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Populärvetenskaplig sammanfattning

Vetenskapligt baserade lösningar p̊a miljöproblem kan kräva metoder att använda
komplexa modeller, hantera begränsade data eller ersätta av experiment som är
oetiska eller sv̊ara att utföra. Ett exempel p̊a en s̊adan metod är att integrera
expertbedömningar som komplement till empiriska observationer när man byg-
ger vetenskapliga modeller. Expertkunskap och data kan kombineras genom att
beskriva experters osäkerhet och slumpmässighet i data med sannolikhetsmo-
deller, och genom att tillämpa sannolikhetsregler (Bayesiansk inferens) för att
dra slutsatser.

Expertkunskaper spelar en stor roll i processer för att ta fram vetenskapliga
r̊ad och att fatta beslut. De kan användas för att bestämma beslutsfattares
värderingar och preferenser, eller för att formulera vetenskapliga modeller. Ve-
tenskapliga experter har kunskaper som genererar vetenskapliga hypoteser eller
en mekanistisk först̊aelse, vilket ger struktur till vetenskapliga modeller. Exper-
ter kan ocks̊a bidra med kunskap om fakta eller möjliga värden p̊a parametrar i
vetenskapliga modeller. Det kan vara om en art finns p̊a en viss plats, hur snabbt
en population växer under vissa förh̊allanden, eller storlek p̊a systematiska fel i
observationer som rapporteras in av f̊agelsk̊adare. Slutligen, kan experter bidra
med bedömningar om framtida händelser eller observationer under olika beslut.

Expertbedömningar är subjektiva, men det är inte ett hinder för att använda
dem i vetenskapliga modeller. Det finns forskning som visar att människors
bedömningar p̊averkas av vad det är man fr̊agar efter, hur fr̊agor ställs och vad
andra säger om man är i en grupp. Vetenskapliga experter är inget undantag.
För att minska eventuella skevheter och missförst̊and i experters bedömningar,
och öka transparens, och därmed vetenskaplig tillförlitlighet i resultat, bör ex-
pertbedömningar följa en strukturerad process.

Ett exempel p̊a en s̊adan process är Sheffield-metoden, där man ber experter att
komma överens om par mellan kvantiler och sannolikheter för att representera
deras osäkerhet om en parameter inom en vetenskaplig modell. En kvantil är ett
värde som delar in en sannolikhetsfördelning för en kontinuerlig variabel i tv̊a
delar, där det är en viss sannolikhet att variabeln är lägre än detta värde. Nästa
steg i Sheffield-metoden är att anpassa en parametrisk sannolikhetsfördelning till
kvantil-sannolikhetsparen. Denna fördelning kan sedan användas för att beskriva
osäkerhet.

De flesta har hört talas om normalfördelningen. Den är ett exempel p̊a en
parametrisk sannolikhetsfördelning som definieras utifr̊an en täthetsfunktion.
Det är nog f̊a som känner till Metalog, Myerson eller J-QPD, vilket är exem-
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pel p̊a sannolikhetsfördelningar som definieras utifr̊an en kvantilfunktion, och
som dessutom har kvantiler som parametrar. Kvantil-parametriserade sannolik-
hetsfördelningar är flexibla men används idag endast i begränsad omfattning
för att beskriva experters bedömningar. Detta kan bero p̊a att dessa sannolik-
hetsfördelningar är ovanliga och att det inte är känt hur dessa kan användas i
Bayesiansk modellering. Jag har i denna avhandling gjort en sammanställning
av kvantildefinerade fördelningar, med syfte att visa hur kvantil-parametriserade
sannolikhetsfördelningar skulle kunna underlätta integrering av expertbedömningar
i vetenskapliga modeller.

Vetenskapliga r̊ad som stöder beslut om biologisk m̊angfald och bevarande tar i
bästa fall hänsyn till inverkan p̊a artpopulationers dynamik i rum och tid, vilket
kräver tillförlitliga uppskattningar av arters förekomst. Artutbredningsmodeller
förlitar sig ofta p̊a endast närvarodata, insamlade av medlemmar av allmänheten
utan att följa n̊agot särskilt observationsprotokoll. Även om det finns gott om
data fr̊an medborgarforskning, har de visat sig inneh̊alla en betydande del av
systematiska fel p̊a grund av hur data samlas in.

Den största databasen med artdata fr̊an medborgarforskning är Global Bio-
diversity Information Facility (GBIF). Förutom informationen om individuella
observationer, s̊asom artnamn och antal, registrerar GBIF en del metadata som
beskriver observationshändelsen (exempelvis tid, plats, observatörs-ID). Jag har
använt denna information för att generera data p̊a icke-närvaro och för att ju-
stera för systematiska fel som beror p̊a olika intentioner hos observatörer i en
artutbredningsmodell för gäss i nordöstra Sk̊ane.
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Abbrevations

CDF Culuative Distribution Function
CSW Chalaby Scott and Wuertz
FKML Freimer Kollia Mudholkar Lin
GBIF Global Biodiversity Information Facility
GLD Generalized Lambda Distribution
INLA Integrated Nested Laplace Approximation
IQR Inter-Quartile Range
PDF Probability Density Function
QF Quantile Function
QPD Quantile-Parameterized Distribution
SMD Species Distribution Models
MCMC Markov Chain Monte Carlo
HMC Hamiltonian Monte Carlo
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Scientific methods for
integrating expert knowledge
in Bayesian models

1 Introduction

Environmental Management is an area where models are complex, data are
sparse (expensive to collect) and experiments are difficult to set up (Roberts
et al., 2018). Therefore, scientific assessors producing scientific advice have to
rely on experts to complement the evidence collected by observation (Choy et al.,
2009). Bayesian methods allow for integration of expert judgment with data for
inference on relevant quantities of interest (Gelman et al., 2013).

Figure 1: Expert knowledge elicitation in Environmental Management

Expert knowledge elicitation plays a crucial role in various facets of the en-
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vironmental management decision-making process (Figure 1). It can be used
for determining decision makers’ values and preferences when setting popula-
tion targets (Johnson et al., 2021), hypothesis generation and model structure
elicitation for understanding population dynamics (Madsen et al., 2017), prior
elicitation for the parameters of population models (Johnson et al., 2017), and
predictive elicitation for anticipated decision outcomes (observables) (Tulloch
et al., 2017).

1.1 Opportunistic environmental data

Scientific advice supporting biodiversity and conservation decisions considers at
best impact on dynamics of populations in space and time, requiring reliable
estimates of species prevalence. Species Distribution Models (SDMs) often rely
on presence-only data, collected by members of the public without following
any particular observation protocol. Although citizen science data are abundant,
they have been shown to contain a significant amount of bias due to irregularities
in the observation process (Hastie and Fithian, 2013; Grimmett et al., 2020;
Stolar and Nielsen, 2015; Isaac and Pocock, 2015). Opportunistically collected
wildlife observations may be prone to one or more of the following challenges:

• Absences are typically not recorded. The data is often referred to as
presence-only.

• The observations are collected at non-random locations. This is referred
to as the spatial preferential sampling

• Only selected species are recorded, implying taxonomic preferential sampling

• The time it took to collect observations varies from one event to another;
also, the spatial extent explored while making observations varies between
events. These two effects are jointly referred to as varying observation
effort.

The largest database accumulating citizen science data is the Global Biodiversity
Information Facility (GBIF) (GBIF, 2023). In addition to the key information
about individual observations, such as the species taxon and the quantity, GBIF
records some metadata describing the observation event (time, location, observer
ID, etc). One way to compensate the deficiency of presence-only datasets is to
consider this metadata and place individual observation of focal species in the
context of the rest of the sightings made by an observer during a trip. The
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list of all observations made by an observer on a single trip is called an “event
species list” or just “species list” (Szabo et al., 2010). The absence can then
be interpreted as the absence of the focal species on the species list, provided
that at least one other species was registered. This observer-oriented approach,
which focuses on the analysis of the list length (Ruete et al., 2017, 2020) have
been shown to outperform randomly sampled pseudo-absences in de-biasing the
citizen science data used in species distribution modelling (Di Cecco et al., 2021;
Milanesi et al., 2020).

The bias related to preferential sampling can be adjusted by employing a thin-
ning process with a parameter responsible for the influence of bias on the likeli-
hood. Expert judgment is required to define the thinning function and provide
an informed prior for the parameter responsible for shrinkage (Sicacha-Parada
et al., 2021).

Not all observers are contributing equally to citizen science databases. The
majority of observations are recorded by a few ”super-observers”, employed by
institutions or otherwise committed to repeatedly recording the wildlife obser-
vations (Cretois, 2021; Di Cecco et al., 2021). Therefore, taxonomic preferential
sampling can be addressed by including the species list length explicitly in the
model.

1.2 Structured expert elicitation

Expert judgment constitutes a valuable source of knowledge, particularly in
scenarios where evidence is limited or difficult to obtain. However, behavi-
oral research has revealed inherent human biases that can impact the accuracy
(Kahneman, 2012) and consistency (Kahneman et al., 2021) of judgments. To
address these challenges, a substantial body of knowledge has emerged regarding
the selection of experts. It emphasizes the importance of experts being quali-
fied, well-calibrated, and diverse in their background knowledge and expertise
(Dias et al., 2018; European Food Safety Authority, 2014; Hanea et al., 2021a;
Morgan, 2014).

To mitigate cognitive biases in expert judgment and to bolster transparency and
scientific rigor, it is crucial to adhere to a structured elicitation process (Burg-
man, 2015; Hanea et al., 2021b; O’Hagan, 2019). One such process, the Sheffield
protocol (Gosling, 2018), asks experts to agree on quantiles-probability pairs to
represent their uncertainty about a fixed quantity (usually a parameter within
a model). Subsequently, a parametric distribution, chosen from a set of famil-
iar and practical distributions, is fitted to these elicited quantiles. This fitting
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process can introduce ambiguity with regards to the choice of the distribution,
especially when the selected distribution does not fit the elicited quantiles ex-
actly.

1.3 Quantiles: from elicitation to distribution

Sarma and Kay (2020) identified three target objectives when choosing a prior
for a Bayesian model: centrality matching (mean, median), interval matching
(IQR, variance) and probability mass allocation. Probabilistic judgments are
commonly expressed as triplets of quantile-probability pairs, comprising a me-
dian and upper and lower quantiles (e.g., 25th/75th or 5th/95th) (Johnson et al.,
2017; O’Hagan et al., 2006). These pairs represent points from an unknown dis-
tribution function F (x).

Figure 2 shows a cumulative distribution function (CDF) with the median and
four quantiles marked by dashed lines. The slope of the CDF is called a prob-
ability density function (PDF). In the PDF chart, the probabilities correspond
to the area under the curve. Finally, the inter-quantile range can be illustrated
by a boxplot.

Several specialized distributions have been developed to facilitate the smooth
interpolation of probabilistic judgments. Quantile-Parameterized Distributions
(QPDs) is a flexible class of probability distributions parameterized by the
quantile-probability pairs. These distributions might fulfill all of the object-
ives identified by Sarma and Kay (2020) by matching the median, an IQR and
allocating the probability mass as required. QPDs enable the precise capture
of expert knowledge while maintaining a high level of flexibility in modeling
(Hadlock, 2017; Keelin and Powley, 2011; Powley, 2013).

2 Research aim and questions

The aim of this thesis two-fold: 1) to simplify the integration of expert judge-
ment in scientific models and 2) to integrate quantile-parameterized distribu-
tions into Bayesian models.

This aim is addressed by attacking the following questions:

• What could be suitable distributions for encoding expert judgment on
parameters versus observable (data) levels?
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Figure 2: CDF, PDF and boxplot of an unknown distribution F(x)

• Under what conditions can a quantile-parameterized distribution be used
as a prior or as a likelihood in a Bayesian model, and how can Bayesian
inference be performed for QPDs?

• Will the expert-informed bias adjustment for preferential sampling im-
prove the predictive performance of species distribution model based on
opportunitistically collected data?

3 Methodological approach to the thesis

Different methodological approaches were used throughout the thesis.

• The thesis includes a comprehensive literature review, synthesizing the
existing knowledge about quantile-parameterized distributions (Paper I)
and likelihood-based inference with quantile functions (Paper II).
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• I made a theoretical development and proposed generalization of Myerson
distribution (Paper I) and extended Bayesian inference to parametric
quantile regression (Paper II).

• As an example of methodological development, I proposed a prior for a
quantile-based model and developed a new method of hybrid elicitation
(Paper III).

• The theoretical findings were confirmed by a simulation study (Paper II
and Paper III).

• Finally, the thesis includes a case study, which was used to justify the
need for theoretical development and to apply the concepts explored to an
environmental assessment problem (Paper IV). The case study is related
to management of waterfowl in rural and urban landscapes of Southern
Sweden.

The details of the methodological approaches are provided in the Results and
Application section.

4 Environmental relevance

Expert knowledge elicitation is a method of integrating subjective knowledge
into statistical or decision models with high significance in Environmental Sci-
ence. The use of expert judgment complements the existing methods, addressing
complexity of environmental systems and enhancing the robustness of scientific
analyses. The methodological contribution of this thesis can contribute to the
assessment and management of environmental problems.

The case study in waterfowl management illustrates the application of concepts
developed in the thesis to support the responsible stewardship of a diverse family
of water birds, including ducks, swans, and geese, categorized under the Order
Anseriformes and the Family Anatidae. The primary objectives of waterfowl
management involve sustaining these avian species for their nutritional, recre-
ational, and conservation values. This involves the preservation of ecosystems
crucial for supporting thriving populations while mitigating the negative im-
pacts, such as damage to human interests, caused by the abundance of these
bird species (Figure 3).

Waterfowl management programs in North America and Europe combine com-
prehensive monitoring, population modeling, and expert knowledge in conser-
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Figure 3: Barnacle Goose by the pond in Lomma, Sweden on 2023-08-02, 17:36. Credits: Dmytro Perepolkin

vation and biology to create flyway-scale species management plans for growing
populations of water birds (Madsen et al., 2017). Due to the large number of act-
ors and national decision makers involved, the international waterfowl manage-
ment bodies are constantly dealing with incomplete information and challenges
with labor-intensive data collection. Therefore, a lot of attention has been ded-
icated to the value of information gained by the routine monitoring programs
(Runge et al., 2011; Tulloch et al., 2017; Johnson et al., 2014, 2017; Roberts
et al., 2018). To tackle this problem, European Goose Management Platform
adopted expert-informed Bayesian population models, which explicitly account
for data gaps and input uncertainties (Johnson and Koffijberg, 2021; Johnson
et al., 2023).

The focus of this thesis is to further develop methods for integrating expert judg-
ment in scientific models, and apply this theory to species distribution modeling
of waterfowl in North-Eastern part of Sk̊ane region in Sweden.

5 Results and application

The following section summarizes the results from the research work presented
in the papers included in this thesis.
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5.1 Expert-specified priors

Paper I proposes the use of quantile-parameterized distributions (QPDs) as
a tool for translating the probabilistic judgments elicited from experts, into
probability distribution for parameters. The paper includes a comprehensive
review of the existing literature on QPDs and proposes a generalized version of
one of the simplest QPDs, the Myerson distribution. Paper I also examines
various methods for constructing QPDs and extending the univariate QPDs to
the multivariate setting. Additionally, we introduce a multivariate extension for
our Generalized Myerson distribution.

5.2 Bayesian inference with quantile functions

The QPDs discussed in Paper I are constructed using the inverse of the cumu-
lative distribution function, known as the quantile function (QF). In should be
noted that many of the distributions composed using the quantile function lack
a closed form CDF and PDF. The challenge arises when incorporating them
into Bayesian models, where likelihood is calculated as the ratio of densities.

Paper II systematically introduces and illustrates Bayesian inference in the
models where prior or likelihood are expressed using a quantile function. We
show that the quantile-based Bayesian inference leads to the same posterior
beliefs as the conventional density-based inference (Figure 4). We validate
quantile-based models using a simulation study and apply the principles of
quantile-based inference to Bayesian updating of parameters in both univariate
and regression settings, using flexible and extensible quantile sampling distribu-
tions.

