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Abstract 
Tuberculosis is a communicable disease that persists as a second leading cause for 
death, by an infectious agent. Several reasons contribute to this issue to this, of 
which an upsurge in antibiotic resistance is of top concern. Resistance patterns in 
the form of mono or multidrug resistance was reported to most clinical therapies at 
our disposal. This thesis aims to address this issue by studying a novel antimicrobial 
peptide named NZX as a potential drug candidate in the tuberculosis treatment 
regimen.   

Mycobacterium tuberculosis, the tuberculosis pathogen is made up of a unique cell 
wall that renders it resistant to most compounds tested. We set out to identify the 
membrane interactive potential of NZX using artificial liposomes and live bacteria. 
The peptide appeared to interact with inner membrane of live mycobacteria by a 
pull and aggregate mechanism, eventually disrupting the cell integrity. A similar 
aggregation pattern was observed for liposomes as well as insertion into the 
membrane core was demonstrated. Antimicrobial peptides are known to possess 
multiactivity mode of mechanisms. To understand this, we investigated internal 
targets through a proteomics study. This led to the identification of essential protein 
targets such as chaperonins 60 kDa and elongation factor EF-Tu involved in 
bacterial growth and maintenance. Together, these findings displayed NZX’s 
multifaceted activity against mycobacteria. The lack of mutants from resistance 
development studies for NZX could be asserted to their multiactivity feature.  

Evidence of the therapeutic potential of NZX as an antimicrobial agent was 
explored. NZX displayed a wide range of activity when tested against a few 
clinically isolated nontuberculosis mycobacteria species and drug-resistant 
Staphylococcus aureus. The effect of drug-to-drug interactions were observed from 
an in vivo and in vitro standpoint and the peptide portrayed an additive effect with 
ethambutol, however, remained indifferent with other drug combinations. NZX 
retained its stability and antimicrobial property despite exposure to proteolytic 
molecules and human serum respectively. Directed therapy of NZX was performed 
by loading NZX onto nanoparticles and was found to be effectual for intracellular 
therapy. Moreover, nanoparticle loaded NZX exhibited better antimicrobial activity 
in primary macrophages.  

The data presented here shows cumulative evidence on NZX as a prospective 
candidate against mycobacterial infections. 
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Popular summary 
Jonathan knew that I was soon going to die. I think everyone knew except me. They 
knew at school too, because I was away most of the time, coughing and always being 
ill. For the last six months, I haven’t been able to go to school at all. 

- A passage from Astrid Lindgren’s ‘The Brothers Lionheart’ 

Tuberculosis, a disease affecting mankind for many centuries, typically succumb to 
their death bed. Infected individuals suffered from symptoms that included, 
persistent cough, fever, night sweats, loss of weight and spitting up blood which 
lasted for months. The only cure recommended was complete bed rest with little to 
no physical movement. However, discovery of the very first antibiotic Streptomycin 
in 1943 radically changed the outcome of this disease. The advance in treatment 
seen was short-lived due to the emergence of antibiotic resistance, developed due to 
the use of single drug therapy. Soon the importance of multidrug therapy was 
understood and adapted, beginning the era of curable tuberculosis.  

Globally, about 1.6 million have been reported to have died from tuberculosis in 
2021. It has been noted as the second leading cause of death from an infectious 
agent. The spread of the causative agent, Mycobacterium tuberculosis 
(mycobacteria) is human-to-human. Classically, the disease manifestation is 
primarily lung infections or disseminated infections (when mycobacteria spreads to 
other parts of the body). The standard treatment followed for drug sensitive 
mycobacteria has been a combination of four drugs, rifampicin, ethambutol, 
isoniazid, and pyrazinamide for a course of six months. In 2022, a new conditional 
guideline from World Health Organization recommends use of isoniazid, 
rifapentine, moxifloxacin and pyrazinamide for 4 months. Even though therapeutic 
advances have occurred we continue to face threat from drug resistant mycobacteria. 
Additionally, a growing cause for concern is due to drug resistance reported to all 
drugs prescribed so far in tuberculosis treatment.  

This thesis encompasses a detailed study on a potential novel tuberculosis drug. The 
compound we have been studying is a short peptide that was derived and modified 
from a fungus named Pseudoplectania nigrella. This short peptide named NZX is a 
type of antimicrobial peptide which is made up of 40 amino acids in length and 
characteristically it is negatively charged as well as hydrophobic in nature. 
Antimicrobial peptides are a group of short peptides that are part of the immune 
system of many different organisms. During a screening assay NZX was discovered 
to possess an antimycobacterial property. Furthermore, NZX was proven to be non-
toxic to human cells and it survived immediate breakdown from proteolytic 
enzymes, which it may encounter when administered. These findings led to further 
important studies during this thesis wherein we explored the mechanistic and 
therapeutic facets of NZX. 
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As mentioned above tuberculosis treatment requires a multidrug therapy, to meet 
this criteria NZX was studied for its drug-drug interaction with currently used 
tuberculosis drugs. These drug interaction studies revealed absence of negative 
effects between drug combination, in fact the combined therapy of NZX and 
ethambutol enhanced their bactericidal property. 

Next, NZX was evaluated for its therapeutic potential through some studies, to begin 
with stability of NZX was analyzed after dosing. Animal studies assessed the half-
life of NZX, half-life can be defined as the time taken for any compound to reach 
half of its concentration in the blood from the time of administration. This 
consequently implies that the activity of the drug is decreased by 50 %. To tackle 
this problem and to improve cell specific targeting, NZX was loaded onto a porous 
silica nanoparticle. Using nanoparticle for delivering NZX not only improved 
bacterial death inside cells it also allowed for slow release of NZX. These findings 
proves that NZX could survive degradation and sustained release may reduce dosing 
frequency in patients. Finally, we tried to study the possibility of resistance 
development to NZX, as this is considered a prominent issue within tuberculosis 
treatment. This was investigated by attempting to produce spontaneous mutants in 
mycobacteria through constant exposure to NZX at conditions that might force 
resistance development. On the contrary, no mutants were reported from these 
studies, giving us some hope for an effective treatment.  

Interestingly, antimicrobial peptides possess broad range applicability, which means 
that they can target different types of bacteria and exhibit their antimicrobial 
property. NZX displayed this characteristic feature against several mycobacterial 
species including some drug resistant Gram-positive bacteria. This broad range 
effect is particularly important because NZX could perhaps be used against other 
bacterial disease, like penicillin.  

To understand the biological mechanism with which NZX targets Mycobacterium 
tuberculosis, a set of biophysical and molecular biology techniques were used. The 
importance of knowing NZX’s mechanism of action is that it helps to identify 
potential toxic effects in mycobacteria and gain confidence in the molecule’s ability 
to perform, hence improving the likelihood of a successful drug development. We 
discovered that NZX has a strong initial attraction towards the mycobacterial cell 
surface and this interaction led to bacterial cell death. The peptide was also found 
to target some essential pathways by binding to specific proteins present inside the 
cell. The cell death observed could be speculated to ensue from either one or both 
these processes. 

Through these studies we gathered compelling data to support NZX as a potential 
novel antimicrobial peptide therapy against tuberculosis disease.  
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Background and clinical aspects of 
Mycobacterial infections  

Brief history on tuberculosis 
This ancient disease is presumed to be as old as 150 million years, around the time 
of Gondwanaland, marking the end of the Jurassic period (1) . Records of evidence 
of tuberculosis (TB) from ancient times have been reported throughout history. 
Documentation as writings on papyri tombs from ancient Egypt to sculpture 
inscription from the Babylonian era, and description of a consumptive disease in the 
Vedic Indian literature are a few examples (2-6). The contagious nature of TB was 
first described by Girolamo Fracastoro in 1546 as ‘invisible yet living and 
transmissible’ disease. This laid a foundation for public health protection by 
isolating and treating the infected individuals in special infirmaries (7). French 
military surgeon Jean Antione Villemin was the first one to demonstrate the 
transmission of TB through a study involving blood samples from sick rabbits to 
infect other animals. The monumental discovery led him to propose that this disease 
is caused by a specific organism that must be present in the air (8).  

– The phthisic soldier is to his roomates what a glandered horse is to its stablemates  
- Jean Antione Villemin (9). 

In 1882, a historic moment for research in TB; Robert Koch a German scientist 
visualized a tubercule with a special staining technique. He presented this in a 
lecture for the first time at the Physiological Society at the Charite Hospital in Berlin 
on the 24th of March 1882. He received the Nobel Prize in Medicine or Physiology 
in 1905 for his discovery of TB bacillus (10). Today, March 24th is remembered as 
World Tuberculosis Day. Prior to the discovery of antibiotics only treatment 
followed was isolation and complete bed rest of infected individuals. This concept 
was reinvented by Hermann Brehmer who suggested isolating the patient up in the 
mountains with lots of fresh air, sun, rest, and adequate nourishment. As a result, 
the rise of sanatoriums began. Some patients recovered miraculously for short terms, 
however, in the long term about 60 % of these patients died within 6 years, probably 
due to recurrence (9, 11). 
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Figure 1: TB patients being treated in open air by the river Thames, London UK. 
A widely accepted treatment for TB before chemotherapy included resting in bed, good nutrition along 
with daily exposure to sunlight and fresh air. Reprinted from The Guardian, published August 2019. 
Reference (12).  

This was followed by the era of chemotherapy that revitalized TB treatment with 
the discovery of Streptomycin. Soon it became evident that monotherapy led to 
failure in treatment and after many trials a triple therapy was studied (13). The 
emergence of resistance to these drugs led to the search for newer and better 
therapeutics which still seems to be a theme in the TB battle.  

