17) one instantly sees the exponential suppression due to the
gap and decreasing temperature. Equation (2.17) assumes δE, kBT ≪ ∆. The
charging energy EC sets the scale for the energy cost δE. In the device in Papers
i and ii the charging energies of the metallic islands are around 40µeV [81]. The
tunneling rate of a process of interest is measured by tuning the initial and final
charge states of the process close to degeneracy as will be shown in Section 2.
Hence δE is smaller than EC and δE ≪ ∆ is justified. The thermal energy kBT
at the highest temperature of 175mK in Paper ii is 15µeV and much smaller
than ∆. For the charging energy to govern single-electron transport to and
from an island the condition EC ≫ kBT must be met [80] which is the case. For
the wave function of an excess electron to be localized on island the junction
resistance needs to exceed the resistance quantum RK = h/e2 ≈ 25.8 kΩ, i.e.
RT ≫ RK. The junction resistances in the device of Papers i and ii are of the
order of 10MΩ fulfilling the condition.

Elastic cotunneling, local and non-local Andreev tunneling all acquire the fol-
lowing simple form when δE, kBT ≪ ∆,

Γ2e(δE, T ) = γ
δE/kBT

1− e−δE/kBT
kBT, (2.18)

where the prefactor γ depends on whether the process is local or non-local.
The tunneling rates for the local and non-local two-electron tunneling processes
were measured in Papers i and ii in operation points where the initial and final
states of transitions are degenerate in energy. In the limit of zero energy cost
limδE→0

δE/kBT

1−e−δE/kBT = 1, the two-electron rates attain a simple form

Γ2e(δE → 0, T ) = γkBT, (2.19)

which shows linear temperature dependence. The prefactor γ in Equation (2.19)
for the local and non-local rates reads as
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γlocal =
1

8e2R2
Tα

RK

Nα

γnon−local =
e−l/ξ

2e2RTLRTR
RS,

(2.20)

where RTα is the junction resistance of the tunnel junction contacting island
α and the superconductor, RS is the normal-state resistance of the supercon-
ducting electrode measured over coherence length ξ. RK ≡ h/e2 is the so-called
resistance quantum, h is the Planck’s constant. Nα = Aα/Ach,α is the effective
number of the conduction channels in junction α = L,R with a junction area
Aα and effective conduction channel area Ach,α [33]. l is the separation between
the two junctions.

2 Real-time detection of Cooper pair splitting (Pa-
per i)

After the theoretical background presented in Section 1, detection of tunneling
events in real time is discussed in this section. In section 2.1 the concept of a
Cooper pair splitter is introduced as well as the work done in the field paving
the way for experiments in Papers i and ii. In this section different detection
schemes are discussed as charge counting technique was a key component to
accomplish the first real-time detection of Cooper pair splitting in Paper i.

Section 2.2 displays the device in Papers i and ii consisting of a grounded su-
perconducting electrode coupled to two normal-state metallic islands via tun-
nel junctions. The junctions are in the close proximity of each other to allow
non-local two-electron processes. The small separation l between the junctions
makes the exponential term of γnon−local given by Equation (2.20) large thus al-
lowing finite rates as seen in Equation (2.18). Section 2.3 goes into details how
the two single-electron transisors (SETs) capacitively coupled to the metallic
islands function as sensitive charge detectors reading out the charge state on
the islands in real time. Recording current as a function of time through the
SETs allows one to tap into time-resolved statistics of the tunneling events. A
current measured in time domain is called a time trace. Section 2.4 explains
how tunneling rates for different processes are extracted from time traces.

Distinguishing all tunneling processes from each other in time traces allows one
to tap into the statistics of tunneling events in Section 2.5. Auto-correlation
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function takes into account tunneling events on only one island and cross-
correlation function events on both islands. The correlation functions reveal the
relevant timescales in the detection and the cross-correlation function exhibits
a pronounced peak two orders of magnitude above the background providing
solid evidence for the presence of correlated tunneling events involving separate
islands.

2.1 Cooper pair splitter

CPS device was first theoretically outlined twenty years ago [39, 40]. Common
component to all Cooper pair splitters is a superconducting reservoir providing
Cooper pairs. By coupling the superconductor to conducting material Cooper
pairs can be extracted out of the reservoir. Superconductor is a natural host
for solid-state entanglement as the two electrons of a Cooper pair form a spin-
singlet state (|↑↓⟩ − |↓↑⟩)/

√
2 [91] if the superconductor is s-wave type [75] as

is the case for aluminium [13]. Soon after the advent of quantum mechanics it
was realized by A. Einstein, B. Podolsky, N. Rosen [92] and E. Schrödinger in
the 1930s that the newly discovered physical reality contained a peculiar feature
which in essence stated that there exists global states of composite subsystems
that are not possible to be formulated as product states of the constituting parts
of the total system [93]. This implies e.g. in the case of a spin-singlet state of
electrons that whenever the spin of one of the electrons is measured the spin of
the other one is immediately known regardless of the distance between the two
particles.

These correlations between spatially separate entangled particles, commonly
known as EPR pairs, can be utilized to test the foundations of quantum mech-
anics by verifying if Bell inequality is violated [94, 14]. The first convincing
experimental evidence of the violation was provided by A. Aspect et al. in
the early 1980s [95, 96]. Generation of solid-state entanglement is straight-
forward as described above. It is achieved simply by cooling down a piece of
metal exhibiting superconducting properties at low temperatures below its crit-
ical temperature. Entanglement can be harnessed from a superconductor by
splitting a Cooper pair to conductors connected to it and the individual elec-
trons of the pair are now collected in different arms. So far no one has verified
entanglement between the electrons from a split pair. The splitting has been
demonstrated with various types of arms: ferromagnetic leads [10], normal-state
metal leads [15, 17, 18], semiconducting quantum dots [11, 19, 20] or quantum
dots in carbon nanotubes [12, 26].

Ferromagnetic leads allow opposite spin-polarization of the arms and Cooper
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pair splitting can be detected in a spin-dependent non-local resistance measure-
ment [10]. Normal-state leads host a mixture of different spins and thus set no
condition what spin directions electrons coming from the superconductor should
possess. In the case of normal-state arms split Cooper pairs are observed by
measuring non-local voltage [15], non-local differential resistance oscillations [17]
or noise cross-correlation [18]. Non-local differential conductance measurements
have been performed in splitting to semiconducting quantum dots [11, 19, 21]
or carbon nanotube defined quantum dots [22].

Although all of these measurements have been successful in showing the char-
acteristic sign of split Cooper pairs they rely on detecting an ensemble of many
split events. The measured signals contain many split pairs and it is not known
to the observer at which exact moments in time a split pair enters the arms.
This inability to pinpoint individual splitting events hinders the use of correlated
electrons for any device functionality.

A fundamentally different route for detection was taken in Paper i. Instead of
two drain leads the split electrons are collected into two small metallic islands
and their arrival causes a noticeable change in the electrostatic potentials of the
islands which can be detected in real time by SET electrometry. As both of the
islands are capacitively coupled to individual electrometers the splitting event is
seen as currents through both detectors switch simultaneously. This first real-
time detection is an important step towards utilizing the spin-entanglement of
split Cooper pairs and the details of the experimental setup and how the split
events are extracted from the detector signals are given in this chapter.

2.2 Device architecture

Figure 2.3 displays a scanning electron micrograph of a CPS device in Paper i
and ii. The grounded superconducting aluminium electrode is coupled to two
normal-state copper islands via aluminiumoxide tunnel junctions. The inset
inside the main micrograph shows the junction configuration. The distance
between the junctions is l ≈ 100 nm estimated from a scanning electron mi-
crograph and thus around the same as the superconducting coherence length
ξ ≈ 100 nm which is a typical value for the aluminium film used in our sys-
tem [97]. l ≈ ξ is a crucial requirement to observe non-local Andreev tunneling
as ξ is a characteristic length scale for the size of a Cooper pair and the non-local
tunneling processes are exponentially suppressed as exp(−l/ξ) seen in Equations
(2.18) and (2.20).

The superconducting electrode not only provides Cooper pairs but also acts as
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Figure 2.3: Cooper pair splitter. Scanning electron micrograph of the superconducting aluminum electrode tunnel-coupled
via insulating aluminumoxide layers to two normal-state copper islands coloured in orange. The inset in the
upper right corner shows the tunnel junctions. The thin chromium strips coloured in green capacitively couple
the islands to distinct single-electron transistors which act as sensitive electrometers which are zoomed in below
the main micrograph. Figure is adapted from Paper i.

a barrier for sequential tunneling as electrons need to be excited over the gap.
Hence, the gap introduces an exponential suppression to sequential tunneling
rates and subgap transport in the form of two-electron processes becomes an im-
portant charge transfer mechanism between the superconductor and the metallic
islands.

The electrostatic energies of the islands are given by Equation (2.14) as Eα(nα) =
ECα(nα − nGα)

2, where the subscript α = L,R denotes either the left or the
right island respectively. The normalized gate-offset charge nGα = CGαVGα/e is
controlled experimentally by the gate voltages VGα shown in Fig. 2.3. The elec-
trostatic energies of the islands have a parabolic form and therefore a unique
minimum at some certain nα value. By varying the applied gate voltage the
electronic populations are controlled. The occupation probabilities of the charge
states then determine which tunneling processes are energetically preferable.
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In Fig. 2.3 the yellowish part covering roughly half the background is the ground
plane. The metallic islands are placed as far away as possible from each other
and close to the ground plane in order to minimize the capacitive coupling
between the islands. Coulomb interaction between the metallic islands would
favour elastic cotunneling as the splitting would require additional energy to
overcome the repulsion between the two electrons tunneling into separate is-
lands. Near the tunnel junctions the islands are close to each other but in this
region their Coulomb interaction is screened by the superconducting electrode.

The charge states on the metallic islands are monitored by two SETs, one for
each island, which are shown in zoom-ins in Fig. 2.3. The islands are capacitively
coupled to SET detectors via chromium strips in green. The detectors are biased
by voltages VDα, gated by voltages VDGα and the currents IDα are simultaneously
measured through the detectors.

2.3 Charge detection

Two important electronic occupation distributions on the islands are obtained
by setting the normalized gate offset charge nGα in Equation (2.14) to either
integer or half-integer value. The two regimes differ by which electron numbers
are degenerate in energy. In the case of nGα = 0 the excess electron numbers
nα = −1 and nα = 1 have the same energy as demonstrated in Fig. 2.4 (a). For
the operational point nGα = 1/2 the electron numbers nα = 0 and nα = 1 have
the same energy as demonstrated in Fig. 2.4 (b).

