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Populärvetenskaplig sammanfattning på svenska

“Ultralöpning är som livet: det finns inga gränser för vad som är möjligt.”

— Pace on Earth

Om modeller
Människan har i alla tider kommit på modeller för att beskriva naturens fenomen och upp-
byggnad. Redan i antikens Grekland formulerade Demokritos den första modellen för ato-
mens odelbarhet och Arkimedes beskrev sambandet mellan objekts densitet och hur mycket
de tränger undan vatten. Under renässansen formulerade Kepler lagarna för planeters ba-
nor runt solen och Newton revolutionerade fysiken och dess förmåga att analytiskt beskriva
omvärlden genom att formulera lagarna för klassisk mekanik. Med Newtons lagar blev det
möjligt att beskriva och – kanske framförallt – förutsäga beteende av allt från en projek-
tils trajektoria till himlakroppars rörelse under samma teoretiska ramverk. Vetenskapsmän
kunde göra mycket noggranna beräkningar för hand, men det hade av naturliga skäl sina
begränsningar. Datorernas intåg i vetenskapen med start under 1930-talet tillhandahöll ett
nytt kraftfullt verktyg och skapade ett nytt forskningsfält: beräkningsvetenskap. Nu öpp-
nades möjligheter att hitta lösningar till avancerade och komplexa system som är omöjliga
att lösa med penna och papper, så som vädermodeller och diverse andra sammankopplade
system.

Fysiken – vetenskapen om materia, energi och krafter – har länge ansetts vara den främs-
ta vetenskapen när det gäller möjligheten att beskriva verkligheten med precisa teoretiska
modeller. Det ansågs länge vara omöjligt att beskriva biologin – livets vetenskap – med fysi-
kaliska modeller på grund av dess komplexitet. Men under 1940-talet banade Schrödinger
väg för det nya fältet biofysik. Det var även då som han först introducerade idén om att
det skulle kunna finnas en “genetisk kod”. Genom att formulera minimalistiska modeller
går det att beskriva kärnan av biologiska system. När kärnan har blivit undersökt och för-
stådd, går det att bygga på och utöka modellerna med detaljer och komplexitet, vilket gör
modellernas potential att förutsäga systems beteende ännu större.

Det finns två huvudskolor av beräkningsmodeller: klassiska modeller där modellutveckla-
ren manuellt definierar modellens alla egenskaper, och så kallade maskininlärningsmodeller
där modellen själv anpassar sina parametrar för att passa till datan den får inmatad. Maski-
ninlärning är inspirerat av hur människor lär sig. Föreställ dig hur en förälder skulle lära
sitt barn att identifiera bananer och apelsiner. Föräldern skulle först visa en banan och säga
“banan” och sedan visa en apelsin och säga “apelsin”, och sedan upprepa den här processen
många gånger. Om föräldern senare visar upp en banan och får “banan” som svar, då skulle
barnet få veta att det hade rätt (troligen genom ett gällt, positivt glädjeutrop). Om barnet

vii



istället hade svarat “apelsin” så skulle det bli tillrättavisat av föräldern. Genom den här pro-
cessen får barnet själv klura ut hur det ska känna igen frukterna, under uppsikt av föräldern.
Det är genom samma princip som övervakad maskininlärning verkar. En maskininlärnings-
modell blir visad många objekt tillhörande olika kategorier, med tillhörande etikett, och så
anpassas modellparametrarna för att kunna särskilja kategorierna. Detta innebär också att
modellutvecklaren faktiskt inte behöver veta exakt vad som definierar de olika grupperna
som ska identifieras, modellen definierar själv hur kategorierna särskiljs. För att fullfölja
liknelsen med barn och föräldrar skulle en förälder tillhörande den klassiska modellerings-
skolan istället säga till sitt barn att “en banan är avlång, böjd och gul, medans en apelsin
är klotrund och orange”. Från den här analogin kan det kanske framstå som att maskinin-
lärning är den generelt bättre modelltypen, vilket inte stämmer; båda modelltyperna har
sina användningsområden där den ena är mer lämplig än den andra. En klassisk modell
är användbar när modellutvecklaren har idéer om hur ett system fungerar och vad som är
systemets nyckelegenskaper. Genom att implementera detta specifikt, kan modellen testas
mot verkligheten för att få reda på om idéerna stämmer eller inte. Maskininlärning å andra
sidan är användbar när egenskaperna i sig inte är det viktiga, utan möjligheten att skilja på
olika objekt. Då kan modellen själv definiera de särskiljande egenskaperna från den givna
datan.

I den här avhandlingen använder och utvecklar jag diverse beräkningsmodeller av båda sko-
lor för att beskriva och utforska två olika områden inom biologi och medicinsk tillämpning.
Det första är cellers identitet och förmåga att omprogrammeras. Den andra är att utveckla
ett maskininlärningsverktyg för att hjälpa kirurger att identifiera hudtumörgränser.

Om avhandlingen
Människan är ett ytterst komplext biologiskt system som består av circa tio tusen miljar-
der celler av 200 olika celltyper. Det är celltyper som hudceller, blodceller, muskelceller
och hjärnceller – för att nämna några. I ett tidigt stadium av människans utveckling som
embryo består vi mestadels av en enda celltyp: stamceller. Dessa är så kallade pluripotenta
celler, det vill säga att de har potential att utvecklas och bilda vilken annan typ av cell som
helst. Som vuxen människa har man dock inte kvar den här typen av stamceller. Vuxna
har en annan typ av stamceller, så kallade multipotenta, som endast kan utvecklas till spe-
ciallicerade celler inom en viss cellfamilj. Forskare har funnit att pluripotenta stamceller
skulle kunna användas för att ersätta skadade celler om man till exempel har drabbats av en
degenerativ sjukdom såsom Alzheimers sjukdom. Det är dock problematiskt att få tag på
stamceller att använda till detta då dessa enbart återfinns i embryon, vilket leder till etiska di-
lemman. Dessutom fungerar användandet av stamceller som vilken annan transplantation
som helst såtillvida att kroppen riskerar att stöta bort de nya cellerna. Istället har forskare
upptäckt att det går att omprogrammera mogna celler till stamceller. Man kan exempelvis
ta en patients hudceller, en celltyp som man har i stor mängd och som dessutom enkelt
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kan återbildas, och göra om dessa till stamceller. Då kringår man både det etiska dilemmat
av att använda stamceller från embryon och problematiken kring risken att kroppen stöter
bort de transplanterade cellerna då de kommer från samma individ.

Så hur går det då till att omprogrammera celler? Alla kroppens celler innehåller samma
DNA, alltså samma genetiska kod. Det som avgör vilken celltyp en cell faktisk är beror på
vilka gener som är aktiva och vilka som är avstängda. Genom att aktivera och stänga av
gener kan man på så vis omprogrammera en cell från exempelvis en hudcell till en stamcell.
Det tillkommer dock en del komplexitet som försvårar problemet. Generna interagerar
med varandra. Gen A kan exempelvis ha som effekt att den aktiverar gen B som i sin
tur stänger av gen C vilken hade som uppgift att hålla gen A aktiv. Geninteraktionerna
verkar på det här viset i komplexa nätverk vilket gör det svårt att förutsäga vilken effekt
det kommer att ha att sätta på eller stänga av enskilda gener. Detta är anledningen till
att omprogrammeringseffektiviteten i laboratorier än så länge är mycket låg. Det är här
beräkningsmodeller kommer in i bilden. Genom att formulera ekvationer som beskriver
de komplexa genreguleringsnätverken kan vi simulera utfallet av att stänga av och sätta på
gener och på så vis få en bättre förståelse för vad det faktiskt är som händer. Därmed kan vi
också komma fram till vad man borde göra istället för att få önskat utfall och därmed öka
effektiviteten.

I den första av mina artiklar utvecklar jag en ny modell för att få en komplett överblicks-
bild av vad som kan hända givet ett genreguleringsnätverk och applicerar det på just om-
programmering av hudceller till stamceller. I den andra och tredje artikeln använder jag
istället beräkningsmodeller för att undersöka hur utvecklingen av en specifik typ av immun-
försvarscell – T-celler – går till och försöker finna mekanismen för när i utvecklingen av ett
förstadium till T-cellen som den bestämmer sig för att bli just en T-cell.

Den mänskliga kroppen är som sagt ett oerhört komplext system; därmed är det inte så
konstigt att det går fel ibland. Ett fel som kan uppstå är att celler i ett område börjar dela
på sig i mycket högre grad än normalt. Detta kan leda till cancerbildning. I den fjärde
artikeln jobbar jag specifikt med hudcancer. Ytliga tumörer går ofta att avlägsna kirurgiskt;
dock är det viktigt att inte lämna kvar några cancerceller. Därför skär kirurgerna ofta ut
tumörerna med stora säkerhetsmarginaler. Detta leder dock till grov ärrbildning vilket kan
ge både kosmetiska men framförallt funktionella problem. Därför har jag utvecklat en
metod baserad på maskininlärningsverktyg som automatiskt hittar konturerna på tumören.
Detta verktyg kan verka som ett hjälpmedel för kirurger att avlägsna tumören med mycket
större sannolikhet och med mindre marginaler.
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Popular introduction in English

“Sometimes, if you stand on the bottom rail of a bridge and lean over to watch the river
slipping slowly away beneath you, you will suddenly know everything there is to be known.”

—Winnie the Pooh

Humankind has always tried to describe and explain the world they see around them with
models. Already in ancient Greece, Democritus philosophised about the indivisible atom
as the smallest constituent of matter and Archimedes described the connection between an
object’s density and how much it displaces water when submerged. During the Renaissance,
Kepler formulated his laws on planetary motion and Newton revolutionised physics by for-
mulating the laws of classical mechanics. With Newton’s laws of physics, it became possible
to analytically describe, and perhaps more importantly, make predictions for everything
from the trajectory of a projectile to the orbits of celestial bodies within the same theor-
etical framework. Scientists could do precise and advanced calculations by hand, but it
naturally had its limitations. This started to change during the 1930s when the computer
made its first entrance into the scientific world and opened the door to a new scientific
field: scientific computing. With the computer as a tool, more complex models and al-
gorithms could be developed, such as weather models, coupled systems and Monte Carlo
simulations.

