Secure reuse of DfT during operation

Erik Larsson

More than 40 years of fantastic development

Computer	IBM PC	Apple Imac	Difference
Year	1981	2021	40 years
Price	45000 SEK (1981)	15000 SEK (2021)	9 times cheaper
Processor	Intel 8088	Apple M1	Difference
Transistors	29 000	16 000 000 000	550000 times more
Clock period	210000ps (4.77MHz)	310ps (3200MHz)	670 times faster
Technology	3000nm	5nm	600 times smaller

Supply-chain

Some challenges

- Faster and smaller devices —> Handle tighter margins
- More transistors -> Reuse of logic and use of IP-blocks
- Variations (process, ageing) -> In-field (through life-time) adjustment and control
- Distributed supply-chains -> need of standards to ease communication and exchange of information

The trend

Yesterday: External instruments, like ATEs, only at manufacturing

Tomorrow: On-chip instruments accessible through the lifetime

What do we need?

- High accessibility controllability and observability through the life-time
- Access should be:
 - For those who are trusted
 - Practical and easy to use

Outline

- Instruments
- Securing the access port
- Accessing instrument in functional mode
- Conclusions

How many instruments are needed?

- Instrument for measuring performance variation (PV)
- On the used FPGAs it was possible to implement 1400 instruments

How many instruments are needed?

 Repeated the experiment on 20 different FPGAs

Standard access

Capture Capture Shift Shift Chip iRead Instrument; **Update** iWrite Instrument Data; Update Controller iApply; Instrument reg External iRead Instrument; 1687 data controller 149. iWrite Instrument Data; TAP iApply; Test

Outline

- Instruments
- Securing the access port
- Accessing instrument in functional mode
- Conclusions

Standard access to instrument

Problem if private keys get lost or become know

Authentication Method

Details of Method

Outline

- Instruments
- Securing the access port
- Accessing instrument during operation
- Conclusions

Instrument sharing

Instrument sharing

Purpose

What is needed to avoid modifications?

iWrite Instrument Data; iApply;

iRead Instrument; iApply;

iWrite Instrument Data; iWait xx;

iApply;

iRead Instrument; iApply;

Standard access

Capture Capture Shift Shift Chip iRead Instrument; **Update** iWrite Instrument Data; Update Controller iApply; Instrument reg External iRead Instrument; 1687 data 149. controller iWrite Instrument Data; TAP iApply; Test **TCK**

Segment sharing Capture Capture Shift Shift Chip Update Update **Processor** Controller 1149.1 TAP 1687 System network 1687 External bus network controller IAP TCK CLK **TCK**

Demonstration

- FPGA with an AXI Interconnect as the system bus
- Computed clock ration (TCK/CLK)
- Validated using Siemens Tessent IJTAG without modifications

Summary

- High accessibility controllability and observability through the life-time
- Access should be for those who are trustable
- Access must be practical and easy to use
- Challenge to integrate access with functional operation
- Standardization initiatives (1687.1 and 2654)

Secure reuse of DfT during operation

Erik Larsson