In Fig. 2.4 (a) the offset on the right island is set to nGR = 0. This makes
the charge states nR = ±1 degenerate in energy and thus the local Andreev
tunneling which changes the electron number by two becomes the energetically
preferred charge transfer mechanism as this process occurs at zero energy cost.
This tuning is called Coulomb blockade as single-electron tunneling requires a
finite energy. In the time trace in Fig. 2.4 (a) the island is seen to reside at the
lowest-lying energy state nR = 0 before making occasional transitions to higher-
lying states nR = ±1. In these sequential tunneling events one electron either
tunnels into (out of) the island leaving it in the state nR = 1 (nR = −1). Once
the island has entered a higher-lying state tunneling processes either adding
or subtracting the charge by amount 2e occur at no energy cost as both the
initial and final states lie at the same energy. An avalanche of Andreev events
is observed when the charge state alternates between degenerate states nR = 1
and nR = −1 until relaxation back to nR = 0 and the sequence can start all
over again.
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Figure 2.4: Electronic occupations in Coulomb blockade and degeneracy. (a), By tuning the right island into Coulomb
blockade nGR = 0 the charge states -1 and 1 end up being degenerate in energy favouring tunneling processes
changing the electron number by two on the island. A typical measured time trace and charging energy diagram
at this operating point. This operating point is applied to determine tunneling rates for local Andreev tunneling.
(b), When both islands are tuned to nGα = 1/2 the adjacent charge states 0 and 1 become degenerate in
energy which favours tunneling processes changing the electron number by one on individual islands which is
the case for non-local two-electron processes. The red and blue curves are examples of simultaneously measured
time traces on the left and right island respectively. Thus the degeneracy point is used to measure tunneling
rates for non-local Andreev tunneling and elastic cotunneling.

If the offset is moved from nGR = 0 towards 1/2 the lowest-lying state nR = 0
is lifted in energy and the state nR = 1 lowered till the two states became
degenerate at the offset nGR = 1/2 in Fig. 2.4 (b). This operating point is
referred to as degeneracy in literature. At this second operating point the island
is occupied by zero and one excess electrons equal amount of time. The tunneling
processes in which one electron either enters or leaves the island are the preferred
charge transfer mechanisms as these events occur at zero energy cost. Both the
non-local two-electron and the sequential tunneling processes keep the islands in
their lowest-lying states but the latter one is suppressed as it requires electrons
to be excited above the superconducting gap whereas the former takes place at
subgap energies.
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In the remainder of this section charge detection is described when both islands
are tuned to degeneracy where the normalized charge offsets are tuned to 1/2.
All the data in Paper i was recorded at this operating point to detect non-
local tunneling processes. The detection is performed in a similar fashion for
Coulomb blockaded case in Section 3 when comparing the local and non-local
two-electron coupling coefficients against each other.

60 s long time traces were simultaneously recorded with a multichannel analog-
to-digital converter at a sampling rate of 20 kHz. The detector currents exhibit
Coulomb oscillations and the detectors were set to charge sensitive operating
points at the steepest part of the current slope. At this point the detector
is most sensitive and also the dynamical range is maximized. The detector
operating point was slowly drifting in the measurements. This was compensated
by applying a feedback-loop. The compensation was achieved by measuring 60 s
long time traces and gate voltages were adjusted accordingly in between. The
detector signals were digitally filtered through a low-pass filter for which the
cut-off frequency was set at 200 Hz. This sets the detector rise time to around
4ms which describes how quickly the detector responds to tunneling events.

Figure 2.5 shows few seconds long clips of simultaneously measured detector
currents monitoring the charge states on the left island (red curve) and on the
right island (blue curve). In the beginning of the clips the right island stays
around current of 60 pA as no transfer takes place between the island and the
superconductor. At the instant 1○ the left detector current abruptly switches
from 60 pA to 80 pA as an electron tunnels out of the island into the super-
conductor. This sequential tunneling event is illustrated in panel (b) displaying
charge transfer across tunnel junctions. Switching of both detector currents is
observed seemingly instantaneously to same direction at the instant 2○. This is
a sign of Cooper pair splitting. At the instant 3○ another sequential tunneling
event takes place when an electron tunnels this time out the right island.

At the instant 4○ both detector currents switch again almost simultaneously,
except now to different directions. An electron from the left island tunnels into
the right island via a virtual state in the superconductor in this elastic cotun-
neling event. In panel (a) the charge counting technique clearly tells non-local
Andreev tunneling and elastic cotunneling apart by simply observing whether
the signals switch to same or opposite directions.
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Figure 2.5: Real-time observation of Cooper pair splitting. (a), Simultaneously measured time traces through the left
(red) and the right (blue) detector. The currents fluctuate between two distinct levels revealing the excess
electron number in real time. (b), The points 1○ and 3○ display sequential tunneling out of the islands. The
point 2○ shows an event where the two electrons forming a Cooper pair tunnel into separate islands at the
same time. In an elastic cotunneling event shown by point 4○ an electron from the left island tunnels via a
virtual state in the superconductor into the right island. Figure is adapted from Paper i.

2.4 Data analysis

Instantaneous charge state

The data shown in this section are measured at half-integer offsets nGα. A
typical time trace of 60 s is shown in Fig. 2.6 (a). In the Cooper pair split-
ting measurements in Paper i several traces were recorded at the electronic
base temperature of 50mK in a dilution refrigerator. As described earlier the
detector currents switch between distinct levels. Each level corresponds to a
certain charge state on the monitored islands and the shifts reveal the trans-
itions between the states when electrons tunnel into or out of the islands. The
levels are not completely constant as the detector currents drift and due to the
presence of noise. Occasionally there was too much drifting making it ambigu-
ous to distinguish charge states from each other in the detector signal. This
leads to a need to dismiss certain time traces from the analysis. Thus rigorous
data analysis is needed to extract the instantaneous charge state in the detector
signal and further the tunneling rates.

The sampling rate for recording the current was 20 kHz. For 60 s long time traces
the step size of 50µs yield 1.2 × 106 current data points in total. Statistical
arguments are applied to determine which data point belongs to which charge
state. By dividing all current data points in Fig. 2.6 (a) into 100 equally wide
bins the histogram presented in Fig. 2.6 (b) is obtained. The two lowest-lying
states appear clearly as the two highest peaks denoted by I0,1. These peaks
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Figure 2.6: Detector current. (a), The thresholds T i
j marked by the dashed lines determine how current is partitioned

between the charge states. The solid black lines indicate the current levels I0 and I1 of the lowest-lying charge
states. σ0 and σ1 denote the standard deviations of the currents at the charge states. (b) The current from
panel (a) allocated in 100 bins. The current levels of the four charge states 2, 1, 0 and -1 are visible in the
histogram as the four peaks. The current in the individual levels is given by a Gaussian distribution. Figure is
adapted from Paper i.

are found by first locating the highest peak Ih and removing all current around
it within Ih ± 2σ, where σ = 2.5 pA is the average current noise. The highest
peak is again located in the remaining data and denoted by Ish. The current
levels at charge states 0 and 1 are determined to be I0 = max(Ih, Ish) and
I1 = min(Ih, Ish).

If the islands are properly tuned to degeneracy point nGα = 1/2 they spend
equal amount of time at charge states 0 and 1. A criterion is set how much
the populations are allowed to deviate from the desired 50-50 division. This is
accomplished by demanding that the ratio N0/N1 stays within certain bounds
where Nj is the number of counts in the bin Ij . If the time trace satisfies
1/2 < N0/N1 < 2 it is included in the analysis, otherwise disregarded.

The detector currents do not stay at perfectly constant levels when the electron
number on the islands is fixed but drift from their mean value. Due to the drift
the current occasionally visits the range between the mean current levels. In
this case it is not clear whether those current points belong to the charge state
0 or 1. In Fig. 2.6 the amount of current residing between the levels is visible
and can be quantified by the height of the valley Nvalley between the peaks I0,1.
In some time traces the current drifts to a distinct level in the valley and a local
maximum Nvalley forms. In the other traces mainly the transitions between the
states contribute to valley and no local maximum forms and the minimum in the
interval [I1+2σ, I0−2σ] is set as Nvalley. If the ratio Nvalley/min(N0, N1) < 0.05
the time trace is included in the analysis.
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Now the current levels corresponding to the charge states 0 and 1 are identified.
The islands are occasionally excited to energetically higher-lying charge states
-1 (2) which can be seen in the detector signal in Fig. 2.6 (a) as levels above
(below) I0 (I1). If there is maximum below I1 − 2σ (above I0 + 2σ) it is set as
I2 (I−1). After having determined the mean current levels all current points are
allocated to charge states. This is done with the help of thresholds based on the
histogram peaks.

To distinguish the charge states 0 and 1 in the signal a threshold T 0
1 is set in

the midway between the levels I0 and I1. Setting the thresholds between I0 and
I−1 (I1 and I2) is not as straightforward. In Fig. 2.6 (a) charge state 2 is less
pronounced than -1. If the midway was applied between the states 1 and 2 the
threshold would cut the noise level of the state 1. Therefore a different strategy
must be used for the higher-lying states. If I−1 (I2) exists the threshold is set
at the minimum in the interval [I0 + 2σ, I−1, ] ([I2, I1 − 2σ]). In case I−1 (I2)
does not exist all current above (below) T 0

1 is taken to belong the state 0 (1).
The instantaneous charge state of the island is now determined and this allows
one to study the transitions in the system.

Tunneling rates

After assigning the instantaneous charge state the time trace is digitized, i.e.
all current points are mapped to states -1, 0, 1 and 2 allowing one to study
the transitions and extract the tunneling rates. The rates are determined as in
Ref. [33]. A local tunneling rate from the charge state i to f is computed as
Γi→f = mi→f/ti where mi→f is the number of i → f events and ti the total time
spent in the initial charge state i. Rates for the non-local processes are computed
similarly except now one needs to consider the combined charge state of the two
islands. The rate for a non-local process in which a transition i → f on the
left island and j → g on the right island is computed as Γj→g

i→f = mi→f,j→g/ti,j
where mi→f,j→g is the number of non-local events and ti,j is the time the left
island spends at i and the right island at j simultaneously.

In the following, a method to distinguish local and non-local two-electron tun-
neling events from sequential tunneling events is described. To distinguish local
Andreev events from two closely happening sequential tunneling events, the ar-
gument put forward in Ref. [33] is followed. Figure 2.7 (a) shows the lifetime
distribution at the charge state 0 on the right island. Most points fall nicely into
an exponential arising from a random process except the one at very short time.
This point is credited to local Andreev tunneling and two closely happening one
electron transitions to same direction are interpreted as an Andreev event.
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Figure 2.7: Life-time distribution. (a), Time spent in the charge state 0 of the right island recorded between tunneling
events into and out of the island. The bin size is 4ms. The anomalous high short time data point arises from
local Andreev tunneling. Apart from the shortest time point the rest of the distribution follows an exponential
fall-off. (b), The leftmost peak shows a local Andreev tunneling from nR = 1 → −1 and its time reversal
process to opposite direction. Duration the detector current spends at nR = 0 is less than the detector rise
time of 4 ms. The wide peak in the middle of the graph corresponds to a sequential tunneling nR = 1 → 0
and its time reversal process. The two sharp peaks on the right side are local Andreev tunneling events which
take the right island nR = 1 → −1 and are followed by another local Andreev back to nR = 1 but these
events happen in a time shorter than the detector rise time and thus it appears as if there were tunneling
sequences nR = 1 → 0 → 1. Figure is adapted from Paper i.

