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Wanderer, there is no path ahead,
you make the path by walking.
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Popular science summary in English

The boreal forests of the north have accumulated vast stores of carbon from the at-
mosphere over thousands of years due to higher rates of plant growth than decom-
position. This sink of carbon has been important for stabilizing the global climate
by maintaining the greenhouse gas content of the atmosphere. However, increased
wildfire activity associated with recent climate change is threatening to release boreal
carbon stores to the atmosphere at rates faster than they can reaccumulate, further
driving climatic instability. Though much more research is needed in order to predict
in greater detail the mechanisms by which climate change will alter the characteristics
of boreal forests and their overall ability to sequester carbon.

A rare opportunity presented itself in 2018 when the near-entire range of boreal forests
in Sweden experienced high fire activity. This allowed for burnt conifer forest prop-
erties to be measured in the field across 50 wildfire events which spanned wide ranges
of mean annual temperature and precipitation. These measurements were compared
to 50 unburnt forests that were matched to each burnt site to serve as an estimate of
their prefire conditions. The resulting scientific analyses presented in this thesis pro-
vide one of the most comprehensive views into how changes in climate can influence
the impact of wildfire on boreal forests.

It was found that in the years leading up to a fire event, climate can determine the
distribution of carbon within plants and soil and its relative amount compared to
the important nutrient nitrogen. This arrangement of material determined what was
combusted during burning, with warmer regions tending to preserve more nitro-
gen than carbon. Faster break down of excess nitrogen-containing material by mi-
crobes under warmer conditions was important for fertilizing the soil, allowing more
nutrient-demanding and quickly growing broadleaf trees to grow in place of the previ-
ously established needle-leaved conifers in the burnt forests. However, conifer forest
soil left after wildfire was poorly suited for broadleaf sprouting, preventing them from
fully utilizing the extra nutrients that were available, which limited forest transition
towards more temperate vegetation. This means that warming associated with climate
change can increase rates of decomposition relative to plant growth in boreal forests,
shifting them towards emitting large amounts of greenhouse gasses to the atmosphere
and further accelerating climate change. This thesis provides important advances in
knowledge regarding the role of climate and wildfire in influencing the cycling of the
chemical elements in boreal forests, thereby improving understanding of their contri-
butions to the global carbon cycle.
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Populärvetenskaplig sammanfattning på svenska

De boreala skogarna i Norden har samlat en stor mängd kol från atmosfären över
tusentals år på grund av en oproportionerlig hög planttillväxt i förhållande till ned-
brytning. Den här kolsänkan har varit viktigt för att stabilisera det globala klimatet
genom att reglera atmosfärens växthusgasinnehåll. Ökad skogsbrandsaktivitet kopp-
lad till aktuell klimatförändring hotar att släppa ut borealt kol till atmosfären snabbare
än det kan återackumuleras, en process som driver klimatinstabilitet. Mycket mer for-
skring krävs för att förstå mekanismerna att klimatförändring kommer att justera de
boreala skogarnas förmåga att lagra kol.

En viktig möjlighet dök upp år 2018 då nästan hela det boreala området i Sverige
upplevde hög brandaktivitet. Den här situationen tillät barrskogar att mättas i fältet
över 50 skogsbränder som fanns över ett brett spektrum av medeltemperatur och ne-
derbörd. De här mätningarna jämfördes mot 50 obrända skogar, matchade mot varje
bränd skog för att uppskatta deras förhållanden innan branden.

Det visade sig att under åren ledande till en skogsbrand kan klimat styra hur kol
distribueras mellan växter och jord och dess relativa mängd jämfört med den vikti-
ga näringen kväve. Den här fördelningen av material bestämde det som brann, med
varmare regioner som tenderade att hålla kvar mer kväve än kol. Snabbare mikrobi-
ell nedbrytning av material med hög kväve under högre temperatur var viktigt för
att berika jorden. Det här gjorde att mer näringskrävande och snabbväxande lövträd
kunde växa istället för de tidigare barrträden i de brända skogarna. Men jord anpassad
till barrträd som lämnades kvar efter skogsbränderna var inte optimal för lövträd att
gro i, vilket hindrade dem från att utnyttja extra näring och växa till sina fulla kapici-
tet. Det här innebär att varmare temperaturer, kopplade till klimatförändringar, kan
öka nedbrytninghastigheten i förhållande till planttillväxt, och därmed öka växthus-
gas uttsläpp till atmosfären. Den här avhandlingen presenterar viktiga steg framåt för
att förstå klimatets roll i att påverka biogeokemiska cykler i boreala skogar och deras
koppling till den globala kolcykeln.
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Chapter 1

Research Aims

The aims of this thesis are simply motivated. We know the climate is changing. We
know changing climate is connected to alterations in wildfire activity. And we know
that climate and wildfire control the structure and function of boreal forests. Yet we do
not know enough to be prepared for the coming decades of environmental instability.
Most of our knowledge is pieced together additively from disparate studies that are
both spatially and methodologically isolated. No direct attempt has been made in the
field to observe the synergistic effects of climatic variation and wildfire burning on
boreal forest ecosystems.

Furthermore, little emphasis has been placed on investigating the representativeness
of accumulated knowledge over the large possible variation of fire processes that can
occur in boreal forests as a whole. Understanding of boreal wildfire contribution to
the global land-atmosphere greenhouse gas balance is largely derived from a few high-
intensity burn complexes in North America and comparison of the drivers of burn
dynamics at the intercontinental scale has so far been only superficial. The mecha-
nisms of ecological integration with the distinctly low-intensity fire regime of boreal
Eurasia in particular harbors ample room for exploration and is an important research
target to further develop knowledge of the contributions of forests to the global carbon
cycle.

This thesis contains the results of the most spatially dispersed wildfire field campaign
ever performed in boreal forests. Sampling was carried out with the intention to isolate
the interactions of carbon and nitrogen with postfire recovery of plant and microbial
communities across the near-entire climatic range of boreal Sweden. A network of
50 separately occurring summer 2018 wildfires and 50 individually matched unburnt
controls was developed to address three broad gaps in knowledge:
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1. Can macroclimatic conditions determine the immediate role of wildfire burn-
ing in the redistribution and loss of carbon and nitrogen within boreal forests?

2. How does climate and wildfire restructuring of boreal forests affect the biotic
cycling of chemical elements over the years following fire?

3. By what mechanisms can postfire reassembly of plant and microbial commu-
nities integrate into biogeochemical feedbacks under shifting climate and fire
regimes?

These questions were addressed in four separate papers appended to this thesis. The
papers are preceded by a background section aimed at developing the fundamental
principles that drive Earth’s biogeochemical cycles in order to provide a framework of
deductive navigation for use in interpreting the connection of the current work into
the larger body of scientific knowledge. A methods section follows, covering the two
field campaigns and following data analysis that generated the four papers. A descrip-
tive overview of each paper is then provided as summarized under the constraint of
demonstrating their interconnection in addressing the three main research questions
listed above.
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Chapter 2

Background

2.1 Synthesis of the Elements and their Formation of Earth

In the beginning, there was energy, or something. Then there was space, probably.
After came light, maybe. Finally, mass was formed, it can be speculated. From there,
the universe began to operate closer to what we can currently observe. And we ob-
serve it to be cooling, releasing the celestial bodies from the confines of their own
gravitation, resulting in the synthesis of the elements and emission of radiative en-
ergy¹. Stars form from the gravitational collapse of molecular clouds, primarily com-
posed of hydrogen (74% current baryonic mass of the universe) and helium (25%),
remnant of nucleosynthesis occurring during only the first few minutes of the uni-
verse². An immense crushing force provides pressure and temperature high enough to
overcome the coulomb barrier, that is, elevated particle energies allow them to break
through electrostatic repulsion and travel close enough to each other to be bound by
the short-range strong nuclear force³. Nuclear fusion of hydrogen into helium pro-
duces an energetic counter pressure that resists gravitational collapse and sustains the
reaction. The energy that manages to escape at the surface as thermal radiation warms
surroundings by cooling the star. In some stars, the increasing pressure provided by
the accumulation of less reactive helium in the core can cause a secondary ignition
that begins to fuse this element into heavier ones such as carbon, oxygen, nitrogen
and iron³. In their eventual death, these stars serve to feed surrounding nebulae with
heavy elements, in turn shaping their formative potential.

The universe is connected, and internal and external perturbation of interstellar mate-
rial can provide for its aggregation and eventual accretion, that is, the self-amplifying
collection of matter through enhancement of gravitational density. This process re-
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sults in the formation of distinct objects that can further cluster material at various
distances along a rotating disk, with the center forming a star (or stars) and celes-
tial bodies such as planets later forming at varied proximity⁴,⁵. While the elemental
composition of a star system will be determined by that collected during accretion,
the distribution of thermal energy across the accretion disk can determine its alloca-
tion. In the case of the solar system, planets forming with cooler temperatures due
to greater distance from the sun accumulated larger quantities of solidified volatiles,
namely hydrogen and helium (e.g., Jupiter). Yet those closer, such as the warm Earth,
concentrated heavier elements such as iron, which melted upon planetary condens-
ing and sank to form a heavy metal core spinning within a liquid bath of iron and
nickel together encased by a molten mantle of mineral material⁶. As the planet cooled
volatile compounds that were captured in the mantle, such as water (H2O), diatomic
nitrogen (N2), and carbon dioxide (CO2), were released and able to form an atmo-
sphere through the shielding of solar wind by the protective magnetic field of the
rotating ferromagnetic core and gravitational attraction of the planet⁷.

Eventually a surface crust solidified into tectonic plates subject to the convective ac-
tivity of the mantle, forming drifting, rising and falling continents infilled by oceans⁸.
This directed the inner earth to dissipate heat through gradual release of geothermal
energy or explosive volcanic activity that further influenced atmospheric composition
and added local variation to the mineralogy of the earth surface⁹. Together, out-
gassing, weathering, sedimentation and subduction of the earth’s minerals formed
geological cycles resembling those of today. The equilibration of these cycles has been
a major factor in controlling the greenhouse gas content of the atmosphere, which in
turn determines the receptivity of the atmosphere to Earth’s dissipating heat¹⁰. Var-
ied surface albedo and fluctuating insolation due to a spinning earth rotating on a
tilted axis around the sun, forms latitudinally-dependent diurnal and seasonal cycles
of energy input to the atmosphere, which is mixed convectively, forming chaotically
fluctuating weather activity that can emerge as gradients of climatic patterns when
integrated over space and time. This activity powers the redistribution of thermally
responsive compounds, such as water, across the planet, granting gravitational po-
tential energy to it, and that it carries, to shape the earth surface with erosive and
corrosive power¹¹.

While many of the fine details leading to the formation of Earth are to always be
shrouded in mystery, the principles will be the same. The universe has energy and mass
with the space to distribute them. Time allows for their entropic rearrangement and
the dissipation of gradients of energy. Energy can be extracted along these gradients
to power stable cycles of mass transfer that drive diverse material self-organization that
provides uncountable potential for emergent properties.
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2.2 Emergence of Life

The earth is an extreme outlier among planets in how the intricate processes of its
formation were able to provide for a rich arrangement of elements and continuously
regenerating energy gradients that promote their cycling. Among these elements, car-
bon was particularly important in determining the land-atmosphere feedbacks that
controlled the distribution of heat near the earth surface, as described above. Yet, for
billions of years of tenancy this element hid its true potential in dictating the fate of
the planet. Carbon has remarkably flexible bonding capabilities that allow for virtu-
ally infinite arrangements of stable molecular structure. Early in Earth history, the
assembly of complicated carbon-based compounds was no more than a product of
the random fluctuations of chemical synthesis and decay, though over long time local
conglomerations of these compounds began to interact and eventually catalyze reac-
tions among themselves¹². These interactions were concentrated by their collection
within self-constructed barriers (equivalent to the modern cell membrane), forming
discrete units of activity that further accelerated the development of self-replicative
abilities of organic structure¹³. Such organized, low-entropy conglomerations were
far from thermodynamic equilibrium with their surroundings and a resulting drive to-
wards spontaneous exchange of mass and energy with the environment demanded the
development of mechanisms that maintain internal structure in the face of fluctuating
external influence. The utilization of chemiosmotic gradients across lipid membranes
appeared to be important in the development of the ability to convert external energy
supply into usable chemical energy that contributed to the maintenance of thermo-
dynamically dissipative structure, forming the basis for natural selection of adaptive
metabolic processes that can maintain homeostasis of an organic entity under given
environmental conditions¹⁴. Across the heterogeneous expanse of early Earth, this
selection filter was broad, allowing a diversity of survival strategies to accumulate and
coexist, spurring a multitude of interactions between them that further determined
the propagation strategy and structure of organic material and its influence on the
cycling of matter and energy. Together these processes formed the first semblances of
units of life under ecological interaction and a precedent for the larger importance of
carbon in the earth system.