Physics – the study of matter, energy and forces – is often considered to be the prime field of
science when it comes to constructing models describing the world. For a long time, it was
considered impossible to describe biology – the science of life – with physical models due to
its complexity. But during the 1940s, Schrödinger sparked the new field of biophysics when
he tried to explain how life apparently defies the 2ⁿd law of thermodynamics and he also
introduced the idea of a genetic code. With minimalistic models, it now became possible to
describe the core of a biological system and gain a deep understanding of the system. When
a minimalistic model has been developed and understood, it can be extended to include
more details and complexity, making its predictive power greater.

There are two main branches of computational models: classical models, in which the de-
veloper manually defines all the model’s features and details, and so-called machine learn-
ing models where the model itself adapts its parameters to fit data presented to it. Ma-
chine learning is inspired by how humans learn. To contrast classical models with machine
learning models, consider how a parent would teach its child to recognise and distinguish
bananas from oranges. The parent would first show a banana and say “banana”, then show
an orange and say “orange”, and repeat this many times. If the child answers “banana” cor-
rectly when later being presented with a banana, it would get to know that it was correct
(probably with a positive squeaking sound), but if the child instead answers “orange” it
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would be corrected by the parent. By this process, the child gets to figure out how to recog-
nise the two types of fruit by itself, under the supervision of the parent. Machine learning
models use the same principle. A machine learning model is shown many instances of each
class together with the correct label, and the model adjusts its parameters to be able to
distinguish the classes. To complete the analogy of parenting, a parent using the classical
programming approach would instead tell the child: “a banana is yellow, elongated and
curved while an orange is spherical and orange”. From this analogy, it could seem like the
classical approach is worse, but both approaches have their own different cases when they
are more appropriate. A classical model is useful when the scientist has ideas about how a
system works and what the key properties are. By programming this specifically, one can
test against reality if these ideas are correct or not. Machine learning, on the other hand,
is useful when the ability to distinguish objects is important, not the objects’ properties.
Then the model can define the distinguishing properties itself from the given data.

In this thesis, I am developing and using models from both schools of modelling to describe
and explore two different areas of biology. I am using the classical approach to analyse cell
identities and their ability to be reprogrammed, while I use the machine learning approach
to develop a tool to aid surgeons in identifying skin tumour borders.
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Introduction

“The day science begins to study non-physical phenomena, it will make more progress in one
decade than in all the previous centuries of its existence.”

—Nikola Tesla

This thesis is a collection of the research papers I produced during my 4.5 years as a PhD-
student. During this period, I have ventured from a background in theoretical physics into
the interesting world of the interdisciplinary sciences of computational biology, biological
physics and systems biology. From my background, I brought computational tools and the
physicist’s way of thinking about models, which I have applied in, for me, new scientific
areas. After these years, I have realised how complex biological systems are, as well as what
impressive work experimentalists are doing in their wet labs, but I have also seen that their
work can be better understood, and the outcome of their experiments predicted, with the
help of the work of theoretical modellers.

The first three papers of my thesis concern model development within systems biology while
the fourth one is about developing a machine learning model for tumour diagnostics. In
Paper I, we develop a model that converts a gene regulatory network into an energy land-
scape. With this model, it is possible to simulate cell reprogramming as a random walk in
the energy landscape, which provides a full overview of the possible cell states and repro-
gramming roadblocks. Papers II and III both concern modelling the early development
and commitment of T-cells. In paper II, we develop a multi-scale model which is fitted to
and validated with experimental data. In paper III, we put this multi-scale model into an
agent-based framework and investigate the role of inheritance in the commitment process.
Finally, in PaperIV, I develop – in close collaboration with surgeons – a machine learning
model which finds the borders of superficial skin tumours from hyperspectral images. This
model aims to aid surgeons in safely excising tumours with minimal margins.

In the introductory part of this thesis, I will introduce sufficient background knowledge
so that the four papers should be understandable for those with physics, computational
science and biology backgrounds alike.
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• In Section 1, I introduce the biological aspects related to the papers.

• In Section 2, I give an overview of how biological systems can be connected to com-
putational models through systems biology.

• In Section 3, I go through the most important computational tools I have used.

• In Section 4, I provide some final concluding remarks.

Finally, I give an overview of the included papers and specify my contribution to each of
them.
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1 Biological background

“Life finds a way.”

—Dr. Ian Malcolm, Jurassic Park

Biology – the science of life – is a complex science which differs a lot from physics. Physics
studies matter and energy, which behave in predictable ways, while biology deals with life’s
unpredictability; “Life finds a way” as famously uttered in Jurassic Park. Yet, by breaking
down the building blocks of life, cells, in their smallest constituents, it is possible to apply
physical models to explain how life operates.

In this chapter, I will give a summary of the most essential parts of biology needed to
understand the papers included in this thesis. I will describe the cells that build up humans,
what differentiates different cell types, how DNA – the code of life – is read, how genes
are expressed and regulated, and what happens when cell division goes wrong and creates
tumours. The topics summarised below can be found in detail in standard text books about
cell biology [1, 2].

1.1 Cells: The building blocks of life

“...cells evolved to function and did not evolve to be comprehensible…”

—Uri Alon

The human body is incredibly complex. We are all built up of small living building blocks,
cells, which provide both structure and functionality. There are approximately 1013 indi-
vidual cells in the body, but they can all be categorised into 200 cell types [1]. These vary
in size between approximately 7µm and 120µm [3]. The different cell types constitute the
different tissues in our bodies. A few examples of cell types are muscle cells, blood cells,
neurons, and liver cells, as depicted in Figure 1. Despite having very different shapes and
functions, all cells contain the same DNA (deoxyribonucleic acid). DNA, contains the
complete genetic information for an individual. However, not all genetic material is active
in all cells. Which cell type a certain cell belongs to is determined by which genes that are
active and – as importantly – inactive.

The human body contains many different specialised cell types, but during the early stages
of development as an embryo, we mostly contain one unspecialised cell type: stem cells.
These cells are said to be pluripotent, meaning that they have the potential to differentiate
into any specialised cell type. As adults, we actually have some stem cells in our bodies as
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Figure 1: Examples of a few different cell types in the human body. Image credit iStock.com/blueringmedia.

well. However, these are not pluripotent, meaning that they can only differentiate within
a specific cell lineage and are said to be multipotent. For instance, a haematopoietic stem
cell can only differentiate into different kinds of blood cells and immune cells, such as red
blood cells and T-cells.

Replacement of old or damaged cells, as well as development of new specialised cells are
conducted by cells that undergo the cell cycle. During the cell cycle, cells divide into two
‘identical’ copies which in some cases later differentiate. The cell cycle consists of two main
phases: the interphase where the cells grow and duplicate the genetic material, and the
mitosis where the actual division takes place. Cells spend roughly 90 % of their lifetime in
the interphase which is also when they carry out their cell functions. The fastest dividing
cells duplicate daily, while most cells duplicate on the scale of weeks or months [3]. Some
cells, e.g. those constituting the central nervous system, do not go through cell division
at all. This makes them vulnerable to damage since the body cannot replace them. The
interphase is divided into several phases which are controlled by specific cell cycle genes. If
the cell does not fulfil the right conditions or does not function properly, it can not pass
on to the next phase. The cell cycle is then either paused or the cell can undergo apoptosis,
i.e. programmed cell death¹. Sometimes, these control mechanisms are not enough to stop
malfunctioning cells, resulting in that the malfunctioning cells undergo cell division in an
uncontrolled manner. This can lead to an accumulation of malfunctioning cells, which, if
malevolent, develop into cancerous tumours in the body.

¹As opposed to uncontrolled cell death called necrosis.
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1.2 DNA and genes: The code of life

“Any fool can write code that a computer can understand. Good programmers write code that
humans can understand.”

—Martin Fowler

DNA is often described as a “blueprint” for the human body or a computer program de-
tailing how to construct and maintain the human body. Both of these analogies are right
in their on way, but these pictures may be quite misleading. When comparing the DNA to
a blueprint, it sounds like the DNA contains a sketch of exactly how the human body will
look like and function. This is only true for a few properties; it is often possible to deduce
the eye colour or blood type from someone’s genes, but nowhere in the DNA is stated ex-
actly how tall one will become or even that most humans have 10 fingers. The DNA does
not simply contain a master plan for humans. The comparison to a computer program
gives a slightly more accurate picture. The DNA code itself is built up information-wise in
a similar way as computer code, which I will return to soon. The DNA contains instruc-
tions on how to build proteins which are then tasked with all possible functions in the body.
This is similar to how a computer program can be programmed to perform specific tasks.
However, the DNA has no “main method” which specifies how, and in which order, the
commands should be executed. DNA is more like a list containing all possible functions
but with no instructions for how and when to run them.

Before diving deeper into the structure of DNA and how it produces proteins, I need to
briefly introduce what proteins are. Proteins are more than the building blocks of muscles,
which is probably what most people know about them. Proteins are a class of complex

DNA

mRNA

Translation

Transcription

Protein

Figure 2: The double-helix DNA molecule uses the four nucleotide bases A, C, G and T to code the genetic
material. A gene gets transcribed into the single-helix mRNA molecule by RNA polymerase. RNA
uses the nucleotide U instead of T. The ribosome translates the mRNA into proteins, assembling
amino acids, where each amino acid is coded by a set of three nucleotides called a codon. Image
credit iStock.com/ttsz
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molecules which has countless tasks. Besides providing structural components for the body
and cells, they can act as catalysts of chemical reactions (these proteins are called enzymes),
and facilitate cells’ communication, both within a cell and between cells by carrying signals
and acting as transporters. Antibodies, another kind of protein, have important roles in
immune system. There is another set of proteins, transcription factors (TF), that regulate
which genes are read from the DNA.

