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Abstract

Almost all eye-movement researchers use algorithms to parse raw data and detect distinct types of 

eye movement events, such as fixations, saccades, and pursuit, and then base their results on these.

Surprisingly, these algorithms are rarely evaluated. We evaluated the classifications of ten eye-

movement event detection algorithms, on data from an SMI HiSpeed 1250 system, and compared 

them to manual ratings of two human experts. The evaluation focused on fixations, saccades, and 

post-saccadic oscillations. The evaluation used both event duration parameters, and sample-by-

sample comparisons to rank the algorithms. The resulting event durations varied substantially as a 

function of what algorithm was used. This evaluation differed from previous evaluations by 

considering a relatively large set of algorithms, multiple events, and data from both static and 

dynamic stimuli. The main conclusion is that current detectors of only fixations and saccades work

reasonably well for static stimuli, but barely better than chance for dynamic stimuli. Differing 

results across evaluation methods make it difficult to select one winner for fixation detection. For 

saccade detection, however, the algorithm by Larsson, Nyström & Stridh, (2013) outperforms all 

algorithms in data from both static and dynamic stimuli. The data also show how improperly 

selected algorithms applied to dynamic data misestimate fixation and saccade properties.

Introduction

Eye movements are a common source of data in neurology, psychology, and 
many other fields. For example, many conditions and syndromes cause saccades 
that are “hypometric”, i.e. undershooting the target (see Leigh & Zee, 2006, for 
many examples). It would thus be extremely unfortunate if the offset of the 
saccade was erroneously determined by the computer algorithm used to parse the 
data. Nonetheless, such algorithms are indeed frequently used when analysing 
data, and often without a conscious decision and evaluation of the algorithm 
candidates. There is little agreement on what combination of algorithms, 
thresholds, types of eye movements, sampling frequency, and stimuli that achieves
sufficient classification accuracy for the researcher to be able to confidently draw 
conclusions about the parameters of the eye movements in question. This makes it
very hard to confidently generalize research findings across experiments using 
different hardware, algorithms, thresholds, and stimuli. This paper compares eye 
movements parameters and similarities of ten different algorithms, along with two
human expert coders, across five different eye movement events and using data 
from three types of stimuli. The overall goal is to evaluate the algorithms and to 
select a clear winner to recommend to the community.
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The reasons for parsing eye movements into distinct events

The act of classifying eye movements into distinct events is, on a general level,
driven by a desire to isolate different intervals of the data stream strongly 
correlated with certain oculomotor or cognitive properties. For example, the visual
intake of the eye is normally severely limited during a saccade, and this, along 
with a general need for data reduction, seems to have been motivating factors for 
the early fixation/saccade detectors (Matin, 1974; Kliegl & Olson, 1981; Rayner, 
1998). Similarly, smooth pursuit movements are triggered by perceived motion, 
indicating visual intake (Rashbass, 1961), but these movements may stretch across
many areas of interest (AOI), ruining standard AOI and fixation measures if the 
movements are treated as fixations. The eye blink is another form of movement, 
although not by the eyeball, but this is typically detected in order to exclude it 
from the data stream so it does not interfere with further eye movement 
classification, or used as training to remove eye-related artefacts in 
electrooculographic data. The eye blink is also associated with a limited visual 
intake, even before the closing of the lid and after the re-opening (Volkmann, 
1980). This is particularly important, as the raw data when the eyelid closes and 
opens may appear, in some eye-trackers, identical to saccades moving down and 
up again (see p.177, Holmqvist, Nyström, Andersson, Jarodzka & Van de Weijer, 
2011). 

Also, the wobble of the crystalline lens in the eye during a saccade is thought 
to produce deformations in the iris (and hence pupil) around the time of the 
saccade, producing what is known as post-saccadic oscillations (PSOs) in the eye-
tracker signal (Tabernero & Artal, 2014; Nyström, Andersson, Magnusson, Pansell
& Hooge, 2015; Hooge, Nyström, Cornelissen & Holmqvist, 2015). PSOs are less
commonly searched for, but are increasingly important as new studies and eye-
trackers push the limits of temporal and spatial resolutions. The corresponding 
data samples of PSOs are not systematically grouped with either fixations or 
saccades (Nyström & Holmqvist, 2010). As there is still uncertainty about the 
precise nature of visual intake during such oscillations (e.g. intake but with 
distortions; Tabernero & Artal, 2014; Deubel, Bridgeman & Schneider, 1995), 
how this event is classified is therefore crucial for a researcher using eye-
movement classification algorithms for selecting periods of maximum visual 
intake.

It is up to the individual researcher to either manually identify these events or 
to use any of the commercial or freely available computer algorithms. Manual 
identification is of course best if you want a classification that best matches the 
researcher's conception of a fixation, saccade, or some other event. A human coder
can also adaptively update his or her beliefs regarding what the typical event 
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looks like, and can stop and discuss the problem when there are tricky borderline 
cases or incomplete event definitions. However, a human working manually on 
this problem is very slow compared to a computer, which is why computer-based 
algorithms today are the only practical solution. The most common practice is 
simply to use the event classifier provided with your system, and often leaving 
any parameter thresholds at their default settings. This practice is indeed fast, 
easily dividing up large amounts of raw samples into distinct events. 

Current algorithms for eye-movement classification

There exists a large number of different algorithms today and it is impossible to 
evaluate them all, for several reasons. First, some algorithms are commercial 
closed-source solutions from the eye-tracker manufacturer and thus impossible to 
implement identically. Although it is possible to get both raw data and identified 
oculomotor events from a closed-source system, the original data are stored in a 
binary file particular to that commercial system, and the commercial event 
classifiers only accept their own binary files. Thus, we have to use algorithms that
allow us to input data in an open format. Secondly, not all algorithms exist as 
actual ready-made implementations, so an evaluation means adapting or finishing 
these implementations, which in turn may add bugs and biases. So any valid 
algorithm needs to be an officially released implementation. Thirdly, not all 
algorithms work out-of-box on real-world data. For example, the algorithm by 
(Mould, Foster, Amano, & Oakley, 2012) failed when we evaluated it with a data 
file that had missing samples. Although this is a simple task to fix, it affects the 
original algorithm and is thus no longer objectively evaluated by us. Finally, for 
practical reasons, we limited ourselves to ten algorithms which furthermore 
should have no support for smooth-pursuit identification, which complicates 
matters further and is beyond the scope of this paper (but see Komogortsev & 
Karpov, 2012, for an evaluation of these algorithms). A search for a set of ten 
algorithms that fulfilled these criteria produced the algorithms that are described 
in the following paragraphs (see Table 1).
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Table 1: Algorithm Classifications

Events

Algorithm Fixation Saccade PSO Smooth

Pursuit

Blink Undefined

(Humans) √ √ √ √ √ √

CDT √

EM √

IDT √ √

IKF √ √

IMST √ √

IHMM √ √

IVT √ √

NH √ √ √

BIT √

LNS √ √

Note. The oculomotor events that are explicitly detected by each algorithm implementation is 

indicated with a check mark. The algorithms presented are, in order: human coders, Fixation 

Dispersion Algorithm based on Covariance (CDT), Engbert & Mergenthalser (EM), Identifiacation

by Dispersion-Threshold (IDT), Identification by Kalman Filter (IKF), Identification by Minimal 

Spanning Tree (IMST), Identification by Hidden Markov Model (IHMM), Identification by 

Velocity Threshold (IVT), Nyström & Holmqvist (NH), Binocular-Individual Threshold (BIT), 

and Larsson, Nyström & Stridh (LNS).

The Fixation Dispersion Algorithm based on Covariance (CDT) by  
Veneri, et al. (2011) is an improvement of the fixation dispersion algorithm based 
on F-tests (FDT) previously developed by the same authors (Veneri, et al., 2010). 
The improvement consists in complementing their previous, F-test-based, 
algorithm with co-variance calculations on the x- and y-coordinates of the gaze. 
The logic behind this is that the F-test is very sensitive to violations to the 
normality assumption of the data. This algorithm uses variance and co-variance 
thresholds as well as a duration threshold.

The algorithm used by Engbert & Mergenthaler (2006; henceforth EM) is a 
further development of the algorithm used earlier by Engbert & Kliegl (2003). 
This algorithm uses a velocity threshold to detect saccades, but it sets the 
threshold adaptively, in relation to the identified noise level of the data. 
Additionally, this algorithm enforces a minimal saccade duration to reduce the 
effects of noise. It should also be noted that this algorithm was primarily 
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developed for detecting micro-saccades, but that is also works for detecting 
voluntary (larger) saccades.

One of the most common algorithms for detecting fixations is the Identification 
by Dispersion-Threshold (IDT) algorithm. According to Salvucci & Goldberg 
(2000), it is based on the data reduction algorithm by Widdel (1984). The IDT 
algorithm works with x- and y data, and two fixed thresholds: the maximum 
fixation dispersion threshold and the minimum fixation duration threshold. To be 
a fixation, data samples constituting at least enough time to fulfill the duration 
threshold has to be within a spatial area not exceeding the dispersion threshold. 
The samples fulfilling these criteria are marked as belonging to a fixation. One 
particular detail of this specific implementation is that it is part of a package that 
also merges short nearby fixations, and also paired with a saccade detector 
(Komogortsev, Gobert, Jayarathna, Koh & Gowda, 2010).

Real data is often noisy and may suffer from data loss. An algorithm that is 
designed to overcome this problem should be very promising. A Kalman filter is a
recursive filter that provides an optimal, i.e. minimized error, combination of the 
current measurement and the predicted measurement given previous input. Strictly
speaking, the Kalman filter in this Identification by Kalman Filter (IKF) algorithm
does not classify the eye-tracker signal into events, but in this particular 
implementation (Komogortsev & Kahn, 2009) it is done by a χ2-test. This test 
classifies all samples within a set window length as belonging to a fixation if the 
χ2 value is below the set threshold and fulfils a minimum duration threshold, or as 
belonging to a saccade if this value is above the threshold. This particular 
implementation, as others by Komogortsev, Gobert, et al. (2010), uses the same 
post-processing as the other algorithms, and thus clusters nearby fixations.

Another approach to event detection is the Identification by Minimal Spanning 
Tree (IMST). This algorithm creates a “tree” of the data, which branches out to the
data samples. The algorithm strives to capture all the data with a minimum of 
branching so that samples from two different clusters are better captured by 
branches to two separate nodes (which are connected higher up in the tree) rather 
than forcing a very extensive branching to a single node at a lower level. By 
enforcing certain thresholds on the samples at the edges of a cluster, saccades are 
identified and excluded from the fixation detection. The implementation in 
question is created by Komogortsev, Gobert, et al. (2010).

