
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Taming Cloud Integrated Systems in the Wild

Peng, Haorui

2023

Link to publication

Citation for published version (APA):
Peng, H. (2023). Taming Cloud Integrated Systems in the Wild. Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/da1c4556-b1e2-426e-9d0f-31b6b5e2282e

Taming Cloud Integrated Systems in the Wild

Taming Cloud Integrated Systems
in the Wild

by Haorui Peng

Thesis for the degree of Doctor of Philosophy
Thesis advisor: Prof. Maria Kihl, Dr. William Tärneberg, Dr. Emma Fitzgerald
Faculty opponent: Prof. Michael Stübert Berger, Danmarks Tekniske Universitet

To be presented, with the permission of the Faculty of Engineering of Lund University, for public
defence in the auditorium E:1406, E-huset, on Friday, the 8th of December 2023 at 09:15.

Cover generated by Midjourney, edited by Haorui Peng.

Funding information: The thesis work was financially supported by the Wallenberg Artificial
Intelligence, Autonomous Systems and Software Program (WASP) funded by Knut and Al-
ice Wallenberg Foundation, the Excellence Center at Linköping-Lund on Information Tech-
nology (ELLIIT), the IMMINENCE project funded by Sweden’s Innovation Agency (VIN-
NOVA), and the SEC4FACTORY project, funded by the Swedish Foundation for Strategic
Research (SSF).

© Haorui Peng 2023

Department of Electrical and Information Technology
Faculty of Engineering, Lund University
Box 118
SE–221 00 LUND
Sweden

Series of licentiate and doctoral theses
No. 165
ISBN 978-91-8039-873-2 (print)
ISBN 978-91-8039-872-5 (pdf)
ISSN 1654-790X-165

Printed in Sweden by E-husets tryckeri, Lund University, Lund 2023

Dedicated to everyone I love and everyone who loves me.

Contents

List of publications . iv
Abstract . vii
Acknowledgements . ix
Acronyms . xiii

Taming Cloud Integrated Systems in the Wild 1

I Introduction 3

1 Cloud Integrated Systems 5
1.1 Cloud RAN . 6
1.2 Cloud Control Systems . 9

2 The Wild – Cloud Computing and Networking 13
2.1 Cloud Computing . 13
2.2 Wild Networks . 17

3 Challenges 29
3.1 Mobile Networks and Cloud RAN for Industrial Communication . 30
3.2 Cloud Integrated Industrial Systems 31

4 Thesis Outline & Contributions 35

II Cloud RAN & Massive MIMO Resource Allocation 39

Scenario Description 41
Industrial Units . 41
Radio Resource . 42

5 Resource Allocation in Traditional RAN 45
5.1 Targeted System . 46
5.2 Network Slicing . 47
5.3 Simulation . 49
5.4 Evaluation . 51
5.5 Evaluation Results . 53

CONTENTS

5.6 Conclusion on the Network Slicing Scheme 57

6 Resource Allocation in Cloud RAN 59
6.1 Targeted System . 59
6.2 Delays in a Cloud RAN System 60
6.3 System and Simulation Model . 61
6.4 Evaluation . 65
6.5 Evaluation Results . 66
6.6 Conclusion on Cloud RAN under Industrial Scenario 69

III Cloud Control Systems in the Wild 73

Scenario Description 75
Model of CCS . 75
Communication in CCS . 76

7 A 5G-assited Cloud Control System 77
7.1 Experiment setup . 79
7.2 Performance outcomes . 82
7.3 Conclusion on the 5G-assisted CCS 84

8 Transport layer protocols in Cloud Control Systems 87
8.1 Motivation . 87
8.2 Experiment Setup . 88
8.3 Evaluation Results . 92
8.4 Conclusion on CCS performances over different protocols 98

IV Punctual Cloud for Time-critical Cloud Integrated Systems 103

Introduction 105

9 Punctual Cloud for Latency-aware Resource Allocation in Cloud RAN 107
9.1 Targeted System . 108
9.2 System Model . 109
9.3 Problem Definition . 111
9.4 Performance Metrics . 111
9.5 Punctual Cloud for Radio Resource Allocation 114
9.6 Simulation . 121
9.7 Simulation Results . 124
9.8 Implementation . 126
9.9 Experiment with Punctual Cloud Implementation 131
9.10 Experiment Results . 132
9.11 Conclusion on Punctual Cloud for Cloud RAN 135

10 Punctual Cloud for Cloud Control Systems 137

ii

CONTENTS

10.1 Targeted system . 137
10.2 Punctual Cloud for CCS . 140
10.3 Testbed Deployment . 143
10.4 Evaluation . 146
10.5 Evaluation Results . 149
10.6 Conclusion on Punctual Cloud for CCSs 155

V Conclusion 159

11 Conclusions on my PhD study 161

Bibliography 162

iii

List of publications

List of publications

This thesis is based on the following publications:

i 5G Radio Access Network Slicing in Massive MIMO Systems for Industrial
Applications
Haorui Peng, Emma Fitzgerald, William Tärneberg, Maria Kihl
2020 Seventh International Conference on Software Defined Systems

ii Is Cloud RAN a Feasible Option for Industrial Communication Network?

Haorui Peng, William Tärneberg, Emma Fitzgerald, Maria Kihl
Journal of Communications Software and Systems, 2021, 17(2), pp. 97-106

iii Performance Evaluation of QUIC Vs. TCP for Cloud Control Systems

Haorui Peng, William Tärneberg, Emma Fitzgerald, Maria Kihl
2023 International Conference on Software, Telecommunications and Computer
Networks

iv Evaluation of Control over the Edge of a Configurable Mid-band 5G Base
Station
Haorui Peng, William Tärneberg, Emma Fitzgerald, Fredrik Tufvesson,
Maria Kihl
2022 IEEE 6th International Conference on Fog and Edge Computing

v Latency-aware Radio Resource Allocation over Cloud RAN for Industry 4.0

Haorui Peng, William Tärneberg, Maria Kihl
2021 International Conference on Computer Communications and Networks

vi Punctual Cloud: Unbinding Real-time Applications from Cloud-induced
Delays
Haorui Peng, William Tärneberg, Emma Fitzgerald, Maria Kihl
2021 International Symposium on Networks, Computers and Communications

vii Punctual Cloud: Achieving Punctuality for Time-Critical Cloud Control
Systems
Haorui Peng, Fatemeh Akbarian, William Tärneberg, Maria Kihl
2023 IEEE International Conference on Cloud Networking

iv

List of publications

Furthermore, I have contributed to the following papers which are not part of the
thesis:

i Latency prediction in 5G for control with deadtime compensation

Johan Ruuskanen, Haorui Peng, Alexandre Martins
Proceedings of the Workshop on Fog Computing and the IoT, 2019, pp. 51-55

ii Massive MIMO pilot scheduling over cloud ran for industry 4.0

Haorui Peng, William Tärneberg, Emma Fitzgerald, Maria Kihl
2020 International Conference on Software, Telecommunications and Computer
Networks

iii FedApp: a Research Sandbox for Application Orchestration in Federated
Clouds using OpenStack
Johan Ruuskanen, Haorui Peng, Alfred Åkesson, Lars Larsson, Maria Kihl
arXiv preprint arXiv:2109.01480

iv Massive MIMO pilot scheduling over Cloud RAN

Haorui Peng, William Tärneberg, Emma Fitzgerald, Maria Kihl
16th Swedish National Computer Networking Workshop

v

Abstract

Abstract

This thesis unfolds a journey into the realm of cloud integrated systems. More specif-
ically, it explores the transformational role of diverse cloud infrastructure, be it public
or private, centralized or edge-based, when integrated into traditional systems. In this
transformation, the cloud assumes the vital role of controllers. Inevitably, this shift
towards cloud integration also brings into play the expansive network that acts as the
connective tissue between traditional systems and the cloud, adding another layer of
complexity to the newly formed integrated system.

In this work, we shed light on the less-talked-about side of cloud integration. Beyond
the evident benefits of this transition, we face an array of challenges that emerge along
with the introduction of the cloud and its accompanying network. Adapting tradi-
tional system deployment to this new era of cloud-based computing is one such ne-
cessity. The advent of virtualization and container technologies introduces additional
requirements for software management. Shared infrastructure mandates stricter con-
trol over incoming traffic. Furthermore, real-world networks often act unpredictably,
straying from their simulated behaviours. Even the much-touted 5G technology has
not completely lived up to the expectations set a decade ago.

However, the ambition of this thesis does not lie in the enhancement of existing in-
frastructure, the improvement of cloud technologies, or the acceleration of network
speed. Rather, it aims to accept and work within the limitations and flaws inherent
in both cloud and network infrastructures. The primary goal is to recognize the chal-
lenges these systems introduce, embrace their imperfections, and adapt our systems to
work effectively with the realities of our imperfect cloud and unpredictable network
environments.

To accomplish this, the thesis undertake a comprehensive analysis of two types of
cloud integrated systems—Cloud RAN and Cloud Control System. A central fo-
cus is the evaluation of the practicality of implementing these systems using existing
infrastructure. This evaluation is based on rigorous simulation as well as hands-on
testbed experiments. In response to the insights gained from these assessments, the
thesis proposes an innovative framework, built on a microservice architecture, to de-
ploy cloud services more effectively for these systems. This framework is designed
to mitigate the network latency impact brought on by unpredictable, “wild” envi-
ronments. It does so by incorporating specialized prediction and estimation services,
thereby enhancing the adaptability of these systems to real-world challenges.

vii

Acknowledgements

Acknowledgements

Going through a PhD journey that has spanned over five years has been far from
straightforward; it’s been a demanding and, at times, exhausting experience. However,
I am profoundly grateful for the incredible support around me that has made this
challenging yet enriching journey possible.

First and foremost, I owe a debt of gratitude to my primary supervisor, Maria Kihl.
I consider myself very lucky to have had her guidance throughout my PhD. Maria’s
unwavering support and mentorship have been invaluable. She provided me with
a wealth of opportunities to participate in various fun projects, encouraging me to
meet and talk with experts in the field. This experience significantly broadened my
professional horizons and helped me find my own research interests. During one of
the most challenging periods of my life and career, Maria stood beside me, taking
proactive steps to ensure my well-being. Her steadfast support has been the bedrock
upon which I have built my PhD journey.

My co-supervisor, William Tärneberg, although officially joining my advisory team in
my second year, has been a great help to me from day one at office. William’s passion
for research is contagious, and he is full of endless creative ideas. Yet, what stands out
the most is his empathetic nature and consistent willingness to assist me through any
challenges. Whenever I have felt stuck or lost, William has been my go-to person for
insightful and constructive feedback. His guidance has made the path to completing
my PhD a far more manageable track.

Emma Fitzgerald, my other co-supervisor, is basically my role model for what an
exceptional female researcher should be—intelligent, fully committed, and a natural
at teamwork. Every discussion with her leaves me feeling inspired and methodically
directed. Emma’s enthusiasm for academic research is the kind of passion I wish to
carry into my own career.

In addition to my supervisors, I would like to extend my heartfelt thanks to a number
of senior colleagues in my department. Ulf Körner has always been the kindest figure
in the office; his course was a highlight of my academic experience. Björn Landfeldt,
with whom I have shared many lunchtime conversations, never fails to make our chats
engaging and enjoyable. Stefan Höst, my office neighbour during the early years of my
PhD, has been consistently supportive, always willing to help me solve big and small
matters. A special nod to our administrative team—Elisabeth Nordström, Elisabeth
Ohlsson, Linda Bienen, Erik Göthe and Sirvan Abdollah Poor, —for their patience
and willingness to assist whenever I found myself mired in bureaucratic complexities.

Special mentions are due for Erik Jonsson, Lars Larsson and Fredrik Brumme. Erik,

ix

Acknowledgements

our multitasking research engineer and network manager, has been endlessly patient,
helping me with everything from cables issues and network firewalls to student lab
management and even physically relocating heavy lab equipment. His assistance has
been invaluable to my work and academic life. Lars, who visited our research group
in my early PhD years, is a cloud computing expert whose enthusiasm inspired me
to delve deeply into that area. Fredrik was instrumental in the installation of the 5G
radio base station in our lab; his expertise broadened my understanding of mobile
networks and set a high bar for what it means to be a senior engineer.

A Million thanks go out to my fellow PhD candidates in the department, who have
been my reliable friends throughout this lengthy journey. Xuhong has been a trusted
listener for many of my troubles at work. Hassan and Farnaz, who have since gradu-
ated and moved on, provided invaluable guidance and support during my initial days
in the department. Zahra and Fatemeh are perhaps the ones with whom I have shared
the most work hours, and I’m genuinely thankful for their camaraderie and enjoyed
all the long and short trips we had together. Sahar became my office neighbour in my
final year, and our shared music tastes have been a refreshing discovery—I look for-
ward to many more concerts together. A special shoutout goes to Azra, Rikard, Sidra,
Ilayda, Suleyman, Hedieh, Ziyu, Baichuan and anyone I may have unintentionally
left out. Our banter, shared complaints, and jokes about the PhD life have made this
path infinitely more bearable. Your encouragement and emotional support have been
essential in helping me cross the finish line. Thank you all.

I cannot overlook the unwavering support of my friends, both in Sweden and China,
who have been steadfast companions throughout these formative years. Di Wang
was not only the first person I met upon arriving in Sweden but also my first and
last flatmate here; her friendship and constant encouragement have been incredibly
meaningful to me. Bingran and Ran Duan have been like a second family, always at
the ready to help me navigate through any challenges that came my way since our
paths first crossed. Special thanks to Xiaojie, Xin Zhang and Zhiqi for the laughter-
filled weekends and memorable game and movie nights that lightened my spirit. And
I’m forever grateful to Zehui, Fang Huang and Haoran for the wonderful homemade
meals and delightful dinner evenings that we have shared.

Last but not least, my deepest, most heartfelt gratitude is reserved for my cherished
family. My fur babies, Lina and Punchy, have been constant sources of comfort and
joy. Their presence has become so integral to my life that I can’t imagine my days
without them. I hope we share many more years of happiness together.

As for my parents, my grandmother, and my dearly departed grandfather, their un-
wavering support has shaped me into the person I am today—a person I’m proud to
be. Even though I’ve been away from home for years, their concern for my well-being

x

Acknowledgements

never wanes, reminding me of their endless love. They have supported every decision
I have made, without question, granting me the freedom to be myself. I’m extraordi-
narily fortunate to belong to such an understanding and supportive family. My love
for you will remain steadfast throughout my life.

爸爸妈妈,外公外婆,我永远爱你们!

Haorui Peng
Lund, October 2023

xi

Acronyms

Acronyms

3GPP 3rd Generation Partnership Project

5G Fifth Generation Wireless Specifications

AI Artificial Intelligence

AWS Amazon Web Services

BBU BaseBand processing Unit

BnB Ball-and-Beam

CAN Controller Area Network

CCS Cloud Control System

CDN Content Delivery Network

CNI Container Network Interface

CSI Channel State Information

CN Core Network

CU Critical Unit

DRX Discontinuous Reception

DSP Digital Signal Processor

ECS Elastic Container Service

eMBB Enhanced Mobile Broadband

EDF Earliest Deadline First

EMA Exponential Moving Average

EPC Evolved Packet Core

ERDC Ericsson Research Data Center

ETSI European Telecommunications Standards Institute

FCFS First Come First Served

FDD Frequency-Division Duplexing

xiii

Acronyms

GCP Google Cloud Platform

GPP General-purpose Processing

HOL Head-Of-Line

IaaS Infrastructure-as-a-Service

ICMP Internet Control Message Protocol

IAE Integral Absolute Error

IoT Internet of Things

IIoT Industrial Internet of Things

ISP Internet Service Provider

LAN Local Area Network

LTE Long Term Evolution

LQR Linear Quadratic Regulator

LuMaMi Lund Massive MIMO

MAC Medium Access Control

MEC Mobile Edge Computing

MIMO multiple-input multiple-output

mMTC Massive Machine Type Communication

MNO Mobile Network Operator

MPC Model Predictive Control

MQ Message Queue

MQTT Message Queue Telemetry Transport

NIST National Institute of Standards and Technology

non-CU non-Critical Unit

NR New Radio

NSA Non Stand-Alone

xiv

Acronyms

OFDM Orthogonal Frequency-Division Multiplexing

PaaS Platform-as-a-Service

PDF Probability Density Function

PHY Physical Layer

QoS Quality of Service

RAN Radio Access Network

RBS Radio Base Station

PTO Probe Timeout

RTO Retransmission Timeout

RRH Remote Radio Head

RRQ Round Robin with partial Queuing information

RRNQ Round Robin with No Queuing information

RTT Round Trip Time

SA Stand-Alone

SaaS Software-as-a-Service

SDN Software Defined Networks

SDR Software Defined Radio

TDD Time Division Duplex

UE User Equipment

URLLC Ultra-Reliable and Low-Latency Communication

VM Virtual Machine

VNF Virtual Network Function

VXLAN Virtual Extensible LAN

WAN Wide Area Network

OAM Operations, Administration and Management

xv

Taming Cloud Integrated Systems
in the Wild

Part I

Introduction

Chapter 1

Cloud Integrated Systems

The process of cloud transformation has emerged as a revolutionary trend in recent
years, radically altering the landscape of system software deployment. Traditionally,
complex computational tasks required substantial hardware support, often leading
to increased costs and complex management procedures. However, the advent of
cloud computing has provided an efficient solution to this predicament. By offloading
these computation-intensive tasks to the cloud, system deployment and maintenance
become both more economical and simplified compared to traditional models.

This thesis delves into the exploration and evaluation of two pivotal cloud integrated
systems: the Cloud Radio Access Networks (RANs) and Cloud Control Systems
(CCSs). These systems epitomize the paradigm shift from conventional mechanisms
to innovative cloud integrated frameworks. Central to both is the “control over the
cloud” approach, characterized by a symbiotic relationship between the control object
and its cloud controller.

The Cloud RAN stands out as a transformative model that reimagines traditional Ra-
dio Base Station (RBS) deployments. By relocating the baseband processing functions
to the cloud, it infuses operations with greater efficiency, flexibility, and scalability.
Within this context, the thesis spotlights the Medium Access Control (MAC) over
the Cloud, emphasizing real-time resource allocation for diverse network subscribers.
The instantaneous response from the cloud controller to resource requests takes centre
stage here.

Cloud Control Systems (CCSs), on the other hand, represent a significant shift in the
operation of traditional cyber-physical systems. These systems encompass tangible
control entities, ranging from robots to power grids and intricate industrial processes.
Characteristically, a CCS is defined by a feedback loop interlinking the control ob-

5

Cloud Integrated Systems

ject and the cloud controller. The overarching objective is to maintain stability and
robustness in the control object, aligning it to a reference point. Transitioning the
system controllers to the cloud propels these systems towards a centralized, efficient
control structure.

Such cloud integrated systems, also referred to as systems “controlled over the cloud”,
are representative of a new wave of cloud-dependent operations. While such control
harnesses the expansive benefits of cloud integration, it also confronts distinct chal-
lenges, particularly due to its dependence on consumer processes and the intricate
cloud network and computing infrastructures. With their mission-critical nature,
systems under “control over the cloud” necessitate research that addresses real-world
conditions, foregrounding both scalability and consistent low latency amidst high-
demand, real-time tasks.

Furthermore, the unpredictability of the network that bridges the cloud and other
system components also poses a primary challenge. As control responsibilities transi-
tion to the cloud, this network becomes more than just a connector and often turns
into an unpredictable variable in the system. Consequently, these systems are not just
managed through the cloud but also traverse these erratic networks, adding a layer of
complexity that this thesis delves into and aims to resolve.

This thesis primarily seeks to understand the challenges posed by cloud integrated
systems and to adapt these systems to the “wild” environment without altering that
environment. This remaining of this chapter offers an overview of the two cloud
integrated systems addressed by this thesis: the Cloud RAN and Cloud Control Sys-
tems (CCSs). Chapter 2 subsequently delves into the dual facets constituting the
“wild”, namely cloud computing and networking, both of which introduce complex-
ities for cloud integrated systems. Delving deeper, Chapter 3 elaborates on the com-
plexities of deploying these cloud integrated systems, with particular emphasis on their
integration within industrial contexts – the primary environment this research targets
for system adaptation and deployment. Lastly, Chapter 4 provides an overview of the
technical content covered in this thesis, detailing the author’s contributions to each
of the underlying papers upon which the thesis is founded.

1.1 Cloud RAN

Cloud RAN is an advanced RAN architecture designed for the Fifth Generation
Wireless Specifications (5G) and the beyond, emphasizing software-defined opera-
tions and centralized resource management in radio access networks. It’s positioned
as a prospective architecture for future RBSs, wherein signal processing functions are

6

1.1 Cloud RAN

Fronthaul

RRH BBU Pool

Figure 1.1: A Cloud RAN system.

either partially or fully centralized in a BaseBand processing Unit (BBU) pool, lever-
aging virtualization and cloud capabilities. Its fundamental goal is to offer efficient
and cost-effective mobile Internet access.

This innovation can be seen as a progression from C-RAN, which stands for Cen-
tralized processing, Cooperative radio, Cloud, and Green infrastructure Radio Ac-
cess Network [Chi11]. At its core, Cloud RAN seeks to harness centralized and col-
laborative baseband processing on real-time Cloud infrastructure, ideally leveraging
General-purpose Processing (GPP) resources to minimize costs and associated risks
[Gua+12].

In practical terms, Cloud RAN reconfigures the traditional setup. As the example de-
picted in Figure 1.1, it employs a splitting architecture by segregating the BBU from
numerous conventional RBSs and centralizes them into a singular BBU pool within a
cloud infrastructure. The subsequent Remote Radio Heads (RRHs) are minimized to
handle basic radio-frequency operations such as transmission, reception, and analogue
to digital conversion. Through this centralized BBU pool, cooperative baseband sig-
nal processing across multiple RRH sites becomes feasible. The BBU pool is linked
with the RRH through fronthaul links. While optic cables, same as those used in
traditional RBSs, are typically employed as the fronthaul links, there’s an increasing
interest in exploring more cost-effective alternatives. Notably, recent studies have
been delving into the potential of employing Ethernet as the fronthaul link for Cloud
RAN, showcasing its viability and benefits [Gom+18; Ass+17; Mou+17].

Yet, the full integration and software adaptation into Cloud RAN systems, as envi-
sioned by [Chi11], necessitates a phased approach. The initial step to shape Cloud
RAN merely demands the separation of BBUs from various traditional RBSs, cen-
tralizing them for baseband processing. However, this centralized BBU remains nei-
ther pooled nor virtualized. Ultimately, the Cloud RAN vision encompasses a fully
pooled computational resource base in the form of a BBU pool. By this stage, Cloud
RAN will not only embrace the merits of Software Defined Radio (SDR) but also
incorporate virtualization technologies, favouring GPPs over Digital Signal Proces-

7

Cloud Integrated Systems

D
AT

A

RR
C

PD
C

P
H

ig
h

RL
C

Lo
w

RL
C

H
ig

h
M

AC
Lo

w
M

AC
H

ig
h

PH
Y

Lo
w

PH
Y

RF RF
Lo

w
PH

Y
H

ig
h

PH
Y

Lo
w

M
AC

H
ig

h
M

AC
Lo

w
RL

C
H

ig
h

RL
C

PD
C

P
RR

C

D
AT

Aop
tio

n1
op

tio
n2

op
tio

n3
op

tio
n4

op
tio

n5
op

tio
n6

op
tio

n7
op

tio
n8

Fi
g
u
re

1.
2:

3r
d
G
en
er
at
io
n
Pa
rt
n
er
sh
ip
Pr
o
je
ct
(3
G
PP
)
fu
n
ct
io
n
sp
lit

o
p
ti
o
n
s
b
et
w
ee
n
ce
n
tr
al
an
d
d
is
tr
ib
u
te
d
u
n
it
s.

8

1.2 Cloud Control Systems

sors (DSPs), and inching towards real-time baseband processing in a cloud-centric
model.

While Cloud RAN augments the telecom domain with enhanced efficiency and eco-
nomic gains, it simultaneously introduces challenges inherent to the integration of
the split architecture and cloud technologies. Cloud RAN adopts the 3rd Generation
Partnership Project (3GPP) function split options between centralized and distributed
radio access units, as outlined in [1417] and illustrated in Figure 1.2. Within this ar-
chitecture, the split options determine which radio access functions are allocated to
the BBU pool and which remain with the RRH, but imposes strict bandwidth and
latency constraints on its fronthaul links, and achieving these becomes a formidable
task.

For instance, considering split option 8 from Figure 1.2, when all functions above
and including Physical Layer (PHY) are handled by the BBU pool, the fronthaul
link demands a bandwidth of 157.3Gb/s and permits a maximum one-way latency
of 250µs [1417]. Meeting such a requirement is not merely challenging because of
the intermediate network and GPPs infrastructure but also due to the cloud com-
puting methodologies applied for function deployment and access management. The
intricacies of these challenges will be further discussed in Chapter 3.

In the context of this thesis, we consider a Cloud RAN system featuring function split
option 6, which adopts a split between the MAC and PHY layer functions. Generally,
a function split between the MAC and PHY layers demands less network bandwidth
than alternative configurations. The split option 6 demands a fronthaul link band-
width of 5.6Gb/s and maximum one way latency of 250µs, which could be potentially
achieved by an Ethernet link. Therefore, our setup incorporates an Ethernet fronthaul
link that connects a Massive multiple-input multiple-output (MIMO) RRH to a BBU
pool hosted within a GPP cloud infrastructure.

1.2 Cloud Control Systems

Along with the emerging of Industry 4.0, time-sensitive and mission-critical indus-
trial applications such as feedback controllers in cyber-physical systems, are transition-
ing from their conventional platforms to the cloud. This migration seeks the cloud’s
economies of scale, as well as benefits from offloading, collaboration, and streamlined
software development.

Amidst the wave of cloud migration, Cloud Control Systems (CCSs) have garnered
immense interest in the emerging industrial age. A CCS is characterized by a phys-
ical plant—like robotic arms, autonomous vehicles, and production lines—whereas

9

Cloud Integrated Systems

Plant

Cloud Controller
Network

Plant State

Control signal

Figure 1.3: An example of cloud control system.

its control mechanism is anchored in the cloud. The control loop of such a system
is network-mediated. Complemented by advancements in mobile communication,
particularly 5G, these systems are evolving rapidly in the Industry 4.0 landscape, fos-
tering automation across sectors such as manufacturing and mining [Nok23; BSK18].

Figure 1.3 delineates a typical CCS. The control procedure operates periodically,
matching the specific plant’s demands. In each cycle, the plant communicates its
current state to the cloud controller. The latter then processes this data and responds
with a pertinent control signal. This signal is then relayed to the plant for the req-
uisite action. This cycle’s duration, known as the system’s sampling rate, determines
the intervals between successive plant requests.

A key differentiation between a CCS and a conventional local control system lies in
the influence of network latency. This latency can lead to the application of out-
dated control signals, potentially compromising the process’s safety and efficiency.
The sampling rate, contingent on the plant model, plays a pivotal role in controller
design. A mission-critical control process requires a higher frequency to update its
plant states and to get control signals to actuate. Thus, these critical processes require
lower network latency as well as efficient computation in the cloud to meet the process
dynamics.

Recent literature, such as [Ma+20], has spotlighted dynamic switch solutions between
local computing and edge nodes to meet the latency stipulations of cyber-physical sys-
tems. Meanwhile, [ODo+18] underscored an industrial cyber-physical construct de-
signed for machine learning tasks, executed via a fog architecture. [Liu22] developed
a distributed cloud-based predictive control scheme tailored for networked multia-
gent systems. This approach introduced a multistep state predictor to counteract the
effects of delays inherent in cloud control systems. On the other hand, [Dai+23]
transformed a nonlinear Model Predictive Control (MPC) problem into an array of
subproblems suitable for parallel computation. To both reduce local computational

10

1.2 Cloud Control Systems

burden and enhance efficiency, they crafted a cloud-centric architecture, employing
multiple Docker1 containers to facilitate this parallelization.

Research into harnessing the cloud for real-time systems has surged in recent years.
Critical design aspects for cloud-powered real-time services were outlined in [Tsa+10].
[Ska+20] undertook an analytical journey across multiple cloud platforms, proffering
strategies to streamline cloud computing in vital control systems. The innovative no-
tion of “control as a service” was discussed in [Ese+15] in the context of autonomous
vehicles, integrating a controller tailored to address network imperfections, supported
by simulation studies. [Zha+22] devised a two-level hierarchical parallel genetic al-
gorithm, hosted on Spark cloud, for real-time prediction of road traffic flows and
proactive setting of traffic signals.

Predominantly, these systems employ a request-response model for message relay be-
tween the controller and the plant. A RESTful model, such as HTTP, is frequently
used to anchor the controller within a cloud application. The response latency for each
request hinges on both the network connectivity and the chosen protocols. Network
selection between the plant and cloud controller relies on their spatial relationship, en-
compassing options like Wi-Fi, mobile networks, Ethernet, or even dedicated optical
networks. When controllers are housed in a centralized cloud, application workloads
need to traverse the Wide Area Network (WAN). This introduces a layer of unpre-
dictability and intricacies, further complicating the stochastic properties inherent to
the cloud controller’s response delays.

1https://www.docker.com

11

Chapter 2

The Wild – Cloud Computing and
Networking

2.1 Cloud Computing

Introduced by John McCarthy in 1961 with the idea of “using computing as pub-
lic utility, just as the telephone system” [Gar99], cloud computing has emerged as
a cornerstone of the modern digital landscape. It offers a transformative approach
to accessing software and applications, shifting away from traditional paradigms. By
consolidating vast computing and storage capabilities within expansive data centres,
cloud computing absolves end-users from the complexities of resource management.
Through advanced virtualization technologies, users are offered a shared-resource en-
vironment. The pay-as-you-go pricing model further provides flexibility and eco-
nomic efficiency, sidestepping the need for large initial investments.

The US National Institute of Standards and Technology (NIST) defines cloud com-
puting as “a model for enabling ubiquitous, convenient, on-demand network access
to a shared pool of configurable computing resources... rapidly provisioned and re-
leased with minimal management effort or service provider interaction” [MG11] and
outlines five essential characteristics:

• On-Demand Self-Service: Users can independently provision resources.

• Broad Network Access: Services are network-accessible from various devices.

• Resource Pooling: Users share dynamic resources based on demand.

• Rapid Elasticity: Resources adjust automatically based on demand.

13

The Wild – Cloud Computing and Networking

• Measured Service: Usage is transparently metered for both provider and con-
sumer.

Expanding on the cloud framework, NIST classifies cloud services into three primary
models:

• Software-as-a-Service (SaaS): This model provides users access to the provider’s
applications running on a cloud infrastructure. Here, users interact with the
application via client interfaces such as web browsers, but don’t manage or con-
trol the underlying cloud infrastructure.

• Platform-as-a-Service (PaaS): Tailored for developers, this model offers a plat-
form allowing consumers to develop, run, and manage applications without
delving into the complexities of building and maintaining the infrastructure.
While the cloud provider manages the network, servers, and storage, consumers
have the flexibility to modify their application environment.

• Infrastructure-as-a-Service (IaaS): The most flexible of the three, IaaS offers
consumers the tools to provision processing, storage, and other fundamental
computational resources. Here, consumers can deploy and run arbitrary soft-
ware, including operating systems and applications, having control over aspects
like storage, deployed applications, and certain networking components, but
not the underlying infrastructure.

Building upon the foundations of cloud computing, newer paradigms like edge com-
puting and fog computing have also emerged. These paradigms prioritize speed, ef-
ficiency, and privacy, distinguished by their proximity to consumers and inherent
distributed nature.

2.1.1 Public Cloud

Public cloud is one of the cloud deployment models defined by NIST[MG11]. It is also
commonly referred to centralized cloud, standing in contrast to the distributed nature
of edge and fog computing. This cloud infrastructure is available for widespread use
by the public and can be owned, operated, and managed by various entities, whether
they’re businesses, academic institutions, government bodies, or a mix of these. Cur-
rently, the public cloud landscape is dominated by giants such as Amazon Web Ser-
vices (AWS), Microsoft Azure, and Google Cloud Platform (GCP). Collectively, they
hold approximately 75% of the global market share [Ric]. These titans offer an exten-
sive array of services tailored to multiple models, supporting a vast range of applica-
tions, from Internet of Things (IoT) and gaming to machine learning. In the context

14

2.1 Cloud Computing

of this thesis, we primarily employed AWS services when there is a need to integrate
the public cloud into our test-bed.

2.1.2 Edge, Fog and Mobile Edge Cloud

Emerging from the foundational concepts of cloud computing, both edge and fog
computing were conceived to serve time-critical processes. Their primary objective
is to enhance the responsiveness of cloud applications. They achieve this by situat-
ing services within smaller, decentralized cloud infrastructures located closer to users.
While this facilitates speedier interactions, it comes with the trade-off of having com-
paratively constrained computing capabilities in contrast to centralized clouds.

The edge computing paradigm positions shared computational resources at the net-
work’s edge, closer to end-users. This setup ensures resources are coordinated in a
cloud-like fashion. By positioning controllers at the edge, they can leverage cloud
benefits without enduring the latency and unpredictabilities associated with travers-
ing vast Internet expanses.

Edge and fog computing are closely related, both originating from cloud comput-
ing principles and featuring distributed processing capabilities. In numerous systems,
edge and fog nodes act synergistically with centralized clouds, amplifying the advan-
tages each brings to the table [ODo+18; MRB18]. However, there’s an evident drive
to exclusively utilize either the edge or fog layers in specific systems, aiming to fully
harness the boon of reduced latency [Pan+17; Ma+20; Hao+18].

Our understanding of edge and fog is anchored in the definitions postulated by NIST
and European Telecommunications Standards Institute (ETSI). The NIST character-
izes the fog paradigm as a layered and distributed model. This model comprises both
physical and virtual fog nodes, strategically positioned along the data trajectory from
end-user devices to centralized cloud services [Ior+18]. Thus, fog computing emerges
as a cooperative computational paradigm, seamlessly integrating centralized clouds
with other essential computing elements strewn across the user-cloud data pathway.

Conversely, edge computing is rooted in the principles of Content Delivery Net-
work (CDN), which prioritizes delivering video content via edge servers located near
users, typically within Internet Service Providers (ISPs) or network operator domains.
Expanding upon this, edge nodes provide computing capabilities for application de-
ployment and are inclined to incorporate virtualization technologies, a hallmark in-
herited from cloud computing [MMB18].

Both NIST [MMB18] and ETSI [Hu+15] have also placed considerable emphasis on
the concept of Mobile Edge Computing (MEC). This approach promotes an IT ser-

15

The Wild – Cloud Computing and Networking

vice environment at the edge of mobile networks within the RAN, ensuring closeness
to mobile users. MEC fuses the cloud computing benefits with distinctive features
like low latency, cost efficiency, and real-time processing. This unique blend offers
Mobile Network Operators (MNOs) a golden opportunity to deliver mission-critical
services to their subscribers.

For the research detailed in this thesis, our focus has been predominantly on employ-
ing edge computing and mobile edge computing for system deployment, eschewing
the need for extended data pathways of an application to a centralized cloud.

