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Abstract

This document compares two approaches to finding resonance peaks from a
single sensor: 1) averaging multiple measurements of the transfer function or
frequency-domain scattering matrix, versus 2) using the iterative time-reversal
process, which involves iteratively re-transmitting a time-reversed version of
the scattered field at the previous iterations. The averaging method has the
advantage of handling arbitrarily much noise if sufficiently many averages are
used. On the other hand, up to a certain level of noise, the time-reversal
method has dramatic advantages over the averaging method; but it also re-
quires more complex equipment. This document discusses the tradeoffs in-
volved, with the goal of providing information that may be useful in the sys-
tem design process.

1 Introduction
For many decades there has been interest in using scattered fields to find target
resonances. One reason is for their possible use in target identification [1–4]. Reso-
nant frequencies are connected to the presence, in the complex frequency plane, of
poles of the target scattering operator [9,17,23], and the locations of these poles are
independent of the aspect angles from which the target is probed. Consequently,
identification of target resonances could contribute to the development of an aspect-
independent method for identifying a target.

In this paper, the term “resonance" refers simply to a local maximum of the
transfer function (frequency-domain scattering matrix). The connection between
these peaks and scattering poles was studied further in [17].

This document compares two approaches to finding resonance peaks: 1) averag-
ing multiple measurements of the transfer function and raising it to a power, versus
2) using the iterative time-reversal process. This iterative time-reversal (TR) pro-
cess [10–12,15,16,20–22] involves first transmitting any signal, receiving the scattered
field, time-reversing this scattered field (for example, by sampling the received field,
storing it and time-reversing it in a computer), re-transmitting this time-reversed
field, and repeating.

In each peak-finding approach, the resulting plot shows a sharp peak; the fre-
quency where this peak occurs is the resonance frequency. Process 2) requires more
complicated and expensive equipment; the question is whether the results provide
an advantage that might make the investment worthwhile. The goal of this paper is
to characterize the advantages and disadvantages of each approach, and thus enable
informed decision-making about which approach to use.
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2 Background and notation

2.1 Scattering

We transmit, from a single sensor, a known signal f(t). The field thus produced
propagates towards an unknown stationary object, scatters from it, and propagates
back to the same sensor. This sensor measures the scattered field. We denote by
S the operator that maps f to the (noiseless) received signal. This time-domain
scattering operator can be represented as Sf = S ∗ f =

´
S(t− t′)f(t′)dt′, where S

is the impulse response. The received signal, which includes noise n, is Sf + n.

2.2 The time-reversal operation

We denote by T the operation (Tf)(t) = f ∗(−t), where the star denotes complex con-
jugate. (Reasons for considering a complex-valued signal are given in Section 2.4.)
For real-valued signals, T is simply time reversal. We note that T2 = I where I
denotes the identity operator.

2.3 The frequency domain

We use the physics convention for the Fourier transform, i.e., F (ω) =
´
eiωtf(t)dt.

The corresponding frequency-domain scattering operator is simply multiplication
by the transfer function S, where S(ω) =

´
eiωtS(t)dt. Thus the frequency-domain

received signal, which includes (frequency-domain) noise N , is SF +N .
In this document, we assume that the noise N is normally distributed with mean

0 and variance σ2.
In the frequency domain, the operation T becomes

TF (ω) =

ˆ
eiωt(Tf)(t)dt =

ˆ ∞

−∞
eiωtf ∗(−t)dt =

ˆ ∞

−∞
e−iωtf ∗(t)dt = F ∗(ω) (2.1)

and consequently TST = S∗, where the star denotes complex conjugate. Thus

(ST )2n = (SS∗)n and (ST )2n+1 = ST (SS∗)n. (2.2)

2.4 The analytic signal

In experiments we transmit and receive only real-valued signals f . The Fourier
transforms of real-valued signals however, satisfy F (−ω) = F ∗(ω), which means
that the information on the negative frequency axis is redundant. In the radar
community, the convention is to delete the negative frequencies, which means that
the corresponding time-domain signal, which is called the analytic signal [8], is
complex valued. By the Paley-Wiener theorem, the analytic signal is indeed analytic
in the upper half-plane in t. Chopping off the negative frequencies corresponds, in
the time domain, to applying the Hilbert transform.
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Figure 1: Top left: magnitude of noiseless scattering transfer function for electro-
magnetic scattering from a dielectric sphere. Top right: a normalized version of the
same transfer function with added noise. Bottom: mean of 20 and 1000 such noisy
transfer functions, respectively.