One of the most significant advancements in the metabolic development of life was
the advent of oxygenic photosynthesis¹⁵. This processes utilizes abundant solar radi-
ation, water and CO2 to produce chemical energy in the form of adenosine triphos-
phate (ATP) and reduced carbon together providing for cellular maintenance and
growth. The rapid accumulation of energy and biomass made possible by this advent
outcompeted anaerobic metabolisms, even poisoning them with the build up of highly
reactive diatomic oxygen released during carbon fixation¹⁶. This process facilitated a
sharp rise in atmospheric O2 (along with reduced CO2) inducing drops in global
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temperature and widespread extinction termed the “Great Oxygenation Event”. This
occurrence was one of the earliest examples of the extension of biotic processes into
the larger earth cycles and the major impact that self-amplifying feedbacks can have
on climate without stabilization mechanisms in place.

The oxygenation of the atmosphere selected for organisms that could harness its en-
ergy rather than be destroyed by it, directing the evolution of resistive biomass struc-
ture and highly efficient aerobic metabolisms capable of rapidly recycling photosyn-
thetically derived material¹⁶. These advancements in efficiency were likely important
for increasing the ability of individual organisms to coordinate and specialize their
metabolic strategies to facilitate closed elemental cycles within communities. Tighter
exchange networks may have been made further possible by the collection of facilita-
tive metabolic activity into intermembrane space, as in initial abiogenesis. This trend
of superorganismal activity and integration into more complex lifeforms continued
to enhance flexibility to acquire and internally cycle resources, granting buffering ca-
pabilities of organisms to the perturbations of their environment¹⁷. These buffering
capabilities in turn allowed organisms to expand their range into new territory or into
competition within occupied ones¹⁸. Soon enough, a particular set of complex be-
ings, capable of outcompeting all others with their technological advancements, came
to power as orchestrators of the course of Earth’s development. These creatures mined
every corner of the earth for its resources, all the while indiscriminately polluting the
land, water and atmosphere, contributing to climatic change and the reshaping of bi-
otic communities through exaction of mass extinction. These beings were none other
than plants.

2.3 Influence of Plants

The colonization of land by plants occurred over many millions of years and involved
myriad evolutionary advances. These included the development of leaves that accel-
erated primary production as well as roots that shaped the formation of soils which
could serve as a reservoir from which to insert and extract resources such as nutrient
and moisture allowing for employment of strategic phenological pacing¹⁹. Soil de-
velopment was likely immediately responsible for differentiation of plant strategy of
resource exchange with this reservoir, especially in response to the diversity of parent
material, microbial life and climatic conditions found across land. Of these strategies,
the symbioses of plant roots with fungi, termed mycorrhizas, were likely of initial
importance, as they are today²⁰. These strategies are reminiscent of the early super-
organismal biotic associations that merged to form the first complex life, though in
this case the association was between already complex organisms, granting enormous
potential for specialization and associative flexibility promoting their mutual success
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under broad ranges of environmental challenge²¹. Though not all plant-soil feed-
backs were stable, and the imbalanced cycling of carbon between these two ecosystem
compartments in particular has provided for dramatic impacts on the earth system
throughout its history.

Specialization and improvement of enzyme efficiency allowed for the high biotic
turnover of primary metabolites. For example, amino acids could be recycled through
proteins in response to current gene expression and glucose could be quickly swapped
between storage (e.g., starch) and structural forms (e.g., cellulose) during growth.
The lability of these compounds granted flexible and rapid growth patterns to plants,
though also made them susceptible to decay by external organisms and abiotic fac-
tors. This challenge drove development of secondary compounds that extended tissue
longevity. Of these, lignin was particularly important for both the defense of plants
from decay as well as the structural support that allowed them to reach taller and com-
pete for access to light, forming the first trees and forest systems²²,²³,²⁴. Synthesis of
lignin incorporates structural irregularity and pre-oxidation that provides steric hin-
drance and limits development of specialized enzymes to reduce the activation energy
required for its decomposition²². An outpacing of plant defense capabilities to rates
of degradation from external influence may have been an important factor in allowing
for the rapid expansion of vegetative biomass across the early land surface, producing
a significant sink of carbon from the atmosphere with release of gaseous oxygen²⁴.

Eventually during this expansion, biomass accumulation was bound to become sub-
stantially inhibited by its own density under environmental constraint, though large
sinks of atmospheric carbon could continue via the shedding and replacement of ex-
isting biomass of primary producers. However, much of this material would still be
respired along a trophic chain stimulated by enhanced oxygen, forming a negative
feedback for the sinking of carbon from the atmosphere. An added complexity to
this feedback is the fact that primarily produced carbon has many opportunities to
escape degradative conditions. Notably, its transfer to wet environments of limited
gas exchange can enact rapid depletion of the high energy oxygen during respiration,
forming strong gradients of chemical potential with a threshold at the atmospheric in-
terface. Differential access to this energy of primary producers and decomposers can
allow for accumulation of carbon and extension of its residence to the time-scales of
sedimentation, presenting significant quantities for transfer from the fast (biosphere-
atmosphere) to the slow (geological) carbon cycle further preventing their reaction
with elevating O2 ²⁵,²⁶. Indeed, periods of high moisture on land and large areas
of shallow water bodies have provided for the movement of organic carbon to the
geological cycle responsible for elevating atmospheric oxygen to up to 35% volume,
compared to today’s 21%²⁶,²⁷. These periods starkly demonstrated the importance of
balances of biotic activity in the production and arrangement of varied carbon com-
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pounds across habitat configurations that serve to both pump carbon through the fast
and to the slow carbon cycles and produce substantial impact on the energy content
of the atmosphere (i.e., thermal vs. chemical). Furthermore, these processes represent
one of the first clear signals of the formation of the modern patterns of connectance
of small ecological scales (e.g., microbial) to those of larger space and time.

2.4 The Phenomenon of Wildfire

While the energizing of the atmosphere may have provided a strong driving force for
the coming to dominance of plant life, it was not without its dangers. The bringing
into proximity of molecular oxygen and reduced carbon forms an electrochemical gra-
dient akin to the charging of a battery. Proper enzymatic circuity connecting its ter-
minals can provide for the controlled and efficient transfer of energy into biologically
usable forms (e.g., ATP)²⁸. Though this circuit is liable to shorts, allowing oxida-
tion of organic material to release unreined thermal energy into its surroundings. At
suitable oxygen concentrations, such as at the interface with the atmosphere, this heat
can provide activation energy for further oxidative decay of organic fuel, stimulating a
chain reaction called fire. Fire is thought to have interacted with land plants since their
conception, with atmospheric oxygen concentrations of at least 16% allowing for the
propagation of wildfire across the landscape and a significant return of fixed carbon
as gas to the atmosphere²⁹. The intensity of combustion reactions are enhanced by
oxygen concentration, allowing more widespread and destructive occurrence²⁹, form-
ing a negative feedback for plant growth and associated carbon fixation and oxygen
release. This feedback provided further evolutionary stimulus for the specialization
of plants into five fire-adaptation strategies observed today³⁰. Fire “embracers” do
little to reduce their flammability and instead depend on senescence and competitive
propagation to recover their population. “Endurers” suffer damage from fire, but re-
tain the ability to quickly resprout from their surviving structure. “Colonizers” arrive
on burn scars from off site using long-distance dispersal abilities. “Avoiders” adapt to
areas that have reduced propensity to burning, namely through the storage of mois-
ture that acts as a heat sink and stifles its delivery to the combustion reaction. Finally,
“resisters” developed structure (e.g., thick bark, shedding dead branches) that sup-
pressed burn intensity and reduced mortality through wildfire events, allowing their
continued site residence and ability to recover their population through continuous
recruitment. Though both at the species and community level these strategies were
not mutually exclusive nor were they time-independent and thereby were able to or-
ganize alongside climatic conditions to enact reciprocal control on wildfire activity to
produce regional fire regimes with characteristic return intervals and modes of burn
propagation³¹. Many plant systems nestled into successive cycles of growth and de-
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struction, with complex patterns of assembly and disintegration that could endure
the challenges of largely unpredictable, though bounded, fluxes of energy input and
extraction.

The added complexity of disturbances like burning to the dynamics of natural ecosys-
tems is only beginning to be understood. Wildfire requires an ignition source to occur
in the proximity of sufficiently arranged and desiccated fuel to allow for the adequate
propagation of heat. For example, a lightning strike during dry weather can ignite
a forest canopy, where a threshold of structural density will allow for accumulation
of heat at rates faster than its dissipation. Energy that does escape regions of active
combustion can serve to further dry and volatilize surrounding fuel, forming a highly
combustible mixture of gas that accelerates the movement of the fire front to consume
large land areas (often hectares to many km2) of vegetation in high intensity flame.
The ability of trees to control canopy structure, volatility and heat-dissipating mois-
ture content in response to weather and climate will therefore be determinant of its
burn dynamics, and even be able to direct burning away from the canopy to the forest
floor³¹. Surface litter below the canopy will tend to be more closely configured, re-
stricting gas exchange and resulting in less intense, but longer occurring burning due
to its greater ability to store heat. Though this litter-derived fuel source will strongly
reflect characteristics of the plants above, impacting volatility and combustion com-
pleteness under given burn conditions. Densely packed organic soil layers in the
ground below will be more strongly influenced by the activity of microbiota and can
even store enough heat to support smoldering combustion of weeks or more, com-
pared to the minutes to hours typical of canopy fire³²,³³,³⁴,³⁵,³⁶. Travel of fire through
the forest vegetation, surface and ground present three very different modes of heat
propagation and resulting impacts on the emission and transformation of ecosystem
carbon.

Different fuel types and heating conditions will influence gaseous emission chemistry
as well as the transformation of residual solid fuel³⁷. For example, volatilized com-
pounds can conglomerate into soot particles during combustion, providing physi-
cal obstruction to oxidation processes, forming highly refractory “black carbon”³⁸,³⁹.
Solid fuels can conversely have specific surface area increased and be coated with par-
tial negative charge, increasing its overall reactivity³⁸,³⁹. Though, the nearly unlim-
ited transformation pathways of wildfire oxidation of organic material can direct it
away from the specificity of degradative enzymes, reducing its decomposability. Yet,
wildfire heat can also have a reverse effect of breaking down complicated molecular
structure into that more easily integrated into microbial biomass³⁸,³⁹. Furthermore,
differential thermolability of elements in fuel can cause their rebalancing, e.g., lower
heating tends to preserve nitrogen relative to carbon, leaving behind highly nitroge-
nous pyrogenic material⁴⁰. Nutrient enrichment can in turn nourish energy intensive
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biotic mineralization of refractory carbon post fire⁴¹. Lastly, the ability of wildfire
to mobilize carbon to the atmosphere extends to the potential to alter its mobility
through the land, eventually acting to amplify pumps from the fast to slow carbon cy-
cles by transporting lowly reactive material to areas of sedimentation such as lakebeds
and the ocean floor⁴². Therefore, initial fuel configuration enacts strong boundaries
on the stochastic walk of wildfire heat propagation that provides for the material re-
composition of an ecosystem that serves as foundation for the successional dynamic
of biological communities and the cycling of carbon through the larger earth systems.