Mycobacterium tuberculosis 

Aetiology 
TB is a communicable disease spread through an airborne pathogen named 
Mycobacterium tuberculosis (Mtb). TB is present in two forms, active or latent state 
(LTBI). TB primarily causes pulmonary infections and about 15% are 
extrapulmonary infections (14). Mtb is related to a group of mycobacterial species 
called the Mycobacterium tuberculosis complex and the other members of this 
complex are M bovis, M. africanum, M. canetti, M.  mungi and M. microti. They are 
known to be 99% related, indicating they belong to the same species but differ in 
pathogenicity (15-17).  Formerly it was hypothesized that Mtb had branched out 
from M. bovis, a cattle infecting bacterium. However, this was disregarded later 
through single-nucleotide polymorphism studies suggesting both evolved at the 
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same time from M. canetti (16, 18). M. bovis infections in humans occurred 
occasionally through unpasteurized milk. M. bovis infections were commonly seen 
among people who suffered from comorbidities and were immunocompromised 
(19). Mycobacteria are described as rod shape, aerobic, catalase positive, non-motile 
and non-spore forming (20). Typically, they are known as acid-fast bacteria due to 
their unique cell wall composition composed of mycolic acids which renders them 
impermeable to most antibiotics (21, 22). Characteristically, mycobacteria have 
distinctive colony morphology (cloudy rough colonies) and slow doubling time 
(20). Generation time is estimated to be around 24 hours taking them up to 3-4 
weeks to grow on an agar plate (23, 24).  

Morphology of cell wall  
The cell wall of mycobacteria is composed of four components: the inner membrane 
(IM), the peptidoglycan and arabinogalactan layer, the mycomembrane (MM) and 
the capsule /outer membrane (OM) (Figure 2). IM is mostly composed of 
glycerophospholipids such as phosphatidylethanolamine (PE) and cardiolipin (CL), 
phosphatidylinositol (PI), lipoarabinomannen (LAM), and phosphatidyl-myo-
inositol mannosides (PIM) (25, 26). The peptidoglycan layer is similar to Gram-
positive and Gram-negative bacteria and is made up of highly cross-linked repetitive 
disaccharide units which are interlinked covalently with arabinogalactan (27). The 
peptidoglycan layer is followed by MM, the characteristic mycolic acid layer. 
However, MM is a key component that identifies mycobacteria as this layer is 
important for identification via acid-fast staining, but also limits permeability to 
nutrients and antibiotics, and plays a role in virulence. It is further interlinked with 
free lipids that are important for survival (27, 28). The OM is composed of trehalose-
based glycolipids, phenolic glycolipids (PGLs) phthiocerol dimycocerosate 
(PDIMs), lipomannan (LM), lipoarabinomannan (LAM) and sulfolipids (25, 28). 
PIMs, LM, LAM, PDIMs are recognized by specific receptors responsible for 
eliciting an immune response in the host cell (29).  
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Figure 2: A brief schematic representation of the mycobacterial cell wall and its components.  
The mycobacterial cell wall is a complex wall composed of several lipids giving it the thick waxy 
coating. The different layers are (bottom to top), inner membrane, peptidoglycan & arabinogalactan 
layer, mycomembrane, and the capsule layer. Within these layers are some free or non-covalently 
linked lipids along with essential proteins. Figure was created using Biorender and adapted from 
references (30, 31). Created with BioRender.com 

Epidemiology 

The End TB Strategy, an initiative by WHO has targeted an ambitious deadline to 
End TB by 2020-2035. This target was well under way until Covid-19 pandemic 
emerged and derailed the progress made so far. WHO reported 10.6 million people 
fell ill from TB in 2021 an increase by 4.1 % from 2020 (14) (Figure 3). It is 
estimated that over 1/3rd of the world's population is infected and exist in LTBI 
form of which 5-10% of this population can develop TB during their lifetime, with 
the probability decreasing after the first two years after infection (32). The countries 
Bangladesh, India, China, Pakistan, Democratic Republic of Congo, Nigeria, and 
Philippines counts by WHO to be high burden and makes up to 87% of all TB cases. 
The mortality from TB infection rose by 0.1 million from 2019 to 2021 to 1.3 
million deaths among HIV-negative individuals and 214 000 deaths among HIV 
positive (14). Region wise epidemiology of TB varies vastly. Incidence and 
mortality rates are high in the African subcontinent because of the high number of 
HIV infections. Correspondingly, the incidence rates are high in Southeast Asia due 
to factors such as poverty and undernourishment (33). The prevalence of drug 
resistance in TB adds to the burden of cases reported yearly. Drug resistance 
reported were estimated to be 450,000 cases in 2021 which was up by 3.1 % since 
2020. This was probably due to the decline in treatment of drug-resistant TB during 
the COVID-19 pandemic (34).  
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Figure 3: Estimated TB incidence rate from 2021.  
Reprinted from Global tuberculosis report from 2022. Geneva: World Health Organization; 2022. 
Licence: CC BY-NC-SA 3.0 IGO. Reference (34). 

Establishing an infection  
Transmission 
Over 90% of TB cases are transmitted through the inhalation of aerosol droplets and 
in rare cases via oral or placental routes (35, 36). Aerosols are formed through 
coughing, singing, sneezing, or talking (37). Transmission from sick individuals are 
enhanced by certain factors namely, smear-positive culture (high bioburden), 
proximity, poor UV levels and ventilation (38). Finally, host factors for example 
compromised immunity by HIV or malnutrition etc, culminate to increase the 
probability of spread (38, 39).  

Mycobacterial uptake via aerosol  
TB infections are acquired from breathing in aerosols produced by infected 
individuals (40).  Close contact with sick patients advances to infect only a few 
subsets of individuals and this is influenced by a combination of bacterial load, 
bacterial lineages and host factors (41). Once inhaled, the pathogen enters alveolar 
space and encounters alveolar epithelial type II pneumocytes followed by alveolar 
macrophages (AMs) (42). Even though macrophages were believed to be the first 
cells that encounter the bacillus, studies have shown that mycobacterial interacts 
with epithelial cells, provokes uptake, replication and suppression of pro-
inflammatory cytokines (43). Nevertheless, Mtb is an intracellular pathogen, and it 
resides in AMs, a hallmark of TB infection. Other phagocytic cells that take up Mtb 
are dendritic cells (DCs) and neutrophils. The predominance of Mtb within these 
cells changes over time, dependent on the stage of infection (44). Macrophages and 
neutrophils are further known to initiate innate immune responses by producing 
antimicrobial peptides that inhibit extracellular bacterial growth (45).  
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Macrophage and neutrophil intervention 
Recognition and uptake of Mtb by AMs are mediated through a variety of pattern 
recognition receptors namely C-type lectins (CLRs), toll-like receptors (TLRs), Fc 
receptors, complement receptor (CR), scavenger receptor, surfactant protein and 
glycophosphatidylinositol- anchored membrane receptor (46-48). Upon uptake, 
bacteria are sequestered into phagosomes followed by fusion with lysosomes to 
form phagolysosomes. In the phagolysosome the bacteria confronts a harsh 
environment mediated by low pH and formation of reactive oxygen species (49). 
However, as a defence mechanism mycobacteria block phagosome formation (50, 
51). AMs infected with Mtb replicate and progress to either apoptosis or necrosis 
during which macrophages mediate through cytokines namely, tumour necrosis 
factor (TNF) and interleukin (IL-12), resulting in recruitment of other immune cells 
(52).  

The role of neutrophils in TB infections can be contradictory. Recognition of Mtb 
by neutrophils occurs through TLR2 and TLR4. Neutrophils contribute to bacterial 
killing through several processes. This includes phagocytosis, the release of human 
neutrophil peptides (HNP), chemotaxis, generation of reactive oxygen species, and 
neutrophil extracellular traps (53, 54). Neutrophils also cooperate with macrophages 
and DCs during TB infections and help by recruiting more immune cells via 
cytokine productions and promote antigen presentation respectively (54). On the 
contrary, the surplus in neutrophils has been associated with improved disease 
outcomes which can be due to the accumulation of toxic compounds from necrotic 
neutrophils (55).  

Antigen presentation and T cell priming 
Dendritic cells (DCs) are antigen presenting cells that present Mtb antigen to T cells 
via major histocompatibility complex (MHC) class I and class II molecules. They 
form a link between the innate and adaptive immune system. DCs are normally 
present in an immature state in tissues and the process of maturation is activated 
upon interaction with a foreign antigen (56). Interacting with Mtb antigen matures 
DCs cell to migrate to the draining lymph node and effectively activate T cells 
(57).  In addition, AMs along with sheltering Mtb inside them serve as antigen 
presenting cells (58).  

Delayed onset of T cell response      
The onset of adaptive immunity is dependent on antigen presentation by dendritic 
cells in the lymph node (or AMs presentation by MHCs) and this is characteristically 
delayed in TB infection, a known virulence mechanism (59). The onset of adaptive 
immunity development has been estimated with the help of TB diagnostic analysis, 
tuberculin skin test (TST) which essentially measures CD4+ T lymphocyte reaction. 
Interference of antigen presentation has been reported through specific examples 
such as 19-kDa lipoprotein and lipid trehalose 6,6′-dimycolate present in the cell 
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membrane of Mtb. This has been reported to block antigen presentation (60, 61). If 
a good TB immune response is present, activated CD4+ T-cells differentiate into 
Th1 cells, Th17 and cytotoxic T effector cells. They relocate to the lungs where they 
encounter bacteria infested neutrophils, macrophages and DCs and participate in 
granuloma formation (62).  