Considering that the most common type of event distinction is that between the
almost stationary fixation and the fast-moving saccade, an algorithm that 
classifies based on probabilistic switching between two states appears intuitive. 
Such an algorithm for Identification by Hidded Markov Model (IHMM) is 
described in Komogortsev, Gobert, et al. (2010), and is formed around a velocity-
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based algorithm and then wrapped by two additional algorithms. The first 
algorithm re-classifies fixations and saccades depending on probabilistic 
parameters (e.g. initial state, and state transition probability), and the second 
algorithm that updates these parameters.

A very common basis for separating samples belonging to fixations from 
samples belonging to saccades, is to identify the velocities of these samples. The 
Identification by Velocity Threshold (IVT), is a simple algorithm that functions in 
this way (Salvucci & Goldberg, 2000). It uses a fixed velocity threshold to 
identify fixation and saccades, where fixations are segments of samples with 
point-to-point velocities below the set velocity threshold, and saccades are 
segments of sample with velocities above this threshold. This basic velocity 
criterion is often the core of other algorithms. This particular implementation is 
from Komogortsev, Gobert, et al. (2010).

The algorithm presented by Nyström & Holmqvist (2010; henceforth NH) was 
the first algorithm to explicitly also identify post-saccadic oscillations (called 
“glissades” in the paper) along with fixations and saccades. It is an adaptive 
algorithm in the sense that it adjusts the velocity threshold based on the noise 
level in the data.

Detecting small saccades from noise is a challenge, and it makes sense to take 
advantage of the fact that the eyes are most often directed at the same object. So if
the left eye moves to a certain object, then the right eye should be doing so too. 
This makes it easier to determine whether a peak in velocity is due to a real 
movement or simply noise, as both eyes should show this peak in the velocity 
curve simultaneously. This idea is taken advantage of by the Binocular-Individual
Threshold (BIT) algorithm, developed by van der Lans, Wedel & Pieters (2011). 
Like several other algorithms, this is an algorithm that adaptively sets thresholds.

The final algorithm that we consider in this paper is a recent development by 
Larsson, Nyström & Stridh (2013; henceforth LNS). This algorithm is the second 
algorithm that is able to detect post-saccadic oscillations, but it also detects 
saccades. The algorithm is adaptive, but what is novel is that it was designed with 
the aim to detect saccades and post-saccadic oscillations even in the presence of 
smooth pursuit movements of the eye. Smooth pursuit movements generate 
velocities that are inconsistently handled by algorithms that maintain standard 
velocity thresholds. Thus, there is generally no clear classification of these 
movements as either fixations or saccades, but they rather depend on the 
particular smooth pursuit movement and the current algorithm thresholds.
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Evaluation of classification algorithms

The lack of a single standard algorithm used in all systems and that many 
algorithms addressing the same problem exist, suggests that eye movement 
classification is not a trivial problem, and that evaluating the performance of 
different algorithms may not be a trivial task. Crucially, determining a winner 
among several algorithms means that an appropriate evaluation method has to be 
devised. As this study is not the first one attempting to evaluate algorithm 
performance, it is fruitful to consider the benefits and drawback of already 
established methods.

The most basic evaluation technique, used for identifying events in early eye-
movement research, was simply the manual inspection by the researcher (e.g., 
Javal, 1879). At this point in time, the purpose was to identify certain events 
(saccades) rather than evaluate algorithms. Modern evaluations, however, used 
this manual approach together with automated methods of evaluating 
classifications. For example, raw data samples cluster together in a fixation, and a 
fixation detection algorithm should detect all samples belonging to these clusters, 
and reject samples outside of the clusters (see e.g. Figure 2 on p. 883 in Blignaut, 
2009). Unfortunately, such manual parts of an evaluation are often mentioned in 
passing, e.g. that Vig, Dorr & Barth (2009, p. 399) manually tweaked their 
parameters until it looked good, as referenced by Mould, et al (2012, p. 22).

This manual evaluation, however, can more rigorously be put to use if the 
human evaluators systematically code the same data using the same categories an 
algorithm would. Then it is possible to directly compare the performance of 
algorithms relative to human experts. This is often also done when evaluating new
algorithms, e.g. by Larsson, Nyström & Stridh (2013), and Mould, et al. (2012). A
Human – Algorithm comparison, however, often assumes that humans behave 
perfectly rationally and that, consequently, any deviation from perfect agreement 
is due to the mistakes of the algorithm. Thus, a question highly related to this 
approach is how reliable the human coders are. In many fields of research, this is 
analyzed using specific measures for inter-rater reliability, like Cohen's Kappa (K;
Cohen, 1960), the ratio of non-agreeing samples, or calculating a correlation 
between coders (e.g. Munn, Stefano & Pelz, 2008).

Another approach is to assume an optimal or rational relation between the 
stimuli and the viewing behavior of an individual. For example, Komogortsev, 
Gobert, et al. (2010) used an approach where an experiment participant is 
instructed to look at an animated single target, that makes a series of jumps. Given
a known number of jumps, known positions, known amplitudes, among other 
things, it is possible to calculate how the ideal eye movement behavior would look
like. The gaze data parsed by the algorithms are then compared against this ideal 
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gaze behavior, and the more similar, the better the algorithm. Although there may 
be some intuitive appeal in this approach, there are also some potential concerns. 
Primarily, participants are not always perfectly rational in their behavior, nor can 
they control their eye to the extent they want. In fact, they frequently undershoot 
their intended target and produce corrective saccades (see Kapoula & Robinson, 
1986, for a nuanced view). A participant may be distracted and forget a target, or 
try to anticipate a future target, and in so doing, incurring a penalty to even a 
perfect eye-movement classification algorithm. This set up could also be biased 
towards simple tasks that are easy to follow for the participants, so the algorithms 
are never tested with eye movements that deviate from this norm. Additionally, 
Oculomotor events such as post-saccadic oscillations are also, by all current 
accounts, beyond the volition of the participant.

Finally, there are two aspects of the data that can be evaluated. The first aspect 
is the event that each sample gets assigned to, i.e. the label, regardless of the 
actual values of the particular data samples. The second is the actual data values 
contained in that sample which in turn determines the properties of the event it is 
part of. In the evaluations in this paper, we have decided to focus on the labelling 
process, i.e. the classification of samples as belonging to certain oculomotor 
events. One reason for this decision is that a pure classification task is rather 
straightforward as it is either hit or miss in assigning the correct label. The second 
reason is that these sample classifications in turn, “for free”, provide three event 
parameters: the number of events, the durations (i.e. how many consecutive 
samples) of these events, and the variance of these event durations. So, one 
evaluation task provides three possible quality values to evaluate. Furthermore, as 
saccades on average follow the main sequence, i.e., there is a systematic 
relationship between the duration and amplitude of a saccade, we get an indirect 
measure of the amplitude of the saccades as well (Bahill, Clark & Stark, 1975).

The challenges for event detection algorithms

The detection of eye movement events is not a completely solved problem, for 
a number of reasons. First of all, and relating to the previous section, is that there 
is no consensus on how to evaluate the algorithms, which means that further 
refinement of the algorithms is hindered as we do not know whether differences 
are due to the algorithms or the evaluation process. Surprisingly little effort has 
gone into investigating the classifications of human coders, and what combination
of knowledge, instructions, data, and visualizations drive the humans to code 
more (or less) similarly. Even measures tailored for estimating inter-rater 
reliability, such as Cohen's K, have flaws. Cohen's K estimates the reliability 
depending on the base rate of events, so it compensates for the fact that some 
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events may be more common than others, but this base rate also assumes that 
humans would pick randomly across events if they are not certain, which may not 
be likely. Therefore, humans may achieve higher or lower reliability scores than 
warranted.

Secondly, we are not even always completely sure what we mean when we talk
about an event. There is e.g. no theoretically motivated threshold for when the eye
is moving sufficiently in a particular direction to be classified as a saccade, and 
anything below that threshold to be classified as something else. Often a saccade 
is detected with the motivation that our visual intake is severely limited during the
movement, and the data from this event should be removed. However, visual 
intake is also limited even before (50 % detection at -20 ms) and after (50 % 
detection at +75 ms) a saccade onset (Volkmann, 1968), a fact which is not 
reflected in any event classification algorithms that we have seen. The 
classification algorithms seem to focus on a strict oculomotoric definition of 
fixations and saccades. Even from a purely oculomotor definition of eye 
movements, it is difficult to identify the point where a fixation ends and an 
extremely slow-moving smooth pursuit starts. This point is arbitrary and more or 
less determined by the precision of the system. Also, if human experts have a hard
time agreeing on the same data, then of course computer algorithms designed by 
humans in the first place would also classify the same data stream differently. This
is not helped by the fact that not all algorithms can detect every event, which 
affects the few events it actually does detect. For example, an algorithm incapable 
of detecting a post-saccadic oscillation, may see the oscillating movement as two 
saccades, divided by an implausibly short, e.g. 1 ms, fixation (p. 165, Holmqvist 
et al, 2011).

Thirdly, many algorithms have some form of settings that need to be set by the 
researcher, such as minimum fixation duration, saccade velocity threshold, et c. If 
there was a clear and theoretically driven threshold, then this would already be 
hard-coded into the algorithm. Now it is up to the researcher, which means that 
novel results deviating from previous results can be due to the selected algorithm, 
the selected thresholds, or both, or something completely else. It is common 
knowledge that different algorithms and different parameter values for these 
algorithms produce different classification results (e.g. Komogortsev, Gobert, et 
al., 2010; Salvucci & Goldberg, 2000; Shic, Chawarska & Scassellati, 2008).

Fourthly, there exist many algorithms, but not so many comparisons of the 
algorithms. Often, a modest evaluation is performed when presenting a novel 
algorithm, but this often considers only a few algorithms and is primarily oriented 
towards showcasing the new algorithm.

10
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Fifthly, dynamic scenes are increasingly common as stimuli, but not all 
researchers are aware that it is improper to use standard fixation detection 
methods in the presence of smooth pursuit (the commercial software packages 
that we have seen do not prompt a warning about this), or dynamic stimuli are 
treated in research without mention of this challenge. As one example of several, a
conference paper by Ali-Hasan, Harrington & Richman (2008) present “best 
practices for using eye-tracking to answer usability question for video and TV. 
Although they mention fixations, there was no mention at all of event detection 
algorithms in this inherently dynamic domain. Although the researchers may well 
be aware of this problem, their readers are not alerted to this potentially 
problematic issue. 

Standard (non-smooth pursuit) algorithms should not be accurate for data from 
dynamic stimuli, but we also do not know the extent of the problem. We do not 
know whether the problem affects primarily fixations, or saccades, or both. This 
problem can also be viewed in relation to the fact that most algorithms do not 
detect post-saccadic oscillations. Is the problem of accurate post-saccadic 
oscillation identification a more pressing research area than the accurate 
identification of smooth pursuit?