2.1.3 Industry 4.0 and Cloud Computing

The rapid digital transformation powered by Industry 4.0 is steering the integration of
cloud computing into manufacturing systems, unlocking the potential for “infinite”
computing resources and storage capacity. This integration is reshaping industrial real-
time applications like controllers and schedulers for cyber-physical systems, enabling
them to offload computing tasks to clouds. The manufacturing industry stands to
gain substantially from this new paradigm, as the economic model and flexibility of
cloud computing translate into efficiency and cost-effectiveness [Xu12].

In addition, the emergence of the Industrial Internet of Things (IIoT) as a vital part
of the industrial revolution has reinforced the importance of cloud computing in
modern industrial systems. As on-board processing on IIoT devices is often lim-
ited, offloading data analysis and computing from a large-scale deployment of IIoT
applications to the cloud is recognized as an optimal solution for the manufacturing
sectors [Buy+16; Geo+16; PL16]. This approach, integrating IoT applications with
cloud services, has been reported to lead to significant productivity improvements in
manufacturing plants [Cis19]. The conjunction of IIoT and cloud computing paints
a compelling picture of the future, where interconnected devices and data-driven in-
sights drive the next wave of industrial innovation.

2.1.4 EIT Kubernetes Cluster

As highlighted in Section 2.1.2, the research contained within this thesis predomi-
nantly leverages edge and mobile edge computing. Primarily, the applications are
deployed on the EIT edge cluster—a seven-node bare-metal Kubernetes1 cluster lo-
cated within the EIT wireless systems and application lab. Significantly, this cluster
shares the same Local Area Network (LAN) as the end-users of the deployed applica-

1https://kubernetes.io

16

2.2 Wild Networks

tions. At the time of this writing, each node operates on the Ubuntu-jammy operating
system, featuring the Linux kernel version 5.15.0-69-generic.

This cluster, being a bare-metal one, uses distinct physical machines as worker Nodes.
Consequently, we refrain from deploying virtual machines or networks for the cluster.
Nevertheless, every application on this cluster is containerized using Docker and is
orchestrated and maintained by Kubernetes.

Kubernetes stands as one of the leading open-source orchestration platforms designed
for deploying, orchestrating, and scaling containerized applications. Within this sys-
tem, each Node can accommodate multiple Pods, comprising one or multiple con-
tainers with shared storage and network resources. A Pod represents the most elemen-
tal deployable computing units in Kubernetes. While an application in Kubernetes
is manifested as one or multiple pods, and it is exposed to the network as a Service.
This ensures the application remains accessible for interactions with the end-users.

The EIT Kubernetes cluster serves as the primary infrastructure for deploying cloud/edge
applications discussed in this thesis and other related works. Given that all prominent
cloud providers now offer Kubernetes services (e.g., AWS EKS, Google Kubernetes
Engine, Azure Kubernetes Service), it becomes seamless to deploy our edge applica-
tions onto centralized or public clouds, enabling evaluations and validations in diverse
environments.

2.2 Wild Networks

By “wild networks”, we are referring to the actual networks employed in a system or
a testbed, not the idealized models found in simulations. While network simulators
are indispensable tools for researchers, they often fall short of accurately representing
the real-world networks that operate under a variety of daily scenarios. After all, no
model can perfectly capture every nuance and variable.

The networks between a local system and the cloud are often not consistently re-
liable. A myriad of factors contribute to this unreliability, including the nature of
the transmission media, the infrastructure’s robustness, the communication protocols
used across all layers, and the interference from other user traffic.

In this chapter, we focus primarily on those factors that have a direct impact on the
research problems tackled in this thesis. These considerations were at the forefront of
our investigation into cloud integrated systems. They shaped our understanding of
how these systems operate within the confines of real-world networks and guided our
efforts to devise solutions that take into account these complex, often unpredictable

17

The Wild – Cloud Computing and Networking

Application

Transport (TCP/UDP)

Network (IP)

Data Link

Physical

Figure 2.1: Network protocol stack in TCP/IP model.

environments.

2.2.1 Communication Protocols of Cloud applications

In the scenario of a cloud integrated system, remote computational tasks often ne-
cessitate significant alterations in deployment methodologies to adhere to the cloud
paradigm as cloud applications or services. This transition compels the implementa-
tion of a full computer networking stack for the cloud application and demands that
the system’s data path traverse the IP network.

Such a configuration necessitates the application of the full network stack implemen-
tation derived from the TCP/IP model, as illustrated in Figure 2.1. The selection
of transport and application protocols in the model is largely contingent upon the
Quality of Service (QoS) requisites of the system. While the Internet protocol suite,
is commonly recognized as TCP/IP, which has dominated the Internet landscape for
decades, other transport protocols like UDP and QUIC are also vital components
within the realm of contemporary web services.

However, it’s crucial to note that higher layer protocols can potentially introduce dis-
ruptions to the QoS of the transformed cloud applications within our systems. These
protocols typically favour intricate transmission control mechanisms aimed at ensur-
ing the reliability of data transmission. Therefore, a comprehensive understanding of
the pros and cons of these protocols is vital when selecting among them.

In the following section, we offer an overview of the transport layer and application
layer protocols that we have evaluated and employed in our cloud applications during
the deployment of our cloud integrated systems. This discussion aims to illuminate
the considerations and challenges inherent in this critical aspect of system deployment.

18

2.2 Wild Networks

TCP, UDP and QUIC

As mentioned earlier, TCP is the most commonly used transport layer protocols for
today’s web services, as well as cloud applications and services. TCP offers several ad-
vantages that make it an ideal choice for many network communication applications.

TCP’s strength lies in its reliability through its use of acknowledgments and auto-
matic retransmission of lost or corrupted data. TCP also employs flow control and
congestion control algorithms, which adjust the data transmission rate to the recip-
ient’s processing capacity and network traffic conditions, thereby maintaining stabil-
ity and predictability. TCP’s built-in handshake procedure further ensures readiness
for communication and allows for graceful connection termination, thus preventing
abrupt disconnections and potential data loss. Consequently, TCP’s reliability, ef-
ficiency, and robust connection management make it a highly preferred protocol in
network communications.

Contrary to TCP, UDP operates on a simpler mechanism and does not establish a
connection prior to data transmission, thereby offering faster speeds. It does not
provide reliability features such as acknowledgment, retransmission or flow control.
Those features make UDP suitable for application where speed and low latency are
more important than absolute reliability as their QoS.

QUIC, a transport layer protocol leveraging UDP, was first proposed by Google in
2012 as an innovative substitute for TCP in deploying modern web applications. De-
spite operating over UDP, QUIC manages to reproduce TCP’s functionalities, em-
ploying similar but uniquely differentiated mechanisms. The major functions offered
by QUIC, contrasted with those of TCP, are succinctly encapsulated in the subse-
quent Table 2.1.

The following provides detailed insights and clarifications for each of these function-
alities in Table 2.1.

Handshakes Establishing a TCP connection necessitates the TCP client to await
an acknowledgment from the server to its SYN packet before data transmission can
commence, thus requiring a minimum of one Round Trip Time (RTT) to establish
the connection. When secure transmission is called for, a cryptographic handshake is
also required, contributing an additional two RTTs to the connection establishment
preceding data transmission. Conversely, QUIC employs an integrated cryptographic
and transport handshake, which operates on a 1-RTT or 0-RTT basis, contingent on
whether a QUIC connection is being initiated or resumed. A more detailed depiction
of the cryptographic and transport handshakes integral to both protocols is provided

19

The Wild – Cloud Computing and Networking

Table 2.1: Comparison of major functionalities in TCP and QUIC, summarize from [IT21; IS21; For07]

Functionality TCP QUIC
Handshakes Three-way handshake 1-RTT or 0-RTT handshake

Multiplexing Depending on different applica-
tion protocols

Allows arbitrary number of con-
current streams.

Congesting control Slow start and congestion avoid-
ance policies

Similar to TCP congestion con-
trol mechanism with larger mini-
mum congestion window

Flow control Window-based flow control Offset-based flow control for
both streams and connections

Loss detection Retransmission Timeout (RTO) Probe Timeout (PTO)

Retransmission The lost packet is retransmitted
with the same sequence number

The frames in a lost packet will be
put in a new packet for retrans-
mission with new packet number,
the lost packet is not retransmit-
ted.

Crypto. Implementation No cryptographic implementa-
tion, need an extra TLS layer

Embedded TLS implementation
on QUIC layer

in Figure 2.2.

Multiplexing The multiplexing mechanism within TCP relies on the application
protocols built atop it, as elucidated in Section 2.2.1. In contrast, QUIC inherently
supports multiplexing by allowing a single connection to accommodate multiple con-
current streams.

Congestion control The congestion control mechanism in QUIC mirrors that of
TCP, but with a notable variation. While TCP sets the minimum congestion window
to one packet, QUIC recommends the use of two packets.

Flow control TCP employs window-based flow control where both sender and re-
ceiver adjust their respective send and receive window sizes to manage data flow. On
the other hand, QUIC introduces both connection-level and stream-level flow con-
trol. In this setup, the receiver announces the maximum number of bytes it is ready
to receive either for a specific stream or for the entire connection, providing a more
fine-grained control compared to TCP’s approach.

Loss detection TCP employs a single Retransmission Timeout (RTO) for each con-
nection, considering a packet lost if its acknowledgment isn’t received before the time-
out expires. QUIC, in contrast, calculates a Probe Timeout (PTO) for each packet

20

2.2 Wild Networks

TCP SYN

TCP SYN-ACK

Handshake, CH

Handshake, SH

Handshake, FIN

Handshake, FIN

DATAreq0

DATAres0

(a) HTTP1 (TCP)

Initial, CH

Initial, SH

Handshake, FIN

Handshake, FIN
STREAM(0) DATAreq0

DONE

STREAM(0) DATAreq0

(b) HTTP3 1-RTT (QUIC)

Initial CH
STREAM(0) DATAreq0

Initial, SH

Handshake, FIN

STREAM(0) DATAres0

Handshake, FIN

(c) HTTP3 0-RTT (QUIC)

Figure 2.2: TCP and QUIC transport and cryptographic handshakes for connection initiation.

space. An interesting nuance here is that timer expiration in QUIC doesn’t necessar-
ily signal packet loss. Rather, it initiates the sending of one or two probe datagrams,
facilitating a recovery mechanism from potential loss.

Retransmission Unlike TCP, where packet numbers are assigned based on sequence
and retransmissions carry the same sequence number, QUIC takes a different ap-
proach. QUIC employs strictly monotonically increasing packet numbers, so a packet
with a higher number is sent later. Consequently, if a packet gets lost in QUIC, the
protocol places all frames from the lost packet into a new packet for retransmission,
instead of retransmitting the original packet itself.

Cryptographic implementation QUIC enhances secure transmission by incorpo-
rating a TLS implementation within its own layer, thus eliminating the need for an
additional TLS layer, which is a requirement in TCP due to its lack of embedded
cryptographic implementation.

HTTP

The foundation of data communication for the World Wide Web is the application
protocol HTTP, which first made its appearance in the early 1990s. Operating in a

21

The Wild – Cloud Computing and Networking

HTTP1

TLS

TCP

IP

HTTP3

QUIC

UDP

IP

Figure 2.3: Application, transport and network layers of HTTP1 and HTTP3.

RESTful style, it adopts a client-server model in its request-response mechanism. The
protocol’s secure extension, HTTPS, is in use by approximately 83.6% of all websites
as of August 2023 [Arc], with HTTPS requests reaching a staggering 96.7% by July
2023 [Web].

Over the past decades, HTTP has undergone multiple iterations and improvements,
resulting in three major standardized versions being deployed on the web - HTTP1.1,
HTTP2, and HTTP3.

HTTP1.1 Standardization completed in 1999, HTTP1.1 maintained its reign over
the World Wide Web for several years [Nie+99]. To enable multiplexing, an HTTP1.1
client was required to establish multiple TCP connections. However, with the surge
in traffic load, HTTP1.1 began to falter in delivering a satisfactory web browsing ex-
perience. Issues such as Head-Of-Line (HOL) blocking, expensive connection estab-
lishment for multiplexing, and slow web page loading speeds began to surface.

HTTP2 To counter the challenges of HTTP1.1, HTTP2 was announced and stan-
dardized in 2015 [BPT15]. With its introduction of efficient multiplexing that facili-
tated concurrent streams over a single TCP connection, HTTP2 brought about sig-
nificant improvements. Nonetheless, it inherited the HOL blocking problem from its
predecessor due to its reliance on TCP, which ensures packet receipt in the exact se-
quence of their transmission. This meant that when a packet was lost, the subsequent
packets were forced to wait until the lost packet was retransmitted.

HTTP3 Fast forward to 2022, and we have the standard release of HTTP3 [Bis22],
also known as HTTP over QUIC. Unlike the previous versions of HTTP that were
dependent on a separate TLS layer for secured data transmission, as illustrated in Fig-
ure 2.3, HTTP3 entrusts all functionalities to QUIC, including cryptographic and
transport handshakes, as well as multiplexing. Similar to HTTP2, this protocol also
supports concurrent data streams over a single QUIC/UDP connection. However, it

22

2.2 Wild Networks

eliminates the HOL blocking problem owing to its UDP-based nature and distinct re-
transmission mechanism. This, in turn, mitigates the connection establishment issues
seen in previous versions, reduces network latency, and improves overall performance.

Throughout this thesis, HTTP1.1 is predominantly used in our cloud applications,
considering our applications do not involve large-sized page loading. Additionally, we
have also implemented some systems in HTTP3 to evaluate its performance against
HTTP1.1.

MQTT

The HTTP family, although prevalent, is not the sole suite of application proto-
cols employed within the realm of cloud computing. The Message Queue Telemetry
Transport (MQTT) protocol, an OASIS standard, is extensively adopted in cloud ap-
plications. This protocol typically operates over TCP, but there are variants that utilize
QUIC [SM23] or even UDP [Zav22] for transmission. MQTT, being a lightweight
protocol designed for message queueing services, leverages a publish-subscribe model,
making it particularly suited for IoT communications. Some implementations of our
cloud integrated systems also incorporate MQTT due to its advantageous properties.

2.2.2 5G and Network Systems

The 5G offers substantial enhancements over its predecessors. Deployed globally since
2019, it shifts the focus from enhancing everyday user experiences like voice calls, mes-
saging, web browsing, and video streaming, to providing benefits for both consumers
and a vast array of industries. 5G delivers lower latency, greater capacity, and higher
reliability, laying the foundation for three main categories of use cases: Ultra-Reliable
and Low-Latency Communication (URLLC), Massive Machine Type Communica-
tion (mMTC), and Enhanced Mobile Broadband (eMBB), all of which are delineated
in Figure 2.4.

The basic architecture of mobile networks has remained fundamentally consistent
across generations, despite significant advancements in technologies. This architec-
ture primarily comprises the RAN and the Core Network (CN). The RAN, facili-
tated by RBSs, directly communicates with User Equipment (UE), establishing and
managing radio connections. Conversely, the CN functions as the mobile network’s
backbone, handling data routing, user mobility, session management, and connectiv-
ity to external networks, such as the Internet. In the subsequent sections, we delve
into some pivotal elements and technologies pertinent to this thesis.

23

The Wild – Cloud Computing and Networking

video streaming

smart office

remote
operation

smart sensors

connected
city/home

smart logistics

autonomous vehicles

factory automation

smart power grid

URLLC mMTC

eMBB

Figure 2.4: Three main categories of 5G use cases and example applications [Tey+17].

Radio Access Network

The RAN serves as the gateway for mobile users to connect to mobile networks. Ra-
dio Base Stations (RBSs), fundamental components of RAN, are typically composed
of two main parts: the radio heads and BBUs, linked through fibre optic networks.
The radio access technology in 5G is designated as New Radio (NR), which covers
an expansive range of frequency bands, from the traditional GSM (2G) bands to the
advanced millimetre wave. Massive MIMO is a standout technology in 5G NR, deliv-
ering significant improvements in spectral efficiency. At the same time, Cloud RAN
exemplifies the integration of cloud networking in the 5G landscape. Both of these
transformative technologies are discussed in depth in Part II when a radio resource
problem under industrial scenario is discussed.

Massive MIMO Massive MIMO builds upon the foundational idea of Multiuser
MIMO, which centres on serving multiple terminals using the same time-frequency
resources concurrently. As a pivotal component of the 5G RAN, Massive MIMO
is geared towards handling the rapid growth of traffic in mobile networks by dra-

24

2.2 Wild Networks

fre
qu

en
cy

time
Tc

Bc

coherence block

pilots uplink downlink

Figure 2.5: An example of a coherence block in Massive MIMO time-frequency spectrum.

matically enhancing system capacity. By deploying a considerably larger number of
antenna arrays, Massive MIMO can achieve elevated spectral efficiencies, ensuring
seamless service to a vast number of mobile devices simultaneously.

The Massive MIMO system and its parameters discussed in this thesis is based on
the LuMaMi testbed, which is a 100-antenna system developed in the department of
EIT, LTH [Vie+14]. The system functions using Time Division Duplex (TDD) and
Orthogonal Frequency-Division Multiplexing (OFDM) modulation. For the com-
munication of UEs, a RBS needs to understand the channel characteristics by estimat-
ing the Channel State Information (CSI) from pilots. In a TDD operation, the RBS
acquires knowledge of the uplink channel through uplink pilots, which subsequently
provides a valid estimation for the downlink due to channel reciprocity [Mar+16].

In a single Massive MIMO system, the time-frequency space is segmented into coher-
ence blocks. Each coherence block represents the maximum time duration in which
the channel appears time-invariant and maintains a near-constant frequency response.
This duration, termed the coherence time, depends on the carrier frequency of the
channel as well as the terminal’s movement speed. A faster moving UE results in
a reduced coherence time, necessitating more frequent channel estimations for the
same UE. Coherence blocks accommodate uplink data, downlink data, and uplink
pilot transmissions. A detailed representation of a coherence block can be found in
Figure 2.5 and is further elaborated upon in [Mar+16].

25

The Wild – Cloud Computing and Networking

As highlighted earlier, uplink pilots allow the RBS to ascertain the CSI for each UE.
This CSI then aids the RBS in the encoding processes essential for handling incoming
and outgoing data. Therefore, an uplink pilot is imperative for a UE to successfully
transfer data. A challenge arises because the total number of orthogonal pilots is re-
stricted by the channel coherence interval. Meanwhile, the number of UEs seeking
data transmission might significantly outnumber the available pilots within a coher-
ence interval. This discrepancy is even more pronounced in Massive MIMO systems,
which aim to serve numerous UEs simultaneously. This leads to the pivotal challenge
of selecting optimal pilot access techniques that factor in the specific traffic condi-
tions of various scenarios to prevent pilot conflicts or contamination. The dilemma
of pilot accessing is essentially a resource allocation challenge at the MAC layer and
is explored in Part II of this thesis.

Core Network

The CN serves as the backbone of the mobile network, be responsible for user connec-
tivity, mobility management, data routing, and facilitates access to external networks
like the Internet. In the realm of 5G, the CN has transitioned to a software-driven,
service-based architecture. This shift allows the 5G core to be seamlessly deployed
on cloud-native, container-based platforms where all core functionalities manifest as
microservices. This software-centric approach not only enhances the scalability of the
5G core but also bolsters its resilience against faults [Hat].

Presently, 5G mobile networks employ two distinct types of CNs: Non Stand-Alone
(NSA) and Stand-Alone (SA). NSA is prevalent in current commercial 5G deploy-
ments. It features a 5G core that coexists with the Long Term Evolution (LTE) core,
enabling user access through both LTE and 5G RANs. Such an arrangement expedites
the rollout of new 5G services while optimizing the utility of pre-existing LTE infras-
tructures. Conversely, the SA core exclusively interfaces with 5G RANs and represents
the ideal 5G mobile network setup. However, its adoption necessitates considerable
investments in new network infrastructures, rendering it less attractive for immediate
commercial deployment.

2.2.3 LTH 5G RBS

This section provides an overview of the 5G RBS situated in the Wireless System
and Application Lab within the Department of EIT, LTH. The RBS discussed herein
facilitates the 5G network essential for all test-beds and experiments associated with
this thesis involving 5G.

26

2.2 Wild Networks

Power distribution

Switch

OAM server

Radio baseband

NR radio

Switch

Core network server

Power supply

Antenna

Figure 2.6: The anatomy of the LTH 5G deployment in stage 1.

Established as a research initiative in collaboration with Ericsson in 2021, the LTH
5G network featured in this thesis is a mid-band 5G NR SA RBS. This collaboration
has granted us the flexibility to reconfigure radio parameters, and we’ve elected to
integrate an open-source core network.

Over the past two years, the RBS underwent two significant evolutionary stages:

1. Initial Phase: Initially, the system was calibrated to function within the NR
band n3 (1800 MHz). This configuration facilitated the 5G network as elab-
orated in Chapter 7. The component arrangement of this deployment can
be referenced in Figure 2.6. Key components include a power distributor, a
switch for unit interconnection, the Operations, Administration and Manage-
ment (OAM) server for unit management, the BBU (Ericsson Baseband 6630),
and the NR Frequency-Division Duplexing (FDD) radio head (Ericsson Ra-
dio 2219) connected to a single passive indoor antenna. The system also in-
corporated a CN server running on the Ubuntu Operating System, facilitating
5G UEs access to mobile applications and services. This server functioned on
Open5GS2, an open-source C-Lang implementation of 5G core and Evolved
Packet Core (EPC), specifically utilizing the SA 5G core version.

2. Advanced Phase: Detailed in Figure 2.7, the subsequent phase witnessed the
system’s recalibration to the NR band n78 (3500 MHz). This iteration is uti-
lized in the evaluation in Chapter 8, featured two Ericsson TDD Radio Dots
(Ericsson Dot 4479) connected to the indoor radio unit (Ericsson IRU 1648).

2https://open5gs.org/

27

The Wild – Cloud Computing and Networking

Figure 2.7: The anatomy of the LTH 5G deployment in stage 2.

Together, these components constituted a distinct 5G cell that could extend its
coverage both within and outside the lab with more radio dots installed in the
future. The BBU and associated components persisted from the initial phase.
However, the CN underwent a transformation. While Open5GS continued to
form its backbone, all network functions were now manifested as microservices
within the edge EIT Kubernetes cluster (detailed in Section 2.1.4), as portrayed
on the right side of Figure 2.7. This restructuring resulted in a core that was
intricately integrated with mobile edge applications housed within the same
Kubernetes cluster.

To round off this chapter, it’s worth noting that while our narrative heavily leans on
real-world networks and practical network and cloud infrastructures, the value of sim-
ulations in our research remains undiminished. They provide a focused environment,
allowing us to address specific research issues without being mired in the intricacies
of a multi-faceted network system. For aspects of this thesis that touch upon infras-
tructures beyond our access, such as massive MIMO, we still turn to simulations as a
dependable methodological approach.

28

Chapter 3

Challenges

This thesis primarily focuses on two forms of cloud integrated systems: Cloud RAN
and Cloud Control System. While the prior chapter provided an overview and key
features of the cloud and the expansive networks pertinent to these systems, this chap-
ter delves into the specific challenges associated with these two types of systems, which
this thesis aims to address.

It’s vital to underscore that the backdrop of this thesis is framed by the industrial dig-
ital transformation. The evaluation of Cloud RAN and CCS is intimately tied to an
industrial context. Assessing the performance of these systems in a vacuum, discon-
nected from the practical environment in which they operate, would be inadequate.

The introduction of the Industry 4.0 concept at the 2011 Hannover Trade Fair [AG]
marked a significant shift. Often referred to as the Fourth Industrial Revolution, it
signified Germany’s transition towards a modernized manufacturing paradigm, where
traditional methodologies harmoniously coexist with emerging technologies like IoT,
5G, Artificial Intelligence (AI), and cloud computing. Drawing from this transfor-
mative context, this thesis delves into the Cloud RAN and CCSs. These frameworks
aim to fuse the strengths of mobile networks and cloud computing with the rapidly
evolving industrial landscape. In the ensuing sections, we delve into the challenges
and requirements of cloud integrated industrial systems, emphasizing the interplay of
wild networks (typically mobile networks) with the cloud.

29

Challenges

3.1 Mobile Networks and Cloud RAN for Industrial Commu-
nication

In the framework of Industry 4.0, wireless communication for factory automation is
gaining momentum. Such automation demands networks that not only offer high
reliability, capacity, and throughput but also ensure low latency, coupled with adher-
ence to security and safety standards, to cater to diverse application needs [ZSG17].

Traditionally, factory automation has leaned on wired solutions like Controller Area
Network (CAN), Modbus, and industrial Ethernet. While these offer reliability, they
restrict device mobility and pose significant costs associated with cable installation and
upkeep. Though wireless networks address these limitations, many, especially those
in unlicensed spectrums, grapple to match the performance standards of their wired
counterparts. This disparity has spurred active research into optimizing industrial
wireless standards.

With the advent of 5G, a transformative alternative emerges, addressing many limi-
tations inherent to conventional wireless networks [GLA17]. 5G satisfies numerous
industrial automation requisites, from ultra-reliability to low latency [Mat+16], while
simultaneously enhancing mobility and adaptability in production systems.

Nonetheless, integrating wireless solutions in an industrial context presents challenges.
A predominant concern is the sharing of radio spectrum resources. Despite manufac-
turers’ inclinations to utilize licensed spectrums, the myriad industrial devices vying
for ultra-reliable, low-latency data communication can strain these resources. Ab-
sent effective RAN management, this can precipitate resource shortages in industrial
communications, potentially leading to operational failures.

As a leading contender for 5G RAN architectures and future advancements, the inte-
gration of Cloud RAN into industrial settings amplifies the challenges tied to radio
resource sharing. While it promises notable economic advantages—such as reduced
deployment and maintenance expenses—it’s confronted by inherent limitations due
to its unique architecture and infrastructure setup.

Central to the radio resource management is its operation at the MAC layer, situated
within the BBU pool. The prompt reaction of the BBU pool to the resource signalling
initiated by UE becomes crucial. However, the inherent design of Cloud RAN poses
hurdles, often rendering it less effective in this domain compared to conventional
RBSs.

The academia landscape showcases numerous studies addressing resource allocation,
especially for low-latency communication services within Cloud RAN across varying

30

3.2 Cloud Integrated Industrial Systems

contexts. For instance, [Zha+20] directs attention to minimizing energy consump-
tion for computational tasks within a mobile edge cloud-empowered Cloud RAN sys-
tem. Meanwhile, [WZM16] introduces an energy-conserving joint resource schedul-
ing strategy specifically for Cloud RAN systems. Research endeavours like those in
[FDA17] and [MWY17] leverage distributed allocation algorithms to pare down re-
sponse or computational latency within Cloud RAN frameworks. [Moo+21] explores
a user-centric resource allocation in OFDMA-based Cloud RAN, enabling users to
select RRHs groups based on their delay specifications. [Sha+22] develops a Mixed
Integer Linear Programming solution that jointly allocates radio resource blocks and
computing assets like CPU processing time to minimize a Cloud RAN system’s power
usage. Employing a different approach, [ITC22] introduces a deep reinforcement
learning model aiming to derive an optimal control strategy for turning the RRHs on
or off. This optimizes the trade-off between spectral and energy efficiency in a Cloud
RAN system. Lastly, [Oca+23] integrates the BBU pool of Cloud RAN with MEC
servers within a GPP framework, introducing a CPU sharing mechanism to diminish
the performance effects of resource sharing on BBU.

Yet, with the commercial deployment of Cloud RAN still in its nascent stages, and its
application in industrial communication even more limited, there remains an imper-
ative to further delve into its potential and suitability for industrial communication.

3.2 Cloud Integrated Industrial Systems

Beyond network reliability, integrating cloud computing into industrial systems presents
challenges. These arise primarily from the cloud’s unpredictable execution environ-
ment, which contrasts with the low-latency and ultra-reliability demanded by indus-
trial applications.

3.2.1 Virtualization and Containerization

Virtualization is the key technology leveraged by cloud computing that allows the
physical resources such as CPU, memory, storage and network being pooled and
shared by multiple tenants in the cloud. Virtualization brings the benefits of higher
flexibility, faster resource provision, cost reduction and higher resource utilization,
however, at the cost of performance suffering. As it adds abstraction layers on top of
physical machine, yielding a longer path of the workloads than that in a bare-metal
server. [Ha+16] has shown that the size of Virtual Machines (VMs) can have big im-
pact on I/O performance, which makes it crucial to choose the appropriate favours of
VMs for cloud applications, especially Big Data application. [Dre08] details the cost

31

Challenges

Node with floating IP

eth

kube-proxy

IPVS

VXLAN

Network
bridge

veth

veth

Pod1

Pod2

veth

veth

App1

App2

Workloads

To other Nodes

Figure 3.1: An example of workload path to reach a service in a typical cloud environment through Kubernetes
NodePort deployment. Figure from [Lar+20].

of virtualization and highlighted the changes a program experiences when been de-
ployed on a VM. [WN10] also shows large delay variations and unstable TCP/UDP
throughput caused by virtualization on AWS EC2 instances. All of these above will
add to large network latency and unreliability to a cloud application, which is the least
favourite to an industrial system.

In addition, containerization technologies, like Docker, introduce overheads. Al-
though a container functions as the most basic computational unit in cloud-native
deployments and shares the Linux kernel with its host, it perceives itself as an in-
dependent machine. The host therefore must encapsulate incoming packets with IP
headers to guide them to the intended container.

3.2.2 Cloud-Native Networking

Cloud environments also impact access control and internal networking of cloud ap-
plications. Consider an application orchestrated by Kubernetes. As discussed in Sec-
tion 2.1.4, Kubernetes encapsulates containerized apps within Pods and exposes them
as Services across a multi-node cluster. When services are deployed atop Kubernetes,
networking functionalities are provided by Container Network Interface (CNI). This

32

3.2 Cloud Integrated Industrial Systems

Host Docker K8s
0

1

2

3

4

Ro
un

d-
tri

p
D

ela
y

(m
s)

(a) EIT cluster

Host Docker K8s

(b) Data center

Figure 3.2: The UDP latency measurements on response time to different type of services deployments, 1.5%
outliers removed

arrangement introduces additional hops for workloads to access a service endpoint.
[Lar+20] illustrates in Figure 3.1 how traffic is routed to a service endpoint within a
Kubernetes node, epscifillcay when using a NodePort1 service type. And when func-
tions are interconnected but located on different nodes, workloads navigate via the
Virtual Extensible LAN (VXLAN) to the next endpoint.

These configurations introduce performance overheads by adding extra layers to work-
load paths, potentially compromising the ultra-low latency needed for industrial ap-
plications. This results in unpredictable response delays from cloud applications,
which can degrade system performance.

3.2.3 The Delays in Cloud Integrated Systems – A Clarification

As previously emphasized, a key focus of this thesis is on the “delays” encountered in
cloud integrated systems and their impact on system performance. Adopting the tra-
ditional definition of computer network delays—encompassing transmission, prop-
agation, queueing, and processing delays—for modelling end-to-end delays in such
systems is challenging. This is due to the cloud-hosted segment of the system ob-
scuring its infrastructure from the other end. In our research, we concentrated solely
on measurable delays. Within the context of a system “controlled over the cloud” as
detailed in Chapter 1, our attention was directed to the delays observed by the control
object. Specifically, this refers to the duration the control object awaits a response

1https://kubernetes.io/docs/concepts/services-networking/service/
#publishing-services-service-types

33

Challenges

from the cloud controller after initiating a service request. Using a system with a
RESTful communication architecture between the control object and the controller
as an example, the delay in focus is the response time of the cloud service.

To provide a clearer perspective on the delay nuances introduced by the mentioned
network configurations, containerization techniques, and Kubernetes deployments,
we turned to empirical measures. Figure 3.2 presents our findings based on the re-
sponse times of a rudimentary “UDP PING” application. We have performed the
measurement when the application is:

(a) Deployed within the EIT Kubernetes cluster, co-located on the same LAN as
the client machine and connected with a direct 1Gps Ethernet link.

(b) Hosted within the Ericsson Research Data Center (ERDC) in Lund, albeit
within the same urban locale as the client, where the network in between is a
combination of 1Gps Ethernet supplemented with WAN.

Within these locations, the application’s performance was gauged under three distinct
deployment paradigms:

• Directly on a host machine, bare-metal in case (a) and VM in case (b).

• Within an isolated Docker container.

• Housed within a Kubernetes Pod, showcased via a NodePort Service.

The visual representation in Figure 3.2 tells a compelling story. With the consistency
of the application, there is a marked increase in both the mean response time and
its variability as we transition from a native host deployment to a Docker container
and, subsequently, to a Kubernetes Pod. Notably, the Kubernetes arrangement within
the confines of a cloud data centre demonstrates heightened overheads relative to its
bare-metal counterpart. This increased latency owes much to the cloud data centre’s
inherent virtual network structure, an entity that largely remains outside the direct
purview and management of application overseers.

34

Chapter 4

Thesis Outline & Contributions

The primary aim of this thesis is to delve into two specific types of cloud integrated
systems: Cloud RAN and CCS. Our objectives are to evaluate the viability of imple-
menting these systems within a realistic setting, assess their operational efficiency, and
explore avenues for performance enhancement. Crucially, we accept that the “wild”
environment-primarily composed of the network and cloud infrastructure-remains
untouched, tailored neither for our specific systems. Instead, our strategy revolves
around modifying the system to fit within this environment, while also minimizing
performance setbacks attributed to said environment. To summarize, the primary
contributions of this thesis are threefold, each corresponding to a distinct topic:

• Radio resource allocation in Cloud RAN for industrial scenarios: Focusing on
radio resource allocation, this part investigates the feasibilities of employing a
single-cell massive MIMO RBS and Cloud RAN within an industrial setting.
The aim is to facilitate mobile communications for diverse categories of indus-
trial units, meanwhile satisfying their QoS requirements.

– Chapter 5 initiates our exploration by considering a traditional RAN sys-
tem within the industrial context. Here, we introduce a MAC layer slic-
ing strategy designed to manage the radio allocation challenges associated
with two types of industrial UEs.

– Chapter 6 transitions to the Cloud RAN system within a similar indus-
trial context, focusing on the practicalities and challenges of its deploy-
ment, especially in meeting the QoS demands of time-sensitive UEs.

• Implementation of CCSs: This part showcases real-world deployments of CCSs
across diverse networks, including Ethernet and 5G, as well as in various cloud

35

Thesis Outline & Contributions

execution environments like edge and public cloud platforms. Additionally, it
examines the influence of network configurations and protocols on the perfor-
mance of CCSs.

– Chapter 7 demonstrates the deployment of a CCS over a 5G network,
with the controller situated on an edge node of this 5G network. It also
examines the impact of different radio configurations on the system per-
formances.

– Chapter 8 investigates the implications of various transport layer proto-
cols on the CCS’s performance across diverse network and cloud execu-
tion environments.

• A framework for achieving punctuality in time-critical cloud integrated sys-
tems: Drawing from our prior studies on cloud integrated systems, this part
introduces a novel framework called “Punctual Cloud”, designed for imple-
menting cloud integrated systems using a microservice architecture. The frame-
work aims to mitigate the effects of system induced delays by ensuring that each
response from the cloud controller is executed by the control object promptly
and within a defined time frame.

– Chapter 9 integrates this framework into a Cloud RAN system within the
industrial context, aiming to enhance the outcomes of the radio resource
allocation process.

