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Abstract

Electric power systems are undergoing huge changes due to the shift from conven-
tional power production to more renewable-based generation like solar and wind.
This is primarily driven by the need to mitigate climate change by reducing CO2
emissions. The shift to more generation from solar and wind will affect the dynam-
ical behaviour of power systems, and consequently how they should be controlled.
This thesis explores optimal control with respect to disturbance rejection. The sys-
tems that are investigated are damped mass-spring systems. The dynamics of AC
frequency in power systems can be captured through such models. Further, the
implications of the derived optimal control laws are investigated.

In the first paper of this thesis, undamped mass-spring systems (and more gen-
erally lossless systems) are investigated. The optimal controllers that achieve the
lowest 𝐻2-gain and 𝐻∞-gain from disturbances to performance outputs are derived
analytically for a standard setup. An analytical expression of the optimal gains are
also presented. Finally, the results are interpreted in the context of electrical power
systems. The results show the detrimental effect low inertia, typically associated with
renewable generation like solar and wind, can have on 𝐻2 performance. However,
it is further shown numerically that under the optimal controller, these effects are
mostly isolated to the low inertia regions of the grid.

The second paper of this thesis considers 𝐻2 optimal control for disturbance
rejection for a damped mass-spring system with uniform damping. The main con-
tribution is to show that the optimal controller that achieves the smallest gain from
disturbances to performance outputs is itself a damped mass-spring system. The
optimal controller works both for stable and unstable systems. In the unstable case
the 𝐻2-gain becomes larger than the undamped system in the first paper, while for
positively damped systems it becomes smaller.

Together the results presented in this thesis offer optimal controllers for un-
damped and uniformly damped mass-spring systems. These have been applied to
simple models of electrical power transmission. Finally, future work detailing how
to extend the techniques to cover a broader range of power system control problems
is outlined.
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1
Introduction

1.1 Motivation

Sweden and many other countries are currently in the process of transforming
their electricity systems. This transition is characterized by the discontinuation of
conventional electricity production in favour of renewable electricity production
from the sun and wind [ENTSO-E Vision: A Power System for a Carbon Neutral
Europe 2022; Jones et al., 2023]. There are may reasons for this. One is the effort to
curb climate change, by discontinuing fossil fuels power plants. This transition must
continue if the goal of stopping climate change is to be achieved [Masson-Delmotte et
al., 2018]. At the same time, electricity consumption is expected to increase as more
sectors of society are electrified [Nordic Grid Development Perspective 2023]. In
Sweden and a few other countries, mainly nuclear power plants have been shut down
in recent years, while wind power has been expanded [Nordic Grid Development
Perspective 2023; “Energy in Sweden 2022 - An overview” 2022]. In many other
countries, it is primarily electricity production from fossil sources, like coal and oil
that is phased out in favour of production from solar and wind [Statistical Review
of World Energy 2023 2023; California Electrical Energy generation 2001-Current
2023].

When more sun and wind are introduced at the same time as conventional
production is phased out, the inertia in the system decreases [Ørum et al., 2018].
The inertia has traditionally given the overall system a ’slowness’ to changes from to
disturbances, which has given the generators time to act before the disturbance has
resulted in a big deviation. The lower level of inertia in the system introduces new
challenges for the control systems that control the voltage and frequency of power
grids [Ørum et al., 2018]. To be able to introduce more renewable production, it
is of the utmost importance that the electrical systems can maintain stable voltage
and frequency, even with much lower levels of inertia in the system. This shift in
how the system behaves requires the development of the control structures and the
knowledge from a system perspective of what is required to create a functioning
system with lots of sun and wind.
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CHAPTER 1. INTRODUCTION

Wind power has an unpredictable nature and there is a fundamental differences
in the type of electrical equipment used for wind power generation. This is likely
to have a significant impact on how the Swedish electricity grid works. This thesis
looks into some of the limits associated with this transition from a system with
mostly conventional generation and large inertia to a system with more wind and
solar power and thus some parts of the system with very little inertia.

1.2 Outline of the Thesis

The thesis studies the optimal control of systems that can be described as damped
mass-spring systems with different requirements on the damping. These types of
systems can, among others, describe simplified power systems models. The results
are applied to simplified power systems models based on a first approximation of
the AC frequency dynamics of an electric power system.

The contributions of this thesis are the development of controllers to minimise
the effects of disturbances on the performance outputs of interest. The effect is
measured in size through a norm. In this thesis, the 𝐻2-norm and the 𝐻∞-norm
are the norms of interest. This field was developed in the 1980s and 1990s. See
for example [Zhou et al., 1996] for a more in-depth description of the field. The
methodology most often used is to state the problem in the framework and then use
software to get a numerical solution. The main contributions in the thesis are the
analytical solutions, given to the stated problems.

In the power systems case, the disturbances correspond to a deviation in power
added/withdrawn to the grid at points of generation or load with respect to the
expected operating situation, as well as disturbances in the measurement of the
frequency deviation from nominal. The performance outputs of interest correspond
to the AC frequency deviation from the nominal and the deviation of power output
from the nominal from the generators. The aim is to find a controller that keeps the
size of these performance outputs as small as possible under the given disturbances.

The thesis first looks into the type of control used, namely optimal disturbance
rejection using 𝐻2 and 𝐻∞ control. The general model of an undamped and damped
mass-spring system is presented. Quite some time is spent on showing the links and
similarities between damped mass-spring models and a commonly used simplifica-
tion of power systems. The interpretations of 𝐻2 and 𝐻∞ optimal control are also
discussed in the context of power systems. Finally, the contributions given in two
different papers are presented, together with the two papers published.
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2
Control Theory Background

In this chapter 𝐻2 and 𝐻∞ optimal control are briefly introduced. The modelling
class, which consists of mass-spring systems without damping and with uniform
damping, is also introduced.

2.1 Disturbances and Optimal Control

This thesis considers 𝐻2 and 𝐻∞ optimal control. The 𝐻2 and 𝐻∞ norms are defined
for the transfer function of a stable system as

∥𝐺 (𝑠)∥𝐻2 :=
(

1
2𝜋

∫ ∞

−∞
tr (𝐺 ( 𝑗𝜔)∗𝐺 ( 𝑗𝜔)) 𝑑𝜔

)1/2
and

∥𝐺 (𝑠)∥𝐻∞ := sup
𝜔∈R

𝜎max (𝐺 ( 𝑗𝜔)) ,

where 𝑗 is the imaginary unit, tr(·) the trace and 𝜎max the largest singular value.
Here follows a simplified description of the 𝐻2 and 𝐻∞ optimal control for

disturbance rejection. For a more detailed explanation see for example [Zhou et al.,
1996]. Given a linear system that can be described by a state-space representation
one can define the performance outputs 𝑧 of interest and how disturbances 𝑤 enter
the system. This can be described in generalized plant dynamics in state-space form

¤𝑥
𝑧

𝑦

 =

𝐴 𝐵𝑤 𝐵𝑢
𝐶𝑧 𝐷𝑧𝑤 𝐷𝑧𝑢
𝐶𝑦 𝐷𝑦𝑤 𝐷𝑦𝑢



𝑥

𝑤

𝑢

 .
Define a controller 𝐾 from 𝑦 to 𝑢 in state-space form as

¤𝑥K = 𝐴K𝑥K +𝐵K𝑦, 𝑥K (0) = 0,
𝑢 = 𝐶K𝑥K +𝐷K𝑦.
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CHAPTER 2. CONTROL THEORY BACKGROUND

𝐾 (𝑠) 𝐺 (𝑠)+

+

𝑦

𝑤y

𝑢

𝑤u
𝑦G

Figure 2.1 Block diagram describing the structure of the problem that is studied in Paper I
and II

Equivalently the generalized plant and controller can be defined in transfer function
form according to[

𝑧

𝑦

]
=

[
𝐺𝑧𝑤 (𝑠) 𝐺𝑧𝑢 (𝑠)
𝐺𝑦𝑤 (𝑠) 𝐺𝑦𝑢 (𝑠)

] [
𝑤

𝑢

]
and 𝑢 = 𝐾 (𝑠) 𝑦.

Call the closed loop transfer function from disturbances to performance outputs
𝑇𝑧𝑤 (𝑠). Therefore

𝑇𝑧𝑤 (𝑠) = 𝐺𝑧𝑤 (𝑠) +𝐺𝑧𝑢 (𝑠)𝐾 (𝑠)
(
𝐼 −𝐺𝑦𝑢 (𝑠)𝐾 (𝑠)

)−1
𝐺𝑦𝑤 (𝑠) .

Optimal disturbance rejection aims to find a controller 𝐾 (𝑠) that achieves

𝛾∗• = inf
{
𝛾 : ∥𝑇𝑧𝑤 (𝑠)∥• < 𝛾

}
,

where ∥·∥• denotes either the 𝐻2 or 𝐻∞ norm.
Most often 𝐻2 and 𝐻∞ problems are solved using numerical methods based on

Riccati equations [Zhou et al., 1996]. For 𝐻2 an exact solution exists, while for 𝐻∞
there may not exist a controller that achieves 𝛾∗

𝐻∞
. By using for example a bisection

algorithm, a 𝐾 that achieves 𝛾 arbitrarily close to 𝛾∗
𝐻∞

can be found. For more details
see for example [Doyle et al., 1989]. In both Paper I and Paper II exact solutions are
given by solving Riccati equations.

2.2 Modelling Class

In this thesis, we exploit special problem structures to allow for simplified and
analytical solutions to the𝐻2 and𝐻∞ optimal control problems. The control structure
and where disturbances enter is summarised in Fig. 2.1. The performance outputs
are both 𝑦G, which is the output from the plant 𝐺 (𝑠), without disturbances, and
𝑢, which is the control action. The target of the controller is thus to minimize the
effects of the disturbances on the output of the process, without using too much
control action. We also restrict the process dynamics to be described as damped
mass-spring systems. These models can be described by the following differential

12



2.2. MODELLING CLASS

𝑚1 𝑚2

𝑘1 𝑘2

𝑐1 𝑐2

𝑓1

𝑞1

𝑓2

𝑞2

Figure 2.2 Example of a mass-spring network, with damped springs.

equation, where 𝑞 is often called a generalized position.

𝑀 ¥𝑞 +𝐶 ¤𝑞 +𝐾𝑞 = 𝑓

𝑞(0) = ¤𝑞(0) = 0,
𝑦G = ¤𝑞,
𝑀 ≻ 0 𝐾 ⪰ 0.

(2.1)

To grasp the modelling class one can think of mechanical systems like the one
in Fig. 2.2. The two different papers in this thesis can in their simplest form be seen
as developing optimal controllers under different restrictions on 𝐶.

2.2.1 Linear Lossless Systems
Linear lossless systems are an interesting class of models. For the damped mass-
spring equations in (2.1) this corresponds to having the damping matrix 𝐶 = 0.
Strictly speaking, the class of linear lossless systems is larger than only systems
described by (2.1) with 𝐶 = 0 and therefore a slightly more general description is
given here. Lossless systems can be used to describe transportation networks of
physical commodities, such as the transportation of a fluid when there are no leaks,
or power systems with no losses. Some mathematical characteristics of lossless
systems can be given both in state-space form and in transfer function form.

Consider a state space representation of a dynamical system

¤𝑥 = 𝐴𝑥 +𝐵𝑢, 𝑥(0) = 0,
𝑦 = 𝐶𝑥 +𝐷𝑢.

(2.2)

If (𝐶, 𝐴) is observable and (𝐴, 𝐵) is controllable, then there exists a positive definite
matrix 𝑃 such that

𝑃𝐴+ 𝐴T𝑃 = 0, 𝑃𝐵 = 𝐶T, and 𝐷 +𝐷T = 0

if and only if the system is lossless. This ensures that all trajectories of (2.2) for
which 𝑥(𝑇) = 𝑥(0) additionally satisfy

∫ 𝑇
0 𝑦(𝑡)T𝑢(𝑡)𝑑𝑡 = 0. That is, any energy that

is supplied to the system can then be retrieved, hence the name lossless.

13



CHAPTER 2. CONTROL THEORY BACKGROUND

Another characterisation of lossless systems can be found by looking at the
transfer function representation,

𝐺 (𝑠) = 𝐶 (𝑠𝐼 − 𝐴)−1 𝐵+𝐷.

If the transfer function fulfils

𝐺 (𝑠) +𝐺 (−𝑠)T = 0 (2.3)

it means that it is lossless [Hughes, 2017]. All the above hold for MIMO linear
systems. If the system is SISO, then (2.3) implies that the Nyquist curve of the
system is only on the imaginary axis (for both positive and negative frequencies).
A lossless SISO system has its poles and zeros on the imaginary axis. In general,
lossless systems are resonant systems.

2.2.2 Uniformly Damped Systems
Uniformly damped systems are systems on the form of (2.1), but with the requirement
on 𝐶 that it fulfils

𝐶 = 𝑀

𝑛−1∑︁
𝑗=0
𝛼 𝑗 (𝑀−1𝐾) 𝑗 , 𝛼 𝑗 ∈ R. (2.4)

This makes 𝑀 , 𝐶 and 𝐾 diagonalizable by congruence, meaning that there exists
an invertible matrix 𝑇 such that 𝑇T𝑀𝑇 , 𝑇T𝐶𝑇 and 𝑇T𝐾𝑇 are all diagonal for the
same 𝑇 . A special case of uniform damping is Rayleigh damping which is when
𝐶 = 𝛼0𝑀 +𝛼1𝐾 [Rayleigh, 1877]. In (2.4) one can see that 𝐶 can be either positive
definite, negative definite or indefinite, depending on the signs of 𝛼 𝑗 . Thus the class
of systems with uniform damping covers both stable and unstable systems. Damping
is often difficult to model from first principles. Therefore models of uniform damping
are often used as a first approximation. For more discussions on methods on how to
estimate uniform damping matrices from data, see for example [Adhikari and Phani,
2007].