2.5 Averaging example

Fig. 1 shows the transfer function for a dielectric sphere. The noiseless scattering
operator is shown on the top left plot of Fig. 1. The top right plot of Fig. 1 shows
Ŝ = (SF̃ +N)/F̃ , where F̃ is the initial waveform F ≡ 1 divided by the maximum
of the real part of its Fourier transform. Here the additive noise is in CN (0, .0005).
The bottom plots of Fig. 1 shows the average of 20 and 1000 such samples of Ŝ =
(SF̃ +N)/F̃ . The conclusion from Fig. 1 is that the mean of sufficiently many noisy
measurements can give a good approximation to the transfer function. This is in
line with the understanding that averaging N measurements typically reduces the
effect of noise by

√
N .

3 The two procedures without normalization
We refer to the two procedures outlined in the Introduction as 1) averaging and 2)
time reversal (TR).
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3.1 Averaging

In the averaging approach, we make M measurements with a broadband signal F .
The result of the mth measurement is SF +Nm. For the scalar case (i.e., only one
sensor), we use this measurement to estimate S as Ŝm = S +Nm/F , where we have
assumed that F is nonzero.

In the appendix, we show that to estimate S from multiple measurements Sm,
m = 1, 2, . . . ,M , we compute the sample mean of the measurements

Ŝ =
1

M

∑
m

Ŝm =
1

M

∑
m

(
S +

Nm

F

)
= S +

1

FM

∑
m

Nm. (3.1)

This averaging process decreases the standard deviation of the noise by a factor of√
M . To mimic M iterations of the time-reversal procedure, we can then raise this

sample mean to the power M , obtaining

|Ŝ|M =

∣∣∣∣∣S +
1

FM

∑
m

Nm

∣∣∣∣∣
M

. (3.2)

3.2 Time reversal without normalization

After one scattering operation, the received signal is SF +N1.
After time-reversal and re-transmission, the received signal at the second iteration
is ST (SF +N1) +N2 = STSF + STN1 +N2.
At the third iteration the received signal is ST [ST (SF +N1)+N2]+N3 = SS∗SF +
SS∗N1 + STN2 +N3

Expected values. After one measurement, the expected value of the received
signal is E(SF +N1) = SF + EN1 = SF .
After two measurements, the expected value is E(STSF + STN1 +N2) = STSF +
STEN1 + EN2 = STSF .
After three measurements, the expected value is E [ST [ST (SF +N1) +N2] +N3] =
STSTSF . We see that when the noise has zero mean, M iterations of the time-
reversal process is expected to provide us with an unbiased estimate of (ST )MSF .

Note that this discussion omits the normalization process. Normalization, which
makes the process nonlinear, is discussed below in Section 4. Without normalization,
the TR process can accommodate arbitrarily much noise. But this is because the
transmitted energy can increase without bound as the number of iterations increases.

4 Time reversal with normalization
There are different ways that the transmitted energy can be constrained. The first
is natural from a mathematical point of view, but less natural in experiments.
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4.1 Normalization by energy

After one scattering operation, the received signal is SF + N1. The L2 norm is
∥SF + N1∥, so the new waveform is T (SF + N1)/∥SF + N1∥. Here the order
of operations doesn’t matter, because the norm is a scalar, so the time-reversal
operation operates only on the numerator.

After the second scattering operation, the received signal is

ST (SF +N1)

∥SF +N1∥
+N2 =

STSF + STN1

∥SF +N1∥
+N2. (4.1)

Its norm is
∥∥∥ST (SF +N1)/∥SF +N1∥+N2

∥∥∥; consequently after the third scattering
operation, the received signal is

ST

STSF+STN1

∥SF+N1∥ +N2∥∥∥STSF+STN1

∥SF+N1∥ +N2

∥∥∥ +N3 =

STSTSF+STSTN1

∥SF+N1∥ + STN2∥∥∥STSF+STN1

∥SF+N1∥ +N2

∥∥∥ +N3

=
STSTSF + STSTN1 + ∥SF +N1∥STN2∥∥∥STSF + STN1 + ∥SF +N1∥N2

∥∥∥ +N3(4.2)

It seems difficult to compute the expected value of these quantities. We note that
the time-domain and frequency-domain L2 norms are the same, so this process could
equally well be written in the time domain.

4.2 Normalization by magnitude and time-gating

In practice, a much easier way to limit the energy is to limit the signal amplitude
and duration.

Consequently we introduce a time-gating operator X, defined by (Xf)(t) =
χ(t)f(t) for some function χ that is zero outside some time interval [−τ, τ ]. In
the simulations reported below, this function is a characteristic function (1 inside
the time interval and 0 outside). In the frequency domain, this time-gating oper-
ator is XF = X ∗ F , where X denotes the Fourier transform of χ and ∗ denotes
convolution.