– Chapter 10 employs the framework within a CCS, striving to bolster the
system’s resilience against the prolonged delays inherent in both network
and cloud execution environments.

The publications listed below contribute to the thesis are grouped by the three parts:

Part II - Cloud RAN & Massive MIMO Resource Allocation

1. Haorui Peng, Emma Fitzgerald, William Tärneberg, Maria Kihl, 5G Radio Ac-
cess Network Slicing in Massive MIMO Systems for Industrial Applications,
2020 Seventh International Conference on Software Defined Systems

Contributions: The lead author in writing the manuscript, was responsible
for problem definition, system modelling, solution design, simulation imple-
mentation, experiments design and result analysis.

2. Haorui Peng, William Tärneberg, Emma Fitzgerald, Maria Kihl, Is Cloud
RAN a Feasible Option for Industrial Communication Network?, Journal of

36

Thesis Outline & Contributions

Communications Software and Systems, 2021, 17(2), pp. 97-106

Contributions: The lead author in writing the manuscript, was responsible
for problem definition, system modelling, simulation implementation, exper-
iments design and result analysis.

Part III - Cloud Control Systems in the Wild

3. Haorui Peng, William Tärneberg, Emma Fitzgerald, Fredrik Tufvesson, Maria
Kihl, Evaluation of Control over the Edge of a Configurable Mid-band 5G Base
Station, 2022 IEEE 6th International Conference on Fog and Edge Computing

Contributions: The lead author in writing the manuscript, deployed the 5G
RBS deployment with the help of engineer from Ericsson, was responsible for
system implementation, experiments and analysis.

4. Haorui Peng, William Tärneberg, Emma Fitzgerald, Maria Kihl, Performance
Evaluation of QUIC Vs. TCP for Cloud Control Systems, 2023 International
Conference on Software, Telecommunications and Computer Networks

Contributions: The lead author in writing the manuscript, was responsible for
Problem definition, system and experiment design, system implementation,
performance analysis.

Part IV - Punctual Cloud for Time-critical Cloud Integrated Systems

5. Haorui Peng, William Tärneberg, Maria Kihl, Latency-aware Radio Resource
Allocation over Cloud RAN for Industry 4.0, 2021 International Conference on
Computer Communications and Networks

Contributions: The lead author in writing the manuscript, was responsible for
problem definition, system modelling, solution and framework design, simu-
lation implementation, performance analysis.

6. Haorui Peng, William Tärneberg, Emma Fitzgerald, Maria Kihl, Punctual
Cloud: Unbinding Real-time Applications from Cloud-induced Delays, 2021
International Symposium on Networks, Computers and Communications

Contributions: The lead author in writing the manuscript, was responsible for

37

Thesis Outline & Contributions

problem definition, system modelling, solution and framework design, system
implementation, performance analysis.

7. Haorui Peng, Fatemeh Akbarian, William Tärneberg, Maria Kihl, Punctual
Cloud: Achieving Punctuality for Time-Critical Cloud Control Systems, 2023
IEEE International Conference on Cloud Networking

Contributions: The lead author in writing the manuscript, and the sections
related to control algorithm was contributed by Fatemeh Akbarian. Haorui
Peng was responsible for problem definition, system modelling, framework
design and system implementation. The theoretic solution is co-designed by
Haorui Peng and Fatemeh Akbarian, among which the control algorithm is de-
signed and implemented by Fatemeh Akbarian, the delay estimation algorithm
is designed by Haorui Peng. The experiments and performance analysis was
conducted together by Haorui Peng and Fatemeh Akbarian.

38

Part II

Cloud RAN & Massive MIMO
Resource Allocation

Scenario Description

This part focuses on resource allocation challenges within a RAN system specifically
designed for industrial settings, examining the MAC layer as a case study. Timely
resource allocation is vital for any RBS, ensuring that UEs can establish radio com-
munications promptly for data transmission.

This part unfolds in two chapters, each addressing resource allocation within differ-
ent RANs. Initially, we explore a network slicing scheme for the MAC layer of a
traditional RAN, where the RRH is co-located with the BBU at the RBS site (Chap-
ter 5). Here, we assess the potential for integrating diverse types of industrial UEs
into a single RAN without diminishing performance. Following this, we delve into
the intricacies of Cloud RAN in the same industrial context. Our focus here is on the
practicality of shifting MAC layer functionalities to a cloud environment that relies
on general-purpose computing resources (Chapter 6).

To set the context, we outline a representative industrial automation scenario, as visu-
alized in Figure 4.1. Given that the average communication range in manufacturing
settings is generally limited to 200m, as noted in [HMH18], we make the assumption
that all UEs fall within the coverage area of a single RBS. As a result, all UEs connect
to each other via a mobile network facilitated by a one-cell Massive MIMO RBS. This
necessitates the allocation of radio resources to enable seamless communication. The
essential goal of the work in the following two chapters is to explore the practical-
ity of using different RAN technologies equipped with Massive MIMO to support
communications for industrial UEs.

Industrial Units

In the industrial setting under discussion, the UEs are designated as industrial units,
comprised of an array of sensors, actuators, and controllers situated within an indus-
trial facility. These components are spatially distributed, and their interconnected

41

Figure 4.1: Example of an industrial scenario where all the units communicate over a single-cell radio access
network.

feedback loops operate via the mobile network. Sensors serve dual functions: they
monitor the states of the control plants as well as environmental parameters.

The industrial units have different requirements of QoS, and we can categorize the
communication of these units into two types based on their QoS requirements and
traffic patterns, URLLC and mMTC. Communications for the control loops are all
categorized as URLLC type traffic, and they typically have strict QoS requirements.
An industrial scenario requires for this type of traffic with network latency less than
10ms and availability within the range of 95%-99.999% [Gro19]. Meanwhile, there
are also numerous devices sending out occasional monitoring messages about the plant
environment. These monitoring devices are installed and distributed throughout the
whole plant and require massively many connections. They are thus categorized as
mMTC.

Prior to transmitting any message via the radio network, each industrial unit must
request radio resources from the RBS, known as “signalling for transmission”. Each
such request carries a predefined deadline. If an industrial unit fails to secure ra-
dio resources before this deadline, the corresponding transmission is abandoned and
marked as a loss. Industrial units involved in URLLC traffic, often referred to as
Critical Units (CUs), have shorter deadlines. These units should be prioritized in the
resource allocation process due to their more stringent, time-sensitive QoS needs.

42

Radio Resource

In our study, we focus on resource allocation problem at the MAC layer of a Massive
MIMO system, which employs a 100-antenna configuration and utilizes TDD and
OFDM for modulation, as detailed in Section 2.2.2. The time-frequency space of
the Massive MIMO system is partitioned into coherence blocks, which are allocated
for uplink data, downlink data, and uplink pilot transmissions. A coherence block
represents the longest duration where the channel properties are considered consistent
in both time and frequency domains. Uplink pilots within each coherence block serve
as the resources that must be allocated to the UEs before data transmissions can begin,
as these pilots enable the RBS to estimate the CSI for each UE.

In an ideal scenario, each coherence block would accommodate as many UEs as there
are mutually orthogonal pilots, ensuring equal channel estimation quality for all UEs.
However, real-world conditions often require deviations from this optimal setup. For
example, some UEs may need multiple pilots for more precise CSI estimation, conse-
quently reducing the overall number of UEs that can be served within a single coher-
ence block. Alternatively, in high-density or “crowded” scenarios where the number
of active UEs surpasses the available orthogonal pilots, a specialized pilot schedul-
ing algorithm becomes essential to manage the equitable allocation of these limited
resources among all active UEs.

43

Chapter 5

Resource Allocation in Traditional
RAN
A MAC Layer Network Slicing Scheme for Two Types of Industrial Units

Before delving into the feasibility of implementing Cloud RAN in an industrial con-
text, we first examine the traditional RAN architecture, which inherently does not
introduce system-induced delays. To seamlessly integrate multiple types of industrial
units into a single RAN, a synergistic approach involving both network slicing and
massive MIMO—both key advancements in the 5G era—could address the limita-
tions commonly encountered in industrial wireless networks [GLA17].

Network slicing offers the ability to customize network services over a shared physical
infrastructure, tailored to meet the specific performance criteria of individual cus-
tomers [GSM17]. This technology provides isolated access to the network for only
those UEs that have subscribed to a particular slice. As such, network slicing emerges
as a promising solution for satisfying the requirements of channel separation essential
to industrial communications.

Although network slicing is predominantly implemented in the CN, where a collec-
tion of Virtual Network Functions (VNFs) are configured and interconnected through
virtual networks on a programmable infrastructure [Ord+17; Bek+18], a surge of in-
terest is evident in RAN slicing. For example, [KN17] introduces a framework for
enforcing network slicing within the RAN. This work integrated a slice resource
manager and resource mappers to facilitate a two-tiered scheduling process. Vari-
ous studies, such as [Aij17], showcase a radio resource slicing framework using LTE-
A air interfaces. Meanwhile, others like [GLK14] have proposed slicing planes for

45

Resource Allocation in Traditional RAN

RAN with emphasis on aspects like inter-cell interference and resource grid isolation.
Notably, [Fil+22] integrated deep reinforcement learning into a Software Defined
Networks (SDN)-based RAN slicing, focusing on radio resource allocation, with the
overarching objective of fulfilling the QoS criteria for both URLLC and eMBB ser-
vices.

Recently, there has been a heightened focus on network slicing challenges within the
domain of massive MIMO, as evidenced by numerous research groups. For instance,
[Yan+23] proposed a two-layered scheduler underpinned by deep reinforcement learn-
ing to facilitate network slicing in massive MIMO. Their approach splits the schedul-
ing mechanism, with the upper layer focusing on inter-slice bandwidth allocation
and the lower layer concentrating on resource block assignments to individual users
within each slice. Furthermore, [Liu+23] tackled a distributed massive MIMO system,
which in our perspective aligns with the paradigm of C-RAN. This study leveraged a
non-orthogonal scheduling strategy, optimizing both beamforming design and RRH
selection to boost the energy efficiency for URLLC and eMBB users. In this chapter,
we introduce a network slicing approach at the MAC layer for a massive MIMO-based
RAN. The aim is to seamlessly accommodate diverse industrial UEs within a singular
cell mobile network while striving to meet the QoS demands of all UEs. To the best
of our knowledge, this was one of the first studies into addressing the intricacies of
network slicing specifically for massive MIMO systems at the time of publication.

5.1 Targeted System

The target system aligns with the initial framework described earlier before the chapter
starts, wherein industrial units from two distinct traffic categories communicate via a
single-cell RAN supported by a Massive MIMO system. The units generating URLLC
traffic, termed as Critical Units (CUs), are prioritized for radio resource allocation due
to their time-sensitive characteristics.

Giving that there are p orthogonal uplink pilots available within a coherence block of
the RBS, the maximum number of industrial units that the RBS can accommodate
in a single coherence interval is constrained to be p or fewer. However, we con-
sider a scenario where the cumulative number of connected industrial units surpasses
the available pilots within a given coherence block. Consequently, a conventional
approach of assigning one pilot per unit in each coherence interval becomes imprac-
tical. To address this constraint, a dynamic resource allocation strategy is essential for
satisfying the QoS needs of all participating industrial units.

46

5.2 Network Slicing

5.2 Network Slicing

To accommodate the resource requests of all industrial units in the given scenario,
while also fulfilling the QoS requirements for different traffic categories, we employ a
network slicing approach. In this scheme, different categories of industrial units are
subscribed to their respective network slices. Since we identify two distinct categories
of units in our scenario, these units are subscribed to two separate network slices
operating atop our single-cell radio system:

1. URLLC slice S1: In this slice, the units are given higher priority for pilot
allocation and engage in periodic transmission requests.

2. mMTC slice S2: The slice serves numerous units with aperiodic transmissions,
the subscribed units have lower priority for pilot allocation.

We propose a dynamic network slicing scheme that is capable of:

1. enabling the coexistence of the units under two traffic categories with different
QoS requirements;

2. isolating part of the radio resources for one high priority slice in order to meet
a certain network performance;

3. preventing the high-priority units being interfered with the units of the second,
low-priority, slice;

4. being generalized to more than two slices, facilitating a network slicing solution
for several traffic classes with different priorities and QoS requirements.

Defining a slot time Ts to be equal to one coherence interval, hence the channel
is time-invariant during this period. It is also assumed that the remaining time-
frequency resources within a coherence block are adequate to complete full data trans-
missions for each unit that has been allocated a pilot during the slot.

The number of units subscribed to each slice is K1 and K2, respectively, such that
K = K1 + K2. For CUs in S1, each is allocated p1 pilot signals, and p1 may
exceed one. This allows the RBS to obtain a more accurate CSI. In contrast, for
slice S2, we assume that each unit acquires only one pilot signal (p2 = 1) in order
maximize the number of served units under the category of mMTC. During each
coherence interval, we consider that K̃1 and K̃2 units from S1 and S2 actively signal
for transmission. Given a total number of p pilots available in a coherence block, the
following condition must be met to accommodate all signalling units.

47

Resource Allocation in Traditional RAN

URLLC Slice

mMTC Slice 1st Level
Scheduler

2nd Level
Scheduler

2nd Level
Scheduler

Figure 5.1: An example of the two-level MAC scheduler tailoring the time-frequency space into two slices. The
first level scheduler allocates the resources to each slice, and each second level scheduler assigns
the pilots to their subscribed units.

K̃1p1 + K̃2p2 ≤ p. (5.1)

The network slicing scheme we proposed employs a two-level MAC scheduler, as de-
picted in Figure 5.1. The first level of the MAC scheduler oversees inter-slice resource
allocation. It partitions the available radio spectrum into two distinct segments, each
dedicated to a specific network slice. The second level manages intra-slice scheduling,
determining how the pilots allocated by the first level are distributed among the units
within that slice. Units interact exclusively with their respective slices and receive pilot
assignments from these second-level schedulers.

The first-level scheduler operates on a straightforward priority-based strategy, where
S1 is consistently given precedence over S2, in order to meet the QoS requirements of
CUs. The scheduler allocates the necessary number of pilots to S1 until all available
pilots have been assigned. Should there be any remaining unallocated pilots after this
process, they are then designated to S2.

Each second-level scheduler employs a specific algorithm for the intra-slice allocation
of pilots to individual units. Here we will explore three commonly used scheduling
algorithms:

• First Come First Served (FCFS): The scheduler keeps two separate queues to
manage incoming requests from the units in both slices, allocating the pilots
based on the order in which requests arrive. The reliability of S1 is assured
as long as the incoming traffic does not exceed the system’s maximum capac-
ity, ensuring that no resource is wasted. However, this approach necessitates
that the scheduler has full awareness of the queuing information, incurring
additional computational and signalling overhead to maintain and gather this
information.

48

5.3 Simulation

• Round Robin with partial Queuing information (RRQ): In this method, the
scheduler does not need to acquire full queuing information. During each
coherence interval, it instead iterates through all the units subscribed in each
slice and assigns pilots to the units that are signalling for transmission. In this
way, only one request per unit is served during each coherence interval, but the
overhead would be lower than FCFS since RRQ does not serve the request in
order of arrival time.

• Round Robin with No Queuing information (RRNQ): In this method the
scheduler does not acquire any queuing information; instead it assigns pilots to
each unit subscribed to the slice, despite whether it is signalling for transmission
or not at the moment. This yields a static scheduling approach. The scheduler
groups a number of time slots into an allocation frame to assign the pilots.
Such a frame time is equal to the deadline of each request. In this way, it
is guaranteed that every transmission request will be assigned a pilot within its
deadline. But it also leads to an upper bound on subscribed units to a slice, since
the length allocation frame is fixed. During each allocation frame, the scheduler
iterates through all the units subscribed to S1 and assign the pilots to each of
the subscribed units to serve one request from each. This does not incur any
overhead for searching for active devices. However, it will result in numerous
wasted pilots since some units may not be signalling for transmissions during
an allocation frame. Also, this scheduling method is not applicable to S2, since
S2 hosts an enormous number of units.

The second-level scheduler within each slice has the flexibility to employ different
scheduling algorithms. Our evaluation will demonstrate that the choice of scheduling
algorithm in one slice has a negligible impact on the QoS experienced in the other
slice. This suggests that each slice can optimize its internal scheduling strategy without
adversely affecting the performance of other slices.

5.3 Simulation

The network slicing scheme we proposed was evaluated through simulations. The full
source code for our simulation program, along with the experiments and data, is pub-
licly available on GitHub1 for further examination and reuse. Our implementation
leverages an existing massive MIMO MAC layer simulator [Stå]. The simulation is
coded in Python and designed for extensibility, allowing the incorporation of various
scheduling algorithms at both the first and second levels of the scheduler. Moreover, it

1https://github.com/HaoruiPeng/slicing-simulator

49

Resource Allocation in Traditional RAN

offers the flexibility to define custom traffic profiles for each slice. This can be done by
specifying parameters such as the inter-arrival distribution, deadlines, required num-
ber of pilots, and the number of industrial units under different categories.

5.3.1 Simulation model

In our simulation framework, a set number of industrial units are subscribed to each
of the two network slices. These units within each slice follow a specified arrival dis-
tribution, reflecting the expected traffic profiles for that category. Resource allocation
is then carried out using our proposed two-level scheduler, which assigns the available
pilots to the units in each slice based on the predetermined rules and priorities.

In the simulation, units within the URLLC slice S1 have transmission requests that
occur with a nearly constant periodicity defined by d1, adjusted slightly by a small
variance ω1 that follows a normal distribution ω1 ∼ N (1, 0.05). On the other
hand, units in S2 have a different request pattern. Their transmission requests follow a
Poisson distribution with a longer average inter-arrival time d2, indicative of aperiodic
sensor data transmissions.

The deadlines for the transmission requests in both slices are set to match their re-
spective average inter-arrival times. When a unit is allocated a pilot before the dead-
line expires, a connection is established between that unit and the RBS, allowing for
successful data transmission within the current coherence interval. If, however, the
deadline is not met, the transmission request is discarded, and the transmission is
considered a failure.

The massive MIMO MAC layer simulator provided in [Stå] is an event-based simu-
lator with basic traffic generation functions and scheduling algorithms. In the sim-
ulator, a transmission event is defined as the moment a unit submits a transmission
request to the RBS. These events are generated for each unit based on the distribu-
tion characteristics specific to their slice, as previously described. Our extension to
this simulator segregates units into distinct slices, contingent upon their traffic pro-
files. Additionally, it integrates our two-level scheduling scheme for pilot allocation.
Each incoming request is labelled with essential metadata: the slice it subscribes to,
its arrival time(the point in time the request is triggered), and its deadline (the cut-off
time after which the request will be discarded if a pilot is not allocated).

A scheduling event is initiated every Ts to manage active transmission requests. Dur-
ing this event, the scheduler marks requests that have outlived their deadlines as ex-
pired. It then proceeds to allocate pilots to the remaining active requests, using our
two-level scheduling framework, until all available pilots for the current time slot are

50

5.4 Evaluation

Table 5.1: Network and traffic parameters used in the simulation.

Variable name Value Symbol
Simulation length 10000 ms L
Slot time 0.5 ms Ts

Available pilot signals per slot 12 p
Mean inter-arrival time in S1 1 ms or 10 ms d1
Mean inter-arrival time in S2 50 ms d2
Number of pilot each device requires in S1 1 or 3 p1
Number of pilot each device requires in S1 1 p2
Traffic load in S1 [0.1:0.1:1.1] ρ1
Traffic load in S2 [0.1:0.1:1.5] ρ2
Number of devices in S1 ρ1pd1/p1Tslot K1

Number of devices in S2 ρ2pd2/p2Tslot K2

Schedulers FCFS, RRQ or RRNQ

exhausted. Requests that receive the requisite number of pilots for CSI estimation are
designated as “served”.

In S2, each unit is allocated just one pilot (p2 = 1), which suffices for achieving the
minimal CSI quality essential for the ensuing transmission. Conversely, the S1 slice,
tailored for higher reliability, allows each unit to be allocated multiple pilots (p1 ≥ 1),
thereby enhancing CSI accuracy as dictated by the specific needs of the CUs.

All unresolved requests are tagged as “pending” and rolled over to the next scheduling
event for reconsideration. Importantly, transmission requests are generated indepen-
dently of the scheduling events, in line with their respective statistical distributions.
This leads to that units can have multiple pending transmission requests, each of which
must be allocated the required number of pilots for successful service.

5.4 Evaluation

Our experiments have explored various combinations of the scheduling algorithms
outlined in Section 5.2. The focus is to investigate the impact of increasing of traffic
load in each slice on QoS performance. We define the traffic load, denoted by ρi, in
slice Si, as a function of the number of subscribed units Ki.

ρi =
KipiTs

pdi
, i = 1, 2. (5.2)

The network and traffic parameters employed in our simulation are detailed in Ta-
ble 5.1. These parameters are derived from the 100-antenna test-bed of the Lund
Massive MIMO (LuMaMi) system under a high-mobility scenario[Vie+14]. Our

51

Resource Allocation in Traditional RAN

evaluation focuses on three key aspects: the performance of the URLLC slice, the
performance of the mMTC slice, and the degree of isolation between the two slices.
The subsequent sections elaborate on the experimental setup for the three evaluations.

Latency and reliability performance in URLLC slice

To assess both the latency and reliability performance in the face of increasing traffic
load ρ1 in slice S1, we held the traffic load ρ2 in slice S2 at a constant value of 0.5.
We employed the FCFS algorithm as the second-level scheduler in S2. For each
simulation run, ρ1 was determined according to the profile specified in Table 5.2.
In this experiment, the units within S1 demanded low-latency and moderate channel
reliability. All three scheduling algorithms were implemented inS1 for comprehensive
evaluation.

Isolation between two slices

This experiment aims to investigate whether the performance of slice S2 is affected
by the choice of the second-level scheduling algorithm in the higher priority slice S1.
The S2 performance was examined when it utilizes RRQ, while concurrently applying
all the three scheduling algorithms in S1. For each algorithm applied in S1, we fixed
the traffic load ρ1 at a constant value of 0.5 in S1. We then varied the traffic load ρ2
in S2 from 0.1 to 1.5, based on the parameters outlined in Table 5.1.

Latency and connection performance in mMTC slice

This experiment is designed to assess QoS performances in slice S2, specifically focus-
ing on latency as the traffic load ρ2 in the slice increases. For the sake of this study, we
maintain a constant traffic load ρ1 = 0.5 in S1. The RRNQ scheduler is employed
for S1, while both the FCFS and RRQ methods are evaluated for S2. The traffic load
ρ2 is generated according to the parameters specified in Table 5.2. Additionally, this
experiment aims to explore the upper limit units can be accommodated in S2, using
network parameters derived from the LuMaMi test-bed.

5.4.1 Performance Metrics

The evaluation employs on two key metrics to evaluate the performance of each slice
under the proposed network slicing scheme: average waiting time and loss rate.

52

5.5 Evaluation Results

Table 5.2: Parameters used for the three evaluations. Entries with dashes are varied in the corresponding
evaluation.

Slice Variable Eval. (1) Eval. (2) Eval. (3)

S1

ρ1 – 0.5 0.5
p1 1 3 1
d1 1 ms 10 ms 10 ms
scheduler – – RRNQ

S2

ρ2 0.5 – –
p2 1 1 1
d2 50 ms 50 ms 50 ms
scheduler FCFS RRQ –

• Average waiting time This metric measures the duration a unit waits to re-
ceive a pilot allocation following its initial transmission request. It serves as an
indicator of the slice’s latency performance.

• Loss rate: This is calculated as the proportion of discarded requests relative to
the total number of requests made by all the units during an experiment. It
serves as a barometer for the slice’s reliability.

5.5 Evaluation Results

This section outlines and analyses the results of our evaluation. It’s worth noting that
the 95% confidence intervals for average waiting times across our experiments fall
within 1.6% of the respective mean values.

5.5.1 Latency and reliability performance in URLLC slice

First, we explore how varying scheduling algorithms respond to an increase in traffic
load ρ1 for slice S1. Given that S1 has higher priority, its performance should be
independent of S2’s traffic. Theoretically, the packet loss should be 0 when load ρ1
is less than 1 with all scheduling methods. However, as illustrated in Figure 5.2, the
RRNQ scheduler does cause a loss in the transmission requests even under low traffic
load. This is attributed to the variance of the inter-arrival times for the requests in
S1. In cases where two successive requests from the same unit occur within the same
allocation frame due to this variance, the RRNQ scheduler would likely discard the
second request.

Therefore, this loss rate is predominantly influenced by the variance in inter-arrival
times, rather than the arrival period. A similar effect can be observed with the RRQ

53

Resource Allocation in Traditional RAN

0

0.02

0.04

0.06

0.08
Lo

ss
ra

te
FCFS RRNQ RRQ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

0.2

0.4

0.6

0.8

ρ1

Av
g.

wa
iti

ng
tim

e(
m

s)

Figure 5.2: Loss rate and average waiting time performance of slice S1 with different schedulers: The RRNQ
method exhibits around a 2% packet loss even under light load conditions and has a higher average
waiting time compared to other schedulers. When using FCFS, the average waiting time escalates
quickly as the system nears full load.

scheduler under heavy load, particularly when deadlines are stringent and variance in
inter-arrival times is high.

Figure 5.2 also reveals the RRNQ scheduler’s impact on average waiting times. While
the average waiting time for FCFS and RRQ schedulers equates to half a slot time, it
increases to half a RRNQ allocation frame time due to the scheduler’s behaviour.

When ρ1 nears 1, FCFS’s average waiting time spikes, almost hitting each request’s
deadline at ρ1 = 1.1. This behaviour arises because FCFS is queue-dependent, and
the queue length scales with the load of the slice. By contrast, in case of RRQ and
RRNQ, a request’s waiting time depends only on the number of pending requests
from its own units.

It is worth noting that a trade-off exists between the computational and signalling cost
and the performance of each scheduler. While RRNQ minimized signalling costs, it
is not applicable to critical applications that require ultra-reliability. FCFS performs
well when the system is not fully loaded, but it incurs higher computational and
signalling costs due to queue maintenance. Furthermore, FCFS’s reliability may be

54

5.5 Evaluation Results

0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

ρ1 + ρ2

S
2

Av
g.

wa
iti

ng
tim

e(
m

s)

FCFS RRNQ RRQ

Figure 5.3: Average waiting time in S2 based on traffic parameters specified in Eval.(2) of Table 5.2. The x-axis
shows the overall system traffic load ρ1 + ρ2, with ρ1 held constant at 0.5. The legend indicates
the scheduling algorithms utilized in S1 for each set of experiments, while S2 consistently employs
RRQ.

compromised when the system is nearing full capacity, as bursty traffic could rapidly
saturate request queues.

5.5.2 Isolation between two slices

Figure 5.3 presents the impact of different scheduler choices in S1 on the QoS perfor-
mance of S2, which reflects on the degree of isolation between S2 and S1. The figure
illustrates the average waiting time in S2 under three different scheduling algorithms
employed in S1. The results reveal that the performance of S2 remains largely unaf-
fected by the choice of S1 scheduling algorithm when the system is not operating at
full capacity. However, when RRNQ is used in S1, S2 experiences a longer average
waiting time compared to other scenarios. This outcome aligns with our previous
observation in Figure 5.2 that RRNQ results in longer average waiting times in S1,
which in turn affects S2 due to its lower priority relative to S1.

5.5.3 Latency and connection performance in mMTC slice

To assess the impact of different scheduling algorithms in S2, we plotted its average
waiting time as ρ2 increases in Figure 5.4. In these experiments, S1 consistently em-
ploys RRNQ and maintained the constant traffic load of ρ1 = 0.5. We compared
the performance of S2 when it uses either FCFS or RRQ as its scheduling algorithm.
Note that the RRNQ algorithm is not evaluated for S2 since it is unfeasible for an
mMTC slice with a large number of subscribing units.

55

Resource Allocation in Traditional RAN

0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

20

40

ρ1 + ρ2

S
2

Av
g.

wa
iti

ng
tim

e(
m

s)

FCFS RRQ

Figure 5.4: The average waiting time in S2 under traffic parameters given in Eval.(3) of Table 5.2. The x-axis
shows the overall system traffic load ρ1 + ρ2, wherein ρ1 is constant at 0.5. The figure shows the
average waiting time when S2 applies FCFS and RRQ, along with RRNQ in S1.

In this setup, the constant traffic load of 0.5 in S1 results in a traffic bottleneck in
S2 beginning at ρ2 = 0.5 – the point at which the system becomes fully loaded.
The behaviour of the average waiting time using FCFS in S2 parallels that observed
in S1 (Figure 5.2). This is because the waiting time under the FCFS algorithm is
highly sensitive to the overall system load, and it starts to escalate substantially when
the system is overloaded. Conversely, the average waiting time under RRQ remains
stable even when the system is overloaded. This is due to the system blocking the
incoming units and discarding their requests when overloaded. The average waiting
time performance remains equivalent to conditions where ρ1 + ρ2 = 1, as only
successfully served requests are factored into the calculation.

Figure 5.5 plots loss rate against the number of connections in S2, providing corre-
sponding overall system traffic load at the top of the figure. The experiment leverage
the specified traffic profiles described in Eval.(3) of Table 5.2 and network parameters
from Table 5.1. Given that S1 operates at a constant traffic load, the loss rate in S2

is primarily dependent on its own traffic load. As such, both the FCFS and RRQ
scheduling algorithms display similar behaviour. The results indicate that the system
can accommodate up to 600mMTC units in S2, without any packet loss, irrespective
of the scheduler used.

Our simulation results revel that the performance of S2 is principally affected by the
traffic loads in both S1 and S2, as well as by the choice of scheduling algorithm
in S2, while the scheduling algorithm used in S1 has relatively minor impact on
S2’s performance. Given that S2 does not necessitate ultra-reliable service, a certain
degree of packet loss could be tolerated to facilitate a larger number of concurrent

56

5.6 Conclusion on the Network Slicing Scheme

0 480 960 1,440 1,920
0

0.2

0.4

0.6

0.8

Number of devices on S2

Lo
ss

ra
te

0.5 0.9 1.3 1.7 2.1
ρ1 + ρ2

Figure 5.5: Loss rate in S2 as a function of number of connections. The graph demonstrates that, under the
given network parameters, the system can accommodate up to 600 units in S2 without incurring
any loss. This capacity threshold is equivalent to maintaining an overall system traffic load of ρ1 +
ρ2 = 1.

connections in S2.

5.6 Conclusion on the Network Slicing Scheme

In summary, this chapter presents a MAC layer resource allocation approach utilizing
the network slicing concept for a single-cell massive MIMO RAN system, aiming
to serve multiple types of UEs within an industrial context. The study employs a
two-level MAC scheduler and evaluates three different algorithms—FCFS, RRQ, and
RRNQ—each with distinct merits and limitations.

The results affirm the system’s capacity to support diverse UEs and fulfil their QoS re-
quirements via the proposed slicing scheme. However, the selection of the scheduling
algorithm needs to be fine-tuned according to specific use-cases and traffic patterns.
Among the tested algorithms, RRNQ offers the least overhead but falls short in en-
suring ultra-reliability, making it unsuitable for scenarios requiring a massive number
of connections. Conversely, FCFS offers higher reliability but may incur significant
overhead, particularly when the system reaches full capacity. RRQ offers a balanced
approach, maintaining consistent waiting times even under high loads but at the ex-
pense of increased signalling overhead.

57

Resource Allocation in Traditional RAN

The study serves as an initial investigation into the viability of deploying a traditional
single-cell RAN system in industrial settings, achieving multi-tenancy and varying
QoS requirements. The next chapter will extend this research to a Cloud RAN system
to explore its feasibility and performance in meeting the QoS needs of industrial units,
particularly CUs under URLLC traffic category.

58

Chapter 6

Resource Allocation in Cloud RAN
Addressing the Needs of Critical Industrial Units

In this subsequent chapter, we extend our investigation into resource allocation within
industrial settings, shifting our focus from traditional RAN systems to Cloud RAN
systems. Building on the earlier validation of traditional RAN deployment in indus-
trial scenarios, we now aim to assess the viability of implementing Cloud RAN with
similar conditions, taking into account the distinct delay characteristics inherent to
the Cloud RAN architecture, which must be carefully considered.

6.1 Targeted System

In alignment with the focus of the previous chapter, this chapter also explores an
industrial scenario. However, the communication here is facilitated through a Cloud
RAN mobile network. This Cloud RAN system employs the same Massive MIMO
antenna system, LuMaMi in Chapter 5, but with a notable distinction: the BBU is
located in a cloud-based, general-purpose data centre, forming a BBU pool. This pool
is then interconnected with the RRH via Ethernet fronthaul link.

The system operates based on 3GPP function split option 6, which divides the BBU’s
functionalities between the MAC and PHY layers. In this configuration, all PHY
layer functionalities are executed at the RRH, eliminating the need for transmitting
raw baseband data blocks over the Ethernet fronthaul link to the cloud-based BBU
pool. A schematic representation of this industrial scenario, wherein industrial units
communicate via the Cloud RAN system, can be found in Figure 6.1.

59

Resource Allocation in Cloud RAN

Industrial units

RRH
(Massive MIMO) BBU pool

Cloud RAN system

Fronthaul

Factory scenario

Figure 6.1: An industrial scenario where all industrial units communicate over Cloud RAN

In this chapter, our focus narrows to the resource allocation for a specific type of in-
dustrial unit, whose QoS is particularly sensitive to the latency challenges introduced
by Cloud RAN architectures. These units, categorized under URLLC in the previ-
ous chapter, are referred to as Critical Units (CUs). They necessitate rapid resource
allocation to facilitate their frequent, periodic transmissions.

The migration to Cloud RAN for industrial communication poses latency challenges
specifically for CUs, owing both to network factors and the cloud-based execution
environment of the BBU pool. In contrast, the other type of units, categorized as
mMTC and considered in Chapter 5, are designated as non-CUs. Their communica-
tion serves as background traffic in this context, and their QoS will not be the focus
of this section as they do not have stringent latency requirements.

6.2 Delays in a Cloud RAN System

Transition to cloud-based resource allocation approach poses larger challenges com-
pared to traditional RAN systems. This complexity arises from the additional abstrac-
tion layers introduced in the traffic pathway between the RRH and the BBU pool.
As a result, by the time the scheduling decisions, made by the BBU pool, reach the
RRH, they might no longer be appropriate for the current state of the CUs. This
misalignment is primarily due to the lag in information exchange caused by inherent
delays. The objective of this chapter is to assess the feasibility of Cloud RAN de-
ployment in light of these delay challenges stemming from both the network and the
cloud execution environment.

Figure 6.2 offers an illustrative representation of the kind of delays one might expect
in a cloud environment. This is our assumed delay model for the Cloud RAN system

60

6.3 System and Simulation Model

0 1 2 3 4 5 6 7 8
0

0.05

0.10

0.15

0.20
µ ≈ 2.38ms

Round-trip delay (ms)

Figure 6.2: The histogram of the UDP round-trip delay measurements. The red curve is the probability density
function and the mean value fitted from the histogram.

under discussion. The figure presents a histogram of round-trip delay measurements
corresponding to the Docker application shown in Figure 3.2(b). As previously men-
tioned, this application is hosted in the ERDC in Lund, located approximately 2km
(walking distance) from the massive MIMO RRH LuMaMi.