2.5 Forests in the Anthropocene

In the present day, forests cover 31% of the earth’s land area⁴³. These forests can be
divided into three climatic regions: boreal, temperate and tropical. Growing sea-
son energy and length is largely determined by latitude and elevation and provides
boundaries for life strategy and activity rates determinant of carbon allocation between
biomass and soil pools. Within these regions carbon structure is further determined
by gradients of moisture, a product of water inputs (e.g., inflow, precipitation) and
outputs (e.g., evapotranspiration, drainage)⁴⁴. While climate and topological factors
do bound possibilities for ecosystem arrangement, and have been observed to explain
distribution of carbon across the world’s forests, the strategy and function of ecosys-
tems as they develop under environmental limits can place further constraints on el-
emental cycling. Of these strategies, mycorrhizal associations appear to be important
for determining the amount of carbon stored in soils, even offering greater statisti-
cal constraints on these quantities than climate at the global scale⁴⁵. The two most
studied mycorrhizas are the arbuscular mycorrhiza (AM) and ectomycorrhiza (EcM).
AM and EcM can be considered as two strategies maintained by conglomerations of
ecosystem feedbacks that form two ends of an axis of resource conservatism. Relative
dominance of these strategies has been observed to shift smoothly across gradients
of mean annual temperature²¹. The AM strategy relies on rapid turnover of organic
matter and ability of AM fungi to infiltrate momentary openings in nutrient transfer
between immobilized states over extended growing seasons for adequate delivery to
their associated plants. The innate leakiness of high soil activity requires sustainable
rates of resource replenishment found from, e.g., nutritious plant litter, root exu-
dates, atmospheric nitrogen fixation and extraction from soil minerals⁴⁶. In cooler
regions with shorter growing seasons and more pressing demand to conserve avail-
able resources, a greater dominance of EcM arises, where EcM fungi monopolize root
exudate supply and outcompete saprotrophs in the targeted mining of nutrient from
the soil⁴⁷,⁴⁸, enabling the indefinite accumulation of carbon on the forest floor in the
absence of disturbance⁴⁹.
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In boreal forests, relatively large amounts of soil carbon accumulation is a product
of EcM dominance in response to the boundaries set by moisture and short growing
seasons that limit soil activity. The accumulation of these dense ground stores lying
across the vast expanse of the boreal region has long been a subject of interest as an
important sink of carbon from the atmosphere⁵⁰. Boreal forests are particularly fire
prone and the ability to maintain their carbon sinking abilities is dependent on the
frequency and severity of burning relative to rates of carbon accumulation. Because
wildfire frequency and severity can vary, some forests sequester carbon over relatively
long periods without burning while others can have nearly all their flammable carbon
removed during highly destructive events earlier in their development. This varied
burn severity and timing will produce differing recovery patterns. For example, com-
plete to near-complete organic layer and conifer removal and elevated postfire nutri-
ent cycling can promote stand replacement with broadleaves⁵¹. Over several decades,
these broadleaves can gradually cede dominance to conifers under diminishing nu-
trient cycling rates in a process of relay succession⁵². This variability within a fire
regime is responsible for producing landscapes with a mosaic of seral stages and burn
severity, controlling forest recovery trajectories that stabilize under probabilistic dis-
tributions determined by regional climatic conditions and their associated patterns of
fire weather. This stabilization provides for the adequate provisioning of genes to fill
varying niche qualities and overall dimensionality over the course of recovery from
destructive disturbance events⁵³. Though boreal forests extend over large ranges of
climate, bringing forth a comparatively extensive range of forest structure and associ-
ated fire response. In particular, lengthened growing seasons can allow for increased
soil turnover and greater dominance of the AM strategy. AM associated plants tend
to produce litter with lower carbon to nitrogen (C:N) ratios, which in turn may have
altered flammability that controls the fire regime⁴⁵. Furthermore, AM plants tend to
form plant-soil feedbacks that encourage heterospecific plant germination, over EcM
which restrict growth to conspecifics, and are thought to be important in determining
latitudinal species diversity gradients⁵⁴. Together, these mean that any alteration in
local climate conditions can have cascading effects on the structure of boreal forests
and a reshaping of their fire regimes, which can provide for disequilibrium between
any of the small to large scale feedbacks that stabilize ecosystems across the landscape.

The mechanisms by which boreal forests can equilibrate to climatic flux is poorly un-
derstood, and complicated specifically by the influence of one particular lifeform intri-
cately designed to be highly effective in undoing the severe alterations that plants had
enacted on the land and atmosphere. This creature has fervently destroyed forests⁴³,
and dug their long-buried waste from the earth, releasing it back into the atmo-
sphere⁵⁵, effectively reversing pumps from the fast to slow carbon cycles. In just a
couple hundred years this species alone was successful in increasing the carbon con-
centration of the atmosphere, disrupting climate systems that enacted more frequent
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and severe drought that further aided in the destruction of plant life⁵⁶. During this
period of change, high latitude regions have experienced particularly rapid rates of
warming and increased fire activity that threaten to release long stored carbon in bo-
real forest vegetation and soils, creating a positive feedback with warming⁵⁷. The
creature became obsessed with monitoring their progress in the returning of the earth
to its undisturbed, pre-plant state, enacting quests to indulge in the counting of every
single atom of carbon released back into the atmosphere. These beings are none other
than humans.

2.6 Monitoring Disequilibrium

Climate forcing due to the combustion of fossil fuels has caused severe disruption to
ecosystems globally⁵⁶. In particular, boreal forests across North America are experi-
encing increasing frequency of high-intensity wildfire that has the power to convert
more land area from carbon sinks to sources⁵⁷. Enhanced mean annual temperature
and associated nutrient cycling, along with dwindling competitive abilities of conifers
under mounting stress of induced maladaptation appears to be driving a transition to-
wards greater deciduous dominance across the continent, with uncertain impacts on
the future of ecosystem services such as carbon storage across the region⁵⁸. More
uncertainty arises at larger scale from the fact that fewer observations exist regard-
ing the impact of shifting climate and fire regimes in boreal forests on the Eurasian
continent despite containing 70% of the boreal land area⁵⁹. Eurasian boreal forests
historically have experienced lower intensity wildfire due to a greater prevalence of fire
resisting overstory species, often restricting propagation to surface and ground fire³¹.
While estimates of changes in total ecosystem N due to wildfire burning are rare in
all boreal forests, pyrogenic material has been found to have enhanced C:N relative
to its source material in North America compared to reduced C:N in Eurasia⁶⁰,⁶¹.
Relatively elevated nitrogen under less severe wildfire has the potential to increase
microbial mobilization of this element that can fertilize postfire soils and potentially
alter early postfire recovery patterns of plant species⁴¹, a complicated phenomenon
currently not well investigated compared to the more direct vegetation replacement
via its total incineration in high-intensity wildfire.

High-intensity burning tends to extend over large areas of land once initiated and
its frequency is expected to increase, justifying targeted research of this wildfire dy-
namic⁶². Though applying accumulated knowledge from this effort indiscriminately
across the landscape has the potential to bias future understanding of flammable
ecosystems globally. This is especially true when considering that fire frequency is
bound to also increase at low intensities, potentially partly due to its entrance into sys-
tems traditionally protected from burning, like boreal wetlands, which can store vast
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amounts of carbon in the ground vulnerable to combustion when dried⁶³. It is there-
fore crucial to understand the drivers and consequences of burn severity across its full
range in order to predict and potentially reduce wildfire impact through careful land-
scape management as anthropogenic activity adjusts to shifting ecosystem services and
regulates its influence on the environment. Furthermore, it must be acknowledged
that traditional approaches to wildfire study tend to incorporate sampling within only
single or closely grouped burn scars, resulting in a high potential for correlative trends
to be entangled within the influence of pseudoreplication or spatial autocorrelation
of uncertain or even uninvestigated extent⁶⁴. These approaches also miss the influ-
ence of factors that vary coarsely over space, limiting insight into the connection of
individual forest stands into their larger landscape and planet-wide feedbacks. In par-
ticular, despite the fact that both climate and wildfire regimes are separately known
to strongly influence forest ecosystems, research has essentially been unseeing to their
synergistic effects on forest structure and function, limiting predictive approaches re-
garding shifting forest dynamics under current trajectories of climatic change to only
additive (rather than interactive) effects.

The performance of predictive models is ultimately determined by their degree of ex-
ternal validation, and both their accuracy and explanatory breadth can be increased by
iterative adjustment to fit observations collected from the real-life systems they repre-
sent. The slow decadal change in climate paired with the suddenness and continuous
novelty found within many of its consequences (e.g., wildfire, storm, drought, and
pest events), make direct validation of predictive strategies crucial for human pre-
paredness though often impossible, leaving models based on current Earth patterns
with an unknown number of unknown unknowns. In such a position of information
paucity, and a dire need for knowing, continuous and widespread exploratory en-
vironmental monitoring breaking traditional restrictions on spatial scale and level of
abstraction is important for investigating ecosystems as they traverse an ever increasing
global disequilibrium. Specifically, an eagerness to isolate ecological mechanism be-
fore establishing the emerging patterns they might construct⁶⁵, outdated and arbitrary
distinction of ecosystem components, readiness to attribute unexplained variation to
an insurmountable and innate stochasticity of nature, and ethos-based selection of
research topic and methodology may currently hinder the ability to uncover impor-
tant patterns emerging from the interactions of both known and unknown natural
processes that improve the prediction and management of ecosystem services in the
coming future.

The work presented in this thesis was designed to provide novel insight into the syn-
ergistic effects of climate and wildfire on biogeochemical cycling in boreal forests with
implications for ecological trajectories of recovery under the coming decades of global
change. This was completed using simple and repeatable monitoring methodology
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that sampled multiple interacting ecosystem components and processes across 50 ma-
ture forests spanning the near entire climatic range of boreal forest in Sweden, each
paired with a nearby stand burnt during the nationwide wildfire outbreaks of summer
2018⁶⁶. Minimal selection filters were placed on fire severity, allowing for capturing of
a breadth of its variation across the region. The effects of this variation were sampled
during the chaotic period of rapid ecosystem destruction and reconnection during
the first two years after fire in attempts to understand how the immediate impacts
of burning interact with the differential pace of recovery of ecosystem components
as biota recolonize from both on and offsite refugia, across broad climatic control.
The large sample sizes and diversity of variables provided for a flood of correlative
patterns. To avoid model overfitting, data fishing and cumbersome management of
caveats under an exploratory paradigm, a multitude of statistical approaches and the-
oretical abstractions were used to isolate only the most robust patterns of ecosystem
connectivity as constrained by their ability to quantitatively explain the cycling of
carbon and nitrogen. This perspective was seen less as a limitation in scope than a
fundamental reference point by which to extend understanding of the important pat-
terns of boreal forest intraconnection to the larger biogeochemical systems in which
they are embedded, aiding in the effort to better predict their future in yet another
period of great flux in the history of Earth.
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Chapter 3

Methods

In 2018, abnormal weather pushed the near-entirety of Sweden into extreme drought.
This allowed for large wildfires to break out across the near-entire forested region
of the country. Contrasted to the fire season of 2014, where only a small portion
of the country had dried enough for considerable fire activity, 2018 presented a rare
opportunity to study the impacts of wildfire in a similar forest type (i.e., non-wetland,
non-sloping, pine dominant, podzols), across broad gradients of climate.

The entirety of this thesis is built upon data derived from a network of 50 separate
wildfires occurring during summer 2018 and paired unburnt controls spread across ap-
proximately 57-67◦ latitude, 0.43-7.77 ◦C mean annual temperature, and 539-772 mm
mean annual precipitation (Figure 3.1). Sites were visited in approximate order of
North to South during two field campaigns, the first spanning 5 to 20 August 2019,
and the second over 29 July to 11 August 2020.