Now, let us return to the DNA and how proteins are produced. Similarly to how inform-
ation on a computer is stored in bits as zeros and ones, DNA stores its information in just
four components called nucleotide bases. These are adenine, cytosine, guanine and thym-
ine, commonly referred to using only the first letter of each name (A, C, G and T). The
structure of a DNA molecule is illustrated in Figure 2. The nucleotide bases are arranged
into groups of three letters, forming a codon, similar to a byte in a computer. Since there
are four different letters, A, C, G and T, the codons can code for 43 = 64 different objects.
These objects are amino acids which are the building blocks of proteins. However, there
are only 22 different amino acids constituting proteins, meaning that there is some redund-
ancy. For instance, the amino acid lysine is coded by both AAA and AAG. This is a smart
feature since it allows for small coding errors; different combinations of nucleotides still
can yield the same amino acid. The codons are structured into genes where a gene spells
out a certain sequence of amino acids that constitutes a protein. The human genome is
estimated to contain approximately 21 000 protein-coding genes [3].

1.2.1 Gene regulation

The process of how the information contained in the genes is turned into proteins can be
divided into two parts: transcription and translation, as illustrated in Figure 2. During the
transcription, the information contained in a gene is copied into a slightly different format:
the messenger RNA (mRNA). RNA is similar to DNA but with a few notable differences:
it contains ribonucleic acid instead of deoxyribonucleic acid (hence the R instead of the
D in the name), it is much shorter than the DNA (since it only contains information for
one gene), and it uses uracil (U) instead of thymine (T). A gene is transcribed into mRNA
by a protein called RNA polymerase. The same gene can be transcribed multiple times
creating many copies of the same mRNA. By transcribing a gene into mRNA, the genetic
information becomes accessible for the next step of the protein creation. During translation,
proteins are produced from the information contained in the mRNA. A ribosome² reads the
codons and connects corresponding amino acids delivered by transcript RNA, constructing
the encoded protein step-by-step . As opposed to DNA, mRNA degrades after a while,
meaning that the protein cannot be translated any more.

²A ribosome is a big and complex structure consisting of ribosomal RNA (rRNA) and many proteins.
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However, the genes are not just transcribed passively. There are mechanisms to regulate the
transcription. Each gene has a promoter region nearby on the DNA strand. Activating or
repressing proteins – transcription factors (TFs) – can bind to the promoter regions and,
by doing so, either enhance the production or inhibit it. Smaller molecules in the cell
environment can also act as regulators by binding to the promoter regions or regulating
proteins. For some genes, several proteins can act as regulators. For others, several proteins
are required to cooperate. This creates a complex system of gene regulation which I will
return to later in Section 2.

1.2.2 Epigenetics

To make the matter of gene regulation even more complex, there are external regulation
mechanisms as well: epigenetic mechanisms [4, 5]. The prefix epi means “above”, so the
epigenetics alludes to “above the genome”. Epigenetic mechanisms do not alter the genetic
material but rather affect how the genes are read. These mechanisms are connected to
how the DNA is structured in the cell. The DNA strand is not floating around in the
cell unstructured, it is wound around histone proteins. The histones are coiled together
in larger and larger structures, building up a chromosome, as illustrated in Figure 3. For a
gene to be transcribed, the DNA strand needs to unwind locally around the gene.

An epigenetic mechanism which controls the winding of DNA is called histone acetylation.
An acetyl group binds to the histone which loosens up the coiled DNA enabling it to be
transcribed. If the acetyl group is unbound, the DNA is tightened again, blocking tran-
scription. Another epigenetic mechanism is DNA methylation which is when a methyl

Figure 3: The DNA strand is tightly wound around histones which coils up into chromosomes, located in the
cell’s nucleus. Image credit iStock.com/Rujirat Boonyong.
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group binds directly to the DNA. The methyl group acts as a blockade for the DNA poly-
merase, hindering the gene to be transcribed. There is a third epigenetic mechanism that
works similarly to the DNA methylation, but post-transcriptionally on the mRNA. In this
mechanism, small snippets of RNA, microRNA, bind to matching sites of the mRNA,
hindering the ribosome from translating the mRNA into a protein. An important feature
of the epigenetic mechanisms is that they are inheritable between cells. For instance, if a
cell has methylated a gene, the gene will often stay methylated in the daughter cells after
the cell divides.
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2 Systems Biology:
Bridging biological systems with computational modelling

“Ask five biomedical researchers to define systems biology,
and you’ll get 10 different answers…or maybe more.”

—Christopher Wanjek

Systems biology is a new field of science, emerging around the year 2000, which – as hinted
by the quote above – does not have one singular clear definition. A rather unconventional
explanation of systems biology was given in a Nature editorial [6]:

“What is the difference between a live cat and a dead one? One scientific answer
is ‘systems biology’. A dead cat is a collection of its component parts. A live cat is
the emergent behaviour of the system incorporating those parts.”

A rather more descriptive definition of systems biology was provided by Ron Germain [7]:

[Systems biology is] “a scientific approach that combines the principles of engineer-
ing, mathematics, physics, and computer science with extensive experimental data
to develop a quantitative as well as a deep conceptual understanding of biological
phenomena, permitting prediction and accurate simulation of complex (emergent)
biological behaviours.”

To summarise these perspectives, one can say that systems biology is an interdisciplinary
field of science that combines mathematics with computational analyses to describe com-
plex biological systems. The field stems from the idea that system properties emerge from a
complex system which are not derivable by investigating the components’ properties indi-
vidually, but where every component needs to be studied in the setting of the full complex
system. Some definitions restrict systems biology to only include complex systems within
cell biology, but it could also be considered as a more general field where applications such
as studying population dynamics or disease spreading are also included. In this thesis, I am
using the techniques of systems biology to study gene regulatory networks which govern
cells’ gene expressions and ultimately also cell states.
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Figure 4: (a) An example of a gene regulatory network (GRN). Gene A may code for the activator for gene
B which codes for the inhibitor of gene C, which in turn codes for the activator of gene A. (b) A
simplified depiction of the same GRN where the step of a “geneA coding for the activating promoter
of gene B” has been merged into “gene A activates gene B”. Activation is depicted with black arrows
and inhibition is depicted with red blunted arrows.

2.1 Gene regulatory networks

“Everything should be made as simple as possible, but not simpler.”
— Albert Einstein

As described in Section 1.2.1, the transcription of genes is regulated by proteins called tran-
scription factors (TFs). Transcription factors may have activating as well as inhibiting effects.
What makes gene regulation extra complex is that many genes code for proteins that act as
regulators for other genes, which in turn code for regulators of other genes, which in turn…
and so forth. For instance, gene A may code for the activator for gene B, which codes for
the inhibitor of gene C, which in turn codes for the activator of gene A, creating a feedback
loop. In order to keep track of how the genes interact, one can construct a gene regulatory
network (GRN) as depicted in Figure 4a. One simplification that is often made to keep
the GRNs clearer, is to merge the step “gene X codes for the regulator of gene Y”, and
simply say “gene X activates/inhibits gene Y”. Correspondingly, the steps are also merged
in the GRN, as shown in Figure 4b. From now on, we will keep to this simplified view
and use expressions such as “gene X is produced” instead of the more cumbersome “the
protein encoded by gene X is produced”. In depictions of GRNs, I will use black arrows
to represent activations (X Y) and red blunted arrows to represent inhibition (X Y).

GRNs are important tools within systems biology since they describe how cells are governed.
Common research topics in systems biology are to describe cell development or reprogram-
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Figure 5: Examples of gene regulatory networks (GRNs). (a) The full developmental GRN of the sea urchin,
figure taken from Ref. [8]. (b) A minimal core GRN governing maintenance of embryonic stem cells,
figure taken from Ref. [9].

ming³ of cell identities. Even with today’s scientific technologies, it is close to impossible
to map the complete gene regulatory network of an organism, with the exception of a few
simple organisms such as the sea urchin [8] which is depicted in Figure 5a. Thankfully, a
complete GRN of an entire organism is not necessary for most applications. It is often
enough to isolate the specific genes involved in a certain process. When modelling cell
development or reprogramming, it is often desirable to construct a minimal GRN, con-
taining only the minimal amount of genes which still capture the necessary transcriptional
dynamics. An example of a minimal GRN is shown in Figure 5b. This GRN governs the
maintenance of embryonic stem cells and consists of only four core genes and two external
signals. GRNs can be constructed by performing experiments which elucidate how genes
interact. When a GRN has been discovered, it can be used to simulate cell development or
reprogramming to gain understanding of a system and make predictions. In chapter Sec-
tion 3, I will describe common methods to simulate GRNs. In Papers I, II and III, GRNs
are key parts where we in Paper I develop a general model to analyse GRNs and in Papers II
and III develop a GRN for a specific cell development process.

³Cell reprogramming is when one cell type is converted to another, this will be covered in Section 2.4.
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Figure 6: Different treatments of gene expression. Gene expression can be measured by counting each copy of
mRNA transcripts. In the binary treatment, the genes can only be either ON or OFF. The transcription
counts can also be transformed into a continuous gene expression value. The two treatments can be
compared to a lamp which can be either switched ON or OFF (binarised), or shine with an intermediate
brightness if connected to a dimmer (continuous).

2.2 Gene expression

“Happiness can be found, even in the darkest of times,
if one only remembers to turn on the light.”

— Albus Dumbledore, Harry Potter and the Prisoner of Azkaban

A common way to treat gene expression is to binarise it. If the gene is transcribed, the gene
is considered ON, and if the gene is not transcribed⁴, the gene is considered OFF. This can
be viewed as the behaviour of a light switch, where a gene can be turned ON or OFF just as
a lamp can, as illustrated in Figure 6. However, even though binary gene expression is a
useful simplification, it is not enough for studies of gene expression rate dynamics. Since
gene expression is based on mRNA transcription counts, a gene can be expressed at many
different levels, similar to how the brightness of a lamp can be controlled with a dimmer.

The binary gene expression can be expressed mathematically by claiming that a gene’s ex-
pression g exists in the discrete space g ∈ B = {0, 1}. If we consider a GRN with n

⁴Or only transcribed at a basal rate, meaning the small activity of transcription that can occur even without
positive regulation.
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genes, the cell can be described by a state vector s = (g0, g1, . . . , gn−1) where s ∈ Bn.
Hence, the cell can only be in any of the 2n states. For the continuous gene expression, g
can instead take a value in the interval [0, 1], where the expression level is assumed to be
normalised to the fully expressed transcription count.