14



3
Power System Modelling

Power systems are very complicated systems often spanning huge distances, cover-
ing entire countries and sometimes spanning continents. They include complicated
electrical dynamics in generation, transmission, and in the loads. Powers systems
are usually AC systems transmitted through 3 phases, which are 120◦ phase shifted
from each other. Due to the complexity and large scale of power systems, they have
sometimes been called the largest machines mankind have ever built [Glover et al.,
2010].

To be able to work with these systems in a comprehensible way, many types of
modelling are used. When looking into transmission systems, the so-called single-
line diagram is often used. This corresponds to representing the three phases by
only one AC phase and assuming that the three phases are always 120◦ phase shifted
from each other and balanced [Glover et al., 2010]. An example of a single line
diagram is seen in Fig. 3.1. Here node 𝑖 and node 𝑗 have generators connected to

𝑘

𝑙

𝑖

𝑗

continued

grid

Figure 3.1 Sketch of power system interconnection. The nodes (called buses in power
systems) are represented by thick lines, while transmission lines are the thin lines connecting
them. Nodes 𝑖 and 𝑗 have generators connected to them, node 𝑙 has a load connected and node
𝑘 is just a transmission interconnection.
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CHAPTER 3. POWER SYSTEM MODELLING

them, node 𝑘 is just a transmission interconnection and node 𝑙 has a load connected.
In power systems nodes are often called buses, and the buses are interconnected
through the transmission lines. Each bus has an associated voltage magnitude and
phase angle. The phase angle is the relative difference to a phase defined by the
nominal angular frequency of a large generator in the system [Kundur, 1994]. In
power systems modelling, only phase differences are of interest.

There are many control objectives when controlling a power system. Two of the
most important ones are to keep voltage and the AC frequency close to the desired
setpoints and within tight limits. Voltages have different levels in different parts of
the system, and transformers are used to interconnect different voltage levels. The
nominal frequency differs between systems. In Europe 50 Hz is used, while 60 Hz
is used in the US [Glover et al., 2010].

When looking into power transmission, three types of power are often considered,
apparent power, active power and reactive power. When modelling power systems
complex numbers are often used and the relation between the types of power used
is that active power is the real part of apparent power while reactive power is the
imaginary part. A very simplified explanation is that active power is what you can
use for consumption in electrical appliances, while reactive power is needed in the
system for it to work. Reactive power is associated with maintaining the desired
voltage levels in the system [Kundur, 1994].

In this thesis, only the dynamics of AC frequency are considered. Voltages are
assumed to be constant, and that other controllers have taken care of that. Another
simplification is that loads are modelled as constant power sinks. In reality, loads
would consume more or less power depending on frequency and voltages, but this
is relatively small compared to the changes in generators, and also much harder to
model.

When transporting power from generators to consumers the power is transported
in different voltage levels, depending on where in the system. He highest voltage
levels are in the transmission system, which covers the area of the whole system.
Below the transmission system there are sub-transmission systems, which have lower
voltage and cover regions. Finally, there is the distribution system, which has the
lowest voltage. It is in the distribution system that individual houses are connected to
the grid. Industries can be connected to different levels in the system depending on the
size and power consumption. Transmission systems and sub-transmission systems
are usually operated so-called N-1 security. This means that if any component,
transmission line, generator, transformer etc. should be disconnected, the system as
a whole should continue to work within voltage and frequency limits. Distribution
systems are on the other hand operated as radial networks for easier control of
voltages [Kundur, 1994; Glover et al., 2010].

In power systems, there are usually losses associated with resistances in the
transmission and distribution networks. To limit the losses, power is often transmitted
at high voltages, which reduces the current needed for transporting a given amount
of power. This reduces the losses, since resistive losses in power transmission are

16



3.1. THE SWING EQUATION

proportional to the current squared. One of the main purposes of a power transmission
network is to transport power with as few losses as possible, so making the power
transmission system as close as possible to a lossless system is one of the aims. A
distribution network cannot have such high voltages due to the dangers associated
with it and the need for insulation at high voltages. Due to the voltage difference, a
simplification is to treat the transmission network as lossless and associate all losses
with the distribution networks [Kundur, 1994].

3.1 The Swing Equation

When modelling power systems, the so-called swing equation is often used. This
captures the simplest dynamics of a generator and is based on Newton’s second law.
The dynamics for a node 𝑖 with a generator is defined, with focus on the inertia of
rotating synchronous machines, according to

𝐽𝑖 ¥𝜃𝑖 (𝑡) = 𝑇m,𝑖 (𝑡) −𝑇e,𝑖 (𝑡). (3.1)

In the above expression, 𝜃𝑖 (𝑡) is the rotor angle of the synchronous machine and it
is the same as the phase of the node it is associated with. 𝐽𝑖 is its moment of inertia,
which is a constant, 𝑇m,𝑖 (𝑡) is the mechanical torque, minus mechanical losses,
applied on the generator in node 𝑖 and 𝑇e,𝑖 (𝑡) is the electrical torque resulting from
the coupling to the electrical grid. Here time dependence have been included to show
that everything except the inertia constant can change with time. Multiplying (3.1)
with the angular frequency ¤𝜃𝑖 (𝑡) gives the equation in powers rather than torques
according to

𝐽𝑖 ¤𝜃𝑖 (𝑡) ¥𝜃𝑖 (𝑡) = (𝑇m,𝑖 (𝑡) −𝑇e,𝑖 (𝑡)) ¤𝜃𝑖 (𝑡) = 𝑃m,𝑖 (𝑡) −𝑃e,𝑖 (𝑡), (3.2)

where 𝑃m,𝑖 (𝑡) is the mechanical power applied to the generator and 𝑃e,𝑖 (𝑡) is the
electrical power subtracted from the generator to the grid. Equation (3.2) is what is
often called the swing equation. The swing equation is used when only looking at
frequency dynamics. Thus, frequency dynamics of a power system are often studied
through the swing equation in combination with assuming lossless transmissions
[Kundur, 1994]. For simplicity and easier reading, the notation of time dependence
in 𝜃𝑖 (𝑡) and mechanical and electric power to a node will hereafter be dropped.

3.2 Transmission

A transmission system consists of nodes, that are connected to each other by trans-
mission lines like the ones in Fig. 3.1. Each node has a phase associated with it.When
studying the dynamics of the AC frequency, in a lossless setting, a separation can
often be made in the sense that active power affects the AC frequency, while voltage
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dynamics are mainly affected by reactive power flows. Thus, only active power flow
is considered here. The active power transmitted between two nodes 𝑖 and 𝑗 in a
lossless transmission line is given by

𝑃𝑖 𝑗 = 𝑃max,𝑖 𝑗 sin (𝜃𝑖 − 𝜃 𝑗 ), (3.3)

where 𝑃max,𝑖 𝑗 is the theoretical maximal power transfer between node 𝑖 and 𝑗 , which
is a non-negative constant. 𝜃𝑖 is the phase of node 𝑖 and 𝜃 𝑗 of node 𝑗 [Glover et al.,
2010]. The value of 𝑃max,𝑖 𝑗 is given by parameters of the line and the voltage in the
grid. For more details see for example [Glover et al., 2010], Chapter 5. From each
transmission line, there is an in/outflow to a node, from the connecting nodes. Given
a system with 𝑛 nodes with a generator and 𝑚 nodes without generators, this means
that the electrical power added/withdrawn from a node via the transmission network
is given by

𝑃e,𝑖 =

𝑛+𝑚∑︁
𝑗≠𝑖

𝑃max,𝑖 𝑗 sin
(
𝜃𝑖 − 𝜃 𝑗

)
∀𝑖 = 1,2, ..., 𝑛+𝑚. (3.4)

3.3 Combining the Swing Equation with Transmission

A power system is built up of many nodes and connections between them. The grid
connects generators to each other and to nodes without generation, like loads. In
this thesis, loads are modelled as constant power sinks. Since (3.4) only looks at the
phase difference of two connecting nodes it can be linearized around the nominal AC
frequency 𝜔0. Given a system with 𝑛 nodes with a generator and 𝑚 nodes without
generators, inserting the expression for 𝑃e,𝑖 in the swing equation, together with
assuming constant mechanical power, the linearization of (3.2) and (3.4) around the
nominal frequency 𝜔0 results in

𝐽𝑖𝜔0
¥̄𝜃𝑖 = �̄�m,𝑖 −

𝑛+𝑚∑︁
𝑗≠𝑖

𝑃max,𝑖 𝑗 cos
(
𝜃0
𝑖 − 𝜃0

𝑗

)
(𝜃𝑖 − 𝜃 𝑗 ) ∀𝑖 = 1,2, ..., 𝑛

0 =

𝑛+𝑚∑︁
𝑗≠𝑖

𝑃max,𝑖 𝑗 cos
(
𝜃0
𝑖 − 𝜃0

𝑗

)
(𝜃𝑖 − 𝜃 𝑗 ) ∀𝑖 = 𝑛+1, 𝑛+2, ..., 𝑛+𝑚

(3.5)

where 𝜃𝑖 is the deviation of the phase of node 𝑖 from the one given by nominal angular
frequency 𝜔0 (𝜃𝑖 = 𝜃𝑖 −𝜔0𝑡), �̄�m,𝑖 is the deviation from the mechanical power when
in steady state (this will later be used as the input), 𝜃0

𝑖
is the phase of node 𝑖 at the

linearization point. Equation (3.3) shows that maximum power is transmitted in a
lossless line if the phase angle between sending and receiving node is 90◦. Usually,
phase differences are far below 45◦ in normal operation due to system security
and heating of the lines [Kundur, 1994]. This means that 𝑃max,𝑖 𝑗 cos(𝜃0

𝑖
− 𝜃0

𝑗
) is a
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positive constant. In a transmission line power can flow in both directions and the
direction is only governed by the phase difference, thus 𝑃max,𝑖 𝑗 = 𝑃max, 𝑗𝑖 . For a
lossless transmission line, the power sent and received are equal.

The zero on the left side in the second line of (3.5) comes from looking at all
nodes without generation, like those connected only to loads or the interconnection
points. Since loads are modelled as constants and the linearization looks at deviations
the power flow deviations from the linearization point should sum to zero.

Equation (3.5) has both dynamical and algebraic equations. This can be reduced
to a system with only dynamical equations by doing so-called Kron reduction. Call
𝑃max,𝑖 𝑗 cos(𝜃0

𝑖
− 𝜃0

𝑗
) := 𝑘𝑖 𝑗 . Define 𝜃1:𝑛 as the vector of phases of nodes one to 𝑛, and

define 𝜃𝑛+1:𝑛+𝑚 as the vector of phases for nodes 𝑛+1 to 𝑛+𝑚. Equation (3.5) can
be written in matrix form according to[

𝐽𝜔0 0
0 0

] [ ¥̄𝜃1:𝑛
¥̄𝜃𝑛+1:𝑛+𝑚

]
=

[
𝐽𝜔0

0

]
¥̄𝜃1:𝑛 =

[
�̄�m
0

]
−
[
𝐾a 𝐾b
𝐾T

b 𝐾c

] [
𝜃1:𝑛

𝜃𝑛+1:𝑛+𝑚

]
, (3.6)

where 𝐽 is a 𝑛× 𝑛 matrix with 𝐽𝑖 on the diagonal and zeros elsewhere, �̄�m is a the
vector of �̄�m,𝑖 of length 𝑛. The 𝐾-matrix is −𝑘𝑖 𝑗 on all of-diagonal elements and in
the 𝑖:th position in the diagonal the sum

∑𝑛+𝑚
𝑗≠𝑖 𝑘𝑖 𝑗 , for all 𝑖’s. The splitting of the

𝐾-matrix in submatrices is the following: 𝐾a is of size 𝑛× 𝑛, 𝐾b is 𝑛×𝑚 and 𝐾c is
𝑚×𝑚. It also holds that 𝐾T

a = 𝐾a and 𝐾T
c = 𝐾c.

Using Kron reduction, which in this case constitutes of solving the zero part of
(3.6) and expressing 𝜃𝑛+1:𝑛+𝑚 in 𝜃1:𝑛 and substituting this back gives

𝐽𝜔0
¥̄𝜃1:𝑛 = �̄�m −𝐾red𝜃1:𝑛,

¤̄𝜃1:𝑛 (0) = 𝜃1:𝑛 (0) = 0, (3.7)

with𝐾red being the Schur complement,𝐾red =𝐾a−𝐾b𝐾
−1
c 𝐾T

b . Defining the output as
the frequency deviation from nominal of all nodes with with generators (𝑦G = ¤̄𝜃1:𝑛)
the power system modelling is now written on the form of (2.1), with 𝐶 = 0.

3.4 Mechanical Analogue of Electrical Systems

Looking at (3.5) and dropping the bar notation for simplicity, this equation is identical
to the mechanical equation of a mass-spring system of masses sliding on a circle
of radius 1, connected by springs according to the Fig. 3.2. Instead of mechanical
powers acting on the system, forces act on the masses. The equations guiding the
mechanical system in Fig. 3.2, can also be derived from Newton’s second law and
after linearization, we have for each mass 𝑖

𝑚𝑖 ¥𝜃𝑖 = 𝑓𝑖 −
𝑛+𝑚∑︁
𝑗≠𝑖

𝑘𝑖 𝑗 (𝜃𝑖 − 𝜃 𝑗 ) ∀𝑖 = 1,2, ..., 𝑛

0 =

𝑛+𝑚∑︁
𝑗≠𝑖

𝑘𝑖 𝑗 (𝜃𝑖 − 𝜃 𝑗 ) ∀𝑖 = 𝑛+1, 𝑛+2, ..., 𝑛+𝑚
(3.8)

19



CHAPTER 3. POWER SYSTEM MODELLING

𝑓𝑖

𝜃𝑖

𝑚𝑖

𝑚 𝑗

𝑘𝑖 𝑗

Figure 3.2 Mechanical system that has an equivalent mathematical description as a power
system network.

where the constant 𝑘𝑖 𝑗 = �̃�𝑖 𝑗 cos(𝜃0
𝑖
− 𝜃0

𝑗
) and �̃�𝑖 𝑗 is the spring constant in Hook’s

law. In (3.8) there are 𝑛 masses with forces acting on them, and 𝑚 interconnection
points of the springs without any mass.