3.1 Plot Selection

The 50 burnt plots were selected to maximize spread across climate gradients within
Sweden from a pool of 325 fires identified from the summer 2018 period that had
perimeters manually mapped by the Swedish Forest Agency. Perimeters were drawn
around burn scars delineated using Normalized Burn Ratio (NBR) values derived
from Sentinel-2 bottom-of-atmosphere corrected bands 8 and 12. Close to the highest
NBR pixel values in each separate burn scar, away from the immediate fire edges, one
20 × 20 m2 plot was established along with an equally sized, paired control plot lo-
cated in unburnt forest between 15 and 150 m (average 58 m) outside the burn scar. The
control plots served as estimates of prefire properties for each of their corresponding
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Figure 3.1: The 50 plot pairs spanned the approximately 57-67◦ latitudinal range within Sweden. They are
seen as colored points on figures provided by the Swedish Meteorological and Hydrological Insti-
tute (SMHI) of mean annual temperature (left) and mean annual precipitation (right) over the last
normal period 1961–1990. Major cities/research centers are marked with empty circle perimeters
and WGS 84 (EPSG:4979) latitudes (horizontal bars) and longitudes (vertical bars) are given in de-
grees.

burnt plots. Visual satellite imagery was used to ensure there were no obvious changes
in stand structure occurring between control and burnt plots. Using geodatasets prior
to the field campaign, plot pairs were best matched to resemble each other in terms
of overstory biomass, basal area, tree species dominance, and stand age, with these
properties otherwise allowed to vary across the climatic and geographical span of the
region. Topo-edaphically evaluated soil moisture potential (TEM), which was consid-
ered a metric of soil drainage, was also used to match plots and avoid wetland areas⁶⁷.
TEM was provided at 10 m resolution and given as integer values ranging from 0
to 240 (in order of increasing moisture potential) and was based on the Soil Topo-
graphic Wetness Index⁶⁸ in areas where soil type information was available and on
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the two topographic indices Depth to Water⁶⁹ and the Topographic Wetness Index⁷⁰
where soil information was unavailable. Elevation data was provided by the Swedish
Mapping, Cadastral and Land Registration Authority from a 50 m resolution digital
elevation model⁷¹. Slope was calculated using the “slope” function within the ArcGIS
software environment⁷². All stands were located on minimally sloping land (less than
15◦ slope), and elevation change between plot pairs was minimized. The plot pairs
were spread across broad gradients of mean annual temperature (MAT) and precipi-
tation (MAP), ranging from 0.43-7.77 ◦C and 539-772 mm, respectively, during the
years 1961-2017 (Figure 3.1).

3.2 Vegetation Sampling and Measurement

3.2.1 Overstory

In 2019 individual tree bole diameter (sampled at 130 cm height above the forest floor)
and species were recorded within each plot perimeter for all trees of at least 5 cm di-
ameter at measurement height. Trees less than 5 cm were uncommon and assumed
to contribute negligibly to biomass and carbon (C) and nitrogen (N) emissions. A
tree was recorded as living if standing upright and having any proportion of green
needles⁷³. If a fallen tree was charred only on its lower (in standing orientation) por-
tions, it was deemed standing during fire ignition and its measurements were included
if its base was within plot boundaries. In burnt plots, the percentage of brown and
black needles in each tree canopy was visually approximated as 0%, 25%, 50%, 75%,
or 100% with these individual values averaged to give an estimate of total plot canopy
browning and blackening. Overstory biomass was calculated by entering bole diam-
eters into allometric equations for Scots pine (Pinus sylvestris), Norway spruce (Picea
abies), silver birch (Betula pendula), and downy birch (Betula pubescens)⁷⁴. From the
results of the equations, aboveground biomass was considered to be the categories
stem wood, stem bark, living branches, dead branches, stump and needles while be-
lowground was coarse roots (≥ 5 cm) and fine roots (< 5 cm). Stump, needle, coarse
root and fine root categories were inapplicable for birch and its biomass was calculated
only from the remaining categories. To estimate overstory total aboveground C and
N, CR (ratio of sample C weight to total weight) for all components was set to 0.5
and NR (ratio of sample N weight to total weight) to 0.01 for needles and 0.004 for
all other parts⁷⁵.

Plot-wide tree mortality (TMort) was calculated as the percentage of measured stems
with no amount of green leaves in their respective canopies⁷³. Species were also
recorded, finding the 50 burnt plots to be largely dominated by Scots pine (Pinus
sylvestris) with the percentage of Norway spruce (Picea abies) stems between 25%–50%
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in five plots, between 50%–75% in three plots, and greater than 75% in two plots.
Birch stems (Betula pendula and Betula pubescens) were less than 25% in 44 plots and
between 25%–50% in six plots, of which only one was spruce dominant. All plots
showed some visible charring of tree boles, though only three plots had greater than
1% plot-wide canopy blackening (i.e., evidence of time-of-fire canopy burning). The
observed lack of charring in the canopy led to the assumption that the majority of the
direct heating impact of fire was restricted to only the lower tree boles and flaming
and smoldering combustion in the soil layers.

3.2.2 Understory

Understory samples were taken from control plots by cutting all non-moss, non-tree
plant material at the surface of the soil within four 40 × 40 cm2 patches, each from a
separate plot quadrant. To reduce sampling error due to low plot coverage, the sam-
ple patches were chosen by performing four quadrant-wide surveys noting visual esti-
mates of coverage and proportions of plant functional groups (i.e., graminoids, forbs,
shrubs, and pteridophytes). These were applied in selecting representative patches for
the portion of the quadrant that was vegetated, which was always all non-bare rock
surface. The conglomerated biomass density and composition for the four samples
were applied to the visually estimated non-bare rock surface area of an entire burnt
plot to approximate its prefire understory coverage.

Aboveground understory vegetation was completely consumed in most burnt plots (caus-
ing a lack of variation for use in correlative analysis) and its prefire properties were
therefore estimated by the paired control plots. There, understory was typically be-
low 1 m in height and composed less than 2% of the C found in the soil when averaged
across the 50 control plots.

3.2.3 Floristics

A floristics survey was performed for each of the 49 plots in summer 2020 (two years
post fire) to capture the vegetation establishment stage⁷⁶. Each plot was divided into
quarters and a 40 × 40 cm sampling quadrat was placed randomly once in each of
the four areas. All vegetation within the quadrat was clipped at the soil surface and
stored. This procedure was performed again but with the plot split in two instead of
four areas, resulting in a plot-wide conglomerated sample of six cuttings. One plot
was sampled seven times, though all biomass values were divided by total sample area
per plot to give units of g m−2.

Each plot sample was dried for 3 days at 40 ◦C and dry weight recorded for use in
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analysis. For each of the 49 plots, the recorded species weights were divided into eight
functional group categories including broadleaf (tree species only), conifer, pterido-
phyte, forb, and graminoid. Shrubs were split into three additional categories: erica-
ceous species that tend to resprout rhizomatously after fire (RhizErC, including Vac-
cinium vitis-idaea, Vaccinium myrtillus, and Vaccinium uliginosum)⁷⁷,⁷⁸, ericaceous
species that tend to germinate from seed (SeedErC)⁷⁹, and arbuscular mycorrhizal
shrubs (ShrubAM). No moss or lichen biomass was found, with the forest floor be-
low the regrowing plants being covered by a layer of char and some postfire additions
of plant litter.

3.3 Soil Sampling and Measurement

During the first field campaign, sampling and analysis were broken into six forest com-
partments. The compartments included four soil layers (i.e., mineral, duff, moss/litter
and char) as well as the two aboveground compartments (i.e., understory and over-
story vegetation). The organic layer was defined as the duff, moss/litter and char layers
grouped together while the soil category was considered as the organic layer grouped
with the mineral layer. The category called “total” refers to the grouping of the soil
and understory, but excludes the overstory due to its minimal combustion (as judged
by observed scarcity of canopy blackening). Woody debris mixed in the moss/litter
layer was sampled in this study, though not the coarse woody debris laying on top of
this layer. While larger dead wood lying on top of the forest floor can contribute to
C and N stocks and their losses due to fire, this material is typically of low prevalence
in Sweden⁸⁰, difficult to accurately measure and standard methodology to estimate
its consumption by fire is only beginning to be developed⁸¹. Therefore, focus was
retained on the variation of the larger and more readily measurable ecosystem C and
N pools in soil and living vegetation.

Soil horizon depths (i.e., the distance from bottom to top of each individual layer) of
the mineral, duff, moss/litter, and char layers were measured at 20 points per plot from
10 equally spaced excavations along each plot diagonal⁸². The mineral layer was mea-
sured from its highest rock obtrusion to the bottom of the duff layer. The duff layer
was considered the grouping of the F (partially decomposed material) and H (humic
material) layers in accordance with the Canadian system of soil classification⁸³, as is
common in boreal wildfire literature. The moss/litter layer was all unburnt material
on top of the duff layer, including visually identifiable detritus and living moss. In
all burnt sites, a layer of conglomerated char formed a clear boundary on top of the
moss/litter allowing for distinct measurement. Here, char is defined as fully black-
ened, brittle material with apparent high heat exposure due to fire. This separation
was made based on large observed differences in C and N concentrations in surface
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pyrogenic layers compared to lower residual layers in similar ecosystems⁶⁰,⁶¹,⁸⁴. All
soils were podzols, except 6 which had no mineral soil across the measured transects
and had organic layers directly on top of bedrock.

Samples were acquired for all four soil layers. Four mineral soil samples were taken
using a 3 cm diameter, 40 cm long gouge auger corer at four corners of a square
each 15 m from the plot center. Where feasible, at least 10 cm vertical mineral cores
were taken, however in shallower layers a minimum depth of 5 cm each was collected.
Duff samples were collected at the same plot corners as the mineral cores by excavating
four soil volumes of approximately 25 × 25 cm2 area and at least the full depth of the
organic layer. This volume was trimmed to discard the mineral and moss/litter layers
off the bottom and top of the volumes, respectively. Right angles were then gently
cut with sharp scissors and the 3 dimensions were measured in millimeters (collected
samples were at least 400 cm3 each and aimed to sample the entire in situ depth). Duff
and mineral soils were kept frozen until portions were freeze dried for separate analysis.
Moss/litter samples were collected by cutting squares, with attention to preservation
of the natural in situ volume, until filling a 553 cm3 steel container. Char layer samples
were similarly collected in a 112 cm3 container. At least one sample each of moss/litter
and char were acquired from each plot quadrant, though more were taken at equal
spacing along a transect to fill the containers if the layer was thin. On the upper
surface of the char layer were small portions of dry, unburnt material, which were
likely postfire additions of litter to the forest floor. This material was discarded from
the char collection and was not included in C and N stock estimates.

3.4 Site Temperature and Moisture Assessment

Under a given set of macroclimatic conditions, ecosystem structure can alter tem-
perature in the subcanopy and soil which together may have a more direct effect
than regional MAT on this study’s sampled microbial, nutrient and forest proper-
ties. Three recently produced maps of mean annual temperature in the subcanopy at
15 cm above the forest floor⁸⁵ and in the soil between 0-5 cm depth and 5-15 cm⁸⁶ had
strong multicollinearity with MAT in both control and burnt plots that was consid-
ered too great for these variables to be used together in statistical analysis (r > 0.94
for all). Soil and subcanopy temperatures were not found to be significantly differ-
ent between burnt and control plots pairs due to soil maps having too low resolu-
tion (1 km) and subcanopy maps (25 m resolution) not incorporating the effects of
the 2018 wildfires. Organic layer temperature and moisture (using a Delta-T HH2
meter and Thetaprobe type ML2x probe) were recorded at each plot center and four
of its corners during the 2019 and 2020 field campaigns (plot pairs measured within at
most 2 hours, northernmost plot-pair unmeasured due to salvage logging). No signif-
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icant difference in moisture was found between burnt and control pairs in either year,
though burnt plot soil temperature was significantly elevated in 2019 (1.34±0.28 ◦C)
and 2020 (1.95±0.33 ◦C) at 95% confidence (two-tailed Z-test). These one-off mea-
surements of moisture and temperature were not included in statistical analysis due to
the highly variable nature of these soil properties over the year. Temperature logging
ibuttons installed at 2 cm above the bottom of the organic layer found a temperature
increase (averaged over time between the two site visits) of 0.39±0.16 ◦C in burnt
plots relative to control in 23 plot pairs (two-tailed t-test at 95% confidence), though
otherwise had too high a failure rate to provide adequate sample size for incorporation
into analysis. Soil temperature and moisture conditions were therefore left to be ap-
proximated by variability in their larger-scale drivers including TEM (soil drainage),
MAP (precipitation input), MAT (evapotranspiration) and TMort (albedo, soil solar
insolation, evapotranspiration).