The histogram aligns with a Log-Laplace distribution, characterized by a mean value of
µ ≈ 2.38ms. It’s worth noting that this long-tailed distribution arises not only from
the distance between the RRH and the BBU pool but also from the cloud execution
environment within the data centre.

6.3 System and Simulation Model

In this section, we outline the simulation model for the industrial scenario depicted in
Figure 6.3. As previously mentioned, the RRH is represented by the Massive MIMO
antenna system LuMaMi, and the BBU pool is situated within the ERDC in Lund.
The RRH and the BBU pool interact via a fronthaul link to allocate radio resources
to K CUs within the coverage area of the RRH.

6.3.1 RRH and BBU Pool Model

In this simulation model, we make the assumption that a single uplink pilot of each
CU is sufficient for the base station to estimate its CSI, facilitating the servicing of
transmission requests within a coherence interval.

61

Resource Allocation in Cloud RAN

BBU
PoolRRH

CUs

…

Report

Decision

Fronthaul
Requests

Figure 6.3: Simulation model of the system, where CUs are making transmission requests to the Cloud RAN for
radio resource assignment.

In addition to the radio resource definitions outlined in Chapter 5, we introduce the
factor of CU mobility, a key determinant of the coherence interval in the radio net-
work. Under scenarios where CUs are stationary, the communication channel to
the RBS experiences fewer variances compared to situations with high-mobility CUs.
This results in a longer coherence interval for the radio system.

Given this, we assume that the quantity of available pilots within a coherence in-
terval directly correlates with the interval’s duration, itself determined by the CU’s
mobility. In massive MIMO systems, CUs are multiplexed in the spatial domain.
Consequently, once a pilot is designated to a CU, the volume of its accommodated
transmissions also scales with the interval’s length.

We denote the smallest interval length of our system as Tc. During this time, p pilots
are available. This suggests that, at most, pCUs can be allocated pilots within Tc, with
each CU being served a single transmission request if assigned a pilot. We also define
Ts as the actual of a coherence interval of the system, also representing the allocation
timeslot in our scheduling problem, with P pilots available during each slot.

In a high mobility scenario, where the coherence interval is minimized, we have Ts =
Tc and P = p. However, as the CU’s movement speed decreases, both the coherence
interval Ts and the available pilots P increase proportionately.

The RRH maintains an ingress queue comprising all active transmission requests from
CUs. The BBU is equipped to monitor this queue’s status. With every update to the
queue, the BBU dispatches a new scheduling decision, enabling the RRH to apply
the updated allocation guidelines to the active CUs.

62

6.3 System and Simulation Model

6.3.2 Fronthaul and Latency Model

The fronthaul link introduces a delay for every message transmitted over it. This
round-trip delay is characterized as the time span from when a report is sent until
the associated decision reaches the RRH, including the computing time in the BBU
for making the decision. As previously highlighted, this round-trip delay is modelled
using a Log-Laplace distribution with a mean value of µ milliseconds.

6.3.3 Traffic Model

Each CUk, where k ∈ {1, 2, ...,K}, dispatched transmission requests at an average
rate of λk. Our model takes into account the industry and IoT source level traffic
models detailed in [HMH18]. We use the homogeneous periodic traffic as the arrival
process to generate transmission requests. By following this arrival process, each CU
sends requests at intervals close to a constant value of c, albeit subject to slight varia-
tions introduced by a normal distribution, implying that the average request rate for
CUk is 1/c. Every request encompasses:

• The ID k of the CU, indicating it as a request initiate by CUk.

• The sequence number γ, marking it the γth request by CUk.

• A deadline Dγ
k . The deadline length for CUk is drawn from a uniform dis-

tribution that spans from c to D, where D represents the maximum deadline
length for all the CUs.

Consequently, the aggregate average request rate for the system equates to λ = K/c.
The offered load to the system is contingent solely upon the count of active CUs,
denoted as K, within the scenario.

6.3.4 The Scheduling Policy

At the onset of each coherence interval, the RRH forwards the details of all the active
requests within the ingress queue to the BBU pool. Within our model, we term this
transmitted information as the report. This report encapsulates both the CU ID and
the deadline, represented as (k,Dγ

k), for every active request queued.

Upon receipt of a fresh report, the BBU pool analyses the data pertaining to active
requests in the queue and formulates an appropriate decision. This decision is repre-
sented as a subset of CU IDs, denoted as K ⊆ {1, 2, 3, ...K}, indicating which CUs
will be allocated the pilots.

63

Resource Allocation in Cloud RAN

If the total count of CUs having active transmission requests within the ingress queue
is fewer than the available pilots P , then all the CUs in the queue are granted a pilot.
Conversely, if the number of CUs surpasses P , the Earliest Deadline First (EDF)
algorithm is employed. Using this method, pilots are delegated to the P CUs with
requests that have the most imminent deadlines.

6.3.5 Performance Metrics

Two performance metrics are utilized in the evaluation for the Cloud RAN system:
loss rate and pilot utilization.

The pilot utilization for a given time slot j is determined by how effectively the pilots
are assigned to the CUs in set Kj . Let P̂j be the decided number of pilots to be
assigned to the CUs waiting in the queue. It’s given that P̂j ≤ P , and the length
of set Kj is equal to P̂j , where Kj represents the subset of CUs being considered for
assignment in time slot j.

For each CU inKj , the potential number of transmission requests that can be served is
Ts/Tc – this is because the number of served requests is proportional to the coherence
interval length. If Nk,j denotes the actual number of active requests for CUk in the
queue during the time slot j, the number of pilots wasted, Wk,j , for CUk is

Wk,j =

{
0 if Nk,j ≥ Ts/Tc
Ts/Tc−Nk,j

Ts/Tc
if Nk,j < Ts/Tc

(6.1)

To determine the overall pilot utilization Uj , for the time slot j, compute:

Uj = 1−
∑∀k∈Kj Wk,j

P̂jTs/Tc

(6.2)

Here, P is the total number of available pilots. A higher Uj indicates effective pilot
utilization in that time slot, while a lower Uj suggests inefficiencies. By evaluating Uj

over a range of time slot of total length T , we can gauge the overall resource allocation
efficiency of the Cloud RAN system during the whole service period:

U = 1−
∑T/Ts

j=1

∑∀k∈Kj Wk,j
∑T/Ts

j=1 P̂jTs/Tc

(6.3)

Given that Sk,j represents the actual number of requests from CUk that are served in
time slot j, the loss rate of the system during T is calculated as:

L̄ = 1−
∑T/Ts

j=1

∑∀k∈Kj Sk,j
∑K

k=1 λkT
where Sk,j = min(Ts/Tc, Nk,j) (6.4)

64

6.4 Evaluation

Table 6.1: Arrival Process Parameters for the Evaluation on Tolerable Round-trip Delay.

Parameter name Value Symbol
Arrival interval 10 ms ck
Number of CUs 20 K
Deadline length bounds {5, 6, 8, 10, 12, 15} ms D

Table 6.2: Parameters Related to Different Mobility Scenarios in the Simulation.

Mobility scenario High Medium Low
Coherence interval length Ts 0.5ms 1ms 1.5ms
Available pilots per interval P 12 24 36

We represent this calculated loss rate as L̄ due to its derivation from the mean arrival
rate λk of each CU. In our simulation experiments, we measured the actual number
of transmission requests within the system to derive the precise loss rate, denoted as
L.

6.4 Evaluation

This section details the experiment setup and the parameter configurations used in
our simulations, aiming investigate the feasibility of a Cloud RAN deployment in an
industrial automation scenario. The simulation is implemented with SimPy1. Each
experiment simulated a system runtime of T = 200 000ms, with 20 runs conducted
for each parameter combination.

6.4.1 Latency

In our simulation, round-trip delays are generated from the Log-Laplace distribution,
as illustrated in Figure 6.2, which is empirically modelled from our UDP measure-
ments to ERDC. While the mean, µ, of the round-trip delay ranges from 0.5ms to
15ms, all other parameters of the distribution remain consistent across experiments.

6.4.2 Loss Rate

To determine if the Cloud RAN system meets the stringent requirements established
by industrial standards, we’ve set an upper limit for the acceptable transmission request
loss rate at 5%.

1https://simpy.readthedocs.io/en/latest/

65

Resource Allocation in Cloud RAN

The loss rate is intrinsically linked to the CUs’ tolerance for their waiting time in ob-
taining a radio resource. With this in mind, we conducted experiments to pinpoint
the maximum round-trip delay that CUs can endure, particularly when they are sub-
ject to varying deadlines. The parameters associated with the CUs arrival process are
detailed in Table 6.1. For this evaluation, we selected a medium mobility scenario,
with the specific parameters for this scenario found in Table 6.2.

Furthermore, to assess the maximum capacity of CUs the system can handle across
different mobility scenarios, we performed experiments where all CUs maintained
deadline lengths equivalent to their arrival intervals, as presented in Table 6.1. We
established the round-trip delay for this evaluation at 3ms, slightly exceeding our
earlier UDP round-trip measurements.

6.4.3 Pilot Utilization

When the loss requirement is satisfied, pilot utilization becomes a key performance
indicator. While it is evident that a reduced loss rate can be achieved by allocating ex-
tra resources to the CUs, this strategy can inadvertently starve the background traffic,
which is typically of lower priority than CU traffic, due to inefficient pilot utilization.

Given this, it is crucial to assess pilot utilization in scenarios where the loss rate is
already low. In such cases, deadline lengths have minimal influence on utilization.
Instead, the length of the coherence interval, synonymous with the mobility of the
CUs, becomes the primary determinant. To study this, we conducted experiments
across various mobility scenarios, keeping the parameters for the CUs arrival processes
consistent with those in Table 6.1. The only exception was the deadline length, which
was capped at 15ms for this evaluation. We further established the maximum round-
trip delay at 8ms, a threshold at which discarded requests in the system are rare given
this deadline.

6.5 Evaluation Results

In this section, we present the simulation results, focusing on the two primary per-
formance metrics: loss rate and pilot utilization, as outlined in our evaluation setup.

6.5.1 Loss

In Figure 6.4, we illustrate the upper limit of round-trip delay the system can tolerate
while maintaining a loss rate below 5% given the arrival processes of the CUs as

66

6.5 Evaluation Results

5ms 6ms 8ms 10ms 12ms 15ms

2

4

6

8

10

12

14

3
4

6

8
9

14

Deadline length (ms)

To
ler

ab
le

ro
un

d-
tri

p
de

lay
(m

s)

Figure 6.4: The tolerable round-trip delay with varying CU deadline lengths. There are in total 20 CUs, all
with medium mobility. The dashed line indicates the mean round-trip delay from our earlier UDP
measurements shown in Figure 6.2.

High
mobility

Medium
mobility

Low
mobility

40

80

120

40

70

100

M
ax

nu
m

be
rs

of
C

U
s

Figure 6.5: Maximum number of CUs the system can accommodate within permissible loss threshold of 5%
under different mobility scenarios. Each CU has a deadline length of 10ms and the system round-
trip delay is 3ms.

detailed in Table 6.1. It is evident from the figure that the acceptable delay consistently
ranges from 1 to 3ms less than the associated deadline length. Therefore, if each CU’s
deadline mirrors its period, the inherent round-trip delay of the Cloud RAN system
should not exceed the CU’s transmission interval.

On the other hand, Figure 6.5 showcases the system’s capability in terms of the max-
imum number of CUs it can serve, staying within the permissible loss limit of 5%.

67

Resource Allocation in Cloud RAN

0 1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

Round-trip delay (ms)

Pi
lo

tu
til

iza
tio

n
High mobility
Medium mobility
Low mobility

Figure 6.6: The pilot utilizationwhen the number of CUs isK = 20 and each CU has a deadline length between
10 and 15ms.

This is under the assumption that all CUs have a deadline length of 10ms and expe-
rience a round-trip delay of 3ms. As anticipated, a lower mobility allows the system
to accommodate more units, as the coherence interval extends. In essence, in condi-
tions of reduced mobility, the system can manage a larger traffic load from the CUs
without incurring significant losses, as opposed to scenarios with higher mobility.

6.5.2 Pilot Utilization

Figure 6.6 illustrates the relationship between pilot utilization, CU mobility, and sys-
tem delay. In a system with no delay, a short coherence interval achieves full pilot
utilization. However, as the interval lengthens, there is a dramatic decline in pilot
utilization, dropping to a mere 40% even with a slight 0.5ms round-trip delay. This
is attributed to shorter allocation slots facilitating more frequent decisions, thus al-
lowing the system to better adapt to the dynamic ingress queue. Conversely, longer
intervals entail more reserved time-frequency space for the same set of CUs during
each slot. Given that the CUs’ transmission intervals typically exceed the length of an
allocation slot, this often results in redundant allocations, especially when the number
of queued requests is less than the system’s serving capacity.

As the round-trip delay between the RRH and BBU pool grows, potentially leading to
outdated queue reports, pilot utilization converges to around 10%. In such scenarios,
the length of the coherence intervals becomes less influential. The latency-induced
misreporting frequently results in faulty allocations. As a result, a CU may be assigned
a pilot based on the most recent decision, disregarding the fact that its requests have

68

6.6 Conclusion on Cloud RAN under Industrial Scenario

already been addressed by prior decisions.

6.6 Conclusion on Cloud RAN under Industrial Scenario

In this chapter, we delved into a pilot scheduling process tailored for industrial Critical
Units (CUs) with strict deadline requirements. While the scheduling process resides
in the BBU pool, the task of allocating pilots to CUs falls to the RRH. We focus
on two critical performance metrics: loss rate and pilot utilization. Employing a
straightforward EDF scheduling strategy, we assessed the Cloud RAN system’s ability
to manage delays inherent to the resource allocation functions. Simulations were
conducted to analyse the system’s performance across varied scenarios.

Our experimental findings underscore the viability of deploying a Cloud RAN system
in industrial automation contexts. Specifically, CUs can tolerate round-trip delays
that are up to 3ms shorter than their individual deadlines. For RRHs equipped with
massive MIMO capabilities, UEs exhibiting lower mobility are advantageous. They
promote extended coherence intervals and subsequently diminish loss rates. In set-
tings where unit mobility is limited, the system can effectively serve a larger group of
CUs simultaneously. However, when delays are combined with extended coherence
intervals, there is a notable increase in resource wastage. Such inefficiencies might
limit the resources available for background traffic, which could compromise the sys-
tem’s overall performance.

69

Summary

This part delves into the MAC layer resource allocation problem within Massive
MIMO tailored for industrial settings. Distinctively, two RAN architectures are dis-
sected: traditional RBS-based RAN and the Cloud RAN. Our aim is to investigate
the potential of these systems in accommodating diverse industrial units within the
Massive MIMO RAN framework and assess their reliability in accommodating criti-
cal industrial entities.

The opening chapter sheds light on a resource slicing scheme within the conventional
RBS framework. Herein, a two-level MAC scheduler is introduced, adeptly parti-
tioning radio resources to serve different industrial unit categories. Three different
scheduling algorithms are applied in the slicing scheme: FCFS, RRQ, and RRNQ.
Simulations are conducted to evaluate system performance, ensuring compliance with
the unique QoS requisites of each slice. Furthermore, the system exhibits extend-
ability, allowing for the addition of further slices to accommodate an even broader
spectrum of traffic types.

Transitioning to the subsequent chapter, the spotlight is cast on the compelling idea
of integrating a cloud execution environment into the RAN architecture. The Cloud
RAN system comprises a BBU pool, grounded in the GPP cloud environment. This
configuration, though promising, is not without its challenges, particularly latency
concerns, when functionalities span across the system. Based on the characteristics
empirically modelled from cloud application response time measurements, simula-
tions are conducted to validate the practicality of such a deployment under stringent
industrial benchmarks. The findings from these evaluations are optimistic, attesting
to the viability of the system in industrial automation contexts. However, a note of
caution emerges concerning the potential for significant resource wastage due to in-
herent delays, potentially jeopardizing the resource availability for other concurrent
traffic served by the system.

71

Part III

Cloud Control Systems in the Wild

Scenario Description

In this part of the thesis, we shift our focus to another type of cloud integrated systems
the Cloud Control Systems (CCSs). CCSs represent a subset of cyber-physical systems
where the controller is deployed on public or edge clouds. This controller interacts
with the control plant via a network connection

When implementing controllers within the cloud, adaptations to align with cloud
deployment paradigms are essential. For instance, the controller might function like
a web service, responding to HTTP requests from the plant within the cyber-physical
system. Consequently, achieving low network latency is essential to mirror the per-
formance of locally controlled systems. However, in the realm of CCSs, the concerns
are not limited to just the lower layers like PHY and MAC of the communication
stack. As we’ll discover during our evaluation of CCSs in this thesis, higher layers, in-
cluding the transport and application layers, also significantly influence the network
performances of CCSs.

We begin by detailing a comprehensive deployment of CCS over a 5G network, high-
lighting the combined effects of network infrastructure and software deployment on
the control performance of CCSs. Subsequently, we evaluate the influence of various
transport layer protocols on the response time of CCSs.

Model of CCS

A traditional control system comprises a controller and the corresponding plant it
manages. In contrast, a cloud control system, illustrated in Figure 6.7, while retaining
the same core components, differentiates by situating them apart through a network.
The controller functions as a cloud service, residing in an edge or centralized cloud.
The control process cycles at an optimal frequency. During each cycle, the plant
communicates its current state to the cloud controller. The controller then processes
this data to generate a control signal which it promptly returns. This control signal is

75

Plant

Local

states

control signal
Controller

Cloud

Figure 6.7: System model of a Cloud Control System

subsequently actuated by the plant.

Communication in CCS

In a CCS, where controllers are deployed as cloud applications, full-stack network
protocol implementation is essential for communication between the plant and its
cloud controller.

Lower-level protocols, such as PHY, MAC, and the Network layer, are inherently tied
to the selected communication medium and the properties of IP networking. In our
work, we have integrated various networks like 5G, Ethernet, and the Internet into
our CCS designs, adapting them to different scenarios to meet distinct experimental
aims

Conversely, the selection of higher layer protocols and communication frameworks
rests with developers and is guided by specific use-case requirements. For our CCS
design, we predominantly utilized the REST architecture, reflecting its widespread
adoption in contemporary network applications. Within this setup, the plant of a
CCS operates as a client, while the cloud controller serves in a server capacity. As
depicted in Figure 6.7, plant states are communicated via HTTP POST requests, with
the subsequent control signals being relayed as HTTP responses to those requests.

76

Chapter 7

A 5G-assited Cloud Control System

In this chapter, we delve into the practical deployment of a CCS tailored for time-
sensitive applications. Currently, the study of mobile edge application design and
validation predominantly leans on emulated or simulated environments. The scarcity
of access to a comprehensive and modifiable 5G RBS has limited the scope of aca-
demic inquiry, hindering the identification of potential challenges within real-world
5G systems. The nuances of actual 5G infrastructures also pose challenges for aca-
demics venturing into application design.

Given this backdrop, there is a compelling need to offer researchers a doorway into the
edge infrastructures of 5G, enabling them to experiment and refine their designs for
essential applications. This chapter embarks on a journey to explore the latency char-
acteristics at the application-level of a tunable mid-band 5G SA setup and spotlights a
CCS that operates at the 5G network’s edge. This system encapsulates a control loop
with an integrated plant and controller mechanism. While the plant adopts the role
of a client, the controller emerges as an edge service, which is co-located within the
same computing infrastructure of the 5G core. The communication bridge between
the client and the controller service is forged using HTTP, a protocol ubiquitously
supported by modern web and cloud platforms. Our primary performance metric
is the application’s end-to-end response time, highlighting the viability of deploying
mission-critical applications on the edge of the 5G network

A significant portion of our investigation is earmarked for the influence on the sys-
tem performance by network traffic, along with radio parameters like Discontinuous
Reception (DRX) timers, which play a pivotal role in dictating both the power usage
and communication latency intrinsic to IoT applications.

Figure 7.1 provides a detailed illustration of the system we designed to evaluate the

77

A 5G-assited Cloud Control System

5G Deployment

Controller

Core and edge server5G SA modemRaspberry pi

Simulated plant

Plant’s state

Control signal

Figure 7.1: Overview of the system set-up.

performance of CCS augmented by 5G technology. This setup integrates the initial
stages of the LTH 5G RBS (Figure 2.6), serving as both the communication medium
and the hub for edge computing resources. Additionally, a UE is incorporated, pri-
marily for running the plant within the CCS system.

7.0.1 System Setup

The demonstrated system is structured around two principal agents, the client and
the service.

The client operates as a UE within the 5G network, utilizing a Raspberry Pi 400 with
the Raspberry Pi OS, a lightweight Debian-based system. Given that the Raspberry Pi
lacks embedded 5G connectivity, a WNC SKM-5xE 5G mobile modem is integrated
via the device’s Ethernet network interface. Operating in bridge mode, the modem
facilitates a streamlined connectivity process wherein the Raspberry Pi is allocated an
IP address directly from the 5G CN.

The service is an MPC controller implemented in Python by [ST]. The controller
resides in a Docker container, hosted on an Ubuntu machine that concurrently serves
the 5G CN. This strategic locational choice ensures that the controller resides at the 5G
network’s edge, a positioning that inherently minimizes transmission and processing
delays. Consequently, the system’s response delay becomes a product of three vari-
ables: the intrinsic latency of the 5G network, the execution time of the application,
and the time investment required for processing higher-layer protocols.

In conclusion, this setup epitomizes efficiency, with every element strategically de-
signed and positioned to enhance response times and overall performance in real-time

78

7.1 Experiment setup

applications. It harmoniously integrates the advantages of cutting-edge hardware with
strategic placement to deliver optimal results.

7.1 Experiment setup

To assess the efficacy of a mission-critical control process operating at the edge of a 5G
network, we examine the performance at the application layer between the client and
the service in our deployment. As highlighted previously, the system employs HTTP
as its application protocol. The metric of focus is the response delay for the control
signals, synonymous with the HTTP response time measured in milliseconds. This
emphasis is based on:

1. Compared to mere radio/core network benchmarking, the end-to-end commu-
nication delay stands out as a central concern in CCSs. This delay aggregates
both the software’s processing time and the inherent network delays, both of
which shape an application’s overall performance.

2. The impacts from the application layer on end-to-end delays are significant
in numerous real-time processes. In some cases, the computing time of an
intensive process can account for a substantial fraction of the response delay.
This is especially true in edge cloud environments where computing resources
might be constrained relative to centralized cloud architectures.

The evaluation of application performance is three-fold:

1. Measuring the application response delay over 5G with variable application
sampling rates and payload sizes.

2. Gauging the application response delay over 5G and assessing the influence of
the DRX ON duration timer.

3. Evaluating the operational performance of a control process routed through
5G.

7.1.1 Performance of HTTP application running over 5G

We assess the response delay through the lens of a basic HTTP application, where the
client and service interface via the early stage LTH 5G RBS as outlined in Section 2.2.3.
We record the response delay at the application layer, capturing the timing at which

79

A 5G-assited Cloud Control System

Table 7.1: DRX parameters

Parameter name Value
DRX long cycle 160ms
DRX inactivity timer 100ms
DRX on-duration timer 50ms

each HTTP response is received by the client process. Our analysis is based on data
derived from 50000 requests in each experiment.

To mitigate the influence of service execution time on response delay, the initial two
experiments employ a straightforward HTTP “PING” application. In this setup,
the client dispatches an HTTP request to the service at specified payload sizes and
frequencies, and the service responses with the same message that contains in the
request, ensuring minimal execution time at the service end.

When delving into network analysis, it becomes apparent that both request frequency
and payload size significantly impact the data rate essential for throughput evaluation.
However, in our study, we extend our focus beyond network throughput, given that
the frequency is inherently tied to the control process’s dynamics. Evaluating appli-
cation performance under varying frequencies and payload sizes is instrumental to
encompass a diverse array of application types. Consequently, our examination spans
system trials with request frequencies ranging from 200Hz down to 10Hz, encapsu-
lating control processes with sampling rates varying between 5ms and 100ms. In the
subsequent sections, performance evaluations will be conducted with request inter-
vals fluctuating within the 5ms to 100ms spectrum. Payload sizes for each packet are
examined within the confines of 64 bytes and 2048 bytes.

7.1.2 Performance of application response delay affected by DRX

In our experiments, we have allocated particular attention to the DRX timers, a set
of configurable radio parameters in our 5G deployment. DRX plays a major role
in influencing network latency in telecommunication systems. The incorporation of
DRX is pivotal in contemporary LTE and 5G systems, as outlined in [Mor21]. This
significance is accentuated given the heightened emphasis on UE power consumption,
especially in the era of cellular IoT.

The DRX mechanism orchestrates the operational states of UE transceivers through
the manipulation of on-duration timers, inactivity timers, and DRX cycles. This
orchestration facilitates enhanced battery conservation as the UE transitions to idle
mode amidst periods of transmission inactivity[BI09]. However, it is crucial to ac-
knowledge that network delay within a DRX-enabled architecture is intrinsically tied

80

7.1 Experiment setup

to packet transmission inter-arrivals [BI09]. This correlation underscores the implica-
tion that control processes operating over a DRX-enabled network might experience
diminished DRX impact at heightened request frequencies. Thus, the calibration of
DRX parameters necessitates a tailored approach, contingent on the specific applica-
tions active over the network.

In our exploration, we extended our evaluation to encompass the performance met-
rics of an HTTP application operating with DRX enabled. We have delineated the
specific DRX parameters integral to our evaluation in Table 7.1. Given the depen-
dency of DRX delays on request intervals and DRX timers, our approach mirrored
the methodology outlined in Section 7.1.1, where we engaged an HTTP application
with request intervals from 5ms to 100ms. We maintained the payload size at a con-
sistent 1024 bytes, aligning closely with the payload size of one of our edge-deployed
control processes.

Our analysis compares the application response delay within the DRX enabled envi-
ronment against a DRX disabled setting, under the same set of application parameters.
This analysis is aimed at understanding the nuanced impacts of DRX on processes
characterized by high-frequency operations.

7.1.3 Performance of a control process running over 5G

We broaden our assessment to include the performance metrics of a control process
operating over the 5G network and edge, specifically with DRX disabled. We tran-
sition from the elementary HTTP “PING” application to deploy an emulated Ball-
and-Beam (BnB) control process. This deployment aims to examine the feasibility of
executing dynamical processed over a 5G network and edge computing infrastructure.

The BnB is a classic dynamic control process, where the objective is to maintain a ball
balanced on a rotatable beam. For this evaluation, we set a consistent sampling rate
at 50ms for the BnB process, ensuring regular monitoring of the ball’s position and
the beam’s rotation. The payload size for each request oscillates between 700 and 900
bytes. Similar to the earlier “PING” process, the BnB plant emulation is conducted
at the client end, while the controller are housed as a service in close proximity to the
5G CN, responding to HTTP requests.

Our analysis delves into the performance metrics of this CCS, benchmarking it against
a parallel system where the control plant at the client end communicates with a service
hosted on a machine, connected to the UE through a wired network. This compara-
tive analysis is pivotal in understanding nuanced operational efficiencies and potential
bottlenecks, offering insights into the scalability and reliability of deploying intricate

81

A 5G-assited Cloud Control System

control processes over evolving 5G networks.

7.2 Performance outcomes

In this section we present the outcomes of the performance evaluation experiments
described in Section 7.1.

7.2.1 Response delay vs. request intervals and payload size

A close inspection of Figure 7.2 reveals that while an increment in payload size has a
marginal impact on the mean response delay, it considerably escalates the 95th per-
centile. This observation underscores an amplification in jitter attributable to the
enhanced payload size.

Furthermore, diminished request intervals are correlated with a pronounced elevation
in the mean application response delay. This is attributed to the augmented data rate
on the uplink caused by reduced request intervals, a phenomenon that also precipitates
a significant surge in the 95th percentile of the recorded measurements.

Conclusively, it is evident that although both reduced request intervals and enlarged
payload sizes contribute to an elevated uplink data rate, the former exerts a more
pronounced influence on the mean response delay of an HTTP application operating
on the edge of a 5G network. This analytical insight is integral for optimizing the
balance between data throughput and response time, pivotal for enhancing the user
experience and operational efficiency of applications run over 5G networks.

7.2.2 Application performance with DRX enabled

In Figure 7.3, we evaluate the variance in response delay of HTTP applications at-
tributable to DRX amidst escalating request intervals. Our observations from Fig-
ure 7.3 do not indicate a pronounced effect on both the average response delay and
its 95th-percentile for the appraisals made on the HTTP application. Similar to sce-
narios where DRX is not operational, a marked decline in the average response delay
is noticeable when the request interval is below 20ms; this trend, however, stabilizes
as the interval expands beyond this point.

The muted impact of DRX can be primarily ascribed to the inherently dynamic nature
of most control plants. These entities frequently exhibit high request frequencies that
are in stark contrast to the more protracted DRX cycles in 5G systems. The extent of

82

7.2 Performance outcomes

510
20

50

70

100

512

1024

2048

20

30

40

50

Request interval (ms) Payl
oad

size
(byt

es)

Re
sp

on
se

tim
e(

m
s)

Figure 7.2: Impact on HTTP response delay of request intervals and payload size

delays induced by the DRX mode depend on a blend of the request frequency and the
length of the DRX cycle. In our analysis, we observed that the HTTP application–
serving as a representation of various time-critical control processes–ensures that the
UE remains active and connected due to the high frequency of its requests. This
constant connectivity effectively reduces the potential issues that could be caused by
the DRX mode.

7.2.3 BnB process when running

In Figure 7.4, we present the step response of the outlined BnB process alongside
the response delay experienced when the controller is (1) connected directly to the
plant via a wired network and (2) situated at the edge of the 5G network. The upper
segment of Figure 7.4 depicts the dynamic position of the ball’s position as the set
point oscillates between the two ends of the beam. The corresponding lower segment
provides a visual representation of the response delay associated with each request

83

A 5G-assited Cloud Control System

0 10 20 30 40 50 60 70 80 90 100
15

20

25

30

35

Request interval (ms)

Re
sp

on
se

tim
e(

m
s)

DRX enabled
DRX disabled

Figure 7.3: Mean values of response delays when enabling and disabling DRX

dispatched from the BnB plant under both operational scenarios.

A close examination reveals that the intertwined operations of the controller’s com-
putations and the plant’s processing contribute to a roughly 20ms delay in state up-
dates and control signal computations. The integration of the 5G network and edge
computing introduces an additional delay, approximately 30ms, accompanied by a
noticeable increase in delay variance.

However, as illustrated in the step response detailing the ball’s positional adjustments,
the BnB plant adeptly navigates to the designated set points even with the added delays
attributed to the 5G and edge integration. This underscores the system’s resilience and
effectiveness in maintaining control integrity amidst the extended response delays to
receive control signals.

7.3 Conclusion on the 5G-assisted CCS

This chapter provides an insightful exploration into the deployment of Cloud Control
Systems aided by a mid-band SA 5G RBS. We rigorously evaluate the end-to-end
response delay to gauge the viability of deploying a CCS over the 5G network and
its affiliated edge environment. The deployed CCS process yielded stable outcomes,
courtesy of a robust 5G network system and a finely-tuned controller.

However, our extensive evaluation reveals that integrating mobile communication
systems and edge computational processes contributes significant additional delays to
the application’s response time. While these delays didn’t undermine the performance

84

7.3 Conclusion on the 5G-assisted CCS

−0.5

0

0.5

Ba
ll

po
sit

io
n

(m
)

Wired
5G
Set point

0 5 10 15 20
0

20

40

60

Time (s)

Re
sp

on
se

tim
e(

m
s) Wired 5G

Figure 7.4: Step response of BnB process with different controllers

of a BnB plant operated under MPC, they could potentially jeopardize the stability
of more time-sensitive control plants or those managed by less optimized controllers.

These findings accentuate the need for in-depth research aimed at the refinement of
CCS implementation strategies, encapsulating an array of factors intrinsic to network
and computing infrastructures.

As we advance to the next chapter, our focal point transitions to the comparative
analysis of distinct transport layer protocols and their associated application protocols
in the context of CCS deployment. The core of this comparative study is anchored
on QUIC versus TCP, with the primary objective being the identification of a more
efficacious protocol that stands resilient under a diverse spectrum of network and
computational settings.

85

Chapter 8

Transport layer protocols in Cloud
Control Systems

This chapter elevates the discourse to the transport layer, on a comparative analysis
of two predominant transport layer protocols that are integral in the contemporary
landscape of cloud and web applications: QUIC and TCP.

8.1 Motivation

Our motivation to evaluate transport layer protocols within the context of CCSs orig-
inates from the observed limitations associated with TCP and HTTP1.1 in previously
conducted studies. Notable challenges such as HOL blocking and protracted hand-
shakes prompted an exploration for an alternative protocol that could overcome these
challenges and still fit well with the fast-paced, efficient world of cloud computing.

Enter QUIC—a protocol birthed and refined by Google, seen as a potential successor
to TCP in the realm of web application deployment. It has been proven to provide
lower latency and fewer request errors in numerous applications under the aegis of
Google and Meta. [Goo; JC].

In the context of CCSs, QUIC also emerges as a promising candidate, potentially of-
fering advantages of reduced latency and enhanced network performance—attributes
that are pivotal in optimizing the QoS of a CCS.

Consequently, this chapter is orchestrated to unravel the comparative efficacies of
QUIC and TCP, with an overarching goal to discern the protocol that not only aligns

87

Transport layer protocols in Cloud Control Systems

with but amplifies the QoS of a CCS. Our investigation takes a close look at the
complex aspect of each protocol, in order to offer a comprehensive perspective that
informs decision-making in the deployment of CCSs in a cloud-native environment.

Before delving into the evaluation, it is essential to clarify specific terms and definitions
pertinent to this chapter to ensure a comprehensive understanding. The following are
explicit definitions:

• QUIC: This refers explicitly to the IETF-standardized QUIC, which aligns
with the principal QUIC implementations available in various programming
languages.

• HTTP1: This term denotes HTTP1.1, accompanied by TLS1.2, as applied
within this chapter’s context.

• Connection: This pertains to the transport layer connection. More specifically,
it encompasses TCP, UDP, and QUIC connections. It is noteworthy that a
QUIC connection operates over a UDP connection.

• Stream: A stream is characterized as a unidirectional or bidirectional channel,
transmitting ordered data bytes within a transport layer connection.

• Payload: This refers to the application data or the highest layer of a packet’s
payload. In the absence of an implemented application layer (HTTP), it rep-
resents the payload of the TCP or QUIC packet. Conversely, with HTTP in
place, it is the payload of the HTTP packet.

8.2 Experiment Setup

In this section, we delineate the experimental framework and metrics employed to
examine the performance of distinct protocols within CCSs. Our analysis primarily
focuses on QUIC and TCP, exploring their performance as transport protocols. With
HTTP’s ubiquitous presence in cloud applications, our evaluation extends to assessing
the performance dynamics of HTTP3 and HTTP1.1; the latter is layered over TLS and
TCP.

Accordingly, we have orchestrated an examination consisting of four distinct cloud
applications, each operating under a unique protocol as outlined below. This method-
ology is designed to provide a comprehensive and detailed analysis, illuminating the
complex performance attributes vital for making informed choices regarding protocol
selection in the realm of CCSs.