However, even after doing this sorting the very short time point remains above
the exponential fall-off. In Fig. 2.7 (b) it is explained why this is the case with
the help of a signal showing events giving rise to this short-time peak. On
the left closely happening 1 → 0 and 0 → −1 transitions can be seen and the
reverse order back to the state 1. The time spent at the intermediate state 0 is
short and yields extensively many counts to the shortest time bin in the lifetime
distribution. Two one electron transitions taking place to same direction within
4 ms are interpreted to arise from local Andreev tunneling process as in [33].
Around 0.5 s a typical example of sequential tunneling is seen. A single electron
tunnels out of the right island and after some time an electron tunnels back.

The other transition type contributing to the anomalous short time point in
Fig. 2.7 (a) is visible in the detector signal in Fig. 2.7 (b) around 0.7 s and 0.9 s.
In this case the detector current rises from the initial charge state 1 to 0 and
returns quickly back to the initial state. The time spent at the charge state 0 is
below 4ms. Based on the short time point in the lifetime distribution these two
peaks do not represent sequential tunneling events 1 ↔ 0. Instead, one such
peak is interpreted to be caused by two local Andreev tunneling events, namely
1 → −1 followed by −1 → 1. The reason why these two local Andreev events
appear as sequential events in the signal is that the return event −1 → 1 is fast
the detector current does not have time to cross the upper threshold T −1

0 . The
cases with a fast return event, the time spent at the charge state 0 (or 1) shorter
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than 4ms, are not included in computing the tunneling rates.

This procedure distinguishes all local tunneling processes from each other. While
only looking at one side of the system information about which transitions arise
from non-local tunneling processes cannot be obtained. To identify the non-
local events in the signals one needs to look at the simultaneously measured
detector current for the left side. The criterion to label non-local events is given
by cross-correlation function which is discussed in detail in Section 2.5. Here,
0 ↔ 1 happening within 1.5ms window are interpreted as non-local events. Now
that all tunneling processes are identified in the detector signals the tunneling
rates can be computed by the method described earlier.

2.5 Statistical analysis

In non-local two-electron events the charge states of the two islands change
virtually instantaneously. The limit for ’almost simultaneity’ is set by the time-
energy uncertainty and the time separation between transitions on different
islands is characterized by ℏ/∆ which is of the order of picoseconds and much
smaller than the timing accuracy of the setup in Papers i and ii. The timing
accuracy in this setup is essentially characterized by two parameters, detector
rise time and noise in detector current. The statistical tools applied are g(2)-
correlation function and waiting time distribution [98]. This section focuses on
how these quantities are determined from the measured signals.

Correlation functions

g(2)-function quantifies correlations between two types of transitions α and β
and it is defined as

g(2)(t, t+ τ) =
ρβα(t+ τ, t)

ρα(t)ρβ(t+ τ)
, (2.21)

where ρα(t) is the probability density of an event of type α occurring at time t
and ρβα(t+τ, t) is the joint probability density of an event of type α taking place
at t and event of type β at t+ τ [98]. In the steady state g(2)-function is only a
function of the time separation between the events and g(2)(t, t+ τ) ≡ g(2)(τ).

Auto-correlation function involves local tunneling events taking place between
the superconductor and one of the islands whereas cross-correlation function
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accounts for events taking place on different islands. Obtaining both of these
correlation functions as well as waiting time distributions is an easy task after
the identification of the tunneling events earlier.

In the auto-correlation shown in Fig. 2.8 (a) correlations between tunneling
events 0 → 1 are studied where one electron tunnels into the right island. For
each 0 → 1 event the number of 0 → 1 events is counted after or before a time τ
around the time interval ∆τ = 100ms. By diving the number of counts by the
normalization factor (ṄR

0→1)
2× ttot×∆τ yields the experimental data points in

Fig. 2.8 (a). ṄR
0→1 is the number of 0 → 1 events per measurement time ttot.

The theoretical curve in Paper i is given by

g(2)(τ) = 1− e−γ|τ |, (2.22)

where γ = 4.5 s−1 is the inverse correlation time. Suppression of the auto-
correlation function is seen at a timescale of roughly one second around zero
time. This suppression arises from the fact that only one electron can tunnel
into the right island at a time due to the strong Coulomb interactions.

For the cross-correlation function in Fig. 2.8 (b) events on separate islands are
counted to study the occurrence of non-local tunneling events which involve
charge transitions on both islands. In a non-local Andreev tunneling event
charge states on both islands switch either 0 → 1 (Cooper pair splitting) or
1 → 0 (Cooper pair forming) nearly instantaneously. In an elastic cotunneling
event one the island switches 1 → 0 and the other one 0 → 1 shortly afterwards.
The number of 0 ↔ 1 transitions on the right island is counted around the
time interval ∆τ = 150µs before or after a time τ from 0 ↔ 1 transitions
on the left island. Number of counts is divided by the normalization factor
ṄL

0↔1× ṄR
0↔1× ttot×∆τ , where Ṅα

0↔1 is the number of 0 → 1 and 1 → 0 events
per measurement time ttot. Normalization sets the function value at long times
at one. This yields the experimental data points in Fig. 2.8 (b). The theoretical
curve in Paper i is given by

g(2)x (τ) = 1 + α2
e−

1
2
(τ/σD)2

√
2πσD

, (2.23)

where α2 = 210ms is the time-integrated contribution from two-electron pro-
cesses and σD = 460µs is the broadening due to timing jitter of the detectors.
In the cross-correlation function in Fig. 2.8 (b) pronounced bunching is present
at very short time in stark contrast to the autocorrelation function. This sharp
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Figure 2.8: Correlation functions. (a), The schematics describes the determination of time differences τ between 0 → 1
events on the right island. Downwards pointing arrow denotes a 0 → 1 event whereas upwards pointing a
1 → 0 event. The plot shows the auto-correlation function for tunneling into the right island. (b), The
schematics for determining time differences τ between 0 ↔ 1 events on the left island and 0 ↔ 1 events on
the right island. The red arrows are for the left island and blue arrows for the right island. The plot shows the
cross-correlation function for 0 ↔ 1 events between the left island and the superconductor at t = 0 and 0 ↔ 1
events between the superconductor and the right island at time t = τ . The error bars mark 1σ confidence
intervals. The plots are adapted from Paper i.

peak with its top two orders of magnitude above the background signal arises
from the non-local two-electron tunneling events. The cross-correlation function
tells that whenever a 0 ↔ 1 event takes place on the left island it is more likely
that a 0 ↔ 1 event occurs shortly afterwards (or beforehand) on the right island
rather than with long time separation. This is a direct manifestation of the non-
local tunneling events in the system. The width of the cross-correlation peak
is on milli-second timescale and 0 ↔ 1 events taking place on different islands
within 1.5ms from each other are interpreted to arise from non-local processes.

Resolution in correlation functions

Here, the timescales entering the auto and cross-correlation measurements are
discussed. In Fig. 2.9 (a) an example is presented about how one count is ob-
tained for the auto-correlation function. τ represents the time difference between
two consecutive 0 → 1 events to demonstrate what causes the anti-bunching seen
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in Fig. 2.8 (a). trise is the detector rise time around 4ms set by the digital filter-
ing of the signal. Ultimately τ is limited by trise as the detector current needs to
cross the threshold level between the charge states in order to register events. It
is obvious from Fig. 2.8 (a) that additional timescale playes a role as trise cannot
explain roughly one second wide dip. Anti-bunching at short times arises from
strong Coulomb repulsion on the metallic island as after an electron tunnels into
the island from the superconductor, the island needs to emit an electron before
it can absorb again.
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Figure 2.9: Time scales for detecting the tunneling events. (a), A typical time trace of the right detector yielding one
count to the auto-correlation measurement. The solid line is the measured detector signal and the horizontal
dashed line indicates the threshold between charge states 0 (above the line) and 1 (below). The time τ is the
separation between two 0 → 1 transitions. trise is the detector rise time. (b), A typical time trace yielding
one count to the cross-correlation measurement. Detector currents for the left and the right islands are shown
in red and blue curves respectively. The detectors switch almost simultaneously from the charge state 1 to 0.
The observed time separation τj ≪ trise between the 1 → 0 events on the two distinct islands is indicated in
the zoom-in of the inset. Figure is adapted from Paper i.

A different picture emerges when events on separate islands are monitored by
two distinct detectors. The millisecond timescale seen in Fig. 2.8 (b) is explained
by Fig. 2.9 (b). As the two event types going into the cross-correlation function
are read out from different signals the restriction set by the detector rise time
is lifted. Instead the timing accuracy is limited by the detector jitter τj arising
from detector current noise. As τj in the measurements was much smaller than
trise the time resolution in Fig. 2.8 (b) is better than one would expect by simply
considering rise times of individual detectors.

Waiting time distributions

The waiting time distribution between two tunneling processes α and β is defined
as
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W(τ |t) = ρ̃βα(t+ τ |t), (2.24)

where ρ̃βα(t+ τ |t) is the probability density of an event of type β occurring at
time t+ τ with the condition that an event of type α took place at time t [98].
Waiting time distribution is exclusive in a sense that it requires that no event
of type β happened between t and t+ τ . For a steady state W(τ |t) ≡ W(τ).

The experimental data points in the auto-waiting time distribution in Fig. 2.10
(a) are obtained as following. Subsequent tunneling out of the right island is
considered. The time differences τ are counted between consecutive 1 → 0
transitions around a time interval ∆τ . The number of counts per time interval
∆τ is divided by the normalization factor Ntot × ∆τ , where Ntot is the total
number of counts in all intervals, to yield the experimental points in Fig. 2.10
(a). In Fig. 2.10 (a) the auto-correlation function is suppressed for short times
as only one electron at a time can tunnel out of the metallic island due to strong
Coulomb interactions. The distribution falls off after reaching its maximum as
long waiting times are exponentially unlike.
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Figure 2.10: Waiting time distributions. (a), The schematics describes the determination of time differences τ between
consecutive 1 → 0 transitions on the right island. Downwards pointing arrow denotes a 0 → 1 transition
whereas upwards pointing a 1 → 0 transition. The plot shows the auto-waiting time distribution. (b), The
schematics for determining time differences τ between 1 → 0 transitions on the left island and 1 → 0
transitions on the right island. The red arrows are for the left island and blue arrows for the right island.
The plot shows the cross-waiting time distribution for 1 → 0 transitions between the left island and the
superconductor at t = 0 and 1 → 0 transitions between the superconductor and the right island at time
t = τ . The error bars mark 1σ confidence intervals. The plots are adapted from Paper i.
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A very different picture emerges by cross-waiting time distribution. Figure. 2.10
(b) demonstrates the waiting time measured between an electron tunneling out
of the left island and a time τ afterwards an electron tunneling out of the
right island. Thus 1 → 0 transitions are still considered except now they take
place on separate islands. The cross-waiting time distribution is computed the
same way as the auto one. For long times the distribution falls off as it is
exponentially unlikely that it takes a long time between electron tunneling out
of the left and right islands. For short times, instead of suppression, a sharp
peak is obtained arising from electrons tunneling within millisecond timescale
from separate islands into the superconductor to form a Cooper pair. Alongside
the cross-correlation function the cross-waiting time distribution provides strong
evidence for non-local tunneling processes in the experiment of Paper i.

