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Abstract 

 Protein kinase C (PKC) belongs to a family of ten serine/threonine protein kinases 

encoded by nine genes. This family of proteins plays critical roles in signal transduction which 

results in cell proliferation, survival, differentiation and apoptosis. Due to differential subcellular 

localization and tissue distribution, each member displays distinct signaling characteristics. In 

this review, we have summarized the roles of PKC family members in chronic lymphocytic 

leukemia (CLL). CLL is a heterogeneous hematological disorder with survival ranging from 

months to decades. PKC isoforms are differentially expressed in CLL and play critical roles in 

CLL pathogenesis. Thus, isoform specific PKC inhibitors may be an attractive option for CLL 

treatment.   

 

1. Introduction 

 The mammalian genome encodes more than 500 protein kinases which mainly 

phosphorylate serine, threonine and tyrosine residues in substrate proteins (1,2). These kinases 

are important regulators of nearly all cellular processes. Apart from controlling normal cellular 

processes many kinases are also overexpressed or mutated in cancers. Thus, kinases are valuable 

drug targets for the treatment of cancers. The protein kinase C (PKC) family of protein 

serine/threonine kinases was initially described in 1977 as a cyclic nucleotide-independent 

kinase (3). Gradually this family became a multi-gene family of ten protein serine/threonine 

kinases encoded by nine genes (4), which are shown to be important intermediate regulators of 

many signaling cascades (5,6). Due to the varying tissue distribution as well as subcellular 

localization PKC family proteins regulate diverse cellular processes and have been proven to be 
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attractive drug targets in many cancers. 

Chronic lymphocytic leukemia (CLL) accounts for 30% of all leukemia and is the most 

common type of adult hematological malignancy in the Western world. CLL is a neoplastic 

disease characterized by the accumulation of small B lymphocytes with a mature appearance in 

bone marrow, blood, lymph nodes or other lymphoid tissues. Although initially CLL was thought 

to be a homogeneous disease, based on clinical and biological characteristics, this disease shows 

a high degree of heterogeneity (for a review see (7)). Thus, treatment of CLL is apparently 

complicated and survival varies from month to decades. For example, expression of ZAP-70 is 

associated with poor prognosis, and mutation in the tumor suppressor genes p53 and ATM are 

markers of aggressive disease with a phenotype resistant to conventional chemotherapy (7). 

Therefore, invention of novel therapeutic agents will be highly beneficial for these groups of 

CLL patients. 

     

 2. The structure and classification of PKC isoforms 

PKC isoforms are broadly subdivided into three subfamilies based on their domain 

structure and cofactor requirement (4). The general structure of PKC proteins includes an amino-

terminal regulatory domain and a carboxy-terminal catalytic domain. These two domains are 

composed of several conserved and variable regions (Fig. 1). The classical or conventional PKC 

isoforms include PKCα, PKCβII and its splice variant PKCβI, and PKCγ. These four isoforms 

share equivalent domain structure including C1 and C2 domains in the regulatory part and a 

catalytic domain divided into two sub-domains (8). Two C1 domains are referred to as C1A and 

C1B which mediate association of phospholipids or diacylglycerol (DAG). The C2 domain is 

capable of interaction with two calcium ions. Thus, classical PKC isoforms are regulated by 
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lipids and calcium ions. The two sub-domains in the catalytic domain are so-called C3 and C4 

domains (8). While the C3 domain creates a cavity for ATP binding, C4 mainly act as substrate 

binding site. Novel PKC isoforms include PKCδ, PKCε, PKCε and PKCζ. These PKC isoforms 

also have C1A and C1B domains while they lack a functional C2 domain. They are thus 

regulated by phospholipids and DAG but not by calcium ions. Instead of a functional C2 

domain, the novel PKC isoforms contain a novel C2 domain that has important roles in cell 

signaling despite lacking affinity for calcium ions (9). Atypical PKC isoforms, PKCδ and PKCη, 

completely lack C2 domain and one C1 domain, and are therefore independent of DAG and 

calcium for their regulation, but can be regulated by phospholipids. Atypical PKC isoforms 

