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Abstract 

The significant environmental impact of the current fossil fuel-based industry is a 

major concern for society. Consequently, various initiatives are being undertaken to 

establish a more sustainable industrial model. One example is via the transition from 

conventional fossil fuel refineries to biorefineries, where renewable raw materials 

are utilised. Amongst these raw materials, the use of lignocellulosic biomass from 

agricultural residues or wood has been favoured, as it does not compete with food 

or land resources. In particular, extensive research has been conducted to produce 

biofuels such as bioethanol from lignocellulosic biomass, referred to as second-

generation (2G) bioethanol. 

In this thesis work, the goal was to develop and apply new tools to address 

challenges encountered in 2G bioethanol production. Specifically, the work focused 

on monitoring the impact of inhibitory compounds and mixed sugars on the 

fermentation performance of the yeast Saccharomyces cerevisiae. 

Inhibitory compounds are released during the pretreatment of the lignocellulosic 

biomass, a crucial step necessary to break down its complex structure and to enhance 

sugar accessibility This thesis work specifically focused on the redox imbalance 

induced in cells exposed to furaldehydes such as furfural or HMF. To study this 

effect, a biosensor for redox imbalance, TRX2p-yEGFP, was introduced into the 

cells and its fluorescence signal was monitored in real-time using flow cytometry.  

One potential strategy for enhancing the cells' tolerance to these inhibitors is to 

prepare them by introducing lignocellulosic hydrolysate in the feed during cell 

propagation. During this pre-exposure phase, a transient induction of the TRX2p-

yEGFP biosensor signal for redox imbalance was observed, which gradually 

diminished. This indicated that, by the time of cell collection, the cells had adapted 

to the inhibitor concentration within the culture. To examine whether an increased 

induction level of the biosensor at the time of cell collection influenced the 

fermentation performance, an automated control system was devised. This system 

utilised data from the flow cytometry analysis to control the level of inhibitors in 

the cultivation feed. Consequently, when the biosensor signal began to decline, 

higher amounts of inhibitors were added, as long as the addition did not lead to an 

increase in the number of damaged cells. 

A second biosensor was used in this thesis work to investigate the sugar signalling 

response of S. cerevisiae to the presence of xylose. Xylose is the second most 
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abundant sugar in lignocellulosic biomass; however, naturally, S. cerevisiae cannot 

metabolise it. Genetically modified S. cerevisiae strains have been generated by 

introducing heterologous pathways such as the XR/XDH or XI pathways to enable 

xylose consumption. Nevertheless, xylose consumption rates remain lower 

compared to glucose. Sugar signalling emerged as a potential bottleneck in the 

efficient utilisation of xylose. In the present work, the response of the SUC2p-

yEGFP biosensor for sugar signalling was found to vary significantly depending on 

the pathway employed. A higher induction for the strains carrying the XI pathway 

was associated with poorer growth on xylose.  

Lastly, the effect of introducing a xylose epimerase capable of catalysing the 

conversion between the two anomers, α-D-xylopyranose and β-D-xylopyranose, as 

a strategy to improve xylose consumption was studied. The effect was enzyme-

specific and proved to be particularly beneficial in strains utilising the xylose 

isomerase from Lachnoclostridium phytofermentans. 

In conclusion, the results presented in this thesis demonstrate how biosensors can 

facilitate the understanding and monitoring of intracellular processes that occur 

within the cell under stress conditions and be a key tool for improving production 

processes. 
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Popular science summary 

Microorganisms can help us mitigate the environmental impact of human activities 

on our planet. One way to do it is to use them for the production of biofuels, such 

as ethanol or butanol. Biofuels represent a more environmentally friendly alternative 

to conventional fossil fuels like petrol because their production and utilisation result 

in significantly lower greenhouse gas emissions. 

To produce biofuels, one can use baker’s yeast (Saccharomyces cerevisiae), a 

microorganism that is very good at fermenting sugars to ethanol. Traditionally, yeast 

has been used in the production of bread, beer or wine. But this microorganism can 

also help us produce bioethanol from agricultural residues like wheat straw or corn 

stover, a process commonly referred to as second-generation (2G) biofuels. The 

problem is that baker’s yeast cannot directly consume wheat straw or corn stover, 

so it is necessary to process this complex material to extract and utilise its sugars. 

Unfortunately, this processing also leads to the release of toxic compounds that 

hinder the performance of the yeast. Additionally, different types of sugars are 

extracted from these materials and yeast is not able to naturally consume all of them. 

In this thesis, my objective was to improve the performance of the yeast 

Saccharomyces cerevisiae for ethanol production from wheat straw. I first 

developed a tool that enables a better understanding of how the cells are “feeling” 

during their cultivation and to be able to adjust the cultivation conditions to obtain 

yeast cells that are more resistant to inhibitors. To do so, I genetically modified the 

yeast by introducing a fluorescent biosensor which indicates the cellular response 

to the presence of toxic compounds. So, for example, if the cells are “unhappy” 

because there are too many toxic compounds in the broth, they will start emitting a 

fluorescence signal that can be monitored and used to adapt the process conditions. 

To obtain real-time fluorescence measurements, I connected an instrument capable 

of autonomously collecting periodic samples from the cultivation and transferring 

them to the flow cytometer, the instrument responsible for measuring the 

fluorescence. Additionally, a computer program was developed to interpret the 

analysis results and utilise the response to adjust the cultivation conditions. 

Besides the presence of toxic compounds, another challenge for 2G bioethanol 

production is the yeast's inability to consume all types of sugars obtained from wheat 

straw. To address this limitation and make the process economically feasible, 

baker’s yeast has been genetically modified to expand its substrate range. However, 
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the efficient conversion of xylose, the second most abundant sugar in wheat straw, 

remains problematic. In this work, I explored the possibility of further improving 

xylose consumption by introducing a new genetic modification. In parallel, another 

biosensor was used to measure how the cells “sensed” the presence of this sugar in 

the broth. 

Finally, a part of the PhD work consisted of evaluating the possibility of detecting 

the fluorescence of several proteins at the same time. I identified a combination of 

proteins that open the possibility to introduce several biosensors in the cells and 

simultaneously gather information about different aspects such as the presence of 

toxic compounds and the response to xylose.  
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Populärvetenskaplig sammanfattning 

Med hjälp av mikroorganismer kan miljöpåverkan på vår planet minskas från 

mänskliga aktiviteter. Ett sätt att använda mikroorganismer på är att producera 

biobränsle, så som etanol och butanol från dem. Biobränsle är ett mer miljövänligt 

alternativ till vanliga fossila bränslen så som bensin, eftersom produktionen och 

användningen av dem släpper ut mycket mindre växthusgaser jämfört med vanliga 

bränslen.   

För att producera biobränsle kan man använda bagerijäst (Saccharomyces 

cerevisiae), en mikroorganism som är väldigt bra på att fermentera socker till etanol. 

Jäst har traditionellt sätt använts vid tillverkning av bröd, öl och vin. Den här 

mikroorganismen kan också hjälpa oss att producera bioetanol från restprodukter 

från jordbruk, till exempel halm av vete, så kallat andra generationens (2G) 

biobränslen. Problemet är att bagerijäst inte kan tillgodogöra sig halmen direkt, 

vilket gör det nödvändigt att bearbeta det komplexa material som halmen är för att 

kunna utvinna och använda sockret det innehåller. Tyvärr leder den här 

bearbetningen också till att giftiga sammansättningar frigörs, vilket begränsar 

jästens förmåga att omvandla socker till etanol. Därtill är flera olika sockerarter 

extraherade från halmen och jäst kan inte naturligt tillgodogöra sig alla sorter. 

I den här avhandlingen var min målsättning att förbättra jästen Saccharomyces 

cerevisiae prestationsförmåga att producera etanol från halm av vete. Det första jag 

gjorde var att utveckla ett verktyg som gör att vi bättre kan förstå hur cellerna ”mår” 

under kultiveringen, odlingen av cellerna. Beroende på hur cellerna mår kan 

odlingsförhållandena anpassas för att få en mer resistent jäst som klarar av fler 

inhibitorer. För att uppnå det genmodifierade jag jästcellerna genom att introducera 

en fluorescerande biosensor som indikerar cellernas svar på närvaron av giftiga 

föreningar. Till exempel, om cellerna inte är ”glada”, då det är för mycket giftiga 

sammansättningar i odlingsmediumet, kommer de att avge en fluorescerande signal 

som kan övervakas och användas för att ändra processen.  

För att mäta fluorescensen i realtid använde jag mig av ett instrument som med 

jämna mellanrum automatiskt kan ta prover från cellodlingen. Provet pumpas sedan 

direkt vidare till flödescytometern, ett instrument som kan mäta fluorescensen på en 

cell i taget. Dessutom utvecklades ett datorprogram som kan läsa av resultaten från 

analysen och därefter justera odlingsförhållandena efter behov.  
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Förutom förekomsten av giftiga sammansättningar är en annan utmaning med 

produktion av 2G bioetanol jästens oförmåga att tillgodogöra sig de många 

sockerarterna som extraherats från halmen. För att komma över det här hindret och 

göra processen ekonomiskt hållbar har forskare genmodifierat bakjäst för att 

möjliggöra fermentering av fler sockerarter som substrat. Effektiv omvandling av 

xylos, vilket är den näst vanligaste sockerarten i halmen, är dock fortfarande 

problematisk. I det här arbetet undersökte jag möjligheten att ytterligare förbättra 

xyloskonsumtion genom att introducera en ny genetisk modifiering. Parallellt med 

det så användes en annan biosensor för att mäta hur cellerna känner av närvaron av 

sockret i odlingsmediumet. 

Slutligen bestod en del av doktorandarbetet i en utvärdering av möjligheten att 

detektera flourescensen av flera proteiner samtidigt. Jag identifierade en 

kombination av proteiner som öppnar upp möjligheten att introducera flera 

biosensorer i cellerna och samtidigt samla information om flera olika aspekter, 

exempelvis förekomsten av giftiga sammansättningar och förekomsten av xylos.  
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Resumen de divulgación científica 

Los microorganismos pueden ayudarnos a reducir el impacto ambiental causado por 

la actividad humana en nuestro planeta. Una forma de hacerlo es utilizándolos para 

producir biocombustibles como etanol o butanol. Los biocombustibles son una 

alternativa más respetuosa con el medio ambiente que los combustibles fósiles 

tradicionales como la gasolina ya que se liberan muchos menos gases de efecto 

invernadero durante su producción y combustión. 

La levadura Saccharomyces cerevisiae es un microorganismo con excelentes 

capacidades para la transformación de azúcares en alcohol (etanol) en un proceso 

de fermentación. Es por eso que, tradicionalmente, se ha usado para la producción 

de pan, cerveza o vino. Pero este microorganismo también se puede usar para 

producir bioetanol a partir de residuos agrícolas como la paja obteniendo lo que se 

conoce como biocombustibles de segunda generación (2G). El problema es que la 

levadura no puede consumir la paja directamente, así que es necesario procesarla 

para poder extraerle los azúcares. Lamentablemente, durante este tratamiento de la 

paja se liberan compuestos tóxicos que obstaculizan el óptimo rendimiento de la 

levadura. Además, la paja está formada por distintos tipos de azúcares y no todos 

ellos pueden ser consumidos de forma natural por la levadura. 

En esta tesis, mi objetivo ha sido mejorar el rendimiento de la levadura 

Saccharomyces cerevisiae en la producción de etanol a partir de la paja. En primer 

lugar, he desarrollado una herramienta que permite entender mejor cómo “se 

sienten” las células durante su cultivo. En función de su estado, se ajustan las 

condiciones del cultivo para conseguir una levadura más resistente a los compuestos 

tóxicos. Para ello, he modificado genéticamente la levadura introduciéndole un 

biosensor fluorescente que indica la respuesta de las células a la presencia de 

compuestos tóxicos. Así, por ejemplo, si las células no están “contentas” porque hay 

demasiados compuestos tóxicos en el caldo de cultivo, empezarán a emitir una señal 

fluorescente que puede medirse y utilizarse para cambiar las condiciones del cultivo. 

Para medir la fluorescencia en tiempo real, he implementado el uso de un 

instrumento capaz de tomar automáticamente muestras periódicas del cultivo y 

mandarlas al citómetro de flujo, que es el instrumento encargado de medir su 

fluorescencia de forma inmediata. También se ha desarrollado un programa de 

ordenador capaz de leer los resultados del análisis y utilizarlos para ajustar las 

condiciones del cultivo. 
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Además de la presencia de compuestos tóxicos, otro reto para la producción de 

etanol de 2G es la incapacidad de la levadura para transformar los múltiples azúcares 

obtenidos de la paja. Para hacer el proceso económicamente viable, la levadura debe 

convertir todos los azucares a alcohol en la fermentación. Los investigadores han 

conseguido modificar genéticamente la levadura para aumentar el número de 

azúcares que puede utilizar. Sin embargo, la conversión eficiente de xilosa, el 

segundo azúcar más abundante en la paja, sigue siendo problemática. En esta tesis, 

he investigado la posibilidad de mejorar el consumo de xilosa introduciendo una 

nueva modificación genética en la levadura. A su vez, he usado otro biosensor para 

medir cómo las células “sienten” la presencia de este azúcar en el caldo de cultivo. 

Finalmente, como parte de este trabajo también he evaluado la posibilidad de medir 

la fluorescencia de varias proteínas a la vez y he identificado una combinación de 

proteínas que abre la puerta a la introducción de varios biosensores en las células 

permitiendo recopilar información de forma simultánea sobre distintos aspectos 

como la presencia de compuestos tóxicos o de xilosa. 
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Chapter 1  

Introduction 

The growing role of biorefineries 

Our current industrial model heavily relies on the use of fossil resources, in 

particular oil and gas. Their extraction and use have led to increasing environmental 

problems which include the increasing emission of greenhouse gases that contribute 

to the climate change observed in recent decades (Lelieveld et al., 2019). As a 

response, efforts are being put into the development of a more sustainable industrial 

model. Notably, a transition into a bioeconomy-based society has been proposed, in 

which biorefineries play a key role. The biorefinery concept offers a similar 

approach to established petroleum refineries in which multiple products can be 

obtained through a combination of technologies and processes, but a major 

difference is that renewable biomass is used as a raw material instead of fossil 

resources (Fernando et al., 2006). 

Biorefineries can be classified according to their goals, either as (i) energy-driven 

biorefineries, where the main product is a biofuel and co-products are considered as 

added-value; or (ii) product-driven biorefineries in which the main goal is the 

production of food, feed, chemicals or materials and the side-products are a source 

of energy (Cherubini et al., 2009). 

The International Energy Agency, as part of their Task 42, has also established a 

classification system for biorefineries that is based on four main components: 

platforms, products, feedstock and processes, where the platforms are the key 

intermediates between raw material and product (Cherubini et al., 2009). Recently, 

this classification has been updated and complemented in the EU Biorefinery 

Outlook to 2030, especially regarding product-driven biorefineries (Figure 1) (Platt 

et al., 2021). 
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Lignocellulosic biomass: a major feedstock 

Amongst the potential feedstock for biorefineries, lignocellulosic biomass 

represents a major source due to its abundance and limited cost. Examples of 

lignocellulosic biomass include agricultural residues (e.g., wheat straw, sugar cane 

bagasse or corn stover), forestry residues (e.g., wood or sawdust) and industrial 

waste streams (e.g., black liquor or spent grain) (Wyman, 1994). Traditionally, these 

materials have commonly been considered as waste or low value and they have been 

discarded or simply burnt for energy production. As such, their valorisation as raw 

materials for biorefineries still has great potential. 

Three main polymers constitute lignocellulosic biomass: cellulose, hemicellulose 

and lignin (Figure 2) (Wyman, 1994). Cellulose is a linear polymer of cellobiose, 

two D-glucose residues linked by β-(1→4) glycosidic bonds. Several of these long 

cellulose chains interact with each other through weak forces, i.e., hydrogen bonds 

and van der Waals forces, and generate cellulose fibres (Pérez et al., 2002). 