3 Coupling coefficients for two-electron tunneling (Pa-
per ii)

In this section coupling coefficients for local and non-local two-electron processes
are compared against each other. The determination of these coefficients is the
main result of Paper ii. Comparison between these coefficients is important as
they set the tunneling timescales. The two-electron rates are measured at zero
energy cost between the initial and final states of the tunneling processes as the
rates are predicted to be linear in temperature at zero energy cost in Equation
(2.19).

If there is no energy cost between two charge states then the two tunneling
processes taking the system back and forth between these states occur at the
same rate. Here, the two tunneling directions for Andreev tunneling, local
or non-local, are called in and out tunneling depending on whether electrons
tunnel into or out of the metallic islands respectively. The natural naming
for the elastic cotunneling processes is to call them left to right (L → R) or
vice versa depending on to which direction the electron transfer happens. If
the aforementioned two states are not degenerate, the in and out rates given by
Equation (2.18) can differ considerably from Equation (2.19). In the next section
it is shown how the rate at zero energy cost is obtained from the two-electron
in and out rates.
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3.1 Logarithmic mean

Here, an expression for a tunneling rate at zero energy cost is obtained as a
logarithmic mean of a pair of time-reversal processes. If the initial and the final
state of a two-electron process are degenerate, the energy difference between the
states is zero and the two directions of the process take place at the same rate
Γin
2e = Γout

2e . In experiments there is a finite energy difference between the states
and the rates of the two directions are not the same. Then for example, Γin

2e

has a finite energy energy gain δE and hence Γin
2e acquires an energy cost −δE.

Two-electron rate is given by Equation (2.18) and for Γin
2e and Γout

2e it reads





Γin
2e ≡ Γ2e(δE, T ) = γ δE/kBT

1−e−δE/kBT kBT

Γout
2e ≡ Γ2e(−δE, T ) = γ −δE/kBT

1−eδE/kBT kBT
. (2.25)

The result in Equation (2.19) together with defining δE ≡ δE/kBT gives

{
Γin
2e = Γ2e(0, T )

δE
1−e−δE

Γout
2e = Γ2e(0, T )

−δE
1−eδE

(2.26)

The difference between the two rates in Equation (2.26) is

Γin
2e − Γout

2e = Γ2e(0, T )δE
(

1

1− e−δE +
1

1− eδE

)

︸ ︷︷ ︸
=1

⇒ Γ2e(0, T ) =
Γin
2e − Γout

2e

δE .

(2.27)

The detailed balance gives Γin
2e/Γ

out
2e = eδE and thus δE = ln(Γin

2e/Γ
out
2e ). This

form for δE and Equation (2.27) give the two-electron rate at zero energy cost
as

Γ2e(0, T ) =
Γin
2e − Γout

2e

ln(Γin
2e)− ln(Γout

2e )
. (2.28)

3.2 Coupling coefficients

Figure 2.11 displays tunneling rates for local and non-local two-electron tun-
neling as well as sequential tunneling. The rates for local Andreev tunneling
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in panels (a) and (b) were determined in experiments by tuning the electronic
occupations on islands to Coulomb blockade as demonstrated in Fig. 2.4 (a).
To obtain the non-local two-electron and sequential rates (panels (c)-(f)) the
islands were tuned to degeneracy (see Fig. 2.4 (b)) and these processes take
place between the charge states 0 and 1. ’CAR’ in panel (c) refers to non-local
Andreev tunneling. For all two-electron processes rates at zero energy cost are
computed by Equation (2.28) and plotted as purple diamonds in Fig. 2.11.

The plots for the two-electron tunneling rates reveal the electronic temperature
saturation in the cryostat. In panels (a)-(d) the three lowest temperature data
points are saturated and a linear fit is made to points above 50 mK. In the insets
of Fig. 2.11 (e) and (f) the solid black lines are the theoretical sequential rates
from Equation (2.17).

From the linear fits in Figs. 2.11 (a)-(d) the coupling coefficients γ are extracted
by Equation (2.19). This yields γAR,L = 7.5± 0.8µeVs, γAR,R = 1.3± 0.1µeVs,
γCAR = 9± 1× 10−3 µeVs and γEC = 8± 1× 10−3 µeVs. The uncertainties are
determined from the linear fits. The results show that γCAR = γEC within the
experimental accuracy and local Andreev is more than two orders of magnitude
stronger than non-local processes.
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Figure 2.11: 1e and 2e tunneling rates. Panels (a) and (b) show the local Andreev rates in both junctions measured at
Coulomb blockade. Panels (c)-(f) show the non-local Andreev, elastic cotunneling and sequential tunneling
rates measured at degeneracy. Open symbols denote individual processes. In panels (a)-(c), (e) and (f) the
red triangles denote processes where the electron number on the islands increases. The blue triangles stand
for processes decreasing the electron number on the islands. In panel (d) the red triangles denote the elastic
cotunneling process transferring an electron from the left island to the right island and the blue triangles the
opposite direction. The solid purple diamonds in panels (a)-(d) denote the rates at zero energy cost obtained
by the logarithmic mean of the in and out rates (or L → R and R → L rates in case of elastic cotunneling).
The solid purple lines are linear fits to the zero energy cost rates above 50mK. The insets in panels (e) and
(f) show the four highest temperature rates plotted against inverse temperature. The solid black lines are the
theory predictions for sequential rates. Figure is adapted from Paper ii.

35





Chapter 3

Resonator - double quantum
dot hybrid system

This chapter provides an introduction to Papers iii and iv. Paper iii explores
two high-impedance resonator devices made out of Josephson junctions. In Pa-
per iv one such resonator is coupled to a semiconductor double quantum dot
to probe light-matter interaction between these two systems. Hence, Joseph-
son junction array resonators and semiconductor double quantum dots are key
concepts in understanding the results in these two papers. The chapter begins
by describing a transmission line for which characteristic impedance is derived.
Then, basic properties of a Josephson junction are described and how to form a
resonator with increased impedance out of these junctions. Further, a semicon-
ductor double quantum dot is introduced. The device fabrication is described
followed by a summary of Paper iii. Finally, light-matter interaction is discussed
and Paper iv summarized.

1 Transmission line

In this section, charateristic impedance of a transmission line is derived by fol-
lowing Ref. 99. In Fig 3.1 (a) a transmission line is presented as two parallel
conducting lines. The electrical properties of this system are evenly spread
along the line instead of the system having definite components. L and R are
the inductance and resistance per unit length respectively. G and C are the
shunt conductance and capacitance per unit length respectively. However, this
distributed-element system can be represented by defining lumped components
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each of which gives rise to a certain electrical quantity of the system. An equi-
valent lumped-element circuit for a δx long piece of a transmission line is shown
in Fig. 3.1 (b).

(a) (b)

δx

x
v(x,t)

i(x,t)

δx

x
v(x,t)

v(x+δx,t)

Rδx

Gδx Cδx

Lδx

i(x,t) i(x+δx,t)

Figure 3.1: (a), A schematic drawing of a transmission line where the current in upper conductor is i(x, t) at point x
and time t. v(x, t) stands for the voltage between the lines at position x. (b), An equivalent lumped-element
model of panel (a).

Kirchoff’s voltage law for the lumped-element circuit in Fig 3.1 (b) reads as

v(x, t)−Rδxi(x, t)− Lδx∂i(x, t)
∂t

− v(x+ δx, t) = 0 (3.1)

and Kirchoff’s current law for the same circuit as

i(x, t)− Gδxv(x+ δx, t)− Cδx∂v(x+ δx, t)

∂t
− i(x+ δx, t) = 0. (3.2)

Time derivatives of the voltage and the current are obtained by dividing the
Kirchoff’s laws (3.1) and (3.2) by δx and taking δx → 0

∂v(x, t)

∂x
= −Ri(x, t)− L∂i(x, t)

∂t
∂i(x, t)

∂x
= −Gv(x, t)− C ∂v(x, t)

∂t
,

(3.3)

Equations (3.3) describe voltage and current in a tranmission line in time do-
main. Sinusoidal forms for voltage v(x, t) = V (x)eiωt and current i(x, t) =
I(x)eiωt yield simple differential equations
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dV (x)

dx
= −(R+ iωL)I(x)

dI(x)

dx
= −(G + iωC)V (x).

(3.4)

By defining a complex number γ =
√
(R+ iωL)(G + iωC), the coupled differ-

ential equations (3.4) separate into wave equations for voltage and current

d2V (x)

dx2
− γ2V (x) = 0

d2I(x)

dx2
− γ2I(x) = 0.