88

8.2 Experiment Setup

1. QUIC (single stream)

2. TCP (without TLS)

3. HTT3 (HTTP over QUIC)

4. HTTP1 (over TLS/TCP)

It’s essential to note the distinctions in the protocol configurations. In the first two
cases, we are not implementing any application protocols. Consequently, the packet
size and network overhead are reduced compared to cases 3 and 4. Moreover, the
absence of multiplexing in the single-stream QUIC and TCP configurations results
in head-of-line blocking under extensive network latency.

For case 3 and 4, we implement HTTP persistent connection and asynchronous re-
quests. QUIC inherently handles this, allowing the initiation of new streams within a
single UDP connection for each client request, facilitating multiplexing. In contrast,
HTTP1.1 necessitates application-level management of asynchrony. When a subse-
quent request is initiated before the arrival of a response to a preceding request, a new
TCP connection must be established to transmit the request. This approach ensures
multiplexing and prevents blocking associated with the prior connection.

Our evaluation methodology mirrors the approach delineated in Section 7.1.1, al-
though it is implemented in Golang. We establish a series of client-server pairs com-
municating via diverse protocols. In this setup, the client represents the plant of a
control system, periodically transmitting its current state to the server, which embod-
ies the remote cloud controller. The QUIC and HTTP3 protocols are implemented
utilizing the quic-go library1, adhering to the IETF standard for the QUIC protocol.

The client is executed on a machine running Ubuntu-jammy, equipped 5.19.0-38-
generic Linux kernel. In contrast, the servers are encapsulated within Docker con-
tainers and are allocated across two distinct environments: an edge Kubernetes cluster
and a public cloud infrastructure. We also perform the analysis under three distinct
networking scenarios, determined by the servers’ deployment locales. These scenarios
encompass:

1. Ethernet (wired LAN) - A direct, wired connection ensuring optimal speed and
minimal interference.

2. Private 5G mobile network - A sophisticated, high-speed mobile network en-
abling real-time data exchange.

1https://github.com/quic-go/quic-go

89

Transport layer protocols in Cloud Control Systems

Table 8.1: Three evaluation scenarios in the experiment

Scenario Name Ethernet 5G AWS
Deployment Env. Edge cluster Edge cluster AWS Public Cloud
Network Ethernet LAN 5G Internet
RTT 0.520ms 10.688ms 13.553ms

3. Internet - A universal yet complex environment introducing variable factors
such as latency and potential data loss.

Our experiments are thoughtfully constructed to evaluate protocol efficiency in un-
touched, realistic network environments. Consequently, we avoid making any spe-
cialized adjustments or tunings to the networks, aiming to preserve and examine their
natural, unmodified conditions.

The edge cloud setting for our experiments is provided by the lab Kubernetes cluster,
detailed in Section 2.1.4. Every server operates within a Pod characterized by BestEf-
fort QoS class. Under the edge scenario, two distinct networks are employed. The first
is a straightforward, wired network ensuring direct Ethernet connections between the
client and the edge cluster. The second incorporates the 5G mobile network, thanks
to the LTH 5G RBS, as elaborated in Section 2.2.3. The client machine engages this
network via a 5G WNC modem.

In the public cloud scenario, each server is manifested as an Elastic Container Ser-
vice (ECS) on AWS, hosted in a data centre in Stockholm, Sweden. Every service is
allocated 1 vCPU and 3GB memory, facilitated by AWS Fargate. In this scenario,
communication unfolds over the Internet, introducing a level of unpredictability and
complexity not seen in edge scenarios, as data exchanges are subject to the inherent
variances and challenges of online interactions.

Table 8.1 summarizes the specifications and distinctions of each scenario. To enrich
our analysis and provide a more comprehensive understanding of the network dynam-
ics, we’ve included RTT values in the table. These were determined using Internet
Control Message Protocol (ICMP) “PING” measurements, offering a detailed view
of the latency characteristics inherent to each respective network.

Similar to the previous chapter, we mimic the behaviour of a CCS by designing a
communication pattern between each pair of client and server in our experiment.
Specifically, our client sends a request to the server at intervals of dms, emulating
the sampling rate of a control system. Each request carries a payload of p bytes,
and the server responds with an equivalent payload. This setup simulates a control
system operating with a dms sampling time and p byte message exchanges between
the plant and the controller. Our tests employed various d and p values to replicate

90

8.2 Experiment Setup

the conditions of different types of control systems. We ran each set of parameters for
an hour to gather a robust dataset for our analysis.

• d (ms): 5, 10, 25, 50, 75, 100

• p (bytes): 128, 256, 512, 1024

8.2.1 Performance Metrics

Rather that performance metrics directly related to control processes, we focus on the
performance of the communications in a CCS, which has pivotal influence on the
QoS performance of a CCS and the cost of the system deployment. Hence, three
metrics are discussed in our protocol evaluation:

• response delay

• jitter of response delay

• data volume.

The response delay is measured at the plant, denoting the time elapsed between ini-
tiating a request and receiving a corresponding response from the server. This metric
is crucial as it underscores the plant’s efficiency in receiving and responding to con-
trol signals in real-time. It’s pivotal to note that the response delay often surpasses
the network latency, encapsulating the processing times attributed to the transport,
application protocols, and the execution duration of the controller application within
the cloud.

We quantify the jitter of the response delay as a percentage, derived by dividing the
mean jitter value by the mean response delay, as outlined in [Por+06]. Jitter becomes
a critical consideration in a CCS especially in instances where the network latency
aligns with or exceeds the sampling rate of the control process. Such scenarios often
call for advanced compensatory measures like state predictions to compensate delays.
Elevated jitter levels indicate a degree of unpredictability in network and plant opera-
tions, complicating the implementation of delay compensatory measures. Conversely,
lower jitter levels indicate a level of predictability, facilitating more straightforward
delay compensations.

Data volume assessment becomes indispensable, particularly in setups where the con-
trol is executed within a public cloud and the incurred service costs are contingent on
the traffic generated. We choose evaluation criteria centred on the average packet size

91

Transport layer protocols in Cloud Control Systems

for each request and response (Equation (8.1)), as opposed to throughput which is in-
herently tied to network bandwidth and data rate–-factors influenced by the control
plant frequency and payload size. Our emphasis on average packet size is intended to
reveal the network overhead linked to each protocol, enabling decisions that balance
reduced data volume and maintained performance quality.

data volume per request =
Total sent data by the plant

Number of requests

data volume per response =
Total received data by the plant

Number of responses

(8.1)

8.3 Evaluation Results

In this section, we detail the outcomes of our evaluation and provide an analysis of
the results.

8.3.1 Response Time and Jitters

The evaluation of response delay and its jitter is categorized into two distinct scenarios
based on the designated values of the parameter d and the network latency, as outlined
in Table 8.1:

• Low-frequency Case

• High-frequency Case

In the low-frequency case, the value of d exceeds the network latency. An example
of this is when d = 25ms in AWS and 5G scenarios. Under these conditions, while
the average response delay is notably extended beyond network latency, it typically
remains beneath the span of one sampling interval d. In such a configuration, the
performance metrics of response delay and jitter predominantly reflect the network’s
reliability and consistency within the system’s operational framework.

In the high-frequency case, the sampling interval d is reduced to a span that is less
than the network latency. This contraction in interval amplifies the need for delay
compensation in the control system. The key objectives become reducing response
delay and minimizing jitter, essential steps to optimize both system and controller
design. However, the challenge grows as one must carefully navigate the constraints
associated with the increased frequency.

92

8.3 Evaluation Results

1

1.5

2
Et

he
rn

et
Re

sp
on

se
D

ela
y

(m
s)

TCP QUIC HTTP1.1 HTTP3

15

20

25

5G
Re

sp
on

se
D

ela
y

(m
s)

128 256 512 1024

13

14

15

Payload (bytes)

AW
S

Re
sp

on
se

D
ela

y
(m

s)

Figure 8.1: Box-plots illustrating the response delays of various protocols under Ethernet, 5G, and AWS scenar-
ios, considering an increasing payload size (p) and a consistent sampling rate (d = 25ms). Given
the varied network latency scales inherent to each scenario, the plots are rendered with adapted
scales. The y-axes, deviating from their origin, accommodate these variations to provide a clearer
visual representation.

93

Transport layer protocols in Cloud Control Systems

Low-frequency case

Figure 8.1 presents box plots illustrating the response delays associated with different
protocols across Ethernet, 5G, and AWS scenarios. Each plot delineates the 5th, 25th,
50th, 75th, and 95th percentiles of the collected data, from bottom to top. The
analyses were conducted with an incrementing payload size and a constant sampling
rate (d = 25ms); results for cases with sampling rates d ≥ 25ms are similar to these
findings.

In all scenarios, single stream QUIC exhibits approximately 0.3ms higher delays than
TCP. This discrepancy can be attributed to the absence of cryptographic implemen-
tation in our TCP setup, which reduces both handshake latency and processing time
relative to QUIC. The trend of increasing response delays with enlarging payload size
is observable, as a consequence of the augmented processing demands of larger pack-
ets.

In the Ethernet scenario, which is characterized by its reliable, lossless network, HTTP3
underperformed relative to HTTP1.1, echoing the conclusions of preceding studies
[Seu+19; SLM20]. This pattern persisted in the 5G tests, affirming the network’s re-
liability and minimal loss profile. A noticeable sensitivity of QUIC and HTTP3 to
payload size was evident, particularly impacting the median response delay.

In the AWS scenario, the behaviour of protocols notably deviates from that observed
in the other environment, with HTTP1.1 displaying almost a 1ms reduction in me-
dian response delays compared to TCP and exhibiting a broader interquartile range.
This anomaly is potentially attributed to the cloud providers’ traffic management poli-
cies or security protocols that influence specific types of traffic, specifically pure TCP
and QUIC without an accompanying application protocol, being restricted or depri-
oritized. Additionally, a unique aspect of the AWS environment is the differential
treatment of packet decryption. HTTP1.1 packets with TLS/TCP remain encrypted,
while those transmitted via HTTP3 and QUIC are decrypted while our data collec-
tion, likely due to stringent security protocols in the data centre, influencing the delay
dynamics associated with HTTP1.1 in this specific context.

AWS also exhibited diminished response delay variances compared to Ethernet and
5G, a phenomenon further elaborated in Figure 8.2. This consistency, though benefi-
cial, is partly due to the relatively long network latency under this scenario, as well as
the opaque nature of the execution and networking environment within AWS’s ECS,
where user control is limited, and certain operational details remain unknown.

In the low frequency case (d ≥ 25ms), HTTP1.1 and HTTP3 operate over a single,
persistent connection at the transport layer, TCP, or UDP, respectively. HTTP1.1

94

8.3 Evaluation Results

Ethernet 5G AWS
0

5%

10%

15%

Scenario

Jit
te

r

TCP QUIC HTTP1.1 HTTP3

Figure 8.2: The jitter of different protocols under three scenarios, with payload size p = 256bytes and sampling
rate d = 25ms.

benefits from the persistent and reusable nature of TCP connections, reducing the
overhead of repeated handshakes. In contrast, HTTP3, while operating over a single
UDP connection, initiates a new bidirectional stream for each request-response pair.
This mechanism, while efficient, introduces an overhead as the server must consis-
tently send MAX_STREAMS QUIC frames to allow the cumulative opening of new
streams. This process, paired with the separate acknowledgments for each stream,
enlarges the response delays and augments jitter, marking a distinct operational char-
acteristic of HTTP3 in low-frequency communication systems.

High-frequency cases

In scenarios characterized by a high-frequency case, where network latency surpasses
the plant sampling interval d, protocols necessitate a multiplexing function for op-
timal performance. The comparison here is streamlined to HTTP3 and HTTP1.1,
as pure TCP or single stream QUIC are unequipped for such tasks. A representa-
tive illustration of this is presented in Figure 8.4, showcasing the performance of the
two protocols at a 5ms plant sampling interval amidst an average network latency of
10.688ms, as observed in the 5G scenario. The choice of the 5G environment for this
analysis is anchored on its higher latency profile compared to Ethernet and a more
user-manageable computational setting than AWS.

95

Transport layer protocols in Cloud Control Systems

PSH DATAreqk , ACK

PSH DATAresk , ACK

PSH DATAreqk+1 , ACK

PSH DATAresk+1
, ACK

HTTP1

STREAM(n) DATAreqk

ACK, STREAM(n) DATAresk

ACK

MAX_STREAM

STREAM(n+4) DATAreqk+1

HTTP3

Figure 8.3: Data packet flows in a single HTTP1.1 persistence connection and HTTP3.

A noticeable shift in performance dynamics is evident here, with HTTP3 display-
ing enhanced efficiency in terms of both response delay and jitter, a departure from
its performance in the low-frequency context. In situations where the network la-
tency exceeds the plant’s sampling interval d, HTTP1.1 encounters challenges due to
head-of-line blocking. This issue manifests when delayed packet inhibit the entire
connection, culminating in escalated response delays and jitter. In order to mitigate
this, applications leveraging HTTP1.1 can initiate a new TCP connection for ensuing
requests, even before the arrival of responses to preceding ones.

HTTP1.1’s strategy to counter HOL blocking, however, is not seamless. It involves
opening new TCP connections for upcoming requests if the responses for previous
ones are yet to be received. This process, while functional, can lead to an increased
establishment of sessions and potentially, an elevated overhead due to repeated trans-
port and cryptographic handshakes. This manner is depicted in Figure 8.5, where the
number of established sessions per 1000 requests rises in conjunction with increased
communication frequencies, intricately influenced by the dynamics of network la-
tency and jitter. HTTP3, conversely, exhibits an inherent advantage by permitting
multiple streams concurrently for several requests without the necessity for additional
handshakes, echoing its operation in low-frequency scenarios. This capability un-
derscores HTTP3’s superior performance metrics in high-frequency environments,
particularly in response delay and jitter.

96

8.3 Evaluation Results

20

30

5G
Re

sp
on

se
D

ela
y

(m
s)

HTTP1.1 HTTP3

128 256 512 10240

5%

10%

15%

Payload (bytes)

Jit
te

r

Figure 8.4: Comparison of response delay (top) and jitter (bottom) performance between HTTP1.1 and HTTP3
under the 5G scenario with increasing payload size and a sampling rate of d = 5ms. The y-axis of
the response delay performance is broken from origin start.

8.3.2 Data Volume

In Figure 8.6, we display the data volume outcomes from experiments conducted un-
der the 5G scenario, with each request and response carrying a payload of 128 bytes.
This scenario is selected for its higher network latency and the controllable nature of
the edge cloud environment. The results reveal that HTTP1.1 incurs a more substan-
tial data volume per request compared to HTTP3 across all test cases. This increase
is attributed to TCP’s larger header size compared to UDP and QUIC, leading to an
enlarged packet size for HTTP1.1 even when the payload remains constant.

A comparison of the data volume per request and the actual HTTP packet sizes un-
derscores that HTTP1.1’s data volume aligns more closely with its actual packet size

97

Transport layer protocols in Cloud Control Systems

5 10 25 50 75 100128 256
512 1024

1

100

Interval(ms) Payload (bytes)

N
o.

of
TC

P
se

ssi
on

s
pe

r1
00

0
re

qu
es

ts

Figure 8.5: Average number of TCP sessions established in HTTP1.1 experiments for 1000 requests under dif-
ferent plant sampling intervals and payload sizes. The z-axis value indicates the number of sessions
per 1000 requests. In the higher frequency case with a sampling interval of d = 5ms, approximately
100-200 sessions were established for every 1000 requests. This number decreased to less than 15
sessions per 1000 requests when the sampling interval was d = 10ms. When d was greater than
50ms, typically only 1 or 2 sessions were used during each experiment.

than HTTP3’s does. This suggests that HTTP1.1’s overhead is predominantly a re-
sult of the protocol’s substantial header size, whereas HTTP3’s overhead stems from
stream control frames and ACK packets, as previously mentioned.

A noteworthy observation is the significant spike in HTTP1.1’s data volume in the
high-frequency case, where the sampling rate is d = 5ms. This surge is a consequence
of the frequent TCP session establishments characteristic of this scenario, as evidenced
in Figure 8.5, leading to an inflated network overhead from handshake packets. Gen-
erally, when considering the costs associated with public cloud controller deployment,
HTTP3 emerges as a cost-effective alternative to HTTP1.1, owing to its reduced data
volume footprint.

8.4 Conclusion on CCS performances over different protocols

This chapter delves into the exploration of the potential advantages that QUIC/HTTP3
holds over traditional TCP-based protocols within the context of CCSs. Our exper-
imental design, covering three distinct network scenarios, centres around the assess-
ment of protocols based on pivotal parameters: system response delay and jitter, and
the data volume incurred.

A notable finding is the economic efficiency of HTTP3, underscored by its reduced

98

8.4 Conclusion on CCS performances over different protocols

0

200

400

600

Payload size

HTTP3 packet size

HTTP1.1 packet size

D
at

av
ol

um
e

(b
yt

es
/re

qu
es

t)

5 10 25 50 75 100

600

400

200

0

Payload size
HTTP3 Packet size

HTTP1.1 Packet size

Interval (ms)

D
at

av
ol

um
e

(b
yt

es
/re

sp
on

se
)

HTTP1.1 HTTP3

Figure 8.6: Data volume per request (top) and per response (bottom) under the 5G scenario with different
sampling intervals and payload size of 128 bytes. The bar charts depict the data volume generated
by different protocols, where the red lines represent the payload size of 128 bytes. Additionally, the
orange and blue lines denote the data volume generated by a single HTTP1.1 and HTTP3 request
and response.

per-request data generation. This attributes to its potential as the preferred choice for
public cloud controller deployments, marking a shift towards cost-effectiveness.

When exploring the latency landscape, an interesting dynamic unfolds. In scenarios
characterized by low-frequency control systems and negligible network latency, QUIC
and HTTP3 lag behind TCP and HTTP1.1 in performance–a consistency echoed in
some existing literatures. However, the narrative shifts in high-frequency contexts
where network latency is significant; here, HTTP3 excels, showcasing reduced and
more consistent response delays. This characteristic positions it as a viable candidate
for time-sensitive applications and intricate control designs.

The granular analysis of protocol performance in high-frequency scenarios reveals a
nuanced advantage of HTTP3 in CCSs, underscored by its reduced latency and jitter
—even though the margin of improvement over HTTP1 is marginal, clocking at just
2 or 3 milliseconds.

As control systems are obligated to regularly send updates on the plant’s state, the
role of network latency becomes paramount, especially when it exceeds the plant’s

99

Transport layer protocols in Cloud Control Systems

sampling interval d. In this context, the plant is compelled to dispatch the next batch
of state data, irrespective of whether a response to the preceding request has been
received. This pattern leads to a scenario where control signals are expected to be acted
upon before the emission of subsequent state updates, a situation that is complicated
further when the arrival of expected control signals is delayed.

To mitigate these challenges, the implementation of intricate delay compensation
strategies becomes essential, a topic that we will delve deeper into in Part IV of this
thesis. In this domain, the virtues of HTTP3 become prominently beneficial. The
protocol’s diminished latency and jitter are instrumental in refining the precision of
delay estimations, a factor that is central to the optimization of sophisticated control
systems.

Thus, from the perspective of enhancing control performance in environments where
time sensitivity is a critical attribute of CCSs, the conversation favours HTTP3. The
protocol emerges as a potentially revolutionary tool capable of elevating operational
efficiency and the granularity of control, heralding a new era of enhanced performance
and reliability in Cloud Control Systems.

100

Summary

This part outlines our implementation of Cloud Control Systems (CCSs) and the en-
suing evaluation of system performance under various protocols, network conditions,
and computing environments. Our results highlight a promising performance that
aligns with the network QoS requirements of diverse CCSs. However, it is impor-
tant to note that the majority of these tests were conducted using a basic client-server
model, without a deep dive into the nuanced performance aspects of an actual control
system.

Indeed, there are instances where the control task may encounter failures due to sys-
tem constraints. A representative example of this is the deployment of a time-sensitive
application operating at a high frequency across a network characterized by signifi-
cant latency. In such scenarios, the limitations of the current setup become evident,
necessitating enhanced solutions to ensure seamless operation.

As we progress to the subsequent part, our focus will shift towards devising strate-
gies to augment the robustness and efficiency of CCS operating in the unpredictable
terrains of wild cloud and networks. We aim to enhance the system’s adaptability, en-
suring that it delivers optimal performance even when deployed over networks with
inherent variability and unpredictability. This initiative is particularly pertinent for
applications of Cloud RAN and CCS that are dependent on the reliability and re-
sponsiveness of network infrastructures to meet their operational mandates.

In essence, our forthcoming exploration is dedicated to uncovering and implementing
remedies that will elevate the resilience and performance of cloud integrated systems
operating in diverse and often challenging network and cloud environments, ensuring
that they not only meet but exceed the anticipated QoS benchmarks.

101

Part IV

Punctual Cloud for Time-critical
Cloud Integrated Systems

Introduction

In the preceding part, we engaged in a detailed exploration of systems controlled via
wild networks and the cloud. This part advances that narrative, focusing acutely on a
pivotal challenge: system-induced delay. We introduce the concept of punctuality as
a foundational element to ensure optimal functionality in real-time and time-critical
systems operating in cloud environments.

Real-time applications are anchored in the promptness of responses from their com-
putational tasks. Delays, especially those protracted, can result in outdated actua-
tion signals leading to potential system failures. Conventionally, such applications
are housed close to the process’s consumer, ensuring immediacy in responses. How-
ever, the cloud environment, marked by its network separation, unpredictable virtu-
alization, and complex software layers, introduces inherent delays and disturbances
[GCL14; Ha+16; WN10; Dre08; Lar+20].

While the cloud, especially its edge and fog architectural variants, has shown promise
in accommodating real-time applications, yet the inherent and variable delays pose
challenges in mirroring the responsiveness of on-board computing environments, as
detailed in Chapter 3. Given the financial and technical impracticality involved in
transforming existing infrastructures for ultra-low latency communication, we pro-
pose an adaptive approach for applications, positioning them to naturally accommo-
date the cloud’s latency landscape.

In this progression, we unveil the Punctual Cloud framework, a novel approach en-
gineered to guarantee timely response deliveries amidst the inherent cloud-induced
delays. This part is tailored to provide nuanced insights into the application of this
framework in both Cloud RAN and Cloud Control Systems (CCSs), accepting the
unavoidable and stochastic nature of network latency and crafting strategies to mini-
mize its impacts.

Our discussion commences with an in-depth analysis of the punctual cloud frame-
work’s integration within a Cloud RAN system, with a special emphasis on resource

105

allocation challenges. We begin in the confines of a simulated environment to grasp
preliminary insights and understandings. This foundational knowledge from the sim-
ulation paves the way for the framework’s application in a real-world context, utilizing
a Kubernetes cluster in our lab to bring theory into practice.

Following this, the focus shifts to the implementation of the punctual cloud frame-
work in a CCS. Here, the BnB control plant, previously explored in Chapter 7, serves
as a practical example to illustrate the framework’s adaptability and efficacy in real-
time operational settings.

It’s important to remember that there is not a “one size fits all” approach when it
comes to applying our framework. Each deployment is a bit different, tailored to fit
the unique needs and characteristics of every system, whether it is being tested in a
simulation or applied in a real cloud environment. These customizations are necessary
because each system has its own specific needs and QoS requirements.

But even with these differences, there is a common element that ties all deployments
of our framework together - its core logic. It is like having a universal remote that
can be easily tweaked to control a variety of devices. This means that, with just a few
small adjustments, the framework can be applied to a broad range of cloud integrated
systems, ensuring they respond in real-time and perform at their best, no matter the
environment they are in.

106

Chapter 9

Punctual Cloud for Latency-aware
Resource Allocation in Cloud RAN

Building on the discussions in Chapter 6, this chapter revisits the resource allocation
problem of Cloud RAN, specifically within the context of massive MIMO uplink
pilot scheduling in an Industry 4.0 environment. The difference of this system from
Chapter 6 is that, it addresses the stochastic nature of a Cloud RAN system in the
resource allocation problem, and implements the system in cloud infrastructure in a
microservice paradigm.

In this chapter, we roll out the punctual cloud framework as a specialized radio re-
source allocation strategy for Cloud RAN. This strategy is designed to mitigate the
impact of the unpredictable delays inherent in cloud environments. Alongside this,
we also introduce a simulation model of the Cloud RAN system, using it to evaluate
the effectiveness of our framework in an Industry 4.0 context.

Our discussion continues with a real-world implementation of this framework within
our lab’s Kubernetes edge cluster. Our empirical findings indicate that adopting
the resource allocation mechanisms of the punctual cloud framework substantially
improves the system’s radio resource utilization. Importantly, this optimization is
achieved without sacrificing the reliability of communications. Thus, the punctual
cloud framework offers a robust and flexible solution to the challenges posed by cloud-
induced variability.

107

Punctual Cloud for Latency-aware Resource Allocation in Cloud RAN

9.1 Targeted System

The operational context for this investigation mirrors that of the Cloud RAN system
outlined in Chapter 6 and depicted in Figure 6.1. We focus particularly on an indoor
factory automation setup where UEs, also referred to as industrial units, interact via
a network managed by Cloud RAN. Given that these industrial units predominantly
comprise industrial IoT devices, their density can be substantial—up to 10000 devices
per km2 according to [Gro19].

In the Cloud RAN system, a scheduler operates in real-time to distribute available
radio resources to these industrial units, guided by an allocation policy. The primary
aim of such policies is generally to mitigate resource starvation, collision, and network
congestion. In this Cloud RAN system, allocation decision-making, also called as the
scheduler, is performed at the BBU pool and subsequently executed by the RRH.

As we delineated in Chapter 6, the two main types of industrial units are taken into ac-
counts in our system: Critical Units (CUs) and non-Critical Units (non-CUs). While
our focus remains on the CUs for the resource allocation challenge, non-CUs enti-
ties are treated as background traffic. The pilot scheduling predominantly prioritizes
transmission requests from CUs, only addressing non-CUs once all CUs have been
adequately serviced during a coherence interval of the massive MIMO time-frequency
space.

The scheduling operation, located in the BBU pool, is executed as a general-purpose
cloud service. Typically, such services are backed by an array of worker nodes that
share virtualized resources. A load-balancer then distributes incoming requests among
these nodes. This design inevitably leads to a stochastic and dynamic character to
Cloud RANs, much like any cloud service. This variability, termed “cloud delay”,
accounts for not just network latency but also request admission and execution times
in the cloud. In the context of Cloud RAN, this randomness can inject disruptive
delays into the signal processing chain of a BBU.

When it comes to radio resource allocation, these delays can trigger inaccurate assign-
ments to industrial units. We discussed in Chapter 6 how this affects the trade-offs
between resource utilization and transmission reliability. Consequently, there is a
growing need for purpose-built scheduling algorithms capable of mitigating the im-
pact of these system-induced disturbances.

108

9.2 System Model

Scheduling
Decision
Process

BBU Pool

Updating
Process

RRH

Allocation
Process

CU1

CU2

CUN

…

Pending
Transmissions

updatemessages

decision

messages

Figure 9.1: System model of targeted Cloud RAN system under punctual cloud framework.

9.2 System Model

This section details a model of the Cloud RAN system as structured under the punc-
tual cloud framework, as illustrated in Figure 9.1. The core components of this system
include a collection of CUs, as well as a Cloud RAN infrastructure that encompasses
both a RRH and a BBU pool.

As indicated in Figure 9.1, update messages are transmitted from the RRH to the
BBU within the Cloud RAN framework. The BBU, in turn, sends back a scheduling
decision. Both these update and decision messages experience delays attributable to
the stochastic nature of the cloud system.

9.2.1 Cloud Delay

Radio resource allocation over Cloud RAN includes information dissemination be-
tween the RRH and the BBU, as described in Section 9.2. Here we denote update
message as the information sent by the updating process at RRH to the scheduling
decision process resides in the BBU pool. Likewise, a decision message originates
from the BBU pool to the allocation process at RRH.

The cloud, its opaque management systems, shared infrastructure, and intermedi-
ate network incur a stochastic delay. This delay is represented as two independent
stochastic variables, Tupdate and Tdecision, representing the time for making and deliv-
ering update and decision messages.

The two types of delays encompass all facets of time lags in the cloud environment,
including execution times, admission and queuing delays. Additionally, these delays
account for the time taken along the communication path of a given message. Re-
sponse delay, as formulated in Equation (9.1), describes the time span between the
sending of an update message and the receipt of the corresponding decision message.

109

Punctual Cloud for Latency-aware Resource Allocation in Cloud RAN

Tr = Tupdate + Tdecision (9.1)

9.2.2 Industrial Units

In the model, we use N to represent the number of active CUs within the radio
range of the RRH. Let CUn stand for the nth active CU, where n is an integer
belonging to the set {1, 2, ..., N}. Transmissions from each CUn to the RRH are
initiated according to a stochastic process, and the time interval between consecutive
transmissions from CUn is designated as cn.

In this setup, a CU can only successfully transmit data during a coherence interval if
it has been allocated a pilot signal. Each transmission initiated by CUn carries with
it a deadline, denoted as Dn. If a transmission is not allocated a pilot before reaching
this deadline, it is considered a failed transmission and is subsequently discarded.

9.2.3 Massive MIMO Pilot Scheduling

During each coherence interval, the pilot scheduling process for the massive MIMO
uplink allocates pilot signals to the available CUs. For broader context, we consider
each coherence interval as a time slot, with its duration represented by Ts. We also
assume that the RRH and BBU pool are synchronized in terms of time, meaning that
a slot k signifies the same time interval for both entities.

As slot k commences, the RRH informs the BBU pool about its present state, specifi-
cally the number of pending transmissions for each CUn, symbolized by Qn(k). We
refer to Qn(k) as the state of CUn. The collective state of all CUs at slot k is thus
expressed as Q(k) = {Q1(k), Q2(k)..., QN (k)}.

Upon receiving this information, the BBU pool carries out the pilot scheduling and
sends the decision message back to the RRH, which then acts upon it. A schedul-
ing decision intended for slot k is denoted by P(k) = {P1(k), P2(k), ...PN (k)},
defined as:

Pn(k) =

{
1 allocate pilot to CUnat slot k
0 not allocate pilot to CUnat slot k

(9.2)

During each slot k, the RRH allots pilots to active CUs as per the decision P(k).
Let p be the total number of pilots available for each slot. Therefore, a maximum of

110

9.3 Problem Definition

p CUs can be allocated pilots in a single slot. If Pn(k) = 1, then N transmissions
from CUn can proceed during slot k, making k the actuation slot for P(k).

9.3 Problem Definition

This section detail the complexities introduced by the stochastic behaviour of a Cloud
RAN system in the context of the pilot scheduling process.

Initially, we examine the limitations of a naive pilot scheduling scheme, as employed
and analysed in Chapter 6. This scheduling scheme does not factor in the inherent
delays within the Cloud RAN infrastructure. In this setup, the scheduler is activated
each time it receives an update message at the BBU pool. Upon processing, a corre-
sponding scheduling decision is sent back to the RRH. Ideally, the complete cycle of
receiving an update and sending back a decision should be accomplished within one
time slot. This is because the RRH’s state could change by the next slot, triggering a
new update and subsequent decision-making cycle.

However, failure to account for the unpredictable delays in the delivery of update
messages and scheduling decisions can result in timing issues. Specifically, a decision
P(k) formulated in response to an update Q(k) might not be executed at the in-
tended slot k in a timely manner. As illustrated in Figure 9.2, such stochastic delays
can cause decisions to arrive either too late, after the corresponding update messages
have expired, or in an incorrect sequence. This can result in inaccurate pilot allocation
and deteriorate performance metrics, as observed in Chapter 6.

Therefore, it becomes imperative to design resource allocation algorithms that are
robust to cloud-induced delays. In other words, irrespective of the variability in cloud
delays, the Cloud RAN system should ensure that the majority of scheduling decisions
are both timely and relevant, aligning well with the transmission requests they are
intended to serve.

In our analysis, we primarily focus on three key performance metrics: punctuality,
pilot utilization, and reliability. These metrics serve to assess the effectiveness of any
given scheduling scheme within a Cloud RAN system.

9.4 Performance Metrics

Below we define the three performance metrics, along with a series of challenges based
on the three properties.

111

Punctual Cloud for Latency-aware Resource Allocation in Cloud RAN

BBU
k

RRH
k

0 1 2 3 4 5 6

Q(0) Q(1) Q(2)

P(0)

P(1)

P(2)

Q(0) expires
Q(1) expires
Apply P(0)

Apply P(2)

Tupdate

Tdecision

Ts

Figure 9.2: Consequences of stochastic cloud delays on subsequent update message Q(k) and underlying de-
cisions P(k).

9.4.1 Punctuality (R)

As aforementioned, the “cloud delay” can make some decisions out-of-date by the
time they are put into action. When this happens, we say the decision was “not
timely applied”. On the other hand, if a decision gets implemented right when it is
supposed to, we call this a “timely applied decision”.

Punctuality, denoted by R, is essentially how often decisions get applied on time.
It’s calculated as a ratio over a certain time frame. For example, between time slots
ki and kj if we have got K decisions that were timely applied, then we can compute
punctuality Rki:kj as Equation (9.3).

Rki:kj =
K

kj − ki
(9.3)

With stochastic delays in the system, decisions can arrive late or even out of sequence,
causing fewer of them to be “timely applied”. When decisions are applied at the wrong
time slots, the system can get confused about what resources are actually available,
which can lead to mistakes. These errors can impact pilot utilization, reducing the
overall efficiency of the system.

112

9.4 Performance Metrics

9.4.2 Pilot Utilization (β)

We use pilot utilization to evaluate the performance of the pilot scheduling strategy.
Under the industrial scenario described previously, when the CUs and non-CUs co-
exist and share the same mobile network, the non-CUs will get the remaining pilots
in a slot when all transmissions from the CUs have been served. Therefore, unused,
or wasted, pilots is highly undesirable. A pilot is wasted every time it is assigned to a
CU that has nothing to transmit. This can occur if a scheduling decision is based on
an outdated RRH state and if scheduling decisions are not delivered timely.

The decisionP(k) determines which CUs will be allocated pilots at time slot k. Since
there are only p pilots available in any given slot, the decision should adhere to the
constraint

∑N
1 Pn(k) ≤ p.

Assuming that a CU that is assigned a pilot can serve N transmissions, the actual
number of pending transmissions for a specific CUu at time is Qu(k). This leads to a
certain number of wasted pilots for CUu at that time slot, which we denote as ωu(k).

ωu(k) = max(0, (1− Qn(k)

N
)Pn(k)) (9.4)

This leads to the pilot utilization β(k) for all CUs in this allocation:

β(k) = 1−
∑N

n=1 ωn(k)∑N
n=1 Pn(k)N

(9.5)

9.4.3 Reliability

The metric of reliability is crucial in any network system, and in the context of re-
source allocation in a Cloud RAN system, it is particularly important. Reliability in
this setting is related to transmission loss, as defined in Chapter 6. Transmission loss
is the ratio of the number of expired, unserved transmission requests to the total num-
ber of transmission requests made by all CUs. Therefore, the formula for calculating
the system’s reliability is as follows:

Reliability = 1− Expired transmission requests
Total transmission requests

(9.6)

Here, a higher value of “reliability” indicates fewer lost or expired transmission re-
quests, which in turn suggests a more efficient and reliable system.