contain a PB1 domain that plays a role in protein dimerization. Binding of DAG and calcium to 

the regulatory domain helps specific PKC isoforms to localize to the specific subcellular 

compartments. A common feature of all PKC isoforms is the presence of a pseudo-substrate (PS) 

region in the regulatory domain that occupies the substrate binding site and thereby keeps the 

enzyme in an inactive state (4). Binding of factors to the regulatory domain causes necessary 

structural changes allowing PS to release the substrate binding site. These steps make PKC 

active and allows substrates to interact with the enzyme. Furthermore, association with factors 

can influence subcellular localization of PKC isoforms and thus PKC changes their subcellular 

localization upon activation. 

 

3. Subcellular localization of PKC isoforms 

 The subcellular localization of PKC isoforms has been studied extensively (10-15). All 

PKC isoforms are expressed and retained in the cytosol before binding to their regulatory 

factors. Binding to DAG, or its analogs, and calcium ions increases membrane localization of the 
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classical PKC isoforms (10,11). Novel PKC isoforms also display similar membrane localization 

in response to DAG analogs, while some of them are also localized to the cytosolic organelles 

(11). Membrane translocation of PKC isoforms is required for PKC activation and further 

regulation of downstream signaling pathways. Although the DAG analog TPA is categorized as a 

potent tumor promoter, a macro-cyclic lactone bryostatin 1 (a mimic of TPA), can activate PKC 

by binding to the C1 domain, but does not induce differentiation of HL-60 cells and is also not a 

complete tumor promoter (12). Thus activation of PKC might have differential functions 

depending on associating molecules. Differential subcellular localization might also play a role 

in this process. The same factors can direct different PKC isoforms to the different cellular 

compartments. Bryostatin 1 treatment leads to translocation of PKCα from the cytosol to the 

plasma membrane while it leads to translocation of PKCβII to the plasma membrane as well as 

to the nuclear membrane in the HL60 cell line (12). In contrast, 4β-phorbol 12, 13-dibutyrate 

treatment induces complete translocation of PKCα to the plasma membrane, but only partial 

translocation of PKCβII to the same cellular compartment. Besides their translocation to the cell 

membrane, PKC isoforms have also been shown to be associated with other intracellular 

compartments. Many of them reside at the nuclear membrane or anchor with Golgi and 

mitochondrial membranes (16).  Thus, subcellular localization of PKC isoforms is directed by 

factor binding to the specific PKC isoforms, and probably dependent on associating factors, 

different PKC isoforms either act as activators or suppressors of downstream signaling. 

 

4. PKC isoforms and cancer 

 Although the tumor promoting properties of phorbol esters have been known for many 

years, the mechanism behind its activity remained a mystery before identification of PKC as a 
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receptor of phorbol esters. Later many investigators established the complex roles of this family 

proteins in cancers (17). PKC isoforms are mainly associated with activation of survival 

pathways leading to increased proliferation and survival. The classical PKCα and novel PKCε 

are the most potent activators of cell survival. While other PKC isoforms are also to some extent 

involved in oncogenicity, PKCδ was described as both an oncogene and a tumor suppressor 

dependent of its tissue distribution. Although a majority of the studies established PKCα as an 

oncogene, its role in cancer is complex. PKCα triggers apoptosis in glioma cells (18) and inhibits 

growth of pancreatic cancer cells (19). In addition, loss of PKCα expression potentiates cell 

proliferation in CaCo-2 cells (20). One recent report suggests that PKCα expression is 

downregulated in CLL, colon cancer and glioblastoma (21) which is in line with previous 

observations that PKCα acts as a tumor suppressor in certain cancers. The expression levels of 

other PKC isoforms also differ between cancer types (Fig. 2). Elevated PKCβ expression was 

observed in B-cell lymphoma, while expression was lost in a melanoma cell line (for review see 

(22)). PKCβII is also involved in enhancement of B-cell receptor (BCR) signaling in ZAP-70 

expressing CLL cells (23). Even though PKCδ acts as a tumor suppressor in many cancers, it 

plays the opposite role in CLL. Inhibition of PKCδ induces apoptosis in B-CLL cells (24). 