Finally, despite fuzzy definitions, researchers talk about fixations, saccades, 
and other events at conferences with apparent ease. So there must be some 
intuitions between experts on what events occur in a given stream of data, 
although it is currently unclear around what events or types of data these 
intuitions are the strongest. Would they agree on the number of different events in 
the data, and just differ in where the precise borders are, or would they even select
completely different events for the same segment of data? So the human experts 
seem to have consistent intuitions that enable them to talk unhindered about these 
event with colleagues, which suggests that there is some ground truth against 
which the data can be evaluated, and ultimately find a winner among the 
evaluated algorithms. Nonetheless, an evaluation should not trust the human 
experts, but also include them on equal terms with the algorithms in the 
evaluation. If the human experts do not agree, than it would be unfair to hold the 
algorithms to that standard.

Aims of the reported evaluation

In a previous section, we pointed out several groups of problems with evaluating 
current eye movement classification algorithms. Naturally, it is beyond the scope 
of this paper to address all of them. Our focus is rather to evaluate ten event 
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detection algorithms against two human experts in order to recommend one 
winner to researchers. However, we will also address a set of related questions:

 How does the number of detected events and their durations vary with the 

choice of an algorithm?

 How similar are the events detected by algorithms compared to events 

manually identified by human experts?

 How similar are algorithms and humans in a simple sample-by-sample 

comparison, which is the most human-like?

 How similar are our two human coders? Are they interchangeable, or will 

the event detection process depend on the human experts we use?

 Does the algorithm – human or human – human similarity depend on the 

stimuli used for eliciting the eye movement data, i.e. will it differ between 

static and dynamic stimuli?

 What are the consequences of trying to detect events in the presence of 

smooth pursuit using improper, i.e. not designed to handle smooth pursuit, 

algorithms? Is this a serious violation, or will such a use provide 

acceptable approximations of the properties of the true (human-identified) 

events?

 How congruent are different evaluation techniques, such as similarity 

based on event durations, compared to similarity based on Cohen's Kappa?

 Given that algorithms do not classify identically with human experts, what

types of deviating classifications do the algorithms do? Are the deviations 

random, or do they indicate a clear bias in some direction? What area 

should developers focus on improving, to gain the highest marginal 

improvement (i.e., similarity to humans) of the algorithm?

12
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Method

Stimuli and data set

The data consisted of 34 data files of binocular data from 17 different students 
at Lund University. The used data files are a pseudo-random (picked blindly by a 
human) selection of a larger set of recorded data files. The data were recorded at 
500 Hz and spanned a total of 103,872 samples. A sample refers to a time-stamped
(x,y) coordinate pair. In order to increase the number of coded data files, only data
from the right eye were used. The data came from three different types of stimuli 
(abbreviation later used are inside parentheses): photographies (img; 63,849 
samples), linearly moving targets in the form of a dot (dot; 10,994 samples), and a
real-world video of moving targets such as a rollercoaster and dolphins (vid; 
29,029 samples). The instructions were to freely view the images, look at the 
moving objects in the videos, and to follow the moving dot targets.

The data were recorded using a tower-mounted Hi-Speed 1250 system, from 
SensoMotoric Instruments GmbH (Teltow, Germany), which minimizes head 
movements using a chin- and forehead rest. All data were recorded during one 
session in one of the experiment rooms of the Lund University Humanities Lab. 
Average gaze offset for the participants according to a 4-point validation 
procedure was 0.40º (note that offset is not important as neither algorithms nor 
human coders can see the stimuli, only the raw data). Precision was estimated by 
measuring the root-mean-square deviation (RMSD) of the x, y coordinates of 
samples identified by both human experts to be fixations. This resulting precision 
value was 0.03º RMSD. An overview of the participants, their contributing data, 
and there quality values can be seen in Table A.1 in Appendix A.

No explicit filters were used, except the ``bilateral filter'', which is the default 
filter for this system, active at the recording stage. The filter “preserves the edges 
of large changes in the signal while averaging small changes caused by noise” 
(p. 310, Sensomotoric Instruments, 2009), and introduces no latency in the signal.

Human evaluation procedure and human “parameters”

The two human coders, 10 and 11 years of experience of working with eye 
movements, come from the same eye-tracking lab, but have slightly different 
backgrounds. Coder MN has a primarily worked with video compression and the 
evaluation thereof using eye-tracking, but he has also been involved in the design 
of the NH algorithm in this evaluation. Coder RA has a background primarily in 
psycholinguistics, and has not been involved in the design of any algorithm at the 
time of the data coding. 
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The two coders labelled the data samples manually and separately, using the 
same Matlab GUI. This GUI, shown in Figure 1, contains several panels that 
together show, for a stretch of data in time, the current x- and y- positions (in 
pixels), the velocity (point-to-point, in degrees per second), and scatterplot 
representations of the data. Additionally, the GUI also showed a zoomed in 
portion of the sample positions, as well as a one-dimensional representation of the
pupil size across time. Although the data was recorded binocularly, the human 
coding used only the right eye. Because the manual coding was very labour-
intensive, we prioritized coding new material rather than a second eye for the 
same material.

Figure 1: The Matlab graphical user interface for hand-coding events on a sample-by-sample level.

It provides curves of the (x,y) coordinates (A) and the gaze velocities (B), as well as drawing the 

data in the windows as a trace in a coordinates system matching the dimensions of the stimuli (D). 

Two windows also show the current segment of data zoomed in (E), and the vertical pupil diameter

(C).

The coders did not agree on any particular strategy for identifying the event, 
other than what events to identify and that they should have no information about 
the type of stimuli used for the particular data stream. This approach was 
intentional, and the rationale behind it was that each coder should be used as, to 
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the extent it was possible, an independent expert, and have no more information 
available than the algorithms. Had we more strictly agreed on guidelines for how 
to identify events and code border-cases, then the agreement would be higher, but 
artificially so as the agreement would be less likely to generalize to a member 
outside of the raters. Furthermore, a coding approach with two “naïve experts” is 
a one-time situation, that after the resulting classifications are shown and 
discussed, can never be recreated by the same coders. Together, this motivated an 
approach with little initial discussion about the details of the coding process. 

The only thing the two coders agreed on was the events to identify in the data 
streams. These were: fixation, saccade, post-saccadic oscillation (PSO), smooth 
pursuit, blink, and undefined. The last event is a catch-all for any odd event that 
did not fit with the pre-defined events. In retrospect, this event was hardly ever 
used. These events were agreed on because they represent the most common 
events, except the PSO, which was detected because it is of special interest to our 
research group and has recently been the object of interest for two new algorithms
(Nyström & Holmqvist, 2010; Larsson, Nyström & Stridh, 2013).

Furthermore, in order to get algorithm parameter values that were as equal as 
possible to the human decision criteria, or “human parameters”', we extracted the 
empirical minimum fixation duration, maximum fixation dispersion threshold, and
minimum saccade velocity from the files coded by the humans. These three 
parameter were selected as they are commonly understood by most eye-tracking 
researchers and constitute the minimum parameters needed to be set for the 
different algorithms in this evaluation. As minimum and maximum values are 
sensitive to outliers and errors, we manually inspected these distributions of 
parameter values. 

For fixation durations, we visually identified a small subset of fixations with 
durations between 8 and 54 ms, and the nearest following fixation duration was 82
ms. We therefore selected a minimum fixation duration of 55 ms to exclude this 
subset of very short fixations with durations outside the frequently defined ranges 
(Manor & Gordon, 2003). This value is also supported by previous studies (Inhoff
& Radach, 1998; see also Fig. 5.6 in Holmqvist et al, 2011:15).

The maximum fixation dispersion for the human coders was, after removing 
one extreme outlier at 27.9º, found to be 5.57º. This was clearly more than 
expected, especially for data of this level of accuracy and precision, and the 
distribution had no obvious point that represented a qualitative shift in the type of 
fixations identified. However, after 2.7º, 93.95 % of the fixations values have been
covered and the tail of the distribution is visually parallel to the x-axis. Thus, any 
selected value between 2.7 and 5.57 would be equally arbitrary. So, as even a 
dispersion threshold of 2.7 would be considered a generous threshold, we decided 
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to not go beyond this and simply set the maximum dispersion at 2.7º. Do note that
we used the original Salvucci & Goldberg (2000) definition of dispersion (ymax - 
ymin + xmax - xmin) which is around twice as large as most other dispersion 
calculations (see p. 886, Blignaut, 2009). The dispersion calculation for the 
humans was identical to the one implemented in the evaluated IDT algorithm.

For minimum saccadic velocity, we found no visually obvious subsets in the 
data. As the minimum peak saccadic angular velocity (unfiltered) in the 
distribution was 45.4º/s , a value in range with what to be expected from 
unfiltered values, we decided to keep this as is (Sen & Megaw, 1984).

To summarize, the parameter values extracted from the human expert coders 
are presented in Table 2.

Table 2: Empirical Human Parameters

Parameter Min Max Used

Minimum fixation duration (ms) 8 4428 55

Maximum fixation dispersion (º) 0.17 28.0 2.7

Minimum saccade velocity ( º/s) 45.4 1096 45.4

Algorithm parameters

These algorithms have been used “as is” with only minimal changes in order to
fit them into our testing framework. Thus, we have preferred implementations 
with some post-processing implementations over “bare” event detection 
algorithms which would have required our tampering with the original code.

We did the modification expected of an intermediate user. That is, any person 
motivated enough to download a third-party implementation of an eye-movement 
classifier is also motivated to set obvious parameters that are relevant to this 
person's system. However, this person will only set the obvious parameters and 
not tweak every possible variable. That is, no algorithm was optimized with a full 
walk through the parameter space, but obvious mismatches in parameter selection 
should be avoided. One obvious drawback with optimizing the parameters of each
algorithm is the risk of over-fitting the algorithms to this particular evaluation 
data. Although this could be mitigated by dividing our expert-coded data, such 
manually coded data is too precious for this approach. A second drawback is that 
we are giving an unfair advantage to non-adaptive algorithms, which then become
“adaptive” by our tweaking. Thirdly, optimizing parameters would favor 
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algorithms with a large number of parameters, which can then be perfectly fit to 
match our data, rather than data in general. An ideal algorithm would require no 
parameter tweaking from the user, but rather set thresholds automatically and then
exhaustively classify all the samples of the data stream. Examples of parameters 
we did set are geometry parameters such as screen size, sampling frequency, or 
filter window size (if measured in samples or real time), if these are clearly 
indicated by comments in the code. Furthermore, we have set minimum fixation 
duration, maximum fixation dispersion, and minimum saccade velocity, according
to our parameters derived from the human coders. By setting the parameters equal
to the human parameters, we are giving the algorithms a fair chance to be similar 
to the human experts, without optimally tuning the algorithms. Also, these last 
three parameters are variables that we believe the average eye-tracking researcher 
is familiar with and so could set herself.