Consequences of Granuloma formation and maturation 
The granuloma is an organized structure that is produced as a consequence of the 
immune response during TB infections.  It encompasses engulfed Mtb surrounded 
by different immune cells. The formation of granuloma is a characteristic feature of 
intracellular pathogens orchestrated by the expression of pro- and anti-inflammatory 
cytokine. At the core, macrophages infected with bacteria are found and surrounded 
by recruited monocyte-macrophages that undergo epithelioid cell differentiation. 
The tight network of aggregated epithelioid cells is characteristic to TB granuloma. 
These epithelioid cells can be further surrounded by multinucleated giant cells. 
Macrophages also transform into foamy cells that contain lipid droplets. The 
cascade effect of pro-inflammatory cytokines leads to recruitment of other cells that 
contribute to the structure of granuloma including neutrophils, DCs, natural killer 
cells, T-cells and B-cells, and fibroblasts (63-66). Classically, granulomas formed 
during TB infections are either necrotic (active) with a typical caseous cheese-like 
centre containing high bioburden of bacteria or a calcified granuloma (inactive), 
representing containment of bacteria (63). A third structure has also been mentioned 
with respect to TB granulomas, called the solid granuloma, that lacked necrosis (67) 
(Figure 4). Heterogeneity in granulomas is found within the same lung tissue which 
unfortunately leads to problems during clinical treatment (63).   
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Figure 4: Stages of granuloma formation and progression in tuberculosis.  
The figure represents the three distinctive stages in granuloma formation seen during TB infection. A. 
Solid granuloma: this the first stage wherein the bacteria is still contained within the macrophages. B. 
Necrotic granuloma: in this stage some of the macrophages undergo necrosis and bacteria are now 
extracellular in the central core, but they are contained in by other immune cells within the granuloma 
structure. C. Caseous granuloma: this stage is the active infection stage when the bacteria have 
multiplied exponentially, and the granuloma structure has rupture to spread the bacillary load. Figure 
created using Biorender and adapted from references  (65, 68). Created with BioRender.com 

Diagnosis 
Standard immunological diagnostic techniques 
Tuberculin skin test (TST) or Mantoux skin test is based on purified protein derivative 
(PPD) administered intradermally at 2 tuberculin units to test for type IV delayed 
hypersensitivity (69, 70). The test result should be read between 48-72 hours post 
administration (70). The test is considered positive if the induration is 5 mm or larger 
and gives a false positive result in vaccinated individuals (69).  The main disadvantage 
of the PPD test is that the proteins are not specific to Mtb. For example, vaccinated 
individuals or exposure to NTM will elicit a positive reaction (71, 72).  

Interferon-gamma (IFN-γ) release assay (IGRA) is an ex vivo analysis of IFN-γ levels 
released in response to Mtb antigens by T-cells in whole blood (69). QuantiFERON-
TB Gold IN-Tube assay and the T-SPOT.TB assays are two commonly used assays 
for TB diagnostics. The analysis is based on enzyme-linked immunosorbent assay 
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(ELISA) which uses region of difference 1 (RD1) antigens to sensitize T-cells. The 
advantage of this assay over TST is its specificity to Mtb with no chance of a false 
positive result with respect to strain ambiguity seen in TST (73, 74). However, one 
drawback of IGRA testing lies in the low mitogen response among certain high risk 
TB populations with an indeterminate IGRA between 2% - 11% (75).  

Currently, these are the only analyses that can be used to test for LTBI. New 
modifications to the IGRA test have shown potential in identifying incipient TB (71, 
74).  

Conventional and new microbiological diagnostic techniques 
Sputum smear test performed with Ziehl-Nielsen stain remains one of the 
cornerstones of TB diagnostic methods. This low-cost method is important in low 
income countries because of its quick and simple (76). The specificity of the stains 
is due to acidic mycolic chain in the cell membrane which persists even when 
bacteria is dead. Sensitivity to the experiment is considered moderate since the 
samples can be affected by the Mtb concentration of the sputum. Fluorescence 
microscopy with fluorochrome dyes was introduced to improve the smear test 
analysis with better staining dyes that improve on time and sensitivity. Sensitivity 
was 10% higher than conventional methods (76, 77).  

Culturing mycobacterium has been the gold standard in TB diagnosis. The two main 
advantages it provides are high sensitivity and drug susceptibility testing. The 
disadvantage of this analysis lies in the time taken to get results is between 4-6 
weeks which is a challenge in clinical settings (69, 78). However, the development 
of Mycobacteria Growth Indicator Tube (MGIT) has provided an alternative to 
bacterial growth on plates. These automated liquid culture tubes are used to obtain 
rapid results for the initial diagnosis of pulmonary and extrapulmonary TB (79).  

Gene Xpert MTB/RIF is a molecular method developed for TB diagnostics. It 
utilizes real time polymerase chain reaction (PCR) technology that uses single-use 
cartridges that are pe-prepared to process and identify Mtb and resistant Mtb. The 
gene of interest  that is amplified is the rpoB gene which detects both Mtb strain and 
rifampicin (RIF) resistant strain (80). After detecting a few false-positive results 
from some studies for RIF resistance, the WHO used to recommend combining 
conventional antibiotic resistance testing along with gene amplification (81). 

The latest method in molecular techniques that has been incorporated as a diagnostic 
tool is whole genome sequencing (WGS). WGS provides an advantage over many 
of the older methods due to its specificity and the ability to catch mutations for 
different drugs as well as mutations occurring outside of target regions (82, 83). 

Imaging diagnostic techniques 
It is one of the tools that has been used since the discovery of X-ray in 1895 by 
physicians to examine organs (84). Today developments in imaging have improved 
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TB diagnosis, the methods used are magnetic resonance imaging, positron emission 
tomography, computed tomography, and radiography (85, 86). These techniques 
can be used in diagnosis of both pulmonary and extrapulmonary TB (86). 

Resistance 
Drug resistance is defined as the capability of bacteria to survive in the presence of 
a drug that ordinarily could kill it. Resistance in mycobacteria is acquired through 
chromosomal mutations (87). However, studies have begun to also recognize its 
intrinsic resistance to drugs observed due to its unique cell wall and additionally 
efflux mechanisms (88). Some of the common resistance patterns reported for first-
line TB drugs are, RIF, which targets β-subunit of RNA polymerase is affected by 
mutation in rpoB gene. This reduces the drug’s affinity by inducing conformational 
changes (88). Resistance to isoniazid (INH) is seen as mutations generated in 
different genes but the most prominent ones reported are inhA and katG. INH 
usually acts by interrupting mycolic acid production (88). Pyrazinamide (PZA), a 
pro-drug is responsible for disrupting membrane transport. Activation of the drug is 
by an enzyme named pyrazinamidase produced by Mtb and resistance is acquired 
by mutation to the pncA gene which produces this enzyme (88). Ethambutol (EMB) 
interferes with the transfer of arabinogalactan, a component of the cell wall by 
causing mutation in embB therefore leading to morphological changes (88). Similar 
mutation-based resistance is acquired for most TB drugs used in practice (89). 

Reasons for resistance development involve two facets, bacterial properties and 
human interventions (87). Bacterial properties such as diverse sensitivity within the 
same sputum sample from a study revealed the existence of heteroresistance, 
indicative of different subpopulations, probably from selective pressure (90). The 
rate of spontaneous mutation is linked to the lineage of the strain and higher risk of 
drug resistance in those infected with species displaying higher mutation rate (91). 
Mutations in rpoB or inhA have been associated with cross-resistance i.e., resistance 
acquired for one drug can influences resistance development for another (92). 
Human interventions that increase the risk for mutations are related to errors by 
physicians made during the prescription of drug regimens and poor adherence to 
treatment by patients (93). Resistance within TB disease is classified into six 
categories as coined by WHO (Table 1).  
  



27 

Table 1: Classification of  TB drug resistance (94, 95). 

Types Description 

Mono-resistance Resistance to any one of the first-line drugs 

Multidrug resistance (MDR)  Resistance to INH and RIF 

Poly-resistance MDR and any other first-line drug 

Pre-extensively drug-resistant TB  
(pre-XDR TB) 

Resistance to RIF maybe INH and one fluoroquinolone 
(levofloxacin/ moxifloxacin) 

Extensive drug resistance (XDR) Resistance to fluoroquinolones and one of second-line 
injectable drugs 

Rifampicin resistance (RR) Resistance to RIF and/or any, first /second-line drugs  

Treatment  
The course of treatment in case of drug susceptible TB is standard four drug therapy 
consisting of RIF, EMB, INH and PZA for the first two months, the induction phase. 
The consolidation phase is the following four months with rifampicin and isoniazid 
to eliminate any persister Mtb strains (96). This treatment is lengthy and evidence 
of hepatotoxicity, gastrointestinal and neurological disorders and allergies has been 
reported (97). Regardless this treatment regime is necessary to prevent acquired 
drug resistance and improve efficacy (98). Globally the success rate for treatment 
in 2020 was reported as 86 % (34). This progress is also owed to Directly Observed 
Therapy Shortcourse (DOTS), an initiative established by WHO to improve 
treatment outcomes by monitoring the administration of drugs by a healthcare 
personnel at a clinic. (99, 100). 

Drug resistance in TB treatment is challenging due to the difficulty of using which 
a standard treatment regimen. WHO classifies TB resistance profiles into five 
categories (Table 1) (101). To effectively treat various resistance profiles, several 
medications need to be administered with the right balance between combinations 
and durations. An update from WHO guidelines from 2020 recommendation 
suggests the use of an all-oral bedaquiline, pretomanid, moxifloxacin and linezolid 
(BPaLM) regimen for six months for MDR/RR-TB. BPaLM only for pre-XDR for 
six months and an individualized 18-month program if failed. The data used in 
consolidating this report comes from 55 different studies collected across 38 
countries (101, 102). The success rate for RR-TB treatment is reported to be 
reaching 60% globally, while XDR-TB and pre-XDR-TB is regrettably low (34). 