Hemicellulose is a much more diverse polymer as it consists of a variety of five-

carbon and six-carbon sugars. Among them, monomers of xylose, arabinose, 

mannose, galactose or glucose can be found (Pérez et al., 2002). As in cellulose, the 

sugar residues can be linked by β-(1→4) glycosidic bonds but also by β-(1→3) 

glycosidic bonds creating ramifications in the polymer. The specific composition of 

the hemicellulose fraction varies widely, notably according to the plant species. 

Lignin is a highly heterogeneous polymer of aromatic compounds. Based on the 

modifications observed in the aromatic ring, three different building block structures 

have been described: p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) and they 

are interlinked via a variety of C-C and C-O bonds (Abdelaziz et al., 2016). 
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Figure 2. Schematic representation of the three main components of lignocellulosic biomass. 

The abundance of each of these fractions varies according to the type of raw material 

(Table 1). Furthermore, within the same species, variations in the composition may 

also depend on the origin, growth stage and cultivation conditions (Bhatia et al., 

2020). 

In this thesis work, wheat straw was used as feedstock to produce bioethanol. It is 

an example of an underutilised and abundant material as it is obtained from wheat 

cultivation after the wheat grains have been recovered from the plant. In this 

agricultural waste, about a quarter of the material is hemicellulose in which xylan is 

the major component (Sun, Fang, & Rowlands, 1998; Sun, Fang, Rowlands, et al., 

1998). Thus, the utilisation of xylose, the most abundant sugar in this fraction, is 

crucial for an economically feasible process based on its use as raw material. 
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Table 1. Example of lignocellulosic biomass and their reported composition. 

Biomass Cellulose Hemicellulose Lignin References 

Agricultural residues 

Corn stover 40% 22% 18% (T. H. Kim et al., 2003) 

Wheat straw 29.3% 25.2% 27.5% (Bondesson & Galbe, 2016) 

Rice straw 32-47% 19-27% 5-24% (Binod et al., 2010) 

Oat straw 37.6% 23.3% 12.9% (Adapa et al., 2009) 

Hard woods 

Poplar 49% 23% 27% (Rego et al., 2019) 

Birch 56.5% 24.8% 12.2% (D. K. Shen et al., 2009) 

Oak 54% 29% 9.4% (D. K. Shen et al., 2009) 

Soft woods 

Spruce 42.4% 17.5% 33,8% (Frankó et al., 2015) 

Pine 52.1% 15.4% 27.5% (D. K. Shen et al., 2009) 

Waste streams 

Eucalyptus  

black liquor 

- 1-2% 40-42% (Morya et al., 2022) 

Agro-residue black liquor - 8-18% 28-32% (Morya et al., 2022) 

Brewer spent grain 21.4% 30.6% 11.4% (Zeko-Pivač et al., 2022) 

Sugarcane bagasse 44% 28% 21% (Ajala et al., 2021) 

Industrial applications of lignocellulosic biomass 

Through the implementation of both chemical and biological processes, many 

industrial applications have been explored to transform the different fractions of 

lignocellulosic biomass and exploit its potential as feedstock (Figure 3) (Okolie et 

al., 2021). 

Biofuels are one of the main product categories because of the key role of fuels in 

the transportation and energy sectors. Biofuels can be obtained from lignocellulosic 

biomass in liquid form, like bioethanol (Periyasamy et al., 2023), biobutanol (Re & 

Mazzoli, 2023) or biodiesel (Chintagunta et al., 2021); or as gaseous form like 

biogas (Martínez-Gutiérrez, 2018), biohydrogen (Singh et al., 2015) or syngas 

(Ghodke et al., 2023). 

Besides biofuels, many other relevant biochemicals can be obtained from 

lignocellulose. For example, the production of organic acids such as succinic acid 

(Lu et al., 2021) or lactic acid (Nwamba et al., 2021) can be accomplished through 

microbial fermentation. If chemical transformation of cellulose and hemicellulose 

is considered instead, relevant compounds such as levulinic acid and furfural 

(Biomass et al., 2021) or 5-hydroxymethylfurfural (5-HMF) (Thoma et al., 2020) 

can be formed. Both chemical and biological conversion processes have also been 

described for the production of xylitol from xylose, which is commonly used as an 

artificial sweetener (Venkateswar Rao et al., 2016). Large quantities of glycerol are 
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also produced from lignocellulosic biomass as a by-product of biodiesel production 

(Monteiro et al., 2018). Finally, vanillin can be obtained through depolymerisation 

of the lignin fraction (Fache et al., 2016). 

The production of bioplastics from lignocellulosic materials has also gained 

attention. For example, polylactic acid (PLA) is used in biomedical applications for 

its biocompatibility (Singhvi et al., 2019). Microbial production of precursors of 

bioplastics such as polyhydroxyalkanoates (PHA) and polyhydroxybutanoate 

(PHB) has also been demonstrated (Al-Battashi et al., 2019). 

More recently, the suitability of lignocellulosic biomass for the production of 

speciality materials has also been explored. Artificial fibres such as lyocell, which 

are nowadays used in the textile industry, can be obtained by dissolving cellulose 

(J. Y. Chen et al., 2017). Lignin-derived materials are also of interest as they can be 

used, for example, to fabricate rechargeable batteries (W. J. Chen et al., 2022). Other 

materials such as activated carbon, which can be used for environmental 

remediation (Hoang et al., 2022) or carbon nanotubes (Osman et al., 2020), which 

possess high strength, electrical and thermal conductivity properties, represent other 

promising alternatives for added-value products. 

 

Figure 3. Industrial applications of lignocellulosic biomass. Adapted from (Okolie et al., 2021). 
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Lignocellulose for 2G-bioethanol production 

The production of biofuels, in particular bioethanol, has historically been the driving 

force behind the development of technologies for the use of lignocellulosic biomass. 

The first bioprocesses developed for the production of biofuels, commonly referred 

to as first generation (1G), used edible biomass such as corn, maize or sugar cane 

as raw material (Naik et al., 2010). The most known examples of 1G biofuel are 

bioethanol production from sugar cane in Brazil or corn in the United States 

(Bothast & Schlicher, 2005; Rosillo-Calle & Cortez, 1998). However, due to the 

competing use of these raw materials as food resources, concerns were raised and 

alternative non-edible raw materials were searched for, leading to investigations on 

the use of lignocellulosic biomass instead. In this second generation (2G) of 

biofuels, agricultural wastes or forest residues are used as raw materials. They no 

longer compete with the use of resources that could be destined for food; instead, 

value is given to what, up to that point, was considered a waste (Naik et al., 2010). 

Since then, a third generation (3G) of biofuels has also been described, based on the 

use of microalgae cultivations (Chowdhury & Loganathan, 2019). 

Due to the inherently complex nature of lignocellulosic biomass, several processing 

steps are needed to convert the raw material into an adequate substrate for microbial 

conversion to bioethanol. These steps and their respective challenges are 

summarised below. 

Biomass pretreatment 

Initially, the complex structure of the biomass needs to be broken down into smaller 

pieces to facilitate its processing in the later stages (Figure 4). A wide range of 

strategies have been developed for this purpose, comprising physical, chemical, 

physico-chemical and biological technologies (Brodeur et al., 2011) (Table 2). 

 

Figure 4. Schematic representation of the effect of pretreatment on lignocellulosic biomass. 
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In short, physical pretreatments rely on milling or grinding procedures to reduce 

particle size; these are energy expensive and often combined with other types of 

pretreatments. Biological pretreatment would be the most environmentally friendly 

alternative as fungal enzymes can be used at mild conditions to degrade the biomass. 

Unfortunately, due to the low hydrolysis rates, long and incomplete pretreatment is 

achieved. Thus, chemical and physico-chemical methods have been widely 

preferred (Table 2). 

Regardless of the strategy, the following common goals are envisioned:           

(1) Obtain solids with high digestibility for enzymatic hydrolysis. 

(2) Avoid sugar degradation. 

(3) Minimise inhibitor formation. 

(4) Minimise heat and power requirements to improve cost efficiency. 

Table 2. Examples of chemical and physico-chemical pretreatment methods. Adapted from 
(Brodeur et al., 2011). 

Pretreatment Compounds Advantages Disadvantages 

Chemical 

Alkaline NaOH, KOH, 
lime 

Lignin removal 

Room temperature 

Low inhibitor formation 

High cost 

Need for neutralisation 

Acid H2SO4, HCl, 
HNO3 

Hemicellulose and 
cellulose hydrolysis 

Room temperature 

High cost 

Need for corrosion-
resistant materials  

Inhibitor formation 

Need for neutralisation 

Wet oxidation O2+H2O Lignin removal 

Hemicellulose 
solubilisation 

By-product formation 

Inhibitor formation 

Green solvents Ionic liquids Solvent recovery 

No toxic product 
formation 

Cellulose crystallinity 
reduced 

High cost 

Cellulase inactivation 

Physico-chemical 

Steam explosion H2O Hemicellulose 
solubilisation 

Complete sugar 
recovery 

Cost-effective 

Need for acid catalyst if 
high lignin content 

Inhibitor formation 

Ammonia Fiber 
Explosion (AFEX) 

NH3 Lower temperatures 

Low inhibitor formation 

High cost 

Need for ammonia 
recovery 

Supercritical Fluid Supercritical 
CO2 

Lower temperatures Very high pressure 

No effect on lignin and 
hemicellulose 
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In the present thesis work, the physico-chemical steam explosion, one of the most 

commonly used methods for pretreatment (Brodeur et al., 2011), was used in 

combination with the addition of an acid catalyst (Paper II). First, the material was 

impregnated in dilute H2SO4 and further treated by continuous steam explosion at 

195 °C for 10 minutes. Then, the pressured steam was rapidly depressurised causing 

the disruption of the structure. The acid was added because it has been shown to 

decrease the retention time and temperature needed while improving the recovery 

of sugars and their following hydrolysis (Ballesteros et al., 2006). 

A major challenge of most pretreatments, including the one above, is the 

concomitant formation of compounds that inhibit the following biocatalytic steps. 

This will be further discussed in Chapter 2. 

Enzymatic hydrolysis and fermentation 

Once the complex structure of lignocellulosic biomass has been disrupted by the 

pretreatment step, it can be submitted to the action of specific hydrolytic enzymes, 

that enable the release of monomeric sugars from their polymeric form. 

Multiple enzyme activities are needed to efficiently hydrolyse the pretreated 

material, which requires the development of dedicated enzyme cocktails. For the 

degradation of cellulose into glucose, endoglucanases, cellobiohydrolases and β-

glucosidases are needed (Figure 5A). Hemicellulose hydrolysis typically requires 

the action of additional enzymes such as endoxylanases, xylosidases, acetylxylan 

esterases, arabinofuranosidases and glucuronidases to release the different sugars 

(Figure 5B) (Lopes et al., 2018). More recently, another group of enzymes called 

lytic polysaccharide monooxygenases (LPMOs) was identified and shown to 

possess auxiliary activities that improve the saccharification of lignocellulose 

(Johansen, 2016). These enzymes need the presence of oxygen or hydrogen 

peroxide as well as an electron donor for their activity. They are capable of initiating 

the degradation of cellulose by cleaving internal β-(1→4) glycosidic bonds without 

the need for prior de-crystallisation (Peciulyte et al., 2018). Their activity generates 

nicks in the crystalline structure of cellulose facilitating the action of traditional 

cellulases. 

Different factors in the process may influence the choice of an optimal enzyme 

cocktail. On one hand, the type of substrate will determine the composition of the 

material and consequently which enzymatic activities are needed. On the other hand, 

the pretreatment method used is also relevant. For instance, the steam explosion 

pretreatment used in the present thesis work enables the hemicellulose fraction to 

get hydrolysed; as a consequence, most of the xylose present in the polymer is 

released as a monomer in the liquid fraction without the need for enzyme addition, 

whereas the cellulose fraction remains mostly untouched (Ballesteros et al., 2006). 

Thus, the addition of cellulases is the most relevant in this case. 
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Figure 5. Enzymatic hydrolysis of cellulose (A) and hemicellulose (B). 

  



11 

After hydrolysis, the mixture of (mostly) monomeric sugars is used as substrate in 

the fermentation step. In this step, the sugars are taken up by the microorganism of 

choice and further converted into ethanol. Two microorganisms have originally 

been considered due to their high ethanol production yield: the baker´s yeast 

Saccharomyces cerevisiae and the bacterium Zymomonas mobilis (Olsson & Hahn-

Hägerdal, 1993). However, with the introduction of lignocellulosic biomass as raw 

material, new challenges are faced, which need to be additionally considered for the 

selection of the appropriate microbial host. These challenges include e.g., the 

presence of inhibitory compounds and mixed sugars in the medium (cf. Chapter 2). 

As a result, other yeasts, such as the pentose-using yeast Scheffersomyces stipitis 

and Spathaspora passalidarum are now considered as potential candidates (Veras 

et al., 2017).  

Ideally, the microorganism used in the fermentation step should be capable of 

withstanding the presence of inhibitors, consuming all the sugars in the mixture and 

efficiently producing ethanol. Unfortunately, finding a microorganism that fulfils 

all the requirements is not an easy task (Olsson & Hahn-Hägerdal, 1993).  

An early study in 1993 compared the performance of the microorganisms 

Escherichia coli, Lactobacillus brevis, Lactococcus lactis spp. lactis, Z. mobilis, 

Saccharomyces cidri and S. cerevisiae in fermentations using lignocellulosic 

hydrolysates. S. cerevisiae was established as the fastest among them, especially in 

hydrolysates containing higher concentrations of inhibitory compounds (Olsson & 

Hahn-Hägerdal, 1993). Indeed, S. cerevisiae remains the most commonly used 

microorganism in industry (Almeida et al., 2007) and as such, it will be the 

microorganism of choice and focus of this thesis. 

Process configurations 

Several process configurations have been proposed, combining or not the three steps 

described above (Figure 6). When the enzymatic hydrolysis and fermentation steps 

are performed separately, the process configuration is commonly referred to as 

separate hydrolysis and fermentation (SHF). Alternatively, the two steps can be 

performed at once in the same tank in a simultaneous saccharification and 

fermentation (SSF) process. The possibility of combining yeast-based enzyme 

production, enzymatic hydrolysis and fermentation in a single bioreactor, known as 

consolidated bioprocesses (CBP) has also been recently explored (Periyasamy et 

al., 2023). 
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Figure 6. Possible process configurations for the production of lignocellulosic bioethanol. SSF: 
simultaneous saccharification and fermentation; CBP: consolidated bioprocess. 

Besides decreasing the capital cost by reducing the number of vessels needed for 

the process, SSF presents advantages over SHF for enzymatic hydrolysis. Since both 

saccharification and fermentation happen simultaneously, the glucose residues 

released by the action of the enzymes are immediately consumed by the 

microorganism in the fermentation step, thus reducing the product inhibition 

otherwise faced in the enzymatic hydrolysis by the high concentrations of glucose 

(Stenberg et al., 2000). Nevertheless, when performing the two steps 

simultaneously, a major drawback is the difference in the optimal conditions for 

each of them (Stenberg et al., 2000). The optimal temperature for enzyme mixtures 

such as Cellic® CTec3 is within 50-55°C (Cellic® CTec3 application sheet, 

Novozymes, Denmark) while most microorganisms grow at temperatures around 

30-37°C. Thus, finding a compromise between these temperature ranges in which 

to run the SSF is critical for its optimisation (Mutturi & Lidén, 2013). Additionally, 

the complex matrix generated in SSF processes represents a challenge for analytical 

purposes, which will be further discussed in Chapter 3. 

Separation and purification 

The last step in the production of bioethanol from lignocellulosic material is the 

recovery of the product from the fermentation broth. Distillation is the most 

commonly used method to separate ethanol from water. 

In lignocellulosic bioethanol processes, it is estimated that an ethanol concentration 

of at least 4-5% in the broth at the end of the fermentation is needed to make the 
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process economically feasible (Galbe et al., 2007). This implies that high solid 

loadings, i.e., the ratio of solids compared to water, are needed to obtain such 

concentrations. However, the higher the solid loadings the more challenging the 

process becomes. A negative correlation between the efficiency of the enzymatic 

hydrolysis and the solid loadings has been observed (Jørgensen et al., 2007). Also, 

higher concentrations of inhibitory compounds are naturally obtained in a process 

with high solid loadings which negatively impact the fermentation efficiency. 