(3.5)

The solutions for the wave equations are

V (x) = V +
0 e−γx + V −

0 eγx

I(x) = I+0 e−γx + I−0 eγx.
(3.6)

Plugging the voltage in Equation (3.6) into the spatial derivative of voltage in
Equation (3.4) yields for the current

I(x) =
γ

R+ iωL(V +
0 e−γx − V −

0 eγx) (3.7)

Characteristic impedance is

Zr =
R+ iωL

γ
=

√
R+ iωL
G + iωC =

√
L
C , (3.8)

where in the last equality R and G are set to zero. R is the resistance per
unit length for the transmission line and G the shunt conductance. These two
quantities cause losses in the line. By setting them to zero the transmission line
is assumed to be lossless. For example in Ref. 100, for a superconducting Al
coplanar waveguide resonator L = 453 nH/m and C = 127 pF/m yield Zr = 60Ω.
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2 Josephson junction

Brian Josephson predicted in 1962 [101] that a supercurrent at zero voltage
through a thin insulator sandwiched between two superconductors takes the
form

I = ICsin(φ), (3.9)

where the critical current IC is the highest supercurrent that can be carried
across the junction and φ is the phase across the junction. Josephson also
stated that in the presence of a voltage V across the junction the phase evolves
as

∂φ

∂t
=

2π

Φ0
V. (3.10)

The constant Φ0 = h/2e is known as the magnetic flux quantum where h is the
Planck’s constant and e the elementary charge. Equations (3.9) and (3.10) are
called Josephson relations. Inductance L is defined as

V = L
∂I

∂t
. (3.11)

From the Josephson relations of Equations (3.9) and (3.10), ∂I/∂t obtains the
form

∂I

∂t
=

2πICcos(φ)

Φ0
V, (3.12)

which together with the definition of inductance of Equation (3.11) sets the
inductance of a Josephson junction to be

L =
Φ0

2πICcos(φ)
. (3.13)

One year after Josephson relations were published, Ambegaokar and Baratoff
derived a relation connecting the critical current IC to the normal state res-
istance RT of a Josephson junction [102]. This Ambegaokar-Baratoff relation
reads as

40



ICRT =
π∆

2e
tanh

(
∆

2kBT

)
. (3.14)

∆ is the superconducting gap, kB the Boltzmann constant and T the tem-
perature. The superconducting gap for a 20 nm thin aluminum film is ∆ ≈
200µeV [33, 78, 103]. The superconducting resonators in Papers iii and iv
were formed of aluminum and the measurements were performed at electronic
temperature of T = 50mK in a dilution refrigerator. These numerical val-
ues for ∆ and T approximate the hyperbolic tangent in Equation (3.14) as
tanh(∆/(2kBT )) = 1. With this simplification, the critical current acquires the
following form

IC =
π∆

2eRT
. (3.15)

Zero current bias across the junction I = 0 fixes the phase across the junction to
be φ = 0. Further cos(φ) = 1, and together with Equation (3.15) the inductance
of a Josephson junction becomes

LJ =
hRT

2π2∆
. (3.16)

For a superconductor the junction inductance is solely set by the normal state
resistance of the junction. Hence, designing the inductance of a Josephson
junction is straightforward: the oxide thickness of a junction and the junction
area are parameters that are easy to control in fabrication. RT = 500Ω and ∆ =
200µeV yields the junction inductance LJ = 0.5 nH for Al-AlOx-Al junctions in
Papers iii and iv. By connecting multiple junctions in series with a spacing of
a = 1µm, the inductance per unit length increases to L = LJ/a = 0.5mH/m
from the three orders of magnitude lower value for superconducting Al coplanar
waveguide resonator in Section 1.

3 Double quantum dot

In this section, basics of a series-coupled semiconductor double quantum dot
(DQD) is described. A DQD forms the other half of the microwave resonator-
DQD device in Paper iv and is thus of importance to be discussed. In a DQD,
two small nanoscale volumes called quantum dots are tunnel-coupled to each
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other by a potential barrier and each dot is further coupled to its own electron
reservoir by a tunnel coupling. These potential barriers allow electron transport
by tunneling [104]. The dots are small in the sense that Coulomb interactions
play an important role setting the relevant energy scale in transport. Due to the
Coulomb repulsion between electrons there is an energy cost to add an electron
to a dot. The other effect contributing to the energy spectrum of a dot is
quantum confinement as the three tunnel barriers confine electrons to two small
volumes. Both Coulomb effect and quantum confinement are introduced in this
section and the discussion follows Ref. 105.

(a) (b)

S NL NR
NL NRD

VGL VGL

CGL

RL,CL RM,CM

CGR
VGRVGR Vb

RR,CR

Figure 3.2: (a), A schematic drawing of a DQD. Source (S) and drain (D) are tunnel-coupled to two quantum dots with
electron numbers NL and NR. These electron numbers are controlled by gate voltages VGL and VGR. (b), An
equivalent circuit of the DQD in panel (b). A tunnel barrier is modelled by parallel resistance and capacitance,
for example RL and CL for the barrier between the source and the left dot. The gate voltages are coupled
to the dots via the capacitances CGL and CGR. The bias voltage Vb sets a difference in chemical potentials
between the source and the drain.

Each quantum dot contains a well-defined number of electrons, NL(R) in the
left (right) dot. The left dot is connected to the source lead (S) and the right
dot to the drain lead (D). This is illustrated by a schematic drawing in Fig. 3.2
(a) where electrons are allowed to enter the dots along the dashed black lines.
The electron numbers are controlled by the left and the right gate voltages VGL

and VGR, respectively, which change the chemical potentials of the dots but no
transport takes place via the gate lines. Figure 3.2 (b) shows an equivalent
circuit of the DQD. The tunnel barrier between the source and the left dot is
modelled by parallel resistance RL and capacitance CL. The other two tunnel
barriers are modelled in the same way. The resistances RL, RM and RR all
need to be larger than the resistance quantum RK ≡ h/e2 in order to have
localized electron wave functions on the quantum dots [106]. Vb is the bias
voltage applied to the source contact while keeping the drain grounded setting
a preferred direction for electron transport between the leads.

Here, the bias is kept at Vb ≈ 0 and thus the DQD is studied in linear transport
regime. We neglect cross capacitances i.e. capacitance between the left (right)
gate and the right (left) dot. Then the electrostatic energy of the DQD can be
written as
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U(NL, NR) =
1

2
N2

LECL +
1

2
N2

RECR +NLNRECM + f(VGL, VGR)

f(VGL, VGR) =
1

−e
[CGLVGL(NLECL +NRECM) + CGRVGR(NLECM +NRECR)]

+
1

e2

(
1

2
C2
GLV

2
GLECL +

1

2
C2
GRV

2
GRECR + CGLVGLCGRVGRECM

)
,

(3.17)

where ECL(R) is the charging energy of the left (right) dot, ECM is the coupling
energy and e is the elementary charge. ECM is the energy change of one dot
when the other dot receives an electron. The charging energies and the coupling
energy read as

ECL(R) =
e2

CQDL(R)


 1

1− C2
M

CQDLCQDR




ECM =
e2

CM


 1

CQDLCQDR

C2
M

− 1


 ,

(3.18)

where CQDL = CL+CGL+CM is the sum of capacitances to the left dot. CQDR

for the right dot is calculated in the same way. The chemical potential µL(R) of
the left (right) dot is defined as the energy required to add the NL(R)th electron,
while the right (left) dot hosts NR(L) electrons. The electrostatic energy in
Equation (3.17) yield the chemical potentials as

µL(NL, NR) = U(NL, NR)− U(NL − 1, NR)

=

(
NL − 1

2

)
ECL +NRECM − 1

e
(CGLVGLECL + CGRVGRECM)

µR(NL, NR) = U(NL, NR)− U(NL, NR − 1)

=

(
NR − 1

2

)
ECR +NLECM − 1

e
(CGLVGLECM + CGRVGRECR).

(3.19)
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The chemical potential of the left dot changes by µL(NL+1, NR)−µL(NL, NR) =
ECL when an electron is added to the dot. This change in energy is equal to
the charging energy of the left dot and called addition energy of the left dot.

The quantum dot energy spectrum presented so far has been based on Coulomb
interaction. Electrons in the dots are confined by the potential barriers leading
to quantized energy states. The quantum confinement can be incorporated in
the chemical potential. Here, the constant interaction model [107] is assumed
meaning that the single-particle energies ϵi can be summed with the chemical
potentials in Equation (3.19) to give for the left dot µL,i = µL + ϵi. Thus, the
addition energy becomes

Eadd,L = µL,i(NL + 1, NR)− µL,j(NL, NR) = ECL + (ϵi − ϵj), (3.20)

and similarly for the right dot.

The chemical potentials of the quantum dots define stable regions of the quantum
dot electrons numbers in (VGL, VGR)-graph illustrated in Fig. 3.3. These plots
are known as charge stability diagrams. The regions with constant electron
numbers take different shapes depending on the interdot capacitance CM. In
panel (a) CM = 0 and change in one gate voltage while keeping the other gate
voltage fixed only affects the electron number on one of the dots. In this regime,
the two dots are completely decoupled. The other extreme is presented in panel
(b) where CM/CQDL(R) = 1 and charge states are separated by diagonal lines.
In this limit, CM is the dominant capacitance and the two quantum dots behave
as a combined single quantum dot with electron number NL +NR.

Panel (c) shows the intermediate case where the tunnel barrier between the two
dots is sufficiently transparent to enable transport between the dots but opaque
enough to keep the two dots as separate entities both having a well-defined
electron number. An example of an interdot transition line is pointed out in
panel (c) by label (g). The two other types of transition lines are marked by (e)
and (f). The panels (e)-(g) illustrate the chemical potentials in the leads and the
dots at the three transition lines marked in panel (c). In panels (e) and (f) an
electron is shuttled between one of the dots and lead whereas in (g) an electron
tunnels between the two dots. Panel (d) is an example of a measurement for a
DQD charge stability diagram corresponding to the case (c).
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Figure 3.3: (a), Charge stability diagram of a DQD at zero interdot coupling CM = 0. (b), The oher extreme where
CM is the dominant capacitance and the two quantum dots behave as a single dot. (c) The intermediate
regime between (a) and (b). The charge transitions across the lines are illustrated in panels (e)-(g). (d)
Experimentally determined stability diagram corresponding (c). (e) Transition between the left lead and the
left dot. (f) Between the right lead and the right dot. (g) Between the two dots.

4 Device fabrication

In this section, a detailed description for fabrication of the Josephson junc-
tion array resonator - semiconductor double quantum dot device in Paper iv
is given. The Josephson junction array resonators in Paper iii were fabricated
in the same manner with the exception that no nanowires were incorporated.
To electrically characterize the hybrid system in Paper iv, electrical contacts
to the system need to be placed on a wafer. By electron-beam lithography
(EBL) [108] and metal evaporation [109], Ti/Au markers and pads were defined
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on the wafer. Markers establish local coordinate systems on the wafer surface
and are used to place structures in later fabrication steps. Pads provide a gal-
vanic interface to connect Nb and Al lines. Patterns for the electrical lines and
the surrounding ground plane were exposed by optical lithography [110] and
the structures were formed by sputtered Nb [109]. Then the DC lines were
covered by atomic layer deposition grown aluminium oxide and evaporated Al.
This increases the capacitance of the lines to reduce photon losses from the
resonator in the measurements. Nanowires were mechanically deposited by a
micromanipulator on designated areas marked by Ti/Au crosses defined in the
first fabrication round. The electrostatic gates and the source and drain con-
tacts for a nanowire were implemented by EBL and metal evaporation. As the
last step, two-angle shadow-evaporation technique with an intermediate in-situ
oxidation was employed to construct the Josephson junction array resonator.

Si
SiO2

(1) Substrate

Si

Resist
SiO2

Si

Resist
SiO2

(2) Spin-coating and baking (3) Lithography

Si

Resist
SiO2
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Si
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SiO2

Si
SiO2
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Figure 3.4: A process flow showing steps to fabricate metallic structures on a wafer by lithography and metal evaporation.

4.1 Electrical lines and ground planes

The device is fabricated on a 2” high-resistivity intrinsic silicon wafer coated by
200 nm thick thermally grown SiO2. The insulating oxide layer enables transport
measurements for the DQD as no transport can take place via the substrate.
The wafer is cleaned in acetone and isopropanol (IPA). In the first lithography
round Ti/Au markers, see Fig. 3.5 (b), are defined to place structures in later
fabrication steps. Figure 3.4 presents a process flow containing Steps (1)-(7)
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on how metal structures are created on the wafer by lithographic and metal
evaporation methods.