Using the continuous description has the drawback that the number of possible cell states
is not limited as for the binary case; instead this description presents a more accurate rep-
resentation. The two treatments of gene expression are useful in different settings, and I
have used both formalisms in this thesis: I use binarised gene expression in Paper I since it
allows us to gain an overview picture of complete cellular reprogramming landscapes. In
Papers II and III, we instead use the continuous description since we conducted dynamic
simulations of a GRN.

2.3 Cell reprogramming

“Until man duplicates a blade of grass,
nature can laugh at his so-called scientific knowledge.”

—Thomas Edison

Cell development potential is often envisaged as a mountain, as first suggested by Wadding-
ton in 1957 [10]. A pluripotent cell – which can become any other cell type – can in this
analogy be thought of as a marble located at the top of the mountain peak, as illustrated
in Figure 7. Differentiation of the cell, leading to it becoming more specialised, can be
viewed as the marble rolling down the mountain on differentiation paths. here are a few
different branching paths at the top that the marble could take, leading the pluripotent
cell to commit to certain cell lines, such as haematopoietic cells or neuronal cells. Then
the marble continues to roll down choosing between finer and finer branching points and
ultimately becoming a specialised (“mature”) cell, as depicted with the coloured paths in
Figure 7.

In natural development, the marble can only roll down the mountain (cyan arrow in Fig-
ure 7). However, by forcing the expression of certain transcription factors, it is possible to
reprogram cells, i.e. push the marble up the mountain and let it roll down another path
(magenta arrow in Figure 7). This was first done by reprogramming mouse embryonic fibro-
blasts into myoblasts in 1987 [11]. Reprogramming one cell type directly into another like
this is called direct reprogramming. In 2006 and 2007, Yamanaka and Takahashi showed
in mice and human cells, respectively, that it is possible to reprogram fibroblasts into stem
cells, so-called induced pluripotent stem (iPS) cells [12, 13]. They showed that it was pos-
sible to do this by just activating the four transcription factors Klf4, Sox2, Oct3/4 and
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Figure 7: A Waddington landscape of cell developmental potential envisaged as a mountain [10]. During cell
differentiation, a cell (here illustrated as a marble) rolls down the mountain on paths leading to more
and more specialised cell fates. By pushing a marble up the mountain and letting it roll down another
path, the cell is reprogrammed. Image credit (mountains) iStock.com/Grishina Tatiana.

c-Myc that are normally ON in stem cells. The iPS cells have the same properties as pluri-
potent stem cells and can be used to generate any cell type in the body [14]. This gives iPS
cells great potential to be used in medical treatment as they could be used to regenerate
damaged cells. They also have two great benefits compared to other available sources of
stem cells – embryonic stem cells. Firstly, the ethical issue of using cells harvested from
embryos is avoided. Secondly, it is possible to use the patient’s own cells to obtain the iPS
cells, meaning that the body has a lower risk of rejecting the cells.

Reprogramming cells is, however, not entirely problem-free. Due to the complexity of
GRNs, the process is often very inefficient. The conversion rate for obtaining iPS cells is
often below 1% [14]. The unconverted cells may either not be affected, or may happen
to end up in another unwanted cell state. Some cell states act as roadblocks hindering
the marbles passing through and becoming the target cell type. Therefore, it is of great
importance to construct and study GRNs for the conversion process. By understanding
the governing GRN, the reprogramming can potentially be made more efficient.

In Paper I, we develop a model, CELLoGeNe⁵, where a complete energy landscape is calcu-

⁵The name CELLoGeNe is an abbreviation that stands for Computation of Energy Landscapes of Logical
Gene Networks.
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lated for a given GRN. An energy landscape can in this context be viewed as a quantitative
version of the mountain analogy of the developmental potential. By using binary gene
expression, CELLoGeNe assigns an energy value to each of 2n possible cell states. Low
energy is assigned if the cell state agrees with the effect of the GRN and high energy is
assigned in case of disagreement. As an example, consider the simple GRN A B. The
state where A is ON and B is OFF is in complete agreement with the effect of the GRN⁶
and is assigned low energy (−1). The state where both gene A and B are ON disagrees with
the GRN and is assigned high energy (+1). An important feature of CELLoGeNe is that a
gene that is OFF does not affect its target gene, i.e. both states where A is OFF are assigned
neutral energy (0).⁷ If we now consider a cell as a marble in the energy landscape, it will
roll down the landscape towards lower energies by transitioning to neighbouring states, i.e.
states that only switch the expression of one gene. For a GRN governing cell reprogram-
ming, the energy landscapes provide us with a complete overview of potential roadblocks
where cells could get stuck. Hence, we can simulate cell reprogramming as a random walk
in the energy landscapes, as artistically envisaged on the front cover of this thesis.

⁶That is, gene A wants gene B to be OFF.
⁷This is not the standard treatment when considering binarised gene expressions. ThenA B is translated

into the logical rule B = NOT A which means that A activates B by being OFF, thus introducing symmetry
despite the network being directed.
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3 Computational modelling

“All models are wrong, but some are useful.”

—George Box

As mentioned previously, models have been used by humankind for a long time, but why
are theoretical models actually needed? Is it not enough to just perform experiments and
collect data? This is of course as important as constructing a theoretical model. Without
the connection to reality a model would be useless, but without a model, one would not
be able to use the information gained in the experiments. It is of course important to
remember, as stated in the quote by George Box, that all models are wrong; they are just
idealised pictures of reality. However, a model provides a setting in which to generalise
and make predictions. With a well-constructed model, one can calculate the outcome of
a future event. For example, by knowing the model for object trajectories, one can know
where a ball is going to land if we know with what velocity we throw it.

In many fields of science, computational models become very important complements to or
even substitutes for experiments. By performing computer simulations of a model, one can
predict outcomes of experiments which can confirm (or disprove) the theory. In some cases,
simulations can be performed when the corresponding experiments are unattainable, for
instance, if it would be too expensive to perform or if the technology has not been invented
yet. In these cases, the simulation outcome may either confirm that this experiment would
be important enough to invest the money in, or the experiment would not even be needed
anymore since the results of the simulations provided the needed insights to progress.

The above reasoning is certainly true in cell biology and reprogramming of cells. By con-
structing models of cell reprogramming, we can perform simulations to test different hypo-
thesis. For instance, what would happen if gene X is removed, or if gene Y is added to the
GRN in a certain way? Many of these questions could be answered in the wet lab as well,
but by performing in silicio⁸ simulations, one can test many different hypotheses resource-
efficiently. For instance, in Paper I, we develop a model which provides an overview of all
potential cell states given a GRN. Thus, we can use this model to predict where cells get
stuck in the cell reprogramming process, and gain an understanding of how this could be
avoided during experiments.

In all the projects in my thesis, computational models are central parts and the computer
is my lab. For this reason, I find it important to introduce these essential tools in detail. In
the following sections, I will describe the most important tools I have used.

⁸In silico means performing experiments on a computer (i.e. simulations) where “silico” refers to the sil-
icon in computer chips. In biology, similar terms exists, such as in vitro (“in glass”) referring to “test-tube”
experiments and in vivo (“within the living”) referring to experiments inside a living organism.
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3.1 Dynamical modelling of gene regulation

“I know some things. I can, you know, do math and stuff.”

—Harry Potter, Harry Potter and the Philosopher’s Stone

A common way to model cell development or reprogramming is by constructing a dynam-
ical model of the genes’ expression levels [15]. When constructing a dynamical model, one
is interested in the rate of change⁹ of a gene X , which in the general form can be described
by an ordinary differential equation (ODE)

dX(t)

dt
= f(t), (1)

where f describes how the level of X changes and X(t) is the expression level of X at time
t. Simply put, there are only two things that can happen: a gene can be transcribed into
mRNA or the existing mRNA can be degraded. Thus, f can be split into two parts

dX

dt
= p(t)− d(t), (2)

where p(t) is the production rate and d(t) is the degradation rate. As described previously,
gene regulation is governed by complex networks, GRNs, within which the genes affect
each other. Thus, in general, for a GRN including N genes, we instead have a set of
coupled ODEs where the production and degradation rates depend on the GRN genes:

dX1(t)

dt
= p1(X1(t), . . . , XN (t))− d1(X1(t), . . . , XN (t))

dX2(t)

dt
= p2(X1(t), . . . , XN (t))− d2(X1(t), . . . , XN (t))

...
dXN (t)

dt
= pN (X1(t), . . . , XN (t))− dN (X1(t), . . . , XN (t)).

(3)

Collecting the gene expressions into a vector defined as X(t) = (X1(t), · · ·XN (t)), this
can be compactly expressed as

dX(t)

dt
= p(X(t))− d(X(t)), (4)

where the production and degradation rates are also expressed in vector format. Given a set
of initial conditions X(t0) = X0, where t0 is the initial time, the system of ODEs can be

⁹E.g. the transcription rate of the gene minus the degradation of the mRNA.
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solved to find the dynamics of the gene expressions. A set of coupled ODEs can in general
not be solved analytically, and must instead be solved numerically. This can either be done
deterministically or stochastically, which will be described in Section 3.2.

So how can a GRN be translated into a set of rate equations? There are two main approaches:
using the law of mass action or principles of statistical mechanics. We will now investigate
these two approaches separately.

3.1.1 Law of mass action

The law of mass action is a way to calculate reaction rates for chemical reactions of the form

ν1X1 + . . .+ νmXm

kf
⇌
kb

νm+1Xm+1 + . . .+ νnXn, (5)

where νi are stoichiometric¹⁰ coefficients defining how many copies of reacting (molecular)
species Xi are required, and kf and kb is the forward and backward rate respectively. The
law of mass action [16] states that the reaction rates are

dXi

dt
=


−kf

∏
1≤j≤m

[Xj ]
νj + kb

∏
m+1≤j≤n

[Xj ]
νj , if i ≤ m

+kf
∏

1≤j≤m
[Xj ]

νj − kb
∏

m+1≤j≤n
[Xj ]

νj , if m < i ≤ n
(6)

and that at equilibrium

[Xm+1]
νm+1 × . . .× [Xn]

νn

[X1]ν1 × . . .× [Xm]νm
=

kf
kb

, (7)

where [X] denotes the concentration of X .