Prevention  
Bacille Calmette-Guérin (BCG) vaccine is the only vaccine that is used in TB 
prevention and was developed over 100 years ago. In 1900, Albert Calmette and 
Camille Guérin started their research in finding a vaccine towards TB infection. 
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They created an attenuated strain from the virulent bovine strain by subculturing 
230 times, this was over a period of 13 years. The BCG vaccine was administered 
to guinea pigs, rabbits, cattle, and horses and did not elicit an active disease (103). 
By 1921, they started testing this attenuated strain on humans. The first patient to 
receive this vaccine was an infant who was administered  orally(103). The 
effectiveness of the BCG vaccine in protection from pulmonary TB is contradictory. 
It has been documented to help prevent severe forms of TB in children, but it is not 
effective against adult/adolescent TB (104).  Studies have shown the effectiveness 
ranges between 0-80% (104). The reason behind this heterogeneity is suggested to 
depend on for example sensitization of surrounding mycobacteria and the time of 
immunization. A recent systematic review from 2022 analyzed 26 cohort studies 
from high burden countries and concluded that the BCG vaccine is good in 
protecting children below five years of age from any form of TB (104). To reach 
the goal of ending TB by WHO, prevention is one of the strongest strategies and to 
attain this goal efforts in discovering new vaccines is imperative. As of September 
2022, 16 candidates are in various stages of clinical trials (34). 

Nontuberculous mycobacteria 
Brief background 
Non-tuberculosis mycobacteria (NTM) or atypical mycobacteria are a group of 
saprophytes that cause pulmonary and other disseminated diseases in humans (105). 
Historically, NTM infections drew attention only in the 1940s. The susceptibility to 
these infections among healthy individuals is low. Conversely, predominant in 
individuals with low immunity from lung diseases or immunosuppression (106). 
Some known comorbidities that are associated with NTM infections include cystic 
fibrosis (CF), bronchiectasis, previous pulmonary tuberculosis, lung cancer, chronic 
obstructive pulmonary disease (COPD) and pulmonary immune deficiency 
syndromes (107). NTM infections clinically manifest in five forms, nontuberculous 
mycobacterial pulmonary infections (NTM-PD), lymph node infections 
(lymphadenitis), skin and soft tissue infections, bone and joint infections and finally 
disseminated infections (108).  

NTM are omnipresent opportunistic bacteria found in soil and water with about 175 
species identified so far (109). They are categorized into two main groups based on 
their growth rate, slow-sgrowing mycobacteria (SGM) and rapid growing 
mycobacteria (RGM). They are commonly found in water distribution systems at 
homes such as showers and hot tubs. Naturally they form biofilms, this feature 
serves as a vantage point by protecting them from disinfectants and antibiotics 
(110). Not all NTM species are known to cause infections in humans, but the ones 
reported are M. avium complex (MAC), M. abscessus complex (MABCS), M. 
kansasii, M. chelonae, M. xenopi, M. malmoense, M. lentiflavum, M. marinum, M. 
ulcerans, M. haemophilum, M. sulgai, and M. fortuitum (16, 105, 106, 108, 111). 
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They can grow both on liquid and solid media with varied growth rate which is 
dependent on the species (111).  

NTM Infection epidemiology 
In contrast to TB epidemiology, NTM infection rates are poorly reported mainly 
because of two reasons: lack of awareness among health care professionals and 
inadequate diagnostic tools. In some situations, these infections are overlooked as 
drug-resistant TB (112, 113). Additionally, NTM infections are not required to be 
reported in many countries. However, in the past decade the rise in incidence rate is 
attributed to improvements in the shortcomings in diagnosis. Ascribing to their 
ubiquitous nature isolation from a patient is common but corresponding this to 
clinical infection is still hard to conclude (111, 114). A study from India highlights 
precisely this issue where about 83 % of the patients from the sample pool were 
misdiagnosed (115). NTM infections are famously known to be an underlying 
disease in association with other respiratory diseases, such as CF. A study from the 
US in CF patients had co-infection with 48.2% by MAC and 25.5% by M. abscessus 
(116).  Even though MAC is predominant in most countries, species specific 
prevalence varies across countries. This variance is also observed in ethnic 
subgroups (117, 118). Similarly, susceptibility among men and women varies, but 
bias towards one gender is prevalent in specific regions, probably due to the 
presence of region-specific species (118, 119). In a systematic review of global trend 
of NTM infections, the main findings were the increased infection rates. This was 
suspected to originate from better laboratory techniques such as DNA-based 
identification and larger prevalence of chronic lung infections. Another finding 
reported a decrease in TB burden in some areas have contributed to rise in NTM 
infections (114). A study from 2014 reported data from five European countries 
(UK, France, Spain, Italy and Germany) and concluded that 75% of patients were 
male with pulmonary infections mostly associated with smoking (120). Among 
them 33% of them were diagnosed with COPD and MAC being the causative agent 
(120). NTM-PD was more prevalent among male above the age of 60 as reported in 
a study from France with data collected over 8 years (2010-2017). Several 
comorbidities such as cystic fibrosis, history of TB, pneumonia, malnutrition and 
HIV were the few with higher incidence rates compared to controls that increased 
the risk of morbidity in these patients (121) Overall, the epidemiological reports 
from global settings fluctuate and no one trend seems to apply to all countries or 
regions. Timely and accurate identification of NTM infections can help in reducing 
the infection rates. Being aware of risk groups and proper reporting will aid in 
monitoring the current situation and may help in tackling these infections.   

NTM treatment 
Several guidelines exist for treating NTM infections. The treatment plan is 
dependent on the type of strain causing infections, where the infection is located and 
NTM susceptibility to antibiotics (122). NTM-PD, the most common reported 
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infection, has an initial phase of a 3-4 antibiotic treatment regimen up to a duration 
of 12 months where the continuity is based on sputum data. The drugs commonly 
used in treating NTM-PD involve INH, RIF, EMB, macrolides (clarithromycin or 
azithromycin), moxifloxacin and amikacin that are administered either orally, 
intravenously, or nebulized (123). Macrolides are the most widely used antibiotics 
in most NTM infections. Other forms of NTM manifestations are addressed 
individually with respect to duration, choice of antibiotic and the treatment action 
is based on the severity of symptoms (123). Alternatively, treatments using non-
pharmaceutical therapy is also applied in NTM treatment along with surgical 
interventions in extreme cases (18). 
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Antimicrobial peptides 

Background  
Antimicrobial peptides (AMPs) are naturally existing small protein molecules with 
a typical size ranging between 5-50 amino acids (124). They are mostly composed 
of amino acids with cationic and hydrophobic properties. Briefly, they are crucial in 
the innate immune system of any organism and are known to possess antimicrobial 
properties against bacteria, viruses, fungi, and parasites. Additionally, some AMPs 
exhibit anti-carcinogenic, angiogenetic, and wound healing properties making them 
very versatile (124-129). Although the actual discovery and understanding of AMPs 
was made late in the 20th century, the first mention of antimicrobial-like serum was 
reported by Nutell in 1888 (130, 131). In another case, the presence of AMPs was 
mentioned by Alexander Fleming in 1922, wherein he observed tissues and body 
fluids from a sick individual showed antimicrobial properties. Later he named this 
compound ¨lysozyme¨ (132). The discoveries continued and the first commercially 
produced AMP was Gramicidin S, which was used for wound healing during World 
War II (133). With these findings, the field of AMPs research began to flourish and 
today around 22499 entries have been recorded in the database ’Data repository of 
antimicrobial peptides´ (DRAMP, updated from the database (134). Concisely, they 
can be classified under four main groups based on one, sources: mammalian, insect, 
amphibian, and microorganism derived AMPs. Second by composition of amino 
acid, they are grouped into four: proline rich, tryptophan and arginine, histidine rich 
and lastly glycine rich. Third, structurally they mostly form α-helical, β-sheet, linear 
extension structure, and both α-helix and β-sheet structure. Finally, activity-based 
categorization is formed from their choice of targets which include bacterial, 
antiviral, antiparasitic, antifungal and anti-carcinogenic. (126).  
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Figure 6: Antimicrobial peptides classified based on different features of peptides. 
Reprinted from the article ¨ Antimicrobial Peptides: Classification, Design, Application and Research 
Progress in Multiple fields¨. License: CC BY. Reference (126).  

Mode of action with respect to bactericidal activity  
AMPs act by either disrupting the cell membrane (direct killing) or targeting specific 
molecules internally (indirect killing) (129). 

Membrane target 
Cationic peptides initial contact with bacterial membranes is mediated by 
electrostatic interactions due the presence of specific anionic lipids in bacterial 
membranes. Principally, bacterial membranes are composed of anionic 
phospholipids, as phosphatidylserine (PS), PG and CL, giving them the net negative 
charge required for AMP interaction. Membrane-peptide interactions can be 
categorized into four types of models (129). The first interaction is called barrel 
stave model where the peptide initially interacts by lying parallel to the membrane. 
When a substantial number of peptide molecules aggregates, it causes 
conformational shift by inserting into the membrane and forming a central lumen 
leading to membrane thinning (129, 135, 136). However, this mechanism has been 
reported by only a few peptides; probable as this interaction possibly requires a 
unique peptide sequence (135, 137, 138). In the toroidal pore model, the peptide 
inserts itself into the lipid bilayer vertically and binds to the phospholipid group to 
form a membrane curvature. The peptide orientation is such that the hydrophobic 
region is inside with the hydrophobic core while the hydrophilic region faces 



33 

aqueous phase. Famously known peptides displaying this type of interactions are 
melititin, auerin 2.2, lacticin Q and maganin 2 (128, 129, 136). The third interaction 
is the carpet model, in which the peptide molecules cover the membrane by orienting 
themselves parallel to the membrane. The peptide does not create pores or cause 
membrane curvature in this case but requires optimal high concentration to disorient 
the membrane and form micelles in a detergent-like manner. Some examples of 
peptides that follow the carpet model are cecropin and auerin 1.2 (128, 129, 136, 
139, 140). The fourth interaction model, i.e., aggregation model, is characterized by 
peptide-lipid complexes turning into micelles, leading to the leakage of internal 
contents. This formation contrasts with the carpet model where only partial 
membrane lysis is observed (128, 129, 136). The aggregate model requires the 
formation of lipid membrane domains formed by concentrated anionic lipids. This 
occurs in regions of the membrane that can be induced in bacteria with cationic 
substances. The interaction is described as membrane perturbation by formation of 
a complex between lipids and AMP (141-144). An example of this model is reported 
by Powers et al. where a crab peptide named polyhemusin-I that was shown to 
translocate into the cytoplasmic area without causing extensive damage to the 
membrane (143).  