A type of losses that are studied in mechanical systems is linear damping. Linear
damping acts like a force proportional to the velocities of the masses. There can
be local damping at each of the masses, acting as if the masses are moving in a
medium, and there can be damping resulting from the interconnections. An example
of damping through interconnection would be to have dampers in parallel with the
springs in Fig. 3.2. For each mass 𝑖 damping can be applied as a factor proportional
to the difference in angular velocities in the system according to

𝑚𝑖 ¥𝜃𝑖 = 𝑓𝑖 −
𝑛+𝑚∑︁
𝑗=1

𝑐𝑖 𝑗 ¤𝜃 𝑗 −
𝑛+𝑚∑︁
𝑗≠𝑖

𝑘𝑖 𝑗 (𝜃𝑖 − 𝜃 𝑗 ) ∀𝑖 = 1,2, ..., 𝑛

0 =

𝑛+𝑚∑︁
𝑗=1

𝑐𝑖 𝑗 ¤𝜃 𝑗 +
𝑛+𝑚∑︁
𝑗≠𝑖

𝑘𝑖 𝑗 (𝜃𝑖 − 𝜃 𝑗 ) ∀𝑖 = 𝑛+1, 𝑛+2, ..., 𝑛+𝑚
(3.9)

where 𝑐𝑖 𝑗 is a constant. The equations in (3.9) can be written in a matrix form
according to

𝑀 ¥𝜃 = 𝑓 −𝐶 ¤𝜃 −𝐾𝜃 ⇐⇒ 𝑀 ¥𝜃 +𝐶 ¤𝜃 +𝐾𝜃 = 𝑓 , ¤𝜃 (0) = 𝜃 (0) = 0, (3.10)

where 𝑀 is a diagonal matrix with the individual masses on the diagonal, and zero
for the interconnection points without masses. 𝐶 is a matrix with entries 𝑐𝑖 𝑗 , 𝑓 is a
vector with all forces on nodes 1 to 𝑛 and zero for in the 𝑚 later positions. Finally,
𝐾 is a matrix with −𝑘𝑖 𝑗 on all of-diagonal elements and in the 𝑖:th position in the
diagonal the sum

∑𝑛+𝑚
𝑗≠𝑖 𝑘𝑖 𝑗 , for all 𝑖’s.
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Equation (3.10) is almost on the form of (2.1), but may not fulfill the require-
ment 𝑀 ≻ 0 (unless there are no massless interconnection points 𝑀 will only be
semi-definite). The second equation in (3.9) was included to also allow loads and
interconnection nodes to be modelled in the mechanical analog. In Paper II mechan-
ical systems with a positive definite mass-matrix are investigated. This assumption
was largely made for convenience to allow for a simplified definition of uniform
damping to be used (note the inverse of 𝑀 in (2.4)), and also when writing (3.10) in
state-space form. More general definitions of uniform damping are available in the
literature [Adhikari and Phani, 2007], and the idea is to in the future look into how
damping occurring in powers systems can be approximately modelled by including
uniform damping.

3.5 Design Objectives for Powers Systems

Comparing the variables from the problem formulation to those in the previous
sections shows that in the power systems case of the problem formulation, the output
𝑦G is the AC frequency deviation from nominal. The control action 𝑢 is the deviation
in power applied on the generator from the power plant. The setup is thus to limit the
AC frequency deviation as a result of the disturbances without changing the primary
mechanical power applied to the generator too much. The disturbance 𝑤u is here
added/withdrawn active power to the nodes, relative to the linearization point, and
𝑤y is measurement errors in measuring the frequency. One example of generation
uncertainties on a short time scale is extra power applied from a wind turbine in
the event of a gust. Another is a reduction in power produced from a PV-cell due to
the shadow from a cloud passing by. Yet another type of uncertainty is the sudden,
unplanned disconnection of a generator or a major load as a result of a fault in the
system. This could be the security tripping of a generator when a voltage or current
exceeds limits, or the tripping of a transmission line in the event of a fault.

3.6 𝐻2 and 𝐻∞ Control Interpretations in Power Systems

𝐻2 and 𝐻∞ control have interesting interpretations in power systems.

3.6.1 𝐻2-control
𝐻2 control can be interpreted as the way to minimize energy throughput of white
noise disturbance to performance outputs [Zhou et al., 1996]. This design objective
would be to minimize the effect of small random disturbances like the passing of
clouds over PV-cells or the passing of wind gusts through a wind farm, which on
a system-wide scale is hard to estimate beforehand. The white noise assumption
is perhaps only reasonable as a first approximation but filtered white noise will be
considered as future work.
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3.6.2 𝐻∞-control
The transmission system operators (TSOs) always want to make sure that the power
system in transmission and sub-transmission levels work with N-1 security. This
means that if any component, transmission line, generator, transformer etc. should
be disconnected, the system as a whole should continue to work within voltage and
frequency limits. When accessing control structures and reserves it is done with the
largest possible disturbance in mind. This is often the disconnection of the largest
generator. Limiting the effect of the largest possible disturbance is similar in flavour
to limiting the effect on the worst possible disturbance, which is the objective of 𝐻∞
control.
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4
Contributions

The main scientific contributions of this thesis are presented in two papers.

4.1 Paper I

Johan Lindberg and Richard Pates (2023). "Fundamental Limitations on the
Control of Lossless Systems" This paper investigates the optimal control with
respect to disturbance rejection of lossless systems. Given a lossless system, which
can be expressed in state-space form, the optimal controller for the setup is derived.
The controller aims to minimize the gain from disturbances on the process input and
the measurement signal to the performance outputs, which are both the output of the
process and the control action. An analytical expression for the minimal gain from
disturbances to outputs is also derived. Results are given in both 𝐻2 and 𝐻∞ norms.

For a lossless system written in state-space representation according to (2.2), the
controllers and gains are the following:

𝐾𝐻2 (𝑠) = −𝐶 (𝑠𝐼 − 𝐴+2𝐵𝐶)−1 𝐵 𝛾∗
𝐻2

=
√︁

2tr (𝐶𝐵)
𝐾𝐻∞ (𝑠) = −

√
2𝐼 𝛾∗

𝐻∞
=
√

2

(With the extra condition that the 𝐷-matrix has to be zero for the 𝐻∞ case.)
The results are then applied on a simplified model of an electrical transmission

network. This simplified model is based on the swing equation expressed in state-
space form in the way of (3.6) and (3.7). The gain from disturbances to performance
outputs under optimal control for the power systems model is given by

𝛾∗
𝐻2

=

√︂
2
(

1
𝐽1𝜔0

+ · · · + 1
𝐽𝑛𝜔0

)
and 𝛾∗

𝐻∞
=
√

2

where 𝐽𝑘𝜔0 is the inertia constant of generator 𝑘 . For renewables such as solar and
wind the inertia constant is much lower than for conventional power generation like
nuclear and fossil fules. The expression for the 𝐻2 gain suggests that the distur-
bance rejection capability, with respect to the 𝐻2-norm, is severely degraded when
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𝐾 (𝑠) 𝐺 (𝑠)+

+

𝑦

𝑤y

𝑢

𝑤u
𝑦G

renewables with low inertia like solar and wind are introduced. This problem with
disturbance rejection arises even if only one generator has a low inertia constant. A
further investigation shows however, that when the optimal control is applied, the
gain is highly local to the generators with low inertia and doesn’t spread throughout
the system. In the wind turbine case this corresponds to, for example, the case of a
gust of wind suddenly changing the power output from a turbine. The local frequency
might then change and as a result the turbine will start to deviate from the nominal
power output, by a large control signal being applied to it. This will however not
change the frequency and control actions in other parts of the system too greatly.

A striking feature of the optimal 𝐻∞-controller is that it is completely decen-
tralized and is just static feedback. In the power systems case, this corresponds to
so-called droop control, which is a constant, local feedback term, which is a major
mechanism used to regulate AC frequency in conventional grids.

The idea for the paper was developed by both authors. The derivation of the
theorem, the application to power systems models, and the numerical simulations
were carried out by J. Lindberg. The paper was written by both authors, but primarily
by J. Lindberg. The final revision of the paper was mostly carried out by J. Lindberg.

This paper is published in IEEE Control Systems Letters, Volume 7, pp. 157-162.

4.2 Paper II

Johan Lindberg and Richard Pates. "On the 𝐻2 Optimal Control of Uniformly
Damped Mass-Spring Systems" The second paper of the thesis looks into a similar
problem of disturbance rejection under optimal control, but now 𝐺 (𝑠) in Fig. 2.1 is
no longer lossless. Instead, uniform damping is considered. This paper mainly looks
into the damped mass-spring problem with uniform damping described by (2.1) with
the process output 𝑦G = ¤𝑞. For clarity, the differential equations are repeated here
again.

𝑀 ¥𝑞 +𝐶 ¤𝑞 +𝐾𝑞 = 𝑢 +𝑤u

𝑞(0) = ¤𝑞(0) = 0,
𝑦G = ¤𝑞,
𝑀 ≻ 0 𝐾 ⪰ 0

where 𝑞 is a generalized coordinate, 𝑢 is an external force acting on the system and
𝐶 is uniform damping according to (2.4). Here 𝑀 is called the mass-matrix and 𝐾
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the spring-matrix.
The main result is to show that the optimal 𝐻2-controller of the damped mass-

spring system is itself a damped mass-spring system. That is, the optimal controller
is given by a mass spring damper system

𝑀K ¥𝑞K +𝐶K ¤𝑞K +𝐾K𝑞K = 𝑦, 𝑞K (0) = ¤𝑞K (0) = 0,
𝑢 = − ¤𝑞K,

where the mass, spring and damper matrices of the controller are given as expressions
of the mass, spring and damper matrices of the system that is controlled. An analytical
value of the 𝐻2-gain from disturbances to performance output is also given in terms
of the original matrices of the damped mass-spring system. When the damping is
zero, it coincides with the 𝐻2 solution in Paper I. With positive damping the gain
becomes smaller than that with no damping, and with negative damping (i.e. an
unstable system), it becomes larger.

The idea for this paper was developed by both J. Lindberg and R. Pates, as a
continuation of Paper I. All mathematical derivations were carried out by J. Linberg,
as well as the numerical example. The paper was mostly written by J. Lindberg.

This paper is submitted to the 22nd European Control Conference (ECC).
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5
Discussions and Future
Work

In this thesis, lossless networks and damped mass-spring networks have been studied.
Simplified power system can be modelled as these. The study of these type of
networks are of great interest due to the transformation of our electrical power
systems, as a result of the shift to more renewable electric power production from
solar and wind.

The main contributions have been to derive analytical expressions for the optimal
controllers for disturbance rejection when the objective is to limit the effect of
external disturbances on the output from the system and the control actuation. In
the power systems case this corresponds to limiting the frequency deviation and
the deviation of active power supplied in relation to the scheduled production. The
minimal achievable gains under the optimal controller are also given as analytical
expressions. This serves as a lower limit on how well controllers can mitigate
disturbances in these networks.

5.1 Discussion

5.1.1 Weights on Disturbances
The theoretical contributions in this thesis are the optimal disturbance rejection for
lossless systems and uniformly damped mass-spring systems. The disturbances enter
both on the input signal to the system and on the measurement signal. In the papers,
the disturbances are assumed to enter in the same way and to be of the same size at all
entry points. For the power system case in Paper I, this would for example mean that
it assumes an equal size disturbance for a nuclear generator and a small wind turbine.
For the measurement noise, this assumption might not be too bad, but for power
disturbances, this is not realistic. Simultaneously, renewables like wind and solar are
subject to a type of disturbances conventional production has not been, namely the
changeability of the weather. In the short time scales, where the problem of storage
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is not the focus, these can be wind gusts and passing clouds quickly changing the
power outputs of the renewable generations. Some of these shortcomings in the
theory would be addressed if weights were introduced on the incoming disturbances
to try to capture these characteristics. If dynamic weights could be used then optimal
controllers could be derived under the specific disturbance profiles of each system
of interest.

5.1.2 More Detailed Power System Models
Beyond Swing Equation Models The connection between the results in both Paper
I and Paper II and power systems has been the swing equation. The swing equation
is good when looking at system-wide phenomena when the inertia of the system
plays a crucial role in the dynamics of the system. When using the swing equation
as described in this thesis all other dynamics of the generators are disregarded. This
works well if the time constants of all other dynamics are significantly shorter than
that of the inertia in the system. For conventional generators, this all works well and
that is why it has been used so extensively for stability studies and for assessing N-1
security with respect to frequency control.

However, with renewables like wind and solar power, there are no rotating
machines. Solar PVs generate DC currents and these are then converted to AC
through inverters. For wind turbines, an AC current is generated, but it is variable
in frequency due to changes in the rotational speed of the turbine. The AC power is
then converted to DC and then back to AC of the correct frequency and phase. This
means that there is no mechanical coupling between the mechanical rotations of
the turbines and the frequency of the grid. In inverters there are still time constants
arising from other dynamics, so one of them could be significantly slower, and a
first-order approximation can be reasonable. This is however not clear and a more
detailed study would be needed to determine this.

When studying power systems from a control perspective there is often a choice
to be made. Either you study the overall system behaviour and assume simplified
components, or you study generators and loads in detail but are then seldom able
to look into larger systems in detail. This thesis has looked into the first of these
two options, with the simplest model, namely the swing equation. One can do more
detailed modelling, and it would be interesting to consider lossless approximations
of models that include voltage and reactive power dynamics. It is also important to
test the findings using simulation software. Then you can, in a comprehensible way,
get both system-wide behaviour studies and details of the components.