Although mutations in PKC isoforms are very rare, some earlier reports described certain 

types of mutations in different PKC isoforms. The D294G mutation in PKCα is the most studied 

mutation and was initially identified in a subpopulation of pituitary tumors (25). Later this 

mutation was also observed in thyroid and breast cancers (26,27). Patients carrying PKCα-

D294G mutation is linked to poor prognosis. The D294G mutation is a loss of function mutation 

(28) and thus PKCα acts as a tumor suppressor in these tumors. The tumor suppressor role of 

PKC isoforms has also been described in cancer, where treatment with ingenol mebutate (also 
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called ingenol angelate or PEP005), an activator of a broad range of PKC isoforms is effective 

against skin cancer and leukemia (29-31). These observations suggest that different PKC 

isoforms play differential roles dependent on the cancer type.  

 

5. Signaling from hematopoietic growth factor receptors  

 Growth factors mediate their biological effects through binding to the cell surface 

receptors. Binding of specific growth factor to the specific cell surface receptor activates 

downstream signaling resulting cell proliferation and differentiation. Signal from growth factor 

is transduced by a number of intermediate signaling proteins including adaptors, scaffold 

proteins, non-receptor kinases and phosphatases (32-38). Activation of PKC isoforms occurs in 

response to growth factors under physiological conditions. This process is partially mediated 

through growth factor-mediated phospholipase C (PLC) activation which by generating DAG 

and inositol trisphosphate (IP3) from membrane phospholipids in turn activates classical and 

novel PKC isoforms. A variety of hematopoietic receptor tyrosine kinases signal through PKC 

isoforms as well. Binding of growth factors to these receptors leads to dimerization and auto-

phosphorylation of the receptors on tyrosine residues which further creates docking sites for a 

number of signaling molecules (32-37). PKC isoforms amplify signals from these receptor by 

phosphorylating downstream substrates, while phosphatases counteract these processes (39).  

The role of type III receptor tyrosine kinases in hematopoietic malignancies has been 

extensively investigated. This group includes PDGFRα, PDGFRβ, FLT3, KIT and M-CSFR 

(CSF1R). The ligand for platelet-derived growth factor receptor (PDGFR), PDGF was originally 

purified from platelet extracts. Following injury PDGF is released by monocytes and platelets. 

Although PDGFR plays a role in wound healing, its main role is in embryonal development. 
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PDGF induces PKC activation through activation of phospholipase C (PLC), in particular 

PLCγ1 (40). Activation of PKC by PDGF results in induction of c-Fos promoter which 

subsequently enhances gene expression (41). Furthermore, PKCα is involved in PDGF induced 

DNA-synthesis (42).  PDGF-stimulation induced nuclear translocation of PKCα (43) and nuclear 

localization of PKCδ (44). Thus, PDGF is able to regulate the subcellular localization of PKC 

isoforms and PDGF-mediated biological effects are partially mediated through PKC isoforms. 

The stem cell factor (SCF) serves as a ligand for the c-Kit receptor. Both SCF and c-Kit 

are crucial regulators of early hematopoiesis. SCF stimulation activates PKC isoforms 

independent of PLC activity. Activated PKC then act as negative feedback loop in c-Kit 

signaling. PKC directly phosphorylates c-Kit receptor on multiple serine residues resulting in 

partial inhibition of SCF signaling (45). Although, SCF is practically unable to activate PLC, it 

can activate phospholipase D (PLD), which leads to release of phosphatidic acid that can further 

be dephosphorylated to generate DAG (46). M-CSF induced NF-θB activation can be blocked 

by specific PKC inhibitors or siRNA mediated depletion of PKCα in monocytes (47). M-CSF-

mediated Erk activation and cell proliferation was also found to be dependent on PKC activation 

(48).  Another hematopoietic growth factor receptor, FLT3 is a frequently mutated gene in  

hematopoietic malignancies (49). FLT3 is capable of activating PLCγ (50,51) suggesting that 

FLT3 can activate PKC isoforms. Furthermore, the PKC activator TPA activates Akt independent 

of PI3K in B-CLL and using a specific PKCβ inhibitor TPA-induced Akt phosphorylation could 

be inhibited (52). These findings suggests that hematopoietic growth factors can activate PKC 

isoforms through either PLC or PLD (Fig. 3).   