For reproducibility, we briefly report all used parameter values for each 
algorithm.

Fixation Dispersion Algorithm based on Covariance (CDT)

We used the default .05 α significance level of the F-test, but changed the 
window size from 6 samples (for their 240 Hz system, which was equivalent to 25
ms) to 13 samples to match our 500 Hz system (equivalent to 26 ms).

Engbert & Mergenthaler, 2006 (EM)

The parameter specifying how separated the saccade velocity should be from 
the noise velocity, λ, was kept at the default value of 6. We used the type 2 
velocity calculation recommended in the code. Minimum saccade duration (in 
samples) was also kept at the default value, which was 3 samples (equivalent to 6 
ms), as both Engbert & Kliegl (2003) and Engbert & Mergenthaler (2006) used 3 
samples despite using data sampled at different rates (equivalent to 12 and 6 ms, 
respectively).

Identification by Dispersion Threshold (IDT)

We used the minimum fixation duration (55 ms) and maximum fixation 
dispersion (2.7º) as extracted from our human experts. The dispersion was 
calculated in exactly the same way in both cases. The original default values for 
this implementation were 100 ms minimum fixation duration and 1.35º maximum 
fixation dispersion.
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Identification by Kalman Filter (IKF)

The parameters for this algorithm was set using the GUI default, which gave us
a chi-square threshold of 3.75, a window size of 5 samples, and a deviation value 
of 1000.

Identification by Minimal Spanning Tree (IMST)

The saccade detection threshold was by default set to 0.6º, and the windows 
size parameter was set to 200 samples. There were the default values from their 
GUI.

Identification by Hidden Markov Model (IHMM)

For the IHMM, we set the saccade detection threshold to 45º/s, and used their 
GUI default for the two other parameters (Viterbi sample size = 200; Baum-Welch
reiteration = 5).

Identification by Velocity Threshold (IVT)

This algorithm uses only one parameters, the velocity threshold for saccade 
detection, and this was set in congruence with humans and other algorithms, i.e. 
45º/s.

Nyström & Holmqvist, 2010 (NH)

For this algorithm we used all the default values, except the minimum fixation 
duration, which was set using our human-extracted values (55 ms).

Binocular-Individual Threshold (BIT)

We changed the original 3 sample minimum fixation duration (equivalent to 60
ms at 50 Hz in the original study) to 28 samples (resulting in 56 ms, which is 
approximately equivalent to the human-derived threshold of 55 ms). All other 
parameters were left at default values.

Larsson, Nyström & Stridh, 2013 (LNS)

For this algorithm, we did not set any parameters at all and used all the default 
hard-coded values. The two most relevant values were the minimum time between
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two saccades and the minimum duration of a saccade, which were kept at 20 ms 
and 6 ms, respectively.

Evaluation procedure

The algorithms were evaluated based on their similarity to human experts in 
classifying samples as belonging to a certain oculomotor event. This was done in 
two ways: first, comparing the event duration parameters (mean, standard 
deviation, and number of events), and secondly, to the overall sample-by-sample 
reliability via the Cohen's Kappa metric. The first evaluation answers how the 
duration properties of the actual eye-movement events changes as a result of an 
algorithm. The second evaluation provides a statistic on how well the algorithms 
and humans agree in their classifications on the actual samples. Finally, a third 
analysis investigates what sample classification errors each algorithm produced 
compared to the humans. For example, whether a certain algorithm consistently 
under-detects fixations in favor of saccades, and thus in turn inflates saccade 
durations. Such systematic biases in a certain direction is important to highlight to
both researchers and algorithm designers. This will also highlight what area each 
algorithm needs to improve in order to gain the greatest classification 
improvement.

Similarity by event duration parameters

The primary problem of event detection algorithms is that the event durations, 
such as fixation durations, vary depending on the choice of algorithm and settings.
Thus, the output that is the most intuitive to compare are the distributions of the 
event durations. That is, how many events that are detected, the mean duration of 
these, and the standard deviation of the durations. Algorithms that work in an 
identical fashion should also produce identical results for these three parameters. 
However, an algorithm may achieve similar mean durations as a human expert, 
but detect a different number of events. Another algorithm could detect the 
identical number of events, but differ in the detected mean duration. To join these 
three parameters to a single similarity measure, we calculated the root-mean-
squared deviations (RMSD) for all algorithms against the two human coders. A 
single similarity measure is needed if we are to rank the algorithms and provide 
some general claim that one is better than another.

First, the evaluation parameters (mean duration, standard deviation, and 
number of events) were rescaled to the [0,1] range according to Eq. 1. Here, M is 

19



ONE ALGORITHM TO RULE THEM ALL? 20/48

the matrix consisting of the algorithms and humans, and their resulting 
distributions parameters, as rows (k) and columns (l) respectively.

( M kl )

 (1)

The normalized data is then separated into a matrix for the algorithms, A, and a
matrix for the human experts, H. Then, the summed RMSD for the column of 
algorithms, a, was calculated as follows:

 aRMSD
i

=∑
∀ j √(A ij −∑

m

H mj

n )
2

(2)

where i is the algorithm index, j is the index for the event distribution 
parameter, m is the index for the human experts, and n is the number of human 
experts.

The algorithm with event parameters most similar to the humans experts, i.e., 
the “winner” (aw), was then simply the algorithm having the minimum RMSD 
value produced by Eq. 2. It should be noted that this RMSD value is used to rank 
the similarity, but the absolute values do not guarantee some minimum level of 
similarity which warrant binary terms like “similar” or “different”. Because each 
parameter property is scaled against its maximum value, an RMSD values from 
one set of comparisons are not transferable to another set of comparisons. Thus, 
the rank and distance to the next rank is of interest, and not the absolute value.

Similarity by Cohen's Kappa

The similarity between human and algorithm performance was also evaluated 
using Cohen's Kappa (Cohen, 1960). This measure is simply concerned with 
agreement on a sample-by-sample basis, ignoring effects of event durations 
(which can be seen as uninterrupted chains of samples with the same label). The 
metric is calculated as in Eq. 3, where Po is the observed proportion of agreement 
of coders a and b for the samples n, and Pc is the proportion of chance agreement 
between the coders given their proportion of accepting (1) or rejecting (0) the 
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label for the ith sample. The chance agreement reflects the level of agreement 
achieved if two coders selected events at random but followed their inherent bias 
for certain events, e.g. 90 % of event A and 10 % of event B. This metric ranges 
from -infinity to 1, where negative numbers indicate a situation where the chance 
agreement is higher than the observed agreement, i.e. the coders are worse than 
chance. A zero indicates the case where the observed and the chance agreement 
are identical. A perfect one (1) indicates a (theoretical) situation where the chance 
agreement is exactly zero (impossible to agree at all by chance) and the two 
coders are in perfect agreement of all events. 

K=
Po − Pc

1− Pc

 (3)

Confusion analysis

To answer the question how algorithm designers should receive the best 
marginal improvement of their algorithm, we calculated confusion matrices for all
algorithms against the human experts. A confusion matrix, C, can be described as 
a symmetrical matrix with sides equal to the size of the set of classification codes 
c. Two raters, a and b, then independently classify each sample in the data set (of 
size n) using codes i and j, respectively, and increment the value of the cell Cij in 
the confusion matrix. A perfect agreement, i.e. no confusion, would result in a 
diagonal of 1 (if normalized), and 0 in every other cell.

The number of pair-wise comparisons is very large and not possible to 
exhaustively report in this article. Instead, we have collapsed the full confusion 
matrices into simpler matrices showing what events each algorithm, when they 
disagree with human experts, they over- or under-classify. For example, an 
algorithm that can detect saccades, but not fixations, will definitely under-classify 
samples as fixations, and so a major improvement could be achieved by adding 
fixation-detection capabilities. Also, any algorithm that detects events sequentially
is likely to under-classify events that are detected later in this chain, unless the 
algorithm has the functionality to roll back previous classifications.
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Results

Event durations per algorithm and stimuli type

The number of fixations and saccades vary dramatically with the algorithm and
the type of stimuli used, as is evident from Table 3 and Table 4, as well as 
visualized in Fig. 2.

Figure 2: Visualized similarity in events produced by the classifications from the different 

algorithms (blue, filled) and humans experts (green, unfilled). The ordinate shows the number of 

events, the abscissa the mean duration in milliseconds of these events, and the radius of each 

bubble shows the relative (within each panel) standard deviation of the durations. Note that not all 

algorithms are plotted for all events, as not all algorithms detection fixations or saccades (see 

Table 1).

Table 3: Fixation durations

Images Moving dots Videos

Algorithm Mean SD # RMSD Mean SD # RMSD Mean SD # RMSD

CoderMN 248 271 380 <0.1 161 30 2 0.2 318 289 67 0.2
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CoderRA 242 273 369 <0.1 131 99 13 0.2 240 189 67 0.2

CDT 397 559 251 2.3 60 127 165 1.6 213 297 211 1.0

EM - - - - - - - - - - - -

IDT 399 328 242 1.4 323 146 8 1.1 554 454 48 1.5

IKF 174 239 513 0.9 217 184 72 1.1 258 296 169 0.9

IMST 304 293 333 0.5 268 140 12 0.8 526 825 71 1.9

IHMM 133 216 701 1.6 214 286 67 1.5 234 319 194 0.9

IVT 114 204 827 2.1 203 282 71 1.4 202 306 227 1.1

NH 258 299 292 0.4 380 333 30 2.1 429 336 83 0.8

BIT 209 136 423 0.8 189 113 67 0.7 248 215 170 0.9

LNS - - - - - - - - - - - -

Note. Fixation durations for the different algorithms and stimuli types. Algorithms with dashes as 

values do not detect fixations. The algorithms presented are, in order: Coder MN, Coder RA, 

Fixation Dispersion Algorithm based on Covariance (CDT), Engbert & Mergenthalser (EM), 

Identifiacation by Dispersion-Threshold (IDT), Identification by Kalman Filter (IKF), 

Identification by Minimal Spanning Tree (IMST), Identification by Hidden Markov Model 

(IHMM), Identification by Velocity Threshold (IVT), Nyström & Holmqvist (NH), Binocular-

Individual Threshold (BIT), and Larsson, Nyström & Stridh (LNS).