3.5 Soil Sample Processing

3.5.1 Total Carbon and Nitrogen Elemental Analysis

The duff layer was sieved to 4 mm with a portion freeze dried, after being kept frozen
since acquisition, for analysis of phospholipid-derived fatty acid content (PLFA) and
pH. This sieve size was chosen to include the most organic material while reliably
removing visibly distinguishable roots in order to reduce their potential interference
in PLFA analysis⁸⁷. The remaining fine and coarse fractions of the duff layer, along
with the moss/litter and char layers in their entireties, were dried at 40 ◦C for 3 days
and then pulverized for total C and N analysis. The pulverized samples were packed
in tin capsules and combusted in a Costech ECS 4010 elemental analyzer, equipped
with a 2 m packed chromatographic column for gas separation, to produce values of
C and N fraction by sample weight. After every 10 samples, standardized acetanilide
(provided by the company Elemental Microanalysis, Okehampton, United Kingdom)
was run to calibrate the machine within 1%. Duff layer elemental weight ratios were
recalculated by the sum of C or N in its fine and coarse fractions and divided by total
sample weight. For each plot, CR and NR were multiplied by area-normalized mass
of each soil layer, which itself was calculated by multiplying ρ (i.e., bulk density as
measured by total soil layer sample weight divided by its volume) by the average mea-
sured thickness of that layer, providing C and N values in units of kg m−2. Organic
layer area-normalized C and N was calculated by summing those values in each of its
included sub-layers and its ρ value was calculated by summing the area-normalized
mass of the sub-layers and dividing by their combined depth in meters (producing
units of kg m−3). Organic layer C:N was calculated by dividing total organic layer
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kg C m−2 by its kg N m−2. To retain focus on readily measurable forest properties,
the effects of soil charring throughout the soil profile were tested as proxied by the
kg m−2 (i.e., area-normalized total mass) of the sampled pyrogenic char layer alone.

3.5.2 Black Carbon Quantification

Black carbon (BC) was quantified using the chemo-thermal oxidation method at
375 ◦C (CTO-375)⁸⁸,⁸⁹,⁹⁰, with adaptation for soil samples⁹¹. CTO-375 was chosen
to isolate an oxidation resistant portion of the PyC pool in order to directly address
the effects of fire on C storage. The method also has a relatively low false positive rate,
well-tested precision and is practical for applying to a large number of samples⁹².
However, by selecting for compounds of low thermolability, the method is expected
to give a conservative view of overall C compound change due to the varied heating
conditions of wildfire⁹². Although, recent global analysis suggests CTO-375 produces
similar PyC concentrations in soils as other common quantification methods⁹³.

Samples of 15-20 mg were weighed into silver capsules (precombusted at 450 ◦C).
Thermal treatment was performed on the samples in a horizontal tube furnace (Entech
EFT30-50) at 375 ◦C with forced airflow of 250-300 mL min−1 for 24 hours. The
temperature was continuously monitored with an external probe and ramped slowly
to prevent overshoot. After, inorganic carbon was removed by acid fumigation with
12 M hydrochloric acid in a desiccator for four hours. The samples were moistened
with 25 µL deionized water before and after fumigation. The samples were dried on
a hot plate at 60-70 ◦C before measurement of the remaining C.

Total C in the remaining sample material was measured using an elemental ana-
lyzer (COSTECH ECS4010). The measured remaining C weight was divided by
original sample weight to determine the weight ratio of BC (BC:W) within the plot
soil layer (given in units of g kg−1). The performance of the elemental analyzer
was calibrated every 10 samples using acetanilide (Elemental microanalysis, UK) and
compared to measurements of a soil standard (Boden standard, Säntis analytical AG,
Switzerland). The detection limit was 1.3 µg C, estimated as the average C response in
blank runs plus five times the standard deviation (n = 5). No standard for BC is avail-
able, and the BC quantification was evaluated against replicated measurements (n = 5)
of reference materials NIST1944 (sediment) and SRM 2795 (diesel soot), with pub-
lished BC quantification. The measured BC concentrations in the reference materials
were 0.73 ± 0.09% for NIST1944 and 67.5 ± 0.9% for SRM 2795, and are within the
ranges of published values (NIST1944: 0.8 ± 0.02%, SRM 2795: 68.2 ± 0.9%)⁸⁹.
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3.5.3 Duff pH Measurement

pH was measured on the < 4 mm freeze dried duff samples using an HI pH-211 me-
ter (Hanna Instruments). 1.0 g of soil was mixed with 20.0 mL of deionized water (re-
sulting in an approximated 1:2.5 volume:volume dilution) and shaken vigorously for
at least 1 min. The electrode was immersed in this solution for an additional 1 min,
giving stable readings to two decimal places.

3.6 PLFA Processing and Data Handling

Freeze dried soil samples were sent to the Swedish University of Agricultural Sci-
ences location in Umeå, Sweden for processing of PLFA markers. The extraction and
methanolysis of the soil PLFA followed the method in Bligh and Dryer⁹⁴ as modi-
fied by White et al⁹⁵. Resulting fatty acid methyl esters (FAME) were injected into
a Trace GC Ultra gas chromatograph (Thermo Fisher Scientific, Bremen, Germany)
by means of splitless injection and separated by a 30 m × 0.25 mm × 0.25 µm DB-
5 column (Agilent Technologies, Santa Clara, CA). The chromatographic conditions
were as follows. Injection volume: 1 µL; injection split ratio: 10; injector temperature:
280 ◦C; carrier flow: 1 mL min−1; temperature gradient: starting temperature 80 ◦C,
hold for 1 min, increase to 155 ◦C at 20 ◦C min−1, hold for 0 min, increase to 300 ◦C
at 20 ◦C min−1, hold 15 min. Samples were subsequently analyzed by an ISQ LT
single quadrupole mass spectrometer (Thermo Fisher Scientific, Bremen, Germany).
This gave quantitative measures of 24 individual FAME compounds as nmol per g
soil sample, as calibrated by an internal standard of methyl nonadecanoate (19:0) pro-
vided by Sigma-Aldrich (product number 74208). Instrument stability and retention
times were verified using bacterial acid methyl ester (BAME) and Supelco 37 Compo-
nent FAME mixtures both provided by Sigma-Aldrich (respective product numbers
47080-U and CRM47885).

Total measured PLFA can be suitably used as a metric of living soil microbial biomass
due to its tendency not to persist as soil organic matter⁸⁷,⁹⁶,⁹⁷. The spectroscopi-
cally measured FAME concentrations were utilized as an estimate of relative microbial
biomass per mass soil (nmol g−1) across the sampled plots and abbreviated as “Mic-
Conc”. Total microbial biomass per unit area was calculated by multiplying MicConc
by soil organic layer mass (producing units of nmol cm−2) and abbreviated as “Mic-
Mass”.

Fungal PLFA markers for each plot were considered as the sum of the measured
methylated fatty acids 16:1ω5, 18:2ω6,9, 18:1ω9⁹⁶,⁹⁸. Actinobacteria consisted of 10Me16:0,
10Me17:0, 10Me18:0 markers⁹⁶,⁹⁸. GN bacteria were the sum of cy17:0, cy19:0, 16:1ω7,
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16:1ω9, 17:1ω8, and 18:1ω7⁹⁶,⁹⁸,⁹⁹. The GP bacteria were the Actinobacteria marker
concentrations plus i14:0, i15:0, a15:0, i16:0, i17:0, and a17:0⁹⁹. General bacteria were
the sum of the markers for GP and GN⁹⁸. Because the remaining markers 14:0, 15:0,
16:0, 17:0, 18:0, and 20:0 are not unique to any of these groups⁹⁶,¹⁰⁰, they were only
used in the estimates of total microbial biomass (i.e., MicConc and MicMass).

The F:B ratio was constructed for each plot by dividing the fungal PLFA concentration
by the general bacteria. GP:GN was calculated by dividing GP markers by GN. Act:F
was formed by dividing Actinobacteria markers by fungal, though excluding 16:1ω5
which is representative of arbuscular mycorrhizal fungi⁹⁶, in order to better isolate the
relationship between Actinobacteria and saprotrophic fungi (though these 2 markers
do not distinguish free-living saprotrophs from ectomycorrhizal fungi⁹⁶). The variable
Arb:F was constructed by dividing the arbuscular mycorrhizal fungi FAME concen-
tration by all three fungal markers.

3.7 Resin Capsule Installation, Processing andDataHandling

300 count PST-1 ion-exchange resin capsules were purchased from Unibest (Walla
Walla, Washington). During the 2019 field campaign, 3 resin capsules per plot were
buried equally spaced radially at about 5 m from the plot center in the organic layer
consistently at approximately 2 cm above its interface with the mineral layer below.
There they acted to adsorb solvated ions effectively irreversibly, providing a time-
integrated view of nutrient mobilization into the soil solution. 277 viable resin cap-
sules were retrieved during a second field campaign approximately 1 year later, with
the remaining missing or damaged. The northernmost burnt plot was salvage logged
between installation and retrieval, causing major disturbance, and resin capsules from
its control pair were not found. Therefore sample size for analyses involving resin
capsules and recovering plant communities was reduced to n = 49 for burnt and con-
trol plot analyses each, and their differences (n = 50 for all analyses excluding resin
capsule and floristics data). While in the field, the capsules were cleaned by shaking
vigorously in a sealed vial with several applications of clean deionized water until ap-
plied water was clear and free from debris. Capsules were kept refrigerated each in
individual plastic bags until sent back to Unibest for processing.

Lab work was managed by Unibest and involved further cleaning with deionized wa-
ter and then extraction of resin capsule adsorbates individually by rinsing with 2 N
HCl at a rate of 1 mL min−1 for 50 minutes, resulting in volumetric 50 mL solu-
tions of leachate. Each solution was separately analyzed for concentration of chem-
ical species and given in ppm (mg L−1 for mass of target element alone). NH4 and
NO3 concentrations were determined from aliquots of the extract solutions using flow
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injection analysis (FIA) and UV/VIS spectroscopy with an FIAlab-2500 (FIAlab In-
struments, Seattle, Washington). Concentration of 12 elements (P, K, S, Ca, Na, Fe,
Mg, Cu, Zn, Mn, Al, B) were determined using inductively coupled plasma optical
emission spectroscopy (ICP-AES) using an Agilent 5110 ICP-OES (Agilent Technolo-
gies, Santa Clara, California). This technique is destructive, involving injecting of the
extract solution into a high energy plasma, and provided only the concentration of the
elements based on their unique spectroscopic signature, not the identity of their resin-
adsorbed ionic forms. Resulting ppm values for both characterization methods were
matrix matched by identical processing of separate resin capsules which were soaked
in 3rd party manufactured standard solutions of common soil ions. This procedure
was performed before every 25 samples run and provided an analytical repeatability
within ± 0.5%. The resulting 277 sets of ppm values were averaged per plot providing
49 burnt and 49 paired control values for each chemical species. 3 additional con-
structed variables were used in analysis. These were iN (inorganic nitrogen), the sum
of the NH4 and NO3 variables, NH4:NO3, the NH4 variable divided by NO3 and
iN:P, iN divided by the P variable.