113

Punctual Cloud for Latency-aware Resource Allocation in Cloud RAN

Scheduling Decision
Process

P(k̂),P(k̂) Allocation
Process

Updating
Process

Q(k), c(k),Tdecision(k), Rk−Ts/Tc:k

Figure 9.3: Diagram illustrating the Cloud RAN scheduling process during time slot k. The figure shows the
sequence of events beginning with the transmission of an update message from the RRH to the
BBU pool. An allocation decision based on the received P(k) is subsequently actuated at the RRH.
Simultaneously, the BBU pool formulates a scheduling decision for a future time slot, denoted as
k̂, and transmits this decision back to the RRH.

9.5 Punctual Cloud for Radio Resource Allocation

Based on the model and the performance metrics defined for the scheduling process,
a custom-built scheduler tailored for an industrial scenario in a Cloud RAN system
should aim to achieve two primary objectives:

1. Fairly allocate pilots to all CUs with pending transmission requests before these
requests expire.

2. Avoiding starvation of the background traffic, which is a consequence of re-
source waste.

As demonstrated in Chapter 6, a naive scheduling approach can indeed meet the
reliability standards required for industrial applications by keeping the loss rate under
5%. However, such a naive method comes at the cost of excessive pilot waste in order
to maintain high reliability.

Given the inherently stochastic nature of Cloud RAN, we introduce the Punctual
Cloud Framework, featuring a novel resource allocation strategy that ensures the
timely delivery of scheduling decisions. This framework adeptly manages the delayed
and out-of-sequence messages that are characteristic of a stochastic Cloud RAN sys-
tem. As a result, we observe a significant improvement in pilot utilization without
sacrificing reliability—maintaining the loss rate under the 5% threshold. A compre-
hensive overview of this innovative framework is depicted in Figure 9.3.

Our proposed punctual cloud framework divides the pilot scheduling process over
Cloud RAN into three sub-processes:

• The allocation process on RRH that allocates the pilots to the CUs with pend-

114

9.5 Punctual Cloud for Radio Resource Allocation

BBU
k

RRH
k

0 1 2 3 4 5 6

Q(0) Q(1) Q(2)

P(1) P(2)

P(3)

Apply
P(1)

Apply
P(2)

Apply
P(3)

Figure 9.4: Time series plot of subsequent update messagesQ(k) and decision messagesP(k) under the punc-
tual cloud framework.

ing transmissions.

• The updating process that sends the updates about the pending transmissions
to the BBU pool by the RRH.

• The scheduling decision process that makes the scheduling decisions in the
BBU pool and sends the decisions to the RRH.

As depicted in Figure 9.4, our punctual cloud framework addresses the challenges of
stochastic delays by designing the updating process and scheduling decision process
to function asynchronously and independently. In this architecture, the BBU pool
periodically generates scheduling decisions for a prospective actuation slot, denoted
as k̂. These decisions are formulated based on the predicted time of arrival for the
decision itself, along with an estimated state of the RRH at that future time, k̂.

It is worth noting that the actual state, represented by Q(k̂), may not yet be available
at the BBU pool when the decision for k̂ is made. To overcome this limitation, our
framework relies on a robust state estimation methodology that leverages historical
data from previous updates. Additional mechanisms, such as message buffering and
redundancy, are also implemented to ensure timely application of scheduling deci-
sions.

In the subsequent sections, we delve into the intricacies of each sub-process, describing
how they collectively contribute to robust and efficient resource allocation in our
Cloud RAN system.

115

Punctual Cloud for Latency-aware Resource Allocation in Cloud RAN

9.5.1 Updating Process

At each time slot k, the RRH sends an update message to the BBU pool. This message
serves the function of enabling state estimation for the RRH within the BBU pool.
The constituents of the update message are as follows:

• Pending Transmission Requests: Represented by Q(k), this informs the BBU
pool about the number of pending transmission requests for CUs.

• Inter-Arrival Times: Denoted by c(k) = {c1(k), c2(k), ...cN (k)}, these
times capture the intervals between transmission requests from each CU that
arrived during the preceding slot k − 1. Given that the inter-arrival time cn
may be shorter than the length of a time slot Ts, a CU could potentially release
multiple transmission requests during that time. Consequently, cn(k) is a set
comprising all the inter-arrival samples for CUn as measured during slot k−1.

• Measured Decision Delays: This array, denoted by Tdecision(k), encapsulates
the measured delay samples for decision messages that have arrived during the
time slot k − 1.

Additionally, at regular intervals defined by Tp, the update message from the RRH
includes the punctuality metric capturing the efficiency of resource allocation over
the last Tp time period. If sent at slot k, this is denoted as Rk−Tp/Ts:k. For the
sake of simplicity—and given that Tp remains constant–we use R(k) = Rk−Tp/Ts:k

to signify the punctuality value forwarded at slot k. This metric contributes to the
horizon prediction of decision arrivals in the scheduling decision process.

9.5.2 Allocation Process

At each slot k̂, after the update message has been sent, the RRH executes the allocation
process based on the received decision. This process assigns pilots to the active CUs.
The intricacies of the allocation process are illustrated in Figure 9.5.

To address the challenges of decisions arriving too early, too late, or out of sequence,
we advocate for the use of a decision buffering mechanism at the RRH. In this ap-
proach, the RRH stores incoming decisions and only implements them at their spec-
ified actuation slots. Should a decision fail to arrive in time for its intended actuation
slot, the RRH will instead apply a stored decision, P(k̂′), designated for the time
slot k̂′, that is closest to k̂. This strategy operates under the rationale that the state
estimate for the slot closest to the intended one will, on average, provide the next best
approximation.

116

9.5 Punctual Cloud for Radio Resource Allocation

Decision Buffer

All incoming P(k̂i)

At slot k̂

P(k̂) in
Buffer?

Apply P(k̂)

Yes

Timely
applied decision

Find P(k̂′)

k̂′ nearest to k̂

Apply P(k̂′)

No

P(k̂′)

Not timely
applied decision

Figure 9.5: Allocation process at RRH.

9.5.3 Scheduling Decision Process

The scheduling decision process within the framework is orchestrated to formulate a
decision P(k̂) at the BBU pool, intended for execution at a future time slot k̂. To
make an effective scheduling decision, the process needs to estimate:

1. The exact time slot k̂ at which the scheduling decision will be actuated by the
allocation process.

2. The number of pending transmission requests from each CU at time k̂, denoted
by Q(k̂).

Consequently, the scheduling decision process is segmented into three sequential sub-
processes: arrival estimation, horizon prediction, and queue estimation. These sub-
processes collectively provide the necessary estimates for making an informed schedul-
ing decision, as depicted in Figure 9.6.

In subsequent sections, we elaborate on each of these sub-processes. It is worth noting
that alternative methods could be employed within each sub-process, provided they
maintain the prescribed inputs and outputs, as outlined in Figure 9.6.

117

Punctual Cloud for Latency-aware Resource Allocation in Cloud RAN

Send Decisions

Scheduling Decision

Queue
Estimation

Arrival
Estimation

Horizon
Prediction

cn(k)
Qn(k)

Tdecision(k)

R(k)

λ̂n H(k̂)

Q̂n(k̂)

Pn(k̂)

{Pn(k̂),Pn(k̂)}

Figure 9.6: Scheduling Decision process in the BBU pool based on the update message sent by the RRH at time
k. The process performs a decision expected to be applied by the RRH at slot k̂, where k̂ ≥ k

Scheduling Decision

The scheduler formulates a decision, P(k̂), intended for application at a future time
slot, k̂. This decision is made based on an estimated state of the RRH on all active
CUs at slot k̂.

While our approach employs a greedy allocation strategy, it should be noted that
alternative scheduling methodologies can also be utilized. Specifically, the decision
for CUn is set to Pn(k̂) = 1 if Qn(k̂) is non-zero and ranks among the p highest
values within the set Q(k̂).

The decision message dispatched by the scheduler includes not only the freshly made
decisionP(k̂), but also h redundant decisions, denoted as P(k̂) = {P(k̂−1),P(k̂−
2), ...P(k̂− h)}. These redundant decisions are intended for actuation slots preced-
ing k̂. The incorporation of redundancy ensures that even if a decision aimed for slot
k̂ experiences delays—arriving later than its designated actuation slot—subsequent
decision messages might still deliver it in a timely manner to the RRH. This mech-
anism not only enhances the likelihood of timely decision implementation but also
optimizes resource utilization, as demonstrated in the subsequent results section.

118

9.5 Punctual Cloud for Radio Resource Allocation

Queue Estimation

The decision P(k̂) is indented for actuation at a future slot k̂. This necessitates an
estimation of the system state at that future slot, which is denoted as Q̂(k̂).

For the sake of this estimation, we consider the most recent update message received
by the BBU pool, which provides the state Qn(k) for CUn. Assuming an average
arrival rate of transmission requests for CUn to be λn, and a predicted time horizon
H(k) from the current slot k to the future slot k̂, the queue sizes Q̂n(k̂) can be
estimated, as detailed in Equation (9.7).

Q̂n(k̂) = Qn(k) + λn × (k̂ − k)× Ts −
k̂−1∑

κ=k

Pn(κ)

where k̂ = k +H(k)

(9.7)

The term
∑k̂−1

κ=k Pn(κ) represents the cumulative decisions anticipated to be executed
from the current slot k up to slot k̂ − 1.

Arrival Process Estimation

In Equation (9.7), the term λn × (k̂ − k) × Ts is used to predict the number of
transmission requests that have been released by CUn during k and k̂. We use Ex-
ponential Moving Average (EMA) to estimate the average inter-arrival time ĉn of the
transmission requests for CUn, which gives:

ĉ+n = αcĉ
−
n + (1− αc)cn (9.8)

Here, cn is taken from the inter-arrival time sample array cn(k) reported in the most
recent update message from the RRH to the BBU pool.

The term ĉ+n the updated estimate of cn, the inter-arrival time of transmission requests
from CUn. On the other hand, ĉ−k signifies the previous estimate. The weight αc

parameterizes the EMA estimator, determining the balance between the old and new
information. Subsequently, the average arrival rate for CUn can straightforwardly be
computed as follows:

λ̂n =
1

ĉ+n
(9.9)

119

Punctual Cloud for Latency-aware Resource Allocation in Cloud RAN

Predicted Time Horizon

Considering a scheduling decision based on an update message sent at time k, in-
tended for application at future slot k̂, where k̂ ≥ k, we introduce H(k) = k̂ − k,
as the predicted time horizon. This time horizon is vital in our approach as it deter-
mines the allowable delay for a decision message. A lengthier time horizon generally
improves the likelihood of timely decision application but introduces a trade-off of
increased estimation inaccuracy in queue estimation.

To calculate H(k), we propose a formula that incorporates an estimated average de-
cision delay T̂decision and an additional offset σ:

H(k̂) =
⌈ T̂+

decision
Ts

⌉
+ σ+ +

⌈Tupdate(k)

Ts

⌉
(9.10)

Here, the time horizon spans from k to k̂ and includes both Tupdate and Tdecision. We
solely need to estimate Tdecision as Tupdate(k) is a known duration from k to the time
when the scheduling decision is made.

The average decision delay is estimated using an EMA estimator with weight αd:

T̂+
decision = αdT̂

−
decision + (1− αd)Tdecision (9.11)

Similar to the average inter-arrival time estimator in Section 9.5.3, Tdecision is a sample
of the measured decision delay Tdecision(k) that is informed in the update message.
T̂−

decision is the previous estimate of the average decision delay.

We further propose a step-controller to adjust the offset σ, which operates based on
a feedback loop measuring the punctuality R(k):

σ+ =

{
σ− + 1 if R(k) < r

σ− Otherwise
(9.12)

Here, σ− serves as the previous offset value and is initialized to zero. The value r es-
tablishes the lower bound for the punctuality metric. The step-controller, as defined
in Equation (9.12), is activated under the condition that the average network delay
either shows minor fluctuations or increases. Should the estimated mean delay expe-
rience a decrease, the value of σ− is reset to 0, prompting the controller to recalibrate
the offset.

For accurate feedback, R(k) should be determined based on a sufficiently large se-
quence of past slots. We define a distinct sampling time Tp for the step controller
that is considerably greater than the length of a scheduling time slot Ts. As a result,

120

9.6 Simulation

Table 9.1: Parameters of Transmission Arrival Process

Parameter name Value Symbol
inter-arrival time mean 10 ms c
inter-arrival time std. 0.0005 δ
Number of CUs 20 U
Deadline of a transmission from CUn 10 ms Dn

R(k) is sampled every Tp/Ts slots. This design allows for the continual estimation
of T̂decision at each Ts, while adjustments to σ is made at the less frequent interval of
Tp.

9.6 Simulation

In this section, we describe the simulation we implement for evaluating the perfor-
mance of the punctual cloud framework over Cloud RAN. Our simulation evaluation
focuses on two key performance metrics: punctuality and pilot utilization. We inves-
tigate how these metrics are influenced by the inherent stochastic properties of Cloud
RAN through simulation.

The simulation environment is implemented using SimPy1. Each experiment was
executed for a total simulated system time of T = 200s, and the presented results are
derived from the average of 20 independent runs.

9.6.1 Simulation Parameters

The simulation model necessitates the configuration of various system parameters,
which are elaborated upon in the subsequent sections.

Arrival process of transmissions

To emulate traffic patterns relevant to time-critical industrial applications, we employ
the industry and IoT traffic models as outlined in [HMH18]. Each CUn initiates
transmissions following a homogeneous periodic stochastic process, where the inter-
arrival time cn is normally distributed as cn ∼ N (c, δ2). All parameters governing
the arrival process of these transmissions, along with the specific values employed in
our simulations, are summarized in Table 9.1.

1https://simpy.readthedocs.io/en/latest/

121

Punctual Cloud for Latency-aware Resource Allocation in Cloud RAN

Table 9.2: Parameters of Delay Distributions in the Simulation

Distribution name CV 2 Probability density function
Deterministic 0 p(x) = 1, when x = µ

Erlang 0.5 p(x) = (2
µ)

2xe−
2x
µ m

Exponential 1 p(x) = 1
µe

− x
µ

Hyper-exponential 2
p(x) = 1

2µ1
e
− x

µ1 + 1
2µ2

e
− x

µ2

µ1 = µ(1 +
√
2

2), µ2 = µ(1−
√
2

2)

Stochastic delay

To model the cloud delays Tupdate and Tdecision, we employ the exponential distribu-
tion family. For all these distributions, the mean delay value is set to µ. Our simu-
lation aims to explore how varying delay distributions and the mean delay µ impact
overall system performance.

In the simulation, we examine the system’s behaviour under different cloud delay
scenarios: deterministic, Erlang-distributed, Exponentially-distributed, and Hyper-
exponentially-distributed. Table 9.2 details the coefficient of varianceCV 2 and Prob-
ability Density Function (PDF) associated with each distribution. We varied the mean
delay, µ, in a range from 0ms to 4ms. Here, µ = 0ms serves as a baseline, representing
a scenario where the scheduler is co-located with the RRH.

Scheduling strategy

The parameters governing the allocation process, which is situated in the RRH, are de-
lineated in Table 9.3. These parameter values are aligned with the radio spectrum spec-
ifications of our massive MIMO testbed LuMaMi[Mal+17]. Meanwhile, Table 9.4
lists the parameters employed in the scheduling decision process, which is hosted in
the BBU pool.

Table 9.3: Parameters of the Allocation Process in the RRH

Parameter name Value Symbol
Scheduling time slot length 0.5 ms Ts

Number of available pilots per slot 12 p
Number of transmission requests served by a pilot 1 -

122

9.6 Simulation

Table 9.4: Parameters of the Decision Making Process at BBU

Component Parameter name Value Symbol
Arrival Estimation EMA weight 0.999 αc

Horizon Prediction
EMA weight 0.999 αd

Lower bound reference 90% r
Sampling time 2000ms Tp

Redundant Decisions No. of redundancy 2 h

9.6.2 Evaluation Methods

The primary goal of our evaluation is to demonstrate the efficacy of the punctual cloud
framework in counteracting the adverse effects of the Cloud RAN’s inherent stochastic
properties. Specifically, we aim to show that our framework enhances pilot utilization
without sacrificing the system’s reliability. To accomplish this, we focus on the frame-
work’s ability to address the challenges posed by delayed and out-of-sequence decision
messages. In the results section, we compare the performance of our punctual cloud
framework against three alternative methods that lack a comprehensive set of miti-
gation strategies. These comparative methods and their associated system parameters
are detailed in Table 9.5. For reference, the Naive Scheduling method is similar to
the one we employed for evaluating the Cloud RAN system in Chapter 6.

As previously outlined in Chapter 6, we have thoroughly examined the reliability
performance of the Cloud RAN system through simulation. Our findings confirm
that the system can sustain an availability rate exceeding 95%, aligning with industrial
standards as stipulated in [Gro19]. Therefore, our current simulation does not focus
on evaluating the system’s reliability performance.

For the present set of experiments, we adhere to the 95% availability criteria as a
baseline requirement, setting the maximum tolerable transmission loss at 5%. It’s
worth noting that, unless specifically mentioned, all performance metrics assessed in
this study adhere to this minimum availability threshold of 95%.

Table 9.5: Evaluated Scheduling Strategies in the Experiments

Method Name Parameters
Punctual Cloud Indicated in Table 9.4
Single Decision Same as Punctual Cloud but h = 0
Short Horizon Same as Punctual Cloud but h = 0,σ ≡ 0
Naive Scheduling Described in Section 9.3

123

Punctual Cloud for Latency-aware Resource Allocation in Cloud RAN

0 0.5 1 1.5 2

0.6

0.8

0.9

1

CV 2

Pu
nc

tu
ali

ty
Punctual Cloud Single Decision
Short Horizon Naive Scheduling

0 1 2 3 4

µ (ms)
(a) (b)

Figure 9.7: Timely applied decision for the four methods (a) under different delay distributions when µ=2ms
and (b) when µ increases for exponentially distributed delays.

9.7 Simulation Results

In this section, we delve into the results of our simulation to demonstrate the efficacy
of our proposed scheduling framework. Specifically, we focus on how our strategy
enhances pilot utilization rates while still fulfilling the industrial reliability standards
as outlined in [Gro19]. We first examine the outcome of our approach in terms of
the timely application of scheduling decisions. Subsequently, we explore how these
timely decisions influence the efficiency of the pilot scheduling process. Importantly,
all reported confidence intervals lie within a 10% range of the respective mean values.

9.7.1 Punctuality

Leveraging better punctuality performance, our scheduling strategy effectively coun-
ters the challenges presented by a Cloud RAN system. As a baseline for comparison,
Figure 9.7 shows that with the Naive Scheduling method, no decisions are applied in
a timely manner. This is primarily because the naive scheduler fails to consider the
cloud delays, causing all decisions to arrive later than their intended actuation slots.

124

9.7 Simulation Results

As depicted in Figure 9.7, extending the prediction horizon improves punctuality.
This improvement is evident when comparing the Naive Scheduling, Short Horizon,
and Single Decision methods, where the length of the prediction horizon successively
increases. Intuitively, a longer prediction horizon allows decisions to arrive earlier than
the intended actuation time, thus increasing their chances of being timely applied.
Furthermore, the complete punctual cloud framework includes redundant messages,
shows a higher punctuality rate across all experiments.

Interestingly, Figure 9.7 also demonstrates that the average delay length does not sig-
nificantly impact the punctuality performance. This stability is largely due to our
estimation of average decision delays. Moreover, a greater variance in the delay distri-
bution may actually enhance the punctuality. This intriguing finding mainly results
from the varying distributions we utilized to simulate cloud delays. Specifically, for
certain hyper-exponential distributions, the probability of d ≤ µ exceeds that in other
distributions.

In summary, punctuality performance is intricately linked to both delay distribution
and the prediction horizon. In this problem, we leverage the strategy outlined in
Section 9.5.3 to determine the prediction horizon. However, this remains an open
question, and alternative methods for prediction could also be effectively employed.

9.7.2 Pilot Utilization

Figure 9.8 illustrates the average pilot utilization achieved by our proposed uplink
pilot scheduling strategy, in contrast to that obtained with Naive Scheduling. It is
important to note that both the Punctual Cloud and the Naive Scheduling method are
able to maintain transmission losses below the 5% threshold mandated by industrial
standards. The Naive Scheduling approach adheres to these standards by repeatedly
assigning redundant pilots to serve a single transmission. While the Single Decision
and Short Horizon methods do enhance the punctuality performance compared to
Naive Scheduling, they fall short of meeting industrial standards. This shortfall is
because the increase in punctuality is insufficient to compensate inaccuracies resulting
from the extended prediction horizon.

Compared to Naive Scheduling, Punctual Cloud boosts pilot utilization significantly,
from less than 20% to over 90%. This demonstrates effective mitigation of stochastic
delays and out-of-order messages, the primary challenges associated with a Cloud
RAN system. When fewer pilots are wasted on the CUs, the system gains greater
capacity to accommodate traffic from non-CUs, thereby preventing the starvation of
these applications.

125

Punctual Cloud for Latency-aware Resource Allocation in Cloud RAN

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

CV 2

Pi
lo

tU
til

iza
tio

n
Punctual Cloud Single Decision
Short Horizon Naive Scheduling

0 1 2 3 4

µ (ms)
(a) (b)

Figure 9.8: Pilot utilization (a) under different delay distributions when µ=2ms and (b) as µ increases for ex-
ponentially distributed delay. Performances in dashed lines indicate that the methods didn’t meet
the reliability requirements.

Upon comparing Figure 9.8 with Figure 9.7, it becomes evident that pilot utilization
is closely tied to the punctuality performance. In essence, the more decisions that are
timely applied, the fewer pilots are wasted. However, it is also clear that pilot uti-
lization is not solely determined by punctuality; the delays still play a significant role.
Longer delays necessitate longer prediction horizons, introducing greater potential for
inaccuracies in the queue estimation at the RRH.

9.8 Implementation

We now turn our attention to the practical implementation of our proposed punctual
cloud framework. This is deployed on our lab Kubernetes cluster, comprising seven
nodes running Ubuntu 20.04. The Cloud RAN system is architected as a client-server
model, as illustrated in Figure 9.9. This setup aligns with our earlier implementation
of the CCS, depicted in Figure 6.7.

It is worth noting that the predominant architectural style for current cloud and net-
work applications is still RESTful, largely due to its proven maturity and stability

126

9.8 Implementation

RRH

Cloud

BBU
Update messages

Decision messages

Figure 9.9: System components in a general deployment of Cloud RAN.

[Diz+19]. To align with this industry norm, our implementation of the punctual
cloud framework leverages standard HTTP1.1 for deployment. As we will demon-
strate in the subsequent evaluation section, the operational latencies introduced by
transport and application-level protocols have a negligible impact on system perfor-
mance within our deployment model.

9.8.1 Punctual Cloud as Kubernetes Services

As previously elaborated, the resource allocation for the Cloud RAN system involves
three interconnected processes. The update and allocation processes are executed on
the RRH, which acts as the client sending periodic update messages to the BBU pool.
The BBU is hosted in our lab Kubernetes edge cluster and runs the scheduling decision
process as a cloud service.

In our practical setup, the update and allocation processes remain in simulation on
an Ubuntu desktop but transmit real-time update messages with a period Ts. Here,
we focus on the cloud-based scheduling decision process, consisting of three sub-
processes: arrival process estimation, queue estimation, and scheduling decision.

The scheduling decision process is adapted into two services, as shown in Figure 9.10.
The estimation service handles arrival process and queue estimations, while the schedul-
ing service executes decisions based on these estimates.

Both services are containerized and deployed in scalable Pods within the Kubernetes
cluster. Update messages from the RRH are transmitted via HTTP requests. These
are load-balanced by an Nginx2 ingress controller and directed towards the schedul-
ing service. This service, in turn, passes state information to the estimation service
through another HTTP request. The estimation service computes and returns the
prediction horizon and estimated state Q̂(k̂), enabling the scheduling service to gen-
erate and return the corresponding decision P(k̂).

2https://www.nginx.com/products/nginx-ingress-controller/

127

Punctual Cloud for Latency-aware Resource Allocation in Cloud RAN

RRH Simulation
(Ubuntu 20.04)

Kubernetes Cluster

Nginx Ingress

Estimation
Service

Scheduling
Service

Q(k),c(k)
t(k), d(k),

R(k)

P(k̂),P(k̂)

Q̂(k̂)

HTTP Request HTTP Response

Figure 9.10: Scheduling decision process as cloud application in Kubernetes

It’s worth noting that while we have used an Nginx ingress controller for load bal-
ancing, alternative configurations like NodePort are also viable. The choice of ingress
depends on the specific cloud environment and may be replaced by other load bal-
ancing solutions supported by the cloud provider.

Our modular architecture allows for easy adaptability to various real-time applica-
tions. The scheduling service remains consistent with naive scheduling and only com-
municates with the added estimation service. Additionally, while we’ve employed
HTTP for inter-service communication, adding a service mesh layer like Istio3 or
using other protocols like gRPC4 is straightforward.

The full code for both implementation examples—with and without a service mesh
—is available on GitHub5.

3https://istio.io
4https://grpc.io
5https://github.com/HaoruiPeng/cloud-scheduler-mesh

128

9.8 Implementation

BBU
k

RRH
k

0 1 2 3 4 5 6

Q(0) Q(1) Q(2)

P(2) P(3)

P(4)

Apply
P(2)

Apply
P(3)

Figure 9.11: Time series pilot of subsequent update messages Q(k) and decision messages P(k) in the imple-
mented punctual cloud framework.

9.8.2 Implementation details and deviations from simulation

It’s imperative to mention that the methods employed in the actual implementation
differ slightly from those used in simulation, primarily due to the practical constraints
of system synchronization and cloud delay measurement.

In our implementation, the RRH and BBU pool are not perfectly time-synchronized,
which prevents accurate measurement of cloud delays Tupdate and Tdecision without
additional synchronization mechanisms. Consequently, the scheduling decision pro-
cess at the BBU pool is initiated upon receipt of an update message from the RRH,
rather than operating independently. This behaviour is graphically represented in
Figure 9.11.

In the Horizon Prediction sub-process, the simulation assumed measurable cloud de-
lays to estimate the decision delay Tdecision. However, given the time synchronization
issue in the actual implementation, we estimate response delays Tr to predict the time
horizon for the arrival of each decision message.

Significant differences are also present in the Queue Estimation sub-process. Practi-
cally speaking, each update message usually has either one or zero pending transmis-
sion requests from each user. To improve estimation accuracy and reduce pilot waste,
we use a specific criterion. Namely, we check for the existence of an integer i, that sat-
isfies Equation (9.13), where tn(k) is the timestamp for the most recent transmission
request from each user CUn, and t(k) = {tn(k)} for n ∈ {1, 2, ...N}.

(i− 1)Ts < tn(k) + iĉn ≤ kTs (9.13)

If such an integer i exits, it is highly likely that CUn will initiate a new transmission
request at the future time k̂, allowing us to estimate the queue state Q̂n(k̂) as 1.
Otherwise, the queue state is estimated as 0.

129

Punctual Cloud for Latency-aware Resource Allocation in Cloud RAN

Algorithm 1: Estimation on Q̂(k̂) and generating scheduling decisionP(k̂)
in the cloud

Data: αc,αd, r, T̂r, {ĉn}, {t̂n},σ = 0, Ts

Input: Q(k),Tr(k), R(k), {tn(k)}, {cn(k)}
/* Estimation service: Horizon Prediction */
foreach Tr ∈ Tr(k) do

T̂r ← αdT̂r + (1− αd)Tr;
end
if R(k) ≤ r then

σ ← σ + 1;
end

k̂ ← k + ⌈ T̂r
Ts
⌉+ σ;

/* Estimation service: arrival estimation and queue
estimation */

foreach n ∈ {1, . . . , N} do
ĉn ← αcĉn + (1− αc)cn(k);
i← 0;
Q̂n(k̂)← 0
while tn(k) + iĉn ≤ kTs do

if (k − 1)Ts < tn(k) + iĉn ≤ kTs then
Q̂n(k̂) = 1;
break;

end
end

end
Q̂(k̂)← {Q̂1(k̂), Q̂2(k̂)...Q̂N (k̂)};
/* Scheduling service */
P(k̂)← F(Q̂(k̂));
Output: P(k̂)

Therefore, the update message from the RRH includes not only Q(k) but also t(k)
to enhance queue estimation accuracy. A comprehensive algorithm for each process
within the cloud application is detailed in Algorithm 1.

130

9.9 Experiment with Punctual Cloud Implementation

9.9 Experiment with Punctual Cloud Implementation

Now we describe our experiment setup, designed to put our punctual cloud frame-
work implementation for Cloud RAN resource allocation to the test. Our experi-
ments aim to validate the efficacy of our proposed punctual cloud architecture by
contrasting it with a baseline system that employs naive scheduling, as discussed in
Section 9.3.

Similar to our simulation setup, the client Ubuntu machine acting as the RRH sim-
ulates traffic from N CUs, each generating transmission requests at a periodic rate of
cn. These requests are then processed by a cloud-based scheduling service within the
Kubernetes cluster.

Connectivity between the RRH and the Kubernetes cluster housing the BBU pool is
facilitated by a 1Gbps Ethernet connection. ICMP “PING” measurements indicate a
negligible network latency of 0.215ms between the client and the master node of the
cluster, which is negligible compared to the application’s operational frequency.

To emulate network conditions similar to WANs, we deploy Netem6 on the client
machine, controlling delay mean and jitter values according to a Pareto distribution.
The mean delay value µ ranges from 0 ms to 0.8Ts, while the jitter value σ varies up
to µ.

It should be highlighted that although delays introduced by Netem are set to be
smaller than the Ts interval, the actual response delays can be notably longer due
to TCP operations, admission time, and internal cluster routing. Notably, our punc-
tual cloud framework yields longer average response delays than the single service
naive scheduling baseline, attributed to the inter-service communications within the
cluster.

Table 9.6 provides a detailed rundown of the parameters utilized in our experiments.
Due to the hardware limitations inherent to general-purpose computing infrastruc-
tures, we were unable to achieve the high-frequency resource allocation that was possi-
ble in the simulation. Each parameter set was tested ten times, and each test iteration
ran for a duration of 12.5 minutes.

Performance metrics for our resource allocation application are assessed based on the
criteria outlined in Section 9.3, focusing on punctuality, pilot utilization, and relia-
bility.

6https://wiki.linuxfoundation.org/networking/netem

131

Punctual Cloud for Latency-aware Resource Allocation in Cloud RAN

Table 9.6: Experiment parameters used in the evaluation

Symbol Parameter Definition Value
Ts Scheduling time slot length 50ms
µ Netem delay configuration value -
δ Netem jitter configuration value -
N Number of user having resource demands 10
cn Transmission requests inter-arrival time of each CUn 70ms
P Number of available pilots per slot 12

9.10 Experiment Results

In this section, we delve into the results of our experiments, revealing the effectiveness
of our punctual cloud architecture for Cloud RAN resource allocation. As showcased
in Figure 9.12 and Figure 9.13, our approach notably enhances application perfor-
mance across the three key metrics we have identified: punctuality, pilot utilization,
and reliability. Importantly, these results are achieved even when faced with extended
and unpredictable delays. For consistency, all figures in this section reflect the same
Netem configuration.

In the delay evaluation, Netem’s mean delay µ was adjusted between 0 and 40ms, and
the jitter δ was set at 0.6µ. This implies a coefficient of variance of 0.6 for the delay
in the Netem setup.

For the experiments that examined the impact of varying jitter, we fixed Netem’s
mean delay at µ = 25ms and let σ range from 0 to µ. Under these conditions, the
actual mean response delay escalated with an increase in jitter, while maintaining a
constant mean delay value. The other parameters for these experiments are detailed
in Table 9.6.

It’s important to note that the standard deviations associated with our results were
negligible, thus we have opted not to display them in the figures.

9.10.1 Punctuality

With naive scheduling, if the response delay exceeds a single scheduling time slot Ts,
the corresponding response is considered unpunctual. This leads to the expiration
of the queue state before the allocation process can serve it. On the other hand,
in a system deployed using our punctual cloud framework, the returned scheduling
decision is often aimed at future states. These states are communicated through update
messages that may not yet have been generated. Therefore, a response is considered
punctual as long as it arrives before the expiration of the state it is designed to serve.

132

9.10 Experiment Results

0 5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

Delay µ (ms)

Pu
nc

tu
ali

ty

Punctual Cloud
Naive Scheduling

0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

Jitter σ (ms)

Pu
nc

tu
ali

ty

Figure 9.12: Punctuality performance among all the scheduling decisions for experiments under given Netem
configurations.

Figure 9.12 illustrates an intriguing behaviour: as jitter in the delay increased, the
naive scheduling method exhibited improved punctuality, a trend not mirrored in
the punctual cloud performance. This phenomenon can be attributed to the inter-
play between the empirical cumulative distribution function of the response delay
measurements Tr and scheduling time slot Ts. To illustrate, when the jitter value
δ = 0.4µ and µ = 0.5Ts = 25ms under the Netem configuration, the empirical
cumulative probability of Tr ≤ Ts was found to be 24.7%. This value jumps to
40.5% when δ = 0.8µ. This accounts for the increased punctuality performance
with greater jitter in naive scheduling. Importantly, our proposed architecture main-
tains more robust performance in punctuality as either the delay mean µ or the jitter
σ increase.

133

Punctual Cloud for Latency-aware Resource Allocation in Cloud RAN

0.
6

0.
7

0.
8

0.
91

Reliability

Pu
nc

tu
al

C
lo

ud
N

aiv
eS

ch
ed

ul
in

g

0
5

10
15

20
25

30
35

40
0.
6

0.
7

0.
8

0.
91

D
ela

y
µ
=

(m
s)

PilotUtilization

0
5

10
15

20
25

Jit
te

rσ
(m

s)

Fi
g
u
re

9.
13

:
D
em

an
d
fa
ilu
re
s
an
d
re
so
u
rc
e
w
as
te

o
f
th
e
re
so
u
rc
e
al
lo
ca
ti
o
n
u
n
d
er

g
iv
en

N
et
em

co
n
fi
g
u
ra
ti
o
n
s.

134

9.11 Conclusion on Punctual Cloud for Cloud RAN

9.10.2 Pilot utilization and Reliability

Regarding the resource allocation performance, allocation processes must still con-
duct scheduling decisions even if the expected decisions are not punctually delivered.
In such scenarios, these decisions rely on outdated transmission request queue states,
which may not align with current requirements. This misalignment can result in both
failures and resource wastes due to false allocations. Consequently, lower punctual-
ity performance is likely to adversely affect other performance metrics. Figure 9.13
depicts the performance in terms of reliability and pilot utilization for two different
methods. As illustrated, when the mean delay value µ is minimal and the response
delays Tr are shorter than the request interval Ts, there is negligible difference in
reliability and utilization between the two approaches. In fact, the naive scheduling
outperforms the punctual cloud framework when response delays are sufficiently short
to allow most decisions to be delivered punctually, even without additional estima-
tions. This suggests that the efficacy of resource allocation is also contingent on the
accuracy of the estimations. However, as the delay lengthens, the estimations within
the punctual cloud framework become increasingly beneficial, mitigating the impact
of prolonged delays.

As the jitter in the delay increases, Figure 9.13 reveals that our punctual cloud frame-
work performs markedly better, consistent with the higher punctuality depicted in
Figure 9.12. Unlike naive scheduling, the performance of the punctual cloud frame-
work is less affected by increasing jitters because its punctuality is not solely dependent
on the distribution of response delays.