5.3 Quantile-parameterized models and hybirid elicitation

The predictive approach to expert elicitation focuses on gathering information
about observable quantities, possibly conditional on covariates (Kadane, 1980;
Winkler, 1980). This approach is advantageous as it aligns with the intuitive
understanding of experts. However, a drawback is that the predictive distribu-
tion does not distinguish between the randomness explained by the model and
the uncertainty about the parameters. This lack of distinction makes it challen-
ging to update the prior beliefs in light of new observations. On the other hand,
the structural approach attempts to elicit the model parameters directly. How-
ever, experts may find it challenging to express their judgment in the parameter

8



Figure 4: Moebius strip of probability functions (Perepolkin et al., 2023a)

space, due to the abstract and, at times, counter-intuitive nature of parameters
within scientific models (Mikkola et al., 2023).

The hybrid elicitation approach introduced in Paper III combines the best of
both worlds. By eliciting information about observable quantities along with
associated uncertainty, the hybrid method integrates predictive and structural
elements. The purpose of hybrid elicitation is to define a prior for a model ex-
pressed by a quantile-parameterized distribution. In this paper, we propose a
variant of Dirichlet prior that effectively captures uncertainty in quantile para-
meters. The hybrid approach facilitates the expert elicitation and Bayesian
updating of variable quantities with minimal assumptions about the underlying
model structure.

5.4 Expert judgment in waterfowl species distribution modeling

One of the distinct features of environmental problems is that they are typically
spatially referenced. This aspect of the environmental data requires special-
ized approaches, which can handle spatial autocorrelation explicitly. Integrated
Laplace Approximations implemented in INLA (Rue et al., 2009; Lindgren and
Rue, 2015) offer a quick and efficient method of fitting Bayesian models with
latent Gaussian fields responsible for estimating the spatial extent of the ef-
fect of interest. In this thesis we used inlabru, a user-friendly wrapper over
INLA for working with ecological survey data (Bachl et al., 2019). Recently
a new functionality for specifying custom priors was added to inlabru: it is
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now possible to specify the prior distribution for a parameter of interest using
a quantile function and its derivative (quantile-based approach). In Paper IV
we specified the prior for the scale parameter in the detection function using the
quantile function of the Myerson distribuition.

6 Discussion

6.1 Data-centric vs model-centric view

There’s an important tension in science, which goes across the divide between
the primacy of data vs theory. In the world of machine learning it is common
to advocate for “letting the evidence speak for itself”. This shifts the burden
of explanation to the available data and portrays data science as an object-
ive enterprise of merely observing and impartially recording the facts. But as
Gomez-Marin (2023) brilliantly summarises:

Data does not speak for itself, we articulate its meaning with our
interpretations. These, in turn, depend on our initial presupposi-
tions, cognitive biases and philosophical committments. If data are
“given” (“datum” in Latin), facts are “made” (factum). And un-
derstanding comes later, on developing a bases on which to “under”
“stand” the facts that are made.

The distinction between the data-centric and the model-centric view of science
can be traced to the way we define probability distributions. In the data-centric
approach the probability distribution for the observable x is defined via the
distribution function F (x|θ). Compare it to the distribution defined by the
quantile function Q(u|θ) of the depth u (Paper II). The former is naturally
descriptive, while the latter is naturally generative; one puts forth the data,
while the other puts forth the model1.

In the data-centric world, we are in search of a perfect F , “where the data is
coming from”. It is easy to believe that the distribution F is objective, that it is
“out there” in the world. With quantile function Q we are forced to ask: “which
quantile function Q should I pick so that the data I generate looks more or less

1The value x = 0.6744898 could be a measurement of a temperature or a distance, but the
depth u = 0.75 is by itself not a measure of anything. However, in the context of a model
(such as the standard normal), the meaning of the depth u = 0.75 and the data x = 0.6744898
is equivalent.
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like what I observe in the world?”. The quantile function puts a model between
the observer and observables and makes it clear that we are merely attempting
to match the real and messy x with our idealized Q(u).

The model is always a means for one of three ends: descriptive, predictive,
or causal (Carlin and Moreno-Betancur, 2023). Any inference, prediction or
intervention suggested in research is always conditional on the parameterized
scientific model. And the presence of parameters imply existence of prior know-
ledge (Gelman et al., 2017; Clayton, 2021). Even when such prior knowledge is
based on a known (previously observed) distribution, an expert makes an act
of personal judgment, deeming the observed relative frequencies as relevant and
sufficient for characterizing the probability of obtaining a specific value from a
randomly drawn outcome. This constitutes a shift from a “frequency” to a “per-
sonal probability” domain, based on the assumption of exchangeability (Jaynes,
2003).

6.2 Quantile-parameterized distributions

When eliciting the quantitative judgment of experts, the assessor should not in-
quire them about the statistical moments (mean, standard deviation), but rather
about probabilities and quantiles (Kadane and Wolfson, 1998). The characteriz-
ation of prior knowledge with quantile-parameterized distribution has a distinct
advantage: once quantile judgments are elicited, QPDs do not require any addi-
tional steps of fitting or encoding. The elicited quantiles can become parameters
of the prior distribution directly.

However, as much as QPDs are useful, they posses some important limitations.

Unintuitive tails

Even though quantile-parameterized priors guarantee that the parameterizing
quantile-probability pairs will be matched exactly (Paper I), the chosen dis-
tribution may imply some counterintuitive values of quantiles in the tails. All
symmetrically-parameterized distributions have 3-5 parameters, which means
that they are more flexible than the kernel distributions they are based on.
Perepolkin et al. (2023b) discuss certain distributional kernels which produce
unexpected shape of the bounded tail in a QPD. Figure 5 shows J-QPD-B and
Beta distribution fitted to the same quantile-probability pairs. Although J-QPD
fits the parameterizing quantiles exactly, it is very unlikely that this particular
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shape of the J-QPD-B matches the intuition of the expert. Such prior may also
have quite dramatic effect when used in MCMC for Bayesian computation.
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Figure 5: J-QPD-B vs Beta distribution

Implied bounds

Some quantile-parameterized distributions have explicitly defined bounds (e.g. J-
QPD), while the bounds of other distributions are defined implicitly by other
parameters (e.g. Myerson, GLD CSW). Implicitly defined bounds may not al-
ways correspond to the expert’s knowledge about the valid domain for the quant-
ity of interest. Therefore the assessor needs to make the implied bounds clear
to the expert to confirm that those are, in fact, reasonable.

Implicit bounds have some important bearing on MCMC sampling as the values
outside the bounds can not be explored by the sampler. Stan is the popular pro-
gramming environment for building probabilistic Bayesian models, implement-
ing Hamiltonian Monte Carlo (HMC) method (Gabry and Češnovar, 2022). In
Stan the limits on parameters have to be explicitly defined to limit the ability
of the sampler to explore the part of the posterior where density is not defined.
Therefore, the implicit limits of quantile function may need to be computed
ahead of time and explicitly defined as the parameter bounds to prevent the
MCMC/HMC transitions from diverging.

Truncation

Another limitation of using quantile priors is related to truncation. Truncation
is often used for defining distributions with a particular shape, e.g. for defining
prior for variance parameters (Gelman, 2006). When a distribution is truncated
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at values a, b, so that P (X ≤ x|a < X < b) = G(x) the CDF of a truncated
distribution is

Gt(x) =
F (max(min(x, b), a))− F (a)

F (b)− F (a)

and the corresponding quantile function is

Qt(u) = Q(F (a) + u[F (b)− F (a)])

where u is the depth corresponding to the random variable x (Nadarajah and
Kotz, 2006). It can be observed that the truncated quantile function requires
computing the depths ua = F (a) and ub = F (b), which for non-invertible
quantile functions, may need to be computed numerically.

Infeasibility

Despite the fact that all QPDs are developed using the quantile function, the
methods of reparameterization used to map parameters to quantile-probability
pairs does not always guarantee the feasibility the resulting distribution (Paper
I). The distributions created following the Gilchrist transformations (Gilchrist,
2000) are guaranteed to stay feasible for all valid ranges of parameters. However,
it is precisely the transformations that violate the Gilchrist rules that create in-
teresting, flexible and unique distribution, such as GLD (Freimer et al., 1988),
g-and-h, g-and-k (Rayner and MacGillivray, 2002) and metalog (Keelin, 2016).
These distributions need the “guard rails” of parameter feasibility conditions,
which ensure that the quantile function stays monotonic. Some attempts were
made to use reparameterization in order to move the parameter boundaries to
the values that “make sense”. For example Chalabi et al. (2012) parameter-
ization of GLD (CSW GLD) repackages (Freimer et al., 1988) (FKML) GLD
mapping the location and scale parameters to the median and IQR, and re-
stricting the other two parameters (asymmetry and steepness) to [−1, 1] and
[0, 1] ranges, respectively. This makes valid parameterization easier, but also
creates a potential problem of rapid changes in the shape of the distribution
with only a minor change in parameters, due to the fact that CSW GLD is a
combination of four distributions (see Equation 23 in Perepolkin et al. (2023b)).

There’s a need for developing new quantile distributions which are flexible yet
feasible. Quantile mixtures is a promising new direction in quantile function

13



research (Peng et al., 2023). Quantile mixtures are formed by a linear com-
bination of quantile functions, providing a high level of flexibility while staying
feasible by construction. In comparison to density mixtures, quantile mixtures
offer a distinct advantage: they are always unimodal, unless at least one of the
components in the mixture is explicitly multi-modal (Gilchrist, 2000). As the
weights in the linear combination of quantile functions must be non-negative, the
fitting method requires constrained optimization. The resulting mixture can be
mapped back to quantiles using the implicit function method (Perepolkin et al.,
2023b), under the condition that all coefficients, except for the intercept, are
positive.

The thesis includes the paper on metalog likelihood (Paper III), for which we
developed a novel approach to elicitation. The model based on metalog distribu-
tion has to carefully handle the parameter feasibility condition for the metalog
quantile function. The infeasible combination of quantiles should be rejected as
soon as the computed quantile density function is found to be negative. The
model in Paper III can be further improved and extended by replacing the
metalog distribution with a properly constructed quantile mixture (Peng et al.,
2023) with guaranteed feasibilty.

6.3 Bayesian inference with quantile functions

There could be several reasons for resorting to a likelihood for data defined
by a quantile function. First of all there could be some domain-specific reas-
ons, i.e. particular knowledge about the world that implies an unconventional
data-generative process. For example, Wakeby distribution has been specifically
created for modeling flood flows, and extreme rainfall (Rahman et al., 2015), but
has since been adopted for modeling citation counts (Katchanov and Markova,
2015). Wakeby distribution is defined by a quantile function that does not have
a closed-form inverse. Applying the principles of quantile-based inference makes
the likelihood-based inference with Wakeby distribution possible.

Another reason for using the quantile-based likelihood could be parametric
quantile regression (Gilchrist, 2008). Parametric quantile regression is useful
when the goal is not to predict the mean, but to produce a probabilistic judg-
ment about the quantiles of the quantity of interest. The resulting conditional
quantiles should, of course, be subject to axioms of probability, i.e. they should
be non-crossing (Gilchrist, 2007).

Quantile function methods are primarily used in relation to continuous variables.
The quantile functions for discrete random variables require more rigorous defin-
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ition to avoid ambiguity related to mapping the real values of probabilities to
integers (Gilchrist, 2000), since CDF (and QF) of a discrete random variable
is a step function. Therefore, the method in which the regression equation is
represented by a quantile function will naturally have some limitations when
used to model the discrete response variable.

Quantile-based likelihood models require numerical inversion of a quantile func-
tion, which is rather trivial for univariate models, but becomes computation-
ally challenging in the presence of covariates. The numerical cost of inverting
quantile functions has been studied in Perepolkin et al. (2023a). For univari-
ate case the inversion algorithm can be optimized by ordering the observations
and, therefore, incrementally reducing the root-finding interval, but in case of
parametric quantile regression ordering of observations may be more difficult,
because the regression quantile function includes covariates.

6.4 Expert judgment and hybrid elicitation

Mikkola et al. (2023) propose a set of useful distinctions which divide the field
of prior elicitation into sub-categories based on the hypercube of dimensions
dealing with the expert, the model, and the elicitation process itself. One of
the dimensions the authors discuss is elicitation space, where they distinguish
between the parameter and observable space. The elicitation literature strongly
favors querying the experts about the quantities of interest in the observable
space (Kadane and Wolfson, 1998). In Paper III we propose hybrid elicitaion
approach, in which the experts are asked to describe only observable quant-
ities and their subjective uncertainty about those quantities. The key idea
of the method is to translate the uncertainty about cumulative probabilities
corresponding to quantiles of an observable quantity into the proportions of a
hypothetical sample, thus switching from the relative frequency to the natural
frequency frame (Gigerenzer, 2011).

Figure 6 shows the (predictive) 10th, 50th, and 90th quantiles of fish weights
elicited from an expert corresponding to the weights of 4, 9 and 17 lbs (interpol-
ated with a 3-term metalog). We treat the quantile values as fixed and consider
the “probability band” widths (highlighted by different colors on the chart) as
varying. The hybrid elicitation method amounts to inquiring the expert about
their personal uncertainty about the widths of these probability bands.

Note, that the widths of the probability bands will always sum to 1. There-
fore, we propose a prior based on Dirichlet distribution, although the same
elicited quantities can be used to fit a more flexible Connor-Mosimann (general-
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Figure 6: Elicited quantiles of steelhead trout weights, from Perepolkin et al. (2023a)

ized Dirichlet) distribution (Elfadaly and Garthwaite, 2013). The choice of the
multivariate distribution can represent a source of ambiguity by itself. Besides,
when estimating the conditional beta distributions, from which the multivariate
prior is constructed, the elicited quartiles are fitted using the improved Pratt
et al. (1995)’s algorithm, which also carries some approximation error.

The elicited QDirichlet prior (together with a QPD model) constitute a prob-
abilistic package which can be unfolded into 2D Monte Carlo (2DMC) samples
(Simon et al., 2015; Michiels and Geeraerd, 2022), where the aleatory and epi-
stemic uncertainty have been separated through elicitation. More research is
needed to test the perceptions of experts towards this method of encoding ex-
pert judgment and to investigate the potential limitations of the method when
applied to real-life problems.

6.5 Observer-specific adjustments to species distribution mod-
els

Citizen science databases, such as GBIF, provide a rich source of wildlife obser-
vational data which is difficult to make a good use of. They represent a perfect
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example of a principle attributed to Hal Stern by Gelman (2021): ”The most
important thing is what data you use, not what you do with the data”.

In Paper IV we address this challenge by identifying a subset of the GBIF data
with a higher signal-to-noise ratio. Specifically, we focus on two aspects:

• Some contributors to GBIF aim to document every species they encounter,
but distinguishing these records from selectively observed ones remains a
challenge. For instance, observations recorded in eBird (Sullivan et al.,
2009) system allow users to mark their checklists as complete, indicating a
more systematic approach to wildlife observations, which is closer to the
one adopted by the Swedish Bird Survey (F̊ageltaxering, 2023).

• Some users report numerous species from a single wildlife visit, while oth-
ers report only a few (or even a single observation). We hypothesize that
those reporting longer species lists may follow checklists or just diligently
record all observations. This suggests potentially greater comprehens-
iveness of their observations compared to users registering only rare or
surprising species sightings.

The core concept of Paper IV revolves around these two key insights.

We connect the eBird dataset to the GBIF sample and mark the observations
belonging to complete checklists as assumed to be less biased, setting them aside
as holdout data for predictive testing. We also consider the lengths of reported
species lists as a proxy for observation effort (Szabo et al., 2010).

Our approach aligns with the distance sampling method, commonly used to ad-
dress spatial preferential sampling bias. Following the distance sampling meth-
odology, we define the ’ideal’ or ’unbiased’ state (i.e. the situation where all
available species are registered), and introduce a metric, Species List Shortage,
to quantify the deviation of a specific species list from this ideal. We explore
different methods of incorporating Species List Shortage into the model, either
as a covariate with a diffuse prior or as a thinner with an expert-informed prior
encoded by a Quantile-Parameterized Distribution (QPD).

It is essential to acknowledge several limitations in our approach. Firstly, we
aggregated multiple species into a single response count for prediction, focusing
on the presence and abundance of all goose species rather than individual ones.
This decision was driven by the need to deal with the inherent sparsity and
overdispersion in the data.
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Species distribution models, aiming to estimate both presence and abundance,
exhibit sensitivity to mesh construction and the specification of priors, as high-
lighted in recent research (Dambly et al., 2023). Our study focuses on the prior
for the scale parameter of the thinning factor within the species distribution
model. Results demonstrate a discernible impact on the posterior.