According to the minimized root-mean-squared deviations against human 
experts (RMSD within parentheses, lower is better), the fixation detection 
algorithm most similar to human experts for image data was NH (0.36), with 
IMST (0.54) as runner-up. For moving dot stimuli, the winning fixation detector 
was the BIT (0.73) algorithm, with IMST (0.81) as runner-up. For video stimuli, 
IKF (0.68) was the most similar algorithm, then NH (0.78).

Table 4: Saccade durations

Images Moving dots Videos

Algorithm Mean SD # RMSD Mean SD # RMSD Mean SD # RMSD

CoderMN 30 17 376 <0.1 23 10 47 0.4 26 13 116 0.1

CoderRA 31 15 372 <0.1 22 11 47 0.4 25 12 126 0.1

CDT - - - - - - - - - - - -

EM 25 22 787 1.5 17 14 93 1.4 20 16 252 1.6

IDT 25 15 258 0.5 32 14 10 1.3 24 53 41 0.7

IKF 62 37 353 2.1 60 26 29 2.4 55 20 107 2.1

IMST 17 10 335 0.8 13 5 18 1.3 18 10 76 0.9

IHMM 48 26 368 1.0 41 17 27 1.3 42 18 109 1.4
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IVT 41 22 373 0.6 36 14 28 1.0 36 16 112 0.9

NH 50 20 344 0.9 43 16 42 1.0 44 18 1104 1.5

BIT - - - - - - - - - - - -

LNS 29 12 390 0.2 26 11 53 0.2 28 12 122 0.3

Note. Saccade durations for the different algorithms and stimuli types. Algorithms with dashes as 

values do not detect fixations.

The most human-like saccade detection algorithm for image data was LNS 
(0.23), with IDT (0.49) in second place. For moving dots, LNS (0.23) was the 
winner, with IVT (0.97) as runner-up. With video data, LNS (0.28) was the winner
and the runner-up was IDT (0.72).

Only two algorithms detected post-saccadic oscillations, and how they fared 
against human coders is shown in Table 5.

Table 5: Post-saccadic oscillation durations

Images Moving dots Videos

Algorithm Mean SD # RMSD Mean SD # RMSD Mean SD # RMSD

CoderMN 21 11 312 0.2 15 5 33 0.4 20 11 97 0.7

CoderRA 21 9 309 0.2 15 8 28 0.4 17 8 89 0.7

NH 28 13 237 2.2 24 12 17 2.5 28 13 78 2.2

LNS 25 9 319 1.0 20 9 31 1.1 24 10 87 1.2

Note. PSO durations for the different algorithms and stimuli types. Algorithms with dashes as 

values do not detect fixations.

The algorithm most similar to humans experts when comparing post-saccadic 
oscillations was LNS (0.99, 1.12, 1.15), with NH (2.24, 2.44, 2.16) in second 
(last) place. This order was the same for all three stimuli types.

For completeness, the events only detected by the human coders are listed in 
Table 6.

Table 6: Miscellaneous event durations

Images Moving dots Videos

Algorithm Mean SD # RMSD Mean SD # RMSD Mean SD # RMSD

MN pursuit 363 187 3 2.7 375 256 37 2.1 521 347 50 2.2

RA pursuit 305 184 16 2.7 378 364 33 2.1 472 319 68 2.2

MN blink 335 153 20 1.47 336 0 1 0.5 297 189 3 2.0
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RA blink 392 237 19 1.47 212 0 1 0.5 187 31 3 2.0

Note. PSO durations for the different algorithms and stimuli types. Algorithms with dashes as 

values do not detect fixations.

Algorithm – human sample-by-sample similarity

We compared the similarity of the algorithms to the human coders using 
Cohen's Kappa (higher is better). The results are presented in Table 7.

Table 7: Cohen's Kappa reliability between algorithms and human coders

Fixations Saccades PSOs

Algorithm Img Dots Vid Img Dots Vid Img Dots Vid

CoderMN .92 .81 .83 .95 .91 .94 .88 .82 .83

CoderRA .92 .84 .82 .95 .91 .94 .88 .80 .81

CDT .38 .06 .11 .00 .00 .00 .00 .00 .00

EM .00 .00 .00 .64 .66 .67 .00 .00 .00

IDT .36 .00 .03 .45 .26 .38 .00 .00 .00

IKF .63 .03 .14 .58 .46 .59 .00 .00 .00

IMST .38 .00 .03 .54 .30 .52 .00 .00 .00

IHMM .67 .03 .13 .69 .60 .71 .00 .00 .00

IVT .67 .03 .13 .75 .63 .76 .00 .00 .00

NH .52 .00 .01 .67 .60 .68 .24 .20 .25

BIT .67 .03 .14 .00 .00 .00 .00 .00 .00

LNS .00 .00 .00 .81 .75 .81 .64 .59 .63

Note. Fixation, Saccade, and PSO agreement between algorithms and human coders, expressed in 

Cohen's Kappa. Negative values are set to zero. Higher is better.

Starting with fixations, for the image data the IHMM, IVT, and BIT were the 
best ones, achieving very similar Kappa scores. For the moving dot data, no 
algorithm fared well, but the algorithm performing the least poorly was the CDT. 
For video data, the IKF and BIT were the best algorithms. For saccades, the LNS 
and the IVT were the two best algorithms for image data. For moving dots, the 
LNS and the EM algorithm were the best ones. For video data, LNS was best and 
IVT was the runner-up when detecting saccades. Considering post-saccadic 
oscillations, only two algorithms can detect that event, and LNS outperforms NH 
decisively. 
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Across all stimuli types, a human expert was always better at matching the 
classifications of the other human than any algorithm was at matching the average
of the two humans. Considering the detection across all events for image-viewing 
data, fixation detection algorithms achieved a high interrater reliability as the data 
contained mostly fixations and saccades, and post-saccadic oscillations were small
compared to the other events. When presented with data from almost exclusively 
dynamic stimuli, these fixation detectors do not perform above chance. The video-
viewing data, however, represent a more natural blend of dynamic and static 
stimuli, and here the algorithms were clearly not matching the reliability of the 
humans, although they were better than chance.

Confusion analysis: Images

The confusion analysis reveals how each algorithm (or human expert) over- 
and under-classifies certain events in comparison to the human experts. 
Considering the human CoderRA, for example, this person under-classifies 
samples as fixations in comparison to the human CoderMN. As the samples that 
are under-classified as fixations must be classified as something else, we see that 
CoderRA tends to over-classify samples as smooth pursuit instead. However, the 
two humans agree to a large extent, only disagreeing on 7 % of the data from 
image viewing, as indicated by the ratio column in Table 8.
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Table 8: Confusion matrix for data from images

Algorithm Ratio Error Fix Sacc PSO SP Blink Other

coderMn 7 %
over .68 .09 .18 <.01 .02 .03

under .13 .13 .17 .46 .11 <.01

coderRA 7 %
over .13 .13 .17 .46 .11 <.01

under .68 .09 .18 <.01 .02 .03

CDT 23 %
over .66 .00 .00 .00 .00 .34

under .04 .38 .22 .10 .25 <.01

EM 92 %
over .00 .08 .00 .00 .00 .92

under .84 .01 .06 .03 .06 <.01

IDT 20 %
over .80 .09 .00 .00 .00 .11

under .05 .27 .26 .12 .29 <.01

IKF 24 %
over .18 .39 .00 .00 .00 .43

under .40 .03 .22 .10 .25 <.01

IMST 20 %
over .78 .03 .00 .00 .00 .18

under .06 .26 .26 .12 .29 <.01

IHMM 20 %
over .30 .29 .00 .00 .00 .41

under .27 .03 .27 .12 .30 <.01

IVT 19 %
over .33 .20 .00 .00 .00 .47

under .26 .04 .27 .12 .30 <.01

NH 32 %
over .08 .18 .12 .00 .00 .63

under .59 .03 .12 .08 .18 <.01

BIT 31 %
over .12 .00 .00 .00 .00 .88

under .28 .29 .17 .08 .19 <.01

LNS 84 %
over .00 .02 .03 .00 <.01 .95

under .92 .02 .02 .03 <.01 <.01

Note. Proportion of samples classified in disagreement with expert coders, for the image stimuli. 

The Ratio column indicates the proportions of samples, out of all classified samples, where the 

algorithm disagreed with the humans, or in the humans case how much one humans disagreed with

another. The columns for the different events show what proportion, out of the disagreeing 

samples, that can be explained as over- or under-classification of that particular event.

Turning our attention to the algorithms and still considering the image-viewing 
data, the algorithms that detect fixations performed distinctly better than the two 
algorithms that do not (EM & LNS). A fixation-detecting algorithm disagreed on 
at most 24 % of the samples, compared to algorithms that do not detect fixations 
(at best 84 % disagreement). The fixation-detecting algorithm vary in their 
behaviour. For example, the IDT over-classifies samples as fixations and rarely 
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under-classifies the samples. However, the IHMM algorithm is much more 
balanced in its errors, over-classifying samples as fixations as much as it 
underclassifies them. In general, however, a large chunk of the samples where 
they disagree with humans are under-classified as fixations. Looking at the events 
that are not detected by the algorithms, it seems around 30 % of the disagreeing 
samples can reach agreement with the humans if classification support for PSO 
and smooth pursuit is implemented. For algorithms that only detect saccades, 
around 84–92 % of the samples can reach agreement if only fixation detection 
capabilities are added.

To visualize how the different coders and algorithms classify an image-viewing
trial, and what mistakes they make, the raw positional data along with the 
classifications as scarf plots are shown in Figure 3.

Figure 3: positional data from the first 1,000 samples of an image-viewing trial. The (x,y) 

coordinates are plotted as position over time in blue and red, respectively. The classification of the 

coders and the algorithms are plotted as scarf plots below, with fixations in red, saccades in green, 

and PSOs in blue. Absence of color (white) means the sample was not classified by the algorithm. 

The x-axis is in samples.
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Confusion analysis: Moving dots

For the data from the moving dot stimuli, we find that humans disagree on 
11 % of the data, and the algorithms disagree on at least 84 % of the data. The SP 
column in Table 9 reveals that this is largely driven (81–92 %) by the inability of 
the considered algorithms to detect smooth pursuit.