More Detailed Transmission Line Modelling In the modelling of transmission
lines, lossless lines were assumed. A more detailed transmission model is the fol-
lowing. Transmission lines transmit active power (𝑃) and reactive power (𝑄). The
subscript 𝑅 is for the receiving end and the subscript 𝑆 is for the sending end of the
transmission line. The equations that govern this are for example given in [Glover
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et al., 2010] and at the receiving end they are

𝑃𝑅 =
𝑉𝑅𝑉𝑆

𝑍 ′ cos(𝜙𝑍 −Δ𝜃) −
𝐴𝑙𝑉

2
𝑅

𝑍 ′ cos
(
𝜙𝑍 −𝜙𝐴𝑙

)
and

𝑄𝑅 =
𝑉𝑅𝑉𝑆

𝑍 ′ sin(𝜙𝑍 −Δ𝜃) −
𝐴𝑙𝑉

2
𝑅

𝑍 ′ sin
(
𝜙𝑍 −𝜙𝐴𝑙

)
.

(5.1)

In the equation above, 𝑉𝑅 and 𝑉𝑆 are the voltage magnitudes in the receiving and
sending ends of the line. Δ𝜃 is the difference in the phase angles of the receiving
and sending ends of the transmission line. 𝑍 ′ and 𝐴𝑙 are line parameters. These
are constants and arise from the resistance, conductance and inductance of the
transmission line, which in turn depend on the length, material and thickness. In
(5.1) all constants are real and 𝜙𝑍 and 𝜙𝐴𝑙

are the associated phase angles of 𝑍 ′ and
𝐴𝑙 . For more details, see for example [Glover et al., 2010], Chapter 5.

In the previous parts of this thesis lossless transmission lines were used. A
lossless transmission line is in (5.1) equivalent to 𝑍 ′ = 𝑋 ′, 𝜙𝐴𝑙

= 0◦, 𝜙𝑍 = 90◦, Thus
the equation for active power in (5.1) is simplified to

𝑃𝑅 =
𝑉𝑅𝑉𝑆

𝑋 ′ cos(90◦−Δ𝜃) −
𝐴𝑉2

𝑅

𝑋 ′ cos(90◦) = 𝑉𝑅𝑉𝑆
𝑋 ′ sin(Δ𝜃) = 𝑃max · sin(Δ𝜃),

where 𝑋 ′ is the line reactance. This is the same as the transmission relation in (3.3).

5.2 Future Work

There are many interesting directions to continue the work in this thesis. Some of
these include:

• Derive the results of Paper I and II with weights on the disturbances and
performance outputs, both static and dynamic. This would be of interest to
be able to adjust where and how disturbances enter to better represent a real
operating scenario of a power system. This would allow someone using the
results to weigh in where the disturbances are expected to be larger and to put
extra emphasis on the performance outputs of most interest.

• Look into the 𝐻∞ optimal control of the problem in Paper II. Since the 𝐻2
optimal control scheme minimizes the energy throughput of disturbances and
𝐻∞ minimizes the effect of the worst possible disturbance they are both of
interest in power systems and beyond.

• Try to apply the results in Paper II in a power systems simulation software.
Since Paper II includes losses it is better at representing a full power system
that has losses, especially in the distribution part where low voltages lead
to significant resistive losses. This simulation task would include finding the
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damped mass-spring equivalent of a power system, calculating the optimal
control structure, and then implementing an approximation of this given the
tools and interconnections available.

• Also include voltage control. When using inverters the share of active power
and reactive power can be chosen almost freely, given the apparent power.
Thus there are great opportunities when studying renewables to also do voltage
control in a similar way as frequency control is done in the swing equation.
One way to do this would be to model voltage dynamics resulting from reactive
power flows in the framework of lossless systems, similar to frequency and
active power.

• Try to include resistances in a transmission line in the framework of Paper II,
possibly by using the more detailed transmission line model in (5.1).
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Paper I

Fundamental Limitations on the Control of
Lossless Systems

Johan Lindberg Richard Pates

Abstract

In this paper we derive fundamental limitations on the levels of 𝐻2 and 𝐻∞
performance that can be achieved when controlling lossless systems. The results
are applied to the swing equation power system model, where it is shown that
the fundamental limit on the 𝐻2 norm scales with the inverse of the harmonic
mean of the inertias in the system. This indicates that power systems may
see a degradation in performance as more renewables are integrated, further
motivating the need for new control solutions to aid the energy transition.

©2023. Reprinted, with permission. IEEE Control Systems Letters, Volume 7, pp.
157-162. doi: 10.1109/LCSYS.2022.3185928.
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1. Introduction

The lossless systems form an important class of models. They are frequently used
to explain and understand phenomena arising in engineering applications. This is
particularly true when describing the transportation of physical quantities, such as
electrical power. This is because it is typically desirable to engineer such systems
to minimise losses, making the resulting dynamical systems amenable to modelling
within the lossless framework. Furthermore lossless systems enjoy rich theoretical
properties. For example, factorisations involving lossless transfer functions play a
crucial role in 𝐻∞ methods [Kimura, 1997]. In addition, central control theoretic
results, such as the Kalman-Yakubovich-Popov Lemma, simplify significantly in the
lossless setting [Willems, 1972], and the state-space and circuit theoretic descriptions
of lossless systems have a range of appealing structural properties [Hughes, 2017;
Pates, 2022].

In this paper, we study the following optimal control problem:

Problem 1 Let
¤𝑥 = 𝐴𝑥 +𝐵 (𝑢 +𝑤𝑢) , 𝑥 (0) = 0,

𝑧 =

[
𝐶 𝐷

0 𝐼

] [
𝑥

𝑢

]
𝑦 = 𝐶𝑥 +𝐷 (𝑢 +𝑤𝑢) +𝑤𝑦 ,

(1)

and
¤𝑥K = 𝐴K𝑥K +𝐵K𝑦, 𝑥K (0) = 0,
𝑢 = 𝐶K𝑥K +𝐷K𝑦,

(2)

and denote the closed-loop transfer function from 𝑤 =
[
𝑤T
𝑢 𝑤T

𝑦

]T to 𝑧 as defined
by (1) and (2) as 𝑇𝑧𝑤 (𝑠). Find

𝛾∗• = inf
{
𝛾 : ∥𝑇𝑧𝑤 (𝑠)∥• < 𝛾

}
,

where ∥·∥• denotes either the 𝐻2 or 𝐻∞ norm. ♢
This is a standard setup, in which the objective is to design a dynamic feedback

control law
𝐾 (𝑠) = 𝐶K (𝑠𝐼 − 𝐴K)−1 𝐵K +𝐷K

to minimise the effects of process disturbances and sensor noise on the output and
control effort of a process with dynamics

𝐺 (𝑠) = 𝐶 (𝑠𝐼 − 𝐴)−1 𝐵+𝐷. (3)

The main theoretical contribution, given as Theorem 1 in Section 2, is to show
that when the process 𝐺 (𝑠) is lossless, 𝛾∗

𝐻2
=
√︁

2 tr (𝐶𝐵) and if in addition 𝐷 = 0,
𝛾∗
𝐻∞

=
√

2.
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𝐾 (𝑠) 𝐺 (𝑠)+

+

𝑦

𝑤y

𝑢

𝑤u
𝑦G

Figure 1. Block diagram representation of Problem 1. The objective is to design a feedback
control law to minimise the effects of process disturbances and sensor noise (𝑤𝑢 and 𝑤𝑦) on
the output and control effort (𝑦G and 𝑢) of a process.

The utility of this result stems from the fact that it analytically characterises fun-
damental limitations on the control of lossless systems. For example, since electric
power systems at the transmission and sub-transmission level are close to lossless, it
shows that no matter how they are designed, power system controllers in this part of
the grid can never achieve better levels of 𝐻2 or 𝐻∞ performance than 𝛾∗

𝐻2
and 𝛾∗

𝐻∞
.

Since the derived expressions are analytical, they can be rewritten in terms of the
model parameters. In Section 3.1 we use this to highlight that system inertia plays a
fundamental role in the control of power systems, by showing that 𝛾∗

𝐻2
scales with

the inverse of the harmonic mean of the inertias in the system. As discussed in Sec-
tion 3.2, this suggests that the decrease in system inertia and increase in stochastic
disturbances that accompanies the introduction of renewables [Jordehi, 2018] can
significantly deteriorate performance, as quantified by the 𝐻2 norm. This provides
further evidence that new control approaches are required to support the energy
transition, perhaps through the use of more advanced measurement tools [Byrne
et al., 2014].

These results naturally complement existing results on fundamental limitations
on the control of large-scale systems. There the focus has typically been on the
performance limits imposed by restrictions on controller structure, such as locality
[Bamieh et al., 2002]. However, due to the difficulty of the underlying mathematical
problems [Witsenhausen, 1968; Lessard and Lall, 2011], there are few extensions of
these results that cover broader classes of controller dynamics [Tegling and Sand-
berg, 2017]. In contrast, the limitations derived here hold for all causal controllers.
Although no locality restrictions are imposed, the optimal control laws associated
with Problem 1 are inherently structured. This is discussed in Section 3.3, where it
is demonstrated that while the optimal control laws cannot prevent the emergence
of undesirable behaviours, they can prevent them spreading throughout the system.

2. Fundamental Limitations

A transfer function𝐺 (𝑠) in the form of (3) is said to be lossless if𝐺 (𝑠) = −𝐺 (−𝑠)T.
Other equivalent descriptions of losslessness include the condition given as (4)
below, and that the state-space model ¤𝑥 = 𝐴𝑥+𝐵𝑢, 𝑦 =𝐶𝑥+𝐷𝑢 defines a (behavioral)
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description of the driving point behavior of an electrical network constructed with
only capacitors, inductors, transformers and gyrators [Hughes, 2017]. The following
theorem shows that if the process to be controlled (3) is lossless (and has no direct
term in the 𝐻∞ case), then both 𝛾∗

𝐻2
and 𝛾∗

𝐻∞
can be determined analytically. These

expressions thus impose fundamental limits on the levels of 𝐻2 and 𝐻∞ performance
that can be achieved when controlling lossless systems. These limitations will be
interpreted in the context of simple electric power system models in the next section.

Theorem 1
Assume that 𝐴, 𝐵, 𝐶, and 𝐷 are as in Problem 1, and that the pair (𝐴, 𝐵) is
controllable. If there exists a positive definite 𝑃 such that

𝑃𝐴+ 𝐴T𝑃 = 0, 𝑃𝐵 = 𝐶T, and 𝐷 +𝐷T = 0, (4)

then in the 𝐻2 case of Problem 1,

𝛾∗𝐻2
=
√︁

2 tr (𝐶𝐵).

If in addition 𝐷 = 0, then 𝛾∗
𝐻∞

=
√

2.

Remark 1 It is shown in [Hughes, 2017] that the dynamics of lossless systems are
always behaviorally controllable, meaning that the controllability assumption in
Theorem 1 is essentially without loss of generality.

Proof. The dynamics in (1) are a special case of the generalised plant dynamics
¤𝑥
𝑧

𝑦

 =

𝐴 𝐵𝑤 𝐵

𝐶𝑧 0 𝐷𝑧𝑢
𝐶 𝐷𝑦𝑤 𝐷𝑦𝑢



𝑥

𝑤

𝑢

 , (5)

where
𝐵𝑤 =

[
𝐵 0

]
, 𝐶𝑧 =

[
𝐶

0

]
,

and
𝐷𝑧𝑢 =

[
𝐷

𝐼

]
, 𝐷𝑦𝑤 =

[
𝐷 𝐼

]
, 𝐷𝑦𝑢 = 𝐷.

Observe that under the conditions of the theorem statement, the pairs (𝐴, 𝐵𝑤) and
(𝐴, 𝐵) are controllable. To see this, first note that controllability of (𝐴, 𝐵) implies
controllability of (𝐴, 𝐵𝑤). Since 𝑃 is invertible, controllability of (𝐴, 𝐵) implies
that

(
−𝑃𝐴𝑃−1, 𝑃𝐵

)
is also controllable. Therefore

(
𝐵T𝑃,−𝑃−1𝐴T𝑃

)
is observable,

which implies that (𝐶, 𝐴) is observable by (4). Observability of (𝐶, 𝐴) then implies
observability of (𝐶𝑧 , 𝐴). Furthermore the matrices 𝐷𝑧𝑢 and 𝐷𝑦𝑤 are full rank.
Therefore the 𝐻2 and 𝐻∞ solutions to Problem 1 can be tackled within the Riccati
equation framework (see for example the requirements on p.383–384 of [Zhou et al.,
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1996]). We will first prove the result under the simplifying assumption that 𝐷 = 0.
In this case the generalised plant in (5) meets the conditions of [Doyle et al., 1989,
§III.A]. This simplifies the Riccati equations that must be solved significantly, and
illustrates the key steps of the proof. We will then show how to extend the approach
for 𝐷 ≠ 0 in the 𝐻2 case.

The 𝐻2 case: Let 𝑋 denote the unique stabilising solution of

𝑋𝐴+ 𝐴T𝑋 − 𝑋𝐵𝐵T𝑋 +𝐶T
𝑧𝐶𝑧 = 0, (6)

and 𝑌 denote the unique stabilising solution of

𝑌 𝐴T + 𝐴𝑌 −𝑌𝐶T𝐶𝑌 +𝐵𝑤𝐵T
𝑤 = 0. (7)

By [Doyle et al., 1989, Theorem 1], 𝛾∗
𝐻2

=

√︃
∥𝐺ctl (𝑠)∥2

𝐻2
+ ∥𝐺obs (𝑠)∥2

𝐻2
, where

𝐺ctl (𝑠) =
(
𝐶𝑧 −𝐷𝑧𝑢𝐵T𝑋

) (
𝑠𝐼 − 𝐴+𝐵𝐵T𝑋

)−1
𝐵𝑤 ,

𝐺obs (𝑠) = 𝐵T𝑋
(
𝑠𝐼 − 𝐴+𝑌𝐶T𝐶

)−1 (
𝐵𝑤 −𝑌𝐶T𝐷𝑦𝑤

)
.