Scope and outline of the thesis 

The work presented in the present thesis is focused on the development of strategies 

for improving 2G bioethanol production from lignocellulosic biomass using 

S. cerevisiae, with a special focus on the fermentation step. Chapter 2 first 

summarises the main challenges faced during fermentation. Chapter 3 focuses on 

the use of monitoring and control strategies to optimise the yeast performance in the 

production process. The strategies used to obtain S. cerevisiae strains more tolerant 

to the presence of inhibitory compounds as well as the application of a biosensor to 

monitor the cellular response to these inhibitors are described in Chapter 4. In 

Chapter 5, key genetic modifications needed to obtain efficient xylose-consuming 

S. cerevisiae strains are summarised, including notably the role of xylose epimerase. 

Finally, the conclusions and outlook of the thesis work and its associated 

Papers I-IV (whose focus is described below), can be found in Chapter 6. 

Paper I describes the use of a biosensor for measuring the cofactor deficiency 

related to the presence of inhibitory compounds and monitoring the redox state of 

S. cerevisiae. A system allowing automatic sampling and flow cytometric analysis 

of the biosensor response during cultivation is established. Furthermore, three 

different strategies for the improvement of yeast performance are compared. 

Finally, the relationship between the biosensor’s response and the ethanol 

production capabilities of the strains is studied. 

In Paper II, the applicability of the monitoring system developed in Paper I for 

automatic sampling and flow cytometric analysis as a control strategy is explored. 

In Paper III, the impact of the addition of a xylose epimerase on xylose sensing and 

utilisation is studied in xylose-consuming S. cerevisiae strains carrying a biosensor 

for sugar signalling. 

Paper IV reports on the assessment of several fluorescent proteins for their use as 

reporters in transcription factor-based biosensors in S. cerevisiae. Combinations of 

these fluorescent proteins are explored for the establishment of multicolour flow 

cytometry analysis. 
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Chapter 2 

Challenges faced during the 

fermentation step in 2G bioethanol 

production 

During the fermentation step, the monomeric sugars present in lignocellulosic 

biomass are converted into ethanol, making this step a key one in achieving an 

efficient production process. While S. cerevisiae is considered the most promising 

organism for this step (cf. Chapter 1), it still faces several challenges that are 

summarised in the following sections. 

The presence of inhibitory compounds 

The pretreatment of lignocellulosic biomass, which is needed to dissociate the 

different components of the material (Chapter 1), can also generate a range of 

compounds that inhibit microbial growth, hindering the fermentation step and in 

turn, the whole process. 

Three major types of inhibitors have been described: (i) furaldehydes, (ii) weak 

acids and (iii) phenolic compounds (Figure 7). The furaldehydes furfural and 5-

hydroxymethyl furfural (HMF) are formed by the degradation of pentose and hexose 

sugars, respectively (Dunlop, 1948; Ulbricht et al., 1984). Amongst the weak acids, 

acetic acid, formic acid and levulinic acid can be found. Acetic acid originates from 

the acetyl groups in the hemicellulose fraction, whereas formic acid and levulinic 

acid are formed by the further degradation of furfural and HMF (Ulbricht et al., 

1984). Phenolic compounds are mostly obtained as a result of a partial breakdown 

of lignin and thus the specific compounds vary significantly as a function of the 

source of biomass (Palmqvist & Hahn-Hägerdal, 2000). 
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Figure 7. Inhibitors present in pretreated lignocellulosic material. 

Furfural and HMF 

The inhibitory effect of furfural and HMF on S. cerevisiae has been thoroughly 

studied. In the presence of furfural, inhibition of both growth and ethanol production 

has been observed. At the beginning of the fermentation, an increased lag phase is 

observed, as well as an increase in cellular death. During this lag phase, rapid 

removal of furfural is carried out by the cells (Boyer et al., 1992). S. cerevisiae can 

detoxify the medium by converting furfural into its less toxic furfuryl alcohol form 

(Figure 8A). The conversion is performed by NAD(P)H-dependent alcohol 

dehydrogenase enzymes (Diaz de Villegas et al., 1992; Villa et al., 1992). Similarly, 

HMF can be converted into 5-hydroxymethyl furfuryl alcohol (Taherzadeh et al., 

1999) (Figure 8B). When furfural and HMF are converted, the lag phase is ended 

and the remaining cells can grow and ferment the sugars (Boyer et al., 1992; 

Palmqvist et al., 1999; Taherzadeh, Gustafsson, et al., 2000). 

At the mechanistic level, furaldehydes have been shown to have a strong inhibitory 

effect on glycolytic enzymes such as alcohol dehydrogenase, aldehyde 

dehydrogenase and pyruvate dehydrogenase (Banerjee et al., 1981; Modig et al., 

2002). Additionally, it has been suggested that cofactor imbalances happen during 

exposure to furfural and HMF (Almeida et al., 2007). On the one hand, the 

detoxification processes of furfural and HMF conversion entail the consumption of 

NAD(P)H (Wahlbom & Hahn-Hägerdal, 2002), thus decreasing their cytosolic 

availability. On the other hand, exposure to furfural induces the accumulation of 

reactive oxygen species (ROS) (Allen et al., 2010). This explains the crucial role 

that the pentose phosphate pathway (PPP) plays in the tolerance to furfural (Gorsich 
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et al., 2006) as the NADPH generated through the PPP is used as a cofactor by 

different stress protection enzymes to fight for example ROS accumulation (Allen 

et al., 2010). 

 

Figure 8. Transformation of the inhibitors furfural (A) and 5-hydroxymethyl furfural (HMF) (B) into 
their alcohol forms by S. cerevisiae.  

Although the capability of detoxifying inhibitory compounds into less toxic forms 

confers S. cerevisiae an innate tolerance, different strategies from genetic 

engineering to process engineering have been proposed to further improve its 

robustness, and thereby the process (cf. Chapter 4). 

Weak acids 

Weak acids such as acetic acid, levulinic acid and formic acid have high pKa values:  

4.75 for acetic acid, 4.66 for levulinic acid and 3.75 for formic acid (Brown et al., 

1955; Soni et al., 1982). This implies that at pH values lower than their pKa, the 

acids remain undissociated. As such, they are permeable to the cell membrane and 

can enter the cells. Inside the cells, the neutral pH dissociates the acids into their 

anionic form and a proton (Figure 9), which results in a decrease in intracellular pH. 

Two different theories have been described to explain the associated inhibitory 

effect: (i) anion accumulation and (ii) uncoupling (Russell, 1992). The accumulation 

of anions to high levels can induce high turgor pressure in the cell and free radical 

production, which leads to severe oxidative stress (Piper et al., 2001). In the 

uncoupling mechanism, the cell utilises a plasma membrane ATPase to pump out 

the protons by hydrolysing ATP to maintain a neutral intracellular pH (Figure 9). 

Eventually, the action of this ATPase results in the depletion of the cellular ATP 

levels which leads to growth inhibition (Palmqvist & Hahn-Hägerdal, 2000; Russell, 

1992). The intracellular acidification resulting from exposure to a medium 

containing acetic acid has also been shown to trigger a myriad of processes 

including the accumulation of reactive oxygen species (ROS), the release of 

cytochrome c or an increase of DNA fragmentation which results in programmed 

cell death (Guaragnella et al., 2011). 
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Figure 9. Uncoupling mechanism response to weak acid inhibition.  

Phenolic compounds  

The source of lignocellulosic biomass, as well as the pretreatment method utilised, 

determines the composition of the phenolic compounds found in the pretreated 

lignocellulosic material (Almeida et al., 2007; Klinke et al., 2004; S. Larsson et al., 

1999). Still, some compounds are more commonly found in pretreated 

lignocellulosic biomass and they are listed in Table 3.  

In the fermentation step, phenolic compounds with low molecular weight have a 

more severe inhibitory effect than those with high molecular weight (Klinke et al., 

2004). It has also been observed that the toxicity is not determined by the category 

in which they are classified (alcohol, aldehyde, acid or ketone). Instead, their 

additional functional groups may play a more important role in their toxicity effects 

(Adeboye et al., 2014). The inhibitory effects of these compounds have been linked 

to a disruption of the cytoplasmic membrane together with the acidification of the 

intracellular cytoplasm (Gu et al., 2019). 

Lignin and the derived phenolic compounds can also affect the SS(c)F fermentation 

process as they can also hinder the enzymatic hydrolysis. After pretreatment, most 

of the lignin remains insoluble and enzymes adsorb non-specifically onto lignin, 

which affects their efficiency. Solubilised simple and oligomeric phenolics can also 

inhibit or deactivate hydrolysing enzymes (Tejirian & Xu, 2011). 
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Table 3. Examples of phenolic compounds found in pretreated lignocellulosic biomass (Klinke et 
al., 2004). 

Alcohols Aldehydes Acids Ketones 

 4-
Hydroxybenzaldehyde 

 

4-Hydroxybenzoic 
acid 

 

4-
Hydroxyacetophenone 

 
 

Syringol 

 

Syringaldehyde 

 

Syringic acid 

 

Acetosyringone 

 

Vanillylalcohol 

 

Vanillin 

 

Vanillic acid 

 

Acetovanillone 

 

Catechol 

 

 

 Coumaric acid 

 

 

Guaiacol 

 

 

 Ferulic acid 
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The presence of mixed sugars 

The inherently complex nature of lignocellulosic biomass implies that a mixture of 

sugars is available as a substrate for fermentation. Although the specific 

composition of this mixture depends on the source of the lignocellulosic material 

(cf. Chapter 1), both hexose sugars (i.e., glucose, galactose, mannose) and pentose 

sugars (i.e., xylose, arabinose) are to be expected. For the process to be profitable, 

all these sugars must be fully converted to ethanol (Saha, 2003). 

Microorganisms have a system called carbon catabolite repression by which the 

presence of the preferred carbon source, typically glucose, represses the expression 

of genes related to the metabolisation of alternative carbon sources (Gancedo, 1992; 

Stülke & Hillen, 1999). This means that when presented with a mixture of sugars as 

substrate, like the one obtained from lignocellulosic biomass, microorganisms will 

preferentially consume the sugar that allows their fastest growth before they start 

consuming the next sugar. This sequential consumption of sugars is not ideal from 

a process point of view as it reduces the productivity of the process. Instead, 

simultaneous consumption of the sugars present in the medium would be preferred 

(J. H. Kim et al., 2010). 

In the case of S. cerevisiae, the presence of mixed sugars adds an extra challenge, 

as this yeast species is not able to naturally utilise xylose, the second most abundant 

sugar in lignocellulosic biomass. This has led to a wide range of strategies to procure 

and optimise the capacity to use xylose in this species, which will be further 

discussed in Chapter 5. 

The risk of contamination 

The 2G ethanol production process presents some interesting specificities that limit 

the chances of microbial contamination. First, the pretreatment of lignocellulosic 

biomass is performed at high temperatures, which is expected to lead to a reduction 

of the contaminating microbial flora present in the raw material. In addition, the 

formation of inhibitors during the pretreatment step generates a harsh environment 

that helps prevent the growth of microorganisms with a low tolerance for these 

inhibitors. Finally, the ethanol produced in the fermentation broth acts as an 

inhibitor of microbial growth; accordingly, only microorganisms with high ethanol 

tolerance will be able to survive in such conditions (Tomás-Pejó et al., 2008). 

Still, unwanted microorganisms can establish themselves and negatively affect the 

fermentation step due to the amount and diversity of sugars present in the broth. For 

instance, if the microorganism utilised for the conversion is not capable of 

consuming all the sugars present in the broth, other microorganisms may take over 
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and consume the remaining sugars (Muthaiyan et al., 2011). Schell et al., observed 

this phenomenon in the industrial conversion of corn fibre to ethanol, where 

Lactobacillus bacteria were found to consume the arabinose present in the mixture 

because it was not consumed by S. cerevisiae (Schell et al., 2007). Also, as the 

fermentation progresses, the level of inhibitors decreases (due to microbial 

detoxification by yeast), and, with it, their protective action against contamination. 

The most popular approach to avoid contamination in small-scale biological 

processes is the sterilisation at 121°C for 20 minutes of both equipment and 

solutions before their use. However, in 2G ethanol production processes, 

sterilisation of the lignocellulosic material is not commonly performed (Skinner & 

Leathers, 2004), as it is an energy-consuming and thus too costly process for this 

low-value product. An alternative option is to use antibiotics such as penicillin and 

virginiamycin that target bacterial cells without compromising the yeast viability 

(Skinner & Leathers, 2004). However, here again, the increased cost of production, 

but also the appearance of resistant bacterial strains (Bischoff et al., 2009) and their 

presence in downstream products (Bischoff et al., 2016) call for the development of 

alternative solutions. 

The choice of the process configurations can play a significant role in reducing the 

risk of contamination during fermentation. For example, in SHF, where a complete 

hydrolysis of the biomass is performed before fermentation high concentrations of 

different sugars are initially present. In contrast, in SS(c)F, xylose is the most 

abundant sugar present in the solution at the beginning of the fermentation, whereas 

glucose is gradually released and consumed; this keeps its concentration low 

throughout the fermentation and thus limits the number and type of contaminating 

microorganisms. In contrast, SS(c)F is usually performed at 37°C as a compromise 

between the optimal temperature for the enzymatic hydrolysis and the fermentation, 

which is the optimal growth temperature of lactic acid bacteria, the most common 

contaminant in ethanol fermentations (Skinner & Leathers, 2004). 

Overall, the risks associated with bacterial contamination call for the development 

of engineered S. cerevisiae strains capable of consuming not only the hexose but 

also the pentose sugars in the broth (further developed in Chapter 5). 
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Chapter 3 

Monitoring and control strategies for 

efficient yeast performance 

To ensure the best results during yeast cultivation, optimal environmental conditions 

need to be guaranteed. Hence, it is crucial to be able to monitor and maintain these 

conditions during cultivation in bioreactors. Furthermore, the monitoring of relevant 

parameters in real-time gives insight into the evolution of the cultivation. This is the 

philosophy behind process analytical technologies (PAT), described by the FDA to 

ensure the quality of the products obtained in bioprocesses. Through the use of PAT, 

it is possible to identify the process’s critical quality attributes (CQAs) and adjust 

the critical process parameters (CPPs) (Glassey et al., 2011). Although this 

framework is most used in biopharmaceutical applications, the concept is 

transferable to other bioprocesses, including the production of 2G bioethanol.  

Monitoring methods in 2G ethanol bioprocesses 

Monitoring methods can be classified as in-line, on-line, at-line or off-line 

depending on their position relative to the bioreactor (Figure 10) (Gargalo et al., 

2020). In-line sensors are directly in contact with the broth and collect data 

continuously. If the sensor is not directly in contact with the broth it is often referred 

to as on-line instead (Gargalo et al., 2020). At-line sensors rely on the periodic 

collection of samples, either manually or automatically, which are analysed next to 

the bioreactor. However, small time delays in the data analysis are encountered. 

Finally, off-line measurements require the collected samples to be analysed in the 

laboratory with the consequent longer time delays. In-line and on-line sensors are 

usually utilised for the adequate implementation of PAT tools as they can collect 

data in real-time without experiencing time delays for the analysis of the sample 

(Gargalo et al., 2022). Still, at-line systems should not be disregarded since, as will 

be shown later on in this chapter, with an adequate time resolution, they can also be 

utilised as PAT tools.  



24 

 

Figure 10. Overview of different types of monitoring methods in bioreactor cultivations.  

Critical process parameters (CPPs) such as pH, temperature or dissolved oxygen are 

routinely monitored during bioreactor cultivations with the aid of in-line or on-line 

probes. However, biological parameters such as cell density, substrate consumption 

or product formation are often performed by off-line measurements analysed by 

optical density or cell dry weight, in the case of cell density, or using high-

performance liquid chromatography (HPLC) and/or gas chromatography (GC) for 

metabolite concentrations. The compilation of real-time data for these parameters is 

limited by the lack of available sensors (Gargalo et al., 2022).  

In lignocellulosic ethanol fermentations, the composition of the feedstock might 

vary from batch to batch (cf. Chapter 1) and consequently, the conditions faced by 

the yeast during the cultivation may also vary between fermentations. As such, the 

development and implementation of PAT tools that allow the monitoring of relevant 

parameters during bioreactor cultivation can be highly beneficial. Advances in the 

development of sensing technologies including UV-Visible spectroscopy, 

multiwavelength fluorescence (MWF), near- or mid-infrared spectroscopy 

(NIR/MIR) and Raman spectroscopy have opened the possibility of obtaining real-

time measurements during cultivation (Gargalo et al., 2022). 