(a)

(b)

500 μm

Nb

Al ground plane

(c)

(d) (e) Conduction band

Ti/Au markers

Barrier
QD

Shell

InAs ZB EWZ

EZB

InAs WZ
GaSb

2 μm

1 μm

1 32

Figure 3.5: (a), An optical image showing the electrical lines and the surrounding ground plane made of sputtered Nb.
An additional ground plane made of Al on top of the DC lines. (b), Nanowires deposited on a chip area
where Ti/Au markers define a local coordinate system. (c), Three panels showing fabrication steps in making
gate electrodes and source-drain contacts. (d), Schematics of polytype InAs nanowire where wurzite barriers
confine electrons on zincblende quantum dots. GaSb shell is selectively grown on zincblende dots. (e), Nanowire
conduction band where wurzite segments form barriers due to conduction band offset between the two crystal
phases.

First, the Ti/Au markers and pads are defined on the wafer. The wafer is spin-
coated by polymethyl methacrylate (PMMA) and baked on a hotplate to form
a solid resist layer in Step (2). In EBL Step (3), selected areas of this resist are
exposed by electrons accelerated to 50 kV. When electrons collide with PMMA
molecules they modify the chemical composition of the resist making the exposed
resist to dissolve in MIBK:IPA 1:3 solution in Step (4) known as development.
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After the development some resist residues still remain on the wafer surface.
These remains are cleaned off by oxygen plasma turning the residues into ash
in Step (5). Then 5 nm thick Ti layer is electron-beam evaporated on the wafer
in Step (6) followed by evaporation of 45 nm thick Au layer. The thin Ti film
ensures good adhesion of Au as Au does not stick well directly on SiO2. At this
point, the evaporated metal film covers the wafer completely. The unexposed
resist and metal layers on top of the resist are removed by acetone solvent in
Step (7). The metal structures defined by the EBL pattern remain on the wafer
surface.

The smallest structures defined in the first lithography round are 100 nm wide
and require the resolution of EBL. Next, patterns for electrical lines and a ground
plane are exposed by direct-write laser optical lithography. These structures are
of micrometer-scale and hence suitable for laser writer which is faster than EBL
but provides poorer resolution. The optical lithography follows the same process
flow as EBL. The only differences are the chemicals used: the resist is S1813,
the developer MF319 and the solvent Remover 1165. Furthermore, in Step (3)
the resist is exposed by 405 nm wavelength laser and Nb is sputtered on the
wafer instead of metal evaporation in Step (6).

A large ground plane pattern is exposed by optical lithography on a resist stack
consisting of an LOR3A layer at bottom and a S1813 layer on top. An undercut
forms in the bottom LOR3A layer on the resist stack when developed. After
plasma-ashing 30 nm of aluminum oxide is grown by atomic layer deposition
followed by 50 nm of electron-beam evaporated Al. The undercut provided by
LOR3A makes it easier to do a lift-off for an oxide coated wafer. The Nb
structures and Al ground plane above Nb lines are visible in Fig. 3.5 (a).

4.2 Nanowire contacts

With the electrical lines and ground planes formed, it remains to deposit nanowires,
fabricate nanowire contacts and resonators. The wafer is diced into smaller chips
in order not to waste the entire wafer in case of an issue in the remaining pro-
cessing steps. Nanowires are mechanically deposited by a micromanipulator
on a chip area which has a local coordinate system defined by Ti/Au markers
processed in the first lithography step. The micromanipulator has a sharp In
needle. The needle is manually moved to collect nanowires from a growth chip
containing a wealth of nanowires. By then placing the needle above the area
with a local coordinate system and sweeping the needle on the chip surface de-
posits nanowires. The chip is then rinsed in IPA to remove mobile nanowires.
Nanowires still attached to the chip surface after the rinsing are seen in Fig. 3.5
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(b).

One of the nanowires is chosen to be processed further and a zoom-in of it is
shown in Fig. 3.5 (c) panel 1○. In the crystal-phase defined InAs nanowire short
wurzite segments confine electrons in zincblende parts due to conduction band
offset between the crystal phases [111, 112, 113]. A GaSb shell is selectively
grown on zincblende. The inset in panel 1○ shows a zoom-in where the wurz-
ite barriers are indicated by the arrows and the GaSb shell on the zincblende
parts are clearly visible. With the help of the Ti/Au markers, coordinates for
three wurzite barriers defining two quantum dots are found. Schematics of the
nanowire is shown in Fig. 3.5 (d) and the conduction band of the nanowire in
(e).

(1) (2) First evaporation

Shadow mask

Wafer

θ
(3) Oxidation (4) Second evaporation

-θ

O2

Figure 3.6: Schematics of two-angle shadow-evaporation. (1), Shadow mask. (2), First Al evaporation at an angle θ. (3),
In-situ oxidation of Al evaporated in (2). (4), Second Al evaporation at an angle −θ.

The Ni/Au patch in Fig. 3.5 (c) panel 2○ is formed by EBL and metal evapora-
tion to clamp the nanowire to its position keeping it immobile during wet-etching
of the GaSb shell. To etch the shell first the chip is spin-coated with one layer of
PMMA, baked and a rectangle enclosing the nanowire is exposed by EBL, de-
veloped and plasma-ashed with oxygen. Now the nanowire is not covered by the
resist and by submerging the chip in MF319 the GaSb shell is removed. The chip
is then cleaned with deionized water followed by IPA and second PMMA layer is
spin-coated and baked. Now PMMA covers the nanowire again and pattern for
gate lines and source-drain contacts is exposed, developed and plasma-ashed.
Native oxide on the nanowire is removed by buffered oxide etch (BOE) to en-
sure Ohmic source and drain contacts. Electron-beam evaporated 30 nm of Ni
followed by 140 nm of Au form the source and drain contacts and the three gate
lines in Fig. 3.5 (c) panel 3○.
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Figure 3.7: (a), A scanning electron micrograph of the shadow-evaporated Al structures highlighted in blue. The inset
shows a zoom-in of the Josephson junction array. (b), The chip containing the device in (a) wire-bonded to a
PCB. (c), The chip and the PCB connected to a brass piece.

4.3 Josephson junction array

The Josephson junction array and coupler fabrication follow the process flow
in Fig. 3.4. To form junctions a two-angle shadow-evaporation technique is
employed instead of evaporating at the right angle to the chip surface as done
in earlier evaporations. The chip is coated by three layers of MMA (EL9)
MAA copolymer with the total thickness of ∼ 1µm and one layer of 300 nm
thick PMMA. MMA provides undercut and PMMA functions as an overhanging
bridge providing a shadow mask in Fig. 3.6 Step (1). This shadow mask pattern
is exposed by EBL with 20 kV acceleration voltage which is lower than 50 kV
used in the EBL exposures earlier. The lowered acceleration voltage provides
more undercut which is important for shadow-evaporation. First, a 30 nm thick
Al layer is evaporated at θ = 40 ◦ resulting in disconnected Al pieces in Step (2).
Then, in Step (3) oxygen is let inside the sample space of the evaporator. In
2min the pressure is ramped up to 0.36mbar from the evaporator vacuum level
of 10−6mbar and then kept constant for 4.5min. During this time a thin few
nanometers thick insulating aluminum oxide layer forms on the Al film. Oxygen
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is then pumped out of the sample space. By evaporating at θ = −40 ◦ a 70 nm
thick Al film is formed contacting the already existing Al pieces and forming a
continuous array of junctions where the junctions are located at the interfaces
between the two Al layers separated by aluminum oxide. Capacitive coupler
to an RF line and a galvanic contact to a DC line are formed alongside the
junction array. The shadow-evaporated Al structures are highlighted by blue in
a scanning electron micrograph in Fig. 3.7 (a). The inset shows a zoom-in of
the junction array.

Finally, the chip is diced into smaller chips each of which contains two complete
devices. One of these chips is then glued by vacuum grease to a brass piece
and wire-bonded to a printed circuit board (PCB) in Fig. 3.7 (b). Figure 3.7
(c) shows the PCB connected to the brass piece which is then mounted to a
bottom-loader of a dilution refrigerator to measure the device.

5 Josephson junction array resonator (Paper iii)

Paper iii studies experimentally two Josephson junction array resonators probed
in a transmission line geometry. As shown in Section 2, Josephson junctions
increase the inductance of the line. This yields a characteristic impedance Zr ∼
1 kΩ more than an order of magnitude larger than a standard 50Ω coplanar
microwave resonator [114, 45, 44]. The two resonators were fabricated in the
same processing round and the Josephson junction arrays are nominally equal
with the same total length, junction resistance and spacing. However, the two
resonators differ by their coupling strength to the RF input/output lines as the
coupler geometries are dissimilar. The paper shows that increasing the coupling
capacitance from one resonator to the other considerably shifts the resonance
frequency towards lower frequencies. Also, a maximum value limiting these
couplings is derived by means of a circuit analysis.

The resonators in Paper iii were fabricated following the process flow described
in Section 4. First, Ti/Au markers and pads were defined by EBL and e-
beam evaporated on a high-resistivity intrinsic silicon wafer with a 200 nm thick
thermal silicon oxide coating. Second, a 100 nm thick Nb film was sputtered
to form the RF input/output lines and the surrounding ground plane. Finally,
the Josephson junction arrays were fabricated by a standard two-angle shadow-
evaporation technique. 30 nm thick Al layer was e-beam evaporated at θ = 20 ◦

to the normal of the substrate followed by an in-situ oxidation and evaporation
of 60 nm thick Al layer at θ = −20 ◦ to form a continuous array of junctions.
Optical micrographs in Fig. 3.8 present the devices. In Fig. 3.8 (a) a thin
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Josephson junction array is located between the RF input/output lines and the
ground plane lies above and below these structures in the figure. The inset shows
a scanning electron micrograph of the array. Figure 3.8 (a) shows the device
with low input/output couplings. Panel (c) shows the high output coupling of
the second device. For each device the input coupler is identical with the output
coupler.
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C L

c Cc

(a)

(b) (c)

r
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50 µm1 µm
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r
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Figure 3.8: (a), An optical micrograph of a two-port Josephson junction array resonator with low input/output couplings.
The RF input/output lines and the ground plane above and below them are sputtered Nb. The thin line between
the input/output lines is an array of Josephson junctions formed of aluminum oxide sandwiched between two
Al layers. r is the reflected amplitude of a RF signal sent in from the left port and t is the transmitted
amplitude to the right port. The inset shows a zoom-in of the array. (b), An equivalent LC-circuit presentation
of the resonator in (a). Cc is the capacitive coupling between the resonator and the input (output) port. The
resonator has lumped-element inductance L and capacitance C. (c), An optical micrograph of the output
coupler of the device with high input/output couplings. Figure is adapted from Paper iii.