Our method retains simplicity through the adoption of a parametric Bayesian
model with only a few covariates. This simplicity is complemented by the ver-
satile spatial modeling capabilities offered by INLA (Lindgren and Rue, 2015),
providing a powerful analytical framework. Our findings underscore the poten-
tial of species list lengths to enhance predictive performance of models based
on presence-only data. We advocate for further exploration to determine the
optimal utilization of this approach within the context of the abundant citizen
science data.

7 Conclusion and future outlook

Expert knowledge is an essential part of solving complex problems. Human
judgment is required in all stages of environmental decision making from spe-
cifying objectives to providing priors in scientific models. While inherently
subjective, the expression of uncertainty by experts can achieve scientific rigor
through structured elicitation processes and effective integration into scientific
models (O’Hagan, 2019). Adopting the language of uncertainty, facilitated by
appropriate probabilistic methods, is paramount for a robust scientific process
(Spiegelhalter, 2014).

Genuine scientific inquiry commences not with raw data but by articulating
the model and making prior knowledge and uncertainty explicit (Gelman and
Hennig, 2017). The case study included in the thesis emphasizes the importance
of not merely accumulating more data but also critically assessing the data
collection process, as it fundamentally shapes the utility of the collected data.

This thesis contributes to the advancement of distribution theory, particularly
in the application of quantile methods for statistical inference. I hope this work
inspires new research in quantile functions, Bayesian species distribution models
and expert knowledge elicitation for making a positive and lasting impact in the
world.
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Quantile-parameterized distributions for expert knowledge elicitation
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bCentre for Mathematical Sciences Lund University Sweden

Abstract

This paper presents a comprehensive overview of quantile-parameterized distributions (QPDs) as a tool for
capturing expert predictions and parametric judgments. We survey various types of QPDs covered in the
literature and focus on the Myerson distribution as the simplest method of parameterizing a distribution by
a set of quantile-probability pairs. We propose the generalization of the Myerson distribution to increase the
flexibility of its tails. Additionally, we explore the extension of QPDs to the multivariate setting, discussing
methods for constructing bivariate distributions with quantile-parameterized margins.

Keywords: quantile-parameterized distributions, quantile functions, expert knowledge elicitation

1. Introduction

Judgment plays a crucial role in transforming raw data into meaningful insights. For judgment to be
useful, it needs to be translated into the language of mathematical models and assumptions. These models
are designed to capture the expert’s understanding of the world, including the causal links between relevant
entities. The models serve as a representation of this understanding, while also accounting for any limitations
in knowledge, which are treated as uncertainties. The process of elicitation involves translating the qualitative
understanding of the problem at hand into quantitative models that can provide valuable insights.

Most of the expert elicitation protocols described in the literature (Hanea et al., 2021; Gosling, 2018;
O’Hagan et al., 2006; Hemming et al., 2018; Morgan, 2014; Welsh and Begg, 2018; Spetzler and Staël
Von Holstein, 1975) encode expert judgments about the parameter or quantity of interest as an ordered set of
quantiles with corresponding probabilities. This typically includes measures such as the median and the upper
and lower quartiles. Assessors are then encouraged to select a probability distribution that reasonably fits
the elicited quantile-probability pairs and validate the choice with the expert (Gosling, 2018). A distribution
is selected from a predefined set of “simple and convenient” distributions with boundedness that accounts for
the nature of the elicited quantity (O’Hagan et al., 2006).

Several specialized distributions have been developed to simplify and streamline the process of smooth
interpolation of probabilistic assessments. These distributions, parameterized by quantile-probability pairs,
ensure that the elicited QPPs are exactly preserved (Keelin and Powley, 2011; Powley, 2013; Hadlock,
2017). Quantile-parameterized distributions are particularly valuable thanks to the interpretability of their
parameters. By leveraging the elicited quantiles, these distributions enable precise capturing of expert
knowlegde while maintaining a high level of flexibility in modeling.

In this paper, we conduct a comprehensive review of the existing literature on quantile-parameterized
distributions (QPDs) and propose a generalized version of one of the simplest QPDs, namely the Myerson
distribution. Our investigation encompasses an examination of various methods for constructing QPDs and
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extending univariate QPDs to the multivariate setting. Additionally, we put forth a multivariate extension
for our Generalized Myerson distribution.

We believe that the primary utility of QPDs lies in their ability to simplify the specification of probability
distributions for model parameters, known as prior elicitation (Mikkola et al., 2021). However, these same
distributions can also be employed to describe an expert’s predictions for the next observation, referred to as
predictive elicitation (Winkler, 1980; Kadane, 1980; Akbarov, 2009; Hartmann et al., 2020), or to capture
both uncertainty and variability through a two-dimensional probability distribution in hybrid elicitation
(Perepolkin et al., 2021a). Through our comprehensive review and identification of research gaps, we aim
to contribute to the development of flexible and extensible distributions that can effectively capture expert
knowledge.

The paper is structured as follows:
In Section 2, we revisit the approaches to quantile parameterization of probability distributions and

explore how QPDs can effectively describe expert beliefs regarding model parameters or predictions.
Moving on to Section 3, we conduct a comprehensive review and comparison of various continuous

univariate QPDs found in the literature. Specifically, we focus on the Myerson distribution and propose its
generalization to accommodate different tail thicknesses. To assess the flexibility and behavior of the QPDs,
we compare their robust moments. This comparative analysis can guide the selection of an appropriate
distribution to characterize the quantity of interest.

In Section 4, we delve into several methods for extending QPDs to a multivariate setting. These methods
include the utilization of standard multivariate distributions (Drovandi and Pettitt, 2011), copulas (Hoff,
2007), and bivariate quantiles (Nair and Vineshkumar, 2023). We apply these techniques to develop the
bivariate version of the Generalized Myerson distribution and demonstrate its application in parametric and
predictive elicitation.

Finally, in Section 5, we discuss future research directions and potential applications of QPDs in Bayesian
analysis.

2. Quantile parameterization of probability distributions

In Bayesian data analysis, a fundamental principle is that learning from data requires more than just
formulating hypotheses and models. It necessitates the articulation of prior beliefs, expressing existing
knowledge in a mathematical form and translating it into a probability distribution for the model parameters.

To accurately translate knowledge into the language of statistical models the encoding distribution needs
to be flexible, the process should be transparent, and the results must be interpretable. For continuous
distributions, elicitation often consists of capturing a series of quantile-probability pairs (QPPs) (Kadane and
Wolfson, 1998; Morgan, 2014), and then fitting a distribution to these pairs (O’Hagan, 2019). However, in
practice, the choice of a parametric distribution to fit the elicited QPPs is often influenced by concerns about
conjugacy with the selected statistical model that represents the data-generative process (the likelihood)
and/or the availability of required distribution functions and fitting algorithms in the software employed.
Frequently, the selected distribution possesses fewer parameters than the number of elicited QPPs, which
can result in a less-than-perfect fit (O’Hagan, 2019). For instance, it is common to elicit three quantiles
(the median along with an upper and lower quartile) and subsequently attempt to fit a normal or lognormal
distribution (which features two parameters) to these points.

An alternative approach to characterizing the distribution of predictions or parameters is through quantile-
parameterized distributions (QPDs). These distributions are parameterized by the QPPs, allowing the
elicited values to directly define the distribution, thereby ensuring a good fit and interpretability of the
parameters. The QPDs examined in this paper can accommodate a wide range of shapes and boundedness,
making them valuable for accurately representing experts’ prior beliefs.

Parameterizing distributions using a vector of quantiles is not a novel concept in the scientific community.
The earliest mention can be traced back to the substitution likelihood proposed by Jeffreys (1939), which
outlines a non-parametric procedure for inferring the median using a set of sample quantiles. Subsequently,
similar ideas were further developed by Boos and Monahan (1986), Lavine (1995), and Dunson and Taylor
(2005).
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Figure 1: Moebius strip of probability functions (Perepolkin et al., 2021b).

All the QPDs found in the literature are constructed using the quantile function. These distributions are
built either by transforming simpler quantile functions or by fitting the quantiles, as described below.

Let Y be a random variable with a (cumulative) distribution function (CDF) denoted as FY (y|θ). The
quantile function (QF) QY (u|θ) for Y is defined as

QY (u|θ) = inf{y : FY (y|θ) ≥ u}, u ∈ [0, 1] (1)

Here, θ represents the distribution parameter, and the subscript Y indicates that the depth u corresponds
to the random variable Y .

Both the CDF and the QF are considered equally valid ways of defining a distribution (Tukey, 1965).
For a quantile function that is right-continuous and strictly increasing over the support of Y , the quantile
function QY (u) is simply the inverse of the distribution function, denoted as QY (u|θ) = F−1

Y (u|θ). Therefore,
the quantile function is often referred to as the inverse CDF.

The derivative of the quantile function, known as the quantile density function (QDF), is denoted
as q(u) = dQ(u)

du . It is reciprocally related to the probability density function (PDF) f(x), such that
f(Q(u))q(u) = 1. The quantity fY (QY (u|θ)) = [qY (u|θ)]−1 is referred to as the density quantile function
(Parzen, 1979) or p-pdf (Gilchrist, 2000). The relationships between these functions are concisely illustrated
in the probability function Möbius loop (Figure 1), as described in Perepolkin et al. (2021b).

Although many of the distributions discussed in Section 3 have closed-form cumulative distribution
functions (CDFs) and probability density functions (PDFs), the functional form of the quantile function
(QF) is often simpler and can be reasoned about in terms of other quantile functions, following Gilchrist’s
QF transformation rules summarized in Table 1 (Gilchrist, 2000). This table presents the addition, linear
combination, and multiplication rules, which involve two quantile functions Q1 and Q2. We will refer to
these three rules as Gilchrist combinations, as they represent valid ways to combine quantile functions to
create new quantile functions.

The quantile-parameterized distributions described in this paper can be categorized into two groups based
on their construction method. The first group comprises distributions that are directly parameterized by
the quantile-probability pairs (QPPs). This group includes the Myerson distribution (Myerson, 2005), and
the Johnson Quantile-Parameterized Distribution (Hadlock and Bickel, 2017, 2019). These distributions are
constructed by reparameterizing or transforming existing distributions, following Gilchrist rules (Table 1).
The transformations used to construct them are detailed in the next section.

The other group of distributions is indirectly parameterized by the QPPs. They require a fitting step
where the quantile-probability pairs are translated into distribution parameters, usually through optimization
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Table 1: Gilchrist’s quantile function transformation rules (Gilchrist, 2000)

Original QF Rule Resulting QF Resulting variable
QY (u) Reflection rule −Q(1 − u) QF of -Y
QY (u) Reciprocal rule 1/Q(1 − u) QF of 1/Y
Q1(u), Q2(u) Addition rule Q1(u) +Q2(u) valid QF
Q1(u), Q2(u) Linear combination rule aQ1(u)+bQ2(u) valid QF for a, b > 0
Q1(u), Q2(u) > 0 Multiplication rule Q1(u)Q2(u) valid QF
QY (u) Q-transformation T (QY (u)) QF of T (Y ),

T (Y ) non-decreasing
QY (u) p-transformation QY (H(u)) p-transformation of QY (u),

H(u) non-decreasing

or least-squares methods. This group includes the Simple Q-Normal (Keelin and Powley, 2011), Metalog
(Keelin, 2016), quantile mixtures (Peng et al., 2023), the variant of the Generalized Lambda Distribution
(GLD) by Chalabi et al. (2012), and the quantile-parameterized Triangular (Two-Sided Power) distribution by
Kotz and Van Dorp (2004). The fitting methods for each of these distributions is described in the respective
sub-sections below.

3. Univariate quantile-parameterized distributions

In this section, we review various continuous univariate distributions that are parameterized by quantile-
probability pairs found in the literature. We also introduce the generalized form for one of these distributions,
namely the Myerson distribution. For each distribution, we present its quantile function and discuss the
parameterization and feasibility conditions. The derivative and inverse of each distribution can be found in
Appendix A.

3.1. Myerson distribution
One of the earliest examples of a distribution parameterized by quantiles is the generalized log-normal

distribution proposed by Myerson (2005). It relies on a transformation of the normal quantile function.
The Myerson distribution (Myerson, 2005) is parameterized by three quantile values {q1, q2, q3}, which

correspond to the cumulative probabilities {α, 0.5, 1 − α}. These quantiles are symmetrical around the
median and are defined by the tail parameter 0 < α < 0.5. This type of parameterization is known as the
symmetric percentile triplet (α-level SPT or α-SPT) and is also used in several other quantile-parameterized
distributions that we will describe below. The Myerson quantile function is

ρ = q3 − q2; β = ρ

q2 − q1
; κ(u) = S(u)

S(1 − α)

QY (u|q1, q2, q3, α) =
{
q2 + ρβκ(u)−1

β−1 , β ̸= 1
q2 + ρκ(u), β = 1

(2)

Here, u represents the depth of the observations of the random variable Y given the parameterizing
α-SPT {q1, q2, q3, α}, with 0 < α < 0.5. The parameter ρ is the upper p-difference, and β is the ratio of the
inter-percentile ranges, known as the skewness ratio (Gilchrist, 2000, p.72). The kernel quantile function
S(u) is equal to the quantile function of the standard normal distribution, also referred to as the probit,
defined as S(u) = Φ−1(u). The formulas for the derivative and the inverse quantile function of the Myerson
QPD can be found in Appendix A.

It is important to note that while the Myerson distribution includes the normal distribution as a special
case when the skewness parameter β = 1, it can exhibit right-skewness or left-skewness for other values of β. In
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the symmetrical case, the range of the quantile function is (−∞,∞). For the right-skewed distribution (β > 1),
the range is (q2 − ρ

β−1 ,∞), and for the left-skewed distribution (0 < β < 1), the range is (−∞, q2 − ρ
β−1 ).

The limiting case of the skewed Myerson distribution limu→0 QY (u|θ) for β > 1 (and the other limit for
0 < β < 1) possesses some important properties that we discuss in Section 3.3 below.

The basic quantile function (Gilchrist, 2000; Lampasi, 2008) underlying the Myerson distribution is a
simple probit function, denoted as S(u) = Φ−1(u), transformed using the exponentiation function T (x) = βx,
where β > 0 represents the skewness ratio (Gilchrist, 2000). The quantile parameterization is facilitated by
κ(u), which takes values {−1, 0, 1} for the three quantiles {q1, q2, q3}, such that Q(α) = q1, Q(0.5) = q2, and
Q(1 − α) = q3.

3.2. Johnson Quantile-Parameterized Distribution
Hadlock (2017) reviewed the existing quantile-parameterized distributions and proposed the quantile

parameterization of the Johnson SU family of distributions (Johnson et al., 1994). In their paper, Hadlock
and Bickel (2017) presented two versions of the distribution: the bounded (J-QPD-B) and the semi-bounded
(J-QPD-S), both parameterized by an SPT {q1, q2, q3, α} and the bound(s).

The J-QPD-B distribution is obtained by applying the inverse-probit transformation to the Johnson SU
quantile function QSU (u) = ξ + λ sinh(δ(S(u) + γ)), where δ and γ are two shape parameters. This function
is then rescaled to the interval [lb, ub]. The J-QPD-B quantile funciton is

QB(u|q1, q2, q3, α) =
{
l + (ub − lb)S−1(ξ + λ sinh(δ(S(u) + nc))), n ̸= 0
l + (ub − lb)S−1 (

B +
(

H−L
2c

)
S(u)

)
, n = 0

(3)

where

S(u) = Φ−1(u); c = S(1 − α);

L = S

(
q1 − lb
ub − lb

)
; B = S

(
q2 − lb
ub − lb

)
;

H = S

(
q3 − lb
ub − lb

)
; n = sgn(L+H − 2B)

ξ =





L, n = 1,
B, n = 0,
H, n = −1,

δ = 1
c

cosh−1
(

H − L

2 min(B − L,H −B)

)

λ = H − L

sinh(2δc)

(4)

The left panel in Figure 2 showcases the J-QPD-B quantile function, which is parameterized using
0.25-SPT and 0.01-SPT assessments of the proportion of fruit infested with Citripestis sagittiferella, as
elicited by EFSA et al. (2023). The dashed line represents the Beta distribution fitted by the authors. The
J-QPD-B, being parameterized by an SPT, effectively captures three of the five parameterizing quantiles,
while the Beta distribution only provides an approximation. Furthermore, determining the parameters of the
Beta distribution necessitates an optimization step.