By [Zhou et al., 1996, Corollary 13.8] 𝑋 and 𝑌 correspond to the unique positive-
semidefinite solutions to the given Riccati equations. Since 𝐵𝑤𝐵T

𝑤 = 𝐵𝐵T and𝐶T
𝑧𝐶𝑧 =

𝐶T𝐶, we then see by comparison with (4) that

𝑋 = 𝑃 and 𝑌 = 𝑃−1. (8)

Substituting the above into the expressions for 𝐺ctl (𝑠) and 𝐺obs (𝑠) shows that

𝐺ctl (𝑠) =
[
𝐶

−𝐶

]
(𝑠𝐼 − 𝐴+𝐵𝐶)−1 [𝐵 0

]
,

𝐺obs (𝑠) = 𝐶 (𝑠𝐼 − 𝐴+𝐵𝐶)−1 [𝐵 −𝐵
]
.

Therefore
𝛾∗𝐻2

=

√︃
2∥𝐺obs (𝑠)∥2

𝐻2
=

√︃
2 tr

(
𝐶𝑍𝐶T) ,

where 𝑍 is the solution to the Lyapunov equation

(𝐴−𝐵𝐶) 𝑍 + 𝑍
(
𝐴T −𝐶T𝐵T

)
+2𝐵𝐵T = 0.

By comparison with (4) we see that 𝑍 = 𝑃−1, which implies that

𝛾∗𝐻2
=

√︃
2 tr

(
𝐶𝑃−1𝐶T) = √︁

2 tr (𝐶𝐵)

as required.
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The𝐻∞ case: Whenever such solutions exist, let 𝑋𝛾 denote the unique stabilising
solution of

𝑋𝛾𝐴+ 𝐴T𝑋𝛾 − 𝑋𝛾
(
𝐵𝐵T −𝛾−2𝐵𝑤𝐵

T
𝑤

)
𝑋𝛾 +𝐶T

𝑧𝐶𝑧 = 0,

and 𝑌𝛾 denote the unique stabilising solution of

𝑌𝛾𝐴
T + 𝐴𝑌𝛾 −𝑌𝛾

(
𝐶T𝐶 −𝛾−2𝐶T

𝑧𝐶𝑧

)
𝑌𝛾 +𝐵𝑤𝐵T

𝑤 = 0.

By [Doyle et al., 1989, Theorem 3], ∥𝑇𝑧𝑤 ∥𝐻∞ < 𝛾 if and only if 𝑋𝛾 and 𝑌𝛾 exist,
and the magnitude of the largest eigenvalue of 𝑋𝛾𝑌𝛾 is less than 𝛾2. By [Zhou et al.,
1996, Corollary 13.8], if 𝛾 > 1 then 𝑋𝛾 and 𝑌𝛾 exist, and correspond to the unique
positive-semidefinite solutions to the given Riccati equations. Comparison with (4)
shows that

𝑋𝛾 =
𝛾√
𝛾2−1

𝑃, and 𝑌𝛾 = 𝛾√
𝛾2−1

𝑃−1.

Therefore the magnitude of the largest eigenvalue of 𝑋𝛾𝑌𝛾 equals 𝛾2/
(
𝛾2 −1

)
, which

implies that 𝛾∗
𝐻∞

=
√

2.
The case 𝐷 ≠ 0: Loop shifting can be used to extend the above arguments to

allow for nonzero 𝐷. As explained in [Zhou et al., 1996, p.453–454], the 𝐻2 optimal
control problem with generalised plant as in (5) is equivalent to the 𝐻2 optimal
control problem with generalised plant


¤𝑥
𝑧

�̃�

 =

𝐴 𝐵𝑤 𝐵𝑆

𝐶𝑧 0
[
𝐷

𝐼

]
𝑆−1

𝑅𝐶 𝑅−1 [𝐷 𝐼
]

0



𝑥

�̃�

�̃�

 ,
where 𝑅 =

(
𝐼 +𝐷𝐷T) 1

2 and 𝑆 =
(
𝐼 +𝐷T𝐷

) 1
2 . This generalised plant meets the condi-

tions on [Zhou et al., 1996, p.384]. Therefore 𝛾∗
𝐻2

can be determined using arguments
based on Riccati equations as described in the 𝐷 = 0 case, but with the Riccati equa-
tions in (6) and (7) replaced with their ‘generalised’ counterparts, as specified in
[Zhou et al., 1996, Theorem 14.7]. These also admit the solutions in (8), resulting
in the same optimal value for 𝛾∗

𝐻2
. □

3. Implications for Power System Control

In this section we present and discuss the application of Theorem 1 to simple models
of electric power systems at the transmission and sub-transmission level. These
results, although preliminary since they lack the support of a detailed numerical
study from a realistic power system model, clearly point to the fundamental role
played by inertia when considering the control of power systems.
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3.1 Applying Theorem 1 to Swing Equation Models
In the absence of damping, after linearisation, the swing equation power system
model is described by the equations

𝑀𝑘
¥𝜃𝑘 = 𝑝N,𝑘 +𝑢𝑘 +𝑤𝑢,𝑘 ,

[
𝜃𝑘 (0)
¤𝜃𝑘 (0)

]
= 0, 𝑘 ∈ {1, . . . , 𝑛} ,[

𝑝N
0

]
= −

[
𝐾a 𝐾b
𝐾T

b 𝐾c

] [
𝜃

𝜃int

]
.

(9)

In the above, the first equation describes the dynamics at a set of 𝑛 generator buses.
𝑀𝑘 > 0 denotes the inertia parameter of the kth generator bus, 𝑝N,𝑘 the power
injection from the transmission network, 𝑢𝑘 an adjustable power injection, and 𝑤𝑢,𝑘
a power disturbance. The variable 𝜃 gives the vector of electrical angles at the
generator buses, and 𝜃int the angles at the remaining buses. The second equation
describes how these relate to the power injections 𝑝N as defined by the dynamics
of the transmission network. In particular the block matrix with entries 𝐾a ∈ R𝑛×𝑛,
𝐾b ∈ R𝑛×𝑚 and 𝐾c ∈ R𝑚×𝑚, is a weighted Laplacian matrix, with edge weights
determined by the line susceptances and load angles across the lines at equilibrium.

We consider the problem of how to select the adjustable power injections 𝑢,
when a set of noisy angular frequency measurements

𝑦𝑘 = ¤𝜃𝑘 +𝑤𝑦,𝑘 , 𝑘 ∈ {1, . . . , 𝑛} , (10)

where 𝑤𝑦,𝑘 denotes the measurement noise, are available. In the remainder of this
subsection, we will show that under a set of mild assumptions this problem fits
naturally into the framework of Problem 1. Furthermore, for an appropriate choice
of the system state, all the conditions of Theorem 1 are satisfied, and the expression
for 𝛾∗

𝐻2
simplifies further.

The required assumptions are:

A1 The transmission network is connected.

A2 The load angle across every transmission line has magnitude less than 90◦.

A1 is essentially without loss of generality, since if the network is not connected,
every connected component can be analysed separately. A2 is required to ensure the
weighted edges in the Laplacian are positive. A2 will likely be satisfied in practice,
since operational limits on transmission lines typically preclude load angles greater
than 45◦ [Kundur, 1994][p.230].

Under A1–A2, the matrix 𝐾red = 𝐾a −𝐾b𝐾
−1
c 𝐾T

b can be factored as 𝐾red = 𝐿𝐿
T,

where 𝐿 ∈ R𝑛×𝑛−1 has full (column) rank. Letting 𝑀 ∈ R𝑛×𝑛 denote the diagonal
matrix with kth diagonal entry equal to 𝑀𝑘 and 𝑥 =

[ ¤𝜃T 𝜃T𝐿
]T, it then follows that
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(9) and (10) can be written as

¤𝑥 =
[

0 −𝑀−1𝐿

𝐿T 0

]
𝑥 +

[
𝑀−1

0

]
(𝑢 +𝑤𝑢) , 𝑥 (0) = 0,

𝑦 =
[
𝐼 0

]
𝑥 +𝑤𝑦 .

(11)

These equations take the form of the first and third equations in (1). Therefore
in the context of the swing equation power system model, Problem 1 corresponds
to searching for a control law to minimise the effects of power disturbances and
measurement noise on the deviations in electrical frequency and control effort.

Setting

𝑃 =

[
𝑀 0
0 𝐼

]
shows that the conditions of Theorem 1 are satisfied. The controllability assumption
is satisfied since the controllability matrix equals[

𝑀−1 0 · · ·
0 𝐿T𝑀−1 · · ·

]
∈ R(2𝑛−1)×𝑛(2𝑛−1) ,

which has rank equal to 2𝑛− 1 (both 𝑀 and 𝐿 have full rank). Furthermore, the
expression for the 𝐻2 norm in Theorem 1 simplifies to

𝛾∗𝐻2
=

√︄
2
(

1
𝑀1

+ · · · + 1
𝑀𝑛

)
. (12)

This implies that 𝛾∗2
𝐻2

/𝑛 = 2/HM (𝑀1, . . . , 𝑀𝑛), where HM denotes the harmonic
mean. This indicates that the fundamental limit on 𝐻2 performance scales with the
inverse of the harmonic mean of the inertias in the system.

Remark 2 The lossless assumption is reasonably well justified in the power system
context when considering generation and consumption at the transmission and sub-
transmission level (at least from the perspective of control system design, where
qualitative, simple modelling is often more appropriate). Observe also that damping
effects that arise from control actions are captured by (9), since this equation
includes adjustable power injections (this implies for example that droop-control
cannot achieve better performance than the levels specified by Theorem 1, since a
droop controller is a special case of (2)).

Nevertheless, the modelling setup considered here is highly simplified, so the
given expressions should be used to provide insights, and supplement other analysis
approaches. In particular neglecting voltage dynamics (as is implicit in any analysis
based on the swing equations) is questionable. That said, high fidelity power system
models seem to be close to lossless. For example the resistances in the equivalent
circuit descriptions of synchronous machines and transmission lines in [Kundur,
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1994, Chapters 5–6] are very small (for reasons of space this line will not be pursued
further here, it is interesting to think how (12) would generalise if more sophisticated
models were used). It should also be stressed that the model considered is not suitable
for distribution networks where losses can be significant.

3.2 The Impact of Increasing Renewable Generation
In the power system context, the increased use of renewables is typically associated
with a reduction in system inertia, an increase in stochastic disturbances, and a larger
number of different components. In this subsection we interpret the effects of these
trends within the context of (12). These results apply under the tacit assumption that
frequency measurements are being used for control (viz. (10)). This is the status quo
in practice. However it is being increasingly recognised that different approaches
are required to handle the renewable transition. One possible interpretation of the
results in this section is to provide further support for this, by revealing the presence
of fundamental performance limitations that scale poorly with the reduction and
increased heterogeneity of inertia throughout a system.

Reduced inertia and increased stochastics: When conventional power generation
is replaced by renewable sources such as wind, the total inertia in a power system is
reduced. This is because the synchronous machines used in conventional generation
have considerable mass. In contrast, the inertia in a wind turbine is typically electri-
cally decoupled from the grid, so contributes relatively little inertia by comparison,
and even if the power electronics in a wind turbine are used to emulate the dy-
namics of conventional generator (by operating the turbine as a virtual synchronous
machine), the level of synthetic inertia that can be realised is typically far smaller.

The effect of reducing the inertia of the generation sources can be captured
by reducing the sizes of the constants 𝑀𝑘 . Interestingly this does not affect 𝛾∗

𝐻∞
,

which suggests that performance with respect to worst case disturbances may not
degrade. However it is easily seen from (12) that reducing the value of any 𝑀𝑘 will
increase 𝛾∗

𝐻2
. Since the size of the 𝐻2 norm captures how stochastic disturbances are

amplified (which will become more prevalent with an increased use of renewables),
this suggests that power system performance may be adversely affected by the
increased use of renewables. Furthermore these performance limitations depend in
a fundamental way on, for example, the sizes of the virtual inertia constants that can
be synthesised, emphasising the importance of larger inertia constants in attenuating
stochastic disturbances.

Increased system heterogeneity: A secondary effect of increasing the use of
renewables is that the inertia parameters in (9) will cover a wider range of values.
Jensen’s inequality implies that

𝑛∑︁
𝑘=1

1
𝑀𝑘

≥
𝑛∑︁
𝑘=1

1
𝑀tot/𝑛

, where 𝑀tot =

𝑛∑︁
𝑘=1

𝑀𝑘 , (13)

and equality is achieved only if 𝑀1 = 𝑀2 = · · · = 𝑀𝑛. Therefore given a fixed total
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amount of inertia in the system (constant𝑀tot), the more similar the individual inertia
parameters are (the closer the 𝑀𝑘’s are to 𝑀tot/𝑛), the smaller 𝛾∗

𝐻2
is. Conversely, the

more heterogeneous the set of masses, the larger 𝛾∗
𝐻2

becomes. This indicates that
the sensitivity of the system to stochasticity may be further exacerbated as renewable
sources are added purely as a result of having components with a wider range of
inertia parameters present in the system.