The simplest model for gene regulation is obtained by using the Michaelis-Menten formal-
ism for complex formation [17], where one assumes that the regulating transcription factor
binds to the DNA to form a complex. In this setting, the DNA plays the role of the en-
zyme in the standard Michaelis-Menten formalism. For an activating transcription factor,
we have

TFA +DNA
k1⇌
k2

TFADNA
k3→ P + TFADNA, (8)

where TFADNA is the complex formed by the activating transcription factor (TFA) and
the DNA, and P is the protein. Here, it is assumed that the binding and releasing of the
transcription factor to the DNA is fast compared to the production of the protein. By

¹⁰“Stoichiometric” refers to the relation between the products and reagents during chemical reactions. The
total mass of the involved reagents needs to be conserved through the reaction.
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further assuming that there is only one copy of the DNA strand involved, we can use that
DNA + TFADNA = 1. By using Equation (6) and the stated assumptions, one obtains
the production rate of the protein (P )

dP

dt
= Vmax

[TFA]

K + [TFA]
, (9)

where K = k2/k1 and Vmax = k3. This can be interpreted such that the protein pro-
duction is equal to the fraction of time the transcription factor is bound multiplied by
the translation rate. If we instead have the situation that the transcription is active when
no transcription factor is bound and inactivated when a repressive transcription factor is
bound, the corresponding chemical reaction is

TFR +DNA
k1⇌
k2

TFRDNA

DNA
k3→ P +DNA,

(10)

with protein production rate
dP

dt
= Vmax

K

K + [TFR]
. (11)

Now, the protein production is instead the fraction of time the transcription factor is not
bound times the translation rate. One extension that can be made to this model is to allow
cooperativity, i.e. that many copies of the transcription factor can bind to the DNA at once.
Then, one instead obtains the Hill equations

dP

dt
= Vmax

[TFA]
h

Kh + [TFA]h
, (12)

and
dP

dt
= Vmax

Kh

Kh + [TFR]h
, (13)

where h is the Hill coefficient representing the number of transcription factors needed [18].
When a protein is regulated by two different transcription factors, their contributions must
be combined. This can either be done with AND-logic, i.e. that both TFs are required, or
with OR-logic, i.e. that it is enough that one of the TFs is bound. This can be achieved by
either multiplying (for AND) or adding (for OR) the contributions for the two TFs, i.e.

dP

dt
= Vmax

[TFA,1]
h1

Kh1
1 × [TFA,1]h1

+ Vmax
[TFA,2]

h2

Kh2
2 + [TFA,2]h2

, (14)

for two activators combined with AND-logic and

dP

dt
= Vmax

Kh1
1

Kh1
1 + [TFR,1]h1

+ Vmax
Kh2

2

Kh2
2 + [TFR,2]h2

, (15)

for two repressors combined with OR-logic.
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3.1.2 Shea-Ackers formalism

The alternative approach of constructing rate equations is to derive them from principles
of statistical physics, which Shea and Ackers were the first to do [19, 20]. In the Shea-
Ackers formalism, the partition sum¹¹ is calculated for all possible states of the involved
transcription factors and RNA polymerase. If we once again consider a GRN with N
transcription factors, then there will be one partition sum for each ODE in the system.
The partition sum for gene X becomes

Z(X) =
∑

σ1...σNσp

p
σp

RNAe
∆Gσ,X
kBT

N∏
i=1

[TFi]
σi , (16)

where pRNA denotes the amount of RNA polymerase, σi is a binary number, denoting
whether the corresponding transcription factor (or RNA polymerase) is bound or not where

σi =

{
1 if bound
0 if not bound, (17)

and e∆Gσ/RT is the Boltzmann factor where ∆Gσ,X is the free energy energy difference,
with a suitable zero level, associated with the specific state, kB is the Boltzmann constant
and T is the temperature. The Boltzmann factor could theoretically be known by measure-
ment, but this is mostly not the case in practice. Therefore, the Boltzmann factor can be
reduced to an unknown parameter ασ,X , i.e.

Z(X) =
∑

σ1...σNσp

pRNAασ,X

N∏
i=1

[TFi]
σi . (18)

The partition sum can be divided into two parts: terms which represent that transcription
is ON and terms which represent that transcription is OFF,

Z(X) = ZON(X) + ZOFF(X). (19)

Hence, the transcription rate of gene X is proportional to the probability of the transcrip-
tionally active states

p(X) = α
ZON(X)

ZON(X) + ZOFF(X)
, (20)

where α is a rate constant. For a simple case of two transcription factors A and B, each
of the two transcription factors as well as the RNA polymerase can either be bound to the

¹¹The partition sum is a concept from statistical physics where the energy of each possible microstate of a
system is summed. The partition sum acts as the normalising factor when calculating the probability for a
system being in a specific microstate.
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DNA or not, resulting in 23 = 8 possible states. The partition sum for the regulation of A
becomes

Z(A) =
∑

σAσBσp

ασ,A[A]σA [B]σBp
σp

RNA

= 1 + αp,ApRNA + αA,A[A] + αB,A[B] + αAp,A[A]pRNA

+ αBp,A[B]pRNA + αAB,A[A][B] + αABp,A[A][B]pRNA.

(21)

The terms that include A represent self-regulation. Note that the partition sum is not
affected by how A and B are connected in a GRN; however, which of the terms that count
as activating or inhibiting depends on what roles the transcription factors have in the GRN.
The RNA polymerase is often treated as a constant that needs to be formally included; thus,
some terms can be combined

αA,A[A] + αAp,A[A]pRNA = (αA,A + αAp,ApRNA)[A]→ αA,A[A], (22)

where we redefine αA,A+αAp,ApRNA → αA,A in the last step. The same principle can be
applied to the terms with [B] and the combined [A][B]. The term αAp,A[A]pRNA can be
considered a basal transcription rate. Furthermore, this formalism includes both the AND-
and OR-logic since the partition sum includes both single terms with [A] and [B] as well
as their product [A][B]. If it is known which one of the logic principles should be applied,
the parameters for the unused logic can be set to zero manually. Otherwise, all the terms
are kept.

For the general case, many of the terms in the partition sum can be excluded (i.e. setting
the corresponding parameter to zero). For instance, if a gene in a five-gene GRN is only
regulated by two of the other genes, all the terms containing the non-regulating genes can
be disregarded. The complete reaction rate of gene X can be summarised as

dX

dt
= αX

βact,X +
∑

T∈act
αT,X [T ]

1 + βact,X + βrep,X +
∑

T∈rep
αT,X [T ] +

∑
T∈act

αT,X [T ]
− δX [X], (23)

where T includes single terms of transcription factors as well as all relevant cross terms.
This makes the Shea-Ackers formalism very intuitive to use. One simply has to sum all
the activators (including cross terms) and place them in the numerator of the production
rate function. Both activating and repressing terms are placed in the denominator. The
Shea-Ackers formalism could also be extended by allowing for cooperativity by introducing
Hill-coefficients [2]. One should also note that the Hill equation is a special case of the
Shea-Ackers formalism where only linear terms are included.

When constructing rate equations with the Shea-Ackers formalism, one introduces many
unknown parameters. Some of them would be possible to measure, but some have for sim-
plicity been merged and lost their direct biophysical meaning. Therefore, these parameters
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need to be found by fitting the rate equations to data. I will describe this process in Sec-
tion 3.3. In Paper II, we set up rate equations with the Shea-Ackers formalism describing
the the transcriptional part of early T-cell development.

3.2 Solving ODEs numerically

“The consequences of our actions are always so complicated, so diverse, that predicting the
future is a very difficult business indeed.”

— Albus Dumbledore, Harry Potter and the Prisoner of Azkaban

When the rate equations have been constructed, we need to solve them as well. The type of
problems we are interested in solving is called initial value problems, where an initial con-
dition x0 is given (in our case often from experiments), and we want to evolve the system
in time. For a few simple cases, it is possible to solve a set of coupled ODEs analytically,
but that is in general not the case. Then, numerical methods must be applied. There are
two classes of numerical methods for solving ODEs: deterministic and stochastic methods.
A deterministic solution will always yield the same outcome if the same initial conditions
are used. On the contrary, a stochastic method will yield different outcomes for the same
initial conditions since it includes random elements.

3.2.1 Deterministic solution

The conceptually most simple way to deterministically solve a set of ODEs is with the Euler
method [21]. It is the least accurate method, and therefore not very practically useful, but
as it illustrates the concept very well, I will describe it shortly. For a general set of coupled
ODEs

dx

dt
= f(x, t), (24)

with initial conditions x(t0) = x0, the idea is to evaluate the derivative at time point tn
and then take a small step in time of length h in the direction of the derivative:

tn+1 = tn + h,

xn+1 = xn + hf(xn, tn) +O(h2).
(25)

A sketch of this principle is shown in Figure 8a. The Euler method is said to be a 1st-
order method since its local truncation error isO(h2) and global truncation errorO(h).¹²

¹²A method is conventionally called an mth-order method if its global truncation error is O (hm).
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a b

Figure 8: (a) Illustration of the Euler method using three different step-sizes where red is step size h, blue step
size h/2 and green step size h/4. (b) Schematics of the four trial steps used in the 4th-order Runge-
Kutta method. The analytic solution is showed in black in both (a) and (b).

Here, we only evaluate and use the derivative value at the starting point of the interval. We
could improve the accuracy by evaluating more points. The simplest extension is called the
Runge-Kutta 2ⁿd-order method, where a first trial step of half the interval is used, upon
which the derivative is re-evaluated. The new value is then used to take a full step in time.
This principle of trial steps can be extended further where more intermediate steps are used.
In the 4th-order Runge-Kutta method, the derivative is evaluated four times: once at the
initial point, twice at the interval midpoint, and once at the interval endpoint. These four
evaluations are then considered together to execute the final step¹³, as sketched in Figure 8b.
This process is summarised as

tn+1 = tn + h,

xn+1 = xn +

(
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4

)
+O(h5),

(26)

where

k1 = hf (tn,xn) ,

k2 = hf

(
tn +

1

2
h,xn +

1

2
k1

)
,

k3 = hf

(
tn +

1

2
h,xn +

1

2
k2

)
,

k4 = hf (tn + h,xn + k3) .