       

6. PKC expression in CLL 
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PKC isoforms display differential expression in various cancers. Since overexpression of 

PKC isoforms play a role in cancer and since PKC is rarely mutated in cancers, it is important to 

know PKC expression profile in CLL before attempting to use this family of proteins as a target 

of intervention. Although an early study demonstrated lower total PKC activity in CLL as well 

as in three other hematopoietic disorders, a higher PKCβ expression was found in CLL patients  

compared to PKCα and PKCγ (53). A more recent study investigated a more complete profile of 

PKC isoform expression. While all CLL patient samples analyzed displayed a significant level of 

PKCβ, PKCγ, PKCδ and PKCδ protein expression, the protein expression of PKCα, PKCε, 

PKCζ and PKCη was found to vary from 0% to 67% (54). Western blotting analysis of different 

PKC isoform from hairy cell leukemia (HCL), normal B-cell and CLL cells demonstrated that 

PKCβII is the dominant isoform in CLL but the expression of PKCδ is also elevated (Fig. 4). 

Moreover, PKCβII expression is 7 fold higher in CLL compared to that in HCL and B-cells (55). 

A recent study using microarray data from patient samples showed an elevated expression of 

PKCβII and PKCδ mRNA in CLL (21). Differential expression of PKC isoforms in CLL patients 

opens for a possibility of targeting specific PKC isoforms in this disease. Although multiple 

PKC isoforms are found to be overexpressed in CLL, several CLL studies have pointed towards 

PKCβII. These studies suggests that elevated expression of PKCβII correlates with aggressive 

disease phenotype in CLL (56-58). Furthermore, elevated PKCβII expression is sufficient to 

promote carcinogenesis (59,60). Therefore targeting PKCβII might provide a novel approach in 

treatment of CLL.   

 

7. The role of PKC isoforms in CLL  

It is now widely accepted that BCR signaling is of importance for CLL pathogenesis. 
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Mutations of BCR sequences contributes to the survival and proliferation of B-cells. The 

expression of the cell surface molecules CD38 further supports this process. Survival signals 

from the cell surface B-cell receptor are propagated through a number of signaling proteins 

including the non-receptor tyrosine kinases Syk, Lyn and ZAP70 (61). Patients with clones 

carrying few IgVH mutations or with many CD38+ or ZAP70+ B-cells suffer from aggressive 

disease, while patients with IgVH mutated clones or few CD38+ and ZAP70+ B-cells have a 

favorable prognosis (61). Thus, targeting BCR signaling is a potential avenue in developing CLL 

therapies. 

Upon antigen binding BCR creates a complex with multiple proteins including SFKs and 

SYK. This complex activates PLCγ2 through membrane-recruited Bruton tyrosine kinase (BTK) 

(62). PLCγ2 catalyzes the hydrolysis of PIP2 into DAG and IP3. Generation of IP3 results in 

increased intracellular calcium ion levels. Thus, enrichment of DAG and calcium ion triggers 

activation of classical PKC isoforms which further activates survival pathways through NF-θB 

(Fig. 5) (63). Activation of PKCβII can phosphorylate BTK (64). This phosphorylation inhibits 

membrane translocation of BTK resulting in negative regulation of BCR signaling (65). Thus 

activation of PKC not only activates pro-survival pathways, it also activates a negative feedback 

loop. 

ZAP70 is an important regulator of T-cell receptor signaling playing equivalent role like 

Syk in BCR signaling. ZAP70 has also been described as a key component of BCR signaling. In 

BCR signaling ZAP70 acts as an adaptor protein enhancing BCR signaling (66-68). The exact 

mechanism behind this regulation was unknown until investigators observed that PKCβII is 

constitutively associated with lipid rafts in ZAP70 positive CLL cells (23). Since, ZAP70 is 

constitutively associated with lipid rafts, it probably recruits PKCβII to the rafts. This 
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recruitment enhances PKCβII activation and activated PKCβII translocates to the mitochondria 

where it associates with and phosphorylates the anti-apoptotic protein BCL2 and the pro-

apoptotic protein BIMEL (23). While phosphorylation of BIMEL directs this protein for 

proteosomal degradation, BCL2 phosphorylation enhances this process. Therefore, PKCβII-

mediated anti-apoptotic effects in CLL (69) is mediated through early activation of NF-θB 

pathway as well as down regulation of BIMEL.  