Both resonators consist of 231 junctions with the spacing a = 1µm and each
junction has an inductance LJ = hRT/2π

2∆ as derived in Section 2. The normal
state resistance of a junction RT = 500Ω was measured at room temperature for
test junctions fabricated in the same processing round and on the same chip as
the resonators. These test junctions are nominally identical to the ones forming
the resonators in Fig. 3.8. RT, a and the superconducting gap ∆ = 200µeV
for thin film Al [33, 78, 103] used as the resonator material yield the resonator
inductance per unit length L = LJ/a = 0.5mH/m. L, the capacitance per unit
length C and the resonator length l = 231µm set the lumped-element inductance
L = 2Ll/π2 and capacitance C = Cl/2 of the fundamental resonance mode in
the equivalent LC-circuit in Fig. 3.8 (b).

The transmission coefficient |t|2 and reflection |r|2 response, as a function of the
drive frequency ω, of the resonator with low coupling strength to Z0 = 50Ω
input/output lines is shown in Fig 3.9 (a). The fundamental half-wavelength
resonance mode with voltage antinodes at the resonator endpoints and a voltage
node in the middle has a resonance frequency of ωr/2π = 8.735GHz. The
Lorentzian fits denoted by the solid lines in Fig 3.9 (a) read as
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Figure 3.9: (a), The measured transmission |t|2 and reflection |r|2 coefficients as functions of the drive frequency ω for
the device with low input coupling. The solid lines are Lorentzian fits based on Equation 3.21. (b), The same
measurements as in (a) repeated for the device with high input coupling. The ingoing microwave power at the
left port is −115 dBm. Figure adapted from Paper iii.





|t|2= κ2
c

(κc+κint/2)2+(ω−ωr)2

|r|2= (κint/2)
2+(ω−ωr)2

(κc+κint/2)2+(ω−ωr)2
,

(3.21)

where κc/2π = 3.5MHz is the input coupling and κint/2π = 1.2MHz is the
internal losses of the resonator [44]. The circuit elements in Fig. 3.8 (b) depend
on ωr and κc as ωr = 1/

√
LCΣ and

κc =
ω2
rC

2
cZ0

CΣ
, (3.22)

where CΣ = C + 2Cc is the total capacitance of the resonator [100, 115]. These
relations yield the capacitance values CΣ = 14 fF and Cc = 1.4 fF and fur-
ther C = 2C/l = 80pF/m in line with similar transmission line geometry on a
thermally oxidized silicon substrate [100]. The characteristic impedance of the
junction array is ZJJ =

√
L/C = 2.4 kΩ by the Equation ( 3.8) derived in Sec-

tion 1. The characteristic impedance of the resonator at the voltage antinode
points where the resonator is coupled to input/output lines is Zr =

√
L/CΣ =

1.4 kΩ.

These measurements were repeated for the second resonator device with high
input coupling in Fig. 3.9 (b) yielding ωr/2π = 6.773GHz, κc/2π = 11MHz,
κint/2π = 1.3MHz, CΣ = 23 fF, Cc = 4.1 fF and Zr = 1.0 kΩ. By increasing
the coupling from κc/2π = 3.5MHz to 11MHz shifts the resonance frequency
by 2GHz towards lower frequencies. This shift is due to increased coupling
capacitances as 2Cc stands for one third of the total capacitance of the device
with high input coupling. The first of the two main conclusions of Paper iii
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is that small changes in coupler geometry can shift the resonance frequency
considerably as the coupler capacitances constitute a significant proportion of
the total device capacitance. This imposes restrictions on the coupler design
to keep the resonance frequency of a Josephson junction array resonator in the
measurement window.

The second main conclusion of Paper iii states that the large ratio Cc/CΣ limits
the coupling strength to a maximum value κc,max attainable in these devices.
The maximum value is obtained by taking the limit CΣ = 2Cc in Equation (3.22)
and using the relation ωrZr = 1/CΣ (from ωr = 1/

√
LCΣ and Zr =

√
L/CΣ) as

κc,max =
Z0

4Zr
ωr. (3.23)

Typical parameter values for high-impedance resonators Zr = 1kΩ and ωr/2π =
7GHz [61, 60] yield κc,max/2π = 90MHz.

6 Light-matter interaction

Study of light-matter interaction explores the interplay between electromagnetic
radiation, commonly referred to as light, and particles that compose matter.
This interaction is at the core of multitude of applications, ranging from the
operation of lasers [116] to the development of cutting-edge technologies such
as quantum computing [56, 57].

Probing the interaction between light and matter reveals fundamental proper-
ties of these two systems itself. For example in 1905 Einstein proposed that
light must consist of tiny packets of energy (photons) in order to explain the
photoelectric effect in which electrons are removed from material surface under
illumination [117].

Photoelectric effect is an example of one of the most fundamental processes
in light-matter interaction known as absorption. When a photon with energy
matching the energy difference between two electron energy states is incident
upon matter, it can be absorbed, causing an electron to transition from a lower
energy level to a higher one.

In the time-reversal process of absorption where an electron relaxes from a
higher energy state to a lower one, a photon equipped with energy equal to the
energy difference of the states is emitted. This emission process is the basis for
numerous technologies, including quantum dots used in displays [118].
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This interaction can be probed in solid state for example by coupling semicon-
ductor quantum dots, sometimes referred to as artificial atoms, with supercon-
ducting microwave resonators. These hybrid systems are in focus in Paper iv.
Photons in superconducting microwave resonator can be coupled to electric di-
pole moment of a DQD. The quantity g describes the strength of this interaction.
In Ref. 119 this coupling is derived to be

g = ωrν

√
2Zr

RK

t

EDQD
, (3.24)

where ωr is the resonator resonance frequency, ν is dimensionless capacitive
coupling factor between DQD and resonator, t is the interdot tunnel coupling,
EDQD =

√
δ2 + (2t)2 is the DQD energy gap and δ the detuning. In the strong

coupling limit g exceeds the resonator losses κ and the DQD dephasing rate Γ.

Before resonator-DQD hybrid systems strong coupling was demonstrated in mul-
titude of quantum optics systems such as alkali atoms [52], Rydberg atoms [53],
superconducting qubits [36] and optically probed semiconductor single quantum
dots in photoluminescence studies [54, 55]. These systems have attracted interest
in the field of quantum information technology as they provide a mechanism
for example, to coherently couple remote qubits [56, 57] and for transferring
quantum information from qubits to photons [58, 59].

In recent years the list of systems reaching the strong coupling limit has been
extended to include semiconductor DQDs addressed with microwaves [61, 43,
30, 60, 120]. In 2022 another important limit of light-matter interaction, known
as ultra-strong coupling, was reached with a resonator-DQD hybrid system.
Ultra-strong is not a stronger form of strong coupling but a separate quantity.
In ultra-strong limit the coupling between resonator and DQD becomes a signi-
ficant factor of the bare energies of the system characterized by the ratio g/ωr.
Traditionally, system is said to be ultra-strongly coupled if this ratio exceeds
0.1.

7 Resonator - double quantum dot coupling (Paper
iv)

Paper iv continues high-impedance resonator studies started in Paper iii by
coupling a high-impedance resonator to a semiconductor DQD to probe light-
matter interaction discussed in Section 6. Paper iv is built on two main results.
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First, strong coupling limit was reached between a semiconductor DQD charge
qubit and a high-impedance resonator. Second, it was shown that the dephasing
of the charge qubit was not dominated by charge noise. The resonator design
in Paper iv is inspired by Paper iii and the resonator consists of a Josephson
junction array with the same junction geometry, spacing and junction resistance
as the two devices in Paper iii discussed in Section 5. However, the resonator in
Paper iv has a quarter-wavelength (λ/4) fundamental resonance mode instead
of half-wavelength as in Paper iii. This enables connecting the λ/4 resonator
end point with voltage node to a DC line in order to apply bias voltage across the
DQD. Fabrication of the device in Paper iv is described in detail in Section 4.
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Figure 3.10: (a), An optical micrograph of the resonator-DQD device. The DC lines and the RF line probing the hybrid
system are coloured. The lines and the in-plane ground plane are made out of sputtered Nb. An additional
bright grey Al ground plane on top of the DC lines increases the line capacitance. The voltages VGL, VGM

and VGR tune the interdot barrier transparency and move the chemical potentials of the quantum dots.
(b), A scanning electron micrograph of the area in (a) where the coloured lines meet. A quarter-wavelength
Josephson junction array resonator is capacitively coupled to a microwave feedline line (in red) at a voltage
antinode point and galvanically connected to a DC line (large orange contact) at a voltage node point. The
inset shows a zoom-in of a few junctions. (c), A scanning electron micrograph of the nanowire DQD contacts.
The inset shows a zoom-in the DQD before any contact processing steps and the three barriers are indicated
by the white arrows. (d), The measured reflection coefficient |r|2 response of the hybrid system as a function
of the DQD gate voltages VGL and VGR. One DQD charge state is enclosed by the white dashed lines.
Figure is adapted from Paper iv.

Figure 3.10 presents the device. The gate voltages VGL and VGR in Fig. 3.10
(a) control the electron numbers of the quantum dots, whereas VGM tunes the
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interdot tunnel barrier transparency. The DQD is galvanically coupled to a one-
port resonator at the voltage antinode on the right side of Fig. 3.10 (b) via the
thin orange strip. At same antinode point the one-port resonator is capacitively
coupled to a microwave feedline (in red) to probe the hybrid system by RF
reflectometry. The nanowire is shown in Fig. 3.10 (c). The DQD is defined in
a polytype InAs nanowire by zincblende dots formed between wurzite barriers.
The inset displays a zoom-in of the DQD before contact fabrication and the three
barriers defining the DQD are pointed out by the white arrows. The resonator
has a Lorentzian response around resonance frequency ωc/2π = 6.7GHz and a
linewidth κ/2π = 30MHz. The linewidth is set by κ = κc + κint, where the
coupling between the resonator and the input line κc/2π = 19MHz and the
resonator internal losses κint/2π = 11MHz.

The measured reflection coefficient |r|2 of the hybrid system as a function of the
DQD gate voltages VGL and VGR is shown in Fig. 3.10 (d). Here, VGM = 250mV
was kept constant. The white dashed hexagon indicates a boundary of a fixed
DQD charge state. The bright diagonal lines are so-called interdot transition
lines. When crossing one these lines an electron is shuttled from one dot to
the other. The electric field of the resonator couples to the dipole moment of
the DQD which becomes large at the DQD charge degeneracy points, where an
electron can tunnel between the left and the right quantum dot. The reflection
coefficient reaches almost total reflection |r|2 = 1 at these lines as the resonator
frequency is shifted by much more than κ by the interaction with the DQD.
The coupling strength g between the resonator and the DQD is not the same
for all interdot lines but depends on the charge configuration of the DQD in a
non-trivial way as the many-electron wavefunction affects the interdot tunnel
coupling t.