3.3 Optimal Control Structures
Condensing notions of system performance down to numbers such as 𝛾∗

𝐻2
and 𝛾∗

𝐻∞
,

especially when the system in question is extremely large, rarely tells the full story.
In this subsection we investigate performance of the swing equation power system
model (11) further by studying the 𝐻2 and 𝐻∞ norms of the sub-matrices of 𝑇𝑧𝑤 (𝑠)
associated with individual disturbances and output signals. In particular, denoting

�̃�𝑘 =

[
𝑤𝑢,𝑘
𝑤𝑦,𝑘

]
and 𝑧𝑘 =

[
(𝐶𝑥 +𝐷𝑢)𝑘

𝑢𝑘

]
,

we study
𝛾𝐻2 ,𝑖𝑘 =



𝑇�̃�𝑖 �̃�𝑘
(𝑠)




𝐻2

and 𝛾𝐻∞ ,𝑖𝑘 =


𝑇�̃�𝑖 �̃�𝑘

(𝑠)



𝐻∞
,

where 𝑇�̃�𝑖 �̃�𝑘
(𝑠) is the closed loop transfer function from �̃�𝑘 to 𝑧𝑖 . To do so of course

requires a choice of control law. We apply the optimal control laws for Problem 1.
It turns out that in both the 𝐻2 and 𝐻∞ case these are highly structured. More
specifically (when 𝐷 = 0, as is the case in (11)), in the 𝐻2 case

𝐾 (𝑠) = −𝐶 (𝑠𝐼 − 𝐴+2𝐵𝐶)−1 𝐵

is optimal for Problem 1, and in the 𝐻∞ case 𝐾 (𝑠) = −
√

2𝐼 is optimal for Problem 1
(for a discussion on how to synthesise these types of control laws in a structure
exploiting manner, see [Pates, 2022]).

Model description: In order to investigate performance, swing equation power
system models were randomly generated (the code used to do this can be found
at https://github.com/Johan-Lindb/L-CSS22). Note that the purpose here is to in-
vestigate trends, and the numerical values obtained from the model should not be
compared with results from the power system literature. Network topologies were
generated by first randomly specifying the locations of 10 clusters, with a random
number of generators or loads, on a map. The loads represent a collection of several
loads in a distribution system and are considered to be constant. The total number
of buses was selected to be 100. Within each cluster, the buses were connected
through a minimum spanning tree representing a sub-transmission network. Using
eigenvector centrality, the most central bus in each cluster was selected and then
connected to the central buses in the other clusters. This represents the transmission
network of a power system and was created to give 𝑛−1 contingency, which ensures
that if one of the lines or clusters were taken out, the other clusters would still be
connected. An example of a system that was generated is given in Fig. 2.
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1. Wind/solar

2. Wind/
solar

3. Conventional

4. Hydro
5. Hydro

6. Load

7. Load

8. Load

9. Load

10. Load

Figure 2. Example of a network with 100 buses.

The power consumption/production of each bus was selected at random, with
probability of higher magnitude in the centre of the clusters. The power producing
clusters were assigned to be either conventional, hydro or wind/solar. The solar/wind
generation areas are large farms with power outputs in comparison with hydro power
generators or conventional generators, like large off-shore wind farms. The inertia
parameter 𝑀𝑘 at each generator bus was set to be proportional to the product of
the rated power of the generator, and a constant related to the type of generator. For
conventional and hydro buses, these constants were chosen to be 6 and 3 respectively
[Ørum et al., 2018]. Renewables such as solar and wind typically have much lower
inertias (resulting either from shunt capacitances, or designing power electronics to
synthesise inertia). To reflect this, the constant for wind/solar buses was chosen to
be one one-thousandth of the conventional generator constant. Other inertias were
also tested. For inertias a factor of ten smaller than that of conventional and hydro
power, the conclusions below still hold.

The entries of the weighted Laplacian were determined based on the line param-
eters of the networks. The line parameters of the lines in the sub-transmission and the
transmission networks were assigned to handle all power flows, meaning that under
normal operation the phase angle would be far below the 45◦ limit [Kundur, 1994],
and for the transmission network also under 𝑛− 1 contingency. Since the reduced
Laplacian 𝐾red affects neither 𝛾∗

𝐻2
nor 𝛾∗

𝐻∞
, highly simplified network modelling

seems sufficient.
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Figure 3. (a)–(b) ln (𝛾𝐻2 ,𝑖𝑘) and 𝛾𝐻∞ ,𝑖𝑘 , respectively, for the power systems model in
Fig. 2.
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Figure 4. The natural log of the average of 𝛾𝐻2 ,𝑖𝑘 for 100 different power system models
with the same number of buses in each cluster.

Performance of the optimal control laws: Consider now the network in Fig. 2,
with power generation and inertia assigned to the buses as described above. Fig. 3a
shows ln (𝛾𝐻2 ,𝑖𝑘). Here the wind/solar generators are in the first two clusters. Observe
that there are orders of magnitude differences between different values of 𝛾𝐻2 ,𝑖𝑘 .
Almost all sensitivity to the disturbances is isolated in the buses where the solar/wind
generators are located. There is some disturbance sensitivity between different buses
within a cluster, but between different clusters there is almost no disturbance sensi-
tivity. This means that whereas a lossless power system model with renewable power
generation is locally sensitive to stochastic disturbances at the buses with very little
inertia, the optimal control law keeps the effect of the disturbances local. Fig. 3b
shows 𝛾𝐻∞ ,𝑖𝑘 . As expected from Theorem 1 𝛾𝐻∞,𝑘𝑘

= 𝛾∗
𝐻∞

=
√

2. Just as in the 𝐻2
case, the 𝐻∞ optimal control law, despite being completely decentralised, keeps the
effects of the disturbances mainly local.

The system in Fig. 2 is just one example of a power system model. To investigate
if the same conclusions would hold for other networks, 100 different networks were
generated. To make the results comparable, clusters 1–2 always contained wind/solar
generation, 3 conventional power generation, 4–5 hydro power generation, and 6–10
constant power loads. The sizes of the clusters were also fixed. In Fig. 4 the natural
logarithm of the average of 𝛾𝐻2 ,𝑖𝑘 of the 100 networks is shown. The conclusions
from before still hold. This was also true for the 𝐻∞ case, but the plot is omitted
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Figure 5. (a) ln (𝛾𝐻2 ,𝑖𝑘) for the lumped model of the power system in Fig. 2. (b) 𝛾𝐻∞ ,𝑖𝑘 for
the lumped model of the power system in Fig. 2. In both subfigures, the indexing corresponds
to the numbering of the clusters in Fig. 2.

since it is very similar to Fig. 3b.
Lumped models: In power systems engineering it is very common to work with

aggregated models, where several buses are lumped together. We now investigate
a version of the model from the previous subsection, in which the buses within
each cluster are lumped together into a single bus, with inertia and power produc-
tion/consumption equal to the sum in the given cluster. The weighed Laplacian was
determined using only the lines in the transmission network. The resulting gains are
shown in Figs. 5a and 5b.

In Fig. 5a it can be seen that a disturbance in a cluster affects that cluster the
most. However, the 𝐻2 gain is dramatically decreased from the corresponding levels
in Fig. 3a. This is a result of the heterogeneity within the cluster, as explained
by (13). The conclusion is that lumping models can give good insight into some
aspects of the dynamics, but that the disturbance sensitivity of individual buses
can be severely underestimated. Fig. 5b shows that lumping does not affect the
performance metric when looking at the 𝐻∞ norm. This suggests that when looking
at worst case disturbances, lumping can still give good insights.

4. Conclusions

Analytical solutions to two optimal control problems involving lossless systems
have been given, and interpreted in the context of electric power systems. Simpli-
fied models were used to demonstrate the presence of a fundamental performance
limit that scales poorly with the model parameter changes associated with the in-
creased use of renewables. This provides control theoretic evidence for the need for
more sophisticated control methods and techniques to support the renewable energy
transition.
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Paper II

On the 𝐻2 Optimal Control of Uniformly
Damped Mass-Spring Systems

Johan Lindberg Richard Pates

Abstract

In this paper we provide an analytical solution to an𝐻2 optimal control problem,
that applies whenever the process corresponds to a uniformly damped network
of masses and springs. The solution covers both stable and unstable systems,
and illustrates analytically how damping affects the levels of achievable per-
formance. Furthermore, the resulting optimal controllers can be synthesised
using passive damped mass-spring systems, allowing for controller implemen-
tations without an energy source. We investigate the impact of both positive and
negative damping through a small numerical example.

Submitted to the 22nd European Control Conference (ECC). Submitted 2023-10-24.
Currently under review.
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𝑚1 𝑚2

𝑘1 𝑘2

𝑐1 𝑐2

𝑓1

𝑞1

𝑓2

𝑞2

Figure 1. Example of a mass-spring network, with damped springs.

1. Introduction

In this paper we study an 𝐻2 optimal control problem for a process with dynamics
modelled by the linear differential equations

𝑀 ¥𝑞 +𝐶 ¤𝑞 +𝐾𝑞 = 𝑓 , 𝑞 (0) = ¤𝑞 (0) = 0, (1)

under the restriction that the matrix 𝑀 is positive definite, and 𝐾 is positive semi-
definite. This is a prototypical setup for the dynamics of a network of damped
masses and springs, such as that illustrated in Fig. 1, when linearised around an
equilibrium point. The variable 𝑞 is a vector of generalised coordinates describing
the configuration of the system relative to equilibrium, and 𝑓 a vector of forces
applied at those coordinates. The entries of 𝑀 and 𝐾 can typically be determined
directly from the expressions for the kinetic and potential energy for the system, and
our particular focus is on exploring the impact of the matrix𝐶 on the optimal control
problem, and the corresponding optimal control law.

The motivation for studying this model class stems from the fact that networks
of masses and springs are frequently used to model engineering processes, with
applications ranging from electrical power systems, to vehicle suspension systems,
to optimization algorithms [Dörfler et al., 2013; Hedrick and Butsuen, 1990; Bhaya
and Kaszkurewicz, 2006]. Key to their importance is the balance they strike between
simplicity and versatility. On the one hand, models of even very large systems can
be systematically built up through simple descriptions of the underlying physics. Yet
despite this structural simplicity, the resulting models can still describe a very rich
range of behaviours, including resonances across a wide range of time and length
scales, and even instability when allowing for negative damping.

In addition to their practical relevance, linear mass-spring networks also have a
range of desirable theoretical properties. These are particularly striking in lossless
case (namely when𝐶 = 0), where for example central control theoretic results such as
the Kalman-Yakubovich-Popov lemma simplify greatly, and the dynamics in (1) can
be realised with highly structured state-space realisations [Willems, 1972]. These
features can be exploited to simplify optimal control problems for lossless systems,
which can result in optimal control laws that can both be described analytically and
synthesised with simple passive networks [Pates, 2022; Lindberg and Pates, 2023].
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When damping is introduced, the underlying theoretical properties of (1) be-
come significantly more complex (see for example [Tisseur and Meerbergen, 2001;
Gohberg et al., 1982] and the references therein for a discussion of the quadratic
eigenvalue problem). However if the damping is uniform, many of the desirable
properties from the lossless case are preserved. Mathematically, uniform damping
means that𝐶 is symmetric and satisfies𝐶𝑀−1𝐾 = 𝐾𝑀−1𝐶. This condition is equiv-
alent to the existence of a congruence transformation that decouples (1) into a set
of orthogonal modes [Caughey and O’Kelly, 1965] (we discuss this transformation
further in section 3). Although an assumption of convenience, uniform damping is
surprisingly versatile, and will be satisfied by any symmetric 𝐶 matrix on the form

𝐶 = 𝑀𝑔

(
𝑀−1𝐾

)
,

where 𝑔 is a polynomial (or entire) function. Note in particular that such a 𝐶
need not be positive semi-definite, and so uniformly damped systems need not
be stable. Special cases include Rayleigh damping [Rayleigh, 1877], where 𝐶 =

𝛼0𝑀 +𝛼1𝐾 for 𝛼0, 𝛼1 ∈ R. Given the difficulties in modelling damping phenomena
from first principles, uniform models of damping are often adopted, at least as a first
approximation, and methods for estimating uniform damping matrices from data are
discussed in [Adhikari and Phani, 2007].

In this paper we study a natural 𝐻2 optimal control problem for (1) under the
uniform damping assumption. We start by developing analytical results for a highly
structured optimal control problem. This is presented as Theorem 2 in section 2.
In section 3 we show how to exploit the uniform damping assumption to apply this
result to solve optimal control problems for systems described by (1), and discuss
and illustrate the structure in the resulting optimal controllers. A striking feature
of the obtained optimal controller is that it has the same structure as the problem
itself! For the damped mass-spring network in (1) this means that the optimal
control law is itself a damped mass-spring network. The theorems give an analytical
solution to problems with uniform damping, both positive and negative. Thus the
optimal controller obtained works for both stable and unstable damped mass-spring
networks. The 𝐻2-gain from disturbances to performance outputs under optimal
control is expressed in network matrices. The analytical nature of the result allows it
to be well suited for large scale networks with damped mass-spring dynamics, like
power system networks.

Notation
√
𝐸 denotes the unique positive semi-definite matrix square root of a positive semi-

definite matrix 𝐸 . The 𝐻2 norm of a stable transfer function 𝐺 (𝑠) is defined as

∥𝐺∥2 =

(
1

2𝜋

∫ ∞

−∞
tr (𝐺 ( 𝑗𝜔)∗𝐺 ( 𝑗𝜔))𝑑𝜔

)1/2
. (2)
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2. An Analytical Solution to an 𝐻2 Optimal Control Problem

In this section we study an 𝐻2 optimal control problem for the feedback loop in
Fig. 2. This is a natural setup, in which the objective is to design a controller 𝐾 (𝑠)
to minimise the effects of process and sensor disturbances on the control effort and
process output, as quantified by the 𝐻2 norm. We will provide an analytical solution
to this problem under a set of strict assumptions on the state-space realisation of
the process transfer function 𝐺 (𝑠). However in section 3 we will show how to use
this result to obtain an analytical expression for the optimal control law when 𝐺 (𝑠)
instead describes the dynamics of a uniformly damped mass-spring system.