 

8. PKC inhibitors in CLL 

Treatment of CLL generally involves combination chemotherapies which generate severe 

side-effects. Targeted therapy allows more specific treatment option. This approach appears to be 

more popular but still suffers from moderate response and secondary resistance to the drugs. 

Recent studies suggest that mutations in the inhibitor binding pocket confers secondary 

resistance (70). Thus, robust drug targets are required for better treatment outcome. Specific 

signaling molecules are important players of malignant transformation and promising targets for 

cancer treatment. Multiple small molecule PKC inhibitors have been used in clinical trials 

including Staurosporine, Enzastaurin, Aprinocarsen, Midostaurin, UCN-01 and Bryostatin 1 with 

disappointing results (For review see (71)). Besides these synthetic molecules short polypeptide 

sequence for different PKC isoforms exhibited promising results in animal models (71). 

Although most small molecule inhibitors lack specificity to the different isoforms of PKC and 

inhibits a wide range of kinases, short polypeptides are highly specific inhibitors.  

Since PKC isoforms are specifically overexpressed in many cancers including CLL, 

targeted therapy against specific isoforms could be beneficial. The non-specific PKC inhibitor 

Midostaurin (PKC 412) inhibits growth of B-cell chronic lymphocytic leukemia (B-CLL) in 
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vitro (72). Treatment of CLL cells with the PKC inhibitor UCN-01 efficiently abrogates cell 

growth (73). Both UNC-01 and Midostaurin induce cell death independent of p53 or IgVH 

mutational status (72,73). Since these drugs are non-specific PKC inhibitors effects might not be 

exclusive mediated by PKC inhibition. Furthermore, PKC-induced B-CLL cell survival can be 

inhibited by BisI (74). BisI induces apoptosis by blocking PKC activation and accelerates 

dexamethasone- and fludarabine-induced apoptosis in the presence of survival factors. The PKC 

inhibitor safingol controls growth of CLL by inducing apoptosis (54). Although a PKCα 

antisense oligonucleotide, aprinocarsen, has been used in preclinical and clinical studies (75), 

patients with CLL would not benefit from this therapy since PKCα expression has been found to 

be down regulated in this disease (21). These studies suggest that PKC inhibitors are capable of 

CLL growth control by inducing apoptosis.  

The PKCβII inhibitor Enzastaurin effectively kills CLL cells and enhances toxicity of 

chemotherapy (23), and the specific inhibitor against PKCδ induces apoptosis of CLL cells even 

in presence of survival factors (24,76). These findings further suggest that targeted therapy 

against PKC isoforms might be a valuable approach for CLL treatment. Thus, involvement of 

PKC isoforms in CLL pathogenesis is proven and the simultaneous administration of PKC 

inhibitor with other drugs has the potential to be beneficial for CLL patients.  

 

 9. Conclusion 

Recent studies have established that several PKC isoforms are overexpressed in CLL and 

are essential for CLL cell survival (21,52,54,55,77). Clinical trials using the PKC inhibitors 

PKC412 and enzastaurin have provided promising results with low side effects in CLL treatment 

(78-80). Therefore, inhibition of distinct PKC isoforms may offer an important contribution to 
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the targeted therapy of CLL.  
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Figure Legends 

 

Figure 1. Domain structure and brief classification of PKC isoforms. 

 

Figure 2. PKC expression in different cancers (generated from figure 1 of reference (21)). 

 

Figure 3. Type III receptor kinase signaling in CLL. 
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Figure 4. PKC expression in B-cell, HCL and CLL (generated from figure 1B of reference (55)). 

 

Figure 5. BCR signaling in CLL. 

 