Figure 7: Different types of mechanism of action for AMPs. 
AMPs mode of action is broadly classified into two paths which includes membrane action (membrane 
target) or non-membrane action (intracellular target). Membrane target model consists of four types, 
and they are barrel-stave, toroidal-pore, carpet, and aggregate model. Some peptides have intracellular 
target that interact with different targets. Reprinted from the article ¨ Antimicrobial peptides: mechanism 
of action, activity, and clinical potential¨. License: CC BY 4.0, reference (129). 
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Intracellular target 
AMPs multifaceted nature is a well acknowledged concept (145). After translocation 
into the cytoplasm AMPs can target specific intracellular targets such as nucleic acids, 
proteins, enzymes or lipids involved in biological processes of bacterial survival (146). 
The target interests of AMPs intracellularly can be categorized into few groups based 
on their actions. Peptides that target nucleic acid usually hinder bacterial survival and 
here are a few examples. Buforin II, an AMP derived from gastrointestinal tissue of 
Asian toads demonstrated affinity towards nucleic acid binding from a 2D gel-based 
analysis and lipid vesicle models, potentially interrupting DNA/RNA activity (147). 
Likewise, affinity to DNA sequence by a 13 amino acid short AMP named indolicidin 
from bovine neutrophils was reported. Indolicidin not only displayed affinity towards 
DNA it interrupted DNA relaxation, a process of unwinding DNA during transcription 
(148, 149). Binding of these AMPs to DNA and blocks processess that are essential to 
bacterial repair and survival. Protein synthesis inhibiting AMPs has been reported 
previously as a proline rich AMPs (150). PR-39 originating from the pig intestine kills 
Gram-negative bacteria through a process that inhibits protein synthesis and targets the 
metabolically active bacterial population (151). A cathelicidin AMP, Bac7 is another 
proline-rich peptide that inhibits protein synthesis by binding to specific subset of the 
ribosome, which was observed both in vitro and in vivo (152). AMPs can also target 
other enzymes such as a heat shock protein involved in protein folding. Studies with 
analogues of proline rich pyrrhocoricin, drosocin and apidaecin were found to be 
stereospecifically bound to DnaK of E. coli, both in solution and solid phase (153). 
These are just a few examples of the various targets of AMPs from different studies. 
AMPs can target several other processes too, such as cell wall biosynthesis, cell 
division, protease inhibitors, and biofilm inhibition (154). However, the ultimate 
advantage with AMPs is their ability to target multiple pathways when dealing with 
any microorganisms. 

AMPs explored as TB Treatment 
The multifunctional properties of AMPs make them a perfect choice to test as novel 
treatment for TB disease. A brief list on different AMP explored as potential Mtb 
treatment have been summarized in Table 2. The sources covered in the table are from 
mammalian, insects, and plants. AMP from mammalian source is broadly categorized 
as cathelicidins, these peptides produced as a pre- and pro-peptide sequence. The N-
terminal of the peptide is conserved, and the C-terminal is the variable domain 
responsible for antimicrobial property (155). The second group is named defensins, 
they are a large group of small peptides characteristically affiliated with β-sheet 
structure and six cysteine residues stabilized with disulphide bonds. They get their 
name from their association to host immunity (156). Mammalian defensins are 
subdivided into three classes based on their structure:  α-defensins, β-defensins and θ-
defensins (157). 
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Clinical application of AMP 
So far FDA has approved formulations for topical application and they are gramicidin 
and polymyxins for ocular infections, daptomycin for skin infections, nisin A in food 
preservation, and melittin for its anti-inflammatory property (169). Despite AMPs 
being a great resource, their potential has not been exploited due to some pitfalls. 
Production of AMPs bare high costs and the choice of method in manufacturing needs 
to address issues like complexity of chemical synthesis and efficiency in genetic 
engineering. To achieve scalability researchers have explored biological hosts for 
recombinant expression, AMPs with cyclic structures are more easily produced versus 
peptides with disulfide bonds (170). Some AMPs might be susceptible to proteolytic 
cleavages in biological fluids that render them inactive (155). Additionally, AMP have 
a short half-life. To address this problem studies are exploring modifications to AMPs 
sequence to protect them from proteolysis and focus on site directed delivery using 
nanoparticles as carriers. (171, 172). Overall research in AMP has progressed to 
overcome these complications by peptidomimetics, a strategy that modifies the 
chemical structure of peptides for example through glycosylation, PEGylation, 
lipidation etc to improve therapeutic potential in clinical setting (173). 

NZX 
Plectasin is an AMP derived from the fungus Pseudoplectania nigrella. The fungus is 
primarily found in European pine forests. Plectasin, was identified through sequence 
similarity search programs like BLASTX and SEARCHq and a 55% match was found 
with defensins from invertebrates.  The cDNA was transformed into Aspergillus oryzae 
to produce the defensin of 40 amino acids, purity was checked using mass spectrometry 
(174). The peptide was found to have great effect in vitro against several Gram-positive 
bacteria, especially Streptococcus pneumoniae. E. coli was also analysed but found to 
be resistant.  Minimal inhibitory concentrations (MICs) and Minimal bactericidal 
concentrations (MBCs) had similar values for most isolates. This suggested that the 
mechanism of plectasin was bactericidal (33). Two mouse models for systemic 
pneumococcal infection were used to determine the effect of plectasin in vivo. Both 
models yielded good bacterial clearance when comparing treatment between plectasin 
and other standard antibiotics (33).  

Plectasin was subjected to a high-throughput screening in 2005 aimed at improving 
antimicrobial properties by amino acids substitution (175). In our lab we work with 
NZX, a third-generation variant derived from plectasin. The sequence differs in amino 
acid composition to plectasin at three sites. In our previous paper the peptide was tested 
for its in vitro and in vivo effect and was found to be active against susceptible and drug 
resistant Mtb. The level of bactericidal effect was like conventional TB drugs. Toxicity 
was studied on primary cells using up to a 100μM concentration which did not show 
any toxicity. We also demonstrated that NZX is resistant to degradation from proteases. 
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EM experiments could verify intracellular activity, and gold labelled NZX was found 
to co-localize with Mtb inside an activated macrophage (168). In this thesis, NZX is 
investigated for its mode of mechanism in Paper I and therapeutic potential as 
combination therapy in Paper II. 

Nanoparticles in AMP-delivery 
Delivering potent agents to the target site is beneficial in many aspects. It helps to 
minimize nonspecific binding, lowers toxicity by using required dosage, and ability 
to traverse tissue (98). Nanoparticles (NPs) are colloidal particles with a size range 
of 1-1000 nm. During drug delivery an individual NP is coated/loaded with 
respective drug molecules and materials used to prepare NPs are either from natural 
or synthetic sources. Some NPs can intrinsically display antimicrobial properties, 
enhancing the activity of respective drugs (99,100). As mentioned above, many 
AMPs are easily degradable which lowers their bioavailability in a therapeutic 
setting. One approach to protect them from proteolysis is to encapsulate them in a 
porous material that target infectious sites. This way the peptide is protected, allows 
for sustained release, improves treatment, and reduces frequent dosing, 
subsequently reducing the risk of toxicity (105). A summary of current research on 
different NPs for AMP in TB treatment is listed below in a table. 

Table 3: Summary of NPs explored as carriers of AMPs in TB treatment. 

Particle AMP Size (nm) Activity Reference 
Gold NP Pep H 

(motif of 
HNP-1) 

20 Antimicrobial activity against H37Rv 
was tested for intracellular activity 
with   monocyte derived 
macrophages 

(176) 

Poly (lactic-co-
glycolic acid) PGLA 
NP 

B5 206.6 ± 
26.6 

Antimicrobial activity against M. 
bovis was lower for loaded B5 
compared to B5 was tested in a in 
vitro setting  

(177) 

Biogenic Silver NP NK-2 
LLKKK-18 

NP1 (50) 
NP2 (100) 

Antimicrobial activity against M. 
marinum and M. smegmatis was 
tested in a in vitro setting 

(178) 

Chitosan NP Pep H 
(motif of 
HNP-1) 

244 Antimicrobial activity against was 
tested for intracellular activity with 
monocyte derived macrophages 

(176) 

Dendritic 
Mesoporous silica 
particles 

NapFab 163 ± 7 Antimicrobial activity against H37Rv 
was tested for intracellular activity 
with monocyte derived 
macrophages 

(179) 

Phosphatidylcholine-
cardiolipin liposome 

Bcn1-5 Average 
size was 
<150 

Antimicrobial activity against H37Rv 
inside peritoneal mouse 
macrophages was observed  

(180) 

In this thesis we investigated the therapeutic potential of NPs made from 
mesoporous silica nanoparticles (MSPs) to deliver NZX in Paper III. 
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Aims 

The work in this thesis presents a novel therapeutic (NZX) in TB treatment. It tries 
to address the various aspects of treatment challenges that is encountered during 
design and evaluation of novel therapeutics. To summarize, my main research 
questions were,  

1. What are the bactericidal mechanisms of NZX against Mtb?

2. Can NZX be incorporated in combination with other standard TB drugs?

3. How can bioavailability of NZX be improved to survive within host
environments?
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Paper I 

Mechanisms of a Mycobacterium tuberculosis Active 
Peptide 

Background 
AMPs are naturally occurring short peptides recognized as a part of the host immune 
response. They are produced by every single and multicellular organism (181). In 
our previous work, NZX emerged as a strong candidate among other AMPs tested 
(168). This peptide is derived from plectasin, a fungal defensin (174). The peptide 
displays bactericidal effect on clinical isolates of M. tuberculosis and was found 
inside alveolar macrophage in vivo where it interacted with residing Mtb (168). In 
this paper we wanted to understand the mechanism by which the peptide interacts 
with mycobacteria and responsible for its bactericidal activity.  