(27)

¹³How the trial steps should be taken can be derived by expanding x(tn + h) as well as the Runge-Kutta
update ansatz and balancing the parameters so that the correct terms remain.

23



When it comes to choosing which method to use, it becomes a question about optimising
the accuracy in relation to a method’s efficiency and which step size can be used. If the
step size is halved for a 2ⁿd-order method, then the global error is improved by a factor of 4.
Thus, using a lower-order method requires taking many more steps to perform equally well
as a higher-order method. In practice, the 4th-order Runge-Kutta method is sufficiently
accurate and efficient for most problems. If needed, it can be extended with an adaptable
step size or replaced with a Richardson extrapolation method [21].

3.2.2 Stochastic solution: The Gillespie Algorithm

Since gene transcription is a stochastic process¹⁴, it would make sense to also solve the
dynamical rate equations stochastically. This can for example be done with the Gillespie al-
gorithm [22,23]. In the Gillespie algorithm, the gene expression levels are treated discretely,
such that every mRNA transcription of a gene is counted. In contrast to the deterministic
solvers described above, the Gillespie algorithm does not have a fixed time step. Instead,
the length of the time step is drawn randomly from a distribution. At every time step, one
single event happens. For every event occurrence, one transcription count is either added
or removed from one of the genes.

To derive the Gillespie algorithm, we consider a set of genes Xi which are produced with
production rates pi(t) and removed with degradation rates di(t) as stated in Equation (3).
We can collect the production and degradation rates in aµ so that a1 = p1, a2 = d1,
a3 = p2, a4 = d2 and so forth. The fundamental premise of the algorithm is that event µ
will occur in the interval [t, dt] for a given X(t). For a time step τ , we need to determine
the probability P (µ, τ)dτ that event µ taking place in the time interval [t+τ, t+τ +dτ ].
We impose that no events have already taken place in the interval [t, t + τ ]. We denote
the probability that no events take place before τ with P0(τ). Thus we can express the
probability that event µ takes place between times t+ τ and t+ τ + dτ as

P (µ, τ)dτ = P0(τ)aµdτ. (28)

Now, let us determine P0(τ). In order to do so, we use the probability P0(τ + dτ), i.e.
the probability that no events take place in the interval [t, t+ τ + dτ ],

P0(τ + dτ) = P0(τ)

(
1−

∑
µ

aµdτ

)
, (29)

where we sum over all possible events µ. Hence,

P0(τ + dτ)− P0(τ)

dτ
= −P0(τ)

∑
µ

aµ, (30)

¹⁴Most biological processes act under natural noise stemming from thermodynamics.
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that for dτ → 0 becomes the derivative
dP0(τ)

dτ
= −P0(τ)

∑
µ

aµ, (31)

with the solution
P0(τ) = e−a0τ , (32)

where we introduce a0 =
∑

µ aµ and use that no events can have taken place at time zero,
i.e. P0(τ = 0) = 1. Inserting Equation (32) into Equation (28) yields

P (µ, τ)dτ = aµe
−a0τdτ. (33)

This is a composite probability distribution of two different probabilities:

P (µ, τ)dτ = P1(τ) · P2(µ)dτ, (34)

whereP1(τ) is the probability for an event taking place in the time interval [t+τ, t+τ+dτ ]
and P2(µ) is the probability that event µ happens. To find P1, we sum over all possible
events

P1(τ) =
∑
µ

P (µ, τ) =
∑
µ

aµe
−a0τ = a0e

−a0τ . (35)

To find P2, we instead integrate with respect to time from 0 to∞

P2(µ)dτ =

∫ ∞
0

P (µ, τ)dτ =

∫ ∞
0

aµe
−a0τdτ =

aµ
a0

. (36)

To sample a time-step from P1(τ), we use the cumulative distribution of P1 and the fact
that P1 is normalised, which is commonly known as inverse sampling. Thus,

r1 =

∫ τ

0
P1(t)dt = a0

∫ τ

0
e−a0tdt = 1− e−a0τ , (37)

where r1 is a uniformly distributed number in the interval [0, 1). Hence, the time-step τ
can be found in terms of r1 as

τ =
1

a0
ln

1

r1
, (38)

where we note that 1−r1 is also a uniformly distributed number in the interval [0, 1), thus
relabeling r1 = 1− r1. The event that is taking place is determined by

µ = smallest integer µ for which
µ∑

k=1

ak > r2a0, (39)

where r2 ∈ [0, 1), which is called discrete inverse sampling and is illustrated schematically
in Figure 9.

With the knowledge of how to sample an event type and time, the Gillespie algorithm can
be summarised:
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Figure 9: Sketch of how the event is chosen in the Gillespie algorithm. For a system with two genes A and
B, their respective production and degradation rates are evaluated at time t, and a0 can then be
calculated. A uniformly distributed random number r2 in the interval [0, 1) is sampled to determine
which event takes place. In this example a1 + a2 < r2a0 < a1 + a2 + a3, meaning that event
µ = 3 takes place, i.e. one transcript of gene B is added.

0. Initialise t = t0 and X = X0.

1. Evaluate all aµ and a0 given the system in state X at time t.

2. Generate τ and µ by using Equations (38) and (39).

3. Update the system t = t + τ and X = X + xµ, where xµ adds or removes one
unit of the correct species.

4. Record X and t. Repeat from step 1 unless the end condition is fulfilled. The end
condition is usually to perform a fixed number of steps or until a maximum time is
reached.

3.3 Parameter optimisation

“An expert is a person who has made all the mistakes that can be made in a very narrow field.”

—Niels Bohr

In order to solve a set of rate equations numerically, all the parameters of the equations
must be determined. These are parameters such as production and degradation rate para-
meters as those present in Equation (23). Without knowing these parameters, the system
of ODEs has an infinite number of solutions and it is not possible to know which ones may
correspond to something biologically relevant. Therefore, experimental data is needed to
tune the parameters of the model so that the model output fits known biological behaviour.
The model can be used to predict outcomes of new proposed experiments only after the
parameters have been tuned.

In order to tune the parameters, an error function is needed [21]. Such a function compares
the given data with the model outcome for the same time points for a given set of parameters.
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Figure 10: Sketch of an error function depending on one parameter α with global- and local minima and
maxima marked.

The error function, however, needs to be dressed with some specific characteristics to be
useful. The error function value should become smaller the closer the model output is to
the data, with the smallest possible value obtained if the model output and data are exactly
the same.¹⁵

Consider a set of m parameters which we can collect in a vector

α = (α1, . . . , αm) (40)

for a set of ODEs f that we want to optimise. Then we can construct an error function
E(fn(α),dn) which considers the given experimental data d for n time points and the
corresponding model values for the same time points. Two common choices for the error
function is the mean squared error (MSE)

E(α) =
1

n

m∑
k=1

n∑
j=1

(fk,j(α)− dk,j) (41)

and the log-likelihood (LL) function

L(d|α) = ln

 m∏
k=1

n∏
j=1

1√
2πσ2

kj

exp

(
− 1

2σ2
kj

(dkj − fkj(α))
2

) . (42)

These functions can be adapted to include known biological constraints by various fit to
data.

¹⁵That closer agreement should yield smaller value is just a convention. It could just as well be that better-fit
yields the greater value. The important quality is that the error function has an extremum value at the point
of best fit.
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Finding the minimum value of a function, optimisation, is not a trivial task. Typically, the
global minimum of the function is desired, but there are often local minima which makes
the search more difficult, as sketched in Figure 10. There are several algorithms that are
very good at finding local minima based on calculating the gradient of the error function
and using it in clever ways. The simplest version is to take steps in the direction of steepest
gradient from a starting point, as first suggested by Cauchy [24]. Another, more refined
version where the second derivatives in form of the Hessian matrix are approximated is the
L-BFGS-B algorithm [25]. This algorithm is commonly used for optimising problems with
many variables since it is implemented in a memory-saving fashion. By initiating many
instances of a local optimisation algorithm at well-distributed starting points, one increases
the chances of finding the global minimum, but it is not guaranteed to be found.

Another class of optimisation methods is non-gradient based methods which all employ
various strategies to avoid getting stuck in local minima. Three of these methods are simu-
lated annealing [26], genetic algorithms [27] and particle swarm optimisation [28]. Simu-
lated annealing is based on thermodynamics and is stochastically probing the error function
to find lower and lower values. A temperature parameter controls the probability to keep
worse errors, i.e. to go uphill again, which could potentially help the algorithm to escape
local minima. Genetic algorithms are based on evolutionary ideas on “survival of the fit-
test” where many points in the parameter space are sampled. These points are combined
and mutated randomly within a scheme and the points with lowest error are kept. This is
repeated until the population converges or a fixed number of generations has been reached.
Particle swarm optimisation is based on swarm behaviour where a swarm of points in the
parameter space are moving around. The individual points’ velocities are affected both by
each point’s historically best tried position as well as the swarm’s currently best global posi-
tion. The swam is updated until all points converge or a maximum number of iterations is
reached.

All of these methods, local as well as global, take steps in the parameter space in one way
or another, meaning that the function f(α) must be evaluated at every step. Evaluation of
f(α) includes solving the system of ODEs deterministically as described in Section 3.2.1.
The chosen numerical solver must be efficient since the system has to be solved many times.
When the optimisation algorithm has been run, one typically uses the found parameter set
which yields the minimum value of the error function. However, it is important to check
that the behaviour of the best solution seems biologically realistic, which is not always the
case.

Two practical notes on good practice for parameter optimisation are to be made. One is to
not initialise the starting points which are randomly distributed. Secondly, one should not
use linear search spaces for the parameter values [29]. Perhaps counterintuitively, uniform,
randomly distributed starting points do not yield the most evenly distributed points. In-
stead, an alternative method is to use latin hypercube sampling (LHS) [30] where the search
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space is divided into small m-dimensional hypercubes and one set of parameters is drawn
from each hypercube. Most of the parameters represent transcription or degradation rates
and are therefore constrained biologically. As an example, assume that we know that the
transcription controlled by a parameter α is taking place, but we do not know if it is one
transcription every few hours or ten per hour. Then we can approximate a constraint for
α to be in the interval [10−4, 10]. However, if we search this interval uniformly, we will
put much more weight on values between 1 and 10, than between 10−4 and 1. To instead
give each order of magnitude the same weight when searching, one can instead search for
a dummy parameter β in the uniform interval [−4, 1] and use α = 10β , i.e. using a logar-
ithmic search interval. In paper II, I used these two techniques together with the L-BFGS-B
algorithm [25] to optimise the parameters of the rate equations for our dynamical model.