Table 9: Confusion matrix for data from moving dots

Algorithm Ratio Error Fix Sacc PSO SP Blink Other

coderMn 11 %
over .11 .09 .08 .64 .05 .04

under .59 .06 .06 .27 .00 .01

coderRA 11 %
over .59 .06 .06 .27 .00 .01

under .11 .09 .08 .64 .05 .04

CDT 89 %
over .67 .00 .00 .00 .00 .33

under .02 .05 .02 .87 .01 .02

EM 96 %
over .00 .03 .00 .00 .00 .97

under .14 .01 .02 .81 .01 .01

IDT 86 %
over .98 .01 .00 .00 .00 .02

under <.01 .05 .02 .90 .01 .02

IKF 85 %
over .81 .06 .00 .00 .00 .14

under .02 .02 .02 .91 .01 .02

IMST 86 %
over .98 <.01 .00 .00 .00 .01

under <.01 .05 .02 .90 .01 .02

IHMM 84 %
over .98 .02 .00 .00 .00 .09

under <.01 .02 .02 .92 .01 .02

IVT 84 %
over .89 .02 .00 .00 .00 .09

under .01 .02 .02 .92 .01 .02

NH 93 %
over .64 .05 .02 .00 .00 .30

under .12 .01 .02 .83 .01 .02

BIT 89 %
over .72 .00 .00 .00 .00 .28

under .03 .05 .02 .87 .01 .02

LNS 93 %
over .00 .02 .01 .00 .01 .95

under .14 .01 .01 .83 <.01 .01

Note. Proportion of samples classified in disagreement with expert coders, for the moving dot 

stimuli. The Ratio column indicates the proportions of samples, out of all classified samples, 

where the algorithm disagreed with the humans, or in the humans case how much one humans 
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disagreed with another. The columns for the different events show what proportion, out of the 

disagreeing samples, that can be explained as over- or under-classification of that particular event.

For the algorithms that only detect fixations and saccades, smooth pursuit 
motion is primarily misclassified as fixation data. The net over-classification of 
fixations is likely from the smooth pursuit motions, and at least 52% of the 
misclassified fixation samples can be recovered by adding smooth pursuit support 
to the algorithms. The over-classifications in the Other category are primarily 
samples that the algorithm could not classify at all, i.e. not meeting the criteria of 
any known events. It is preferable that the smooth pursuit samples end up here, 
rather than being falsely accepted as fixation samples.

Confusion analysis: Video

Finally, in Table 10, the data from the natural video stimuli shows that the 
humans now disagree on 19 % of the samples. Again, we see a distinction 
between the algorithms that can detect fixations and the ones that cannot. The 
prevalence of fixations in natural videos allows the fixation detectors to disagree 
on fewer samples than what they did during the moving dot stimuli. The non-
fixation detectors are particularly punished by not detecting fixations. 
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Table 10: Confusion matrix for data from videos

Algorithm Ratio Error Fix Sacc PSO SP Blink Other

coderMn 19 %
over .72 .03 .07 .15 .04 <.01

under .16 .04 .04 .76 .00 <.01

coderRA 19 %
over .16 .04 .04 .76 .00 <.01

under .72 .03 .07 .15 .04 <.01

CDT 64 %
over .80 .00 .00 .00 .00 .20

under .02 .08 .05 .82 .02 <.01

EM 95 %
over .00 .04 .00 .00 .00 .96

under .40 <.01 .03 .55 .03 <.01

IDT 61 %
over .98 .01 .00 .00 .00 .01

under <.01 .06 .05 .86 .03 <.01

IKF 62 %
over .74 .09 .00 .00 .00 .18

under .07 .01 .05 .85 .03 <.01

IMST 61 %
over .97 .01 .00 .00 .00 .03

under .01 .05 .05 .86 .03 <.01

IHMM 59 %
over .83 .05 .00 .00 .00 .12

under .03 .01 .05 .88 .03 <.01

IVT 59 %
over .84 .04 .00 .00 .00 .12

under .03 .01 .05 .88 .02 <.01

NH 70 %
over .58 .05 .04 .00 .00 .33

under .18 .01 .03 .75 .03 <.01

BIT 67 %
over .66 .00 .00 .00 .00 .35

under .07 .08 .04 .78 .03 <.01

LNS 92 %
over .00 .01 .02 .00 <.01 .97

under .41 .01 .01 .57 <.01 <.01

Note. Proportion of samples classified in disagreement with expert coders, for the video stimuli. 

The Ratio column indicates the proportions of samples, out of all classified samples, where the 

algorithm disagreed with the humans, or in the humans case how much one humans disagreed with

another. The columns for the different events show what proportion, out of the disagreeing 

samples, that can be explained as over- or under-classification of that particular event.

Another obvious issue is that some algorithms do not classify samples that do 
not match a particular category, whereas others revert to some default category, as 
can be seen in the Other category in Table 10. For video stimuli, implementing 
smooth pursuit detection capabilities should be prioritized to recover the largest 
number of misclassified samples.
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Discussion

The purpose of this study has been to find the best event detection algorithm to 
recommend to researchers. This was done by evaluating the performance of ten 
different event classifier algorithms for eye-movement data, and examine how 
they compare to human evaluators. Researchers use algorithms such as these, 
sometimes seemingly mindlessly as they are often tightly integrated in the eye-
tracking software. The study controlled parameter differences between algorithms 
using a combination of sensible default values and reverse-engineered human-
implicit parameters. Even though we expected some variance, we were 
completely surprised to find that the choice of an algorithm produced such 
dramatic variation in the event properties, even using identical and otherwise 
default settings.

In order to make sense of the results, let us revisit our aims from the beginning.

Which is the best algorithm?

Interestingly, it is not quite as simple as that. Considering fixation detection in 
static stimuli, perhaps the most common form of event detection, the NH 
algorithm was the most similar to the human experts in terms of matching the 
number of events and their durations. However, when we considered sample-by-
sample comparisons, the IHMM, IVT, and BIT algorithms performs the best and 
with similar scores. If you have access to binocular data, then BIT could possibly 
perform even better. Interestingly, when NH ranks well, IHMM ranks poorly, and 
vice versa, depending on the evaluation approach. We will discuss this in more 
detail shortly. For detecting fixation in dynamic stimuli, the algorithms are not 
near the humans experts, leading us to conclude that there are no winners in these 
contexts.

Concerning saccades and post-saccadic oscillations, the LNS algorithm, 
however, was consistently the most suitable choice, no matter the underlying 
stimuli. This was supported by both the event duration distributions, and the 
sample-by-sample comparison.

The answer to this research question is further elaborated on in the following 
sections.
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How does the number and duration of events change depending on 

the algorithm?

Considering detecting fixations in data from image-viewing, a very common 
type of event-detection, the average fixation duration varied with a factor of four 
due to the algorithm choice. Assuming the ``average human'' classification was 
true, then for the same data, the fixation duration estimates deviated from the true 
value by up to a factor of three. For dynamic stimuli, the fixation durations 
differed with a factor of nearly eight and a factor of nearly three from the human 
experts.

For saccades, the corresponding algorithm differences were a factor of four for 
both static and dynamic stimuli. For differences against the humans experts, static 
stimuli produced a factor of two, and dynamic stimuli a factor of three.

How similar are algorithm-detected events to human-detected 

events?

We estimated the similarity of the events detected by algorithms and humans 
using the root-square-mean deviations of the unweighted combination of the 
number of events, the mean duration (i.e. how many samples were included in the 
event) and the standard deviation of these events. The algorithm that minimized 
the deviation was considered the most similar to the human experts. This value 
varies theoretically from zero (no deviation at all) to three (maximal deviation for 
all three event properties).

We found that for detecting fixations in data from static stimuli, NH was the 
most similar with a deviation of 0.36, and the closest alternative was at 0.54. For 
the dynamic stimuli types, the deviation increased to 0.81 and 0.98, respectively, 
showing that the algorithms have a harder time properly detecting fixation when 
the data contain smooth pursuit.

For saccades, the LNS was clearly more similar to the humans than the second 
closest algorithm, even across different stimuli types (RMSD: 0.23, 0.23, 0.28; vs 
0.49, 0.97, 0.72, for image, dot, and video, respectively).

How similar are algorithms to humans in a simple sample-by-sample 

comparison?

The sample-by-sample comparison in the form of Cohen's K evaluates the 
classification of each sample independently, and it also adjusts for the base rate of 
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each event type. The evaluation is thus a matter of correctly classifying each 
sample, but also doing so better than a random guess given knowledge of the 
proportion of samples from each event.

For detecting fixations from static stimuli, the algorithms with fixation 
detection capabilities fared reasonably well (K values between .36 and .67 
compared to the humans .92). For the stimuli with moving dots, they were almost 
indistinguishable from chance (.00 to .14). For natural videos they performed 
slightly better but not well (.01 to .14).

Detecting saccade samples appeared easier than detecting fixations. The 
average K scores for image, dot, and video data, respectively, were in the ranges .
45–.81, .26–.75, and .38–.81, compared to human experts (.95, .91, .94). Thus 
saccade detection even in data from dynamic stimuli appeared to be not 
completely improper, at least for sample-by-sample evaluation.

Are the human experts interchangeable?

Evaluations against manual classifications such as these typically only have a 
single human coder, as the coding process is very laborious. This raises the 
question whether the results are mainly determined by the human, rather than the 
algorithms. To explore this concern, we looked at the results against each coder in 
isolation, and against each other. If the results were consistent, then human biases 
would have been negligible.

Humans were the most similar to each other, if we evaluated them in the same 
way as the algorithms, i.e. against a hypothetical “average coder”. This is perhaps 
completely obvious, as each human has contributed half of the data for this 
average coder. If we compare the human coders and algorithms to only one human
coder at a time, then the same pattern with the humans remain: they are more 
similar to each other than any algorithm. The same pattern for the algorithm 
rankings remain when considering only one human coder at a time. For fixation-
detection in data from static stimuli, the NH algorithm is the most similar 
candidate, with IMST as a runner-up. The same was also true for saccade 
detection: the LNS algorithm was consistently the most similar to any human, 
regardless of what underlying stimuli elicited the eye movement data. 

The patterns also largely remained for the individual coders when we 
considered the sample-by-sample evaluation using Cohen's Kappa. Both coders 
were the most similar to each other, the BIT algorithm was the best fixation-
sample classificator for static stimuli for coder RA. For coder MN the BIT was 
among the top three algorithms (IHMM, IVT, and BIT) with very similar scores. 
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For both coders the LNS algorithm was the best saccade- and PSO-sample 
classificator for sample-by-sample classification.

We had an initial concern that coder MN had been involved in the development
of two of the algorithms (which performed well), and this coder's particular view 
on event detection biased both the design of the algorithm and the coding process,
leading to inflated agreement levels. However, since both coders shared the same 
top-ranking algorithms, it was clear that this design–coder contamination could 
not undermine our algorithm ranking results.

Are the algorithm–human similarity dependent on the underlying 

stimuli that elicited the data?

It was clear from our results that the stimuli that elicited the data determined 
the evaluation scores. Consistently, for both evaluation methods, we saw that data 
from static stimuli were easier than dynamic stimuli (moving dots and natural 
videos). This was hardly surprising, as most algorithms only detected fixations 
and saccades, which are the predominant events of static stimuli viewing.