3.8 Remotely Derived Data

3.8.1 Standardized Precipitation-Evapotranspiration Index

The shorter term moisture balance of summer 2018 was assessed with the Standardized
Precipitation-Evapotranspiration Index (SPEI) due to its observed relationship to fuel
drying and fire activity in boreal Eurasia¹⁰¹,¹⁰². SPEI was calculated over the first 6
months of 2018 at 0.5◦ spatial resolution within the SPEIBase data source to capture
the extended desiccation process leading up to each fire¹⁰³. Due to limited temporal
information on 2018 fire activity, common fire weather metrics were unavailable and
were instead approximated by summer 2018 anomalies in temperature (∆MAT) and
precipitation (∆MAP), i.e., the difference in the 2018 June, July, and August average
of these values from those during the same months averaged over the period from 1961
to 2017.
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3.9 Data Analysis

3.9.1 Variable Construction

3.9.1.1 Paper I

Paper I aimed to establish a potential causal chain of climatic influence on the post-
fire restructuring of ecosystem C and N. Utilized variables were therefore temporally
categorized to establish their direction of causality as found in Table 3.1.

Table 3.1: Main variables used in Paper I listed and grouped by category. Each category row is assumed to have
a potential causal effect on lower rows.

Category Variables

climate/drainage MAT, MAP, TEM
prefire organic soil C, N, C:N, CR, NR, bulk density, depth
time-of-fire SPEI, ∆MAT, ∆MAP, char C, char N
postfire C loss, N loss

The composition of the different organic material storage compartments were also
used in analysis and formulated as in Table 3.2.

3.9.1.2 Paper II

Paper II attempted to explain shifts in BC and BC:C in the organic and mineral layers
using MAT, MAP, TEM and the loss of organic layer C due to burning. Control plot
BC and BC:C were attempted to be explained by their respective compartment total
mass, total C, C:N and plot TEM.

3.9.1.3 Paper III

Paper III aimed to use readily measurable predictor variables (Table 3.3) to explain the
PLFA indicators F:B, GP:GN, Act:F and MicMass and all nutrient values from the
resin capsules.

3.9.1.4 Paper IV

Paper IV used a set of environmental variables (Table 3.4) to explain the species and
functional group patterns of the floristic survey performed in burnt plots during the
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Table 3.2: Paper I Compartment composition variables (CCV) categories for ecosystem compartments given in
dry weight (kg).

Compartment Categories

mineral coarse (≥ 2 mm), fine (< 2 mm)
duff coarse (≥ 4 mm), fine (< 4 mm)
moss/litter needles, broad leaves, woody material, moss and lichen
understory graminoids, forbs, shrubs, pteridophytes
overstory (aboveground) stem wood, stem bark, living branches, dead branches, stump, needles
overstory (belowground) coarse roots (≥ 5 cm), fine roots (< 5 cm)

Table 3.3: All climate and forest property predictor variables used in Paper III analysis with units and description
of their derivation.

Variable Unit Derivation

MAT ◦C 1961-2017 averaged mean annual temperature
MAP mm 1961-2017 averaged mean annual precipitation
TMort % Percentage of non-living tree stems plot-wide
pH – pH value extracted from duff layer
ρ kg m−3 Organic layer bulk density
C:N – Organic layer total C divided by total N
char kg m−2 Pyrogenic layer mass (burnt plots only)
C kg C m−2 Total area-normalized organic layer C

second field campaign. Species richness was calculated simply as the number of plant
species within biomass samples per plot. Regrowth rate of the sampled plant com-
munities was calculated as the total dry biomass collected per burnt plot sampled area
measured in 2020 and given in units of g m−2.

3.9.2 StatisticalDistributions, Confidence Intervals and PercentageChange

Three statistical distributions were formed for sampled variables, one for their con-
trol plot values, burnt plot values and another for the values produced by subtract-
ing control plot values individually from those in their paired burnt plot (∆ variable
distributions). MAT and MAP (given at 2 km resolution) were identical for each
control-burnt plot pair, and so the same values were used within control, burnt and
∆ variable analyses. All variable distributions (except MAT and MAP which were
only analyzed as a predictor variable) were approximated as normal.

Confidence intervals were marked with the ± sign and constructed at the 95% level
using the formula

I = x̄± z · σ√
n

(3.1)
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Table 3.4: Independent variables used in regression and distance-based redundancy analyses for Paper IV.

Variable Unit Derivation

MAT ◦C 1961-2017 averaged mean annual temperature
MAP mm 1961-2017 averaged mean annual precipitation
LiveConifer m2 ha−1 Basal area of living conifers
ResOL cm Residual organic layer thickness in burnt plots
BurnDepth cm Reduction of organic layer thickness due to fire
ρ kg m−3 Organic layer bulk density
C:N – Organic layer total C divided by total N
pH – pH value extracted from the duff layer
iN ppm Resin capsule adsorbed NH4 and NO3 in organic soil
GP:GN – Ratio of gram-positive to gram-negative bacterial PLFA markers
MicConc nmol g−1 Concentration of PLFA markers per duff sample mass

where x̄ is the sample mean, z is always 1.96 (the critical value for a two-tailed Z-test
at α = 0.05), σ is the sample standard deviation and n the sample size. Significance
of differences between control and burnt plots was deemed to be when the interval
of their ∆ variable distributions did not include zero. Coefficients of variation (CV)
were calculated as the standard deviation of a variable distribution divided by its mean.
Percentage change of variables from burnt to control plots were calculated from the
two averaged values derived from the burnt and control plot variable distributions.

3.9.3 Simple and Multiple Regression

Bivariate correlation strength between variable pairs was extracted as the Pearson cor-
relation coefficient (r) from the scipy.linregress method from the SciPy package¹⁰⁴ in
Python 3.

Multiple regression was performed by inputting standardized variables (i.e., converted
to Z-scores) to the OLS class in the statsmodels ¹⁰⁵ package using the Python 3 inter-
preter. The OLS class used the ordinary least squares regression approach to predict a
single response variable based on linear combinations of predictor variables and gave
as an output R2, R2

adj , Akaike information criteria (AIC), and Bayesian information
criteria (BIC) values for the model fit as well as standardized regression coefficients (β)
for the explanatory variables.

Forward multiple regression model selection was performed by beginning with the
dependent variable producing the highest R2

adj value and adding the variables, one at
a time, that most increased this value. Corrected AIC (AICc) was calculated as

AICc = AIC +
2k2 + 2k

n− k − 1
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where k is the number of model parameters and n is the sample size¹⁰⁶. ∆AICc and
∆BIC values were produced from the difference of the current model from the lowest
AICc and BIC in the entire model selection process, respectively.

Backwards multiple regression model selection was performed by removing the ex-
planatory variable with the highest p value until all variables and the total model had
p values below 0.05 or only 1 explanatory variable remained.

3.9.4 Canonical Correlation Analysis

Canonical correlation analysis was performed to produce biplots of the multivariate
relationships between nutrient and microbial datasets using the CCorA class from ve-
gan. Significance was extracted from the model object using a permutational (n = 1000)
F-test of Pillai’s trace. Canonical correlation coefficients were extracted from the
model object for the 1st axes of each dataset and R2

adj values were derived from the
object’s internal calls to the vegan rda class.

3.9.5 Redundancy Analysis

Redundancy analysis (RDA) was performed by entering normalized (i.e., converted
to Z-scores) datasets using the rda class in the R package vegan¹⁰⁷, outputting R2 and
R2

adj for each model. Model selection was performed to drop explanatory variables
that did not contribute to increasing R2

adj through the usage of the function ordi2step
within the vegan R package. Overall model and per-axis significance was calculated
using 1000 permutations in the anova function in the R vegan package and deemed
significant when the produced p value was less than 0.05. The RDA results were
displayed as triplots across the two axes of largest explanatory power using the fitted y
values (so-called “lc scores”). Canonical coefficients for the explanatory variables were
extracted directly from the rda object.

Distance-based redundancy analysis (db-RDA) was performed by transforming de-
pendent variables into principal coordinates using the Bray-Curtis dissimilarity and
then performing RDA as above, though using the class capscale in the R package vegan.

Variance partitioning was executed by segmenting explanatory variables into groups
and calculating their individual and shared explained variance in terms of R2

adj using
the varpart function in the R package vegan.
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Chapter 4

Results and Discussion

4.1 Paper I: Climatic variation drives loss and restructuring of
carbon and nitrogen in boreal forest wildfire

Measuring atmospheric emissions of carbon (C) due to burning has been a central
focus of boreal wildfire research since the late 20th century. This can be largely at-
tributed to an enhanced awareness of their positive feedbacks with climate change¹⁰⁸,
improved ability to upscale results with advancements in remote sensing³⁴,¹⁰⁹, and
mounting concern for public health related to air and water quality¹¹⁰,¹¹¹,¹¹². Wild-
fire activity can now be mapped to 20 m resolution using satellite measurements
largely based on determining changes in surface reflectivity due to vegetation re-
moval¹¹³. These areas can be multiplied by area-normalized emission estimates to
determine ecosystem change in C. While burn area mapping is more straightfor-
ward (though still presenting an ever-improving set of complicated algorithms), esti-
mating areal emission rates entails a variety of less-direct approximation methods. Of
these, remotely observable heat radiation or particulate emissions are often used to es-
timate yearly C emissions¹¹⁴,¹¹⁵,¹¹⁶,¹¹⁷,¹¹⁸. Though, these must be found to correlate
with more direct measurement of change in ecosystem C under a process of ground
truthing.

Due to the small percentages of annual burnt area and unpredictable emergence of
wildfire, field measurements in boreal forests are almost always challenged by a scarcity
of information regarding a forest’s prefire state. Prefire overstory biomass can be esti-
mated by allometric equations, usually calculated from measurements of stem diam-
eter, with combustion only roughly estimated via visual assessment of the extent of
blackening of the components of the tree body⁷⁵. Soil consumption can be estimated
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by comparing postfire depth with indicators of its original height such as adventi-
tious tree roots (when present), with original C volumetric density calibrated to that
in spatially proximal unburnt stands⁷⁵. Though without such indicators, prefire soil
properties have to be estimated entirely via matched unburnt control plots.

Random error in plot pair matching can be mitigated by averaging high measurement
replication dispersed inside and outside a burn scar. Although, this process can leave
systematic error undetected, potentially over or underestimating wildfire emissions
due to burnt forests containing different amounts of prefire soil C than those left un-
burnt. That is, all C emission measurements in the field are, to unknown extent, partly
to near-fully determined by systematic differences in estimated and actual prefire C.
Of particular concern is the propagation of this error into analysis of the drivers of
C emissions, where variation in reconstructed prefire structure may be linked to sys-
tematic bias rather than actual emissions. To reduce this risk, a large signal to noise
ratio can be implemented by stretching and matching plot pairs across extensive vari-
ation of the influences that affect C accumulation such as site drainage and climate.
While this may reduce emission estimate constraint, it enhances the ability of a study
to robustly explain the factors influencing emission variability.

An unknown amount of bias is also introduced into traditional wildfire study ap-
proaches due to spatial autocorrelation of sample replication in single or closely grouped
burn scars⁶⁴. Stand-structure derived drivers of fire severity interact with local fire
weather as well as the amount of energy that managed to build up in the firefront and
transferred to forest ahead. For example, saturation of built up energy in high inten-
sity wildfire may override otherwise important controls of fuel arrangement, weather
and moisture conditions on C emissions¹¹⁹. A goal of boreal wildfire study should not
only be to isolate drivers of its severity, but to understand when certain sets of them
are important. This is especially salient when considering the broad range of forest
structure that can be constructed under the influence of current and future climatic
conditions. Therefore, expanded sampling of the extensive variation of forest struc-
ture and burn dynamics in understudied boreal regions, with methodological tuning
designed to expose and reduce bias in the understanding of the influence of climate
on wildfire elemental restructuring is crucial for better understanding the connection
of boreal forests to future global C cycling.