The strong coupling limit was investigated at two different operation points. The
cavity and qubit frequencies were either matched at zero (sweet spot) or finite
DQD detuning δ. δ is the difference between the left and the right quantum
dot energy levels. Together δ and t set the excitation energy of the DQD,
EDQD =

√
δ2 + (2t)2. The qubit frequency reads as ωq = EDQD/ℏ. In the

measurements several maps like the one in Fig. 3.10 (d) were recorded at varying
VGM. Few of the brightest lines in the maps were studied to find transitions with
maximum coupling between the resonator and the DQD.

Measurements at the first operation point are shown in Fig. 3.11. Fig. 3.11 (a)
shows an interdot line recorded as in Fig. 3.10 (d) at VGM = 150mV. Figure 3.11
(b) shows a scan across the interdot line where the drive frequency ω was varied
and the gate voltages VGL and VGR were swept along the δ axis indicated in panel
(a). In the far-detuned case only the resonance of the bare cavity is visible as
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Figure 3.11: (a), An interdot transition line recorded at VGM = 150mV. The white arrow shows the detuning δ axis.
(b), |r|2 measured as a function of the drive frequency ω and the detuning δ. The white dashed lines indicate
the qubit ωq and the cavity ωc frequencies. The white arrows denote the two resonant points ωq = ωc at
finite |δ|. (c), The theoretical model in Equations ( 3.26) and ( 3.25) fitted to the measurement data in (b).
(d) and (e), Vertical linecuts at the left and the right resonant point denoted by white arrows in (b). Figure
adapted from Paper iv.

ωq greatly exceeds ωc and the two systems do not interact. Towards smaller |δ|
the ωq becomes comparable to ωc and the interaction between the resonator and
the DQD results in the photonic and electronic states to hybridize. At the two
finite detuning points marked by the white arrows ωq = ωc, avoiding crossings
emerge around the points. Figures 3.11 (d) and (e) show vertical linecuts at
these two points where the two hybridized states are particularly pronounced.
The reflection coefficient response is modelled by input-output theory combined
with Jaynes-Cummings Hamiltonian of the resonator-DQD system [44] under
the assumption of small drive power analytically as

|r(ω)|2 = |1− κcA(ω)|2, (3.25)

with

A(ω) =
Γ/2− i(ω − ωq)

(κ/2− i(ω − ωc))(Γ/2− i(ω − ωq)) + g2
, (3.26)
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where Γ is the total dephasing rate of the DQD. The theory fit in Fig. 3.11
(c) to the experimental data in (d) yields g/2π = 270MHz, Γ/2π = 290MHz,
t/h = 3.1GHz and the right gate lever arm α = 120MHz/GHz as well as the
resonant detuning points δr/h = ±2.7GHz with ωc, κc and κint fixed to the
above values. These values bring the hybrid system into the strong coupling
regime as 2g/(Γ + κ/2) = 1.8 > 1 [121]. In Figs. 3.11 (b) and (c) the right gate
voltage change ∆VGR is converted to detuning as δ = eα∆VGR.
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Figure 3.12: (a), An interdot transition line recorded at VGM = 250mV. The white arrow shows the detuning δ
axis. (b, c, d), |r|2 measured as a function of the drive frequency ω and the detuning δ at VGM =
(250, 254.5, 255.5) mV. The white dashed lines indicate the qubit ωq and the cavity ωc frequencies. The
white line in (d) shows the linewidth in δ direction. (e), The theoretical model in Equations (3.26) and (3.25)
fitted to the measurement data in (d). (f), Vertical linecut at δ = 0 in panel (d). Figure is adapted from
Paper iv.

By repeating these measurements at the second operation point, results in
Fig. 3.12 were obtained. In Fig. 3.12 (b) a scan was made across the inter-
dot transition line in (a) along the δ axis. Here, VGM = 250mV which increases
t and brings the DQD closer to the sweet spot. However, Fig. 3.12 (b) is still
slightly off the sweet spot as the two hybridized states are located at non-equal
distances from ωc. Configurations successively closer and closer to the sweet
spot are reached in Figs. 3.12 (c) and (d) by increasing VGM. Again, a vertical
linecut in Fig. 3.12 (f) recorded at δ = 0 in Fig. 3.12 (d) shows two well-resolved
states at equal distances from ωc/2π. Figure 3.12 (e) shows the theory fit to
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the experimental data in (d). The fit yields g/2π = 320MHz, Γ/2π = 260MHz,
t/h = 3.4GHz and the right gate lever arm α = 130MHz/GHz.

The total dephasing rate Γ at the two operation points differ only by 10%.
This result is rather remarkable as the DQD is first-order robust against charge
noise at sweet spot (Fig. 3.12) whereas the DQD was operated at a charge
sensitive point in Fig. 3.11. To quantify how sensitive DQD is for detuning
charge noise a quantity s = dEDQD/dδ = 1/

√
1 + (2t/δ)2 was defined. At the

resonant finite detuning points in Fig. 3.11 (b) s = 0.39. At the sweet spot
the fluctuations in detuning are estimated to be ∆δ±/h = ±0.5GHz or smaller
based on the linewidth in δ direction denoted by the white line in Fig. 3.12 (d).
This estimate together with the fitted t yield an upper limit for the sensitivity
s = 0.08 at the sweet spot. The sensitivity of the DQD to detuning charge noise
at the sweet spot is at least five times smaller than at the investigated finite
detuning values. Hence, charge noise cannot be the dominating contribution in
dephasing. Figure 3.13 summarizes the measurements in Paper iv. Dephasing
Γ (in red) remains constant within 10% for all investigated detuning values.
The s data points at resonance (in blue) were obtained by extracting t values
from the fits and then calculating δr from the resonance condition ωq = ωc. The
calculated sensitivity increases towards larger δr. This in stark contrast how Γ
as behaves as a function of δr. The solid blue line is s = δr/(ℏωc) obtained by
inserting ωq = ωc into s = 1/

√
1 + (2t/δr)2.

The results in Paper iv exclude charge noise as the main source of dephasing for
the studied nanowire qubit. As dephasing of a charge qubit is usually credited
to charge noise in the environment, work in Paper iv motivates further studies
on dephasing in charge qubits e.g. how to reduce the electron-phonon coupling
which in the paper is estimated to be the dominant dephasing mechanism.
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Figure 3.13: The total dephasing rate Γ and calculated sensitivity s as functions of detuning δr. The diamonds are
measured data points. The solid blue line is s = δr/(ℏωc) and the dashed red line is a guide to the eye.
Figure is adapted from Paper iv.
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Chapter 4

Summary and outlook

In Paper i splitting of Cooper pairs were identified in real time. Real-time de-
tection is a key ingredient towards probing entanglement of electrons. To verify
entanglement between electrons of a split pair the spin states of the electrons
need to be probed. This can be done by energy splitting of the spin states or spin-
blockade [122, 123]. Alternatively, ferromagnetic leads can be used [124, 125]. In
Paper i the electrons are detected in millisecond timescale. The detection needs
to be made faster than the spin lifetime and coherence time of semiconductor
quantum dots. This can be achieved by available single-electron detectors in a
radio-frequency circuit [126, 127]. Spin selectivity together with fast detection
may enable detecting spin entanglement of split Cooper pairs.

The resonator-DQD hybrid device in Paper iv was successful in achieving the
strong coupling limit of light-matter interaction. This kind of device has a
potential to achieve also the ultra-strong coupling limit where the coupling g
between a resonator and a DQD is a significant proportion of the bare energies of
the system, namely the photon energy ωc. Typically, this limit is considered to
be achieved when g/ωc ≥ 0.1. There are two obvious ways to increase g [119, 60].
One is to increase the impedance of the resonator by increasing the junction
resistance. The other one is to increase the lever arm between the resonator and
the DQD. In Paper iv the resonator was coupled to the source contact of the
DQD. The lever arm can be increased by coupling the resonator to the one of the
dots of the DQD via a so-called top gate. These top gates can be evaporated on
the sacrificial GaSb shells on the dots and then wet-etch the shells. This method
leaves on overhang bridge gates above the dots with a distance of around 20 nm.
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[54] J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzen-
stein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel.
Strong coupling in a single quantum dot–semiconductor microcavity sys-
tem. Nature, 432(7014):197–200, 2004.

[55] T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rup-
per, C. Ell, O. B. Shchekin, and D. G. Deppe. Vacuum Rabi splitting
with a single quantum dot in a photonic crystal nanocavity. Nature,
432(7014):200–203, 2004.

[56] J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A.
Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais,
M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf. Coupling supercon-
ducting qubits via a cavity bus. Nature, 449(7161):443–447, 2007.
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[88] J. M. Byers and M. E. Flatté. Probing Spatial Correlations with Nanoscale
Two-Contact Tunneling. Phys. Rev. Lett., 74(2):306–309, 1995.

[89] D. V. Averin and Y. V. Nazarov. Virtual electron diffusion during
quantum tunneling of the electric charge. Phys. Rev. Lett., 65(19):2446–
2449, 1990.

[90] S. L. Rudge and D. S. Kosov. Distribution of waiting times between
electron cotunneling events. Phys. Rev. B, 98(24):245402, 2018.

[91] L. N. Cooper. Bound Electron Pairs in a Degenerate Fermi Gas. Phys.
Rev., 104(4):1189–1190, 1956.

[92] A. Einstein, B. Podolsky, and N. Rosen. Can Quantum-Mechanical De-
scription of Physical Reality Be Considered Complete? Phys. Rev.,
47(10):777–780, 1935.

71



[93] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki. Quantum
entanglement. Rev. Mod. Phys., 81(2):865–942, 2009.

[94] J. S. Bell. On the Einstein Podolsky Rosen paradox. Physics Physique
Fizika, 1(3):195–200, 1964.

[95] A. Aspect, P. Grangier, and G. Roger. Experimental Tests of Realistic
Local Theories via Bell’s Theorem. Phys. Rev. Lett., 47(7):460–463, 1981.

[96] A. Aspect, J. Dalibard, and G. Roger. Experimental Test of Bell’s Inequal-
ities Using Time-Varying Analyzers. Phys. Rev. Lett., 49(25):1804–1807,
1982.

[97] J. V. Koski, J. T. Peltonen, M. Meschke, and J. P. Pekola. Later-
ally proximized aluminum tunnel junctions. Applied Physics Letters,
98(20):203501, 2011.

[98] H. J. Carmichael, S. Singh, R. Vyas, and P. R. Rice. Photoelectron waiting
times and atomic state reduction in resonance fluorescence. Phys. Rev. A,
39(3):1200–1218, 1989.

[99] D. M. Pozar. Microwave engineering. Addison-Wesley series in electrical
and computer engineering. Addison-Wesley, 1990.
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