Lastly, it’s worth mentioning that even if most decisions in naive scheduling arrive late,
the overall allocation performance doesn’t entirely deteriorate. Executing an outdated
decision does not invariably result in incorrect allocations. For instance, if the inter-
arrival time cn for a CUn is longer, the queue state of CUs become less dynamic,
thereby reducing the likelihood of resource waste.

9.11 Conclusion on Punctual Cloud for Cloud RAN

This chapter presents our novel punctual cloud framework, specifically designed for
addressing the radio resource allocation challenges in Cloud RAN. In this setup, a
BBU pool located in a cloud environment is responsible for computing scheduling
decisions. These decisions target the RRH massive MIMO uplink pilots for active
industrial units in a factory automation scenario. The framework is engineered to
cope with the stochastic variables introduced by Cloud RAN, thus ensuring that each
scheduling decision is executed in a timely fashion by the allocation processes at the

135

Punctual Cloud for Latency-aware Resource Allocation in Cloud RAN

RRH.

Both simulation and real-world test-bed evaluations—conducted on an edge Kuber-
netes cluster—demonstrate the effectiveness of our proposed framework. Notably, it
mitigates the unpredictabilities inherent in Cloud RAN, such as stochastic delays and
out-of-order decision messages.

Within the punctual cloud framework, the decision scheduling processes are encap-
sulated as a cloud service. This service calculates and delivers scheduling decisions
based on estimated response delays and the state of the transmission request queue at
the RRH. Our evaluations confirm that the framework succeeds in providing more
punctual scheduling decisions. This elevated level of punctuality, in turn, enhances
the overall performance of the resource allocation process, yielding higher rates of
reliability and pilot utilization.

136

Chapter 10

Punctual Cloud for Cloud Control
Systems

10.1 Targeted system

In Chapter 9, we demonstrated how our punctual cloud framework can effectively
mitigate the impact of cloud-induced delays in resource allocation within a Cloud
RAN system. Building on that foundation, this chapter shifts the spotlight to Cloud
Control Systems (CCSs). As detailed in Part III and depicted in Figure 6.7, a CCS is
a cyber-physical system where the controller is deployed as a cloud service, either at
the network edge or in a centralized cloud environment. In this system, the control
plant transmits its state information to a remote cloud service, which, in turn, sends
back the necessary control signals to the plant.

In this chapter, we will extend the applicability of our punctual cloud framework to
demonstrate its capacity for mitigating cloud-induced delays across a broader range of
cloud applications. Specifically, for a CCS, our framework ensures the prompt deliv-
ery of control signals computed in the cloud. The punctual cloud framework thereby
enables even a basic controller to handle dynamic, time-sensitive processes over the
cloud. We will also present an implementation of this framework for CCS within a
microservice architecture, streamlining both the deployment and maintenance of the
application.

137

Punctual Cloud for Cloud Control Systems

10.1.1 Control system model

The primary goal of the punctual cloud framework is to enable the deployment of
controllers as cloud-based applications. In this section, we define the control system
model that serves as the basis for designing our punctual cloud framework.

We focus on a dynamic and observable control system characterized by a nonlinear
discrete physical model, as expressed in Equation (10.1). Here, the plant state at time
k is denoted as x(k), and the control signal actuated on the plant at that instant is
u(k).

x(k + 1) = f(x(k), u(k)) (10.1)
We also present the linearized discrete state-space representation of the control system
in Equation (10.2). The system operates with a sampling interval Ts.

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
(10.2)

In the CCS architecture, where the plant is dynamic, the controller operates remotely
as a cloud service. This controller generates control signals based on the plant states,
which are transmitted over a network. We define the system’s response delay as Tr,
as illustrated in Equation (10.3). This Tr is a stochastic variable with a mean value
of µ and a jitter value of δ. It comprises the sum of Tup, Tdown and Texe. Here, Tup
represents the time required to send state information from the plant to the controller;
is the time taken to transmit the control signal from the controller to the plant, and
Texe is the execution time to compute the control signal in the cloud. We denote the
discrete response delay as d, calculated as Equation (10.3).

Tr = Tup + Tdown + Texe

d = ⌊Tr

Ts
⌋

(10.3)

If the discrete response delay d ! 1, the cloud control system becomes a time-delay
control system with d steps delay in discrete time, and the system can be modelled as
Equation (10.4). The top figure of Figure 10.1 illustrates the control diagram of the
time-delay system.

x(k + 1) = Ax(k) +Bu(k − d)

y(k) = Cx(k) +Du(k − d)
(10.4)

10.1.2 Problem definition

As illustrated in the bottom figure of Figure 10.1, in a CCS, when the response delay
d ! 1, the control signal u(k)–computed in the cloud based on x(k)–is only received

138

10.1 Targeted system

Controller Plant
u(k − d) x(k)

x(k − d)
−

xref
+

Controller
time

Plant
timex(k) u(k)

x(k) x(k + 1)

x(k)
exprires

x(k + 2)

x(k + 1)
exprires

x(k + 3)

x(k + 2)
exprires

d = 2

Ts

Tup Texe Tdown

Figure 10.1: Top figure: Control diagram of a time-delay system with d steps discrete response delay; Bottom
figure: Time series example when d = 2 in CCS.

by the plant when the state has transitioned to x(k+d), and x(k) has expired at that
time.

For controllers designed on a linear and delay-free model such as Equation (10.2),
functionality is not necessarily compromised. In essence, u(k) may still be applicable
to x(k + d) without jeopardizing the plant’s stability, especially if the plant operates
under slow dynamics and the state x(k) does not significantly deviate from x(k+d).
However, this adequacy breaks down when network-induced delays are substantial,
specifically when they exceed multiple sampling intervals Ts and the plant dynamics
are fast. In these cases, the controller becomes ineffective because u(k) was computed
based on an outdated statex(k), which may be considerably different from the current
state x(k + d).

Traditional time-delay compensating approaches, such as the Smith Predictor and its
variants, have been in use for years [Smi57; Zho06]. MPC, a form of optimal control
that employs models to predict and sequence future control signals [Ric+78; 07], has
been successfully adapted to counter delays in such systems. This is especially relevant
for CCS due to the cloud’s high computational capabilities [Ska+19; Årz+18]. How-
ever, it is crucial to acknowledge the computational burden associated with MPC, as
well as its limitations in handling extended delays, which will be shown later in our
evaluation section.

In contrast, our punctual cloud framework offers a more resource-efficient alternative.
It uses a simple delay-free controller without requiring alterations to the existing con-
trol algorithm. This results in considerably lower computational overhead compared

139

Punctual Cloud for Cloud Control Systems

Plant
states

control signal

Cloud

Controller

Delay
Estimator

State
Predictor

Figure 10.2: Punctual cloud architecture

to MPC, while achieving similar or even superior control performance under cer-
tain conditions. The punctual cloud framework ensures that the control signal u(k)
is timely applied at the current state x(k), despite substantial network and cloud-
induced delays d between the cloud-based controller and the plant.

10.2 Punctual Cloud for CCS

In this section, we present our punctual cloud framework tailored for CCSs. This
approach employs a straightforward controller based on a linear, delay-free model
to remotely manage the plant, even when faced with significant system-induced de-
lays. Our innovative strategy incorporates three key cloud-based services: a delay
estimator, a state predictor, and a controller Service. These services are deployed as
a microservice architecture, either in a centralized cloud or at the edge, as depicted in
Figure 10.2.

The control diagram under punctual cloud framework is delineated in Figure 10.3. As
highlighted in the lower section of the same figure, our state predictor forecasts the
future plant state x(k + d) when the cloud-based controller receives the plant state
x(k). This enables the controller to generate a future-actuated control signal u(k+d)
based on a delay-free model. Unlike MPC, which computes a sequence of states for
multiple future time steps, our approach focuses solely on predicting the plant state
at a specific future time k + d, which coincides with when the control signal will be
actuated on the plant.

It’s worth noting that the delay estimator, the state predictor, and the controller service
are algorithmically independent entities. This modularity means that the algorithm
employed in each component can be altered without affecting the others, provided

140

10.2 Punctual Cloud for CCS

Controller Plant

State
Predictor

Delay
Estimator

u(k)

x(k)

d̂, x(k)
x̂(k + d̂)

−
xref

+

Controller
time

Plant
timex(k) u(k + 2)

x(k) x(k + 1)

x(k)
exprires

x(k + 2)

x(k + 1)
exprires

x(k + 3)

x(k + 2)
exprires

d = 2

Figure 10.3: Top figure: Control diagram of the punctual cloud for a CCS with d steps discrete response delay;
Bottom figure: Time series example when d = 2 in CCS with punctual cloud.

that they meet the required input and output specifications as laid out in Figure 10.3.
In subsequent sections, we elaborate on the algorithms that we used for each of these
three critical components, designed to control a dynamic plant operating at a sampling
rate of Ts and capable of handling arbitrary network delays.

10.2.1 Delay estimator

The output of the delay estimator is a current estimation of the discrete response
delay d̂, which enables the state predictor to forecast x̂(k + d̂). Consequently, the
controller can then formulate a control signal u(k + d̂) based on this prediction,
which is scheduled to be actuated on the plant at time k + d̂.

Similar to the methodology in Chapter 9, we employ the EMA to estimate the contin-
uous response delay T̂r for each control signal. This is calculated as Equation (10.5),
where ω represents the weight parameter for the EMA estimator, and T

input
r is trans-

mitted along with x(k) by the plant, informing the cloud-based services about the
response delay incurred by previously delivered control signals.

T̂r = ωT̂r + (1− ω)T
input
r (10.5)

Based on this continuous delay estimate, the delay estimator then calculate the discrete

141

Punctual Cloud for Cloud Control Systems

time horizon d̂ as follows:

d̂ = ⌊ T̂r

Ts
⌋ (10.6)

This discrete delay d̂ serves as an essential input to the state predictor and controller
service, ensuring that control signals are appropriately timed and thereby mitigating
the negative impact of network delays on system performance.

10.2.2 State Predictor

Taking the delay estimation d̂, the state predictor forecasts a future state x̂(k+d̂) based
on the current input state x(k). This enables the controller to subsequently generate
a control signal u(x + d̂) that aligns with this predicted state. In our framework, a
Smith Predictor serves as the state predictor component, incorporating a nonlinear
system model for improved accuracy.

Smith Predictors operate on the principle that if the system model accurately mimics
the plant, a controller for a time-delayed system can be designed as if it were delay-free
[Zho06]. However, since a model is never a perfect representation of the actual plant,
Smith Predictors also account for this discrepancy. They take into account the error
in the previous state prediction x̂(k) and applies it to refine the next state prediction
x̂(k + 1). Hence, the resulting control signal is based on x̂(k + 1) + x(k)− x̂(k).

To be more specific, the state predictor leverages the nonlinear model of the plant to
reduce model error compared to a linear approximation. The one-step-ahead predic-
tion of the plant state in discrete time is given by Equation (10.7):

e(k) = x(k)− x̂(k)

x̂(k + 1) = f(x(k), u(k)) + e(k)
(10.7)

To predict the state d̂ steps into the future, Equation (10.7) is iteratively run for
d̂ times, as detailed in Algorithm 2. Importantly, in this algorithm, the sequence
{u(k), u(k+1), ...u(k+ d̂−1)} comprises control signals generated based on prior
state inputs. These are utilized in the iterations to reach a more accurate state predic-
tion.

10.2.3 Controller

In our proposed framework, we employ a controller designed using a delay-free plant
model. Specifically, we opt for a Linear Quadratic Regulator (LQR) as the con-
troller[KS72]. Unlike MPC, which necessitates online optimization during opera-
tion, the optimization in LQR is carried out offline based on the delay-free model

142

10.3 Testbed Deployment

Algorithm 2: Smith Predictor in d steps
Input: x(k), d, {u(k), u(k + 1), ..., u(k + d̂− 1)}
i← 1;
e(k)← x(k)− x̂(k);
while i ≤ d do

x̂(k + i)← f(x(k + i− 1), u(k + i− 1)) + e(k);
x(k + i)← x̂(k + i);
i← i+ 1;

end
Output: x̂(k + d̂)

Equation (10.2). Consequently, the control signal u(k+ d̂), scheduled to be actuated
at time k + d̂, is computed as shown in Equation (10.8). In this equation, K repre-
sents the LQR gain, pre-calculated based on offline optimization. The control signal
is determined in the cloud-based control service by considering both the reference
state xref and the predicted state x̂(k + d̂) for the plant at time k + d̂.

u(k + d̂) = K(xref − x̂(k + d̂)) (10.8)

It should be noted that while we have selected LQR due to its low online computa-
tional complexity, particularly advantageous when deployed in a cloud-based service,
our framework is capable of accommodating other types of controllers as well.

10.3 Testbed Deployment

Now, we delve into the details of the testbed deployment for our punctual cloud
framework. As depicted in Figure 10.4, the testbed consists of three key components:
the plant under control, the network connecting the plant and the cloud services, and
the cloud services constituting our punctual control framework. These are deployed
as microservices within the Kubernetes cluster in our lab. The entire source code for
this framework is available at GitLab1.

10.3.1 The BnB plant

In our testbed, we consider an emulated BnB plant, which serves as the subject of con-
trol in the CCS. This emulation runs on an Ubuntu machine and is based on source

1https://gitlab.com/Haorui/punctual-cloud

143

Punctual Cloud for Cloud Control Systems

Plant Controller

x(k),T input
r

u(k + d̂)

Delay
Estimator

State
Predictor

MQ
T

input
r

predictor inputs

x̂(k + d̂)

Database

d̂

d̂

predictor inputs: x(k), {u(k), u(k + 1), ..., u(k + d̂− 1)}

Figure 10.4: Punctual cloud deployment. The left part of the dashed line is the plant to be controlled, and the
right part is the cloud services in our framework.

code provided by [ST]. The objective of the controller is to manipulate the angle of
the beam in such a way as to maintain the ball at a predefined reference position.
Given the fast dynamics of the BnB system, its control is considered time-sensitive
[Ska+18]. It is worth noting that the plant could easily be replaced by different systems
requiring other control strategies.

The BnB plant sends to the cloud services a state vector x(k) with the period of Ts.
The state vector consists of three elements: ball position, beam angle, and ball speed.

The BnB plant periodically transmits a state vector x(k) to the cloud services at in-
tervals of Ts. This vector is encompass three elements: the ball’s position, the beam’s
angle, and the ball’s speed, formalized as follows:

x(k) =

⎡

⎣
x1(k)
x2(k)
x3(k)

⎤

⎦ =

⎡

⎣
ball position
beam angle
ball speed

⎤

⎦ (10.9)

10.3.2 Network between the plant and the cloud services

We choose HTTP1 with a persistent connection to facilitate the communication be-
tween the plant and our service cluster. Since HTTP is the most commonly used and
supported application protocol in cloud services[DJ21]. Accordingly, the plant’s state
vector x(k) and the response delay T

input
r are packaged into an HTTP request and

transmitted to the cloud services. The cloud then responds with a control signal as an
HTTP response.

To emulate scenarios with extended network latency in the testbed, we employ Netem
to artificially introduce additional delays on the Ethernet link connecting the client

144

10.3 Testbed Deployment

machine and the cluster. This artificially added network delay, denoted as Tadd, char-
acterized by mean value µ and jitter δ. It augments the existing Ethernet connection
latency, which comprises Tup and Tdown as illustrated in Figure 10.1. Consequently,
the actual response delaysTr exceedTadd as they also account for the time spent during
cloud processing.

10.3.3 Punctual cloud services

The cloud application within our punctual cloud framework comprised of three inter-
connected services: the controller, delay estimator, and state predictor. These services
operate synergistically in a microservice architecture, capitalizing on the diverse com-
munication paradigms available in cloud-native environments.

Same as the previous implementation in Chapter 9, the services are all containerized
and deployed on our lab Kubernetes cluster. Although the application architecture
parallels the system put forth in Chapter 9, this implementation enhances inter-service
communication reliability through the use of a Message Queue (MQ) within the
microservice architecture.

In this layout, the controller service functions as the application’s frontend, receiv-
ing the state periodically transmitted by the plant. It parses the incoming request to
extract the embedded response delay T input

r and publishes it to an MQ, to which the
delay estimator service subscribes. The delay estimator then computes an estimated
response delay d̂ based on this most recent T input

r , which serves as a gauge of the cur-
rent network conditions between the plant and the cloud. Upon deriving d̂, the delay
estimator updates this value in a database accessible to the state predictor service.

After publishing the response delay to the MQ, the controller forwards the state x(k)
to the state predictor in the form of another HTTP request. Along with x(k) is the
previously generated control signal u(k), calculated from a prior state prediction and
already sent to the plant. When tasked with making a new prediction, the state pre-
dictor fetches the estimated delay d̂ from the database. It then computes a predicted
state x̂(k + d̂) based on received inputs and returns this value to the controller.

Finally, leveraging this newly acquired predicted state x̂(k + d̂), the controller for-
mulates a new control signal u(k + d̂). This signal is engineered to reach the plant
before the expiry of the state x(k+ d) at time k+ d̂+1. If the control signal arrives
ahead of time k + d̂, the plant will buffer for actuation precisely at k + d̂.

145

Punctual Cloud for Cloud Control Systems

10.4 Evaluation

In this section, we provide the system parameters in our testbed and the performance
metrics we used to evaluate our CCS under the punctual cloud framework.

We compare our punctual cloud framework with a MPC and a standalone LQR with-
out punctual cloud framework. All three methods are deployed as cloud controllers in
the same Kubernetes cluster, where MPC and LQR are deployed as a single service for
each, and the punctual cloud framework is deployed in a microservice architecture.
The experiments show that the punctual cloud framework can improve the system
performance when discrete response delay d ! 1, and that it does not add computa-
tional overheads with its microservice architecture.

10.4.1 Parameters of BnB plant

In the experiment, we employ a BnB plant as the target system for control. The
BnB plant features a beam length of 1.1m and operates with a sampling time of
Ts = 50ms. To model this system, we use a discretized, linear, and delay-free state-
space representation, as expressed in Equation (10.2). The parameters for this model
are specifically tuned to account for the beam length of 1.1m.

A =

⎡

⎣
1 0.05 −0.008756
0 1 −0.3502
0 0 1

⎤

⎦B =

⎡

⎣
−6.421e−5

−0.003853
0.022

⎤

⎦

C =

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦D = 0

(10.10)

Giving the control signal u(k) and state x(k), the nonlinear physical model is for-
mulated as:

x2(k + 1) = 0.44Tsu(k) + x2(k)

M =
5

7
g sin(x2(k + 1))

N =
5

7
0.442u2(k)

Q = Tsx3(k) + x1(k)

x3(k + 1) =
NQ−M

1−BT 2
s
Ts + x3(k)

x1(k + 1) = Tsx3(k + 1) + x1(k)

x(k + 1) = [x1(k + 1), x2(k + 1), x3(k + 1)]T

(10.11)

146

10.4 Evaluation

where g = 9.80665 is the gravitational constant.

For the evaluation, we conduct a step response experiment. The set point for the
ball’s position alternates between 0 and 0.2m to assess the system’s responsiveness and
stability under different network conditions. The control signal u(k) aims to rotate
the beam and maintain the ball at its set point. A key stability criterion is that if the
ball’s position x1(k) reaches or exceeds 0.55m, the system becomes unstable, and the
ball falls off the beam.

10.4.2 Network parameters

In our experiments, we focus on evaluating the system under a variety of network
conditions, specifically by manipulating the additional network delay parameter Tadd
characterized by its mean value µ and jitter δ.

Additional network delay parameters

• Mean delay (µ): We vary µ from 0 to 200ms, up to 4 times the BnB plant’s
sampling time Ts.

• Jitter (δ): The jitter values range from 0 to 25ms, equal to 0.5Ts

The controller response delay Tr will exceed the added network delay Tadd due to the
additional execution time required by the cloud-based controller.

Network scenarios

Two main network scenarios are considered in our evaluation:

• Changing delay scenario: In this scenario, the mean delay value µ is dynami-
cally altered while the controller is operational. Concurrently, the set point for
the ball’s position alternates between two distinct positions. The objective is
to evaluate the delay estimator’s adaptability and its ability to furnish the state
predictor with accurate, real-time data.

• Fixed delay scenarios: In this scenario, Tadd is modelled using a Pareto distri-
bution based on a specific pair of (µ,σ) values. We subdivide this into three
categories:

147

Punctual Cloud for Cloud Control Systems

1. Increasing mean, no jitter: Tadd assumes µ values from the set {0, Ts,
2Ts, 3Ts, 4Ts} with δ = 0.

2. Increasing jitter, fixed mean: Tadd adopts δ values from the set {0, 0.1Ts,
0.2Ts, 0.3Ts, 0.4Ts, 0.5Ts} while keeping µ fixed at 3Ts.

3. Increasing mean, fixed jitter: Tadd assumes µ value from the set {0, Ts,
2Ts, 3Ts, 4Ts} and a fixed jitter value δ = 0.5Ts.

10.4.3 Punctual cloud parameters

In this section, we detail the parameters utilized for both the delay estimator and the
controller. It is important to note that the state predictor operates exclusively based
on the plant’s nonlinear model and does not require additional parameters beyond
the inputs from the controller and delay estimator.

The weight parameter employed in our delay estimator within the testbed isω = 0.98.
The control signal u(k) actuates on the angular velocity of the beam and is determined
using the LQR gain K, given a target ball position xref on the beam. Mathematically,
this is expressed as follows:

u(k) = K(

⎡

⎣
x1(k)
x2(k)
x3(k)

⎤

⎦−

⎡

⎣
xref(k)

0
0

⎤

⎦)

K =
[
−31.0027,−13.9077, 20.4937

]
(10.12)

10.4.4 Performance metrics

For each network scenario described in Section 10.4.2, we assess the system perfor-
mances using the punctual cloud framework, as well as MPC and LQR control meth-
ods. Our evaluation focuses on three key perspectives:

1. Control Performance: The is evaluated using the Integral Absolute Error (IAE).
A lower IAE value indicates better control performance, characterized by smaller
deviations from the set point. The IAE is computed over an experimental time
T as follows:

IAE =
T∑

k=0

|x1(k)− xref(k)| , (10.13)

Where x1(k) represents the ball’s position state, and xref(k) is its position set-
point.

148

10.5 Evaluation Results

Table 10.1: Parameters in the experiments.

Tadd Network delay added by Netem
u Mean value of Tadd

δ Jitter value of Tadd

Ts Sampling time of the plant
Texe Execution time of the services in the cloud
Tr, T̂r Response delay of control signals and its estimation
d, d̂ Response delay in discrete time and its estimation

2. Execution Time: This measures the computational overhead incurred by each
method in generating a control signal. As we implement a persistent HTTP
connection in our testbed, the execution time Texe can be calculated according
to Equation (10.14), which involves the measured response delay Tr for each
HTTP request-response pair.

Texe = Tr − Tadd (10.14)

3. Punctuality: We define punctuality as the ratio of control signals that arrive
timely during an experiment. A control signal u(k) is considered “on time” if
it arrives and is actuated at the plant before the associated state x(k) expires.
Higher punctuality values indicate more timely actuation of control signals.

The parameters and their corresponding notations used in our experiments are de-
tailed in Table 10.1.

10.5 Evaluation Results

In this section, we present the performance results under various scenarios. The eval-
uation includes comparisons between an MPC, a standalone LQR, and our proposed
punctual cloud framework, which is abbreviated as ‘PunC’ in the following presented
figures.

10.5.1 Changing delay scenario

In the evaluation scenario with changing network delay, we conduct tests where the
mean value, µ, of the added network delay Tadd varies within the range of 0 and 4Ts.
This variation is illustrated in the lower portion of Figure 10.5. As the results indicate,
the standalone LQR controller maintains stability with delays up to 2Ts, while the
MPC method can handle delays up to 3Ts, corresponding to a response delay d = 3.

149

Punctual Cloud for Cloud Control Systems

−0.2
0

0.2

0.4

0.6
Ba

ll
po

sit
io

n
LQR MPC PunC set point

0 50 100 150 2000

50

100

150

200

time (s)

T
ad

d
(m

s)

Figure 10.5: The top figure depicts the control step response performance as it varies with changing added
network delay, Tadd, which follows the pattern illustrated in the bottom figure.

However, for Tadd > 3Ts, or equivalently d > 3, both the MPC and LQR approaches
fail to maintain the ball’s position at its designated set point.

In contrast, our Punctual Cloud framework adapts to the network conditions by gen-
erating control signals u(k) based on the predicted state x̂(k). This approach ensures
the timely arrival of the control signals to stabilize the actual state of the plant, x(k),
under the assumption that the network is lossless.

10.5.2 Fixed delay scenario

For this scenario, we run our evaluation when the mean and jitter of Tadd are fixed in
Netem configuration for individual experiment. We analyse our system performance
under the following three sub-scenarios:

Analysis on increasing meaning and no jitter

In Figure 10.6, we show the step response under various levels of added delay Tadd
when the jitter is 0. As we can see, the standalone LQR fails to stabilize the plant when
Tadd = 3Ts, causing the ball falls off the beam. Similarly, MPC loses control over the
ball’s position whenTadd = 4Ts. In contrast, our proposed punctual cloud framework
effectively maintains the ball near its reference position up to 4Ts, although with some
oscillation. This shows our framework’s capability for achieving a four-step-ahead

150

10.5 Evaluation Results

−
0.
50

0.
5

Ballposition

LQ
R

M
PC

Pu
nC

se
tp

oi
nt

0
50

10
0

15
0

−
40

%

40
%

tim
e(

s)

State
prediction

error

0
50

10
0

15
0

tim
e(

s)
0

50
10

0
15

0

tim
e(

s)
(a

)
(b

)
(c

)

Fi
g
u
re

10
.6
:
Th
e
fi
rs
t
ro
w
o
f
th
e
fi
g
u
re

is
th
e
st
ep

re
sp
o
n
se

p
er
fo
rm

an
ce

w
h
en

(a
)
T
ad
d
=

2
T
s
(b
)
T
ad
d
=

3
T
s
an
d
(c
)
T
ad
d
=

4
T
s
;
th
e
se
co
n
d
ro
w
ar
e
th
e
p
u
n
ct
u
al
cl
o
u
d

st
at
e
p
re
d
ic
ti
o
n
er
ro
rs
p
re
se
n
te
d
in
p
er
ce
n
ta
g
e.

151

Punctual Cloud for Cloud Control Systems

prediction in discrete time.

The corresponding error plot Figure 10.6 reveals the performance limitation of the
state predictor, especially when Tadd reaches 4Ts. At this point, prediction errors be-
come significant, leading to control performance degradation and oscillation. This
suggests that a more accurate state predictor could potentially improve control per-
formance even at delays exceeding 4Ts.

Figure 10.7 summaries the performance for each control strategies on execution time,
IAE and punctuality, with increasing Tadd from 0 to 4Ts. Among the methods, LQR
has the shortest execution time due to its minimal computational complexity, equiv-
alent to a P-controller. MPC, although also deployed as a standalone service, requires
more computational time because of its online optimization process. In contrast, our
punctual cloud framework, although built upon a more complex microservice archi-
tecture, manages to maintain relatively low response delays thanks to its lightweight
services.

As Tadd increases, of all methods exhibit a rising IAE, implying control performance
degradation. Once Tadd surpasses 3Ts, both MPC and LQR returns exceedingly high
IAE values, exceeding 1000, indicating system instability. Remarkably, our punctual
cloud approach maintains a lower error level under the same conditions.

Finally, the punctuality plot in Figure 10.7 shows a marked improvement in our frame-
work’s punctuality performance, attributed to the incorporation of delay estimation
and state prediction. Our method ensures that control signals u(k) are mostly applied
in a timely manner, substantially enhancing the system’s overall control performance.

Analysis on increasing δ when µ = 3Ts

In these experiments, we focus exclusively on our proposed punctual cloud frame-
work, as the standalone LQR fails to stabilize the system when Tadd mean value µ is
3Ts, even with zero jitter. The evaluation varies the jitter δ from 0 to 0.5Ts, while
keeping µ = 3Ts.

The box plots in Figure 10.8 presents the response time Tr measurements, demon-
strating the system’s behaviour under increased jitter. Although the median value of
the response delays remains constant, we observe larger variances and a significantly
higher 95th percentile value as jitter increases. These trends present a challenge for
the EMA algorithm employed for delay estimation in maintaining punctuality.

The IAE plot in the same figure reveals a direct correlation between increased jitter and

152

10.5 Evaluation Results

0 Ts 2Ts 3Ts 4Ts

0

10

20

µ in Tadd

m
ed

ian
(T

ex
e)

(m
s) LQR MPC PunC

0

50

100

150

Unstable

IA
E

LQR MPC
PunC

0 Ts 2Ts 3Ts 4Ts

0

0.5

1

µ in Tadd

Pu
nc

tu
ali

ty

LQR MPC
PunC

Figure 10.7: Performances of three methods when delay increases and no jitter in Tadd. From top to bottom,
each figure presents the execution time, IAE, and punctuality with each method in the evaluation.

higher IAE values, even though the system remains stable under the maximum jitter
conditions tested. This degradation in control performance is further explained by
the punctuality plot. The plot clearly shows that a decline in punctuality corresponds
to an increase in IAE values.

This decline in punctuality affects the control performance in two key ways:

1. Control signals may actuate on a plant state that has significantly diverged from
the state on which the signal was originally calculated for.

153

Punctual Cloud for Cloud Control Systems

20

40

60

80

IA
E

0.7

0.8

0.9

1

Pu
nc

tu
ali

ty

0 0.1Ts 0.2Ts 0.3Ts 0.4Ts 0.5Ts

160

180

200

δ in Tadd

T
r

(m
s)

Figure 10.8: The first two sub-figures are IAE and punctuality performances of punctual cloud when jitter
increases and added network delay mean fixed to 3Ts. The bottom figure is the box plots of
response delays in each experiment.

2. Reduced punctuality also compromises the accuracy of the state predictor. The
predictor struggles to determine which control signals were actually used in the
duration between states x(k) and x(k+d), leading to less accurate predictions.

Analysis on increasing µ with δ = 0.5Ts

Figure 10.9 compares the performance of all three methods across increasing Tadd
mean value µ while maintaining jitter δ at 0.5Ts in Netem. The added delay Tadd are
subject to a Pareto distribution.

Similarly to the previous case, in this evaluation, both MPC and LQR fail when faced

154

10.6 Conclusion on Punctual Cloud for CCSs

0

50

100

150

Unstable

IA
E

PunC MPC
LQR

0 Ts 2Ts 3Ts 4Ts

0

0.5

1

µ in Tadd

Pu
nc

tu
ali

ty

Figure 10.9: IAE and punctuality performances of three methods with increasing µ and δ fixed to 0.5Ts

with an added network delay that results in a discrete-time response delay of more
than 3 steps. More notably, even the punctual cloud framework fails to stabilize the
system when the added delay mean µ is 4Ts.

The root cause of this instability is illustrated in Figure 10.10, where it becomes evident
that higher jitter levels significantly impair the accuracy of delay estimation using
EMA. This inaccuracy, in turn, diminishes both the punctuality of control signals
and the precision of state predictions. Furthermore, as shown in Figure 10.6(c), when
µ = 4Ts, the ball begins to oscillate around its reference position. This oscillation is
exacerbated by the larger jitter, introducing greater uncertainties and inaccuracies in
state prediction, ultimately destabilizing the control system.

10.6 Conclusion on Punctual Cloud for CCSs

This chapter presents an adaptation of the punctual cloud framework tailored for
Cloud Control Systems (CCSs). Typically, CCSs operate as time-delayed control
systems, where a control signal u(k) generated in the cloud is not applied instanta-
neously to the plant state x(k), but rather at x(k + d), owing to the presence of a
response delay d.

155

Punctual Cloud for Cloud Control Systems

0 50 100 150
0

30%

time (s)

D
ela

y
es

tim
at

io
n

ab
so

lu
te

er
ro

r δ = 0.5Ts

δ = 0

Figure 10.10: The Absolute delay estimation error in punctual cloud when jitter δ = 0 and δ = 0.5Ts

Uniquely, our punctual cloud framework offers the advantage of utilizing a straight-
forward controller based on a delay-free system model, eliminating the need to modify
the controller to accommodate system latencies. We address the delay issue by inte-
grating two supplementary services: a delay estimator and a state predictor. These
services collaboratively estimate the control signal’s arrival time at the plant and cal-
culate the corresponding control signal based on the predicted plant state.

Our evaluations employed a BnB plant emulator with a sampling interval of 50ms.
We deployed our framework in microservice architecture in our lab Kubernetes cluster
and emulate various network delays using Netem. The delay estimator employed an
EMA algorithm, while a Smith Predictor was used for state prediction. Importantly,
these services can be readily swapped out for other algorithms without requiring ad-
justments to the remaining system components.

Comparative evaluations with MPC and standalone LQR demonstrated the advan-
tages of our method. Specifically, our punctual cloud framework could tolerate added
network delays up to 4Ts for time-sensitive applications, requiring predictions up to
4 steps ahead in discrete time. In contrast, both MPC and LQR were limited to toler-
ating delays up 3Ts. Furthermore, our method exhibited resilience to network jitter
up to 25ms under a Pareto distribution, provided the network delay remained below
4Ts.

156

Summary

In the final part, we introduced a framework named as “Punctual Cloud”, designed
to mitigate the challenges posed by cloud-induced delays in time-critical cloud inte-
grated systems.

Our framework was validated through two distinct use-cases: radio resource allocation
in Cloud RAN and Cloud Control System (CCS). The punctual cloud framework
aims to compensate the performance degradation brought about by long response de-
lays of real-time cloud applications. These applications are particularly sensitive to
latency; however, the unpredictable nature of network conditions and cloud environ-
ments often fails to meet the stringent requirements of such demanding applications.
Against this backdrop, the punctual cloud framework emerges as a robust solution for
mitigating the impacts of long and uncertain delays in real-time and mission-critical
cloud integrated systems.

It should be highlighted that, our framework may not be necessary in environments
where the network and cloud infrastructure can consistently guarantee low latency
and fulfil the QoS requirements. In such cases, introducing additional services and
elongated data path to remedy the other performance properties of the application
may be superfluous, as the performance would already be near-ideal–comparable to
scenarios where the client and computing tasks are co-located.

In summary, the punctual cloud framework specifically targets cloud applications
suffering from unacceptable levels of long and uncertain response delays. Our evalu-
ations demonstrate marked performance improvements under these challenging con-
ditions across both use-cases. Furthermore, the framework’s modularity allows for the
easy incorporation of more accurate estimation and prediction algorithms, providing
avenues for ongoing research and system optimization

157

Part V

Conclusion

Chapter 11

Conclusions on my PhD study

As the title might hint, I consider this thesis less a formal document and more a
personal journal, capturing my initial exploration into the intricate realm of cloud
integrated systems and my attempts to tame these complex beasts in the wild.

This odyssey has been anything but linear, with many detours and branching paths.
Yet, it has been an interesting exploration in an era defined not just by clouds and
networks, but various interconnected systems. I’ve summarized my PhD experience
into three core themes: Cloud RAN, Cloud Control System, and the Punctual Cloud.