The use of ultraviolet-visible spectroscopy (UV-Vis) to monitor fermentation 

processes is based on the absorption of electromagnetic radiation in the 200-780 nm 

region by chromophores. Although this method is limited by the fact that the sugars 

used as substrate in fermentation do not contain chromophores that absorb in that 

range (Gargalo et al., 2022), it has successfully been utilised for the quantification 

of inhibitory compounds such as vanillin, ferulic acid, HMF and furfural in 

lignocellulosic hydrolysates (Pinto et al., 2018).  
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MWF systems capable of on-line measurement of the fluorescence in the bioreactor 

have also been developed (Marose et al., 1998). These measurements rely on the 

fluorescent nature of several compounds such as NAD(P)H, flavins or aromatic 

amino acids. As such, they are usually considered as an indirect measurement of 

cell concentration in the bioreactor (Haack et al., 2004). However, with the 

development of chemometric approaches that combine MFW measurements and the 

compilation of other relevant bioprocess parameters, such as carbon dioxide 

evolution rate (CER) or oxygen uptake rate (OUR), mathematic predictive models 

for the concentration of glucose and ethanol have been developed (Ödman et al., 

2009). A similar approach was used by Razan and colleagues to monitor the 

concentrations of sucrose, glycerol, ethanol and cell biomass in an ethanol 

fermentation from sugarcane juice by Saccharomyces cerevisiae (Ranzan et al., 

2012). 

NIR and MIR spectroscopy are methods based on the change of vibrational state 

generated in the molecules upon absorption of infrared light. NIR transitions occur 

in the 780-2500 nm region, whereas MIR transitions occur in the 2500 nm-25 µm 

region (Lourenço et al., 2012). Although less mature than NIR, MIR may represent 

a better choice due to the higher number of molecules measurable in this range as 

well as the lower interference of water in the measurements (Gargalo et al., 2022; 

Lourenço et al., 2012). Both methods have been successfully implemented in 

ethanolic fermentations by S. cerevisiae for at-line monitoring of cell biomass, 

glucose and ethanol concentrations (Finn et al., 2006; Mazarevica et al., 2004). 

Finally, another methodology that has gained interest is Raman spectroscopy. This 

technique is based on the wavelength change between the light source and the light 

scattered by the molecules, which is dependent on the chemical bonds present in the 

molecule (Lourenço et al., 2012). One of the major advantages of Raman 

spectroscopy is the lack of interference from water in the measurements (Lourenço 

et al., 2012). In-line monitoring of glucose and ethanol concentrations in 

lignocellulosic bioethanol fermentations was achieved using an immersion Raman 

probe (Ewanick et al., 2013; Iversen & Ahring, 2014). More recently, Schalk and 

colleagues developed a non-invasive Raman probe for on-line monitoring based on 

the measurements in a small glass cell on the side of the bioreactor (Schalk et al., 

2017). 
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Control strategies in 2G ethanol bioprocesses 

The information compiled by the different monitoring methods can be used for the 

application of control strategies that guarantee the efficiency of the cultivation. If 

unforeseen results are detected through monitoring, control decisions can then be 

taken before the process becomes unrecoverable. For such purpose, it is of utmost 

importance that the monitoring method gives real-time information, which is often 

accomplished by using in-line or on-line sensors. The use of at-line sensors for 

control purposes might also be feasible if the sample preparation and analysis time 

are short enough. Finally, off-line measurements are often discarded for control 

strategies due to the time delay between sampling and data analysis. 

In a 2G ethanol bioprocess, there are two steps in which the implementation of 

control strategies could benefit the optimal yeast performance: the propagation of 

the yeast and the following fermentation step (Figure 11). The main objective of 

yeast propagation is the obtention of high cell biomass, which is often performed in 

aerobic fed-batch cultivations (Papers I & II). S. cerevisiae exhibits a Crabtree effect 

by which ethanol fermentation is favoured over respiration, even under fully aerobic 

conditions, if there is an excess of carbon source (De Deken, 1966). To avoid such 

behaviour, which would diminish the biomass yield of the cultivation, the amount 

of carbon source introduced into the bioreactor is controlled and limited in the fed-

batch mode. In contrast, in the case of the following fermentation step, the 

maximisation of ethanol production is the main objective. The use of fed-batch 

mode for yeast propagation can also be beneficial to limit the amounts of inhibitory 

compounds introduced into the bioreactor and reduce their impact on the cell 

population. Consequently, possible strategies for feed rate control in fed-batch mode 

for the improvement of 2G ethanol bioprocesses will be the focus of this section. 

 

Figure 11. Schematic representation of the process steps involved in 2G bioethanol production. 
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Different process parameters can be used as input variables for the development of 

control strategies. An early method utilised on-line measurements of heat 

production rate, with the help of a microcalorimeter, to control the substrate feed 

(C. Larsson et al., 1991; Nilsson et al., 2001). The composition of the exhaust gas 

is routinely monitored in bioreactor cultivations using e.g., acoustic sensors 

(Christensen et al., 1995). The production of CO2, often referred to as carbon dioxide 

evolution rate (CER) is directly related to microbial growth and the ethanol 

production rate. Thus, a control strategy in which the feed rate can be increased as 

long as the CER increases has also been developed and refined (Nilsson et al., 2001; 

Taherzadeh, Niklasson, et al., 2000). Its implementation in fermentations using 

lignocellulosic hydrolysates led to increased sugar conversion and ethanol 

productivity (Nilsson et al., 2001). The respiratory quotient (RQ), which is the ratio 

between the CER and the oxygen uptake rate (OUR), can also be used as the input 

variable to control the feed rate during propagation (Dobrescu et al., 2021). Finally, 

the concentration of ethanol in the gas exhaust can also be monitored. As such, 

ethanol concentration has also been used as an input variable for the development 

of a control strategy (Petersson & Lidén, 2007). This strategy was successfully 

applied to control the substrate feeding rate for maintaining low levels of ethanol 

during yeast propagation and high specific growth rates were obtained (Petersson & 

Lidén, 2007). 

Additional monitoring methods and their suitability for control strategies have also 

been explored. For example, real-time fluorescence measurements have been used 

to maintain aerobic respiration in a feed-rate controlled fed-batch propagation 

(Hantelmann et al., 2006). The system was based on the differences in NADH and 

flavin concentrations between oxidative and oxidoreductive metabolism 

(Hantelmann et al., 2006). Different methods such as Raman spectroscopy (Hirsch 

et al., 2019), refractive index (Knudsen & Rønnow, 2020) and MIR (Cabaneros 

Lopez et al., 2020) have also been used to monitor glucose concentration in the 

fermentation and use this input variable to develop feed rate control strategies. 

Cabaneros Lopez and colleagues were able to improve sugar co-consumption during 

fermentation with the application of their MIR-based control strategy (Cabaneros 

Lopez et al., 2020). 

Although all these examples have the potential to improve 2G bioethanol processes, 

they are mainly based on the measurement of extracellular metabolites such as CO2, 

glucose or ethanol, but little is known about the intracellular processes during 

cultivation. In the present thesis, the application of intracellular biosensors to 

elucidate relevant cellular responses was explored. The following questions were 

addressed: Can biosensors be used to measure relevant intracellular properties? Is it 

possible to develop a system for real-time measurement of the biosensors’ response? 

Can biosensors be used to follow dynamic responses? Can the biosensor response 

be used as an input variable for a control strategy? 



28 

Biosensors  

What is a biosensor? 

Biosensors are molecular devices based on biological recognition elements capable 

of interacting with a target compound and generating a specific signal. This response 

is sent to a transducer that converts it into a detectable signal (L. Su et al., 2011). 

Depending on how this signal is measured, different types of biosensors can be 

distinguished: optical, electrochemical or acoustical (Gargalo et al., 2022), the 

electrochemical and optical ones being the most widely used (L. Su et al., 2011). 

In this thesis, fluorescent biosensors, a type of optical biosensors in which the 

fluorescence intensity is measured, were introduced into S. cerevisiae strains to 

measure intracellular redox imbalance (Papers I & II) and the sugar signalling 

response (Paper III). 

Fluorescent biosensors in S. cerevisiae 

Fluorescent biosensors have been developed to provide information about cell 

physiology and/or quantify metabolite production in S. cerevisiae (Table 4). These 

biosensors rely on the use of fluorescent proteins (FPs) as reporter molecules, the 

yeast-enhanced green fluorescent protein (yEGFP) being the most popular FP 

(Cormack et al., 1997). yEGFP is a variant of the wild-type GFP discovered in the 

jellyfish Aequorea victoria (Prasher et al., 1992) which was modified for optimal 

expression in yeast resulting in high fluorescence intensities (Cormack et al., 1997). 

Amongst the biosensors used in S. cerevisiae, two types can be encountered: (i) 

fluorescence resonance energy transfer (FRET)-based biosensors and (ii) 

transcription factor-based biosensors. In FRET-based biosensors, two fluorescent 

proteins are used, typically a cyan fluorescent protein (CFP) and a yellow 

fluorescent protein (YFP) which are separated by the sensing region (Colombo et 

al., 2017) (Figure 12A). When the metabolite binds to the sensing region, a 

conformational change occurs bringing the two FPs together. This generates a shift 

in the fluorescence emission as the emission from the CFP is now used to further 

excite the YFP which will then emit its fluorescence (Figure 12A). In transcription 

factor-based biosensors the expression of a FP is controlled by an inducible 

promoter of interest. The induction or repression of the promoter is regulated by the 

binding of transcription factor(s) to it (Figure 12B). The possibility of using 

transcription factor-based biosensors to follow S. cerevisiae behaviour in 2G ethanol 

production was explored in the present thesis. 
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Table 4. Examples of fluorescent biosensors used in S. cerevisiae. FCM: flow cytometry. 

Monitoring of Reporter  

molecule 

Application Analysis 
method  

Reference 

Fluorescence resonance energy transfer (FRET)-based 

Maltose CFP+YFP Monitoring of 
maltose uptake 

Molecular 
imaging 

(Ha et al., 2007) 

Methionine CFP+YFP Screening for 
production strains 

Microscopy (Mohsin & 
Ahmad, 2014) 

cAMP mTurquoise2 

+dVenus/ 
tdTomato 

Monitoring of 
intracellular cAMP 

Microscopy + 
FCM 

(Botman et al., 
2021; Colombo 
et al., 2017) 

ATP ymTq2Δ11 

+tdTomato 

Monitoring of ATP 
levels 

Microscopy (Botman et al., 
2020) 

PKA activity eCFP+ YPET Monitoring of PKA 
activity 

Microscopy 

+ FCM 

(Botman et al., 
2023) 

Transcription-factor based 

Growth yEGFP Monitoring of 
growth and cell 
membrane 
robustness 

FCM (Carlquist et al., 
2012) 

NADH/NAD+ imbalance yEGFP Monitoring of 
redox imbalance 

FCM (Knudsen et al., 
2014) 

Malonyl-CoA tdTomato Screening of 
genomic library 

Fluorometry (S. Li et al., 
2015) 

cis, cis-Muconic acid 
(CCM) 

GFP Screening for 
production strains 

FCM (Skjoedt et al., 
2016) 

NADPH deficiency yEGFP Monitoring of 
redox imbalance 

Fluorometry 
+ FCM 

(J. Zhang et al., 
2016) 

Sugar signalling yEGFP Monitoring of 
sugar signalling 

FCM (Brink et al., 
2016) 

Fatty acid GFP Screening for 
production strains 

Fluorometry (Baumann et al., 
2018) 

 4-hydroxybenzoic acid 
(pHBA) 

mCitrine Screening for 
production strains 

FCM (Castaño-
Cerezo et al., 
2020) 

Acetic acid mCherry Screening for 
production strains 

Fluorometry (Mormino et al., 
2021) 

Glucaric acid GFP Screening for 
production strains 

Fluorometry (R. Su et al., 
2022) 

S-Adenosylmethionine 
(SAM) 

yEGFP Screening for 
production strains 

FCM (Y. Chen et al., 
2023) 
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Figure 12. Schematic representation of a fluorescence resonance energy transfer (FRET)-based 
biosensor (A) and a transcription factor-based biosensor (B). Upon activation of the FRET 
biosensor, a conformational change occurs which brings the two FPs closer so that the fluorescent 
emission of CFP can be used to excite YFP. In the transcription factor-based biosensor, the inducing 
molecule activates a transcription factor which in turn induces the transcription of GFP. CFP: cyan 
fluorescent protein. YFP: yellow fluorescent protein. GFP: green fluorescent protein. 

Flow cytometry 

In order to maximise the data extracted from biosensors, it is essential to employ a 

suitable methodology for their measurement. The two most common methods used 

to measure the response of transcription factor-based biosensors are fluorometry and 

flow cytometry (FCM) (Table 4). The main difference between these two methods 

is that fluorometry measurements are based on the average fluorescence value of the 

cell population. In contrast, FCM has the advantage of providing single-cell 

measurements which allows the obtention of information on population 

heterogeneity. In this thesis work, FCM was preferred over fluorometry to measure 

the response of transcription factor-based biosensors (Papers I, II & III) in S. 

cerevisiae during cultivation. 

In a flow cytometer, the cells are passed through and analysed one by one 

(Figure 13). For the analysis, lasers with different wavelengths can be used, 

including the standard 488 nm blue laser. After excitation, the fluorescence emitted 

by each cell in the different wavelength ranges can be measured with the use of 

filters that collect specific wavelengths in each channel (Figure 13). Besides the 

fluorescence intensity, other parameters can be elucidated from FCM analysis. For 

example, the light scattered in the same direction as the light source is known as 

forward scatter (FSC) and is considered an indication of the size of the cell, while 

the light scattered perpendicular to the light source is known as side scatter (SSC) 
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and it indicates the granularity of the cell (Shapiro, 2003). Moreover, the number of 

events measured in the sample is also recorded, thus FCM can also be used for cell 

quantification (Rao et al., 2023). FCM is also routinely used with fluorescent dyes 

to obtain additional information. Propidium iodide (PI), that is a common 

fluorescent dye, has been used in the present thesis work to measure cell membrane 

integrity. PI can only penetrate cells with damaged membranes. Once inside the cell, 

it binds to the DNA and results in staining of membrane-damaged cells (Davey & 

Hexley, 2011). 

 

Figure 13. Schematic representation of flow cytometry (FCM) instrument. The sheath fluid is 
circulated on the sides to push the cells in a single line, this way, the cells reach the interrogation point 
one at a time where they are exposed to the blue and red excitation lasers and their light refraction and 
fluorescent emission is collected on the different channels. FSC: Forward scatter; SSC: side scatter; FL1-
FL4: fluorescence collection channels. 

In the present thesis, the possibility of measuring different FPs using the benchtop 

flow cytometer BD Accuri C6 (+) was explored (Paper IV). The objective was to 

identify the most suitable FPs for being used as reporter molecules in S. cerevisiae, 

both individually and in potential combinations for multicolour FCM. 

Out of the six selected candidates, the monomeric variant of GFP mEGFP, the 

orange FP CyOFP1 and the red FP mBeRFP showed the best results; the 
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simultaneous measurement of these three FPs was also possible using a standard 

488 nm blue laser for excitation (Paper IV). This finding opens up the possibility of 

simultaneously analysing up to three different properties in the same cell. 

One of the biggest limitations of multicolour FCM is the spillover from one FP into 

other collection channels (Hawley et al., 2017). To minimise such a phenomenon, a 

narrower filter (510/15 nm) was utilised in the study above to measure the 

fluorescence of GFP - as opposed to the common 533/30 nm filter. The application 

of colour compensation strategies to mathematically transform the data can 

additionally be used for the successful implementation of multicolour FCM 

(Hawley et al., 2017). 