Paper I utilized the 100 plot network (50 burnt, 50 paired controls) to determine the
direct and forest structure mediated controls of climate on boreal wildfire emissions.
Across all burnt plots, negligible canopy blackening was found along with insignifi-
cant differences in mineral layer soil C, leading to assumptions that the near entirety
of emissions came from the organic soil layer. Averaged across the plots, C loss was
significant (0.815 ± 0.652 kg C m2), and approximately a quarter of that typical of
more intense North American boreal wildfire (3.3 kg C m2)⁷⁵,¹¹⁹. Mean annual pre-
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Figure 4.1: Diagram of proposed pathways for the effects of MAP andMAT on C (a) and N (b) loss. Non-climate
variables regard the organic layer. Each variable node is labeledwith theR2 from simple ormultiple
regression using explanatory variables represented by all incoming arrows. Arrows are labeled by
and sized in proportion to the magnitude of their standardized regression coefficients and are
significant (p < 0.05). Green arrows represent positive relationships while red represent negative
relationships. Omitted for simplicity are direct correlations between bulk density to CR (p = 0.010,
r = 0.356) and depth to NR (p = 0.010, r = -0.363).

cipitation (MAP) had strong controls on organic layer depth while mean annual tem-
perature (MAT) stronger controlled its bulk density and negatively influenced the
carbon mass fraction (CR), as seen in Figure 4.1a. Prefire estimated organic C was
the strongest predictor of its loss during burning. Higher prefire organic layer C:N
augmented C loss, while the collection of heat-affected fuel as char suppressed it (Fig-
ure 4.2a). Together, these results signify that climate has a strong fuel conditioning
effect in terms of its total amount, structure (depth and density), and elemental com-
position (likely largely a product of litter input, microbial growth and decomposition
state) that together influence the relative emissions of C.

Despite its recognized role as a limiting nutrient in boreal systems, the release of ni-
trogen (N) during wildfire burning is seldom measured alongside C. This is likely due
to assumptions that N is emitted at similar rates as C, as has been observed in high
intensity fire in interior Alaska⁷⁵. Yet analysis of pyrogenic soil layers in Eurasian
boreal forests has shown a decrease in C:N relative to prefire material⁶¹. The cur-
rent study observed an insignificant loss of N from the soil as a whole, but found it
to concentrate in a highly nitrogenous layer of char, reducing the organic layer C:N
from a prefire average of 47.68 to 38.22. N loss was strongest driven by prefire or-
ganic layer N, and had strong mitigating effects from MAT and its concentration in a
layer of low C:N char (Figure 4.2b). This conservation effect for N has major biogeo-
chemical implications and regional differences in thermolability of this element may
be fundamentally responsible for altered ecosystem recovery trajectories. Namely, N
fertilization can both enhance soil decomposition rates and allow its greater uptake by
plant life⁴¹, potentially extending net C emissions beyond the time of burning and
initiate overstory dominance shifts to broadleaf trees⁵².

Paper I demonstrated the importance of climate in determining the prefire structure
of fuel that controls the emissions of C and N during wildfire and their proportional
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Figure 4.2: Path diagrams for C (a) and N (b) loss including char and C:N variables. Prefire C, N, and C:N as
well as losses of C and N are regarding the organic layer. Each variable node is labeled with theR2

from simple or multiple regression using explanatory variables represented by all incoming arrows.
Arrows are labeled by and sized in proportion to the magnitude of their standardized regression
coefficients and are significant. Green arrows represent positive relationships while red represent
negative relationships.

reorganization into pyrogenic soil compartments. This asserts an importance of in-
citing more detailed standards for soil measurement that include the shifted densities
and elemental ratios of its varied compartments in order to more accurately predict
wildfire emissions and soil restructuring. Despite careful plot pair matching extend-
ing over wide gradients of the variables that control fuel accumulation and structure,
measurement of N made clear the impact of bias on emissions estimates. From the
organic layer, N loss was centered near 0, yet it formed strong correlation (p < 0.001,
r = 0.653) with prefire N, signaling a desirably high signal to noise ratio of its vari-
ation across climate but a systematic error that underestimated its averaged removal.
Furthermore, virtually no canopy burning was observed, with near-complete under-
story removal and surface blackening, meaning there was little remotely observable
variation of fire impact to correlate to the burning underground. Therefore, this
study demonstrates the potential for widespread inaccuracy in wildfire field sampling
methodology as well as the danger in projection of remote methods outside of burn
dynamics for which they are calibrated. More insight is needed into the factors that
determine fuel structure and its susceptibility to combustion in order to more accu-
rately measure and model emissions from boreal ground fire.
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4.2 Paper II: Mineral Soils Are an Important Intermediate
Storage Pool of Black Carbon in Fennoscandian Boreal
Forests

Field measurements that estimate wildfire emissions are usually performed at 1 year
postfire in order to allow the forests to cool and stabilize to an initial state under which
secondary succession begins. While this might be a good strategy in the context of
ecological study, it makes dubious the common and often unstated assumption that
the majority of estimated emissions by this stage were atmospheric. Wildfire can me-
chanically and chemically restructure ecosystem material, immediately stimulating its
mobilization through the surrounding land and waterways, providing for escape from
delayed postfire measurement¹²⁰,¹²¹. Nutrient pulses to aquatic systems are often ob-
served within the first years after nearby fire¹²². Although, pyrogenic carbon (PyC)
tends to form consistent ratios with the larger dissolved organic C pool in rivers over
time, suggesting that the landscape buffers its expulsions from the watershed between
fire seasons¹²³. While PyC production and sedimentation in limnic and ocean sed-
iment is beginning to be quantified globally, little is known about the drivers of its
transport from the fast to slow C cycle, and its interactions and degradation processes
along the way⁴²,¹²⁴.

Varied parent material and burn conditions provide for a boundless diversity of PyC
composition³⁸,³⁹,¹²⁵,¹²⁶. This diversity interacts with the structure and metabolic
strategy of its containing ecosystem to determine its residence time. For example,
irregular PyC structure may hinder rapid enzymatic decomposition, extending its
lifetime beyond more labile ecosystem C. However, addition of these refractory com-
pounds to the soil has the potential to enhance decomposition rates through increas-
ing soil specific surface area and cation exchange capacity providing habitat and reser-
voirs of water and nutrient that stimulate biotic activity. In contrast, more mobile PyC
fractions can escape areas of high degradation altogether at rates determined by their
interaction with the structure and hydrology of the soil¹²¹. Therefore, it is important
to derive understanding of how different PyC features connect to their environmental
conditions to more fully determine the impact of wildfire on local, regional and global
C cycles.

Many techniques exist for quantifying PyC in forest soils, each isolating only a fraction
of its total diversity and providing varied levels of detail on its chemical and structural
form. While production rates of many of these fractions can be predicted under
controlled fuel and burn conditions, little knowledge is available to predict covariation
patterns of their synthesis under natural wildfire conditions¹²⁷. This means that any
correlation found between production of a single PyC fraction and ecosystem function
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Figure 4.3: Mean BC stocks (a), BC:C (b), and BC:W (c) between burnt and control plots amongst forest soil
compartments. The organic layer is considered the grouping of the duff, moss/litter, and char
layers while the total category is the grouping of the organic and mineral soil layers. Error bars are
the bootstrapped 95% confidence interval of the mean (n = 1000).

can be due to confounding with drivers of its production or covarying presence of
other PyC fractions. While in practice these statistical caveats are difficult to fully
escape, they can both be mitigated and better understood through careful selection of
investigative methodology.

Paper I found climate to be an important factor in determining the rate of production
of pyrogenic layers on the forest floor. Yet questions remained regarding how climate
and wildfire altered the degradability of the soil throughout its compartments. To
answer this question the chemo-thermal oxidation at 375 ◦C (CTO-375) method was
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Figure 4.4: Simple regression charts for the 50 control plots regarding organic layer total BC against its layer
mass (a), mineral layer total BC against its layer mass (b), organic layer BC:C against its C:N (c), and
mineral layer total BC against its C:N (d). All regressions have p < 0.001.

used across the sampled soil compartments of the 100 plots. CTO-375 exposes soil
material to 375 ◦C, followed by removal of inorganic C via fumigation, and measures
C percentage in the remaining sample¹²⁸. This method gives a more simple and di-
rect measurement of a material’s intrinsic thermo-oxidative lability, when compared
to techniques that only indirectly estimate this property through visual or chromato-
graphic separation followed by chemical characterization of broadly defined patterns
of chemical functional groups. Thus, CTO-375 has the potential to better isolate the
burn conditions that produce and distribute this particularly recalcitrant PyC fraction,
here-called black carbon (BC), and thereby also serve as an indicator of fire severity
and its impact on overall soil degradability.

Surprisingly, BC addition to burnt soils was not correlated to climate (MAT, MAP),
site drainage (TEM), drought extent (SPEI) or fire severity (loss of C). Though it
was found that fire did not significantly shift total BC in the organic soil layers, but
approximately doubled it in the mineral layer (Figure 4.3), providing a total soil in-
crease of 11.6 ± 10.4 g BC m2. Because mineral soils tend to receive lower heating
during wildfire compared to the organic layers above¹²⁹, it was assumed that min-
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eral layer additions were due to a flooding of BC released from above. The strongest
determinant of BC storage in control plot organic (p < 0.001, r = 0.925) and min-
eral (p < 0.001, r = 0.705) layers was their total respective mass. The ratio of BC to
C in the organic (p < 0.001, r = -0.463) and mineral (p < 0.001, r = -0.562) corre-
lated negatively with their C:N (Figure 4.4). Together these results suggest that the
sampled PyC fraction is both highly mobile and degradation resistant, and depends
upon binding to stationary soil material to remain in the profile for extended periods.
Furthermore, it was proposed that the mineral soils are an important intermediate
storage pool of C that buffers the production of BC and its transport to neighbor-
ing systems, which will become increasingly important for the protection of C from
mineralization in a future of increased fire activity and decomposition rates in organic
soils (Figure 4.5).
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Figure 4.5: Conceptual diagram of carbon (C) and black carbon (BC) cycling proposed by the results of Pa-
per II. The landscape diagram depicts temporal division of early postfire BC synthesis and mobi-
lization (left) and late postfire BC storage patterns (right). Measuring the 50 plot pairs, fire was
estimated to release an average of 815 g Cm−2 from the soil as awholewhile adding 11.6 g BCm−2

to the mineral layer which is assumed to have percolated from the organic layer above over the
1 year postfire period. This high mobility of BC and its strong correlation to total soil layer mass
in late postfire control plots suggest this fraction of the pyrogenic C spectrum depends largely on
adsorption sites to remain within the soil profile. Negative correlation of soil layer BC:C to the C
to nitrogen ratio (C:N) suggests BC is relatively resistant to decomposition processes compared to
the larger C pool. Mineral layer BC:C has an additional negative effect of mean annual temper-
ature. This resistance, along with low overall decomposition in mineral layers and the measured
approximate doubling of its BC stocks in recently burnt forests, indicates a large portion of the
BC additions are lost from this layer to waterways and deeper subsoils over the fire interval. The
figure’s lower panel charts a hypothetical time series of BC transport, where fire induced increases
of BC in the organic layer are largely released within 1 year to lower subsoils. Mineral layer BC
stocks are released more gradually to waterways and the substratum until stabilizing at an amount
proportional to its total mass before the return of fire.
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4.3 Paper III: Climate and forest properties explain wildfire
impact on microbial community and nutrient mobiliza-
tion in boreal soil

Figure 4.6: Conceptual diagram motivating Paper III hypotheses. Unburnt soils (left) receive inputs of plant-
derived litter and root exudates containing labile C. Microbial C copiotrophy and plant nutrient
demand promotes retention and/or immediate reuptake of relatively limited N within microbial
and plant biomass during processing of organic matter, hindering its net mobilization as measured
by ionic-resin capsules (orange spheres) installed at the bottom of the organic soil layer. Burning
(right) typically completely removes understory vegetation and increases stand overstory mortality,
removing a large portion of fresh C inputs and leaving behind charred material, residual heat-
altered soil organicmatter (SOM) and necromass (darkened root andmycorrhizal webs to the right).
This restriction to amore refractory C pool at 1 year post-fire was expected to induce a wider spread
C limitation in the soil thereby increasing dominance of oligotrophic microbial C metabolism (e.g.,
via increased gram-positive bacteria, right image) which enhances net mobilization of excess N and
other nutrients (arrows) found in processed organic matter.