Aim 
To understand the mode of action of NZX of M. tuberculosis bactericidal effect. 

Results 
Bacterial approach 
The influence of NZX on Mtb clinical isolates was studied by growth kinetics. A 
concentration dependent decline in bacterial growth was seen for both isolates. 
Bacterial elimination was recorded for Mtb 1 at 12,5 ug/ml whereas a higher 
concentration was needed with Mtb 2, a MDR strain (Figure 1A).  

Scanning electron microscopy (SEM) imaging of H37Rv and the clinical Mtb 
isolate was observed with gold labelled NZX. Both samples were treated with 6.3 
μM of NZX for up to 24 hours. The addition of peptide prompted morphological 
changes to the bacteria seen as membrane protrusions followed by formation of 
bubble-like structures. These structures progressed with time and in the end the 
whole cell appeared disintegrated, and the debris resembled massive membrane 
vesicles formation (Figure 1B).  
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Transmission electron microscopy (TEM) was performed to visualize the 
interaction between H37Rv after treatment with gold labelled NZX. At first 
NZX seems to be associated with the outer membrane, later it appears to be 
traversing into the bacterial cell membrane with no visible damage to the outer 
membrane. As the peptide was found near the plasma membrane, it seems to disrupt 
the layer by a ¨pulling¨ mechanism, where the plasma membrane winds up into 
tubular-like structures. Surrounding small vesicle-like bodies were also observed. 
Complete cell disruption was observed resembling a ghost cell, characterized by a 
less electron dense cell. These assays exemplify NZX’s affinity towards bacterial 
cell wall and its bactericidal properties (Figure 2B).  

Biophysical approach 
Understanding the interactive nature of NZX with Mtb membrane gave us an insight 
of possible mode of action, which seemed to be plasma membrane dependent. To 
further elucidate this theory a model membrane mimicking standard plasma 
membrane lipids from mycobacteria and gram-positive species were prepared. The 
model membrane setup comprised of 100 nm lipid vesicles prepared using 1-
palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-
oleoyl-sn-glycero-3[phospho-rac-(1-glycerol) (POPG) in two formulations, 
POPE/POPG (85/15, mol/mol, termed G-negative vesicles (NMV) and 
POPE/POPG (30/70, mol/mol, termed Gram-positive vesicles (PMV).  

To examine NZX interaction with lipid vesicles, intrinsic fluorescence of cyclic 
amino acids- tryptophan and tyrosine present in the peptide was exploited. 
Spectrophotometer reading records slight shifts in emission spectra caused by 
reduction in polarity of the environment surrounding tryptophan (λex = 295 nm) or 
the tryptophan/tyrosine residues (λex = 280 nm) resulting in increased quantum 
yield (182). Changes in emission spectra of tryptophan and tyrosine/tryptophan 
were observed when NZX was added in presence of PMV causing a shift from 360-
364 to 346-350 with an increased (>10 nm) fluorescence intensity. This shift in 
energy is due to a change in hydrophobic environment encountered by these 
aromatic amino acids, probably at W8, likely stemming from anchoring of the 
peptide at the lipid vesicle’s interracial region.  In contrast, NMV and NZX 
interaction did not induce any changes to the spectra indicating the membrane 
anchoring property of NZX is dependent on charge (Figure 2C).   

As observed in TEM, NZX’s pulling mechanism intrigued us to understand this 
process. To study this, membrane permeabilization of lipid vesicles was measured 
through quantification of fluorescence intensity release by calcein, encapsulated 
within the vesicles. Addition of peptide in varying concentrations to vesicles 
resulted in decrease in fluorescent intensity as opposed to an expected increase or 
no change. The decrease was observed to be concentration dependent. The addition 
of triton resulted in release of encapsulated calcein, meaning the membrane wall 
was intact (Figure 3). To understand the dip in fluorescence intensity a dynamic 
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light scattering (DLS) experiment was performed. As we speculated that the 
decrease could be associated with changes in vesicle size, kinetic size measurement 
of PMV and NMV was recorded for 30 min in presence of the peptide.  We observed 
a concentration dependent increase in Z-average hydrodynamic diameter and 
polydispersity index. However, a concentration of 25-33 μM culminated in random 
fluctuation in PMV. Even though the effects were scaled down for NMV a similar 
fate as PMV was observed at higher concentrations, but no change was observed at 
lower concentration (Figure 4).  

Upon interacting with lipid bilayers AMPs are reported to change their structures 
which aid in their antimicrobial properties. Using far-UV circular dichroism, change 
of peptide’s secondary structure was measured. The measurements were fed into an 
algorithm K2D3 to estimate changes in secondary structures. The control peptide 
was largely composed of helical fold with the minima measure laying around 208 
and 222 nm. CD-spectra of PMV in presence of NZX estimated a reduction of about 
30% in alpha helical content and formed 16 % beta strand. No change was observed 
to CD-spectra of NMV as the recorded spectra was similar to that of NZX control 
(Figure 2D).   

These results suggest that NZX has affinity to lipids present in PMV, that the peptide 
changes its secondary structure upon anchoring into its interfacial membrane, but 
that it does not rupture the membrane in lipid vesicles. However, these results 
suggest that interactions with lipid vesicles or plasma membranes in bacteria are 
guided by other factors other than charge as they cause aggregation or 
¨pulling¨ instead.  

Proteomics approach 
To understand and identify possible peptide-protein interactions with bacterial 
proteins we performed co-immunoprecipitation and liquid chromatography with 
tandem mass spectrometry (LC-MS/MS). Histidine and Streptadin-tagged fractions 
NZX were incubated with whole cell lysate of BCG for an hour followed by elution 
and bound proteins that were identified using a mass spectrometer. The proteins 
detected were identical irrespective of the NZX tag. The identified proteins were 
Cpn1, Cpn2, EF-Tu and acyl carrier protein (AcpM) found to be essential in 
mycobacterial survival. Another unidentified protein Rv3269 was also targeted by 
the NZX. These results align with the theory that the NZX possibly has other 
properties in conjugation with the membrane associated mode of mechanism.  



44 



45 

Paper II 

A broad spectrum anti-bacterial peptide with an adjunct 
potential for tuberculosis chemotherapy 

Background 
Antibiotics are widely used in many aspects of life ranging from agriculture, medicinal 
purpose, and livestock farming. The goal being to prevent or treat microbial infections 
that could be detrimental. However, overuse of antibiotics has led to adverse effects 
with the emergence of antibiotic resistance. It was in 1940 when Abraham and Chain 
reported first antimicrobial resistance in E. coli to penicillin (183). With growing 
antibiotic resistance patterns in many bacterial infections including TB, it is imperative 
to explore other antimicrobial molecules (184). AMPs have been a promising path as 
new therapeutics in microbial and cancer treatments (185). Currently, research in 
AMPs shows discovery of different classes of peptides from several sources (185). To 
attain a good drug regime to complement the existing TB drugs it is necessary to 
evaluate them in combination. In this article we set out to evaluate pharmacokinetics 
and pharmacodynamics aspects of NZX. Along with resistance potential as well as 
broad spectrum application.  

Aim 
The aim of this study was to further understand the potential of NZX as TB 
treatment.  

Results 
Diverse antimicrobial targets of NZX 
In our previous work, Tenland et al. reported bactericidal activity of NZX towards 
pathogenic Mtb and MDR strains at concentrations comparable to first line TB drugs 
(4).  In this article NZX was tested against several clinical isolates of ubiquitous 
NTM species, Gram-positive bacteria such as S. aureus, MRSA and S. pneumoniae 
and the Gram-negative E. coli. NZX displayed antimicrobial activity against all 
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screened species, although we observed different MIC, except for E. coli, where the 
antibacterial property was absent even at a high concentration (>100 ug/ml). Some 
biological replicates of NTMs demonstrated high MIC at 25 µg/ml, while others 
ranged between 0,4-12 µg/ml (Figure 1).  

Pharmacodynamics of NZX  
Drug interaction studies were evaluated with both in vitro and in vivo settings. Drugs 
used for combination therapy were RIF, INH, EMB and AMK. Checkerboard assay 
between NZX and each drug combination individually had a positive outcome, 
meaning none were antagonistic. Interaction scores followed either additive (EMB and 
INH) or indifferent interaction (AMK and RIF). Using a murine model, combinations 
showing an additive effect in the checkerboard assay were evaluated. Bacterial load of 
H37Rv from lungs were measured pre and post treatment. Reduction in colony forming 
units (CFU) for treated groups was observed. Comparing INH with untreated mice 
92% clearance was seen; similarly, 79% and 75 % clearance was observed for EMB 
and NZX respectively. However, the p-value between independent treatments was not 
significant, implicating similar clearance of bacteria. Among the drug combination 
therapy i.e., NZX alone, EMB/INH and EMB/NZX combinations significantly 
(p = 0.0317) reduced the CFU with respect to EMB treatment alone. While the other 
combinations had lower CFU counts from the untreated control, they were not 
significant (Figure 2A). Tissue damage was checked using hematoxylin and eosin (H 
& E) staining from the lungs of mice by rating three parameters: perivascular, 
peribronchial and alveolar infiltration. Blinded lung inflammatory score showed INH 
maintained better alveolar structure while EMB treatment destroyed the lungs sooner. 
Interestingly, in combination therapy EMB+NZX scored like NZX while INH+NZX 
was similar to INH (Figure 2B &C).  