Biosensors as monitoring and control tools 

The combination of biosensors with FCM analysis has great potential for the 

compilation of information at the single-cell level on virtually any cellular property 

for which a specific biosensor is available. However, as detailed previously in this 

chapter, real-time measurements are needed to reach the full potential of FCM as a 

PAT tool. The application of FCM as a real-time monitoring method has been 

described in drinking water applications (Besmer et al., 2014; Hammes et al., 2012) 

and it has recently also been used to monitor the growth of microalgae (Haberkorn 

et al., 2021) and lactic acid bacteria (Rao et al., 2023). However, its application to 

yeast cultivations remains relatively unexplored. An early example showed the 

successful monitoring of cell count and viability as well as the constitutive 

expression of GFP throughout the cultivation of S. cerevisiae in bioreactors (Abu-

Absi et al., 2003). Similarly, Bouchedja et al., used automated real-time FCM to 

study the cell physiology and lipid accumulation of Yarrowia lipolytica (Bouchedja 

et al., 2017). More recently, efforts have been made to develop an open-source 

platform to push forward the implementation of this methodology (Bertaux et al., 

2022). 

In the present work, at-line FCM was combined with the utilisation of a biosensor 

and PI fluorescent dye to monitor (Paper I) and control (Paper II) the response of a 

redox imbalance sensor in S. cerevisiae during cultivation in a bioreactor. In this 

setup, an automatic sampler was connected to the bioreactor for periodic sampling. 

The sample was then automatically diluted, stained with PI and sent for FCM 

analysis (Figure 14A). The rapid sampling and measurement obtained with this 

method allowed the monitoring of the dynamic response of the biosensor for redox 

imbalance in the presence of furfural, the compound responsible for the induction 

of the biosensor’s response (Paper I). 
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In order to take it one step further, the possibility of utilising this automated FCM 

system as a feed control parameter was assessed (Paper II). In this case, such a setup 

was applied during the fed-batch propagation of S. cerevisiae in a 2G ethanol 

process context. A new program code was developed in Python to automatically 

analyse the information obtained from the FCM measurements of the biosensor’s 

response and adjust the substrate feed accordingly (Figure 14B) (Paper II). The 

application of this system is further discussed in Chapter 4. 

 

Figure 14. Schematic representation of the monitoring (A) and control (B) strategies based on 
FCM measurements.  

Specific sampling challenges in 2G ethanol bioprocesses 

One of the biggest challenges for the development of monitoring and control 

strategies in 2G ethanol bioprocesses is the complex nature of the substrate matrix. 

This is especially relevant in process configurations like SS(c)F where the pre-

treated raw material is used as fermentation broth. In this process, initial high solid 

contents are usually present, even hindering mixing operations. Through the action 

of hydrolytic enzymes, the fermentation broth liquifies over time. However, solid 

lignin particles remain throughout the cultivation. These conditions render the 
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distinction between cells and particles challenging. Overestimation of cell 

concentration can be obtained due to false positives if material particles in the matrix 

are mistaken for cells. Cells might also adsorb on material particles and not be 

measured, which results in an underestimation of cell concentration (R. Wang et al., 

2021). 

A comparison of different methods for the quantification of cell concentration in 

SSF samples concluded that traditional methods such as cell counting in a 

hemocytometer and colony forming unit (CFU) remained the best option (R. Wang 

et al., 2021). However, these are time-consuming off-line methods that cannot be 

used for real-time monitoring. The determination of extracellular metabolite 

concentration is also mostly measured off-line by HPLC of the supernatant after the 

sample has been centrifuged. This is because the implementation of real-time 

methods such as UV-Vis, MWF or Raman spectroscopy has proven limited due to 

the interference of the solid particles with the measurements (Gargalo et al., 2022; 

Ranzan et al., 2012). Iversen and Ahring managed to obtain in-line Raman 

spectroscopy measurements during the fermentation of sugarcane bagasse by 

placing the probe in the top layer and reducing the stirring speed so that the particles 

would precipitate at the bottom of the bioreactor (Iversen & Ahring, 2014). 

Although ingenious, this strategy is not optimal as it is difficult to ensure the 

representativeness of the measured sample without a homogenous composition in 

the bioreactor. 

Currently, sample preparation in 2G bioethanol processes mostly relies on 

centrifugation or filtration for the separation of the solids from the liquid in the 

sample. However, these methods are only valid for the analysis of the liquid fraction 

for extracellular metabolite concentration. Cells and particles will likely remain 

unseparated in the solid fraction. Also, delays between sample acquisition and data 

analysis make the application of analytical methods as monitoring methods very 

challenging. 

In this thesis work, the potential of utilising FCM as a monitoring tool for SS(c)F 

was assessed. The presence of solid particles that could clog the lines in the 

instrument, did not make it possible to apply the developed monitoring method 

(Paper I) to the SS(c)F experiments. Instead, attempts were made to manually treat 

SS(c)F samples to separate the cells from the material particles before FCM 

analysis. Out of the tested methods, the most promising one involved the use of a 

syringe filter with a 10 µm pore size that allowed yeast cells (ca. 5-6 µm) as well as 

the smallest particles to pass through the filter while retaining bigger particles 

(Figure 15). The filtered samples were stained with the fluorescent dye SYBR 

Green, which binds to DNA. During FCM analysis, a minimum threshold in forward 

scatter (FSC-H) was then used to discard particles based on size (Figure 15A, D). 

Then the SYBR Green fluorescence in FL1-H was used to identify the cell 
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population (Figure 15B). The cell population was found to correspond to the 

subpopulation with a higher size (Figure 15C). This approach was successful up to 

2% WIS samples (Figure 15A-C), but no cell population was distinguishable in 

samples with higher solid-loading (5% WIS) (Figure 15D-E). The higher number of 

solid particles in the 5% WIS samples likely resulted in the formation of a cake on 

the filter preventing cells from passing through. 

 

Figure 15. Flow cytometry analysis of 2% WIS sample (A-C) and 5% WIS sample (D-E). Samples 
were filtered using a 10 µm pore size filter and stained with SybrGreen prior to flow cytometry 
analysis. Samples are first analysed in forward (FSC-H) vs side (SSC-H) scatter (A, D), then the 
green fluorescence intensity is looked at (FL1-H) to identify the cell population (B, E). Finally, the 
cell population is coloured in red and the solid particles in blue in a FSC-H vs SSC-H scatter plot 
(C). 

Alternatively, for samples in which the utilised strains carry a biosensor, the 

fluorescent signal of the biosensor could be used as the distinctive parameter 

between cells and particles without the need for a fluorescent dye.  

In the future, further optimisation of the filtration strategy may enable the 

development of a method suitable for higher WIS concentrations, as well as for its 

automatic functioning, for FCM to become applicable as a monitoring tool for 

SS(c)F processes. 
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Chapter 4 

Yeast engineering and monitoring for 

overcoming the effect of inhibitory 

compounds 

Different types of inhibitors - furaldehydes, weak acids and phenolics - can be 

encountered in lignocellulosic hydrolysates (cf. Chapter 2). This has led to the 

development of several strategies to obtain Saccharomyces cerevisiae strains with 

enhanced tolerance to these compounds. This chapter discusses the most significant 

advances in this area. 

Strain engineering approaches 

Targeted engineering 

When the mechanisms behind the inhibitory effects or the cellular response against 

the inhibitor are known, rational engineering targeting the corresponding gene(s) 

can be envisioned. This strategy has been employed with each type of inhibitor, as 

discussed below.  

Improving tolerance to furaldehydes 

Intracellular accumulation of furaldehyde compounds triggers the formation of 

reactive oxygen species (ROS) and redox imbalance in yeast (cf. Chapter 2). 

Therefore, genes encoding enzymes responsible for the conversion of these 

aldehydes into less toxic alcohol forms have commonly been targeted to speed up 

the detoxification capabilities in the modified S. cerevisiae strain and reduce the 

inhibitory effects (Figure 16). The first gene reported to encode an enzyme with 

such activity was ADH6. ADH6p is an NADPH-dependent alcohol dehydrogenase 

that can convert HMF into its less inhibitory alcohol form in S. cerevisiae (Petersson 

et al., 2006). Accordingly, ADH6 gene overexpression has led to an increase in the 

conversion rate of HMF under both aerobic and anaerobic conditions (Petersson et 
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al., 2006) resulting in improved tolerance both in laboratory (Almeida et al., 2008; 

Park et al., 2011) and industrial strains (Lewis Liu et al., 2008). Since then, several 

other endogenous enzymes with the same activity have been identified including 

alcohol dehydrogenases, aldehyde reductases and aldose reductases. The 

overexpression of the genes encoding these enzymes has also been shown to 

improve growth in the presence of HMF and/or furfural (Table 5). 

The need for NAD(P)H during the detoxification of furaldehydes as well as in the 

processes involved in protecting the cell from the oxidative stress caused by the 

presence of aldehyde compounds, generates a cofactor imbalance in the cell 

(cf. Chapter 2). So, another approach to increase the tolerance towards furaldehydes 

has focused on strategies aiming at maintaining the redox balance in the cell 

(Table 5). The main target of this approach has been ZWF1, a gene encoding glucose 

6-phosphate dehydrogenase that is the first enzyme in the oxidative pentose 

phosphate pathway and a major source of NADPH (Figure 16). Strains 

overexpressing ZWF1 were shown to grow at higher furfural concentrations than 

their control strains, likely due to the increased availability of NADPH (Gorsich et 

al., 2006). Similarly, other genes encoding activities involved in processes that 

could provide a source of NADPH or that are involved in maintaining redox balance 

in the cell, such as the glutathione metabolism, have also been overexpressed and 

have resulted in a higher tolerance to furaldehydes (Table 5). 

Improving tolerance to weak acids 

The presence of weak acids in the medium results in decreased intracellular pH, 

ATP depletion and accumulation of ROS species that lead to programmed cellular 

death in S. cerevisiae (cf. Chapter 2). Thus, genes involved in the membrane 

transport of weak acids or protons have been potential rational engineering targets 

for increased tolerance to weak acids (Table 5). The entry of undissociated weak 

acids such as acetic acid into the cells in S. cerevisiae is made by facilitated diffusion 

through the aquaporin channel Fps1p (Mollapour and Piper, 2007) (Figure 16). 

Consequently, FPS1 was considered as a possible target to increase tolerance to 

weak acids. Indeed, the deletion of FPS1 in an industrial strain resulted in increased 

growth rates and ethanol yields under acetic acid stress conditions (J. G. Zhang et 

al., 2011).  

Another gene involved in the cellular response to acetic acid in S. cerevisiae is 

PMA1. Pma1p is the main proton pump utilised by S. cerevisiae to actively export 

protons out of the cells at the expense of ATP (Serrano et al., 1986), a process 

necessary to counteract the acidification caused by the dissociation into anionic acid 

and its proton inside the cell (Figure 16). Overexpressing PMA1 resulted in an 

enhanced acetic acid tolerance characterised by an increased proton efflux and 

membrane integrity, as well as a reduction in the accumulation of ROS species (Y. 

Lee et al., 2017). 
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Several other genes encoding different functions have been shown to increase 

tolerance to acetic acid. Amongst these, other transporters, regulators or enzymes 

involved in counteracting the oxidative stress and intracellular acidification 

generated by acetic acid can be found (Table 5).  

Improving tolerance to phenolic compounds 

The inhibitory effect of phenolic compounds has been related to membrane damage 

as well as intracellular pH acidification (cf. Chapter 2). In order to help reduce these 

deleterious effects, strategies have focused on their conversion into less toxic 

derivatives as well as their transport outside of the cell (Table 5) (Figure 16). For 

example, increased tolerance to phenolic compounds such as ferulic acid or 

cinnamic acid has been achieved by overexpression of PAD1. Pad1p is a 

phenylacrylic acid decarboxylase capable of converting aromatic carboxylic acids 

into their corresponding vinyl derivatives in S. cerevisiae (Clausen et al., 1994). 

Accordingly, PAD1 overexpression allowed a faster conversion of the inhibitors 

which improved the growth rate and ethanol productivity of the generated strain in 

the presence of ferulic acid and cinnamic acid, as well as when spruce hydrolysate 

was used (S. Larsson, Nilvebrant, et al., 2001). 

 

Figure 16. Main cellular processes targeted by rational engineering strategies to increase the 
inhibitor tolerance in S. cerevisiae.  
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Table 5. Review of major strain engineering strategies targeting single genes involved in the 
cellular response of S. cerevisiae to the different types of inhibitors to obtain increased inhibitor 
tolerance. Adapted from (Cámara et al., 2022; B. Li et al., 2022). 

Gene Modification Enzymatic activity/Role Reference 

Furaldehyde detoxification 

ADH6/7 Overexpression NAD(P)H-dependent alcohol 
dehydrogenase  

(Lewis Liu et al., 2008; 
Petersson et al., 2006) 

ALD6 

ARI1 

YDR541C 

YGL039W 

YNL134C 

OSI1 

GRE2/3  

 

Overexpression NAD(P)H-dependent aldehyde 
reductase 

(Heer et al., 2009; 
Jayakody et al., 2018; Z. 
L. Liu & Moon, 2009; 
Moon & Liu, 2015; Park 
et al., 2011; Zhao et al., 
2015) 

Improved redox balance 

ZWF1 Overexpression Glucose-6-phosphate 
dehydrogenase 

(Gorsich et al., 2006) 

OYE2 Overexpression NADPH-dependent oxidoreductase (C. G. Liu et al., 2020) 

POS5 Overexpression Mitochondrial NADH kinase (C. G. Liu et al., 2020) 

GSH1 Overexpression γ-glutamylcysteine synthetase  (D. Kim & Hahn, 2013) 

GLR1 Overexpression NADPH-dependent glutathione 
reductase 

(D. Kim & Hahn, 2013) 

IDP1 

IDH1 

Overexpression NAD(P)H-dependent isocitrate 
dehydrogenase 

(C. G. Liu et al., 2020; 
Unrean, 2017) 

Weak acid transport 

FPS1 Deletion Aquaporin channel  (J. G. Zhang et al., 2011) 

ADY2 Deletion Acetate transporter (M. Zhang et al., 2017) 

PMA1 Overexpression Proton pump (Y. Lee et al., 2017) 

AZR1 Overexpression Membrane transporter (Tenreiro et al., 2000) 

PDR12 Overexpression 

Deletion 

Efflux pump (Nygård et al., 2014) 

Weak acid – other mechanisms 

WHI2 Overexpression Cytoplasmic globular scaffold 
protein involved  in general stress 
response by activating Msn2/4p 

(Y. Chen et al., 2016) 

PRS3 Overexpression Phosphoribosyl pyrophosphate 
synthetase involved in amino acid 
biosynthesis 

(Cunha et al., 2015, 
2018) 

JJJ1 Deletion Co-chaperone involved in ribosome 
biosynthesis 

(X. Wu et al., 2016) 

ACS2 Overexpression acetyl-coenzyme A synthetase 
involved in acetate conversion 

(Ding et al., 2015) 

 

GND1 Overexpression 6-phosphogluconate dehydrogenase 
involved in oxidative stress  

(Y. Lee et al., 2015) 

CCW12 Overexpression Cell wall mannoprotein involved in 
cell wall composition 

(Kong et al., 2021) 

HOG1 Overexpression Mitogen-activated protein kinase 
involved in osmoregulation 

(Mollapour & Piper, 
2007b) 

ADE1/13/17 Overexpression Adenine deaminases involved in 
purine biosynthesis 

(M. M. Zhang et al., 2019) 
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RCK1 Overexpression Protein kinase involved in oxidative 
stress 

(Oh et al., 2019) 

adhE Heterologous 
expression 

Acetylating acetaldehyde 
dehydrogenase involved in acetate 
reduction to ethanol in Escherichia 
coli 

(Wei et al., 2013) 

Phenolic conversion 

PAD1 Overexpression Mitochondrial phenylacrylic acid 
decarboxylase 

(S. Larsson, Nilvebrant, 
et al., 2001) 

FDC1 Overexpression Cytosolic ferulic acid decarboxylase (Richard, Viljanen and 
Penttilä, 2015) 

lcc2 Heterologous 
expression 

Laccase involved in coniferyl 
aldehyde detoxification in white rot 
fungus Trametes versicolor 

(S. Larsson, Cassland, et 
al., 2001) 

ALD5 Overexpression Aldehyde dehydrogenase (Adeboye et al., 2017) 

ATF1 Overexpression Alcohol acetyl transferase (Adeboye et al., 2017) 

ATF2 Overexpression Alcohol acetyl transferase (Adeboye et al., 2017) 

BDH2 Overexpression Putative medium-chain alcohol 
dehydrogenase 

(Ishida et al., 2016) 

Phenolic transporter 

ATR1 Overexpression Putative membrane-associated 
transport protein 

(Alriksson et al., 2010) 

FLR1 Overexpression Putative membrane-associated 
transport protein 

(Alriksson et al., 2010) 

PDR5 

YOR1 

SNQ2 

Overexpression ATP-binding membrane transporter (X. Wang et al., 2017) 

Other/unknown 

PHO13 Deletion p-nitrophenylphosphatase (Fujitomi et al., 2012) 

MCR1 Overexpression Mitochondrial NADH-cytochrome b5 
reductase 

(Wallace-Salinas et al., 
2014) 

 

Increasing the global response via transcription factors 

Besides functional genes, transcription factors have also been targeted as potential 

strategies to increase inhibitor tolerance. Transcription factors regulate the 

expression of numerous genes; thus their modification may cause a more significant 

impact than when a single modification of a functional gene is used (Alriksson et 

al., 2010). Three main transcription factors have been reported to be involved in the 

inhibitor tolerance of S. cerevisiae: Haa1p, Msn2/4p and Yap1p. Haap1p is involved 

in the response to the stress induced by weak acids (Fernandes et al., 2005). In the 

presence of acetic acid, Haap1p is translocated to the nucleus where it induces the 

transcription of membrane transporters and protein kinases to reduce the 

concentration of intracellular acetate (Fernandes et al., 2005). Indeed, 

overexpression of HAA1 has been shown to improve cellular growth and sugar 

consumption in industrial strains in the presence of acetic acid and lignocellulosic 

hydrolysates (Cunha et al., 2018; Inaba et al., 2013; Tanaka et al., 2012).  
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The homologous transcription factors Msn2p and Msn4p are involved in the 

response to environmental stress (Martínez-Pastor et al., 1996). Upon the presence 

of stress factors, Msn2p and Msn4p are dephosphorylated and translocated to the 

nucleus where they activate the transcription of numerous genes. Amongst the genes 

regulated by Msn2/4p are genes encoding heat shock proteins, antioxidant enzymes 

and genes involved in carbon metabolism such as the pentose phosphate pathway 

(Boy-Marcotte et al., 1999). Overexpression of MSN2 has been shown to improve 

furfural tolerance and fermentation rate in an industrial strain (Sasano et al., 2012).  