3.4 Machine learning

“The ability to speak does not make you intelligent.”

—Qui-Gon Jinn, Star Wars: Episode I – The Phantom Menace

The words “Machine learning” may lead you to think that computers can learn the same
way as humans do, but is that the case? Well, machine learning is a tool in which computer
models learn in similar ways as humans do at least. Instead of directly programming hand-
crafted features of a model as is the conventional way, one lets the model learn from data –
training data. A major use case of machine learning ¹⁶ models is in classification problems
where objects belong to different categories and the model should learn how to distinguish
between the categories. In this way, a machine learning model just needs to be presented
with data points with corresponding labels. This could for instance be an image or a set
of measured medical test values together with a corresponding label such as the identity of
the object in the image or a medical diagnosis. The specific machine learning model I use
in Paper IV is called an Artificial Neural Network (ANN) [31]. The name may sound like
an attempt to simulate the human brain’s function and ability to think, but that is not the
case. ANNs are only using the same principle of propagating information. They are built
up by nodes which receive input signals, combine the input in some way, and propagate
the signal to other nodes, similar to how the neurons in the brain propagate information,
and does thus comprise a network of artificial neurons.

A sketch of a basic artificial neuron, also called a perceptron, is shown in Figure 11a. The
input signals xk where k = 1, . . . , p are multiplied by weights ωk and added before the

¹⁶Here, I make the restriction to supervised machine learning since the task we are solving in Paper IV is a
classification problem .
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Figure 11: (a) Sketch of perceptron where the input signals are weighted, summed and put through an activa-
tion function to produce an output signal. (b). Sketch of a multi layer perceptron with one hidden
layer and multiple output nodes.

sum is put through an activation function φ which produces the output value

y = φ

(
ω0 +

p∑
k=1

ωkxk

)
, (43)

where ω0 is a bias. The role of the weights is to indicate how important a feature is for
the output. For instance, if one wants to determine the height of a person, then the input
corresponding to the person’s sex will probably have a higher weight and be more important
than the input corresponding to the person’s hair colour.

By connecting many perceptrons into several layers, one can create a multilayer perceptron
(MLP) which has the potential to find more complex and abstract patterns in data, as
illustrated in Figure 11b. The layers between the input and output layers are often referred
to as hidden layers. It is also possible to introduce several output nodes, which for instance
is useful when performing multiclass classification tasks with m classes. The output yi for
an MLP with one hidden layer with q hidden nodes can be formulated as

yi(xn) = φ0

 q∑
j=0

ωijφh

(
p∑

k=0

ω̃jkxnk

) , (44)

where we distinguish between the output activation functionφ0 and the activation function
of the hidden layer φh. This formalism can be extended for an arbitrary number of hidden
layers recursively by replacing xnk with a new sum over the nodes in the next hidden layer.

The activation functions φ have an important role in introducing non-linearity. If only lin-
ear activation functions are used, it can be shown that all the hidden layers can be reduced to
one layer. Non-linearity also introduces flexibility to the model to create complex decision
boundaries to separate the classes. The activation function often gives larger output value
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for increased input values and has a threshold property at some critical level. Commonly
used activation functions include the logistic function, hyperbolic tangent, rectified linear
unit (ReLU) and softmax which all have their different cases of use. The output activation
function is also problem-specific, and different functions are used for binary classification
problems, multiclass classification problems and regression problems. For binary classific-
ation problems, the logistic function is often used which produces output between 0 and
1 with a sharp transition, a threshold, at 0.5. This output value can be interpreted as the
probability for a data point to belong to one of the two classes.

When training an ANN, an error function is optimised, similar to that described in Sec-
tion 3.3. The error function of choice depends on the type of problem at hand. The training
process is typically done iteratively where the weights are updated in such a way so that the
training error is reduced over time. Various methods can be employed to avoid getting
stuck in the local minima of the error function. A common problem when training ANNs
is overfitting. Then, the network’s decision boundary gets too specifically adapted to the
training data and loses its capability of generalising. A separate held-out validation data set
is typically used to monitor the model’s performance on data not used during training. For
an overtrained model, the validation error becomes high while the training error remains
low. There are ways to combat overtraining with various regularisation techniques [31].

The procedure of training an ANN model introduces many hyperparameters which become
part of the full model. The model architecture itself introduces hyperparameters such as
the number of hidden layers and the number of hidden nodes per layer. There are training-
specific hyperparameters like the learning rate, training time and batch size. If one uses
regularisation to combat overtraining one also introduces regularisation parameters. Un-
fortunately, it is not enough to find the best value for each hyperparameter individually;
the parameters affect each other. Therefore, one needs to use a model selection strategy
where multiple hyperparameter settings are tested. Two common approaches for this are
to either perform a grid search where all combinations of a set of chosen hyperparameter
values are tested, or to perform a random search where random combinations of hyper-
parameter values are tested. Typically one uses the validation performance to pick the final
model to use.

A fully trained machine learning model can make predictions of data it has never seen
before. For instance, a model trained on pictures of cats and dogs can be fed a completely
new image you just took of your dog, and the network will recognise it as a dog. However,
an ANN can never know anything about something it has never seen before. A machine
learning model is a way to find generalised features from a large collection of data, but if
it is presented with something completely new, it has no way of treating it properly. For
instance, our just-mentioned cats and dogs network would not be able to recognise an image
of a horse. It would not even know that it is not an image of a cat or dog it is processing,
since it knows of no other kinds of animals. Hence, the best case scenario would be that it
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assigns 50 % probability for the horse both being a cat and a dog, but the model will most
likely be (incorrectly) quite certain that it is one of them.

Deep learning models is a subclass of artificial neural networks. Deep learning is not just
stacking an MLP with many hidden layers. Such a network does not often outperform
MLPs with just a few hidden layers. Instead, deep learning refers to multi-layer networks
which have some smart variations of the architecture. One common deep learning model
is the convolutional neural network (CNN) [31]. These networks have been very successful
when it comes to detecting and classifying objects in images. A CNN utilises the math-
ematical convolution operator which in practice means that a small kernel slides over the
image, processing a local neighbourhood at a time, and then connects all the information.
This operation can pick up spatial features in an image and is to some extent translationally
invariant, i.e. it does not matter where in an image the object is located. The same prin-
ciple of using a CNN to process data with neighbouring features can also be used for one
dimension input data.

In Paper IV, I use both an MLP and a one-dimensional CNN to analyse hyperspectral data.
A hyperspectrum consists of a signal with absorbance values for neighbouring wavelengths.
When using an MLP, all the wavelength channels are used as input and are treated indi-
vidually. By using a one-dimensional CNN, potentially useful information contained in
local spectral neighbourhoods becomes available.

3.5 Segmentation

“Do or do not, there is no try.”

— Yoda, Star Wars: Episode V – The Empire Strikes Back

For humans, there is no difficulty finding an object in an image by simply looking at it.
But it is not as easy for a computer. A computer needs some algorithm which defines what
an object is and how to find it. For a simple case, it might just be a matter of finding
a threshold in a grey-scale image that separates the intense object from the less intense
background, as illustrated in Figure 12a. The example shows a greyscale microscopy image
of a few cells. In order to separate the cells from the background and count the number of
cells, a threshold is applied where all pixels with intensity above the threshold are coloured
black and all pixels below the threshold are coloured white. For this simple case, the cells
get clearly identified.

However, for more complex cases, a threshold might not be enough. If the microscopy
image would contain more and overlapping cells, the threshold would not have worked as
well. If the image is of lower quality, there would be noise or other artefacts that need to be
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Figure 12: (a) Example of segmentation by thresholding. All pixles above the pixel intensity threshold are
coloured black and all pixels below the threshold are coloured white. Image credit Rothenberg lab,
Dr. Mary Yui. (b) An active contour algorithm is used to find the contour of a tumour. The active
contour is initialised along the edge of the sample and is tightened so that it passes over noise but
eventually outlines the tumour.

ignored. Then, other, more complex and adaptable algorithms are needed. Other instances
where more refined segmentation could be needed are for instance if the image has multiple
colour channels (e.g. an RGB image), or if high-intensity pixels should be included in the
objects sometimes, but not other times, depending on the pixels’ spatial context.

In Paper IV, I use a segmentation algorithm to find the borders of skin tumours in images I
have preprocessed with machine learning. Here, applying a simple threshold is not enough
since the images contain noise and the goal is to outline the tumour. Therefore, I applied
an active contour algorithm [32]. The principle of active contour segmentation is based
on a classical rope. Such a rope is tightened around the image object by minimising an
energy function until the object border is found, as exemplified in Figure 12b. This makes
the algorithm very versatile since it can be adapted depending on the specific use-case. The
algorithm is described in detail in Paper IV.
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4 A segway to the papers and conclusion

“So perhaps the best thing to do is to stop writing introductions and get on with the book.”
—Winnie the Pooh

Cells are marvellous biological units of life. Not only do they comprise an incredible com-
plex by themselves, but they also collectively build up even more complex structures such as
the human body. A countless number of processes are taking place constantly within a cell,
not the least the gene regulation process which determines and maintains a cell’s identity.
Cell type governing GRNs are the objects of study in Paper I. We use the binary formalism
for gene expression to construct energy landscapes which we mainly use to study cell re-
programming by stochastic simulations. In this way, we can obtain information about the
existing cell states and the risk of getting stuck in an undesired state during the reprogram-
ming process. This is a general method which can be applied to any cell system governed
by a GRN.