The early stages of my PhD were spent in the domain of RAN and Cloud RAN, par-
ticularly within the context of indoor industrial settings. Back then, our access to both
cloud and network infrastructure were limited. We had to rely heavily on simulations
and assumptions. During this time, we delved into the potential of deploying mas-
sive MIMO RAN and Cloud RAN in an industrial environment, focusing mainly on
the problem of uplink pilot allocation. While conclusions could vary with different
system setups, the key takeaway was the feasibility of our proposed architecture and
the delivery of a simulation model that can be repurposed for other similar scenarios.

As my interests evolved, so did my enthusiasm in research topics—shifting toward
the fascinating realm of cloud integrated systems, more specifically, Cloud Control
System. At this stage, I gained more access to real-world network and cloud resources,
and I was able to engage with the complexities of deploying CCSs in the wild. This
phase endowed me with more insights about the systems: from understanding the
nuances of “controllers over the cloud” to familiarizing myself with mobile networks,
diverse network protocols, and an array of cloud services and architectures. I also
gained more understanding about 5G, which is quite common nowadays, but was
viewed as a magic cure to all time-critical networked systems due to its “1ms latency

161

Conclusions on my PhD study

myth” a few years ago. Though 5G and its edge fell short of this ideal, it still offered
a great opportunity for innovation, demanding interdisciplinary research to improve
cloud integrated system performance and adaptability. The pivotal contribution of
my study at this stage was a testbed that served to demonstrate the practical viability
of deploying CCSs using cloud-native services, particularly over 5G networks. Based
on the empirical evidence gathered, we assessed the system’s performance from various
angles within the network, particularly at the radio and transport layers, in a quest to
identify an optimal network configuration that could coexist harmoniously within a
cloud-native ecosystem while providing robust system control.

This investigative trajectory naturally culminated in the conceptualization of what I
call the “Punctual Cloud” framework. While perhaps not the most intricate cloud
application developed during my PhD study, it encapsulates my overarching vision
for the modular deployment of control systems in a cloud-native manner. While it
is conceivable that the challenges observed in CCS could be addressed via more ad-
vanced control algorithms or machine learning techniques, I believe that the “Punc-
tual Cloud” offers an elegantly simple and modular solution for cloud integrated sys-
tem deployment. The framework not only counteracts network latencies inherent in
real-world scenarios but also streamlines the deployment and ongoing maintenance
of cloud services for the systems, thereby facilitating effortless modular development
and upgrades.

As I close the chapter on my PhD journey, the exploration of modular cloud integrated
systems is only just getting started. The quest for optimizing networked, cloud-based,
time-critical systems is far from complete, as they may never reach the performance
of their counterparts where all modules are colocated. Furthermore, fully integrating
cloud and mobile networks into traditional industrial settings still remains enormous
efforts, extending well beyond just the plant devices and their controllers.

I hope you’ve enjoyed this literary excursion. Thank you for reading.

162

Bibliography

[Smi57] O. Smith. “Closer Control of Loops with Dead Time”. In: 1957.
[KS72] Huibert Kwakernaak and Raphael Sivan.

“Linear Optimal Control Systems”. In: 1972.
[Ric+78] J. Richalet, A. Rault, J.L. Testud, and J. Papon. “Model predictive

heuristic control: Applications to industrial processes”.
In: Automatica 14.5 (1978), pp. 413–428. ISSN: 0005-1098.
DOI: https://doi.org/10.1016/0005-1098(78)90001-8.

[Gar99] Simson Garfinkel. Architects of the information society: 35 years of the
Laboratory for Computer Science at MIT .
Cambridge, MA: MIT Press, 1999. ISBN: 0585054886.

[Nie+99] Henrik Nielsen, Jeffrey Mogul, Larry M Masinter, Roy T. Fielding,
Jim Gettys, Paul J. Leach, and Tim Berners-Lee.
Hypertext Transfer Protocol – HTTP/1.1. RFC 2616. June 1999.
DOI: 10.17487/RFC2616.

[Por+06] Scott Poretsky, Shobha Erramilli, Jerry Perser, and Sumit Khurana.
Terminology for Benchmarking Network-layer Traffic Control Mechanisms.
RFC 4689. Oct. 2006. DOI: 10.17487/RFC4689.

[Zho06] Qing Chang Zhong. Robust Control of Time-delay Systems.
Springer London, 2006. ISBN: 1-84628-264-0.
DOI: 10.1007/1-84628-265-9.

[For07] Behrouz A. Forouzan. Data Communications and Networking.
Data Communications and Networking.
McGraw-Hill Higher Education, 2007. ISBN: 9780072967753.

[07] “Model Predictive Control of Dead-time Processes”. In:
Control of Dead-time Processes. London: Springer London, 2007,
pp. 271–308. ISBN: 978-1-84628-829-6.
DOI: 10.1007/978-1-84628-829-6_9.

163

BIBLIOGRAPHY

[Dre08] Ulrich Drepper.
“The Cost of Virtualization: Software Developers Need to Be Aware of
the Compromises They Face When Using Virtualization Technology.”
In: Queue 6.1 (Jan. 2008), pp. 28–35. ISSN: 1542-7730.
DOI: 10.1145/1348583.1348591.

[BI09] Chandra S. Bontu and Ed Illidge.
“DRX mechanism for power saving in LTE”.
In: IEEE Communications Magazine (June 2009). ISSN: 0163-6804.
DOI: 10.1109/MCOM.2009.5116800.

[Tsa+10] Wei-Tek Tsai, Qihong Shao, Xin Sun, and Jay Elston.
“Real-Time Service-Oriented Cloud Computing”.
In: 2010 6th World Congress on Services. IEEE, July 2010, pp. 473–478.
ISBN: 978-1-4244-8199-6. DOI: 10.1109/SERVICES.2010.127.

[WN10] Guohui Wang and T. S. Eugene Ng. “The Impact of Virtualization on
Network Performance of Amazon EC2 Data Center”. In:
IEEE, Mar. 2010, pp. 1–9. ISBN: 978-1-4244-5836-3.
DOI: 10.1109/INFCOM.2010.5461931.

[Chi11] China Mobile. C-RAN: The Road towards Green RAN .
China Mobile White Paper. Last accessed Nov. 2020. 2011.
URL: https://www.semanticscholar.org/paper/C-ran-
the-Road-towards-Green-
Ran/eaa3ca62c9d5653e4f2318aed9ddb8992a505d3c.

[MG11] Peter Mell and Timothy Grance.
The NIST Definition of Cloud Computing. 2011.
DOI: SpecialPublication800-145.

[Gua+12] L. Guangjie, Z. Senjie, Y. Xuebin, L. Fanglan, N. Tin-fook, Z. Sunny,
and K. Chen.
“Architecture of GPP based, scalable, large-scale C-RAN BBU pool”.
In: 2012 IEEE Globecom Workshops. Dec. 2012, pp. 267–272.
DOI: 10.1109/GLOCOMW.2012.6477581.

[Xu12] Xun Xu. “From cloud computing to cloud manufacturing”. In: Robotics
and Computer-Integrated Manufacturing 28.1 (Feb. 2012), pp. 75–86.
ISSN: 07365845. DOI: 10.1016/j.rcim.2011.07.002.

[GCL14] Marisol García-Valls, Tommaso Cucinotta, and Chenyang Lu.
“Challenges in real-time virtualization and predictable cloud
computing”.
In: Journal of Systems Architecture 60 (9 Oct. 2014), pp. 726–740.
ISSN: 13837621. DOI: 10.1016/j.sysarc.2014.07.004.

164

BIBLIOGRAPHY

[GLK14] Aditya Gudipati, Li Erran Li, and Sachin Katti.
“RadioVisor: A Slicing Plane for Radio Access Networks”.
In: Proceedings of the Third Workshop on Hot Topics in Software Defined
Networking. HotSDN ’14.
Chicago, Illinois, USA: Association for Computing Machinery, 2014,
pp. 237–238. ISBN: 9781450329897.
DOI: 10.1145/2620728.2620782.

[Vie+14] J. Vieira, S. Malkowsky, K. Nieman, Z. Miers, N. Kundargi, L. Liu,
I. Wong, V. Öwall, O. Edfors, and F. Tufvesson.
“A flexible 100-antenna testbed for Massive MIMO”.
In: 2014 IEEE Globecom Workshops (GC Wkshps). Dec. 2014,
pp. 287–293. DOI: 10.1109/GLOCOMW.2014.7063446.

[BPT15] Mike Belshe, Roberto Peon, and Martin Thomson.
Hypertext Transfer Protocol Version 2 (HTTP/2). RFC 7540. May 2015.
DOI: 10.17487/RFC7540.

[Ese+15] Hasan Esen, Masakazu Adachi, Daniele Bernardini, Alberto Bemporad,
Dominik Rost, and Jens Knodel. “Control as a service (CaaS)”.
In: Proceedings of the Second International Workshop on the Swarm at the
Edge of the Cloud . New York, USA: ACM, Apr. 2015, pp. 13–18.
ISBN: 9781450335959. DOI: 10.1145/2756755.2756758.

[Hu+15] Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher, and
Valerie Young.
“Mobile Edge Computing - A key technology towards 5G”.
In: ETSI White Paper No. 11. Last Accessed: August 14, 2023. 2015.
ISBN: 979-10-92620-08-5.
URL: https://www.etsi.org/images/files/
ETSIWhitePapers/etsi%5C%5Fwp11%5C%5Fmec%5C%5Fa%5C%
5Fkey%5C%5Ftechnology%5C%5Ftowards%5C%5F5g.pdf.

[Buy+16] Rajkumar Buyya, Amir Vahid Dastjerdi, Feng Xia, Laurence T. Yang,
Lizhe Wang, and Alexey Vinel.
Internet of Things: Principles and Paradigms. 1st.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2016.
ISBN: 978-0-12-805395-9.

[Geo+16] Dimitrios Georgakopoulos, Prem Prakash Jayaraman, Maria Fazia,
Massimo Villari, and Rajiv Ranjan. “Internet of Things and Edge
Cloud Computing Roadmap for Manufacturing”.
In: IEEE Cloud Computing 3.4 (July 2016), pp. 66–73.
ISSN: 2325-6095. DOI: 10.1109/MCC.2016.91.

165

BIBLIOGRAPHY

[Ha+16] Son-Hai Ha, Daniele Venzano, Patrick Brown, and Pietro Michiardi.
“On the impact of virtualization on the I/O performance of analytic
workloads”. In: 2016 2nd International Conference on Cloud Computing
Technologies and Applications (CloudTech). IEEE, May 2016, pp. 31–38.
ISBN: 978-1-4673-8894-8.
DOI: 10.1109/CloudTech.2016.7847722.

[Mar+16] Thomas L. Marzetta, Erik G. Larsson, Hong Yang, and
Hien Quoc Ngo. Fundamentals of Massive MIMO.
Cambridge University Press, Nov. 2016. ISBN: 9781107175570.
DOI: 10.1017/CBO9781316799895.

[Mat+16] Michał Maternia, Salah Eddine El Ayoubi, Mikael Fallgren,
Panagiotis Spapis, Yinan Qi, David Martín-Sacristán, Óscar Carrasco,
Maria Fresia, Miquel Payaró, Martin Schubert, Jean Sébastien Bedo,
and Vivek Kulkarni.
5G PPP use cases and performance evaluation models. Tech. rep.
Accessed: Oct. 23, 2019. 5Gppp, Apr. 2016.
URL: http://www.5g-ppp.eu/.

[PL16] Jakub Pizoń and Jerzy Lipski.
“Perspectives for Fog Computing in Manufacturing”.
In: Applied Computer Science 12.3 (2016), pp. 37–46.
URL: http://acs.pollub.pl/pdf/v12n3/4.pdf.

[WZM16] Kaiwei Wang, Wuyang Zhou, and Shiwen Mao. “Energy Efficient Joint
Resource Scheduling for Delay-Aware Traffic in Cloud-RAN”.
In: 2016 IEEE Global Communications Conference (GLOBECOM).
IEEE, Dec. 2016. ISBN: 978-1-5090-1328-9.
DOI: 10.1109/GLOCOM.2016.7841793.

[1417] 3GPP-Release 14. Study on new radio access technology: Radio access
architecture and interfaces.
Technical Report 3GPP TR 38.801 V14.0.0 (2017-03). 3GPP, 2017.

[Aij17] Adnan Aijaz. “A Radio Resource Slicing Framework for 5G Networks
With Haptic Communications”.
In: IEEE Systems Journal 12.3 (2017), pp. 2285–2296. ISSN: 1932-8184.
DOI: 10.1109/jsyst.2017.2647970.

[Ass+17] Philippos Assimakopulos, Gurtej S. Birring, M. Kenan Al-Hares, and
Nathan J. Gomes.
“Ethernet-based fronthauling for cloud-radio access networks”.
In: 2017 19th International Conference on Transparent Optical Networks
(ICTON). 2017, pp. 1–4. DOI: 10.1109/ICTON.2017.8025034.

166

BIBLIOGRAPHY

[FDA17] Lilatul Ferdouse, Olivia Das, and Alagan Anpalagan.
“Auction Based Distributed Resource Allocation for Delay Aware
OFDM Based Cloud-RAN System”.
In: GLOBECOM 2017 - 2017 IEEE Global Communications Conference.
Vol. 2018-Janua. IEEE, Dec. 2017. ISBN: 978-1-5090-5019-2.
DOI: 10.1109/GLOCOM.2017.8254627.

[GLA17] Mikael Gidlund, Tomas Lennvall, and Johan Akerberg. “Will 5G
become yet another wireless technology for industrial automation?”
In: 2017 IEEE International Conference on Industrial Technology (ICIT).
IEEE, Mar. 2017, pp. 1319–1324. ISBN: 978-1-5090-5320-9.
DOI: 10.1109/ICIT.2017.7915554.

[GSM17] GSMA. An Introduction to Network Slicing. Tech. rep.
Accessed: Oct. 23, 2019. GSM Association, 2017. URL:
https://www.gsma.com/futurenetworks/resources/an-
introduction-to-network-slicing-2/.

[KN17] Adlen Ksentini and Navid Nikaein. “Toward Enforcing Network
Slicing on RAN: Flexibility and Resources Abstraction”.
In: IEEE Communications Magazine 55.6 (2017), pp. 102–108.
ISSN: 01636804. DOI: 10.1109/MCOM.2017.1601119.

[Mal+17] Steffen Malkowsky, Joao Vieira, Liang Liu, Paul Harris, Karl Nieman,
Nikhil Kundargi, Ian Wong, Fredrik Tufvesson, Viktor Öwall, and
Ove Edfors. “The World’s First Real-Time Testbed for Massive MIMO:
Design, Implementation, and Validation”. English.
In: IEEE Access (2017), pp. 9073–9088. ISSN: 2169-3536.
DOI: 10.1109/ACCESS.2017.2705561.

[MWY17] Haibo Mei, Kezhi Wang, and Kun Yang.
“Multi-Layer Cloud-RAN With Cooperative Resource Allocations for
Low-Latency Computing and Communication Services”.
In: IEEE Access 5 (2017), pp. 19023–19032. ISSN: 2169-3536.
DOI: 10.1109/ACCESS.2017.2752279.

[Mou+17] Ghizlane Mountaser, Maria Lema Rosas, Toktam Mahmoodi, and
Mischa Dohler.
“On the feasibility of MAC and PHY split in cloud RAN”.
In: IEEE Wireless Communications and Networking Conference, WCNC
(2017), pp. 1–6. ISSN: 15253511.
DOI: 10.1109/WCNC.2017.7925770.

167

BIBLIOGRAPHY

[Ord+17] J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Munoz,
J. Lorca, and J. Folgueira. “Network Slicing for 5G with SDN/NFV:
Concepts, Architectures, and Challenges”.
In: IEEE Communications Magazine 55.5 (May 2017), pp. 80–87.
ISSN: 1558-1896. DOI: 10.1109/MCOM.2017.1600935.

[Pan+17] Ai-Chun Pang, Wei-Ho Chung, Te-Chuan Chiu, and Junshan Zhang.
“Latency-Driven Cooperative Task Computing in Multi-user
Fog-Radio Access Networks”. In: 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS). 2017,
pp. 615–624. DOI: 10.1109/ICDCS.2017.83.

[Tey+17] Oumer Teyeb, Gustav Wikström, Magnus Stattin, Thomas Cheng,
Sebastian Faxér, and Hieu Do. Evolving LTE to fit the 5G future.
Tech. rep. Last Accessed: August 4, 2023. Ericsson, 2017.
URL: https://www.ericsson.com/en/reports-and-
papers/ericsson-technology-review/articles/evolving-
lte-to-fit-the-5g-future#:~:text=The%20process%
20of%20making%20LTE,and%20user%20planes%20(UPs)..

[ZSG17] Giuliana Zennaro, Aleksandra Stojanovic, and Marina Giordanino.
Report on vertical requirements and use cases. Tech. rep. 761536.
Accessed: Mar, 4, 2020. 5G-TRANSFORMER Project, 2017. URL:
http://5g-transformer.eu/index.php/deliverables/.

[Årz+18] Karl-Erik Årzén, Per Skarin, William Tärneberg, and Maria Kihl.
“Control over the Edge Cloud - An MPC Example”. English.
In: 1st International Workshop on Trustworthy and Real-time Edge
Computing for Cyber-Physical Systems.
Nashville, Tennessee, United States, Dec. 2018.

[Bek+18] C. Bektas, S. Monhof, F. Kurtz, and C. Wietfeld.
“Towards 5G: An Empirical Evaluation of Software-Defined
End-to-End Network Slicing”.
In: 2018 IEEE Globecom Workshops (GC Wkshps). Dec. 2018, pp. 1–6.
DOI: 10.1109/GLOCOMW.2018.8644145.

[BSK18] Christer Boberg, Malgorzata Svensson, and Benedek Kovács.
Distributed cloud –a key enabler of automotive and industry 4.0 use cases.
Tech. rep. Last Accessed: November 1, 2023. Ericsson, 2018.

[Gom+18] Nathan J. Gomes, Philippe Sehier, Howard Thomas,
Philippe Chanclou, Bomin Li, Daniel Munch,
Philippos Assimakopoulos, Sudhir Dixit, and Volker Jungnickel.
“Boosting 5G Through Ethernet: How Evolved Fronthaul Can Take
Next-Generation Mobile to the Next Level”.

168

BIBLIOGRAPHY

In: IEEE Vehicular Technology Magazine 13.1 (2018), pp. 74–84.
DOI: 10.1109/MVT.2017.2782358.

[Hao+18] Yixue Hao, Yinging Jiang, M Shamim Hossain,
Mohammed F Alhamid, and Syed Umar. “Learning for Smart Edge :
Cognitive Learning-Based Computation Offloading”. In: (2018).

[HMH18] Tobias Hosfeld, Florian Metzger, and Poul E. Heegaard.
“Traffic modeling for aggregated periodic IoT data”.
In: 2018 21st Conference on Innovation in Clouds, Internet and Networks
and Workshops (ICIN). IEEE, Feb. 2018. ISBN: 978-1-5386-3458-5.
DOI: 10.1109/ICIN.2018.8401624.

[Ior+18] Michaela Iorga, Larry Feldman, Robert Barton, Michael J Martin,
Ned Goren, and Charif Mahmoudi. Fog computing conceptual model .
Mar. 2018. DOI: 10.6028/NIST.SP.500-325.

[MMB18] Charif Mahmoudi, Fabrice Mourlin, and Abdella Battou.
“Formal definition of edge computing: An emphasis on mobile cloud
and IoT composition”. In: IEEE, Apr. 2018, pp. 34–42.
ISBN: 978-1-5386-5896-3. DOI: 10.1109/FMEC.2018.8364042.

[MRB18] Redowan Mahmud, Kotagiri Ramamohanarao, and Rajkumar Buyya.
“Latency-aware application module management for fog computing
environments”. In: ACM Transactions on Internet Technology 19.1 (2018).
ISSN: 15576051. DOI: 10.1145/3186592.

[ODo+18] Peter O’Donovan, Colm Gallagher, Ken Bruton, and
Dominic T.J. O’Sullivan.
“A fog computing industrial cyber-physical system for embedded
low-latency machine learning Industry 4.0 applications”.
In: Manufacturing Letters 15 (Jan. 2018), pp. 139–142. ISSN: 22138463.
DOI: 10.1016/j.mfglet.2018.01.005.

[Ska+18] Per Skarin, William Tärneberg, Karl-Erik Årzén, and Maria Kihl.
“Towards Mission-Critical Control at the Edge and Over 5G”. English.
In: 2018 IEEE International Conference on Edge Computing (EDGE).
United States: IEEE Computer Society, July 2018, pp. 50–57.
ISBN: 978-1-5386-7238-9. DOI: 10.1109/EDGE.2018.00014.

[Cis19] Cisco. Leading Tools Manufacturer Transforms Operations with IoT .
Last accessed Nov. 2020. 2019.
URL: http://www.cisco.com/c/dam/en%5C%5Fus/
solutions/industries/docs/manufacturing/c36-732293-
00-stanley-cs.pdf.

169

BIBLIOGRAPHY

[Diz+19] Jasenka Dizdarević, Francisco Carpio, Admela Jukan, and
Xavi Masip-Bruin.
“A Survey of Communication Protocols for Internet of Things and
Related Challenges of Fog and Cloud Computing Integration”.
In: ACM Comput. Surv. 51.6 (6 Jan. 2019). ISSN: 0360-0300.
DOI: 10.1145/3292674.

[Gro19] ATIS IoT Categorization Focus Group. IoT Categorization : Exploring
the Need for Standardizing Additional Network Slices.
Tech. rep. ATIS-I-0000075. Last accessed Nov. 2020. Alliance for
Telecommunications Industry Solutions (ATIS), Sept. 2019.
URL: https://access.atis.org/apps/group%5C%5Fpublic/
download.php/51129/ATIS-I-0000075.pdf.

[Seu+19] Michael Seufert, Raimund Schatz, Nikolas Wehner, and Pedro Casas.
“QUICker or not? -an Empirical Analysis of QUIC vs TCP for Video
Streaming QoE Provisioning”. In: 2019 22nd Conference on Innovation
in Clouds, Internet and Networks and Workshops (ICIN). IEEE, 2019.
ISBN: 978-1-5386-8336-1. DOI: 10.1109/ICIN.2019.8685913.

[Ska+19] Per Skarin, Karl-Erik Årzén, Johan Eker, and Maria Kihl.
“Cloud-Assisted Model Predictive Control”. English.
In: 2019 IEEE International Conference on Edge Computing.
United States: IEEE - Institute of Electrical and Electronics Engineers
Inc., Aug. 2019, pp. 110–112. DOI: 10.1109/EDGE.2019.00033.

[Lar+20] Lars Larsson, William Tärneberg, Cristian Klein, Erik Elmroth, and
Maria Kihl. “Impact of etcd deployment on Kubernetes, Istio, and
application performance”.
In: Software: Practice and Experience 50.10 (2020), pp. 1986–2007.
DOI: 10.1002/spe.2885.

[Ma+20] Yehan Ma, Chenyang Lu, Bruno Sinopoli, and Shen Zeng.
“Exploring Edge Computing for Multi-Tier Industrial Control”.
In: IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 39.11 (11 Nov. 2020), pp. 3506–3518. ISSN: 0278-0070.
DOI: 10.1109/TCAD.2020.3012648.
URL: https://ieeexplore.ieee.org/document/9211472/.

[SLM20] Darius Saif, Chung-Horng Lung, and Ashraf Matrawy.
“An Early Benchmark of Quality of Experience Between HTTP/2 and
HTTP/3 using Lighthouse”.
In: IEEE International Conference on Communications (2020).
ISSN: 15503607. DOI: 10.1109/ICC42927.2021.9500258.

170

BIBLIOGRAPHY

[Ska+20] Per Skarin, William Tärneberg, Karl-Erik Arzen, and Maria Kihl.
“Control-over-the-cloud: A performance study for cloud-native, critical
control systems”. In: 2020 IEEE/ACM 13th International Conference on
Utility and Cloud Computing (UCC). IEEE. IEEE, Dec. 2020,
pp. 57–66. ISBN: 978-0-7381-2394-3.
DOI: 10.1109/UCC48980.2020.00025.

[Zha+20] Qi Zhang, Lin Gui, Fen Hou, Jiacheng Chen, Shichao Zhu, and
Feng Tian. “Dynamic Task Offloading and Resource Allocation for
Mobile-Edge Computing in Dense Cloud RAN”.
In: IEEE Internet of Things Journal 7.4 (Apr. 2020), pp. 3282–3299.
ISSN: 2327-4662. DOI: 10.1109/JIOT.2020.2967502.

[DJ21] Jasenka Dizdarevic and Admela Jukan. “Experimental Benchmarking
of HTTP/QUIC Protocol in IoT Cloud/Edge Continuum”.
In: ICC 2021 - IEEE International Conference on Communications.
IEEE, 2021. ISBN: 978-1-7281-7122-7.
DOI: 10.1109/ICC42927.2021.9500675.

[IS21] Jana Iyengar and Ian Swett.
QUIC Loss Detection and Congestion Control . RFC 9002. May 2021.
DOI: 10.17487/RFC9002.

[IT21] Jana Iyengar and Martin Thomson.
QUIC: A UDP-Based Multiplexed and Secure Transport. RFC 9000.
May 2021. DOI: 10.17487/RFC9000.

[Moo+21] Nazanin Moosavi, Mahnaz Sinaie, Paeiz Azmi, and Jyrki Huusko.
“Delay Aware Resource Allocation With Radio Remote Head
Cooperation in User-Centric C-RAN”.
In: IEEE Communications Letters 25 (7 July 2021), pp. 2343–2347.
ISSN: 1089-7798. DOI: 10.1109/LCOMM.2021.3069235.
URL: https://ieeexplore.ieee.org/document/9388706/.

[Mor21] Farnaz Moradi. “Improving DRX Performance For Emerging Use
Cases In 5G”. English. PhD thesis. 2021.

[Bis22] Mike Bishop. HTTP/3. RFC 9114. June 2022.
DOI: 10.17487/RFC9114.

[Fil+22] Abderrahime Filali, Zoubeir Mlika, Soumaya Cherkaoui, and
Abdellatif Kobbane.
“Dynamic SDN-Based Radio Access Network Slicing With Deep
Reinforcement Learning for URLLC and eMBB Services”.
In: IEEE Transactions on Network Science and Engineering 9 (4 2022),
pp. 2174–2187. ISSN: 23274697.
DOI: 10.1109/TNSE.2022.3157274.

171

BIBLIOGRAPHY

[ITC22] Amjad Iqbal, Mau-Luen Tham, and Yoong Choon Chang.
“Resource allocation for joint energy and spectral efficiency in cloud
radio access network based on deep reinforcement learning”.
In: Transactions on Emerging Telecommunications Technologies 33 (4 Apr.
2022). ISSN: 2161-3915. DOI: 10.1002/ett.4417. URL: https:
//onlinelibrary.wiley.com/doi/10.1002/ett.4417.

[Liu22] Guo-Ping Liu.
“Coordinated Control of Networked Multiagent Systems via
Distributed Cloud Computing Using Multistep State Predictors”.
In: IEEE Transactions on Cybernetics 52 (2 Feb. 2022), pp. 810–820.
ISSN: 2168-2267. DOI: 10.1109/TCYB.2020.2985043.
URL: https://ieeexplore.ieee.org/document/9082811/.

[Sha+22] Mahdi Sharara, Sahar Hoteit, Veronique Veque, and Francesca Bassi.
“Minimizing Power Consumption by Joint Radio and Computing
Resource Allocation in Cloud-Ran”. In: vol. 2022-June.
IEEE, June 2022, pp. 1–6. ISBN: 978-1-6654-9792-3.
DOI: 10.1109/ISCC55528.2022.9912943.
URL: https://ieeexplore.ieee.org/document/9912943/.

[Zav22] Dmitry Zavalishin. MQTT/UDP Documentation, Release 0.5-0.
Last Accessed: August 4, 2023. May 2022. URL:
https://buildmedia.readthedocs.org/media/pdf/mqtt-
udp/latest/mqtt-udp.pdf.

[Zha+22] Yongnan Zhang, Yonghua Zhou, Huapu Lu, and Hamido Fujita.
“Spark Cloud-Based Parallel Computing for Traffic Network Flow
Predictive Control Using Non-Analytical Predictive Model”.
In: IEEE Transactions on Intelligent Transportation Systems 23 (7 July
2022), pp. 7708–7720. ISSN: 1524-9050.
DOI: 10.1109/TITS.2021.3071862.

[Dai+23] Li Dai, Yaling Ma, Runze Gao, Jinxian Wu, and Yuanqing Xia.
“Cloud-Based Computational Model Predictive Control Using a
Parallel Multiblock ADMM Approach”.
In: IEEE Internet of Things Journal 10 (12 June 2023), pp. 10326–10343.
ISSN: 23274662. DOI: 10.1109/JIOT.2023.3238508.

[Liu+23] Bo Liu, Pengcheng Zhu, Jiamin Li, Dongming Wang, and Xiaohu You.
“Energy-Efficient Optimization in Distributed Massive MIMO
Systems for Slicing eMBB and URLLC Services”. In: IEEE Transactions
on Vehicular Technology 72 (8 Aug. 2023), pp. 10473–10487.
ISSN: 0018-9545. DOI: 10.1109/TVT.2023.3260988.
URL: https://ieeexplore.ieee.org/document/10079135/.

172

BIBLIOGRAPHY

[Nok23] Nokia. Mining and mission-critical wireless connectivity: Laying the
foundation for the digital transformation of mining. Tech. rep.
Last Accessed: November 1, 2023. Nokia, 2023.
URL: https://www.nokia.com/networks/industries/
mining/#bringing-private-wireless.

[Oca+23] Andres F. Ocampo, Mah-Rukh Fida, Juan F. Botero,
Ahmed Elmokashfi, and Haakon Bryhni. “Opportunistic CPU Sharing
in Mobile Edge Computing Deploying the Cloud-RAN”. In: IEEE
Transactions on Network and Service Management (2023), pp. 1–1.
ISSN: 1932-4537. DOI: 10.1109/TNSM.2023.3304067.
URL: https://ieeexplore.ieee.org/document/10214346/.

[SM23] Darius Saif and Ashraf Matrawy. “An Experimental Investigation of
Tuning QUIC-Based Publish-Subscribe Architectures in IoT”. In:
arXiv, 2023. eprint: 2208.11178 (cs.NI).

[Yan+23] Dandan Yan, Benjamin K. Ng, Wei Ke, and Chan-Tong Lam.
“Deep Reinforcement Learning Based Resource Allocation for Network
Slicing With Massive MIMO”.
In: IEEE Access 11 (2023), pp. 75899–75911. ISSN: 2169-3536.
DOI: 10.1109/ACCESS.2023.3296851.
URL: https://ieeexplore.ieee.org/document/10186882/.

[AG] Deutsche Messe AG. HANNOVER MESSE Events.
Last accessed Nov. 2020.
URL: https://www.hannovermesse.de/en/.

[Arc] HTTP Archive. Report: State of the Web. Last Accessed: August 3, 2023.
URL: https://httparchive.org/reports/state-of-the-
web?start=2018%5C%5F03%5C%5F01&end=latest&view=list.

[Goo] Google. Google Edge Network. Last Accessed: November 9, 2023.
URL: https://peering.google.com/%5C#/learn-more/quic.

[Hat] Red Hat. Evolution to a 5G core network.
Last Accessed: August 10, 2023.
URL: https://www.redhat.com/en/topics/5g-
networks/evolution-to-a-5g-core.

[JC] Matt Joras and Yang Chi. How Facebook is bringing QUIC to billions.
Last Accessed: November 9, 2023. URL:
https://engineering.fb.com/2020/10/21/networking-
traffic/how-facebook-is-bringing-quic-to-billions/.

173

BIBLIOGRAPHY

[Ric] Felix Richter. Cloud Infrastructure Market: Amazon Maintains Lead in
the Cloud Market. Last Accessed: August 11, 2023.
URL: https://www.statista.com/chart/18819/worldwide-
market-share-of-leading-cloud-infrastructure-
service-providers/.

[ST] Per Skarin and William Tärneberg. cotc-modsim.
Last Accessed: November 29, 2022.
URL: https://www.thefuturenow.se/pypi/cotc-modsim/.

[Stå] Jon Stålhammar. Massive MIMO Simulator. Github. URL:
https://github.com/jost95/massive-mimo-simulator.

[Web] Web3Techs. Usage statistics of Default protocol https for websites.
Last Accessed: August 3, 2023. URL: https:
//w3techs.com/technologies/details/ce-httpsdefault.

174

Popular Science

In today’s digital age, “the cloud” is no longer just a fluffy white thing in the sky—
it’s a revolutionary technology that’s changed the way we live and work. At its core,
the cloud is a shared pool of computing resources. Think of it like a public library for
computers; instead of buying every book you want to read, you can borrow it from
the library and return it when you’re done. This “pay-as-you-go” model has made it
affordable for businesses and individuals to use complex software and store massive
amounts of data without the need for owning sophisticated hardware.

People use the cloud in their daily lives, often without realizing it. Think of Google
Docs or Microsoft’s online Office suite. These are prime examples of “Software-as-
a-Service” in cloud computing, where you don’t need to install bulky software; you
just use it directly online. Gamers, too, can enjoy the cloud with platforms like Xbox
Cloud Gaming, which lets you play games without the need for a dedicated console.

But while the cloud offers convenience, it doesn’t always deliver the best user experi-
ence. Imagine you’re writing in Google Docs, and it lags, especially with larger files.
Or you’re in the middle of a fast-paced Xbox game, and you experience delays or
lower visual quality. That’s like streaming a film and having it pause or blur at the
most critical moments.

But what happens when this technology enters complex systems like industrial facil-
ities? Welcome to the realm of cloud integrated systems, the focus of my research.
These systems take the concept of the cloud and apply it to industries where speed,
reliability, and accuracy are paramount. In these settings, moving parts of the compu-
tational workload to the cloud could be a game-changer but also a potential headache.

In my research, I specifically tackle two kinds cloud integrated systems: Cloud RAN
and Cloud Control Systems. In a nutshell, Cloud RAN shifts some of a traditional
radio base station’s heavy lifting to the cloud. Similarly, a cloud control system takes
part of a cyber-physical system—like a manufacturing line—and moves its computa-
tional tasks to the cloud.

Why does this matter? Because when you move things to the cloud, you inherit all of
its challenges. The industrial systems have stringent performance requirements. They
can’t afford to wait for the cloud’s slowpoke tendencies. They need their data now,
not a split second later, to keep operations running smoothly.

My research aims to answer two fundamental questions. First, can we successfully

integrate these industrial systems with the cloud? And if so, how can we make it
better, accepting that the cloud and network communications will never be perfect?

I’ve identified two main culprits behind these issues: the shared nature of the cloud
and the latency due to distance. The cloud is like a communal pie—when you share
it with others, you don’t get as much as you’d like, and you have to wait your turn.
Similarly, the further the pie (or cloud) is from you, the longer it takes for a piece to
reach your plate.

But here’s where my work comes in. Instead of trying to make the cloud or networks
faster—which is often beyond our control—I look at optimizing our own systems
to adapt to these limitations. I work on solutions from the system’s perspective to
mitigate these challenges, ensuring that despite the imperfections in the cloud and
network, our cloud integrated systems can still run as efficiently as possible.