Naturally, humans are at an advantage, for several reasons. They can form a 
model of the underlying stimuli, and then make use this model in the coding 
process whenever the uncertainty is high. Humans can also code the full set of 
events, and change strategies if needed (e.g., to some backward-elimination 
process if forward positive identification appears difficult).

The evaluation accuracy was also a question of the type of event that was to be 
identified (see Table 7). Fixation-detection, e.g., was almost indistinguishable 
from random chance for moving dots, but better than random chance for videos. 
Saccade-detection was more consistent across stimuli type, although this varied 
much between algorithms.

Are there consequences of using algorithms designed for static 

stimuli on data from dynamic stimuli?

If we ignore the question of evaluating similarity between humans and 
algorithms, and are simply interested in detecting fixations and saccades for our 
research, then what are the consequences? The answer is not straight-forward. 
Considering the RMSD, algorithms could completely change their ranking when 
going from one type of stimulus to the other. For example, NH (rank 3, just after 
the two humans) fell to rank 9 when going from image stimuli to moving dot 
stimuli, but back up again to rank 3 when proceeding to the video stimuli. One 
reason for this dramatic change is that the moving dot stimuli almost entirely 
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consists of motion, which distorts the detected fixations if the algorithm does not 
expect smooth pursuit in the data. This fixation output would be nonsensical to 
use. The fixations detected by NH from the video-elicited data look like they are 
decent, but it is not obvious that they can be trusted. The deviation (RMSD) from 
the coders is clearly larger than for image-elicited data (0.36 vs 0.81). When 
considering the scores from the sample-by-sample evaluation, the performance 
drops dramatically for NH from .52 (images) to .01 (videos). In other words, even 
if the event duration distributions for video-elicited data appear roughly similar to 
human-classified events, the algorithms are not adding much value to the 
detection process, and the result would have been roughly similar had a simple 
proportional guess been made. Such a decent proportional guess can possibly be 
made by an algorithm with thresholds and criteria that coincide with the expected 
event measures. This would superficially look appealing, but there is no guarantee
that the samples are classified well, leading to improper onsets and offsets of the 
events. In other words, using an algorithm design for static stimuli data on 
dynamic stimuli data may result in almost nonsensical event classifications.

How congruent are algorithm evaluation methods based on event 

properties compared to sample-by-sample comparisons?

The previous discussion led us to the question of how much one evaluation 
method could say about another evaluation method. The short answer is that they 
answer different aspects. The durations, and their distributions, of different events 
represent the level most close to researchers, i.e. measures such as fixation 
durations. Given the right data, it is possible to have algorithms performing at 
100 % accuracy. However, this could then be more driven by the nature of the 
data rather than the quality of the algorithms. That is why a method such as 
Cohen's K, which adjusts for the base-rate of the events, is motivated. 

Also, because the two methods focus on different aspects, it is possible for an 
algorithm to perform poorly in one aspect, but perform well in another one. For 
example, an event could be identified as a very long fixation by the human, but 
could have some noisy sample in the middle of the event which the human 
disregards as noise. The algorithm, however, interprets that noisy sample as some 
non-fixation sample, and terminates the fixation. This results in two, shorter, 
fixations. So the number of fixations and durations deviate decidedly, but in terms 
of a sample-by-sample comparison all the samples but that one noisy sample are 
coded in agreement with the human. This is what we found for the NH and BIT 
algorithms that we looked more closely at. BIT gets disrupted in the fixation 
detection, and produces chains of shorter fixations. Although it detects each 
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sample well, and scores high on a sample-by-sample comparison, it performs 
poorly in matching the human-detected events in terms of duration, and number.

To conclude this section, the researcher must decide herself what aspect is 
relevant, and select the appropriate algorithm accordingly. Is the priority to get 
unbiased durations of fixations or saccades, or is it to classify the largest amounts 
of sample correctly?

What are the most pressing areas in which to improve the 

algorithms?

The evaluated algorithms are not similar, so it is difficult to give general 
advice. However, we can distinguish between the saccade or fixation algorithms, 
and the algorithms that seem to have an ambition to detect all events. The largest 
improvement can be found when adding fixation-detection capabilities to a a 
saccade-only algorithm. Fixations are a very common, and relatively long type of 
event, which consequently carries much weight in the data file (c.f. Figure 3). 
Thus, it is no surprise that these algorithms, although excellent at what they do 
(e.g. the LNS algorithm), get a poor overall score when considering the coding of 
the individual samples (see confusion matrices in Tables 8, 9, & 10). The lack of 
this capability explains around 47–90 % of the disagreements, if we consider 
image and video stimuli where fixation events are common. The BIT algorithm is 
a fixation-only algorithm, and should benefit from having saccade-detection 
capabilities. We should note that we may have also underestimated the 
performance of this algorithm, as it is capable to taking binocular data into 
account. No other algorithm does this.

The second family of algorithms are the fixation- and saccade-detectors, which 
detect the two most common events, and achieve an OK overall detection 
accuracy. However, adding support for detecting smooth pursuit can provide great
improvements. More than 83 % of the disagreeing samples can be explained by 
this, at least for stimuli with a large prevalence of smooth pursuit (see Table 9). 
For a more moderate prevalence, as in our natural videos, around 73 % seem to be
the proportion of disagreeing samples that can be recovered. This improvement 
would not only have the benefit of detecting smooth pursuit, but would also 
improve the performance of fixation and saccade detection, as there is a clear 
treatment of this “no mans land” of the velocity curve, which causes some 
algorithms to assign slow pursuit movements to the fixation category. It remains 
to be seen, however, if adding smooth pursuit detection makes the algorithms 
worse of in their fixation and saccade detection. Our human coders, with no 
knowledge of the underlying stimuli, indicated smooth pursuit motion in data 
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from static stimuli. If the humans make this error, then it is likely that algorithms 
will also make such errors. It should also be noted, as is evident from Figure 3, 
that even saccade detection, even though it is a distinct movement, has room for 
improvement. Failure to detect a saccade often means (as is the case in Figure 3) 
that two separate fixations are instead identified as a single large fixation. This 
will of course have consequences for the estimated fixation durations, for 
example.

Post-saccadic oscillations, however, are fairly small events occurring at the end
of saccades. Considering the data from the confusion matrices, the proportion of 
misclassification driven by these samples normally falls below the 
misclassification proportion from fixations and saccades. Thus, it is better for a 
designer to improve the existing fixation- and saccade detection than to add 
support for this new event. However, as can be seen in Figure 3, the amplitude of 
the post-saccadic oscillation is more likely to trigger some algorithms than others, 
forcing a premature termination of the saccade. In this figure, the IDT and IMST 
algorithms have notably shorter saccade amplitudes than other algorithms. Also, it
is visible that the CDT algorithm identifies a segment at the peak of the first 
oscillation as a small fixation. This happens for the IHMM and IVT algorithms as 
well, but is less clearly visible in the scarf plot (after the fifth identified saccade).

Considering the distribution of average event durations in Figure 2, it seems a 
number of algorithms can improve simply by tweaking the settings, or adding 
automatic threshold adjustments. At least for the fixation durations from image 
viewing, it becomes apparent that the average fixation duration follow a negative 
exponential curve, where the duration of the fixations go up as the number of 
detected fixations go down. This is most likely due to smaller separate fixations 
merge as settings, like a dispersion threshold, become more inclusive. When the 
algorithm is inclusive, it captures more sampling and the resulting fixation have 
longer durations. 

Are humans a gold standard?

On the one hand, humans seem to, across the board, agree with each other very 
well. For data from the different stimuli types (image, dot, and video), the 
resulting RMSD and the proportion of disagreeing samples, it is clear that, on 
average, the human experts are the most similar to each other. On the other hand, 
it is difficult to draw any far-reaching conclusions based on only two raters.

Currently, the humans are most similar to each other, but humans also make 
mistakes. However, once an algorithm reaches a level of accuracy on par with the 
humans, it becomes challenging to say whether the errors are driven primarily by 
the inaccurate algorithm, or the inaccurate humans. At the moment there seems to 
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be no experimental data on what factors influence a human expert's coding 
behaviour, but it is reasonable that not all coding instructions are equal. For 
example, in our case there could be a difference between a coder actively trying to
figure out the underlying stimulus of the data, and not trying to do this. If 
sufficient evidence is accumulated for the data being from a static stimulus, then 
any implicit thresholds for detecting smooth pursuits are likely to be raised. 

Similarly, there is a difference between coding for the presence of a single or 
several events. A sample classified as belonging to one event cannot, in the 
current coding scheme, be a part of another event. More event categories would 
mean increasing the coding difficulty, which also means that misclassified 
samples are less likely to be correct by chance, further increasing the difficulty for
the algorithm. Additionally, the raw data was visualized in a particular way, in a 
particular GUI for this study. It is likely that the way the data are presented will 
alter the classification thresholds and biases of the humans.

A part of the underlying problem of the current classification approach is that 
the current oculomotor events are fuzzy, human-defined labels. If the definitions 
were algorithmic, there would by definition always be a winning standard 
algorithm, barring the potential influence of noise. So the solution for the problem
should perhaps be sought in the intuitions of the researchers using these events. 
Or, the evaluation standard should be switched from accurately classifying 
artificial labels, to a more grounded phenomenon, such as the level of visual 
intake during a certain state of the eye. Usually the events are detected for a 
particular reason and not for an interest in the labels per se, and these motivations 
could also be used to form the new measurement sticks for algorithm 
performance.

In summary, we have a classification problem without a solid gold standard 
against which we can verify oculomotor event classifications, of which the events 
lack clear definitions. Strictly, this would mean that this is apparently an 
insolvable problem. Human coders are not perfect and there are indeed difficult 
classification cases, but the general sentiment is that, in the simple case, what is a 
fixation and what is a saccade is something we can agree on. The point of 
agreement may be arbitrary, but humans are still in some agreement, much like 
agreeing on meaning in language. We also find that for detecting fixation 
durations from viewing static stimuli, the same algorithm is the best match for 
both of the two coders. The same is true for saccades and post-saccadic 
oscillations, across all stimuli types. Thus, it appears some intuitions of the coders
are shared and not completely arbitrary.
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Generalizability of the results

Having answered the questions we had at the start of this study, we wondered 
whether these results would generalize. First of all, the data are recorded using a 
particular system. In this case it is a video-oculographic system, the SMI HiSpeed 
1250. Although producing good data compared to other VOG systems, it produces
data with the typical characteristics of a VOG system, such as distinct overshoots 
during saccades and a higher noise-level, compared to e.g. scleral coil systems 
(see e.g., Hooge, Nyström, Cornelissen & Holmqvist, 2015). Although all systems
have an overshoot component to some degree, the eye-tracker signal does not look
the same across systems. This emphasizes that we should not expect event-
detection to look the same either. The consequences of system type for the data 
signal, and consequently for the event detection has been, at least for 
microsaccades, discussed in Nyström, Hansen, Andersson & Hooge (2015). 
There, the system type together with a common event-detection algorithm created 
an interaction that produced an artificially large microsaccade amplitude. 
Additionally, not all VOG systems are the same. An EyeLink 1000 system (SR 
Research, 2014) can track the pupil using an ellipse-fitting procedure, or a center-
of-mass procedure, which determines the noise-level and tracking robustness. The
tracking algorithm for the SMI HiSpeed, however, is not obvious from the manual
(Sensomotoric Instruments, 2009).