Pharmacokinetics of NZX  
Serum half-life of NZX was calculated by administering 33 mg/kg in mice from a 
single intravenous dose. Samples were collected from three mice at 5-, 20-, 60- and 
120-min time points. LC/MS analysis quantified mean NZX concentration to be 61 
mg/l after 5 minutes and the estimated terminal half-life was 42 minutes. Post 240 
mins NZX was completely cleared from the circulation. Human serum stability was 
investigated by measuring MIC99 after NZX incubation for up to three hours. MIC 
values were established using resazurin microtiter assay (REMA) and values were 
found to be stable up to the maximal time (Figure 3). 

Susceptibility to resistance 
Spontaneous mutants of M. smegmatis were evaluated for development of resistance 
to NZX. Bacteria were grown with and without NZX treatment on agar plates/liquid 
media with varying NZX concentrations. No resistant mutants were isolated 
irrespective of NZX concentration or growth condition.  
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Paper III 

Effective delivery of the anti-mycobacterial peptide 
NZX in mesoporous silica nanoparticles 

Background 
Mtb is an intracellular pathogen primarily residing within alveolar macrophages. 
Most antibiotics are effective on external bacteria, but lose their effect  on 
intracellular pathogens (186). As AMPs are gaining in popularity as a new 
antimicrobial drug against resistant bacteria, they need to be protected from 
degradations during administration until they reach the site of infection (187). In 
this study we evaluated mesoporous silica nanoparticles (MSPs) designed to protect 
and increase bioavailability of NZX by controlled release.  

Aim 
Increase bioavailability of NZX using MSPs to eliminate intracellular Mtb. 

Results 
Characterization of mesoporous silica particles (MSPs) 
MSPs used in this experiment had a mean pore size of 200 nm to increase the 
efficacy to enter macrophages. The size and shape of the vesicles were evaluated 
visually with transmission electron microscopy. The particles look dense in the core 
area, depicting a loaded state (Figure 1A).  

NZX and MSPs interaction 
Adsorption studies between NZX and MSPs was studied in phosphate buffered 
saline (PBS) buffer. The affinity between them was found to be strong and the 
particle concentration was 5 mg/ml having an NZX-loading of 17% weight (Figure 
B).  Release kinetics of NZX from MSPs was evaluated in PBS and simulated lung 
fluid. NZX desorption rate in PBS was comparatively lower to SLF, with 14.1 μM 
concentration recorded after 48 hours whereas NZX concentration from SLF was 
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about 16.2 μM at the same time (Figure 1C & 1D). After release, antimicrobial 
function of released NZX was tested for MIC using a REMA assay. The MIC was 
found to be the same (3.2 μM) as the free NZX antimicrobial value.  

Uptake of NZX loaded MSP 
Particle uptake into cells was analyzed with THP-1 monocytic cell line and primary 
macrophages. The particles were conjugated with a fluorochrome having an 
excitation wavelength at 488 nm. The percentage of phagocytosed particles was 
measured using a flow cytometer. Particles successfully internalized into both types 
of cells, with uptake being more efficient in primary macrophages than THP-1 
monocytes. Higher concentration (300ug/ml) was internalized completely (100%) 
by half an hour in primary macrophage and about 80 % in THP-1 monocytes. At 
lower concentration, 25 µg/ml, the uptake was 80% and 40% in macrophages and 
THP-1 monocytes respectively (Figure 2B & 2C). TEM analysis was performed to 
study the uptake and internalization of loaded MSPs in macrophages. Primary 
macrophages were incubated with 300 µg/ml and the images were collected from 2-
72 hours. Particle uptake can be seen as quick as 2 hours and particles appear 
disintegrated at 72 hours. Interestingly, loaded MSPs were observed near vacuoles 
of macrophage early on (Figure 3A). 

Cytotoxicity of NZX loaded MSP 
Cytotoxicity was performed for MSPs at different concentrations via MTT and 
ATPlite toxicity assays (Figure 4A & 4B).  A dose dependent toxicity was observed 
with both methods. Toxicity was also measured in vitro from an experiment with 
macrophages infected with Mtb H37Rv. A similar pattern of dose related toxicity 
was observed. 

Bactericidal effect of NZX loaded MSP 
Intracellular antimicrobial activity was tested for loaded MSPs by in vivo and in 
vitro analysis (Figure 4C, 4D & 5). Infected primary macrophages with H37Rv 
revealed a better bactericidal activity from loaded MSPs compared to free NZX. In 
the murine TB model, bactericidal activity was observed for both loaded and free 
peptide with no significant difference among the groups.  



49 

Discussion 

Multi-faceted mechanisms of NZX 
In a previous study a screening analysis identified that NZX, a fungal defensin-like 
peptide was a promising antimycobacterial agent (168). Antimicrobial nature of 
NZX was demonstrated with the H37Rv strain and two clinical isolates, one of 
which was a drug resistant strain (168). To understand this antimicrobial 
mechanism, we explored two aspects: direct and indirect mechanisms of NZX 
against mycobacteria.  

Indirect targeting of mycobacteria 
Affinity of NZX towards mycobacterial membrane was demonstrated through TEM 
analysis, wherein the gold-labelled peptide is seen interacting with the outer 
membrane in a non-pore forming manner. This initial interaction is driven by 
electrostatic forces but also due to the hydrophobic nature of NZX. Net charge of 
AMPs is mostly cationic and this feature makes them good candidates in targeting 
anionic bacterial/carcinogenic cell membranes (139). Following initial interaction 
with the bacterial capsule, the peptide appears to be traversing into the cell to 
interact with plasma membrane by remodelling the mycomembrane. However, the 
exact process through which NZX is capable of traversing through complex layers 
of tightly packed impermeable mycomembrane is yet to be characterized (188). To 
further understand if the peptide interacts with plasma membrane and drives 
cytoplasmic leak after passing through the mycomembrane we prepared calcein 
incorporated unilamellar liposomes. These experiments revealed NZX does not 
release calcein upon interaction, but the peptide still interacts with the vesicles. 
Perhaps the mode of interaction with lipids in the inner membrane is not charge 
motivated but specificity to certain lipids (128). A study by Epand et al. reported 
formation of lipid domains between anionic and zwitterionic/ neutral lipids in the 
presence of cationic peptides (189). This possible domain inducing feature is 
detrimental to cell survival, as seen in TEM images. 

Interaction with the liposome membrane induced a change of the peptide’s 
secondary structure. This was observed during a CD analysis, where the secondary 
structure of the peptide was monitored in presence and absence of liposomes. This 
change in secondary structure is attributed to changes in the hydrophobic 
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environment which NZX encounters upon embedding itself into the membrane. 
Even though liposomes were structurally intact, embedding of NZX is bound to 
bring upon changes and compromise membrane fluidity (190). Proteins with 
tryptophan (Trp) residues are preferred in membrane interactions because of their 
shape that facilitates the interactions. Thus, by including tryptophan to the N-
terminal of a cationic AMP can enhance the antimicrobial properties of a peptide 
(191, 192). NZX intrinsically contains a Trp residue in the W8 position that 
contributes to its interaction both in liposomes and bacterial plasma membranes.  

Whether the mode of mechanism involved in NZX, and mycobacterial membrane 
interaction follows one of the classical AMP-membrane interactions is hard to 
conclude. But the fact remains, that the type of the observed interaction bears some 
resemblance to the toroidal-like model as suggested in many mechanistic studies of 
AMPs (193). The toroidal-like model behaviour was seen in liposomes where the 
aggregation of vesicles was observed in DLS experiments as the concentration of 
the peptide was increased. Additionally, aggregation formation was stochastic, 
emphasizing on toroidal-like models (193). However, the lack of pore formation in 
liposomes made us question the toroidal model.  Though, a pore-like formation was 
observed in bacterial membrane in TEM analysis, suggesting that the peptide 
appears to be pulling the inner membrane while some peptide molecules enter the 
cytoplasmic region. The rationale behind this varied outcome in liposomes and 
bacterial membranes can be explained with the fact that interactions between them 
are not solely dependent on phospholipid bilayer, but also depends on the presence 
of anionic lipids, making it resemble the aggregated mechanism model (190). 
Interestingly, images from SEM analysis reveal sudden bubbling-like morphology 
on the surface of bacteria likely caused by an increase of peptide concentration. 
These bubble-like forms resemble membrane vesicles released by bacteria under 
stress induced conditions (194, 195). Similar structures can be observed around the 
dislocated bacterial membrane in TEM images. Studies have indicated that AMPs 
can release vesicles like structures from bacterial membranes by binding to lipid 
domains (196). To summarize, it is not possible to assume that one mechanism is 
responsible for NZX-membrane interactions contributing to the bactericidal effect.  

Direct targeting of mycobacteria 
AMPs are known to possess multiple properties that make them a valid choice to 
use as antibacterial drugs. Whether membrane interaction is the sole reason for 
mycobacterial death is difficult to say, we predict there is more than one mechanism 
involved. NZX was found colocalized next to a condensed chromosome inside the 
cytoplasmic space. Experiments that can predict DNA-peptide interactions were not 
performed; however, we have a reason to believe this may be happening due to 
recent publication by Zhang et al. revealing that two NZX variants have an effect 
with bacterial chromosomal DNA (197).   
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Proteomic results of proteins bound to NZX through co-immunoprecipitation were 
interpreted. Two separate experiments using different affinity tag chromatography 
yielded five common proteins of interests that have affinity to NZX. The proteins 
were the 60kDa chaperonin 1, elongation factor Tu, 60kDa chaperonin 2, acyl 
carrier protein and Rv3269 from the BCG protein database. Chaperonins 60 proteins 
(Cpn60) are a family of heat shock proteins present across various species which 
are expressed upon encountering stress conditions. Mycobacteria has two analogues 
of Cpn60: Cpn60.1 for Hsp 60 and Cpn60.2 (GroEL) for Hsp65 and both are 
important in bacterial survival and pathogenesis (198, 199). NZX seems to bind to 
both these Cpn60 proteins which interferes with mycobacterial cell survival, 
affecting important folding of housekeeping genes or effecting survival in hypoxic 
environments (199-202). Binding of AMPs to proteins is highly influenced by 
amino acid sequence. A recent study discusses how small proline-rich AMPs have 
affinity to GroEL both in solid and liquid medium (150). Presence of proline in NZX 
perhaps promotes binding to GroEL protein, nevertheless its impact on bacterial 
growth cannot be confirmed without further studies (153). Mycobacteria has been 
reported to manipulate host defence by recruiting Hsp60 and Hsp65 to interact with 
TLRs to manipulate the pathogenesis (203-205). Mtb acyl carrier protein (AcpM) is 
an important carrier protein and a part of the fatty acid synthase II system, 
responsible for mycolic acid synthesis. Binding of NZX to this protein can be its 
prime target with a severe effect on mycobacterial survival. AcpM has also been 
identified to interfere in macrophage apoptosis pathway (206, 207). Elongation 
factor (EF-Tu) primarily plays a role in transferring aminoacyl-tRNA to ribosomes 
in the cytosol; however, it also has been associated with canonical activities in the 
cell (208). By binding to this protein NZX potentially can inhibit several processes 
in the cell and in the protein synthesis  (208, 209). Finally, the last protein hit was 
Rv3269 whose function is uncharacterized but has homology to mycobacterial 
chaperonins (210).  