Problem 2 Let
¤𝑥G = 𝐴G𝑥G +𝐵G (𝑢 +𝑤u) , 𝑥G (0) = 0,

𝑧 =

[
𝑦G
𝑢

]
=

[
𝐶G 0
0 𝐼

] [
𝑥G
𝑢

]
,

𝑦 = 𝐶G𝑥G +𝑤y,

(3)

where the matrices 𝐴G 𝐵G and 𝐶G have the following structure

𝐴G =

[
𝐴11 𝐴12
𝐴21 0

]
, 𝐵G =

[
𝑄

0

]
, 𝐶G =

[
𝑄T 0

]
, (4)

with the following properties of the sub-matrices:

• 𝐴11 is diagonal and square of size 𝑛×𝑛;

• 𝐴12 is 𝑛×𝑚, where 0 ≤ 𝑚 ≤ 𝑛 and only has entries on the main diagonal and
these entries are non-zero;

• 𝐴21 = −𝐴T
12;

• 𝑄 has the property that 𝑄𝑄T = 𝐼𝑛 and is of size 𝑛× 𝑝;

• the 0 in 𝐴G is of size 𝑚×𝑚, the 0 in 𝐵G is 𝑚× 𝑝 and the 0 in 𝐶G 𝑝×𝑚, with
𝑝 ≥ 𝑛.

Suppose also that the controller 𝐾 (𝑠) can be described by the state-space system

¤𝑥K = 𝐴K𝑥K +𝐵K𝑦, 𝑥K (0) = 0,
𝑢 = 𝐶K𝑥K +𝐷K𝑦.

(5)

Define 𝑇𝑧𝑤 (𝑠) as the closed loop transfer function from 𝑤 =
[
𝑤T

u 𝑤T
y
]T to 𝑧 de-

scribed by (3) and (5). Find

𝛾∗𝐻2
= inf

{
𝛾 : ∥𝑇𝑧𝑤 (𝑠)∥𝐻2

< 𝛾
}
,

where the infimum is taken over 𝐴K, 𝐵K, 𝐶K, and 𝐷K. ♢
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𝐾 (𝑠) 𝐺 (𝑠)+

+

𝑦

𝑤y

𝑢

𝑤u
𝑦G

Figure 2. Illustration of Problem 2, with external disturbances 𝑤u and 𝑤y acting on the
system. The aim is to minimize the effects of the disturbances on the outputs 𝑦G and 𝑢.

Remark 3 In (4) the state vector 𝑥G has length 𝑛 + 𝑚, and the length of the input
vector 𝑢 is 𝑝. The slightly unconventional naming of the size of the state vector will
be explained by the type of problems this setup can describe, in section 3. ♢

Theorem 2
Under the conditions of Problem 2,

𝛾∗𝐻2
=

√︃
tr
(
𝑍3) + tr (𝑍), (6)

where 𝑍 = 𝐴11 +
√︃
𝐴2

11 + 𝐼, and an optimal controller is given by:

¤𝑥K =

[
𝐴11 −2𝑍 𝐴12
𝐴21 0

]
𝑥K +

[
𝑍𝑄

0

]
𝑦, 𝑥K (0) = 0,

𝑢 =
[
−𝑄T𝑍 0

]
𝑥K.

(7)

Proof. Introduce the generalised plant
¤𝑥
𝑧

𝑦

 =

𝐴G 𝐵𝑤 𝐵G
𝐶𝑧 0 𝐷𝑧𝑢
𝐶G 𝐷𝑦𝑤 𝐷𝑦𝑢



𝑥

𝑤

𝑢

 , (8)

where
𝐵𝑤 =

[
𝐵G 0

]
, 𝐶𝑧 =

[
𝐶G
0

]
,

and
𝐷𝑧𝑢 =

[
0
𝐼

]
, 𝐷𝑦𝑤 =

[
0 𝐼

]
, 𝐷𝑦𝑢 = 0.

Under the conditions of Problem 2, the pair (𝐴G, 𝐵𝑤) is controllable and the pair
(𝐶𝑧 , 𝐴G) is observable. To see this, first note that since 𝑄𝑄T = 𝐼, thus rank (𝑄) = 𝑛.
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Since the diagonal elements in 𝐴21 are all non-zero, rank (𝐴21) = 𝑚. The two first
sub-matrices of the controllability matrix are[

𝐵G 𝐴G𝐵G
]
=

[
𝑄 𝐴11𝑄

0 𝐴21𝑄

]
. (9)

Therefore controllability matrix has rank 𝑛+𝑚, which equals the state dimension.
Thus (𝐴G, 𝐵G) is controllable, which also implies that (𝐴G, 𝐵𝑤) controllable. The
same argument shows that (𝐶G, 𝐴G) and (𝐶𝑧 , 𝐴G) are observable. Furthermore the
matrices 𝐷𝑧𝑢 and 𝐷𝑦𝑤 are full rank. Therefore the 𝐻2 solution to Problem 2 can be
tackled within the Riccati equation framework of [Doyle et al., 1989].

Let 𝑋 denote the unique stabilising solution of

𝑋𝐴G + 𝐴T
G𝑋 − 𝑋𝐵G𝐵

T
G𝑋 +𝐶T

𝑧𝐶𝑧 = 0, (10)

and 𝑌 denote the unique stabilising solution of

𝑌 𝐴T
G + 𝐴G𝑌 −𝑌𝐶T

G𝐶G𝑌 +𝐵𝑤𝐵T
𝑤 = 0. (11)

The solutions 𝑋 and 𝑌 can be used to calculate 𝛾∗
𝐻2

and define the optimal control
laws. We will show under the conditions of Problem 2 that 𝑋 and 𝑌 can be found
analytically.

Ansatz: 𝑋 is a diagonal matrix. Introduce

𝑋 =

[
𝑋1 0
0 𝑋2

]
where the dimensions of the sub-matrices of 𝑋 match those of 𝐴G. Rewriting (10)
in terms of the sub-matrices from Problem 2 (recall that 𝐴22 = 0), (10) is reduced to:

𝑋1𝐴11 + 𝐴T
11𝑋1 − 𝑋2

1 + 𝐼 = 0,

𝑋1𝐴12 + 𝐴T
21𝑋2 = 0,

𝑋2𝐴21 + 𝐴T
12𝑋1 = 0.

(12)

Since 𝐴11, 𝑋1 and 𝑋2 are all diagonal, the first equation reduces to 𝑛 scalar quadratic
equations, with unique positive definite solution 𝑥1,𝑖 = 𝑎11,𝑖 +

√︃
𝑎2

11,𝑖 +1, where 𝑥1,𝑖

denotes the ith diagonal element in 𝑋1, and 𝑎11,𝑖 the ith diagonal element in 𝐴11.
Further, using that 𝐴21 = −𝐴T

12, the final two equations in (12) reduce to equations
𝑥2,𝑖 = 𝑥1,𝑖 for 𝑖 = 1, . . . ,𝑚. Inserting these solutions into one diagonal matrix gives:

𝑋 =

[
𝑍 0
0 𝑍𝑚

]
, (13)

where 𝑍 = 𝐴11 +
√︃
𝐴2

11 + 𝐼, and 𝑍𝑚 is 𝑍 truncated to the first 𝑚 rows and columns.
Since (𝐴G, 𝐵𝑤) is stabilisable and (𝐶𝑧 , 𝐴G) is detectable the unique stabilising

54



2. AN ANALYTICAL SOLUTION TO AN 𝐻2 OPTIMAL CONTROL PROBLEM

solution to (10) is equal to the unique positive semi-definite solution to (10) [Zhou
and Doyle, 1999, Corollary 12.5]. Since the 𝑋 we have found is positive definite, it is
therefore the sought stabilising solution. Equation (11) can be solved in an analogous
manner. Note that 𝐵G𝐵

T
G = 𝐶T

G𝐶G and 𝐶T
𝑧𝐶𝑧 = 𝐵𝑤𝐵

T
𝑤 . This gives the same solution

for 𝑌 , namely that 𝑌 = 𝑋 .
By [Doyle et al., 1989, Theorem 1],

𝛾∗𝐻2
=

√︃
∥𝐺a (𝑠)∥2

𝐻2
+ ∥𝐺b (𝑠)∥2

𝐻2
,

where
𝐺a (𝑠) = 𝐵T

G𝑋
(
𝑠𝐼 − 𝐴G +𝑌𝐶T

G𝐶G

)−1 (
𝐵𝑤 −𝑌𝐶T

G𝐷𝑦𝑤

)
=
[
𝑄T𝑍 0

] (
𝑠𝐼 −

[
𝐴11 − 𝑍 𝐴12
𝐴21 0

] )−1 [
𝑄 −𝑍𝑄
0 0

]
,

and

𝐺b (𝑠) =
(
𝐶𝑧 −𝐷𝑧𝑢𝐵T

G𝑋
) (
𝑠𝐼 − 𝐴G +𝐵G𝐵

T
G𝑋

)−1
𝐵𝑤

=

[
𝑄T 0

−𝑄T𝑍 0

] (
𝑠𝐼 −

[
𝐴11 − 𝑍 𝐴12
𝐴21 0

] )−1 [
𝑄 0
0 0

]
.

The 𝐻2-norm of a state-space model can be calculated using either its controllability
or its observability gramian. More specifically, if𝐺g (𝑠) =𝐶g (𝑠𝐼−𝐴g)−1𝐵g is stable,
its 𝐻2-norm is given by

𝐺g (𝑠)



2
𝐻2

= tr
(
𝐶g𝐿

c
g𝐶

T
g

)
= tr

(
𝐵T

g𝐿
o
g𝐵g

)
,

where 𝐿o
g is the observability gramian, and 𝐿c

g is the controllability gramian. These
matrices are in turn given by the positive definite solutions to the two Lyapunov
equations

𝐴g𝐿
c
𝑔 + 𝐿c

𝑔𝐴
T
g +𝐵g𝐵

T
g = 0 and 𝐴T

g𝐿
o
𝑔 + 𝐴g𝐿

o
𝑔 +𝐶T

g𝐶g = 0 (14)

We will start by finding the controllability gramian for 𝐺a (𝑠), which we denote 𝐿c
a.

Ansatz: 𝐿c
a is diagonal. Introducing

𝐿c
a =

[
𝐿1 0
0 𝐿2

]
,

with dimensions of the sub-matrices of 𝐿c
a matching the sub-matrices of 𝐴G, the

Lyapunov equation is reduced to:

(𝐴11 − 𝑍)𝐿1 + 𝐿1 (𝐴11 − 𝑍)T + 𝐼 + 𝑍2 = 0,

𝐴12𝐿2 + 𝐿1𝐴
T
21 = 0,

𝐴21𝐿1 + 𝐿2𝐴
T
12 = 0.

(15)
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Solving the above shows that 𝐿1 = 𝑍 and 𝐿2 = 𝑍𝑚.
Solving for 𝐿o

b and making the ansatz that it is diagonal gives the exact same
equations as in (15), and thus

𝐿o
b = 𝐿

c
a =

[
𝑍 0
0 𝑍𝑚

]
. (16)

Therefore the 𝐻2 gains of 𝐺a (𝑠) and 𝐺b (𝑠) are

∥𝐺a (𝑠)∥2
𝐻2

= tr
( [
𝑄T𝑍 0

]
𝐿c

a

[
𝑍𝑄

0

] )
= tr

(
𝑍3

)
,

and

∥𝐺b (𝑠)∥2
𝐻2

= tr
( [
𝑄T 0
0 0

]
𝐿o

b

[
𝑄 0
0 0

] )
= tr (𝑍),

(17)

which implies that 𝛾∗
𝐻2

=

√︃
tr
(
𝑍3) + tr (𝑍) as required.

The realisation of the controller follows from [Doyle et al., 1989, Theorem 1].
In particular

𝐴K = 𝐴G −𝐵G𝐵
T
G𝑋 −𝑌𝐶T

G𝐶G =

[
𝐴11 −2𝑍 𝐴12
𝐴21 0

]
,

𝐵K = 𝑌𝐶T
G =

[
𝑍𝑄

0

]
, and 𝐶K = −𝐵T

G𝑋 =
[
−𝑄T𝑍 0

]
,

(18)

and the proof is complete. □

3. Applying Theorem 2 to Uniformly Damped Mass-Spring
Systems

In this section we will look at an optimal control problem for a damped mass-spring
system. We will see that under the assumption of uniform damping, it is possible to
convert this on the form of Problem 2. We will further show how to write the optimal
𝐻2-gain for this problem in terms of the mass and damper parameters of the system,
and that the resulting 𝐻2-controller is itself a passive, damped, mass-spring system,
that inherits many of the structural properties of the system that is being controlled.
A small numerical example is provided to illustrate the result.

3.1 The Optimal Control Problem
We first define the problem that is to be studied.
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Problem 3 Consider a system described by

𝑀 ¥𝑞 +𝐶 ¤𝑞 +𝐾𝑞 = 𝑢 +
√
𝑀𝑤u, 𝑞 (0) = ¤𝑞 (0) = 0,

𝑦 = ¤𝑞 +
√︁
𝑀−1𝑤y,

(19)

where 𝑀 , 𝐶, 𝐾 ∈ R𝑛×𝑛, satisfy the following conditions:

1. 𝑀 is positive definite;

2. 𝐾 is positive semi-definite;

3. 𝐶 is any symmetric matrix that satisfies 𝐶𝑀−1𝐾 = 𝐾𝑀−1𝐶.

Find a controller on the form of (7) that minimizes the 𝐻2 gain from disturbance 𝑤
to performance output 𝑧, where

𝑤 =

[
𝑤u
𝑤y

]
and 𝑧 =

[ √
𝑀 ¤𝑞√
𝑀−1𝑢

]
. ♢ (20)

♢

In the context of damped mass-spring systems, the first equation in (19) is a
statement of Newton’s second law, where 𝑞 is the generalised coordinates, 𝑀 is the
mass-matrix, 𝐶 is the damper-matrix, and 𝐾 is the stiffness-matrix. The input 𝑢 is a
force that can be applied to the system by a controller, and 𝑤u is a disturbance acting
on the system. The second equation in (19) describes the measurements taken, where
it is assumed that the velocity of each generalised coordinate is measured subject to
measurement noise 𝑤y.