The J-QPD-S distribution is a semi-bounded variant of the distribution that employs exponentiated
hyperbolic arcsine transformations of the Johnson’s SU quantile function (Hadlock and Bickel, 2017)

QS(u|q1, q2, q3, α) =
{
lb + θ exp

(
λ sinh

(
sinh−1(δS(u)) + sinh−1(ncδ)

))
, n ̸= 0

lb + θ exp (λδS(u)) , n = 0
(5)

where
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Figure 2: Fitted J-QPD-B (left) and J-QPD-S (right) distribution for prevalence at origin and total trade flow, respectively

S(u) = Φ−1(u); c = S(1 − α);
L = ln(q1 − lb); B = ln(q2 − lb);

H = ln(q3 − lb); n = sgn(L+H − 2B)

θ =





q1 − lb, n = 1,
q2 − lb, n = 0,
q3 − lb, n = −1,

δ = 1
c

sinh
(

cosh−1
(

H − L

2 min(B − L,H −B)

))

λ = 1
δc

min(H −B,B − L)

(6)

When n = sgn(L+H − 2B) evaluates to zero, he resulting distribution is a lognormal distribution with
parameters µ = ln(θ) = ln(q2 − lb) and σ = λδ = (H −B)/c. This distribution has support on the interval
[lb,∞].

The right panel in Figure 2 depicts the J-QPD-S quantile function, which is parameterized using 0.25-SPT
and 0.01-SPT assessments of the total trade flow for citrus fruit imported by the EU from Indonesia, Malaysia,
Thailand, and Vietnam in tons/year (EFSA et al., 2023).

3.3. Generalisations of QPDs
3.3.1. Generalized Johnson Quantile-Parameterized Distribution

Hadlock and Bickel (2019) introduced the generalized version of the Johnson Quantile-Parameterized
distribution system, denoted as G-QPD, by replacing the Normal distribution in the core of the Johnson SU
quantile function with the quantile functions of the logistic and Cauchy distributions.

The generalized quantile function (QF) shares similarities with the probit-based distribution described
earlier, with S(u) defined as the quantile function of either the logistic or Cauchy distribution.

The standard quantile function and distribution function of the logistic distribution are given by:
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S(u) = ln
(

u

1 − u

)
; S−1(y) = [exp(−y) + 1]−1 (7)

The standard quantile function and distribution function of the Cauchy distribution are given by:

S(u) = tan
[
π

(
u− 1

2

)]
; S−1(y) = 1

π
arctan(y) + 1

2 (8)

Hadlock and Bickel (2019) show that the kernel quantile function S(u) can be any standardized (S(0.5) =
0), symmetrical (s(u) = s(1 − u)), and unbounded (S(u) ∈ (−∞; ∞)) quantile function with a smooth
quantile density dS(u)/du = s(u). The authors further showed that if S(u) and S−1(y) are expressible in
closed-form, the quantile function and distribution function of G-QPD will also be closed-form.

For the logistic kernel, the G-QPD-S represents the generalized log-logistic distribution, characterized by
two shape parameters, λ and δ. For the Cauchy kernel, the G-QPD-S corresponds to the shifted log-Cauchy
distribution (Hadlock and Bickel, 2019).

3.3.2. Generalized Myerson distributions
Drawing inspiration from Hadlock and Bickel (2019), we can extend the Myerson distribution by

substituting the Normal kernel quantile function S(u) = Φ−1(u) with an alternative symmetrical quantile
function based on the depth u. Below, we present the proposed kernels and the resulting distributions:

Logit-Myerson distribution - employs the standard logistic quantile function:

S(u) = ln
(

u

1 − u

)
(9)

There are several reasons why one might prefer the logit function over the probit function (Berkson,
1951). We discovered that the Logit-Myerson distribution exhibits greater numerical stability due to its
simple closed-form quantile function, which does not rely on numerical approximation during sampling.
This distribution displays slightly heavier tails compared to the standard probit-based Myerson distribution
(Figure 3).

Sech-Myerson distribution - employs the hyperbolic secant quantile function:

S(u) = ln
[
tan

(π
2 u

)]
(10)

The Sech-Myerson distribution possesses thicker tails than the Logit-Myerson distribution for the same
parameterizing SPT {−5, 4, 16, 0.25} (Figure 3). In Section 3.6, we conduct a comparative analysis of different
variations of the Generalized Myerson distribution alongside their parametric counterparts and other quantile
distributions.

Theoretically, there is an infinite range of quantile function (QF) kernels that can be utilized to generate
new variations of the Generalized Myerson distribution. These candidate kernel distributions can even
include shape parameters, as long as the resulting S(u) remains standardized, symmetrical, and unbounded,
as specified above. For instance, it is possible to incorporate the basic QF of the Tukey Lambda distribution
S(u|λ) = uλ − (1 − u)λ for a fixed λ ̸= 0, or the Cauchy distribution S(u) = tan[π(u− 0.5)], as employed by
Hadlock and Bickel (2019). However, it is important to note that not all standard quantile functions are
created equal. To illustrate the issue of unreliable kernels, let us consider Myerson distributions based on the
Cauchy and Tukey Lambda quantile functions (for λ = −0.5), as depicted in Figure 4.

While all right-skewed Generalized Myerson distributions are bounded on the left at limu→0 Q(u|θ) =
q2 − ρ 1

β−1 regardless of the kernel used, the quantile density at the left limit limu→0[q(u|θ)]−1 is not
independent of the kernel. Although we can assume that q(0) = ∞, the lower tail of the density quantile
function [q(u)]−1 may exhibit a curling effect for certain kernels, resulting in an increase in density for
lower values of u. This effect is caused by the non-monotonic behavior of the quantile convexity function
c(u) = dq(u)/du. This can be easily verified by taking the second derivative of βS(u) for β > 0. While such
kernels are mathematically valid and yield a non-decreasing Generalized Myerson QF, we believe that they
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Figure 3: Quantile function and quantile density of Generalized Myerson Distributions

Figure 4: Quantile function and quantile density of Generalized Myerson Distributions with unreliable kernels
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may be less useful due to the counter-intuitive concentration of density in the bounded tail. Consequently,
we do not recommend using Cauchy or Tukey Lambda kernels in practical applications.

3.4. Simple Q-Normal, Metalog and quantile mixtures
An alternative system of quantile-parameterized distributions was proposed by Keelin and Powley (2011)

and Powley (2013). This approach relies on the finite Taylor expansion of parameters in the standardized
quantile functions. Within this framework, two distributions were introduced: the Simple Q-Normal
distribution and the Metalog distribution.

The Simple Q-Normal (SQN) distribution was developed by expanding the parameters in the normal
quantile function. Keelin et al. (2011) used this method to express the parameters of the normal quantile
function Q(u|µ, σ) = µ + σz(u) as linear functions of the depth u. Specifically, µ(u) = a1 + a4u and
σ(u) = a2 +a3u, where z(u) = Φ−1(u) denotes the standard normal quantile function. Therefore, the quantile
function of the SQN distribution can be expressed as follows:

Q(u) = a1 + a2z(u) + a3uz(u) + a4u (11)

where z(u) = Φ−1(u), and a = {a1, a2, a3, a4} represents a vector of parameters. It should be noted that
the SQN quantile function is the product of the normal and uniform quantile functions.

Consider a quantile-probability tuple of size 4, denoted as {p,q}4, which consists of an ordered vector
of cumulative probabilities p = {p1, p2, p3, p4} and an ordered vector of corresponding quantiles q =
{q1, q2, q3, q4}. Substituting these vectors into the SQN quantile function for u and Q(u), respectively, we
obtain the following matrix equation:

q = Pa (12)

where

P =




1 z(p1) p1z(p1) p1
1 z(p2) p2z(p2) p2
1 z(p3) p3z(p3) p3
1 z(p4) p4z(p4) p4


 (13)

and a = {a1, a2, a3, a4} represents the parameter vector of the SQN distribution.
The parameter vector a can be obtained by solving the matrix Equation (12), given the 4-element

quantile-probability tuple {p,q}4 (Keelin and Powley, 2011; Perepolkin et al., 2021a).
The same approach was later employed by Keelin (2016) in creating the metalog (meta-logistic) distribution.

Starting with the quantile function of the logistic distribution Q(u|µ, s) = µ+slogit(u), where µ corresponds to
the mean and s is proportional to the standard deviation σ = sπ/

√
3, Keelin (2016) expanded the parameters

µ and s using a finite Taylor series centered at 0.5. Specifically, µ(u) = a1 + a4(u− 0.5) + a5(u− 0.5)2 + . . .
and s(u) = a2 + a3(u− 0.5) + a6(u− 0.5)2 + . . ., where ai, i = {1, 2, . . . , n} are real constants.

Therefore, the metalog quantile function is:

Q(u) = a1 + a2logit(u) + a3(u− 0.5)logit(u) + a4(u− 0.5) + a5(u− 0.5)2 · · · , (14)

Given a QPT of size m denoted by {p,q}m, where p and q are ordered vectors of cumulative probabilities
and corresponding quantiles, respectively, the vector of coefficients a = a1, . . . , am can be determined by
solving the matrix equation q = Pa, where p, q, and a are column vectors, and P is an m× n matrix:

P =




1 logit(p1) (p1 − 0.5)logit(p1) (p1 − 0.5) · · ·
1 logit(p2) (p2 − 0.5)logit(p2) (p2 − 0.5) · · ·

...
1 logit(pm) (pm − 0.5)logit(pm) (pm − 0.5) · · ·


 (15)

9

39



The vector of coefficients a can be determined as a = [PTP]−1PT q. If P is a square matrix, meaning the
number of terms n is equal to the size of the parameterizing QPT m, the equation can be further simplified
to a = P−1q. Metalog is said to be approximated when the number of quantile-probability pairs used for
parameterization exceeds the number of terms in the metalog QF (Keelin, 2016; Perepolkin et al., 2021a).

The SQN and Metalog distributions are families of extended distributions that, in theory, can have an
arbitrary number of terms. Keelin (2016) demonstrated the flexibility of the metalog distribution and its
ability to approximate arbitrarily complex probability density functions with high precision, given enough
terms in the metalog specification. In practice, 10-15 terms are sufficient to approximate the distributional
shapes of virtually any complexity (Keelin and Howard, 2021).

In Keelin (2016), semi-bounded and bounded versions of metalog distributions are offered, which use the
log and logit Q-transformations.

However, not all combinations of parameters a in metalog and SQN distributions result in a feasible (non-
decreasing) quantile function. To ensure that the quantile function is feasible on u ∈ [0, 1], the transformations
used to construct it should follow Gilchrist’s QF transformation rules (Table 1). The SQN and metalog QFs
violate the multiplication rule. The product of the base quantile function (normal for SQN and logistic for
metalog) and the uniform quantile function Q(u) = u is not strictly positive. The problem is more severe
in the metalog distribution, where the uniform QF is centered at 0.5 and, therefore, spans 0. The shifted
uniform distribution is further Q-transformed using the power operator (u − 0.5)k, which preserves the
negative values for the odd powers of k. Therefore, quantile functions of metalog and SQN distributions are
not maximally feasible for all values of a.

Recently Peng et al. (2023) proposed a novel framework for extended quantile-parameterized distributions
based on quantile mixtures (not to be confused with CDF/PDF mixtures, Gilchrist (2000), p. 107). They
introduced a formulation where a QPD QF is expressed as a linear combination of I standardized quantile
functions, following Gilchrist’s linear combination rule (Table 1):

G(u|θ) =
I∑

i=0
θiQi(u) (16)

Here, Qi(u) represent basis quantile functions for random variable Y with Q0(u) = 1, and θθθ = {θ0, θ1, . . . , θI}
is a non-negative parameter vector that determines the contribution of each QF component in the quantile
mixture. To compute the coefficients θθθ, the system of equations is solved

q = Qθθθ + ϵϵϵ (17)

where q = {q1, q2, . . . , qj} is an ordered vector of J parameterizing quantiles, corresponding to an ordered
vector of cumulative probabilities p = {p1, p2, . . . , pj}, θθθ is a non-negative vector of I + 1 parameters, ϵϵϵ is a
J-size vector of errors to be minimized, and Q is a J × (I + 1) matrix of regression factors

Q =




1 Q1(p1) Q2(p1) · · · QI(p1)
1 Q1(p2) Q2(p2) · · · QI(p2)

...
... . . .

1 Q1(pJ) Q2(pJ) · · · QI(pJ)


 (18)

By ensuring non-negativity of weights (θi ≥ 0), the solution guarantees a proper non-decreasing quan-
tile function. For estimating the values of the vector θθθ ∈ Θ, the authors suggest to use constrained
weighted least squares regression with optional regularization. The authors demonstrated that the estimator

θ̂θθ = argmin
θθθ∈Θ

(
1
J

∑J
j=1 wjEq(yj −Qjθθθ)

) 1
q , Eq(x) = |x|q, wj > 0, is asymptotically a q-Wasserstein distance

estimator, which converges in distribution to a Normal distribution. The Peng et al. (2023) paper includes
the application of the quantile mixture model using a large number of asymmetric t-distributions, and a
quantile mixture of Generalized Beta II distributions.
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3.5. Other distributions
3.5.1. Triangular and Two-Sided Power distributions

Several other distributions with at least some parameters mapped to quantiles were proposed, including
the reparameterization of the Generalized Lambda Distribution by Chalabi et al. (2012) and the quantile-
parameterized triangular (two-sided power) distribution by Kotz and Van Dorp (2004).

Kotz and Van Dorp (2004) describe the quantile-parameterized version of the triangular distribution
(Johnson, 1997). This bounded distribution is widely used in the finance and insurance industry and is
popularized by the @Risk software package, developed by Palisade (Palisade Corporation, 2009). The
triangular distribution is parameterized by the two quantiles qa and qb, and the mode m, subject to the
constraint that a ≤ qa ≤ m ≤ qb ≤ b, where a and b represent the lower and upper bounds, respectively. The
standard quantile function for the triangular distribution is expressed in terms of the bounds a, b, and the
mode m.

Q(u|a,m, b) =
{
a+

√
u(m− a)(b− a), for 0 ≤ u ≤ m−a

b−a

b−
√

(1 − u)(b−m)(b− a), for m−a
b−a ≤ u ≤ 1

(19)

Kotz and Van Dorp (2004) show that given the two parameterizing quantile-probability pairs qa, pa and
qb, pb and the mode value m, there exists a unique value of depth pa < p < pb corresponding to the root of
the function

g(p) =
(m− qa)(1 −

√
1−pb

1−p )

(qb −m)(1 −
√

pa

p ) + (m− qa)(1 −
√

1−pb

1−p )
− p (20)

The root value p ∈ (pa, pb) of the function g(p) can be found using any of the bracketing root-finding
algorithms (Perepolkin et al., 2021b). It can then be substituted into the following expressions to find the
lower a and upper b limit parameters of the triangular distribution:

a(p) ≡
qa −m

√
pa

p

1 −
√

pa

p

, a(p) < qa

b(p) ≡
qb −m

√
1−pb

1−p

1 −
√

1−pb

1−p

, b(p) > qb

(21)

Kotz and Van Dorp (2004) provide an algorithm for fitting a four-parameter generalization of the triangular
distribution called the Two-Sided Power Distribution (TSP), using three quantile-probability pairs and a
mode value. For more information on fitting the Quantile-Parameterized TSP Distribution by quantiles, refer
to Section 4.3.3 of Kotz and Van Dorp (2004).

3.5.2. Generalized Lambda Distribution
Chalabi et al. (2012) (CSW) proposed an asymmetry-steepness reparameterization of the FKML Gener-

alized Lambda Distribution (GLD) (Freimer et al., 1988) with four parameters. This reparameterization
involves mapping the location to the median and the scale to the interquartile range (IQR), which corresponds
to the first and second robust moments (Kim and White, 2004; Moors, 1988).