The gene transcription is not only regulated transcriptionally by transcription factors, but
also by epigenetic mechanisms. In Paper II, we develop a multi-scale model which includes
both a level of transcriptional regulation and a level of epigenetic regulation. This model is
applied to studying early T-cell development, where proliferating cell colonies are simulated.
The T-cell development has been studied extensively which makes it an important model
system, meaning that findings about the development mechanisms in this system carry
relevance for other systems as well. The computational methods used in Paper II encompass
most of the methods described in Section 3. We model the gene regulation dynamically and
construct the rate equations with the Shea-Ackers formalism. The parameters are optimised
with data and during this process, the rate equations are solved deterministically. Once the
model parameters have been set, the full multi-scale model simulations are carried out
stochastically using the Gillespie algorithm. The same model base is used in Paper III, but
then we further develop the model by placing it in an agent-based framework [33]. By
doing so, we can construct lineage trees of the simulated T-cell colonies and we find that
inheritance plays an important role in the mechanism when the progenitor T-cells commit
to the T-cell fate lineage.

In Paper IV, we encounter a classification problem when we want to find the borders of
superficial skin tumours from hyperspectral images. Thus, we employ a machine learning
model where we use the hyperspectral signal in individual pixels as input. The model is
trained using pixels from small regions of the healthy tissue and tumour respectively. We
compare the use of an ANN and a one-dimensional CNN, where the CNN acts on the
spectral signal. A fully trained network is used to predict the identity of each pixel in a
network which creates a prediction map. A segmentation algorithm is employed on the
prediction map to find the tumour contour.
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Computational modelling brings an interesting aspect to biological research since it provides
a means of analysing systems which are hard to explore experimentally. The predictive
power of a well-constructed model can provide valuable information about how to im-
prove experimental procedures. In this thesis, I have used several computational methods
and devised a couple of new models to explore a small corner of biology. The scientific
field of computational biology and biological physics is full of opportunities since there is
an uncountable number of systems yet to be explored and an uncountable number of new
models and tools to develop for achieving this.
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Overview of publications

Below follows a short description of each of the publications included in this thesis and my
contribution to each one.

Paper I

CELLoGeNe – an energy landscape framework for logical networks controlling cell de-
cisions

E. Andersson, M. Sjö, K. Kaji, and V. Olariu
iScience 25 (8), 104743 (2022)
doi: j.isci.2022.104743

In this paper, we develop CELLoGeNe (Computation of Energy Landscapes of Logical
Gene Networks), a software tool which maps Boolean implementation of gene regulatory
networks (GRNs) into energy landscapes. To consider cell commitment and reprogram-
ming as movements in an energy landscape is a powerful computational method to elucid-
ate mechanisms controlling cell fate decisions during development and reprogramming. By
separating a gene’s expression from its effect on its target genes, we introduce a three-state
logic which removes inadvertent symmetries in the energy landscapes normally arising from
standard Boolean operators. We also develope a method for visualising multi-dimensional
energy landscapes in more than three dimensions. Furthermore, with CELLoGeNe, we
provide a tool for stochastically analysing the shape of the energy landscape by simulating
cell reprogramming in the form of weighted random walks in the landscape. Finally, we
demonstrate CELLoGeNe on two GRNs governing different aspects of induced pluripo-
tent stem cells, identifying experimentally validated attractors and revealing potential repro-
gramming roadblocks. CELLoGeNe is a general framework that can be applied to various
biological systems, offering a broad picture of intracellular dynamics otherwise inaccessible
with existing methods.

This project originated as the bachelor project of Mattias, where he and Victor conceived the
original idea behind the model. Mattias implemented a first version of CELLoGeNe, while
I refined and further developed it. I came up with and implemented the stochastic analysis
of the landscapes, the marble simulations. I also conducted the biological applications and
computational analysis. All three of us designed the study and I wrote the manuscript
together with Victor and Mattias.
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Paper II

Multi-scale dynamical modeling of T cell development from an early thymic progenitor
state to lineage commitment

V. Olariu, M. A. Yui, P. Krupinski, W. Zhou, J. Deichmann, E. Andersson, E. V. Rothenberg,
and C. Peterson
Cell Reports 34 (2), 108622 (2021)
doi: j.celrep.2020.108622

In this study, we investigate the development of multipotent haematopoietic precursor cells
into committed T-cell progenitors, both experimentally and theoretically. This transition
encompasses programmed shutoff of stem/progenitor genes, upregulation of T-cell specific-
ation genes, proliferation, and ultimately commitment. To explain these features in light
of reported chromatin effects and experimental kinetic data, we develop a three-level dy-
namic model of commitment based on regulation of the commitment-linked gene Bcl11b.
The levels are (1) a core GRN architecture from transcription factor perturbation data, (2)
a stochastically controlled chromatin-state gate, and (3) a single-cell proliferation model
validated by experimental clonal growth and commitment kinetic assays. After tuning the
model to our experimental data, the model predicts state-switching kinetics validated by
measured clonal proliferation and commitment times. The resulting multi-scale model
provides a mechanistic framework for dissecting commitment dynamics.

My main contribution to this project was conducting parameter optimisation for level 1 of
the model as well as performing confidence bounds calculations. I also read and provided
feedback on the manuscript.

Paper III

T-cell commitment inheritance – an agent-based multi-scale model

E. Andersson, E. V. Rothenberg, C. Peterson, and V. Olariu
Submitted to Communications Biology
doi: bioRxiv: 10.1101/2023.10.18.562905

Paper III is a follow-up study to paper II. In this project, we extend our multi-scale model
and put it in an agent-based framework. This model provides a powerful tool as it enables
us to keep track of each individual cell and obtain full knowledge of a simulated colony’s
lineage tree. This allows us to investigate T-cell commitment inheritance and dissect the
commitment decision mechanism. We do so by introducing the concept of the last com-
mon ancestors (LCA) of committed cells and analysing their relations, at both single-cell
level and population level. We also conduct knockdown analysis as a part of elucidating
the commitment mechanism.
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I performed all the model implementations and came up with the usage of lineage tree and
LCA analysis. The study was designed by all authors together. I performed the analysis in
discussion with Victor and Carsten. Ellen provided key biological insights and perspectives.
I wrote the manuscript together with Victor, and Carsten and Ellen provided feedback.

Paper IV

Facilitating clinically relevant skin tumor diagnostics with spectroscopy-driven machine
learning

E. Andersson, J. Hult, C. Troein, M. Stridh, B. Sjögren, A. Pekar-Lukacs, J. Hernandez-
Palacios, P. Edén, B. Persson, V. Olariu, M. Malmsjö, and A. Merdasa
Submitted to Cell Reports Medicine
doi: medRxiv:10.1101/2023.10.14.23296584

Skin cancer is the third most common kind of cancer, and the need for efficient removal
is paramount. When a tumour is excised, it is important that no tumourous tissue is left.
At the same time, the margins must not be overly large since this can lead to excessive scar-
ring. In this study, we develop a machine learning tool which automatically detects the
tumour borders. We use data from hyperspectral images, training only on spectra from
small regions representing either healthy tissue or tumour. By first training artificial neural
networks, we use these to generate prediction maps of which pixels represent healty tis-
sue or tumour. Thereafter, a segmentation algorithm determines the skin tumour borders.
Our approach therefore circumvents the need for a complete ground truth image. All
the training data is contained within images from each individual patient, which links to
an important strength of our approach as we develop individual network models for each
patient. This makes our approach relevant also for emerging precision skin tumour dia-
gnostics where adaptability toward the individual is key. This tool could provide useful aid
to surgeons excising tumours.

I, together with Victor, Aboma and Malin, conceptualised and designed the study and we
also wrote the manuscript. I developed the machine learning and segmentation model,
implemented, and performed all the analysis under supervision and discussion with Victor,
Carl, Patrik and Aboma.

41




	Acknowledgements
	List of publications
	Populärvetenskaplig sammanfattning på svenska
	Popular introduction in English
	List of abbreviations
	Introduction
	Biological background
	Cells: The building blocks of life
	DNA and genes: The code of life

	Systems Biology:  Bridging biological systems with computational modelling
	Gene regulatory networks
	Gene expression
	Cell reprogramming

	Computational modelling
	Dynamical modelling of gene regulation
	Solving ODEs numerically
	Parameter optimisation
	Machine learning
	Segmentation

	A segway to the papers and conclusion
	Overview of publications

	CELLoGeNe - an energy landscape framework for logical networks controlling cell decisions
	Introduction
	Results
	Overview of CELLoGeNe
	Demonstration on a toy model
	Maintenance of naïve pluripotency
	Reprogramming MEF to iPSC

	Discussion
	Limitations of the study

	STAR Methods
	Binary representation of genes
	Logical representation
	Combining input signals with operators
	The discrete energy
	The continuous energy
	Three-state logic
	Configurations of operators
	Testing configurations of operators
	Marble simulations
	Visualisation of high-dimensional energy landscapes
	Quantification and statistical analysis


	Multi-scale dynamical modeling of T cell development from an early thymic progenitor state to lineage commitment
	Introduction
	Results
	Experimental Results - Training Data
	Modelling Results
	Experimental Results - Validating Data

	Discussion
	STAR Methods
	Resource Availability
	Experimental Model and Subject Details
	Method Details
	Quantification and Statistical Analysis


	T-cell commitment inheritance – an agent-based multi-scale model
	Introduction
	Results
	The model
	Investigating inheritance
	In silico simulations of lineage trees
	Inheritance investigation results

	Discussion
	Methods
	Model implementation
	Tree plotting
	Last Common Ancestor categories
	Knockdown simulations

	Author contributions statement

	Facilitating clinically relevant skin tumor diagnostics with spectroscopy-driven machine learning
	Introduction
	Results
	Different spectra for healthy and tumor pixels
	Spectral analysis using MCR-ALS
	Spectroscopically-guided pixel prediction by machine learning
	Segmentation
	Comparison to histopathology
	Impact on model by using different spectral ranges

	Discussion
	Addressing a clinical need
	Circumventing dataset bias
	Spatial vs. spectral features for segmentation
	Adaptability of the ML algorithm
	Clinical impact

	Conclusion
	Methods
	Ethics
	Subjects
	Examination and measurement procedure
	Hyperspectral imaging
	Reference measurements, normalization and absorbance calculations
	Pre-processing: Non-sample pixel removal & spectra extraction
	Multivariate Curve Resolution – Alternating Least Square
	Computational framework
	Machine learning


	Blank Page