We now discuss the implications of the restrictions 1)–3) in Problem 3.

1. This condition makes 𝑀 invertible, allowing for a simple conversion of (19)
into state-space form. This condition can be relaxed at the expense of more
complex derivations. For extensions of the concept of uniform damping to
this setting, see [Adhikari and Phani, 2007][Theorem 1].

2. This condition is needed to ensure the skew-symmetric structure 𝐴21 = −𝐴T
12

required in Problem 2 appears when converting Problem 3 into the form
of Problem 2. In the damped mass-spring interpretation of Problem 3, this
corresponds to that all springs having non-negative spring constant.

3. As discussed in the introduction, this is the uniform damping condition. As
shown in [Caughey and O’Kelly, 1965], this condition is equivalent to the
existence of an invertible matrix 𝑆 such that 𝑆T𝑀𝑆 = 𝐼, and both 𝑆T𝐶𝑆 and
𝑆T𝐾𝑆 are diagonal. Note in particular that this implies that𝑄 = 𝑆T√𝑀 satisfies
𝑄𝑄T = 𝐼. Since 𝑄 is square this further implies that 𝑄T𝑄 = 𝐼.
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Remark 4 Any matrix 𝐶 given by a Caughey series

𝐶 = 𝑀

𝑛−1∑︁
𝑗=0
𝛼 𝑗 (𝑀−1𝐾) 𝑗 , (21)

where 𝛼 𝑗 ∈ R, is uniformly damped. When 𝛼 𝑗 = 0 for 𝑗 ≥ 2 this is typically called
Rayleigh damping [Rayleigh, 1877]. Conversely whenever𝐾 has distinct eigenvalues
a uniformly damped 𝐶 admits a Caughey series. Note that 𝐶 need not be positive
semi-definite (for example when all the 𝛼 𝑗 ’s are negative). When this is the case the
dynamics in (19) are unstable. ♢

There are further implicit assumptions in Problem 2. Most significantly, the
disturbances and performance outputs in Problem 3 are scaled. These scalings are
required to transform Problem 3 into Problem 2. However this requirement can
likely be significantly relaxed by generalising Problem 2 and Theorem 2. There are
a number of ways this could be approached, but we keep these scalings here for
simplicity.

From the application point of view, these scaling are not unreasonable as we
now discuss. It is likely reasonable that 𝑤u should be scaled by the size of the
masses, since larger masses will likely be affected by larger disturbance. Looking
at the performance output 𝑧, we see that the velocities of large masses incur larger
penalties than those of small masses. This is again reasonable, since when larger
masses move, they are harder to stop, so it is desirable to prevent this with the control.
At the same time, the forces acting on large masses from the controller should be
expected to be larger than those of the smaller masses, which is again reflected by
the weight on 𝑢. The weight on 𝑤y is harder to intuitively explain, but is needed for
symmetry. Note also that the scalings in terms of the square root of 𝑀 are not so
unnatural, since the 𝐻2-norm penalises the square of the signals in questions. In the
case of the process output 𝑦, for example, it means that we are minimising the effect
on

∫ ∞
0 𝑦 (𝑡)T 𝑀𝑦 (𝑡) d𝑡.

3.2 The Solution to Problem 3
In this subsection we describe and illustrate the solution to Problem 3. The derivation
from Problem 2 and Theorem 2 will be given in the next subsection.

The Optimal Cost and Control Law The optimal cost for Problem 3 is given by

𝛾∗𝐻2
=

√︂
tr
(
𝑍3
𝐶

)
+ tr (𝑍𝐶 ), (22)

where

𝑍𝐶 = −
√︁
𝑀−1𝐶

√︁
𝑀−1 +

√︃√︁
𝑀−1𝐶𝑀−1𝐶

√︁
𝑀−1 + 𝐼 . (23)
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The optimal controller can either be expressed in state-space form, or as a second
order differential equation. Taking the later option shows that the control law is given
by

𝑀K ¥𝑞K +𝐶K ¤𝑞K +𝐾K𝑞K = 𝑦, 𝑞K (0) = ¤𝑞K (0) = 0
𝑢 = − ¤𝑞K,

(24)

where the matrices are

• 𝑇K = −𝐶 +
√︁√

𝑀𝐶𝑀−1𝐶
√
𝑀 +𝑀2,

• 𝑀K = 𝑇−1
K 𝑀𝑇−1

K ,

• 𝐶K = 𝑇−1
K

(
−𝐶 +2

√︁√
𝑀𝐶𝑀−1𝐶

√
𝑀 +𝑀2

)
𝑇−1

K ,

• 𝐾K = 𝑇−1
K 𝐾𝑇−1

K .

It is interesting to note that the optimal controller in (24) is itself a damped mass-
spring system, with parameters written in terms of the original system. A tedious
but straightforward calculation in fact shows that𝐶K is positive definite (this follows
from the fact that the north-west entry in the 𝐴K (7) is negative definite, and the
negative of this entry eventually becomes 𝐶K after a sequence of transformations
that preserve sign definiteness). This means that the controller can be implemented
physically by building a suitable passive damped mass-spring network.

An Illustrative Case If the damping matrix 𝐶 is proportional to the mass matrix
𝑀 , the controller expressions simplify considerably. If 𝐶 = 𝛼0𝑀 , then
𝑇K = (

√︃
𝛼2

0 +1−𝛼0)𝑀 , and (24) becomes

𝑀−1 ¥𝑞K

(
√︃
𝛼2

0 +1−𝛼0)2
+
(2
√︃
𝛼2

0 +1−𝛼0)𝑀−1 ¤𝑞K

(
√︃
𝛼2

0 +1−𝛼0)2
+ 𝑀−1𝐾𝑀−1𝑞K

(
√︃
𝛼2

0 +1−𝛼0)2
= 𝑦,

𝑢 = − ¤𝑞K.

(25)

The unstable case corresponds here to that 𝛼0 < 0. The more negative 𝛼0 becomes,
the more positive the term in front of ¤𝑞K becomes in relation to the terms in
front of ¥𝑞K and 𝑞K. An interpretation of this is that for an unstable system the
controller introduces more damping, and the more unstable the original system was,
the greater the damping provided by the controller. It should also be noted that the
denominator in all terms becomes larger with more negative 𝛼0. This means that the
more unstable the system is, the more important the measurement 𝑦 becomes in the
control dynamics.
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Figure 3. Levels of 𝐻2 performance achieved as Rayleigh damping parameters 𝛼0 and 𝛼1
vary between −5 and 5. Larger values of 𝛼0 and 𝛼1, which correspond to increased levels of
damping in the original system, result in improved performance.

A Numerical Example Consider the system in Fig. 1, where 𝑚1 = 1 kg, 𝑚2 = 4,
𝑘1 = 1 N/m, and 𝑘2 = 2 N/m. This gives the following mass and stiffness matrices

𝑀 =

[
1 0
0 4

]
and 𝐾 =

[
3 −2
−2 2

]
. (26)

Suppose that the damping is given as Rayleigh damping, then

𝐶 = 𝛼0𝑀 +𝛼1𝐾.

In Fig. 3 the optimal 𝐻2-gain from disturbances to outputs is plotted for different
values of 𝛼0 and 𝛼1 on the interval from −5 to 5. Here it can clearly be seen
that if both 𝛼0 > 0 and 𝛼1 > 0, which corresponds to positive damping, 𝛾∗

𝐻2
is

small. For strictly negative damping, corresponding to the third quadrant where both
𝛼0 < 0 and 𝛼1 < 0, the performance is much poorer, since the uncontrolled system is
unstable. In the second and fourth quadrant of Fig. 3 𝐶 is positive definite for some
combinations of 𝛼0 and 𝛼1, and negative definite or indefinite for others. Depending
on the definiteness of 𝐶, the performance metric 𝛾∗

𝐻2
can either be larger or smaller

than the case of no damping.
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3. APPLYING THEOREM 2 TO UNIFORMLY DAMPED MASS-SPRING
SYSTEMS

3.3 Solving Problem 3 with Theorem 2
Converting Problem 3 into Problem 2 We now describe the required transforma-
tions to convert Problem 3 into Problem 2. We start by introducing a new variable
𝑝 =

√
𝑀𝑞, thus 𝑞 =

√
𝑀−1𝑝. Inserting this into (19) and multiplying both sides by√

𝑀−1 from the left gives

¥𝑝 +
√︁
𝑀−1𝐶

√︁
𝑀−1 ¤𝑝 +

√︁
𝑀−1𝐾

√︁
𝑀−1𝑝 =

√︁
𝑀−1𝑢 +𝑤𝑢 (27)

Define �̃� =
√
𝑀−1𝑢. Since 𝐾 is positive semi-definite and 𝑀 is positive definite,√

𝑀−1𝐾
√
𝑀−1 is positive semi-definite. Under the uniform damping assumption,√

𝑀−1𝐶
√
𝑀−1 and

√
𝑀−1𝐾

√
𝑀−1 commute. Since in addition

√
𝑀−1𝐶

√
𝑀−1 and√

𝑀−1𝐾
√
𝑀−1 are symmetric, there exists a unitary transformation𝑄 (where𝑄𝑄T =

𝑄T𝑄 = 𝐼) such that √︁
𝑀−1𝐶

√︁
𝑀−1 =𝑄TΛ𝐶𝑄,√︁

𝑀−1𝐾
√︁
𝑀−1 =𝑄T

[
Λ𝐾 0
0 0

]
𝑄,

(28)

where Λ𝐶 and Λ𝐾 are both diagonal and ΛK is positive definite. Now define

𝐿 =

[√
Λ𝐾
0

]
.

This makes 𝐿 of size 𝑛×𝑚, where 𝑛 is the number of masses in the system, and 𝑚
is the number of non-zero eigenvalues of 𝐾 . Introduce the state variable

𝑥 =

[
𝑄 ¤𝑝
𝐿T𝑄𝑝

]
. (29)

Define �̃� =
√
𝑀𝑦. Including the performance output 𝑧 and measurement �̃�, (27)

admits the state-space realisation

¤𝑥 =
[
−Λ𝐶 −𝐿
𝐿T 0

]
𝑥 +

[
𝑄

0

]
(�̃� +𝑤𝑢),

𝑧 =

[
[𝑄T 0] 0
[0 0] 𝐼

] [
𝑥

�̃�

]
,

�̃� =
[
𝑄T 0

]
𝑥 +𝑤𝑦 .

(30)

Problem 3 has now been written on the form of Problem 2, with the sub-matrices
fulfilling all conditions in the formulation of Problem 2.

Extracting the Optimal Solution to Problem 3 By Theorem 2, the optimal𝐻2-gain
from disturbances to performance outputs is given by

𝛾∗𝐻2
=

√︃
tr
(
𝑍3) + tr (𝑍), where

𝑍 = −Λ𝐶 +
√︃
Λ2
𝐶
+ 𝐼 .

(31)
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With Λ𝐶 =𝑄
√
𝑀−1𝐶

√
𝑀−1𝑄T, 𝑍 can be expressed in terms of the original system

matrices according to

𝑍 = −𝑄
√︁
𝑀−1𝐶

√︁
𝑀−1𝑄T

+
√︃
𝑄
√︁
𝑀−1𝐶𝑀−1𝐶

√︁
𝑀−1𝑄T + 𝐼 .

(32)

Using the cyclic property of the trace, and the fact that the matrices 𝑄 and 𝑄T can
be pulled out of the square root, shows that

tr
(
𝑍3

)
= tr

(
𝑍3
𝐶

)
and tr (𝑍) = tr (𝑍𝐶 ), (33)

where 𝑍𝐶 is defined in (23).
From (7), the optimal controller in state-space form is given by

¤𝑥K =

[
−Λ𝐶 −2𝑍 −𝐿

𝐿T 0

]
𝑥K +

[
𝑍𝑄

0

]
�̃�, 𝑥K (0) = 0,

�̃� =
[
−𝑄T𝑍 0

]
𝑥K,

(34)

where 𝑍 is defined as in (31). This structure is very similar to the structure of
the problem in (30). Reversing the described transformations yields the controller
expression in (24). This can be done by first introducing 𝑝K through

𝑥K =

[
𝑄 ¤𝑝K
𝐿T𝑄𝑝K

]
,

and then setting 𝑞K = 𝑇K
√
𝑀−1𝑝K, where

𝑇K =
√
𝑀𝑄T𝑍𝑄

√
𝑀 = −𝐶 +

√︃√
𝑀𝐶𝑀−1𝐶

√
𝑀 +𝑀2,

and simplifying. 𝑇K is non-singular since 𝑀 is non-singular. This can most easily be
seen in first expression of 𝑇K above where 𝑍 is non-singular according to (31) and
𝑄 is non-singular due to it being unitary. Equation (34) can, with these transforms,
be rewritten and simplified to

𝑇−1
K 𝑀𝑇−1

K ¥𝑞K +𝑇−1
K 𝐾𝑇−1

K 𝑞K +𝑇−1
K

(
−𝐶 +2

√︃√
𝑀𝐶𝑀−1𝐶

√
𝑀 +𝑀2

)
𝑇−1

K ¤𝑞K = 𝑦,

𝑢 = − ¤𝑞K,
(35)

which is the result in (24).
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4. CONCLUSIONS

4. Conclusions

An analytical solution to a structured optimal control problem has been derived.
This was used to analytically solve a corresponding problem for any system that
can be modelled as a uniformly damped network of masses and springs. The results
illustrate the impact of damping on system performance, and also that such systems
can be optimally regulated by passive networks of damped masses and springs.
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