The reparameterized Generalized Lambda Distribution by Chalabi, Scott and Würtz (CSW GLD) has a
quantile function given by

Q(u|µ̃, σ̃, χ, ξ) = µ̃+ σ̃
S(u|χ, ξ) − S( 1

2 |χ, ξ)
S( 3

4 |χ, ξ) − S( 1
4 |χ, ξ) (22)

where µ̃, σ̃, χ, ξ represent the location, scale, asymmetry, and steepness parameters, respectively. The
specific form of the basic function S(u) depends on the values of the parameters χ and ξ
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S(u|χ, ξ) =





ln(u) − ln(1 − u), if χ = 0, ξ = 0.5

ln(u) − 1
2α

[
(1 − u)2α − 1

]
, if χ ̸= 0, ξ = 1

2(1 + χ)
1

2β
[
u2β − 1

]
− ln(1 − u), if χ ̸= 0, ξ = 1

2(1 − χ)

1
α+ β

[
uα+β − 1

]
− 1
α− β

[
(1 − u)α−β − 1

]
, otherwise

(23)

where α = 0.5 0.5−ξ√
ξ(1−ξ)

and β = 0.5 χ√
1−χ2

. The bounds of the distribution are given by

S(0|χ, ξ) =





− 1
α+ β

, if ξ < 1
2(1 + χ)

− ∞, otherwise

S(1|χ, ξ) =





1
α− β

, if ξ < 1
2(1 − χ)

∞, otherwise

(24)

The CSW GLD can have unbounded, bounded, and semi-bounded support, accommodating a wide range
of shapes, including unimodal, monotone, U-shaped, and S-shaped densities (Chalabi et al., 2012). Although
the CSW GLD is not strictly parameterized by quantiles, the mapping of the location and scale parameters
to the median and IQR makes it a suitable candidate for expert-informed distribution specification.

Several specialized methods have been developed for fitting the GLD to samples (Karian and Dudewicz,
2003). The parameterization of the CSW GLD simplifies the fitting process because two of the four parameters
can be directly calculated from the sample: the location parameter is equal to the sample median, and the
scale parameter is equal to the interquartile range. The remaining parameters can be estimated using various
methods, including robust moment matching, quantile matching, trimmed L-moments, distributional least
squares/absolutes, as well as maximum likelihood estimation (Chalabi et al., 2012; Gilchrist, 2000). The
range of feasible values for the steepness and asymmetry parameters can be further reduced with the shape
conditions specified in Section 3.5 of Chalabi et al. (2012).

Recently, Dedduwakumara et al. (2021) proposed a new method of matching the shape of the GLD
distribution to data using the probability density quantile (pdQ) function (Staudte, 2017). For the quantile
function Q(v), v ∈ [0, 1] and the corresponding density quantile function f(Q(v)) = [q(v)]−1, the pdQ is
defined as

f∗(v) = f(Q(v))
E [f(Q(v))] (25)

The probability density quantile function is defined on the unit square and is independent of the location
and scale parameters.

Since integrating the GLD density quantile function is difficult, Staudte (2017), in Section 2.2, proposed
using the kernel density method to estimate the empirical QDF and, thus, an empirical pdQ for samples
from continuous distributions. Fitting the CSW GLD to a sample can be reduced to finding the asymmetry
and steepness parameters that minimize

argmin
χ,ξ

∫ 1

0
[f∗(v, χ, ξ) − f∗

e (v)]2 du (26)

where f∗(v, χ, ξ) is the pdQ of the CSW GLD, and f∗
e (v) is the empirical pdQ of the sample. Dedduwaku-

mara et al. (2021) suggest approximating the integral by a discrete set of depths v, replacing the integral
with a sum.
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3.6. Choosing quantile-parameterized distribution
A common approach to assess the properties of probability distributions is through central moments,

denoted by µk = E[(Y − µ)k], where µ represents the expected value of Y . Karl Pearson introduced a
classification system for distributions using moment ratios associated with skewness and kurtosis (Fiori and
Zenga, 2009):

β1 = µ2
3
µ3

2
, β2 = µ4

µ2
2

(27)

While computing moments using the quantile function is straightforward (the n-th raw moment is
µk =

∫ 1
0 Q(u)kdu), it may not be possible to calculate higher-order moments for certain distributions.

Alternatively, robust alternatives to moments can be utilized, such as the sample median µr, the
interquartile range σr, the quartile-based robust coefficient of skewness sr (Kim and White, 2004), also
known as Bowley’s skewness (Bowley, 1920) or Galton’s skewness (Gilchrist, 2000), and the octile-based
robust coefficient of kurtosis κr, also known as Moors’ kurtosis (Moors, 1988).

µr = Q(1/2)
σr = Q(3/4) −Q(1/4)

sr = Q(3/4) +Q(1/4) − 2Q(1/2)
σr

κr = Q(7/8) −Q(5/8) +Q(3/8) −Q(1/8)
σr

(28)

Kim and White (2004) and Arachchige et al. (2022) have proposed to standardize robust moments to
facilitate their comparison with the corresponding robust moments of the standard normal distribution.
Groeneveld (1998) and Jones et al. (2011) have introduced generalizations of robust moments to other
quantiles.

Unlike moments, quantiles always exist, and since QPDs are parameterized by quantile-probability pairs,
quantile-based robust moments can sometimes be directly computed from the parameters. For instance, if
the basic quantile function S(u) in Q(u) = µ+ σS(u) is standardized (such that S(0.5) = 0), where µ and σ
are the location and scale parameters of Q(u) respectively, then µr = µ. Moreover, σr is always independent
of location, and sr and κr are independent of both location and scale.

Figures 5, 6, and 7 resemble the Cullen and Frey (Cullen et al., 1999) plots, also known as Pearson plots.
However, instead of using central moments, they employ quartile/octile-based robust metrics of skewness sr

and kurtosis κr to compare the quantile-parameterized distributions to some of their parametric counterparts.
In Figure 5, Metalog3 and Metalog4 refer to 3- and 4-term metalog distributions, respectively, which are also
log- or logit-transformed for the semibounded case (Figure 6) and bounded case (Figure 7) cases. GLDcsw
refers to Chalabi et al. (2012) parameterization of GLD.

4. Multivariate quantile-parameterized distributions

Quantile-parameterized distributions can serve as marginal distributions in multivariate models, where
the dependency structure is captured by a standard (parametric) multivariate distribution, a copula, or
described by bivariate quantiles. However, the marginal distributions alone are insufficient to determine the
corresponding bivariate distribution, resulting in an infinite number of bivariate distributions with the same
margins (Gumbel, 1960, 1961). In this section, we describe several methods for extending the distributions
parameterized by the quantile-probability pairs to become Multivariate Quantile-Parameterized Distributions
(MQPDs).
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Figure 5: Robust skewness vs robust kurtosis for some unbounded distributions

Figure 6: Robust skewness vs robust kurtosis for some left-bounded distributions
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Figure 7: Robust skewness vs robust kurtosis for some bounded distributions

4.1. MQPDs based on standard multivariate distributions
In the simplest case, multivariate Quantile-Parameterized Distributions (MQPDs) can be created by

using the multivariate normal distribution, following the approach of Hoff (2007). The Myerson, J-QPD, and
SQN quantile functions are Q-transformations of the probit Q(z(u)|θ), where z(u) = Φ−1(u) represents the
standard normal quantile function. The multivariate versions of these distributions can be viewed as the
Q-transformations of the multivariate normal distribution. To extend these QPDs to J dimensions using the
multivariate normal distribution, we employ the method outlined in Drovandi and Pettitt (2011).

The i-th component of a single observation yi can be described by the quantile function:

yi = Q(z(ui)|θi), for i = 1, . . . , J (29)

where θi represents the set of parameters for component i (e.g., {q1, q2, q3, α}i) for Myerson or J-QPD
distributions). The vector (z(u1), . . . , z(uj))T ∼ N(0,Σ), where Σ denotes the covariance matrix.

For invertible distributions, the inverse quantile function is the cumulative distribution function (CDF)
Q−1(yi|θ) = F (yi|θ), otherwise, the inverse can be computed numerically as F̂ (yi|θ) = Q̂−1(yi|θ) (Perepolkin
et al., 2021b).

Drovandi and Pettitt (2011) show that the joint density of a single (multivariate) observation (yi, . . . , yJ )
can be expressed as:

f(y1, . . . , yJ |θ) = φ(z(Q−1(y1|θ1)), . . . , z(Q−1(yJ |θJ)); Σ)
J∏

i=1

dQ−1(yi|θi)
dyi

(30)

where z(Q−1(yi|θi)) = zi, φ(z1, . . . , zJ ; Σ) represents the multivariate normal density with a mean of zero
and a covariance matrix of Σ, and dQ−1(yi)

dyi
= f(yi) is the probability density function (PDF) of the QPD

(refer to Appendix A).
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For distributions without a PDF, the same joint density can be expressed as a joint density quantile
function

[q(u1, . . . , uj)]−1 = φ(z(u1), . . . , z(uJ); Σ)
J∏

i=1
[q(ui|θi)]−1 (31)

since Q−1(yi|θi) = ui and f(yi|θi) = [q(ui|θi)]−1 (Gilchrist, 2000).
It’s worth noting that this method of creating multivariate distributions does not require every component

to follow the same distributional form. As illustrated earlier, it is entirely possible to combine several different
QPDs using the multivariate Gaussian distribution (Drovandi and Pettitt, 2011).

To use the MQPD for the prior, both the density of the multivariate normal and the marginal densities
need to be explicitly added to the log-likelihood. This is possible when the marginal QPDs used to define
the multivariate prior are invertible, such as Myerson and J-QPD, as both the CDF (Q−1(yi|θi)) and PDF
(dQ−1(yi|θi)/dyi) are required.

When a quantile-based prior specification is used, only the multivariate normal log-density needs to
be added because the Jacobian for the marginal QF transformation is reciprocal to the DQF of the prior
(Perepolkin et al., 2021b).

The same approach of joining the marginal QPDs can be applied by using the base quantile functions of
other distributions. For instance, the Logit-Myerson distribution discussed above is based on the logistic
quantile function. Two Logit-Myerson distributions can be connected using the bivariate logistic distribution.
Gumbel (1961) proposed three different formulations for the bivariate logistic distribution. The Type II
distribution from the Morgenstern Family (Sajeevkumar and Irshad, 2014; Basikhasteh et al., 2021) has the
following joint distribution and density functions:

F (y1, y2|β) =F1(y1)F2(y2)[1 + β(1 − F1(y1))(1 − F2(y2))]
f(y1, y2|β) =f1(y1)f2(y2)[1 + β(1 − 2F1(y1))(1 − 2F2(y2))]

(32)

where Fi(yi) and fi(yi) for i ∈ {1, 2} refer to the univariate logistic distribution and density funcitons,
respectively and −1 ≤ β ≤ 1. Since yi = Qi(ui) we can express the bivariate density in the quantile form

f(Q(u1), Q(u2)|β) =f1(Q(u1))f2(Q(u2))[1 + β(1 − 2F1(Q1(u1)))(1 − 2F2(Q2(u2)))]
[q(u1, u2|β)]−1 =[q1(u1)]−1[q2(u2)]−1 [1 + β(1 − 2u1)(1 − 2u2)]

(33)

For logistic distribution Q(u) = ln(u) − ln(1 −u) and [q(u)]−1 = u(1 −u). Therefore, the bivariate logistic
density quantile function can be expressed as

[qL(u1, u2|β)]−1 = u1(1 − u1)u2(1 − u2) [1 + β(1 − 2u1)(1 − 2u2)] (34)

If we combine the QPD marginals, the result is the joint quantile-based density for the bivariate logistic-
based QPD, where the dependency is captured by the bivariate logistic distribution with the coupling
parameter β, and the margins are QPDs. The joint density quantile function is given by:

[qMQP D(u1, u2|θ1, θ2, β)]−1 = u1(1 −u1)u2(1 −u2) [1 + β(1 − 2u1)(1 − 2u2)] [q1(u1|θ1)]−1[q2(u2|θ2)]−1 (35)

Here, [qi(ui|θi)]−1, for i = 1, 2, represents the marginal QPD density quantile functions, such as the
density quantile function (DQF) of the Logit-Myerson distribution (see Appendix A).

Figure 8 presents the Bivariate Logit-Myerson Distribution, parameterized by Θ = {θ1, θ2, ρ}, where
the marginal Myerson distributions are given by yij = Qj(z(uij), θj) for j = 1, 2, with parameter vectors
θ1 = {3, 7, 10; 0.25}, θ2 = {1, 10, 20; 0.1}, and the dependence parameter β = 0.6.
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Figure 8: Density of Generalized Myerson distributions joined by Type II bivariate logistic distribution

4.2. Copula-based MQPDs
The approach we have used so far is similar to constructing the joint distribution using the Gaussian

copula (Hoff, 2007). Copulas provide a more general approach to modeling joint distributions, aiming to
separate the influence of bivariate dependence from the effects of marginal distributions (Kurowicka and
Cooke, 2006). The literature describes a wide range of copulas (Genest and Favre, 2007; Smith, 2013;
Kurowicka and Joe, 2011), and new copulas can be created using generator functions (Durrleman et al.,
2000). When a copula is used to connect QPDs, the joint density is calculated as follows:

fMQP D(y1, y2|θ1, θ2,Ξ) = c(F (y1|θ1), F (y2|θ2)|Ξ)f1 (y1|θ1) f2 (y2|θ2) (36)

where c represents the copula density function with parameter Ξ, and F (yi|θi) and fi(yi|θi) are the CDF
and PDF of the marginal quantile-parameterized distributions, respectively.

The same density can be expressed in quantile-based form (Perepolkin et al., 2021b):

[qMQP D(u1, u2|θ,Ξ)]−1 = c (u1, u2|Ξ) [q1(u1|θ1)]−1[q2(u2|θ)]−1 (37)

where c is the copula density function with parameter Ξ, and [qi(ui|θi)]−1, for i = 1, 2, are the marginal
DQFs of QPDs. Figure 9 presents 10,000 samples from the bivariate Myerson distribution joined by the Joe
copula with θ = 3.

Elicitation of multivariate distributions may require a specialized approach (Elfadaly and Garthwaite,
2017; Wilson et al., 2021). For examples of expert-specified multivariate distributions encoded with copulas,
we refer to Wilson (2018), Holzhauer et al. (2022), Sharma and Das (2018), and Aas et al. (2009). When
fitting copulas to empirical observations, the “blanket” goodness of fit measure (Wang and Wells, 2000) based
on Kendall’s transform (Genest et al., 2006, 2009) can be used.
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Figure 9: Samples from the bivariate Myerson distribution joined by the Joe copula (θ = 3)

4.3. Bivariate quantiles
The formal definition of bivariate quantile functions and the method for constructing bivariate quantile

distributions using marginal and conditional quantile functions are provided by Nair and Vineshkumar
(2023) and Vineshkumar and Nair (2019). They define the bivarate quantile function (bQF) of (X1, X2)
as the pair Q(u1, u2) = (Q1(u1), Q21(u2|u1)), where Q1(u1) = inf{x1 : F1(x1) ≥ u1}, u1 ∈ [0, 1] and
Q21(u2|u1) = inf{x2 : F21(Q1, x2) ≥ u2}.

The conditional quantile function Q21(u2|u1) can be obtained by inverting the conditional distribution
function F21(x1, x2), which is computed from the factorization of the joint survival function. The joint
survival function is defined as F̄ (x1, x2) = P (X1 > x1)P (X2 > x2|X1 > x1) = F̄ (x1)F̄21(x1, x2). Note that
the joint survival function F̄ (x1, x2) = 1 −F1(x1) −F2(x2) +F (x1, x2), and the conditional survival function
F̄21(x1, x2) = 1 − F21(x1, x2).

Another approach for creating bivariate quantile functions is through Gilchrist’s QF transformation
rules (Gilchrist, 2000), which can be generalized to bivariate quantile functions. According to Nair and
Vineshkumar (2023) (Property 6), the conditional QF can be constructed as a sum of two univariate QFs:
Q21(u2|u1) = Q1(u1) + Q2(u2). This means that the pair (Q1(u1), ;Q1(u1) + Q2(u2)) is a valid bivariate
quantile function, which generalizes Gilchrist’s addition rule (Table 1). The addition rule also works for
quantile density functions (Property 7). If Q1 is left-bounded at zero, i.e., Q1(0) = 0, then the margins
of such a bQF are X1 = Q1(u1) and X2 = Q2(u2). Otherwise, the marginal distribution of X2 will be
limu1→0 Q21(u2|u1), which in many cases is not tractable.

If Q1(u1) and Q2(u2) are positive on ui ∈ [0, 1], then their product is also a valid conditional QF (Property
8), generalizing Gilchrist’s “product rule”. Finally, Property 9 generalizes the “Q-transformation rule,” stating
that for every increasing transformation functions T1 and T2, (T1(Q1(u1)), T1(Q1(u1)) + T2(Q2(u2))) is also
a valid bQF.