With time-gating, the time-reversal process is as follows. After one scattering op-
eration, the frequency-domain received signal is SF +N1, which in the time domain
is
´
S(t−t′)f(t′)dt′+n1(t). We time-gate to obtain χ(t)

[´
S(t− t′)f(t′)dt′ + n1(t)

]
.

In the frequency domain this is X (SF+N1). We then normalize by the time-domain
maximum ∥χ(S ∗ f) + χn1∥∞. We time-reverse and scatter again; thus as the next
step we obtain, in the frequency domain,

ST
X (SF +N1)

∥χ(S ∗ f) + χn1∥∞
+N2 (4.3)

In the time domain, this is´
S(t− t′)χ(−t′)

[´
S(−t′ − t′′)f(t′′)dt′′ + n1(−t′)

]
dt′

∥χ(S ∗ f) + χn1∥∞
+ n2(t). (4.4)
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Table 1: Statistics for 200 4-measurement trials. The true value of the resonance
is ka = 1.9754.

Coherent averaging TR
mean of estimates of ka 1.7819 1.9764
variance 0.0671 1.2544 ×10−5

RMS error 0.3229 0.0037

Fig. 2 shows result of limiting the waveform duration as well as normalizing by
the maximum of the real part. The duration limiting is done by simply chopping
the waveform. Again the added noise, which is added after normalization, is in
CN (0, .0005). Here the left column shows the averaging process for 2, 4, and 7
measurements. The right column shows the results of 2, 4, and 7 TR iterations. We
note that again the largest peaks in the left column are not at the main resonance;
clearly, at this level of noise, averaging 7 measurements is inadequate.

The rest of this paper normalizes each TR iterate by limiting the waveform
duration and dividing by the maximum magnitude of the real part. As we will see,
this energy-limiting process effectively limits the attainable SNR for the TR process.

5 Comparisons between averaging and TR
In this section we compare estimates of the main resonance from averaging and TR.
In both cases we determine the ka of the resonance as the value of ka at which the
maximum occurs.

5.1 4-measurement averaging vs. TR

Figure 3 shows a comparison for 4 TR iterations vs. 4 samples coherently averaged
and raised to the 4th power. Statistics for estimation of the largest resonance is
shown in Table 1.

5.1.1 Behavior at different noise levels

We compared the time-reversal procedure to the averaging method, under different
levels of additive noise, for the case when each process makes 4 measurements. For
sufficiently large noise, both methods fail.

Results are shown in Table 1 for 200 trials when both methods make 4 measure-
ments, for added noise (added after normalization) in CN (0, .0005).

5.2 RMS error: TR vs. different numbers of averages

The examples above show that TR gives superior results when results from the
same number of measurements are compared. In this section we investigate larger
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Figure 2: Limiting duration and normalizing by maximum: Comparison of the
averaging process (left column) versus time-reversal (right column), after (rows) 2,
4, and 7 measurements.
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Figure 3: The top line shows two runs (with different realizations of noise) of 200
trials each for the averaging method with 4 measurements. The bottom plot shows
200 trials of a 4-iteration TR result. Different TR runs give indistinguishable results.

numbers of measurements for the averaging process.
Fig. 4 shows the RMS error in estimates of the resonance ka estimated by 4-

iterate TR (heavy blue curve) for various numbers of averages ranging from 4 to 100
(light curves), as a function of noise level. The right plot is a zoomed-in version of
the left plot (but with different realizations of noise). We note that the noise level
for which TR fails is higher than that at which the averaging method fails, at least
for averages of up to 100 samples.

The plateau region in the TR procedure for dielectric sphere arises because the
secondary resonance is nearly as strong as the main resonance.

A case without such a nearby resonance is shown in Fig. 5, which corresponds to
the case of a silver spherical nanoparticle at optical frequencies. The more isolated
resonance produces no such extended plateau. Histograms for this case are shown
in Fig. 10. In this case the correct peak is chosen consistently.

In Fig. 6 the left plot compares 1000 averages (heavy blue curve) to 10 TR
iterations. The right plot shows 10 TR iterations (heavy blue curve) compared to
a sampling of averages from 10 to 1000. These plots show results from 200 trials.
Fig. 7 shows the estimated values of ka for the averaging method for each trial and
each number of averages.
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Figure 4: RMS error in estimate of ka, comparing various numbers of averages
(light curves) vs 4-iterate TR (heavy blue curve), for different noise levels. The left
plot is for the dielectric sphere; the right plot shows a zoomed plot near the origin.