Paper I found substantial influence of both climate and wildfire on the restructuring of
the organic soil layer and mortality of vegetation. These impacts can further influence
the soil microbial community and associated nutrient cycling in the subsequent years
of forest recovery. Specifically, the reduction in primary production leaves C to be
sourced to a greater extent from residual heat-altered, high-N soil organic matter than
plant litter and root exudates, providing for the proliferation of nutrient-mobilizing
oligotrophic saprotrophy (Figure 4.6). Paper III aimed to quantitatively measure the
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Figure 4.7: Sankey diagrams representing the backwards-selected multiple regression results from control,
burnt and ∆ variable distributions. For each of the 3 graphs, explanatory variables are listed on
the left and connected by ribbons to the dependent variables they predict (right). Ribbon width
is scaled to the magnitude of the standardized regression coefficient from its corresponding in-
dependent variable (within each graph, but not across graphs), and dotted when this value was
negative. The bars on the right sides of the graphs are scaled horizontally to theR2 values derived
from multiple regression for each independent variable and are proportional across all graphs.

impacts of climate and readily measurable forest structure on metabolic shifts in the
soil as expressed through microbial community configuration and its mobilization of
nutrient. This was accomplished using multiple statistical approaches to compare the
50 control plots, 50 burnt plots, and their paired differences (∆ values).

In the control plots, nutrient cycles were more closed than their burnt counterparts,
with the mobilization of the macronutrients NH4, P, and K to resin capsules being
determined strongest by organic layer pH (Figure 4.7) with no significant connection
to the microbial community as sampled (Figure 4.8). Wildfire significantly opened
forest nutrient cycles, increasing resin adsorption of NH4 (39.1%), NO3 (438.3%),
P (349.7%), K (36.8%), and S (56.9%). Further, the control of pH was released, leaving
the mobilization of elements to be greater determined by climate, forest structure and
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Figure 4.8: Chord diagrams of significant (p < 0.05) bivariate correlations between climate and forest proper-
ties (top row) and microbe and nutrient variables (bottom row). Ribbon thickness is scaled within
each diagram (but not across diagrams) to Pearson’s r with negative values dotted.

the microbial community (Figure 4.7). Microbial biomass concentration (MicConc,
PLFA moles per gram soil) dropped by 24.2% in burnt plots along with a 13.9% re-
duction in F:B but a 28.4% increase in GP:GN and 76.7% increase in Act:F. This shift
towards oligotrophic bacterial communities provided for their greater connection to
measured nutrients (Figure 4.8). GP:GN in particular was strongly associated with
the mobilization of NH4 (p < 0.001, r = 0.630) in burnt plots.

Variation partitioning in redundancy analysis demonstrated that the control of cli-
mate on the microbial community structure and nutrient mobilization increased due
to burning (Figure 4.9). This increase was almost entirely mediated by shared varia-
tion with altered forest structure. Together, the results of Paper III suggest that future
climate change can place controls on the ecosystem restructuring of wildfire that can
in turn influence shifts in microbial communities towards oligotrophic nutrient mo-
bilization. These shifts can prime growth of more nutrient-demanding temperate
plant species or result in nutrient leaching, dependent on the establishment patterns
of vegetation post fire.
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Figure 4.9: Redundancy analysis triplots with explanatory vectors (arrows) scaled by 3 for legibility. Predicted
variables are marked by vectors ending in blue squares and plot scores by circles. Variance par-
titioning is visualized for each chart with relative area of climate (MAT, MAP), forest (all other
explanatory variables), and their overlap proportioned across plots to their magnitude of R2

adj for
control (climate: 0.041, forest: 0.098, shared: 0.082, total: 0.221), burnt (climate: 0.033, forest:
0.181, shared: 0.153, total: 368), and ∆ (climate: 0.053, forest: 0.201, shared: 0.013, total: 267)
values.
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4.4 Paper IV: Plant biodiversity limits carbon recapture after
wildfire in warming boreal forests

Paper III mapped out the synergistic role of climate and wildfire in providing for a
fertilization effect in post fire soils. Paper IV aimed to investigate the patterns and
extent by which recovering vegetation interact with postfire resource availability and
ecosystem structure.

Figure 4.10: Distance-based redundancy analysis explaining sampled plant species (upper panel, R2 = 0.300,
R2

adj = 0.219) and functional groups (lower panel, R2 = 0.427, R2
adj = 0.345). All displayed axes

are significant (p < 0.05). Species scores in the upper panel were doubled to improve legibility.

Climate change and associated amplification of wildfire activity can provide for the
shifting of conifer forests to those dominated by deciduous broadleaf trees in boreal
North America⁵⁸. This process occurs mostly readily in stand replacing wildfire that
removes thick organic soil layers known to inhibit sprouting of broadleaf species from
seed. Stand conversion is accelerated by the prefire presence of broadleaf trees provid-
ing material for both abiotic resprouting and local sources of seed, forming a positive
feedback of propagule pressure and broadleaf dominance in postfire recovery⁵¹. Seed
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addition experiments have demonstrated that this increased propagule pressure can
even overcome the broadleaf sprouting inhibition placed by residual organic layers
and that regrowth in warming high latitude systems in particular is hindered by novel
species introduction¹³⁰,¹³¹,¹³². Though it has also been shown that living conifers can
enact plant-soil feedbacks that inhibit heterospecific germination and may also pro-
vide substantial sink of nutrient together reducing colonization by novel species⁵⁴.
Furthermore, rhizomatously resprouting ericoid shrubs may provide for suppression
of saprotrophic mobilization of N or even direct allelopathy²¹,¹³³.

Paper IV compared a set of environmental variables (Table 3.4) to a floristics survey
performed in 49 of the sampled burnt plots (the northernmost plot was excluded from
the study due to postfire salvage logging). It was found that the surviving conifer over-
story placed no restrictions on N mobilization in the soil (p = 0.757), nor did it influ-
ence the assembly patterns of plant propagating from the forest floor (Figure 4.10a,b).
The residual conifers did however, place constraints on the species richness of sprout-
ing plants along the gradient of MAT (Figure 4.11a). An additional influence of mi-
crobial biomass concentration in the soil suggests a replacement of conifer associated
microbes with those more supportive of greater plant diversity.

Figure 4.11: Two multiple regression results explaining species richness and plant growth were visualized with
incoming arrows labeled, colored and sized according to standardized regressions coefficients of
predictor variables (a). Significant correlations (p < 0.05) between predictor variables are also
labeled. Simple regressions of biomass regrowth on MAT (b, r = 0.594) and species richness (c,
r = 0.699) were plotted. Heteroscedasticity of the MAT regression was reduced by shifting plot
plant growth values across the species richness axis. A random number between±0.2 was added
to the species richness values during chart generation to improve legibility.
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Under a weakened coniferous influence, rhizomatously resprouting ericoid shrubs
appeared to be important for the suppression of nutrient mobilizing bacterial com-
munities and the overall immobilization of N (Figure 4.10b). Though their influence
diminished under the warmth of increasing MAT, allowing for increased concentra-
tion of bacterial decomposers. Increased MAT and N-mobilizing GP:GN related
strongly to broadleaf tree growth (Figure 4.10b). These increases of broadleaf con-
tributions corresponded to an overall increase in biomass regrowth under increasing
MAT (Figure 4.11a). Although, the biomass had increased variation at higher tem-
peratures and was better constrained by species richness (Figure 4.11b). Plant growth
was additionally negatively constrained by microbial biomass concentrations in the
soil and the depth of wildfire burning (Figure 4.11a).

Intermediate wildfire severities (i.e., those that damage the recovery capacity of occu-
pant boreal conifers, but don’t burn severely enough to allow rapid broadleaf transi-
tion) can provide for forest stagnation of primary productivity. The ability of longer,
warmer growing seasons associated with increased MAT to promote plant regrowth
are limited by the success of a diversity of warmth-oriented species in establishing
through residual inhibitive plant-soils feedbacks. Increasing bacterial decomposition
rates under states of limited primary productivity have the potential to extend net C
emissions beyond the initial period of wildfire combustion. Further, time-extended
study of boreal forest elemental cycling under changing wildfire and climate regimes
is imperative for better determining the global land-atmosphere C balance.
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Chapter 5

Outlook

A central challenge in the study of Earth is the organization of explanations for its
dynamics across analysis scale. Because of their sporadic and sudden impact across
the landscape, coordinating field sampling of wildfire events that span their natural
variation across a given region is difficult, tending to restrict detailed, on-site study
to single burns or burn complexes. While recent advances have been made in under-
standing biogeochemical cycling within single burn scars, spatially restricted sampling
can leave hidden the importance of environmental variation that emerges only over
larger areas of land. This thesis provides one of the most comprehensive landscape
studies of boreal wildfire, finding climate to be an important factor in shaping the
activity and impact of wildfire burning. Furthermore, it demonstrates that micro-
bial community composition is particularly important for the cycling of elements in
the postfire environment and can be predicted smoothly across broad ranges of burn
severity and forest structure. These communities appear to organize quickly under
their associated climate and interact with more slowly assembling plant communities
to control the flow of carbon and nutrients within burnt forests.

Differential response of aboveground and belowground forest subsystems to shifting
climate and wildfire regimes can complicate prediction of future forest dynamics via
their reconnection into novel, unstudied ecosystem configurations. Understanding
of processes occurring within individual burn scars is therefore likely to increasingly
demand the ability to predict the identity and quantity of biotic inputs from the
surrounding landscape under varied states of disequilibrium with concurrent climate.
A central demonstration of this thesis is the need to further develop knowledge of
wildfire processes that crosses spatial scale in order to improve regional projections
of future boreal forest function. Though this predictive power must be supported by
environmental monitoring of the continuous reorganization of landscape structure
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under a currently rapid rate of climatic change. Validating the power of quick, easily-
interpretable and low-cost field sampling that allows for monitoring to pace rates of
forest change was thus a major goal of the current research effort. Repetition and
development of these approaches are encouraged in order to provide more detailed
quantification of important elemental and genetic fluxes across the larger expanse of
boreal forests throughout the coming future.

The early patterns of natural ecosystem reconnection explored in this thesis also give
rise to many uncertainties regarding their effects on subsequent implementation of
management strategy designed under previous climatic conditions. These uncertain-
ties are especially great when considering the substantial observed shifts in below-
ground communities due to warmth and burning which may limit the growth ca-
pabilities of the previously dominant, economically viable conifer overstory. More
time-sensitive treatment of boreal forests as complex socioeconomic systems will be
important for accurate prediction of future biogeochemical cycling across the bo-
real region under continued global change. This effort may find climate gradients in
particular, such as the one examined in thesis, to be a crucial tool in establishing the
boundaries within which natural and anthropogenic processes can operate under fun-
damental energetic and hydrological inputs, forming a space by which to constrain
development of understanding of their interactions.

The pioneers of our understanding of the natural world faced its vastness in awe of
its indestructible grandeur. Yet now we are left to rediscover it in its vulnerability.
Though we are sure to always be reminded of its tenacity. Life just keeps going, and
we have much to learn.
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