Therefore, valid bivariate quantile-parameterized QFs can be created by constructing the conditional
quantile functions as Gilchrist combinations of univariate quantile-parameterized QFs. Figure 10 shows 1000
samples from the bivariate distribution created by adding together two Myerson distributions. Note that in
this case, only the marginal distribution of x1 = Q1(u1) is available in closed form.
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Figure 10: Samples from the Bivariate Myerson quantile function

(u1, u2) X1,X2∽ (Q1(u1), Q1(u1) +Q2(u2))
Q1(u1) ∼ Myerson(3, 7, 10; 0.1)
Q2(u2) ∼ Myerson(−9,−3, 2; 0.25)

(38)

This bQF is easy to elicit and interpret, since Q2(u2) can be thought of as a random adjustment to
the value of Q1(u1). In fact, the conditional quantile function Q21(u2|u1) can be thought of as having the
classical form Q21(u2|u1) = µ(u1) + σQ2(u2) (Gilchrist, 2000), where the location is randomly varying with
µ(u1) = Q1(u1) and the scale parameter σ = 1. First, the marginal distribution Q1(u1) is elicited, and then
the difference between the values x1 and x2 can be elicited as a QPT and encoded as Q2(u2).

5. Discussion

Quantile-based distributions have garnered significant attention in the research community. Several
distributions, such as the Generalized Lambda Distribution (GLD) (Freimer et al., 1988; Ramberg and
Schmeiser, 1974), the g-and-k distribution (Haynes et al., 1997; Haynes and Mengersen, 2005; Jacob,
2017; Prangle, 2017), the g-and-h distribution (Field and Genton, 2006; Mac Gillivray, 1992; Rayner and
MacGillivray, 2002), and the Wakeby distribution (Jeong-Soo, 2005; Rahman et al., 2015; Tarsitano, 2005b),
have been extensively studied and documented in the literature. These distributions are defined by non-
invertible quantile functions (Perepolkin et al., 2021b). However, the research on quantile-parameterized
distributions remains relatively unexplored. These distributions offer interpretable parameters that are
defined on the same scale as the quantities of interest, simplifying the elicitation process for experts. Many
popular elicitation protocols for both predictive and parametric elicitation rely on the assessment of quantile-
probability pairs (QPPs). Instead of fitting a parametric distribution to the elicited QPPs (Best et al.,
2020; O’Hagan, 2019), assessors could directly use the elicited QPPs as inputs into one of the QPD quantile
functions, which can be easily employed in both quantile-parameterized and parametric models.

Provided that the expert and the elicitor agree on the scientific model to be used for representing
the expert’s understanding of the world (Burgman et al., 2021), several types of inputs may be required
to inform the model. Among those are the expert’s judgement about the model parameters (Mikkola
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et al., 2021; O’Hagan, 2019) and their predictions of the next observation (Akbarov, 2009; Kadane and
Wolfson, 1998; Winkler, 1980). Both parametric and predictive judgments should be captured together with
corresponding uncertainties to reflect the expert’s state of knowledge. Quantile-parameterized distributions
offer distinct advantages as high-fidelity priors that precisely capture expert assessments. These distributions
are particularly beneficial for domain experts who may not be well-versed in statistics, as they provide high
flexibility while retaining parameter interpretability. As a result, QPDs can faithfully represent an expert’s
beliefs without compromising convenience or precision.

Different quantile-parameterized distributions fitted to the same set of quantile-probability pairs may
exhibit slight variations in shape. However, given the diverse range of QPDs proposed in the literature a
knowledgeable assessor should be able to select an appropriate distribution and validate the choice with the
expert, taking into account the thickness of the distribution tails.

Most QPDs we reviewed are parameterized by a symmetric percentile triplet (SPT). These distributions
rely on the symmetric property of underlying kernel distributions and can be generalized by swapping the
distribution with another one that exhibits different tail shapes. Hadlock and Bickel (2019) utilized this
method to generalize Johnson Quantile Parameterized distributions (J-QPDs). In our study, we applied a
similar approach to generalize the Myerson distribution, which has not yet been explored in the statistical
literature.

The distributions discussed in this paper are defined using the quantile function and, therefore, they
can be considered quantile-based quantile-parameterized distributions. Myerson, J-QPD, and several other
quantile-parameterized distributions cleverly reparameterize conventional distributions, utilizing Gilchrist’s
Quantile Function (QF) transformations (Gilchrist, 2000).

Perepolkin et al. (2021b) demonstrated that the distributions defined by the quantile function can be
used both as prior and as likelihood in Bayesian models. Priors defined by the quantile function eliminate
the need to compute prior density. The quantile function acts as a non-linear transformation of a uniform
degenerate random variate with the resulting Jacobian adjustment reciprocal to the density quantile function.
Therefore, both the Jacobian and the density quantile function are omitted from the Bayesian updating
equation (Perepolkin et al., 2021b). When using quantile-based QPDs as likelihood, special care needs to
be taken with regards to the suitable prior for the QPP parameters. Perepolkin et al. (2021a) used the
Dirichet-based prior for the metalog likelihood model and descibed the hybrid elicitation process for encoding
the expert judgments into the two-dimensional prior distribution implied by the model.

Not all QPDs are equally reliable in approximating the underlying distributions. Violating the QF
transformation rules imposes additional constraints on the feasibility of parameters, as certain combinations
of parameters may result in locally decreasing quantile functions (Keelin, 2016; Hadlock, 2017). We discussed
this limitation in relation to SQN and metalog distributions, but the same challenges affect other distributions
with QF violating Gilchrist QF transformation rules. In this regard, the quantile-parameterized model, which
relies on Gilchrist combination of basic quantile functions, proposed by Peng et al. (2023), represents a highly
promising advancement. Weighted constrained optimization algorithm ensuring that the quantile mixture
weights remain non-negative opens new possibilities for other QPDs using monotonic transformations of
quantile functions. The estimator proposed by Peng et al. (2023) is asymptotically a q-Wasserstein distance,
which has also been used for parameter estimation in Approximate Bayesian Computation (Bernton et al.,
2019).

The feasibility conditions for the Generalized Lambda Distribution (GLD) have been a focal point of
numerous research endeavors in the past (Dean, 2013; Fournier et al., 2007; Karian and Dudewicz, 2019;
King and MacGillivray, 2007; Tarsitano, 2005a, etc). Various reparameterizations have been explored to
enhance parameter identifiability (Ramberg and Schmeiser, 1974). Recently, Chalabi et al. (2012) proposed a
novel asymmetry-skewness reparameterization (CSW GLD) for the previously popular FKML GLD (Freimer
et al., 1988), wherein two of the four parameters are mapped to robust quantile-based moments, namely
the median and Interquartile Range (IQR). This reduction in the number of parameters required for data
fitting simplifies the previously computationally intensive fitting algorithms. As demonstrated in the plot
of robust moments (Figure 5) GLD remains one of the most flexible unbounded distributions, capable of
accommodating a wide range of shapes. Dedduwakumara et al. (2021) described a two-step method for
fitting FKML GLD using the probability density quantile function (Staudte, 2017). However, when applying
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their method to fitting the CSW GLD, the second step becomes unnecessary as the location and scale can be
directly mapped to the empirical first and second robust moments.

CSW GLD represents a prime example of clever reparameterization aiming at alleviating the deficiencies
of QF construction through setting consistent parameter boundaries and defining fall-back cases for an
impossible combination of parameters. This degree of reparameterization is difficult for QPDs because the
objective is to retain the mapping of parameters to the valid set of quantile-probability pairs. Therefore,
for improperly constructed QPDs the feasibility conditions will have to be expressed as ratios of quantiles.
Keelin (2017) provide approximate feasibility conditions for 3- and 4-term metalog. Further research on the
general metalog feasibility is necessary to promote wider adoption of this distribution.

Quantile-parameterized distributions can be readily extended to the multivariate setting by leveraging
traditional multivariate distributions. The combination of quantile-based marginal distributions joined by
the multivariate normal has been previously discussed in the literature (Drovandi and Pettitt, 2011; Hoff,
2007). Building on this approach, we proposed the use of Gumbel’s bivariate logistic distribution (Gumbel,
1961) to combine quantile-parameterized Logit-Myerson distributions.

Copulas offer a natural extension of univariate QPDs into the multivariate domain. Bivariate copulas
can be assembled into more complex structures using vine copulas (Czado, 2019; Kurowicka and Joe, 2011;
Wilson, 2018). Flexible QPDs serve as a viable alternative to empirical copulas, where the margins are
represented by kernel density estimation (KDE) or other non-parametric approaches. Poorly fitted marginal
distributions mean less-than-ideal starting point for copula modeling, because of deviations from uniformality
of the copula margins.

Quantile-parameterized distributions defined by the quantile function are particularly well-suited for
constructing new distributions using bivariate quantiles (Nair and Vineshkumar, 2023; Vineshkumar and
Nair, 2019). The ability to construct a conditional quantile function as a Gilchrist combination of univariate
quantile functions offers a convenient and interpretable approach to defining bivariate distributions, especially
when the univariate quantile functions are parameterized by quantiles. These distributions are easy to sample
from and construct. However, fitting these distributions to data or posterior samples can be challenging. As
shown by Castillo et al. (1997) the fitting process requires all marginal and conditional quantile functions to
be available in closed form, which is often unattainable.

There appears to be a limited availability of unbounded quantile-parameterized distributions in the current
literature. Among the distributions we examined, only the metalog distribution and quantile mixtures can
extend across the entire real line. The G-QPD system provides clear distributional bounds explicitly defined
by the expert during elicitation. In contrast, the (Generalized) Myerson distribution system relies on implicit
bounds that need to be communicated to the expert. Most of the distributions we reviewed are characterized
by a symmetrical percentile triplet (SPT), as they rely on the symmetrical property of their kernels. However,
there may be situations where an arbitrary (non-symmetrical) quantile parameterization could prove valuable
(as shown by Perepolkin et al., 2021a). The development of flexible quantile-parameterized distributions
defined by an arbitrary set of quantile-probability pairs using quantile mixtures (Peng et al., 2023) can
enhance versatility of QPDs and facilitate their broader adoption.

In conclusion, quantile-parameterized distributions offer a valuable framework for capturing expert
assessments and incorporating them into statistical models. They provide high flexibility and parameter
interpretability, making them particularly beneficial for domain experts. The diverse range of quantile-
parameterized distributions explored in the literature allows for customized modeling approaches that align
with the expert’s beliefs and uncertainties. By embracing these innovative distributions, researchers and
practitioners can enhance the accuracy and reliability of their statistical models while leveraging expert
knowledge effectively.

Appendix A. Distribution functions

Myerson Distribution
The derivative of the quantile function with respect to the depth u is the Quantile Density Function,

which for Myerson distribution has the following form
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q(u|q1, q2, q3, α) =
{
ρβκ ln(β)

(β−1)
qnorm(u)

Φ−1(1−α) , β ̸= 1
ρ qnorm(u)

Φ−1(1−α) , β = 1
(39)

where qnorm = dΦ−1(u)
du is the quantile density function for the standard normal distribution.

The Myerson distribution is invertible. The distribution function of random variable X has the form

ψ = Φ−1(1 − α)




ln
(

1 + (x−q2)(β−1)
ρ

)

ln(β)




F (x|q1, q2, q3, α) =
{

Φ(ψ), β ̸= 1
Fnormal(x|q2, ρ/Φ−1(1 − α)), β = 1

(40)

where Φ() is the CDF of the standard normal distribution and Φ−1() is its inverse. Fnormal(x|q2, ρ/Φ−1(1−
α)) is the CDF of the normal distribution with mean µ = q2 and standard deviation σ = ρ/Φ−1(1 − α).

The derivative of the distribution function with respect to the random variable X is the probability
density function, which for the Myerson distribution takes the following form

f(x|q1, q2, q3, α) =
{

Φ−1(1−α)(β−1)
(ρ+(x−q2)(β−1)) ln(β)φ(ψ), β ̸= 1
fnormal(x|q2, ρ/Φ−1(1 − α)), β = 1

(41)

where φ() is the probability density function of the standard normal distribution, fnormal(x|q2,
ρ

Φ−1(1−α) )
is the PDF of the normal distribution with the mean µ = q2 and standard deviation σ = ρ/Φ−1(1 − α)).

Generalized Myerson Distributions
The Quantile Density Function of Generalized Myerson Distribution for u ̸= 0, u ̸= 1 is

qM (u|q1, q2, q3, α) =
{
ρβκ ln(β)

(β−1)
s(u)

S(1−α) , β ̸= 1
ρ s(u)

S(1−α) , β = 1
(42)

where S(u) is the quantile function and s(u) = dS(u)
du is the quantile density function for the kernel

distribution. When u = 0 or u = 1 the qM (u) = ∞.
The Generalized Myerson distribution is invertible. The distribution function of random variable X has

the form

ψ = S(1 − α)




ln
(

1 + (x−q2)(β−1)
ρ

)

ln(β)




FM (x|q1, q2, q3, α) =
{
F (ψ), β ̸= 1
q2 + ρ

S(1−α)F (x), β = 1

(43)

where F () is the standard CDF of the kenel distribution and S() is its inverse.
The derivative of the distribution function with respect to the random variable X is the probability

density function, which for the Myerson distribution takes the following form

fM (x|q1, q2, q3, α) =
{ S(1−α)(β−1)

(ρ+(x−q2)(β−1)) ln(β)f(ψ), β ̸= 1
f

(
x−q2

ρ/S(1−α)

)
, β = 1

(44)

where f() is the probability density function of the standard kernel distribution. Compare it to the
simplicity of the Quantile Density Function above.
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Johnson Quantile-Parameterized Distribution
The JQPD-B quantile density function can be computed as

qB(p) =





(ub − lb)φ(ξ + λ sinh(δ(z(p) + nc)))×
λ cosh(σ(z(p) + nc))σqnorm(p), n ̸= 0

(ub − lb)φ
(
B +

(
H−L

2c

)
z(p)

)
×

(
H−L

2c

)
qnorm(p), n = 0

(45)

The JQPD-B distribution function

FB(x) =





Φ
(

(2c/(H − L))(−B + z
(

x−l
u−l

)
)
)
, n = 0

Φ
(

1
δ sinh−1

(
1
λ

(
z

(
x−l
u−l

)
− ξ

))
− nc

)
, n ̸= 0

(46)

The JQPD-B probability density function (PDF) is

f(x) =





2c
(H−L)(ub−lb)

1
φ
(

z
(

x−lb
ub−lb

))φ
(

2c
H−L

(
−B + z

(
x−lb

u−lb

)))
, n = 0

1
δ

1
ub−lb

φ
(

−nc+ 1
δ sinh−1

(
1
λ

(
−ξ + z

(
x−lb

ub−lb

))))
1

φ
(

z
(

x−lb
ub−lb

)) 1√
λ2+

(
−ξ+z

(
x−lb

ub−lb

))2
, n ̸= 0

(47)
J-QPD-S quantile density function

qS(p) =
{
θ exp (λδz(p))λδqnorm(p), n = 0
θ exp

(
λ sinh−1(δz(p)) + sinh−1(ncδ)

)
λ 1√

1+(δz(p))2
δqnorm(p), n ̸= 0 (48)

J-QPD-S distribution function

FS(x) =
{
Flnorm(x− lb| ln(θ), H−B

c ), n = 0
Φ

( 1
δ sinh

(
sinh−1 ( 1

λ ln x−lb

θ

)
− sinh−1(ncδ)

))
, n ̸= 0

(49)

J-QPD-S probability density function (PDF)

fS(x) =





1
xσ

√
2π

exp
(

− (ln x−lnξ)2

2 (H−B)2
c2

)
, n = 0

φ

(
sinh(sinh−1(cnσ)−sinh−1( 1

λ ln x−lb
θ ))

δ

)
cosh(sinh−1(cnδ)−sinh−1( 1

λ ln x−lb
θ ))

(x−lb)δλ

√
1+

(
ln

x−lb
θ

λ

)2
, n ̸= 0 (50)

where µ = ln ξ and σ = H−B
c .

Metalog distribution
This section recapitulates ideas and formulas provided in Keelin (2016) with our own notation and minor

reinterpretations.
Metalog distribution is created from the logistic quantile function Q(p) = µ+ slogit(p), where µ is the

mean, s is proportional to the standard deviation such that σ = sπ/
√

3, p is the probability p ∈ [0, 1]. The
metalog quantile function is built by substitution and series expansion of its parameters µ and s with the
polynomial of the form:

µ = a1 + a4(p− 0.5) + a5(p− 0.5)2 + a7(p− 0.5)3 + a9(p− 0.5)4 + . . . ,

s = a2 + a3(p− 0.5) + a6(p− 0.5)2 + a8(p− 0.5)3 + a10(p− 0.5)4 + . . . ,
(51)
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where ai, i ∈ (1 . . . n) are real constants. Given a size-m QPT {p, q}m, where p = {p1 . . . pm} and
q = {q1 . . . qm} the vector of coefficients a = {a1 . . . am} can be determined through the set of linear
equations.

q1 = a1 + a2logit(p1) + a3(p1 − 0.5)logit(p1) + a4(p1 − 0.5) + · · · ,
q2 = a1 + a2logit(p2) + a3(p2 − 0.5)logit(p2) + a4(p2 − 0.5) + · · · ,
...
qm = a1 + a2logit(pm) + a3(pm − 0.5)logit(pm) + a4(pm − 0.5) + · · · .