Figure 5: The left plot is the magnitude of the transfer function for a silver spherical
nanoparticle at optical frequencies. Note the more isolated resonance. The right plot
is the RMS error in estimate of ka, comparing various numbers of averages (light
curves) vs 4-iterate TR (heavy blue curve), for different noise levels.
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Figure 6: The RMS error of the estimates of ka for the largest resonance, as a
function of the amplitude of the additive noise. Left: 1000 averages (heavy blue
curve) vs. 1 – 10 TR iterations (multiple light curves). Right: 10 TR iterations
(heavy blue curve) vs. a sampling of averages from 10 to 1000 (multiple light curves).
The heavy blue curve on the right is the same as the light curve on the left for the
10th TR iteration. Results are shown for 200 trials.

Figure 7: Estimated value of ka for the averaging method, for each trial and
each number of averages, for decreasing noise amplitudes. The true value of ka
corresponds to yellow.
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5.3 Histograms

We can understand the behavior of TR more clearly in Fig. 8, which plots a his-
togram of ka estimates from TR as a function of noise amplitude. The color shows
the fraction of the 200 trials that result in the estimate of ka marked on the vertical
axis. Because every trial produces some estimate, the sum over each vertical slice
is 1. Perfect performance would be a red bar at approximately ka = 2, stretching
all the way across the plot. The length of the red bar indicates the level of noise at
which the process fails.

We can understand the behavior of TR more clearly in Fig. 8, which plots a
histogram of ka estimates from TR as a function of noise amplitude. The color
shows the fraction of the 200 trials that result in the estimate of ka marked on the
vertical axis. Because every trial produces some estimate, the sum over each vertical
slice is 1.

We see that most of the trials produce the estimates of approximately 2, which is
the correct value, but a significant fraction of trials return the estimate of about 1.5,
which corresponds to the secondary peak in Fig. 1. Very few trials produce estimates
other than these two numbers. Figure 9 shows the corresponding histograms for
different numbers of averages.

Figure 10 and 11 show the TR and averaging histograms for the silver sphere,
which has an isolated resonance at a value of ka less than 1.

5.4 SNR

The SNR is computed at the resonant frequency as the ratio of the mean of the
magnitude squared divided by the variance. Fig. 12 shows improvement in SNR
with TR iteration, for the cases of the dielectric sphere (left column) and silver
sphere (right column). The top row shows the results starting with a broadband
waveform, and the bottom row shows the “clairvoyant" results in which the iterations
start with the ideal waveform, namely a CW wave at the resonant frequency. In
the top two plots, we note that the first TR iteration seems to bring significant
improvement in SNR, and later TR iterations contribute less improvement. In the
bottom two “clairvoyant" plots, in which the iterates begin with the ideal waveform,
we see that the first measurement is better than later ones. This is because the later
iterates become contaminated with noise.

5.5 TR saturation

Although we see that the TR process provides rapid gains against low levels of noise,
we expect that TR cannot continue to improve as the noise levels increase. This is
because the TR gains are due to moving the transmitted energy to the resonant fre-
quency, but the available instantaneous energy is limited by the equipment capacity
(and in the simulations by the amplitude-and-duration-limiting normalization pro-
cess). The number of repetitions of the averaging process may be similarly limited
by the available energy, since each average requires the application of more energy,
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Figure 8: Histograms for TR iterates for the dielectric sphere. For each noise
amplitude (horizontal axis), the color shows the fraction of trials that result in the
estimate of ka marked on the vertical axis. The sum over every vertical slice is 1.
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Figure 9: Histograms of ka estimates for different numbers of averages (100, 200,
300, 400, 700, 1000) for the dielectric sphere.
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Figure 10: Histograms for TR iterates for the silver sphere. For each noise am-
plitude (horizontal axis), the color shows the fraction of trials that result in the
estimate of ka marked on the vertical axis.
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Figure 11: Histograms of ka estimates for different numbers of averages (5, 20, 50,
70, 85, 100) for the silver sphere.
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Figure 12: Signal-to-noise ratios for 4 TR iterates. Top row: starting with broad-
band waveform; Bottom row: starting with CW at resonant frequency. Left column:
dielectric sphere; Right column: silver sphere. In all cases the initial measurement
is the blue curve, the second red, third yellow, and fourth purple.
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Figure 13: Histograms of ka estimates for large numbers TR iterations (20 and
100) for the dielectric sphere. The initial 10 iterations can be seen in Fig. 8.

but over the averaging process this energy is transmitted over a longer time period
and not over a single pulse.