These multifaceted potential targets of NZX support the therapeutic potential in 
antimycobacterial therapy. Furthermore, having a multi-target mechanism is 
beneficial in the context of antimicrobial resistance. Binding of these proteins to 
NZX is a promising discovery especially considering they were generated from two 
independent affinity chromatography techniques. However, it is premature to 
confirm that these findings verify bactericidal effects. Proof of concept studies are 
needed to claim with certainty which among these proteins bound to NZX are 
responsible for its antimycobacterial activity.  
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Therapeutic potential of NZX 

Broad-range antimicrobial property of NZX 
Antimicrobial resistance problem is seen in every infectious disease where the 
treatment is using antibiotics. To solve this rising problem, one of WHO’s 
sustainable development goals (SDGs) is to find sustainable alternative molecules 
to combat resistant infections. NZX, an AMP, is among the molecules that have a 
broad range activity (129). We analyzed NZX’s antimicrobial activity against a wide 
range of clinically isolated NTM’s and Gram-positive strains. Among the Gram-
positives screened, important strains belonging to the problematic group of 
Methicillin-resistant Staphylococcus aureus (MSRA) and S. pneumonia were 
analyzed (211). Gram-positive strains were highly susceptible to NZX at low 
concentrations, with the MRSA strains showing similar sensitivity. The major 
membrane lipids present in both these species are PG and CL, mostly anionic lipids, 
a preference seen by NZX during membrane interactions (212, 213). NZX’s broad 
range was also tested against a clinical Gram-negative strain, E. coli, where the 
bacterial growth was not affected. Perhaps the interaction between NZX and Gram-
negative bacterial membrane is not compatible owing to lipid composition and 
complex outer membrane (214).   

Within the NTMs, several strains were analyzed of which some significant ones are 
MAC and MABCS. NZX displayed antimicrobial activity against 15 species tested. 
The MIC values were not uniform across species, with a trend towards growth rate 
(MIC > rapidly growing NTM). This variance in MIC among NTMs was expected 
and has been as reported in other studies (215, 216). Most NTM infections are 
pulmonary, and the most common causative agents are MAC, MABCS, M. xenopi 
and M. kansii (18, 110, 217). The two severe issues in NTM-PD management is 
treatment failure and antibiotic resistance to macrolides (218). Recently, there has 
been a sudden increase in incidence rates of NTM infections perhaps because of 
improved diagnosis and general awareness (219). To the best of our knowledge 
NZX is the first reported AMP capable of inhibiting bacterial growth for a wide 
range NTM species in vitro. Most AMP publications are targeting specific groups 
or species of NTM infections (88, 220, 221).  

Pharmacodynamics and pharmacokinetics of NZX 
In a previous study, we demonstrated bactericidal activity of NZX in vitro against 
clinically relevant strains and the peptide was shown to clear infection in line with 
current TB drug, rifampicin, in a murine study (168). To continue with these 
findings, we evaluated combinations of drug therapy using NZX and other Mtb first 
line drugs. NZX interactions with ethambutol and isoniazid were additive, meaning 
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the MIC values are decreased by one-fold for drugs tested. To evaluate these results 
in vivo, a chronic murine study was performed for the same drug combinations. 
Bacterial clearance had a similar additive effect for combination treatment between 
NZX and ethambutol. Likewise, tissue samples from murine lungs showed good 
preservation of lung tissue in comparison to other TB drugs tested. Ethambutol as a 
stand-alone treatment displayed poor tissue structure retainment. Toxicity from 
ethambutol has been reported in many studies in the form of hepatotoxicity, renal 
toxicity, and ocular neuropathy (88, 222, 223). Monotherapy with NZX exhibited 
good tissue preservation and for ethambutol in combination with NZX.  

Preliminary pharmacokinetics studies demonstrated NZX stability in human serum 
and serum-half life in murine study. Previously, we have reported that NZX was not 
susceptible to enzymatic degradation (168). One of the challenges in using AMPs 
as therapeutics is that they are easily susceptible to degradation from enzymes 
subsequently problematic in therapeutic application (131). Substitution with 
different types or forms of amino acids in AMPs can help improve peptide stability 
and antimicrobial activity (224, 225). However, NZX is intrinsically stable, which 
was observed in human serum studies with retained mycobacterial inhibitory 
concentration after serum incubation for three hours. Serum half-life of the peptide 
in circulation in murine studies was found to be 25 minutes. AMPs and their short 
peptide sequence is also an advantage for stability since shorter peptides have been 
reported to fare better (226-229). 

Another hindrance encountered with AMPs is the resistance bacteria may acquire 
to it. Even though mycobacteria have slow mutation rates mainly involving point 
mutations, while horizontal gene transfer remains to be debated. Nevertheless, 
resistant strains have been recorded to every drug against TB that has been used in 
treatment (91, 227, 230). To screen for potential mutants against NZX, liquid and 
agar based spontaneous forced mutants were isolated. No resistant colonies were 
recovered, irrespective of drug concentration. In a similar study with short peptides, 
resistant mutants emerged at a frequency of 107, suggesting that the lack of mutants 
in NZX can be ascribed to a higher threshold (231).  

Overall, these studies address some of the potential challenges seen in pre-clinical 
stage of evaluating novel therapeutics. Nevertheless, NZX has a great potential as a 
candidate for TB therapeutics. 

Improving bioavailability of NZX 
Drug delivery is an important aspect that defines the bioavailability of drugs. Nano-
particle based drug delivery has gained popularity as a choice of drug delivery 
vehicle (232). In our research we explored MSPs as potential drug delivery system 
for NZX. MSPs are non-toxic, spheric or rod shaped and highly porous. Properties 



54 

that make them desirable are the pore shape and the ability to coat surfaces to be 
increasingly target specific (233).  

The MSPs size used in our study was 200 nm in diameter and they displayed strong 
adsorption to NZX. The desorption studies were performed in PBS and SLF, and 
activity of NZX was retained upon disassociation. The sustained release observed 
for NZX in SLF highlights the therapeutic potential of using these nanoparticles in 
TB treatment. A study demonstrating peptide encapsulated within MSPs has proved 
to be beneficial in improving the solubility and the antimicrobial activity by 
delivering the peptide to the target site (234). Additionally, as AMPs manufacturing 
is costly, loading AMPs into nanoparticles is cost effective by minimizing the loss 
of free peptide (234).  

Mycobacteria primarily reside in macrophages after initial infection, they continue 
to survive and replicate and later only to get disseminated to establish an infection. 
In latent TB these bacteria reside in macrophages within granulomas. Targeting 
drugs to penetrate both macrophage layer and granuloma is key in resolving TB 
infection (235). In our study we demonstrated internalization of MSPs through 
THP-1 cells and primary macrophages. In the presence of macrophages, MSPs 
uptake was as early as two hours. We observed uptake of MSPs into vacuoles 
followed by degradation over three days. Macrophages displayed higher affinity to 
take up vesicles compared to THP-1 cells. Efficient uptake of nanoparticles and 
clearance has been previously described in macrophages during in vitro analysis 
(236). In our study, we showed that the sustained release of peptide from MSPs did 
not interfere with NZX bacterial killing capacity in a murine model and did not 
affect the intracellular killing in macrophages.  

Finally, we evaluated for potential toxicity elicited by MSPs by two methods. A 
dose dependent toxicity was noticed for macrophages. Toxicity from MSPs has been 
recorded previously but they were dependent on surface functional groups and size 
(237, 238).  

In summary, nanoparticle-based delivery of NZX is an interesting option since 
bacterial elimination was successfully achieved. This study has given insights into 
better targeted therapy of AMP for TB treatment, potentially improving their 
bioavailability to an intracellular pathogen.  
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Conclusions 

- NZX possibly has two mechanisms involved in its antimycobacterial activity
against Mtb. First, our findings suggest NZX has a strong affinity towards
mycobacterial membrane and this interaction leads to membrane remodelling
and consequently promotes cell deformity. Second, proteomic analysis
revealed explicit binding to specific intracellular proteins which seem to be
necessary in bacterial survival.

- Characteristically, AMPs are well known to target different pathogens. NZX
seems to have this feature, it is active against not only Mtb but also several
NTM species and MRSA.

- NZX shows potential as an adjunct for antituberculosis therapy since
monotherapy in TB management gives rise to resistant strains. It also preserved
tissue morphology in the lungs compared to EMB, a standard first-line drug
used in TB treatment.

- Bioavailability of NZX could be improved by loading it on mesoporous silica
nanoparticles for intracellular therapy. Additionally, antimycobacterial
property of NZX was not altered after desorption.
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How inscrutable and incomprehensible 
are the hidden works of Nature! 

-Antonie van Leeuwenhoek
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