(52)

In the matrix form, this system of equations is equivalent to q = Pa, where q and a are column vectors
and P is a m× n matrix:

P =




1 logit(p1) (p1 − 0.5)logit(p1) (p1 − 0.5) · · ·
1 logit(p2) (p2 − 0.5)logit(p2) (p2 − 0.5) · · ·

...
1 logit(pm) (pm − 0.5)logit(pm) (pm − 0.5) · · ·


 (53)

If m = n and P is invertible, then the vector of coefficients a of this properly parameterized metalog QPD
can be uniquely determined by

a = P−1q (54)

If m > n and P has a rank of at least n, then the vector of coefficients a of the approximated metalog
QPD, can be estimated using

a = [PTP]−1PT q (55)

The matrix to be inverted is always n× n regardless of the size m of QPT used.
Metalog quantile function (QF) with n terms QMn

(u|a) can be expressed as

QMn
(u|a) =





a1 + a2logit(u), for n = 2,
a1 + a2logit(u) + a3(u− 0.5)logit(u), for n = 3,
a1 + a2logit(u) + a3(u− 0.5)logit(u) + a4(u− 0.5), for n = 4,
QMn−1 + an(u− 0.5)(n−1)/2, for odd n ≥ 5,
QMn−1 + an(u− 0.5)n/2−1logit(u), for even n ≥ 6,

(56)

where u ∈ [0, 1] is the cumulative probability and a is the size-n parameter vector of real constants
a = {a1 . . . an}.

The metalog quantile density function (QDF) can be found by differentiating the equations (56) with
respect to u:

qMn
(u|a) =





a2I(u), for n = 2,
a2I(u) + a3 ((u− 0.5)I(u) + logit(u)) , for n = 3,
a2I(u) + a3 ((u− 0.5)I(u) + logit(u)) + a4, for n = 4,
qMn−1 + 0.5an(n− 1)(u− 0.5)(n−3)/2, for odd n ≥ 5,
qMn−1 + an

(
(u− 0.5)n/2−1I(u) + (0.5n− 1)(u− 0.5)n/2−2logit(u)

)
, for even n ≥ 6,

(57)

where I(u) = [u(1 − u)]−1. The constants a are feasible iif qMn
(u|a) > 0, ∀u ∈ [0, 1].

Metalog density quantile function (DQF), referred to as the “metalog pdf” in Keelin (2016) can be
obtained by f(QMn

(u|a)) = [qMn
(u|a)]−1.
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Metalog cumulative distribution function (CDF) FMn(x|a) does not have an explicit form becauseQMn(u|a)
is not invertible (Keelin, 2016). It is, however, possible to approximate Q̂−1

Mn
(x|a) using approximation.

Metalog distribution is defined for all x ∈ R on the real line. Keelin (2016) provides semi-bounded
log-metalog, and the bounded logit-metalog variations of the metalog distribution. As the names suggest, this
is achieved through the variable substitution with z = ln(x− bl) or z = − ln(bu − x) for the semi-bounded
case, and z = ln((x− bl)/(bu − x)) for the bounded case, where z is metalog-distributed and bl, bu are the
lower and upper limits, respectively. Substituting one of the transformations into the QF and QDF functions
above, yields semi-bounded or bounded metalog distribution. For the exact formulae of the log-metalog and
logit-metalog refer to Keelin (2016).

CSW GLD
Quantile density function for the CSW GLD is provided in (Chalabi et al., 2012)

q(u|σ̃, χ, ξ) = σ̃

S(0.75|χ, ξ) − S(0.25|χ, ξ)s(u|χ, ξ)

s(u|χ, ξ) = d

du
S(u|χ, ξ) = uα+β−1 + (1 − u)α−β−1

(58)
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inverse distribution function, i.e. their quantile function. This applies to both prior and like-
lihood. Quantile-based likelihood is useful in models with sampling distributions which lack 
an explicit probability density function. Quantile-based prior allows for flexible distributions 
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1. Introduction

Most statistics courses and textbooks introduce continuous random variables via the (cumulative) distribution function
(CDF) and the probability density function (PDF). “An equally adequate representation” (Tukey, 1965) of a random variable 
can be made using the inverse CDF, known as the quantile function (QF), and its derivative, the quantile density function (QDF), 
but the use of such quantile distributions is rare. Defining a distribution via its quantile function has several advantages, 
including that the distributions with explicit quantile functions are easy to sample from and more complex distributions 
can be crafted using the simpler quantile functions as the building blocks (Gilchrist, 2000; Parzen, 1980; Hadlock, 2017; 
Powley, 2013).

Some of the widely used probability distributions defined in terms of the CDF and PDF (density-defined distributions) are 
not easily invertible (e.g. normal or gamma) and, therefore, the numerical approximation of their QF is used. Similarly, there 
are other distributions defined in terms of their QF and QDF (quantile distributions), that are also not invertible, and thus, 
the numerical approximation of their CDF can be used.

Most of the knowledge and methods for Bayesian inference have been developed for the density-defined distributions. 
While there have been several published articles where quantile distributions were used in the context of the likelihood-
free approximate Bayesian computation (Allingham et al., 2009; Drovandi and Pettitt, 2011; Karabatsos and Leisen, 2018; 
Fearnhead and Prangle, 2012; Bernton et al., 2019; McVinish, 2012), the likelihood-based application of the Bayesian infer-
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Fig. 1. Probability distributions, quantile distributions and parameterization.

ence for quantile distributions has been limited (Rayner and MacGillivray, 2002; Haynes and Mengersen, 2005; Nair et al., 
2020).

This article builds on the ideas of Gilchrist (2000), Rayner and MacGillivray (2002), Nair et al. (2020) and systematically 
presents and illustrates the Bayesian inference using quantile functions. We refer to this method of inference as quantile-
based because it deals with the inverse transformation of the intermediate cumulative probabilities (depths, indicating how 
“deep” an observation is into the distribution) corresponding to the observations given the parametrized model. We aim to 
show that the quantile-based Bayesian inference using the intermediate depths leads to the same posterior beliefs as the 
conventional density-based inference. We apply the principles of quantile-based inference to Bayesian updating of parameters 
in the univariate and regression settings using the flexible and extensible quantile sampling distributions.

Section 2 revisits the functions and identities for characterizing the distribution of a continuous random variable. Then 
in Section 3 we introduce the terms of quantile-based likelihood and quantile-based prior in Bayesian inference and show that 
the likelihood (and prior) can be expressed without the PDF. Section 4 discusses the computational aspects of the numerical 
inversion of quantile functions for approximating the intermediate depths in a quantile-based likelihood expressed by a 
quantile distribution. Section 5 discusses the applications of quantile-based inference in univariate and regression settings. 
We discuss the models and provide code examples implementing quantile-based likelihood in Stan (Gabry and Češnovar, 
2022) and in R (R Core Team, 2021). The proposed models have been validated using the Simulation-Based Calibration 
(Modrák et al., 2022; Talts et al., 2020; Cook et al., 2006). The results of these simulation studies (provided in the Sup-
plementary Materials) show successful recovery of model parameters for all widths of the posterior credible intervals. We 
conclude the paper with a discussion and summary of the results in Section 6.

Although the description of the quantile-based likelihood (Rayner and MacGillivray, 2002; King, 1999; Gilchrist, 2007; Nair 
et al., 2020) and prior (Nair et al., 2020) appeared in the literature before, they were presented in the context of specific 
distributions and not as a general principle of inference. In their recent work, Nair et al. (2020) presented Bayesian infer-
ence with quantile functions, but their presentation of what we describe here as quantile-based prior lacked the necessary 
adjustment due to the nonlinear transformation of the parameters involved (see Section 3.2 below).

In this paper, we apply the principles of quantile-based inference to implement the Bayesian version of the paramet-
ric quantile regression (Gilchrist, 2008) with the error term is described by a bespoke quantile function and estimate the 
regression parameters using MCMC.

2. Distribution specification

To set the scene for the discussion of density-based and quantile-based Bayesian inference we briefly review the different 
ways of specifying a probability distribution and discuss several examples of the distributions defined by a quantile function, 
found in the literature (Fig. 1).

2.1. Essential functions

Let Y be a continuous random variable. It can be expressed via the (cumulative) distribution function (CDF)

FY (y|θ) = Pr(Y ≤ y|θ), θ ∈ A ⊂R. (1)
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Table 1
Gilchrist’s quantile function transformation rules.

Original QF Rule Resulting QF Resulting variable

Q Y (u) Reflection rule −Q (1 − u) QF of -Y
Q Y (u) Reciprocal rule 1/Q (1 − u) QF of 1/Y
Q 1(u), Q 2(u) Addition rule Q 1(u) + Q 2(u) valid QF
Q 1(u), Q 2(u) Linear combination rule aQ 1(u) + bQ 2(u) valid QF for a, b > 0
Q 1(u), Q 2(u) > 0 Multiplication rule Q 1(u)Q 2(u) valid QF
Q Y (u) Q-transformation T (Q Y (u)) QF of T (Y ),

T (Y ) non-decreasing
Q Y (u) p-transformation Q Y (H(u)) p-transformation of Q Y (u), 

H(u) non-decreasing

An alternative way of describing the random variable Y is via the quantile function (QF)

Q Y (u|θ) = inf{y : FY (y|θ) ≥ u}, 0 ≤ u ≤ 1. (2)

The subscript Y is used to indicate the random variable that the depth u corresponds to.
New quantile functions can be easily created using Gilchrist’s quantile function transformation rules (Gilchrist, 2000; 

Powley, 2013; Hadlock, 2017; Sharma and Chakrabarty, 2017) summarized in Table 1. We use these rules for crafting a 
bespoke quantile function for modeling the error term in a Bayesian parametric quantile regression in Section 5.

If FY (y|θ) is continuous and strictly monotonically increasing over the support of Y , then Q Y (u|θ) is simply the inverse 
of FY (y|θ). Therefore, the quantile function is often referred to as the inverse CDF, i.e.

Q Y (u|θ) = F −1
Y (y|θ). (3)

Not all QFs are analytically invertible (Fig. 1). A distribution whose quantile function Q Y (u|θ) is not analytically invertible 
is called a quantile distribution (Gilchrist, 1997) or a quantile-based distribution (Sharma and Chakrabarty, 2020).

The derivative of the CDF is the probability density function (PDF) denoted by

fY (y|θ) = dFY

dy
. (4)

Similarly, the derivative of the QF is the quantile density function (QDF) denoted by

qY (u|θ) = dQ Y

du
, 0 ≤ u ≤ 1. (5)

The reciprocal of the QDF [qY (u|θ)]−1 = f (Q Y (u|θ)) is referred to as the density quantile function (Parzen, 1980) or p-
pdf (Gilchrist, 2000). Here and for the rest of the article, we will often omit the subscript Y and the conditioning on θ to 
simplify the notation.

f (Q (u)) = dF (Q (u))

dQ (u)
= dF (Q (u))/du

dQ (u)/du
= dF (F −1(u))/du

q(u)
= du/du

q(u)
= [q(u)]−1. (6)

In Section 3 of this paper, we rely on the density quantile function (DQF) [q(u)]−1, i.e. the density of a random variable 
expressed in terms of the cumulative distribution function (Perri and Tarsitano, 2007), to define the likelihood in a Bayesian 
model based on a quantile sampling distribution.

2.2. Derivatives of the inverses and the numerical approximation

Following the inverse function theorem (Price, 1984), for a function to be invertible in the neighborhood of a point, it 
should have a continuous non-zero derivative at that point. If the function is invertible, the derivative of the inverse is 
reciprocal to the function’s derivative (Marsden et al., 1985). Formally, if dt/dy exists and dt/dy �= 0, then dy/dt also exists 
and dy/dt = [dt/dy]−1. Therefore, for a quantile function Q (u) = y, if a QDF q(u) exists and q(u) �= 0, then PDF f (y) also 
exists and it is equal to f (y) = [q(u)]−1.

Fig. 2 illustrates the relationship between the key probability functions. The distribution function (CDF) and the quantile 
function (QF) are depicted on the opposite sides of the Moebius strip. The derivatives of these functions (PDF and QDF, 
respectively) end up on the same side, due to the geometry of the Moebius surface. It means that the derivatives are no 
longer the inverses of each other, but rather the reciprocals, as stated in the equation at the bottom. The “do-it-yourself” 
copy of this probability function Moebius strip is included in the Supplementary Materials, along with the graphs of the 
five essential functions (CDF, PDF, QF, QDF, and DQF) for the common probability distributions (Normal, Logistic, Weibull, 
Exponential, and Kumaraswamy).

Even though the quantile distributions lack the closed-form CDF F (y) = u in most cases the depths u can be approxi-

mated by numerically inverting the Q (u). We denote the numerically inverted quantile function as Q̂ −1(y) or F̂ (y). The 
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Fig. 2. Moebius strip of probability functions.

inverse of a quantile function Q (u) at point u, corresponding to the observation y, is obtained by minimizing the differ-
ence between the actual observation y and Q (u) by iteratively refining the depth u. The details of the numerical inversion 
algorithm are discussed in Section 4.

Figure provides examples of the CDF/PDF and QF/QDF for some common statistical distributions (normal, beta, lognormal, 
exponential and Weibull).

2.3. Quantile distributions

Statistical methods utilizing QF and QDF were pioneered by the seminal work of Parzen (1979). Some of the quantile 
distributions covered in the literature are generalized g-and-h and its sibling g-and-k distribution (Haynes and Mengersen, 
2005; Jacob, 2017; Prangle, 2017; Rayner and MacGillivray, 2002), Tukey Lambda Distribution and its generalizations, known 
as GλD (Aldeni et al., 2017; Chalabi et al., 2012; Dedduwakumara et al., 2021; Ramberg and Schmeiser, 1974; Fournier 
et al., 2007; Freimer et al., 1988), Wakeby distribution (Rahman et al., 2015), flattened logistic distribution (Sharma and 
Chakrabarty, 2019) and Govindarajulu distribution (Nair et al., 2012, 2013).

The mathematical notation for describing probability distributions has been standardized and adopted across different 
domains. The first use of the tilde symbol ∼ to denote the CDF can be traced back to early 1960s. Olkin and Tate (1961)
wrote: “X ∼ F (x) means that x is distributed according to the distribution function F (x)”. Today this convention is adopted 
by the majority of Bayesian textbooks (Gelman et al., 2013; Johnson et al., 2022; O’Hagan et al., 2006; Lambert, 2018; 
Gelman et al., 2021; Koller and Friedman, 2009). For example, if a variable Y is normally distributed it is described as

Y ∼ N(μ,σ ), (7)

which means that the random variable Y has the distribution function FY (y) = �(y|μ, σ), where � is the CDF of the 
normal distribution (Johnson et al., 1994).

When the distribution of a random variable Y is described by a non-invertible quantile function, such as, for example, 
the extensively researched Generalized Lambda Distribution (GLD) proposed by Ramberg and Schmeiser (1974)

Q Y (u|λ1, λ2, λ3, λ4) = λ1 + 1

λ2

[
uλ3 + (1 − u)λ4

]
, (8)

stating Y ∼ GLD(λ1, λ2, λ3, λ4) is not strictly accurate, because the GLD quantile function is not invertible and its CDF can 
be computed only numerically as FY (y) � Q̂ −1

Y (y).
Therefore, in this paper, we propose to denote this distribution as

u
y� GLD(λ1, λ2, λ3, λ4), (9)

where the back-tilde with the variable name overscript y� should be read as “inversely distributed as” to indicate that the 
depth u is fully determined given the value of the random variable Y and the parameterized inverse distribution function 
indicated to the right of the back-tilde symbol (in this case, GLD). In situations where extra clarity is required, the depth vari-

able name can also be mentioned in describing the density-defined distributions, e.g. X
p∼ N(μ, σ), where μ v∼ N(μ0, σ0).