Finally, the transcription factor Yap1p is involved in the response to oxidative stress 

(Kuge et al., 1997). Furfural and HMF can directly activate Yap1p, by acting as 

thiol-reactive electrophiles (D. Kim & Hahn, 2013). Furthermore, they induce the 

accumulation of ROS species which, in turn, activates Yap1p (D. Kim & Hahn, 

2013). Upon activation, Yap1p is translocated to the nucleus and induces the 

transcription of numerous genes encoding, among others, antioxidant enzymes, 

reductases, and efflux pumps (Jungwirth et al., 2000; J. Lee et al., 1999; Ma & Liu, 

2010). Overexpression of YAP1 has also been shown to improve tolerance to 

coniferyl aldehyde, furfural, HMF and lignocellulosic hydrolysates both in 

laboratory and industrial strains (Alriksson et al., 2010; D. Kim & Hahn, 2013; 

Wallace-Salinas et al., 2014; G. Wu et al., 2017). 

Evolutionary engineering 

The complex cellular response exhibited by S. cerevisiae in the presence of an 

inhibitor can make the identification and engineering of multiple target genes 

challenging (Oh et al., 2019). As an alternative, evolutionary engineering 

approaches might be preferred.  

Evolutionary engineering, also known as adaptive laboratory evolution (ALE), is 

based on the growth of the microorganism under selective conditions over many 

generations, during which the microorganism acquires spontaneous or induced 

mutations that lead to increased variability in phenotype.  Throughout the 

generations, the evolved strains with acquired mutations that confer enhanced 

survivability under the chosen conditions will take over the cultivation (Çakar et al., 

2012). Through the application of different evolutionary set-ups, several evolved 

strains with improved tolerance towards a single or a mixture of inhibitors have been 

successfully obtained (Table 6). Generally, the strains showed shorter lag phases, 

higher biomass formation and increased sugar consumption, leading to higher 

ethanol yields.  

In evolutionary engineering experiments, the design of the evolution strategy is 

crucial for obtaining the expected results. This has notably been exemplified for 

acetic acid tolerance where strains have first been evolved either using sequential 

batch cultivation with increasing concentrations of acetic acid or continuous 
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cultivation in the presence of acetic acid without pH control. Evolved strains with 

improved acetic acid tolerance have been obtained with both methods; however, 

they lost their phenotype after being cultivated in the absence of acetic acid and 

transferred back to fresh medium containing acetic acid (Wright et al., 2011). 

Instead, a strategy in which the presence of acetic acid in the medium was alternated 

in the cultivations was necessary to obtain a constitutive acetic acid tolerance 

(González-Ramos et al., 2016). 

With evolutionary engineering, careful characterisation of the evolved strains is 

essential to avoid running into trade-off situations in which highly specialised 

strains are obtained for specific conditions at the cost of losing fitness for other 

conditions (Çakar et al., 2012). Such a situation was observed, for example, in an 

early evolutionary engineering study in which the obtained evolved strain showed 

the expected improved xylose and glucose co-consumption during batch cultivation, 

but had lost capabilities for optimal growth on glucose (Sonderegger & Sauer, 

2003). 

With the development of technologies such as transcriptomics or whole genome 

sequencing (WGS), the mutations acquired by the evolved strains can be identified, 

generating valuable insights into the molecular mechanisms behind inhibitor 

tolerance (Menegon et al., 2022). Often, the role of the genes involved in known 

mechanisms and modified by target engineering approaches is confirmed; but new 

seemingly unrelated genes can also be identified. For example, SNP mutations in 

four different genes have been identified through WGS of evolved strains with 

enhanced tolerance to acetic acid. The identified genes encoded a putative 

transcriptional regulator (ASG1), a mitochondrial alcohol dehydrogenase (ADH3), 

a protein kinase involved in adaptation to low glucose concentrations (SKS1) and a 

protein linked to ion homeostasis and glucose derepression of SUC2 (GIS4). In that 

study, the effect of the identified mutations has been further validated by introducing 

them into the parental strain in a reverse engineering approach (González-Ramos et 

al., 2016; Pereira et al., 2020). However, this last step of validation through reverse 

engineering is often neglected (Menegon et al., 2022). 

Regardless of the approach used to engineer yeast strains, targeted or evolutionary 

engineering, many of the reported studies have focused on the changes observed 

upon treatment with one specific inhibitor; however, it has been shown that the 

cellular response to the individual inhibitors can differ from the response observed 

when a mixture of inhibitors is used (Bajwa et al., 2013). As the development of 

tolerant strains towards not only one but the combined inhibitors present in 

lignocellulosic hydrolysates is highly desirable, studies in which lignocellulosic 

hydrolysates are used are more likely to generate more robust strains. 
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Table 6. Examples of evolutionary engineering studies of S. cerevisiae towards improved 
performance in lignocellulosic hydrolysate fermentations. Examples are listed in chronological 
order. Adapted from (Menegon et al., 2022). 

S. cerevisiae 
parent strain 

Strategy Selection 
pressure 

Evolved strain  
phenotype 

Reference 

D5A 

K-1 

Sequential batch 
transfer with 
increasing inhibitor 
concentrations 

Softwood 
hydrolysate 

Higher tolerance, shorter 
lag phase and higher 
ethanol productivity in 
SSF 

(Keller et al., 
1998) 

NRRL 
Y-12632 

Sequential batch 
transfer with 
increasing inhibitor 
concentrations 

Furfural or 
HMF 

Shorter lag phase and 
higher ethanol productivity 

(Z. L. Liu et 
al., 2005) 

TMB3001 Continuous 
cultivation with 
increasing inhibitor 
concentrations 

Sugarcane 
bagasse 

Faster furfural conversion, 
higher ethanol yield and 
productivity 

(Martín et al., 
2007) 

TMB3400 Sequential batch 
transfer with 
increasing inhibitor 
concentrations 

Furfural Higher tolerance, shorter 
lag phase and higher 
ethanol productivity 

(Heer & 
Sauer, 2008) 

F12 Sequential batch 
transfer with 
increasing inhibitor 
concentrations 

Wheat 
straw 
hydrolysate  

Higher xylose 
consumption, higher 
ethanol productivity and 
titer 

(Tomás-Pejó 
et al., 2010) 

RWB218 Sequential batch 
transfer with 
increasing inhibitor 
concentrations and 
continuous 
cultivation without 
pH control 

Acetic acid Transient higher acetic 
acid tolerance and specific 
xylose consumption rate 

(Wright et al., 
2011) 

XR122N Sequential batch 
transfer  

Pretreated 
pine wood 

Higher growth at high solid 
loadings 

(Hawkins & 
Doran-
Peterson, 
2011) 

TMB3400 Sequential batch 
transfer and 
continuous 
cultivation 

Inhibitor 
cocktail 
and spruce 
hydrolysate 

Improved growth, sugar 
consumption and ethanol 
productivity 

(Koppram et 
al., 2012) 

FY2  Sequential batch 
transfer with 
increasing inhibitor 
concentrations 

Corn 
stover 
hydrolysate 

Increased relative fitness 
in the presence of 
inhibitors 

(Almario et 
al., 2013) 

Ethanol Red Sequential batch 
transfer  

Spruce 
hydrolysate 

Shorter lag phase, higher 
inhibitor tolerance, higher 
ethanol yield, higher 
thermotolerance 

(Wallace-
Salinas & 
Gorwa-
Grauslund, 
2013) 

D5A+ Continuous 
cultivation with 60% 
(v/v) hydrolysate 

Triticale 
straw 
hydrolysate 

Improved xylose 
consumption and SSF 
performance 

(Smith et al., 
2014) 

NAN-27 Sequential batch 
transfer with 

Corn 
stover 
hydrolysate 

Higher vanillin tolerance 
and vanillin reduction 
capacity 

(Y. Shen et 
al., 2014) 
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increasing inhibitor 
concentrations 

DQ1 Sequential batch 
transfer 

Corn 
stover 
hydrolysate 

Improved SSF 
performance at high solid 
loadings 

(Qureshi et 
al., 2015) 

CEN.PK113-
7D 

Sequential batch 
transfer with 
alternating presence 
of acetic acid 

Acetic acid Higher acetic acid 
tolerance 

(González-
Ramos et al., 
2016) 

TMB3500 Continuous 
cultivation at low pH 

Inhibitor 
cocktail 

Transient tolerance to low 
pH and inhibitors 

(Narayanan 
et al., 2016) 

Y8 Sequential batch 
transfer with 
increasing inhibitor 
concentrations 

Acetic acid Higher ethanol levels (Gurdo et al., 
2018) 

SyBE005 (E7) Sequential batch 
transfer with 
increasing inhibitor 
concentrations 

Inhibitor 
cocktail 

Higher ethanol yield (W. C. Li et 
al., 2019) 

CEN.PK 113–
7D 

Sequential batch 
transfer with 
increasing inhibitor 
concentrations 

Coniferyl 
aldehyde 

High tolerance to phenolic 
compounds 

(Haclsalihoglu 
et al., 2019) 

XUSE Sequential batch 
transfer with 
increasing inhibitor 
concentrations 

Acetic acid Higher tolerance to acetic 
acid and xylose 
consumption 

(Ko et al., 
2020) 

GL01 Sequential batch 
transfer with 
increasing inhibitor 
concentrations 

Coumaric 
acid and 
ferulic acid 

Higher tolerance to 
coumaric acid and ferulic 
acid 

(Pereira et al., 
2020) 

TTY23  Sequential batch 
transfer with 
increasing inhibitor 
concentrations 

pH, acetic 
acid 

Higher acetic acid and 
temperature tolerance 

(Salas-
Navarrete et 
al., 2022) 

Strain propagation approaches 

Besides the above strategies that are based on genetic modifications of the strain, 

the process configuration can also impact the performances of the microorganism 

in response to the presence of inhibitors. A major example concerns the so-called 

“short-term” adaptation strategy, which is based on the propagation of the 

microorganism under specific conditions that will transiently pre-expose it to the 

conditions faced later in the process, thus decreasing the time needed for the 

microorganism to adapt to those conditions.  

Short-term adaptation is of special relevance in processes like simultaneous 

saccharification and (co-)fermentation (SS(c)F) when the propagation of the cell 

culture is performed prior to its utilisation in the SS(c)F step (Almeida et al., 2023; 
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Nielsen et al., 2015). The yeast propagation is routinely performed under aerobic 

conditions and in fed-batch mode to obtain high cell densities (Paper I) (Chapter 3). 

The addition of a feed gives the possibility to incorporate additional compounds, in 

addition to the growth medium, in a continuous manner. This strategy has been used 

for the short-term adaptation of S. cerevisiae to lignocellulosic inhibitors by the 

addition of diluted lignocellulosic hydrolysate into the feed during the fed-batch 

propagation (Paper I). During this process, the cells are exposed to low 

concentrations of the inhibitors present in the hydrolysate and develop a cellular 

response to combat their inhibitory effects. As such, when the cells are later used 

for inoculation of SS(c)F, they are already pre-adapted to the conditions, which 

reduces the lag phase and improves ethanol productivity (Paper I) (Almeida et al., 

2023).  

Besides lignocellulosic hydrolysate in the feed, other propagation alternatives have 

been suggested to improve cell fitness. For example, the use of glycerol and ethanol 

as carbon sources during propagation was reported to positively affect the xylose 

consumption rate in the subsequent fermentation of softwood hydrolysate 

(Dobrescu et al., 2021).  

In the present work, this last strategy was compared for a xylose-engineered 

industrial strain, with the addition of diluted lignocellulosic hydrolysate in the feed, 

as well as a control propagation using only glucose and xylose as carbon sources 

(Paper I). Overall, cells propagated using hydrolysate supplementation in the feed 

(H propagation) outperformed the other strategies (Figure 17) (Paper I); when 

inhibitor levels corresponding to those present in a 10% WIS SS(c)F were used, an 

ethanol yield of 91% of the maximum theoretical yield was achieved after 72 hours 

(Paper I). These results highlight the key role of cell pre-exposure to lignocellulosic 

hydrolysate prior to fermentation.  

A few recent studies have focused on the mechanisms involved in this cellular 

response during short-term adaptation. A comparison between the transcriptome of 

non-adapted and pre-adapted cells using wheat straw hydrolysate (van Dijk et al., 

2021) or spruce hydrolysate (Almeida et al., 2023) during propagation, showed 

significant changes. Amongst them, up-regulation of furaldehyde detoxification 

genes, oxidative stress response genes, biotin and thiamine metabolism genes as 

well as genes of the DHA1 multidrug proton antiporter family was observed, in 

agreement with the targets already identified via targeted and evolutionary 

engineering. 
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Figure 17. Fermentation profiles of cells collected after GX propagation (■), H propagation (▲), 
and GE propagation (●) in inhibitor levels corresponding to 10% WIS (first row), 7.5% WIS (second 
row), 5% WIS (third row), and 2.5% WIS (fourth row). Concentrations of ethanol (A), glucose (B) 
and xylose (C) over time are shown. The final column (D) shows the mean fluorescence intensity 
(MFI) of the GFP response from the biosensor for redox imbalance. Two biological replicates were 
performed. Taken from Paper I.  



48 

Biosensor-based monitoring and control for improved 

tolerance  

The performance of strains developed for lignocellulosic biomass utilisation is 

generally evaluated using external parameters such as improved sugar consumption, 

inhibitor detoxification or ethanol production. However, little is known about the 

intracellular responses of the cell and its fitness in response to the faced conditions. 

In order to shed light on it, fluorescence-based biosensors (cf. Chapter 3) have been 

developed to monitor intracellular properties that can be affected by the presence of 

lignocellulosic inhibitors. Some examples of such properties include intracellular 

pH (Miesenböck et al., 1998; Reifenrath & Boles, 2018), ATP concentration 

(Yaginuma et al., 2014) or redox imbalance (Knudsen et al., 2014; J. Zhang et al., 

2016). Among these, the monitoring of redox imbalance sensed by the cell is of 

special relevance for inhibitor tolerance as the detoxification of aldehyde inhibitors 

is known to require NAD(P)H (cf. Chapter 2). 