Furthermore, VOG systems are affected by the natural changes of the pupil 
size, which does not change uniformly in all directions, and thus introduces a bias 
in the gaze estimation (see Drewes, Masson & Montagnini, 2012). This may be 
one part of the explanation why one of our coders classified some segments of 
samples as belonging to smooth pursuits, rather than fixations, in data from static 
image viewing.

This hints at the larger question of how data quality affects event detection, 
which is discussed, e.g., by Holmqvist, Nyström & Mulvey (2012). It is expected 
that as the signal becomes noisier, it becomes increasingly harder to reliably 
detect the events, and especially so for the smaller and less distinct events. Likely, 
the PSO would become impossible to detect. Smaller saccades, as well as short 
and slow pursuit movements would become difficult to separate from a regular 
(noisy) fixation. With higher noise levels it is critical that the algorithms can 
adequately filter the signal, and perhaps adaptively so. This becomes especially 
important if the goals is to have an algorithm that can be used “out of the box” 
with none or few user-controlled parameters. Evaluations such as this, that use 
humans as some form of standard or reference, may also produce increasing 
higher human – algorithm deviations as the noise level increases. The expert 
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knowledge and strategic flexibility in human coders suggests that the humans 
would not be disrupted to the same extent that algorithms would be. In this light, 
this would indicate that this study, using data with low noise, actually over-
estimates the ability of the algorithms, compared to data from noisier systems.

Going beyond the question of system type and data quality, this evaluation was 
conducted by two humans at the same lab. Working in the same lab means 
attending the same seminars and the same discussions, often aligning the views of 
the people. Therefore, even when explicitly trying not to discuss the coding 
process too much beforehand, this may likely have led to similar decisions in 
cases of uncertainty. A future study could address this by having members from 
different labs, yet somehow coming together for this coding task despite minimal 
previous exchanges. To compensate for biases towards algorithms that were 
developed at our lab, for our eye-trackers, we did explore the possibility to tune 
some of the other algorithms parameters. The results are presented in Appendix B,
and although we can see improvements in several cases, it does not change the 
main findings in this evaluation.

It should also be noted that perhaps this evaluation has actually overestimated 
the classification quality of the algorithms. In order to get around the problem of 
what default values to use for the algorithm parameters, we reverse-engineered the
human coders. This also means that the algorithms were somewhat tuned to the 
coders. Although this was done to ensure a fair competition between algorithms, 
this solution may have caused a slight overestimation of the performance of the 
algorithms.

We should not forget that there are also researchers that use whatever algorithm
is provided by their (commercial) system. Should these results matter to them? 
Although we did not evaluate commercial algorithms, the variation in results 
between algorithm in this study should be a sign of warning. The commercial 
algorithms are at their core developed around known algorithms, such as a 
velocity-threshold algorithm (Tobii Technology, 2012; Sensomotoric Instruments, 
2010) or a velocity-and-acceleration-threshold algorithm (SR Research, 2014), 
and their closed-source nature makes it more difficult to evaluate them. There is 
no reason to believe that these algorithms are immune to the challenges raised in 
this article. Their primary advantage, however, is their proliferation, which means 
there are plenty of other publications with the same algorithm which the 
researcher can compare the results against. This provides an indication of the 
reliability of the algorithms, but not necessarily the validity of these algorithms.

To summarize, there are a number of factors that were not systematically 
explored in this evaluation, and thus we cannot confidently generalize across 
factors such as eye-tracker model, noise levels, or coders from different labs. 
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However, this study could indicate what expectations to hold for event-detection 
performance, given the limited number of evaluation studies at the moment.

Future directions of algorithm design

During this work, and having manually reviewed much raw eye-tracker data, 
we have noted some ideas of event detection algorithm design that seems to have 
been left unexplored.

The first idea is that events are assumed to be mutually exclusive. Whereas this
makes sense for fixations and saccades, it does not make sense for, e.g., post-
saccadic oscillations. We have seen data where saccades to a moving target results
in an eye-movement that is tracking the moving target (smooth pursuit), but also 
oscillating from the end of the saccade (post-saccadic oscillation). What is the 
correct classification for such an event? Using current algorithms, no 
classification will be fully correct. It seems a new framework is needed, where 
different properties of the eye (movement) can overlap.

The second idea is whether thresholds separating two or more events should be
placed in an unbiased manner, e.g. balancing the false-positive and false-negative 
rates between these events. From what we can see, e.g. by studying Table 8, 
algorithms are not balanced, and this issue is not discussed at all. However, it 
would make sense to explicitly address this for both the algorithm designers, and 
the researchers using them. In one context, an unbiased trade-off between events 
may be desired, but for another context, more biased thresholds are important. For
example, if the researcher has a strong desire to extract segments of data that are 
near-guaranteed to contain no smooth pursuit movements, then smooth-pursuits 
must first be detected in order to be discarded. Then, perhaps an algorithm which 
detects smooth pursuits, at the expense of a higher false-positive rate for smooth 
pursuits and higher false-negative rates for other events, is desired. Although this 
can be achieved by setting the thresholds for the different events accordingly, this 
could be made more explicit by allowing the use other types of thresholds. For 
example, an algorithm that also tries to set the certainty level of a particular 
classification, would in turn allow a researcher to select, e.g., only data from 
fixations with a certainty above 90 %. Or, if there is a probability for every event 
type for a given sample, then a desired certainty delta could be set, rejecting the 
sample if there is a too high chance of it belonging to a particular competing 
event. Related to this, it is evident from Figure 3 that some of our algorithms 
refrain from classifying a sample if it does not meet the critera, whereas others 
operate with a more exhaustive strategy. Thus, modern algorithms are not 
consistent in whether they should only classify when they are “certain” or if they 
should be forced to make an informed guess about the sample. This is likely an 
option that the researcher would like to make for the particular study.
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A third idea, which has previously been mentioned, is to actually make use of 
information in the stimuli. By knowing where animated objects are located in the 
visual fields, it should become easier for an algorithm to distinguish between a 
fixation and a smooth pursuit movement. To our knowledge, all current algorithm 
are stimuli blind. 

A fourth idea is to make use of the pupil size signal, as well as the common x 
and y signals. As pupil size changes cause shifts in the position of the pupil center 
(Drewes, Masson & Montagnini, 2012), drift movements may occur that may be 
very difficult to separate from smooth pursuit movements, and is likely what 
caused our coders to identify smooth pursuit in data from static stimuli. As far as 
we can tell, this information is not used in any algorithm.

A final idea is perhaps to forgo the process that revolves around (ill-) defined 
labels of oculomotor events, and develop a new ground truth against which the 
algorithm can be compared more straight-forwardly and in line with the aims of 
the researchers using the algorithms. One such approach, which has already been 
mentioned, would be to optimize algorithms against actual visual intake, which 
may be easier to empirically ground compared to the label intuitions of 
researchers.

To conclude this section, there is much underused information in the eye and 
the output from most eye-tracking hardware, which can inform and improve, 
algorithms for eye movement event detection in the future.
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Appendix A

Participant and stimuli information

Participant # Stimulus name Stimulus type Offset (deg) RMS (deg)

20 trial1 Moving dot 0.59 0.03

20 konijntjes Image 0.59 0.05

21 Rome Image 0.48 0.02

21 trial17 Moving dot 0.48 0.02

21 trial1 Moving dot 0.48 0.01

21 BergoDalbana Video 0.48 0.02

22 trial17 Moving dot 0.32 0.03

23 Europe Image 0.42 0.03

23 triple_jump Video 0.42 0.03

24 trial17 Moving dot 0.27 N/A

25 trial1 Moving dot 0.44 0.02

27 vy Image 0.29 0.03

27 trial17 Moving dot 0.29 0.03

27 triple_jump Video 0.29 0.03

28 konijntjes Image 0.35 0.07

29 Europe Image 0.46 0.03

29 dolphin Video 0.46 0.03

30 triple_jump Video 0.23 0.06

31 konijntjes Image 0.94 0.03

31 trial1 Moving dot 0.94 N/A

31 triple_jump Video 0.94 0.03

33 vy Image 0.34 0.02

33 trial17 Moving dot 0.34 0.03

34 Europe Image 0.28 0.03

34 vy Image 0.28 0.03

34 BergoDalbana Video 0.28 0.02

38 trial1 Moving dot 0.15 N/A

38 dolphin Video 0.15 0.03

39 konijntjes Image 0.45 0.08

39 trial1 Moving dot 0.45 0.02

43 Rome Image 0.48 0.04

47 Europe Image 0.28 0.03

47 BergoDalbana Video 0.28 0.03

47 konijntjes Image 0.28 0.03
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Appendix B

Parameter tuning

To explore whether the algorithms for which we had used the default 
parameters could be improved, we performed a simple parameter walk to see 
which combination of parameters that yielded the best (lowest) RMSD. This was 
performed with one parameter combination across all stimulus types, but 
separately for fixations and saccades, respectively.

Fixations

NH: no change at 0.67 (best)

CDT: no improvement

IMST: improvement from 1.58 to 0.75 (SaccDetThres 0.7; window_size 175)

IHMM: no improvement

BIT: improvement from 1.13 to 1.08 (n_lost 2; perc_control 0.96)

Saccades

EK: improvement from 1.46 to 0.61 (vfac 7, mindur 12)

IKF: no improvement

IMST: improvement from 1.09 to 0.21 (shared best with LNS) (saccDetThres 0.8; 

winsize 300)

IHMM: improvement from 1.09 to 1.00 (Viterbi 100; Baum Welch 7)

NH: no improvement

Conclusion

Some algorithms did improve. The only finding that upsets our previous results
is that IMST can be made as accurate as the LNS algorithm. However, do note 
that the IMST is tuned separately for fixations and saccades, and the optimal 
parameter combination is not the same for the two events. In other words, the 
saccade detection will improve at the cost of the fixation detection, and vice versa.
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