The saturation of the TR process is illustrated in Fig. 13. We see that little
change occurs between 10 iterations (seen in Fig. 8) and 100 iterations (Fig. 13).

6 Conclusions
We found that when similar numbers of measurements are used, TR is noticeably
better than averaging. The behavior in noise depends somewhat on the shape of the
transfer function, particularly the presence or absence of resonances of nearly equal
strength.

We showed that, compared to averaging, TR enables much quicker identification
of resonances and uses fewer measurements. Moreover, it has a signal-to-noise ad-
vantage in the presence of limited additive receiver noise. However, TR is limited
in the amount of noise it can handle.

The averaging method, on the other hand, has the advantages of being simpler
and of not being limited in the amount of noise it can handle, if arbitrarily many
measurements are allowed. This is because averaging suppresses noise.

An interesting approach might be to apply TR until its SNR saturates, save the
result, repeat, and average the results. Or perhaps the TR process should apply
averaging at each iteration. Perhaps the approach of [13] could be applied. Such
investigations are left for the future.
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Appendix A Statistical estimation
This appendix recalls some basic facts about statistical estimation.

We assume that time-domain measurements are immediately converted into the
frequency domain, so that we have an uncoupled problem of the form

Ym(ω) = X(ω) +Nm(ω), m = 1, 2, . . .M, (A.1)

where the Nm are assumed to be independent and identically distributed complex
Gaussian samples with mean 0 and variance σ2. At each fixed frequency ω, from
the M measurements of Ym, m = 1, 2, . . .M , we want to estimate X(ω). Since the
frequency is held fixed, we drop it from the notation.

The measurement column vector Y is distributed as

p(Y ) =
1

πdet(Γ)
e−(Y −X1)HΓ−1(Y −X1) =

1

πMσ2
e−|Y −X1|2/σ2

(A.2)

where we have assumed that the covariance matrix Γ is of the form Γ = σ2I with
I the M ×M identity matrix and where 1 is the column vector consisting of 1 in
every entry. Here the superscript H denotes complex conjugate transpose.

A.1 Estimating by averaging

To obtain the maximum likelihood estimate of X from M measurements (A.1),
we differentiate (A.2) with respect to X and X∗ (complex conjugate) and set the
derivatives to zero. We obtain (Y −X1)∗ · 1 = 0 and 1 · (Y −X1) = 0, which both
result in the same maximum likelihood estimation formula

X̂ =
1

M

M∑
m=1

Ym (A.3)

which shows that the maximum likelihood estimate of X is the sample mean of the
measurements.

1Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the United States Air Force or
Navy.
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If the samples are of the form (A.1), then the variance of (A.3) is

Var X̂ = E

[(
1

M

M∑
m=1

Ym −X

)∗(
1

M

M∑
m′=1

Ym′ −X

)]
=

1

M2
E

[∑
m

N∗
m

∑
m′

Nm′

]

=
1

M2
Mσ2 =

σ2

M

(A.4)

In particular, if each measurement has mean X and standard deviation σ, then the
average (A.3) of M measurements has mean X and standard deviation σ/

√
M . This

shows that averaging suppresses noise.

A.2 Statistical estimation of the frequency of the largest res-
onance

For (A.1), the frequency at which |X(ω)| is largest is also the frequency at which it
is easiest to distinguish between the two hypotheses

H1 : Y (ω) = X(ω)1+N (ω)

H0 : Y (ω) = N (ω) (A.5)

This is the frequency at which the log likelihood ratio L(ω) is maximized:

L(ω) = log
pH1(ω)

pH0(ω)
= log

e−|Y −X1|2/σ2

e−|Y |2/σ2 =
|Y |2

σ2
− |Y −X1|2

σ2

=
1

σ2

(
Y ∗ ·X1+X∗1 · Y − |X|2 1 · 1︸︷︷︸

M

)
(A.6)

In (A.6), we use the maximum likelihood estimate (A.3), and 1 · Y =
∑

j Yj, ob-
taining

L(ω) ∝

(
1

M

M∑
m=1

Ym

)(∑
j

Yj

)∗

+

(
1

M

M∑
m=1

Ym

)∗(∑
j

Yj

)
−M

∣∣∣∣∣ 1M
M∑

m=1

Ym

∣∣∣∣∣
2

=

∣∣∣∣∣ 1M
M∑

m=1

Ym(ω)

∣∣∣∣∣
2

(A.7)

which is the same result we would have obtained by taking the magnitude squared
of (A.3).
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