Zhang et al., have previously developed a transcription factor-based biosensor 

capable of reporting on NADPH deficiency (J. Zhang et al., 2016). The sensor is 

based on the response of S. cerevisiae to oxidative stress that involves the oxidation 

of the transcription factor Yap1p which triggers the induction of several genes, 

including the thioredoxin gene TRX2. The levels of oxidised and thus active Yap1p 

are regulated by reduced thioredoxin, which in turn is regulated by the NADPH-

dependent thioredoxin reductase (Trr1p) (Figure 18). Thus, if there is a lack of 

NADPH in the cell, no reduced form of thioredoxin will be available and Yap1p 

will remain active and induce TRX2. Consequently, induction of TRX2 expression 

level can be used as an indirect measure of NADPH deficiency (J. Zhang et al., 

2016). 

 

Figure 18. Oxidative stress response in S. cerevisiae by the transcription factor Yap1p. Adapted 
from (J. Zhang et al., 2016). 



49 

Based on this knowledge, the TRX2 promoter has been used to control the 

expression of a GFP-encoding gene in the TRX2p-yEGFP biosensor and to monitor 

cellular NADPH deficiency. Its induction has been indeed confirmed when the cells 

have been exposed to different compounds known to cause redox imbalance such 

as diamide, hydrogen peroxide or furfural, one of the main inhibitors present in 

lignocellulosic hydrolysates (J. Zhang et al., 2016). 

In the present work, the TRX2p-yEGFP biosensor was introduced into a xylose-

fermenting industrial strain and its response to different concentrations of furfural 

was assessed (Paper I). A correlation between the furfural concentration and the 

fluorescence response was confirmed. Furthermore, when the cultures were 

supplemented with 2.5 g/L of furfural, no growth was observed for 24 hours whereas 

the biosensor was still induced, showing that the biosensor response was not growth-

dependent (Paper I). The industrial strain carrying the TRX2p-yEGFP biosensor 

(TMBRP011) was propagated in fed-batch mode while samples were automatically 

taken and analysed by flow cytometry (cf. Chapter 3) to monitor its redox state 

(Paper I & II). During fed-batch cultivation, induction of the sensor was observed 

when the feed was supplemented with wheat straw hydrolysate (Paper I). However, 

this induction was lost before the end of the feeding phase, suggesting that the cells 

were adapted to those concentrations of inhibitors and no longer suffered from 

NADPH deficiency (Paper I & II) (Figure 19A). It was also observed that the initial 

response of the TRX2p-yEGFP sensor in anaerobic fermentation of wheat straw 

hydrolysate correlated to the ethanol production rate of the strain (Paper I), 

suggesting that the monitoring of the TRX2p-yEGFP sensor response could be used 

to predict the duration of the fermentation. 

The TRX2p-based biosensor is part of a recently developed and expanded biosensor 

toolbox for real-time monitoring in S. cerevisiae (Torello Pianale et al., 2022; 

Torello Pianale & Olsson, 2023). This toolbox includes seven other biosensors 

targeting the monitoring of ATP levels, intracellular pH, glycolytic flux, ribosome 

production, unfolded proteins, pyruvate metabolism and ethanol consumption 

(Torello Pianale & Olsson, 2023), which are relevant parameters for the study of the 

cellular response of S. cerevisiae to the presence of lignocellulosic inhibitors. In that 

study, the biosensors were combined in pairs and introduced into the same cell 

allowing the simultaneous measurement of two fluorescent responses in real-time 

and the study of possible interactions between the parameters. A correlation between 

ATP concentration and intracellular pH was notably observed (Torello Pianale et 

al., 2022).  

The studies above highlight how biosensors can help continuously monitor strain 

performance and fitness through the analysis of relevant intracellular processes. It 

also paves the way for the development of process control tools based on these 

responses. The latest approach was initiated in the present thesis work with the 

development of a dynamic control system based on the response of TRX2p-yEGFP 

biosensor (Paper II). As the response of the biosensor was found to decrease over 
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time during fed-batch propagation - due to yeast adaptation - (Paper I & II) 

(Figure 19A), it was hypothesised that a reinduction of the biosensor response could 

be achieved at that point by further increasing the inhibitor feeding; this may, in 

turn, result in a stronger cell adaptation and consequently increase fermentation 

performance. To test this hypothesis, a computer program was developed to read 

the results obtained from the at-line flow cytometry analysis in real-time and 

communicate with an Arduino to control the feed composition of the fed-batch 

cultivation (Paper II). The program was designed to start the secondary pump 

responsible for the introduction of a highly concentrated furfural solution when a 

decrease in the fluorescent response was observed (Paper II).  

Indeed, the developed control strategy resulted in the reinduction of the 

TRX2p-yEGFP response in the propagation step, without any negative effect on cell 

integrity, measured by PI staining (Figure 19B). However, in the preliminary trials, 

no improvement in fermentation performance was observed using the cells 

propagated with the developed control strategy (Paper II). 

 

Figure 19. Mean fluorescence intensity (MFI) of GFP (●) and percentage of PI-stained cells (■) 
during the feeding phase of yeast propagation in fed-batch cultivations with fixed feed rate (A) 
and sensor-controlled feed rate (B). The dotted line marks the time at which the secondary pump 
was automatically initiated by the program. Taken form Paper II. 

 

Nevertheless, the developed system portrays the use of biosensors and flow 

cytometry as a promising tool for the implementation of automated control systems 

in microbial cultivations.  
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Chapter 5 

Yeast engineering and monitoring for 

improving pentose utilisation 

The presence of different types of hexose and pentose sugars in lignocellulosic 

biomass represents a challenge for the development of optimised bioprocesses using 

S. cerevisiae (cf. Chapter 2). Whereas the hexose sugars glucose, fructose, galactose 

and maltose can be converted to ethanol by S. cerevisiae, the pentose sugars xylose 

and arabinose are not naturally fermented. In this chapter, an overview of the 

different strategies developed to enable and improve the consumption of xylose, the 

major pentose sugar in lignocellulosic biomass, is presented.  

Xylose consumption pathways  

Although S. cerevisiae possesses aldose oxidoreductases that can convert xylose to 

xylitol and xylulose (Träff et al., 2002), it is not naturally able to catabolise and 

grow on xylose as the sole carbon source. As bacteria and other yeasts in Nature do 

have this capability, metabolic engineering techniques have been used to introduce 

and test these utilisation pathways in S. cerevisiae (Figure 20).  

The first successful approach included the introduction of two enzymes: a xylose 

reductase (XR) and a xylitol dehydrogenase (XDH) from the yeast Scheffersomyces 

(Pichia) stipitis (Kötter et al., 1990). XR allows the conversion of xylose into xylitol 

while XDH oxidises xylitol into xylulose (Figure 20). The combination of these two 

enzymes is commonly referred to as the XR/XDH pathway. Alternatively, some 

bacteria and fungi carry out the conversion of xylose into xylulose in a single step 

by utilising a xylose isomerase (XI) (Figure 20). Several XI enzymes have been 

tested in S. cerevisiae, and the first anaerobic xylose conversion to ethanol was 

achieved using multiple copies of the xylose isomerase (XI) gene from the anaerobic 

fungus Piromyces (Kuyper et al., 2003). This is commonly known as the XI 

pathway. Both alternatives require the upregulation of the endogenous xylulose 

kinase (XK) for an efficient phosphorylation of xylulose into xylulose-5-phosphate. 
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At this point, xylulose-5P is metabolised using the native non-oxidative pentose 

phosphate pathway (PPP).  

Apart from these two common pathways, two oxidative pathways have been 

described, where the assimilation of xylose is not based on phosphorylation but on 

xylose oxidation (Figure 20). Xylose is first converted in three steps to 2-keto-3-

deoxyxylonate, the common intermediate for these oxidative pathways. In the 

Dahms pathway, 2-keto-3-deoxyxylonate is further converted to pyruvate and 

glycolaldehyde (Stephen Dahms, 1974), whereas in the Weimberg pathway, α-

ketoglutarate is produced instead (Weimberg, 1961). As these oxidative pathways 

are better suited for the aerobic production of other products than ethanol (Francois 

et al., 2020), they will not be further discussed in the present thesis that focuses on 

anaerobic ethanol production. 

 

Figure 20. Heterologous pathways introduced for xylose utilisation in S. cerevisiae. XI: xylose 
isomerase; XR: xylose reductase; XDH: xylitol dehydrogenase; XK: (endogenous) xylulose kinase; TCA 
cycle: tricarboxylic acid cycle.  
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The introduction of the XR/XDH and XI pathways into S. cerevisiae has proven 

challenging. The main drawback of the XR/XDH pathway is that both XR and XDH 

are cofactor-dependent enzymes. And, whereas the available XRs are mainly 

NADPH-dependent, XDHs are strictly NAD+-dependent, which generates a 

cofactor imbalance in the cell (Kotter & Ciriacy, 1993). Different strategies have 

been developed to address this issue including varying the levels of XR and XDH 

(Eliasson et al., 2001; Jin & Jeffries, 2003; Karhumaa et al., 2007; Walfridsson et 

al., 1997), adding acetoin as an external electron acceptor (Wahlbom & Hahn-

Hägerdal, 2002), modifying the redox metabolism in the cell (Jeppsson et al., 2002; 

Roca et al., 2003; Verho et al., 2003) or altering the cofactor affinity of XR 

(Jeppsson et al., 2006; Petschacher & Nidetzky, 2008) or XDH (Watanabe et al., 

2005). 

In the case of XI, the enzymatic activity is strongly inhibited by xylitol (Yamanaka, 

1969), the product of the endogenous aldose reductase encoded by the GRE3 gene 

(Kuhn et al., 1995). Therefore, deletion of GRE3 in XI-carrying strains has been 

performed to avoid xylitol formation and thus XI inhibition (Träff et al., 2001). Still, 

the in vivo activity of the XIs remains a challenge and high copy numbers of the XI-

encoding gene are needed to reach sufficient enzymatic activity (Matsushika et al., 

2009). To counteract this challenge, new XI variants with higher activities are 

constantly being screened for and/or engineered. In the present work, two new XI 

variants, one from Lachnoclostridium phytofermentans (ClosXI) (Brat et al., 2009) 

and another one from Parabacteroides spp. (ParaXI) (Silva et al., 2021) were 

compared to the established XI from Piromyces sp. (PiroXI) (Paper III). As two 

gene copies integrated into the chromosome were not sufficient to enable growth  

on xylose, the use of multicopy plasmids was still needed to allow xylose 

consumption; the study also showed that ClosXI gave the best performance amongst 

the three tested XIs (Paper III).  

Regardless of the chosen xylose pathway, some additional hurdles need to be 

overcome to achieve efficient utilisation of xylose in S. cerevisiae. The role of 

transport, PPP, xylose structural form and sugar signalling routes will be further 

discussed in this chapter.  

Xylose transport 

The transport of extracellular xylose into the cell has been identified as one of the 

key steps for the efficient utilisation of xylose by S. cerevisiae (Hector et al., 2008). 

Since S. cerevisiae does not express xylose-specific transporters, its uptake is 

carried out by hexose transporters encoded by the HXT gene family (Kruckeberg, 

1996) and by the galactose transporter Gal2p (Boles & Hollenberg, 1997). This 

implies that in a mixed sugar scenario, competition for transport will occur between 
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the different sugars, i.e., glucose and xylose. However, this will always favour 

glucose, because the transporters have a higher affinity for glucose than for xylose, 

with up to two orders of magnitude difference in KM (Kotter & Ciriacy, 1993). 

Studies in which strains were adapted to grow on xylose also showed an increase in 

the expression of hexose transporters associated with improved xylose uptake 

kinetics (Kuyper et al., 2005; Wahlbom et al., 2003), further corroborating transport 

as a limiting factor for xylose optimal consumption. 

One possible strategy to improve the xylose uptake rates is the heterologous 

expression of pentose-specific transporters. Through extensive screening, a wide 

range of pentose transporters have been identified in natural xylose-consuming 

microorganisms and expressed in S. cerevisiae (Table 7). However, this strategy did 

not yield the expected results as the generated strains generally suffered from low 

activity and stability of the transporters, likely due to poor expression and 

degradation by the yeast protein degradation machinery (Sen et al., 2016).  

Table 7. Heterologous expression of pentose transporters in S. cerevisiae.  

Microorganism of origin Transporter Reference 

Scheffersomyces stipitis (also 
known as Pichia stipitis) 

Xut1p-Xut7p (E. Young et al., 2011) 

Sut1p  (Katahira et al., 2008) 

Sut4p (Moon et al., 2013) 

Xyp29p (Du et al., 2010) 

AraTp (Subtil & Boles, 2011) 

Rgt2p (Moon et al., 2013) 

Hxt2.6p 
(de Sales et al., 2015) 

Qup2p 

Candida intermedia Gxs1p (Leandro et al., 2006) 

Gxf1p 

Debaryomyces hansenii XylHPp (E. Young et al., 2011) 

2D01474p 
(E. M. Young et al., 2014) 

2C02530p 

Arabidopsis thaliana Stp2p (Hamacher et al., 2002) 

At5g17010p 
(Hector et al., 2008) 

At5g59250p 

Ambrosiozyma monospora Lat1p and Lat2p (Verho et al., 2011) 

Neurospora crassa An25p (Du et al., 2010) 

 

To avoid possible complications associated with the expression of heterologous 

genes, the use and engineering of native hexose transporters have also been 

explored. Initial attempts showed that overexpression of the endogenous xylose 

transporters Hxt4p, Hxt7p and Gal2p in a xylose-fermenting strain did not improve 

the growth rate nor the xylose consumption rate (Hamacher et al., 2002). However, 

through evolutionary engineering, several mutations were identified in native 

transporters, which either contributed to an improved xylose specificity or a reduced 
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sensitivity towards glucose inhibition (Nijland & Driessen, 2020). In particular, a 

conserved asparagine which was present in all Hxt transporters was identified as a 

key residue in glucose recognition. The substitution of this asparagine in position 

376 in Gal2p for a phenylalanine (N376F) not only increased its affinity for xylose 

but also resulted in the reduction of its ability to transport glucose (Farwick et al., 

2014). Nowadays, the most efficient transporter is based on the synergistic effect of 

two mutations in Gal2p, the N376Y/M435I variant (Rojas et al., 2021). 

Upregulation of the pentose phosphate pathway genes 

Another limiting factor for the optimal consumption of xylose in S. cerevisiae has 

been the limited flux through the non-oxidative pentose phosphate pathway (PPP), 

which connects xylulose-5P into the central carbon metabolism (Figure 21). It was 

notably observed that strains carrying the XR/XDH pathway accumulated some of 

the intermediates formed in the PPP such as sedoheptulose-7-phosphate, xylulose-

5P and 6-phosphogluconate (Kotter & Ciriacy, 1993). This suggested that the 

metabolic flux through the non-oxidative PPP was limiting for efficient 

metabolisation of xylose.  

This was further confirmed by several studies in which strains with improved xylose 

consumption showed an upregulation of the transaldolase (TAL1) and/or the 

transketolase (TKL1) genes (Figure 21) (Becker & Boles, 2003; Wahlbom et al., 

2003). Indeed, overexpression of the genes TAL1 and TKL1, as well as its 

combination with the other genes from the non-oxidative PPP, RPE1 and RKI1 

(Figure 21), has been shown to be beneficial for strains carrying either XR/XDH or 

XI pathway (Walfridsson et al., 1995; Karhumaa, Hahn-Hägerdal and Gorwa-

Grauslund, 2005; Karhumaa et al., 2007). Nowadays, upregulation of non-oxidative 

PPP genes is routinely performed in most strains engineered for xylose utilisation 

worldwide. 
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Figure 21. The pentose phosphate pathway (PPP) in S. cerevisiae.  

The role of xylose anomerisation 

In lignocellulosic biomass, most of the xylose present in the xylan polymer is in the 

β-D-xylopyranose form (Gírio et al., 2010). However, it has been shown that some 

xylose isomerases (Miyamoto et al., 2022; Schray & Rose, 1971) and xylose 

reductases (Vogl & Brecker, 2013) have a preference for the opposite anomer, α-D-

xylopyranose. Thus, the introduction of a xylose epimerase/mutarotase that is 

capable of catalysing the conversion between the anomers α-D-xylopyranose and β-

D-xylopyranose (Figure 22) has been considered as a possible strategy for strains 

using lignocellulose-derived xylose as substrate. 

 

Figure 22. Conversion between the α-D-xylopyranose and β-D-xylopyranose anomer by 
mutarotase/xylose epimerase. 

After the mutarotase gene xylM, was identified in Lactococcus lactis and further 

characterised for its activity on different sugars, including D-xylose (Erlandson et 

al., 2000, 2001), it was found that its addition improved xylose consumption in a 

strain carrying one of the XI pathways (Sibbesen et al., 2009). In the present thesis, 



57 

the role of the addition of the same xylose epimerase XylM in strains carrying 

various XI or XR/XDH pathways was investigated (Paper IV). Among the three 

tested XI variants, the highest benefit was obtained with the fastest XI isolated from 

L. phytofermentans (ClosXI), with i.e., ethanol yields increasing from 0.18 g/g 

xylose to 0.38 g/g xylose by the addition of the xylose epimerase gene. For the XI 

isolated from Parabacteroides spp. (ParaXI), a smaller impact was observed since 

the maximum growth rate under aerobic conditions was only increased by 5%, as 

compared to the 14% observed for ClosXI. Finally, no effect was observed for the 

less efficient XI isolated from Piromyces sp. (PiroXI), where the addition of the 

xylose epimerase did not enable growth on xylose. No significant improvement was 

observed either in strains carrying the XR from Spathaspora passalidarum upon the 

addition of xylose epimerase (Paper IV). It is possible that some of the tested 

enzymes have no preference for one of the anomers, which could then render the 

epimerase role irrelevant. But, as the spontaneous conversion between the anomers 

is possible, the enzyme may also only benefit strains in which the conversion of 

xylose is the main controlling step. 

In conclusion, although the benefits of adding the xylose epimerase are enzyme-

dependent, it should be considered as a potential strategy for strain improvement, 

especially for strains with fast xylose conversion rates. 

Sugar signalling  

Despite all the metabolic engineering efforts to generate S. cerevisiae strains with 

optimised xylose consumption, the co-consumption of xylose in the presence of 

glucose remains a challenge; also xylose is still used at a lower rate than glucose. 

Using a transcriptomic approach, the cellular response to xylose was shown to 

resemble that of a non-fermentable sugar, suggesting that S. cerevisiae may not 

recognise the foreign xylose sugar as a fermentable carbon source (Matsushika et 

al., 2014). S. cerevisiae has a complex system for sugar signalling and regulation, 

which regulates for example the carbon catabolite repression system. Accordingly, 

only the cellular machinery required for a particular environmental condition will 

be made available, thus optimising resources. 

Three main sugar signalling routes are present in S. cerevisiae (Figure 23): (i) the 

Snf3p/Rgt2p pathway recognises the presence of hexoses in the medium and 

induces the expression of hexose transporter genes for their uptake (Santangelo, 

2006); (ii) the SNF1/Mig1p pathway induces the use of alternative carbon sources 

during glucose depletion (F. Moreno et al., 2005) and is involved in the carbon 

catabolite repression system (Gancedo, 1992); and (iii) the cAMP/PKA pathway 

responds to both extracellular and internalised glucose and regulates environmental 

stress response (Santangelo, 2006).  
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Figure 23. Simplified representation of the three main sugar signalling pathways in S. cerevisiae. 
Adapted from (M. Wu et al., 2020). 

To further elucidate the sugar signalling response of S. cerevisiae towards the non-

natural xylose sugar, Brink et al., (2016) have developed reporter strains that carried 

transcription factor-based biosensors for the three main sugar signalling routes 

(Table 8). Using these biosensor strains, it has been found that the presence of 

external xylose did not lead to a signalling response (Brink et al., 2016). Instead, 

signalling has only been observed upon xylose assimilation in XR-XDH strains; 

also, the response that was mostly observable in high xylose concentrations (50 g/L), 

has been similar to the one observed in low glucose concentrations (≤5 g/L) 

(Table 8) (Osiro et al., 2018). 

Table 8. Summary of the biosensors developed for the three sugar signalling routes and their 
induction state in different conditions. Adapted from (Osiro et al., 2018)(Brink et al., 2021) 

Signalling route Biosensor Low glucose High glucose High xylose 

Snf3p/Rgt2p HXT1p-yEGFP3 Repressed Induced Repressed 

SNF1/Mig1p SUC2p-yEGFP3 Induced Repressed Induced 

cAMP/PKA TPS1p-yEGFP3 Induced Non-induced Induced 

 

As these studies only focused on strains carrying the XR/XDH pathway, the sensor 

SUC2p-yEGFP was utilised in the present work to compare the sugar signalling 

response of strains carrying either the XR/XDH pathway or the XI pathway 

(Paper III). In the case of the XR/XDH strains, previous studies had shown an 

induction after 6 hours of cultivation (Osiro et al., 2018). In the present study, the 

response that was monitored during the whole cultivation showed that, after this 

initial induction, the signal response decreased over time (Figure 24) (Paper III). 
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The decrease in fluorescence signal could indicate a deactivation of the 

SNF1/Mig1p pathway which would correspond to the response with high glucose 

present in the medium, thus alleviating the possible hurdles generated by the sugar 

signalling response. 

Induction of the SUC2p-yEGFP biosensor was also observed in the XI strains grown 

in 50 g/L xylose; however, the induction profile was very different from the one 

observed for the XR/XDH strains: the signal kept increasing for a long period, 

leading to much higher induction levels than for the XR/XDH strains (Figure 24) 

(Paper III). Generally, an induction of SUC2 indicates that the cells are sensing a 

lack of fermentable sugars and thus a non-optimised metabolism (Brink et al., 2021). 

Thereby the higher induction of SUC2 for the XI strains corroborates the slower 

xylose consumption observed for these strains as compared to the XR/XDH strains. 

Besides the effect of the metabolic pathway on the sugar signalling, the influence of 

the different anomeric forms of xylose on sugar signalling was analysed. The strains 

in which a xylose epimerase was introduced showed a similar biosensor response to 

those without it (Figure 24) (Paper III). This indicated that the possible differences 

generated by the xylose epimerase in the balance of xylose anomers did not 

influence the sugar signalling response of the cells.  

 

Figure 24. Normalised mean fluorescence intensity of the SUC2p-yEGFP biosensor over time 
during anaerobic cultivation of XR/XDH strains TMBRP024 (XR/XDH, gre3Δ) (■) and TMBRP025 
(XR/XDH, gre3::epimerase)(□); XI strains TMBRP026 (ClosXI, gre3Δ) (●) and TMBRP027 (ClosXI, 
gre3::epiemrase) (○); and control strains TMBVP1005 (gre3Δ) (♦) and TMBVP1105 
(gre3::epimerase) (◊) in YNB medium supplemented with 50 g L-1 xylose. Taken from Paper III.  
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Regardless of the pathway, the sugar-sensing response observed in the presence of 

xylose indicates that the cellular resources activated are not optimal for its 

consumption. Accordingly, current efforts are being made towards the modification 

of signalling targets for the improvement of xylose-engineered strains. 

Modifications involving the SNF1/Mig1p pathway have proven to be the most 

challenging and efforts in this route have mainly targeted Hxk2p, as its interaction 

with xylose leads to autophosphorylation and inactivation (Figure 23) (Fernández 

et al., 1986); however, no notable improvements have been reported so far (Brink 

et al., 2021). On the contrary, it has been recently demonstrated that modifications 

in the other two signalling pathways that aim to mimic the activation of glucose 

sensing in the presence of xylose have given promising results (M. Wu et al., 2020). 

Deletion of the PDE1 and PDE2 genes, which encode the cAMP 

phosphodiesterases in charge of regulating the levels of cAMP in the cell (Figure 

23), has resulted in increased cAMP levels, leading to the activation of PKA which 

upregulates glycolysis (Figure 23). The generated strain (pde1Δpde2Δ) had a 51% 

higher specific xylose consumption rate and a 72% higher specific ethanol 

production rate compared to the control strain (M. Wu et al., 2020). Another 

modification involved the Snf3p/Rgt2p pathway by deleting RGT1, a transcription 

repressor of hexose transporters (HXTs) (Figure 23). In this case, an increase in the 

levels of HXT1 and HXT2 has been observed together with a 24% increase in 

specific xylose consumption rate (M. Wu et al., 2020). 

Besides engineering the native sugar signalling routes, the introduction of synthetic 

regulation strategies has also been investigated (Gopinarayanan & Nair, 2018). The 

GAL regulon, which is responsible for the induction of a number of genes involved 

in galactose catabolism in the presence of galactose in the medium, has been 

modified to respond to the presence of xylose as well (Gopinarayanan & Nair, 

2018). Furthermore, the genes involved in xylose catabolism have been expressed 

under Gal1p and Gal10p promoters so that their expression would be controlled by 

the GAL regulon (Gopinarayanan & Nair, 2018). As a result, xylose catabolism 

genes were expressed upon activation of the GAL regulon in the presence of xylose 

which led to higher growth rates and better xylose consumption than the control 

strain with constitutive expression of the xylose catabolism genes (Gopinarayanan 

& Nair, 2018). 

  



61 

Chapter 6 

Summary and outlook 

The work presented in this thesis focused on the use of transcription factor-based 

biosensors together with flow cytometry analysis to study two main challenges 

faced by S. cerevisiae in the 2G bioethanol process: the presence of inhibitory 

compounds and the consumption of xylose. The main findings and possible future 

strategies are summarised below. 

Inhibitory compounds 

The biosensor TRX2p-yEGFP was used to measure the deficiency of NADPH 

generated by the presence of inhibitory compounds such as furfural or HMF. The 

implementation of an automated at-line flow cytometry analysis during the 

cultivation of S. cerevisiae in bioreactors allowed the continuous monitoring of the 

biosensor’s response to the presence of lignocellulosic hydrolysate. With such a 

system, it was observed that induction of the sensor’s response during the 

propagation with lignocellulosic hydrolysate was correlated with a better 

performance in the consequent fermentation. It was also confirmed that propagation 

with lignocellulosic hydrolysate for short-term adaptation remained the best strategy 

as it resulted in a shorter lag phase during fermentation which improved the ethanol 

productivity.  

The initial biosensor response in the fermentation step was also found to be 

correlated with ethanol productivity. This correlation, if confirmed, could be useful 

as a tool to predict the most cost-effective duration for each fermentation run. 

Although the focus of the present work has been on the effects of furaldehydes, the 

methodology utilised here could be easily applied for the study of biosensors 

responding to the presence of other inhibitory compounds such as acetic acid or 

phenolic compounds. For example, the previously developed Haa1p-based 

biosensor for acetic acid (Mormino et al., 2021) could be an interesting biosensor to 

use. Different biosensors responding to the presence of phenolic compounds have 

already been developed in recent years (Augustiniene et al., 2023; Flachbart et al., 

2021); however, the majority of these biosensors are based on bacteria such as E. 

coli or Pseudomonas putida, so they would need to be tested for their application in 

S. cerevisiae.  



62 

Xylose metabolism 

Regarding xylose consumption, the role of a xylose epimerase capable of catalysing 

the interconversion between the anomers α-D-xylospyranose and 

β-D-xylospyranose was studied. It was shown that its addition was especially 

relevant for the strain utilising the xylose isomerase from L. phytofermentans 

(ClosXI) as it resulted in better xylose consumption and ethanol yields. In order to 

better understand the impact of xylose anomerisation in xylose consumption, the 

binding mechanism of xylose into the specific catalysing enzymes (XI or XDH) 

should now be elucidated.  

The response of the sugar signalling biosensor SUC2p-yEGFP showed significant 

differences between XI strains and XR/XDH strains. The higher and longer signal 

observed in XI strains was correlated with a lower xylose consumption, pointing to 

sugar signalling as a possible bottleneck for efficient xylose consumption in these 

strains. Finally, the presence of the xylose epimerase did not affect the sugar 

signalling of the strains, regardless of the pathway used for xylose consumption, 

which indicates that the anomer form has no impact on the extracellular sensing of 

xylose. 

To complement the information about sugar signalling in XI strains, the fluorescent 

signal of the HXT1p-yEGFP and TPS1p-yEGFP biosensors for the Snf3p/Rgt2p and 

cAMP/PKA signalling routes, respectively, could be studied. That would allow to 

obtain a more wholesome view of the three main sugar signalling routes. Also, the 

use of chemostat cultivation with both pathways could enable to compare the 

sensing response under similar growth conditions. 

Biosensors for monitoring and control 

In this thesis work, transcription factor-based biosensors were used to successfully 

monitor the intracellular response of S. cerevisiae strains to lignocellulosic 

inhibitors and xylose in real-time. The results observed with the use of automated 

at-line flow cytometry to monitor the response of the redox biosensor also led to the 

development of a process control strategy based on the biosensor response. As a 

result, it was possible to automatically adjust the concentration of furfural in the 

feed of a fed-batch cultivation depending on the cellular integrity and redox status. 

One could also envision a system in which the biosensor detects the main metabolic 

product of the selected strain so that the cultivation conditions can be dynamically 

adjusted according to the biosensor response to ensure maximal production. 
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Due to the real-time nature of the at-line flow cytometry system employed during 

this thesis work, large datasets can be obtained for every run. If this methodology 

was routinely implemented in microbial cultivations, it is likely that sufficient data 

would be collected to train an artificial intelligence model to learn to distinguish the 

patterns observed in the biosensor response and their corresponding cultivation 

outcome. The model could then be applied to adjust the cultivation parameters to 

optimise the outcome of the cultivation.  

Remaining challenges 

A long-term goal of the present research is to exploit the potential of biosensors and 

flow cytometry as monitoring and control tools to improve the production of 

bioethanol from lignocellulosic biomass in industrially relevant conditions. The 

knowledge gained through the implementation of these tools is also expected to help 

in the development of optimal strains and process configurations. To reach this goal, 

some challenges remain to be solved. 

Multiple biosensors on the same cell 

It would be ideal to use as many biosensors as possible in the same cell since 

simultaneous information about different parameters could be obtained. This 

requires multicolour FCM to be optimised. During this thesis work, the 

simultaneous measurement of the three FPs mEGFP, CyOFP1 and mBeRFP 

utilising solely the most common blue laser at 488 nm for excitation was shown to 

be possible. However, the second excitation laser available in the flow cytometer, a 

standard 640 nm red laser, was not used due to the lack of suitable FPs excitable by 

that laser. This is a known issue that limits the implementation of multicolour FCM 

to its full potential (Piatkevich & Verkhusha, 2011). Therefore, the field could 

highly benefit from the development of suitable far-red FPs as it would allow the 

expansion of the current working spectrum. 

Nevertheless, the at-line flow cytometry monitoring system presented in this thesis 

work can already be expanded for the simultaneous measurement of up to three 

cellular properties on the same cell. For example, the two biosensors utilised in this 

work could be combined to measure redox imbalance and sugar signalling 

simultaneously during yeast cultivation. This could eventually lead to the 

development of a control system for optimal yeast propagation in which not only 

the levels of inhibitors are adjusted but also the introduction of xylose as a carbon 

source, all based on the biosensors responses of the cells. 
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Application in solid-containing matrix 

So far, the developed system could be applied in the propagation step or 

fermentation steps in which hydrolysate, the liquid fraction of the pretreated 

lignocellulosic material, was used. However, the current system was not applicable 

to bioreactor cultivations in which solid matter is present. Also, mimicking the 

SS(c)F conditions with the use of liquid hydrolysate did not yield the same results 

as true SS(c)F (Paper I), which indicated that the presence of solid particles 

themselves also influenced the fermentation efficiency. This makes the 

development of tools for monitoring fermentations with complex matrixes even 

more vital. 

One possibility would be to introduce a filtration step prior to the analysis in the 

system. However, it is likely to be clogged making it necessary to replace the filter 

which is hardly doable. Collaboration with process engineers to develop suitable 

alternative separation methods is thus essential for the efficient collection of cells in 

the future.  
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