Although in this paper we focus on the distributions with abstract parameters, the distributions parameterized by the 
quantile-probability pairs (quantile-parameterized distributions) are also worth a mention. The most prominent examples 
of the quantile-parameterized density-defined distributions are Myerson distribution (Myerson, 2005), Johnson QPD (J-QPD) 
with its generalizations (Hadlock and Bickel, 2017, 2019) and Simple Q-Normal distribution (Keelin and Powley, 2011). The 
group of the quantile-parameterized quantile distributions is represented by Metalog distribution (Keelin, 2016). Quantile-
parameterized distributions play an important role in representing expert beliefs about variables, parameters, or quantities 
of interest (Dion et al., 2020; Gu et al., 2018; Larrain et al., 2021; Reinhardt et al., 2016; Baey et al., 2022), although they 
don’t lend themselves easily as sampling distributions due to the special nature of their parameterization.
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3. Bayesian inference with quantile functions

Gilchrist (2000), p. 209 used the term quantile-based likelihood while describing the method of maximum likelihood 
applied to a quantile distribution. Rayner and MacGillivray (2002) describe a three-step process of computing the log-
likelihood for a quantile distribution and use it for the maximum likelihood estimation of parameters in g-and-k and 
generalized g-and-h distributions. Nair et al. (2020) performed quantile function substitution for both the observables 
yi = Q (ui |θ), i = {1, 2, . . .n}, and parameters θ = Q �(v) and computed the Bayes estimator under the squared error loss 
for the Govindarajulu likelihood. In this section, we summarize this approach and use the terms quantile-based prior and 
quantile-based likelihood based on the identities and substitutions introduced in Section 2 to demonstrate the equivalence 
of the two ways of expressing the likelihood in Bayesian models.

3.1. Density-based and quantile-based likelihood

The traditional Bayesian inference formula can be restated using the substitutions involving quantile functions (Nair et 
al., 2020). Assume that the prior information about the scalar parameter θ can be summarized by the prior distribution over 
the parameter space �. Then, given a random sample of y = {y1, y2, . . . yn}, the posterior distribution of θ can be expressed 
as:

f (θ |y) ∝ L(θ; y) f (θ), (10)

where f (θ |y) is the posterior distribution of θ after having observed the sample y, f (θ) is the prior distribution of θ , 
and L(θ; y) = ∏n

i=1 f (yi |θ) is the likelihood, which is a function of θ . We refer to this form of likelihood as density-based, 
because it is expressed using the density function (PDF) of the observable y .

Given the random sample y and the value of the parameter θ , we can use the quantile function Q Y (u|θ) to compute Q =
{Q (u1), Q (u2), . . . Q (un)}, such that ui = F (yi |θ), i = {1, 2, . . .n}. The depths ui are degenerate random variables because 
they are fully determined given the values of y and the parameter θ . Since Q Y (ui |θ) = yi we can substitute Q for y. Then 
the Bayesian inference formula (10) becomes

f (θ |Q ) ∝ L(θ; Q ) f (θ). (11)

We refer to the likelihood L(θ; Q ) = ∏n
i=1 f (Q (ui |θ)) = ∏n

i=1[q(ui |θ)]−1 as quantile-based, because it relies on comput-
ing the intermediate depths ui = F (yi |θ) corresponding to the observations yi, i = {1, 2, . . .n}. The two forms of likelihood 
L(θ; Q ) and L(θ; y) are equivalent to each other. Therefore, following the likelihood principle, the posterior beliefs about θ
in both cases are identical.

Since the likelihood in the Equation (11) is expressed in terms of Q , an additional transformation is required to arrive at 

u = F (y|θ). In case the CDF F (y|θ) is not available, the numeric approximation of Q̂ −1(y|θ) may be used. We discuss the 
details of the numerical approximation of the inverse quantile function in Section 4 of this paper.

3.2. Density-based and quantile-based prior

It is possible to extend the same logic of quantile function substitution to define density-based and quantile-based pri-
ors. In this section, we discuss the parameter transformation required for defining a quantile-based prior and show its 
connection to the inverse transform used for non-uniform sampling.

The Bayesian inference formula can be restated using the quantile form of the prior (Nair et al., 2020). Assume that the 
prior distribution of θ can be described using the invertible CDF F�(θ |ψ) = v with hyperparameter ψ , so that Q �(v|ψ) = θ . 
Substituting the quantile values Q �(v|ψ) for values of θ , prior beliefs about the parameter(s) of the distribution of θ can 
be expressed using the distribution of the quantile values corresponding to the random variate v , given hyperparameter ψ
of the prior distribution as f (Q �(v)|ψ) = [q�(v|ψ)]−1. We refer to the such formulation of the prior as quantile-based
because it describes the prior distribution of the random variate v given hyperparameter ψ corresponding to the parameter 
θ = Q �(v|ψ) and not the distribution of the parameter θ itself.

Likewise, the likelihood L(Q �(v|ψ); y) will also rely on the parameter transformation θ = Q �(v|ψ). However, such non-
linear parameter transformation requires a Jacobian adjustment (Andrilli and Hecker, 2010), which is equal to the absolute 
derivative of the transform, i.e. J (Q �(v|ψ)) = |dQ �(v|ψ)/dv| = |q�(v|ψ)|. Provided that the Q �(v) is a valid (non-
decreasing) quantile function, meaning that q�(v|ψ) is non-negative on v ∈ [0, 1], the density quantile term [q�(v|ψ)]−1

representing the prior and the Jacobian adjustment |q�(v|ψ)| can be dropped as they are reciprocal to each other. Therefore, 
the quantile-based posterior of the random variate v after observing the sample y can be expressed as

[q�(v|y)]−1 ∝ L(Q �(v|ψ); y)[q�(v|ψ)]−1|q�(v|ψ)| =⇒
[q�(v|y)]−1 ∝ L(Q �(v|ψ); y),

(12)
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where [q�(v|y)]−1 is the quantile form of the posterior, and the (quantile) prior density [q�(v|ψ)]−1 is implied by QF 
transform Q �(v|ψ) = θ, v ∈ [0, 1].

Quantile-based prior can also be used in combination with quantile-based likelihood, since, as we showed previously, 
regardless of the form of the likelihood used, the posterior beliefs about the parameter θ will be the same. In such a case, 
neither prior nor likelihood would require the PDF, and, therefore, both of them can be represented by quantile distributions.

4. Numerical inversion of quantile functions

4.1. Root-finding algorithms

The core element of the quantile-based likelihood method is the use of the intermediate depths u, corresponding to the 
observables y given the parameter θ . These values can either be found analytically, as F (y) for distributions with CDF, or 

numerically via root-finding algorithm, as F̂ Y (y) � Q̂ −1
Y (y) e.g. in case of quantile distributions (Fig. 1).

The problem of inverting a quantile function is tantamount to finding the root of a target function

�(u; y, θ) = [y − Q Y (u|θ)], (13)

where y is a known observation, θ is the parameter value, and u is the depth. Provided that the Q Y (u|θ) is a non-decreasing 
function and y is a fixed observable value, the target function �(u; y, θ) is non-increasing. The root-finding algorithm uses 
the target function to take an observable y and “pull in” its inverted equivalent Q Y (u|θ) until the two values exactly meet 
by iteratively adjusting u.

Since the target function �(u; y, θ) has a range u ∈ [0, 1], the bracketing root-finding algorithms, such as bisection or 
regula falsi (Atkinson, 2008; Burden and Faires, 2011) may be used, although depending on the shape of the quantile function 
their convergence can be slow. Modern bracketing methods, such as Chandrupatla (Chandrupatla, 1997), Ridders (Ridders, 
1979), Zhang (Zhang, 2011; Stage, 2013) and TOMS748 (Alefeld et al., 1995), implemented in the Boost C++ library (Schäling, 
2011), combine cubic, quadratic and linear (secant) interpolation to ensure robust and efficient convergence.

The convergence may be accelerated with the help of the non-bracketing root-finding algorithms e.g. Newton-Raphson, 
Halley and Schröder (Householder, 1970), which rely on computing the derivatives of the target function �. The first deriva-
tive of the target function is simply the negative QDF �′(u; y, θ) = d[y−Q Y (u|θ)]

du = −qY (u|θ). Unfortunately, the derivative-
based algorithms do not guarantee that the root will be found and may end up in infinite loops and divergences. The bigger 
issue with trying to use a non-bracketing algorithm to find the root of the target function � is related to intermediate val-
ues of u falling outside of the [0,1] interval. In such a case Q Y (u|θ) will return an error, which will cause the root-finding 
convergence check to fail. Modern derivative-based root-finding algorithms, such as NewtSafe (Acton, 1990; Press, 2007), 
perform the root search within a specified interval and fall back to bisection if the algorithm iteration leads the guess 
outside of the interval.

In this paper we used the Brent bracketing root-finding algorithm (Press, 2007) to invert the quantile functions. In R 
(R Core Team, 2021) the algorithm is available as the uniroot() function and in Stan (Gabry and Češnovar, 2022) we 
implemented it as a custom user-defined function. All source code is available in the Supplementary Materials.

4.2. Computational cost

Quantile-based method of inference comes at a computational cost associated with inverting a quantile function. In order 
to assess the cost of numerical inversion of quantile functions and to compare the integrated autocorrelation times (IAT) 
between the density-based and the quantile-based models, we performed simulation-based calibration (Modrák et al., 2022; 
Säilynoja et al., 2022; Talts et al., 2020; Cook et al., 2006) of the standard Exponential model, under the Gamma prior with 
α = 4 and β = 1, which can be formulated both in the density-based and in the quantile-based form (since the exponential 
distribution is fully invertible). We refer to the Supplementary Materials for the details of the simulation-based calibration 
(SBC) algorithm.

We calculated IAT as the number of iterations of the sampler divided by the parameter’s effective sample size (ESS) 
estimator (Betancourt, 2020). In addition to the standard rank-normalized ESS estimator, we calculated the minimum of the 
ESS for the 5% and 95% quantiles of the sample, known as the “tail ESS” (Vehtari et al., 2021).

We ran 200 replications of each of the models. Each SBC replication consisted of 2000 draws (of which half was used for 
burn-in) and 2 parallel chains (to assess the quality of chain mixing). The Stan code for running both density-based and the 
quantile-based Gamma-Exponential models is available in the Supplementary Materials.

We found that, on average, the numerical inversion of QF costs additional 6.43 sec/chain of 2000 samples (paired t-test 
95% CI: [6.28, 6.59]). The MCMC proposals are also slightly more likely to be rejected (average increase in rejections is 0.345 
based on the paired t-test with 95% CI of [0.216, 0.474]), as the quantile-based models are more dependent on the feasible 
initial values.

At the same time we found no significant difference in IAT for either the bulk of the samples (mean difference of 0.012 
with 95% CI: [-0.0264, 0.0503], pair-wise t-test), nor the tail of the distribution (mean difference of -0.029 with 95% CI: 
[-0.0690, 0.0118], pair-wise t-test).
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Fig. 3. Histogram of time-to-failure for 50 devices.

The cost may be more significant if the quantile function is expensive to compute, e.g. for distributions with a large 
number of parameters or involving computationally expensive transformations, or in the presence of covariates, as the case 
is for parametric quantile regression, discussed below.

5. Applications

In this section, we illustrate the application of the quantile-based inference to univariate and regression models and 
provide code examples for models based on the quantile sampling distributions in Stan (Gabry and Češnovar, 2022) and 
in R (R Core Team, 2021). For the univariate model, we update the shape parameter of a bathtub-shaped Govindarajulu 
distribution and for the regression model, we pick the flattened skew-logistic distribution to model the error term.

5.1. Univariate model

We take the dataset provided in Aarset (1987) on the time-to-failure of 50 devices (Fig. 3). Lifetime reliability data are 
often modeled using specialized distributions (Nadarajah, 2009) or 2(3)-component mixtures. Nair et al. (2020) obtained 
the Bayes estimator under the squared error loss function for the posterior mean of the parameter γ in the Govindarajulu 
distribution (Nair et al., 2012), under the generalized exponential prior (Gupta and Kundu, 2007). We reuse their example 
extending it to estimating the full posterior distribution by implementing the model in Stan (Gabry and Češnovar, 2022).

The QF and the QDF of the Govindarajulu distribution (Nair et al., 2012) are given by:

Q (u|σ ,γ ) = σ [(γ + 1)uγ − γ uγ +1]
q(u|σ ,γ ) = σγ (γ + 1)uγ −1(1 − u),

(14)

where σ , γ > 0. The distribution has support on Q (u|σ , γ ) ∈ [0, σ ]. Note, that the QDF in Nair et al. (2020) is slightly devi-
ating from their original formula shown above. We refer to Nair et al. (2012) for the correct definition of the Govindarajulu 
distribution (including the same distribution with shifted support).

We adopt the generalized exponential prior with hyperparameters α = 0.59012 and λ = 1, used by Nair et al. (2020) for 
the parameter γ of the Govindarajulu distribution. The CDF and PDF of the generalized exponential distribution are given 
by

F (x|λ,α) = (1 − e−λx)α

f (x|λ,α) = αλ(1 − e−λx)α−1e−λx,
(15)

where α, λ > 0. The support of the distribution is x ∈ [0, ∞]. The quantile function and the quantile density of this distri-
bution are:

Q (u|λ,α) = 1

λ
[− ln(1 − u1/α)]q(u|λ,α) = u(1/α)−1

αλ(1 − u1/α)
, (16)

where it is visible that Generalized Exponential distribution is a p-transformed exponential distribution (Gilchrist, 2000) 
with the scale parameter λ, and the shape parameter α.

Nair et al. (2020) estimated the σ parameter of the Govindarajulu distribution using L-moments and assumed it to be 
known and equal to 93.463 for this problem, which we adopt it as a fixed parameter, as well.
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Table 2
Summary of the posterior samples from the GenExp-Govindarajulu model.

parameter mean median q5 q95 rhat

gamma 2.132 2.1 1.638 2.73 1.001

Fig. 4. Prior and posterior distributions of the parameter ‘gamma’ in the GenExp-Govindarajulu model.

As discussed Section 2.3, since Govindarajulu distribution does not have a closed-form CDF, it would be inappropriate 
to write Y ∼ Govindarajulu(σ , γ ). Instead, our proposed notation highlights that the Govindarajulu distribution is defined 
via the QF, and it is, therefore, the degenerate random variate u that is inversely distributed according to this U-shaped 
distribution and not the observation y itself.

u
y� Govindarajulu(σ ,γ ). (17)

This notation also indicates the need to invert the QF to compute the random variate u corresponding to the observations 
y given the values of parameters σ , γ .

The resulting model takes the form

u
y� Govindarajulu(93.463, γ )

γ ∼ GenExp(1,0.59012).
(18)

The GenExp-Govindarajulu model has been validated using the Simulation-Based Calibration (Cook et al., 2006; Modrák 
et al., 2022; Talts et al., 2020). As evident from the diagnostic plots in the Supplementary Materials, the model parameters 
are successfully recovered for all widths of the posterior credible intervals.

We ran 2500 post-warmup iterations and 4 chains in Stan (Gabry and Češnovar, 2022). Table 2 summarizes the posterior 
distribution of the parameter γ of Govindarajulu distribution. We compare the prior and the posterior distribution in Fig. 4
and include the Bayes estimate by Nair et al. (2020), noting that the variation in the results could be attributed to the minor 
discrepancy in the quantile density formula between Nair et al. (2012) and Nair et al. (2020). The Stan code for this model 
can be found in the Supplementary Materials.

5.2. Parametric quantile regression

Quantile functions are useful not only for modeling the observables, but they can also be used to represent unobserved 
quantities of interest, such as the error term in a parametric quantile regression.

Using Gilchrist’s Linear Combination rule in Table 1 any quantile function can be represented as

Q (u|μ,σ , θ) = μ + σ Q s(u|θ), (19)

where Q s(u) is a “basic” quantile function (Gilchrist, 2000), μ and σ are location and scale parameters, respectively, and θ is 
an optional shape parameter. Many quantile functions, such as logistic Q (u) = μ +σ logit(u) or normal Q (u) = μ +σ�−1(u), 
are already in this form. Others, such as the SLD discussed in Section 2, can have location and scale parameters added to 
them to enable shifted and scaled support, e.g. Q (u|μ, σ , δ) = μ +σ [(1 − δ) ln(u) − δ ln(1 − u)]. The basic quantile functions 
(i.e. logit(u) for the logistic and �−1(u) for the normal) can be useful as the building blocks for constructing more complex 
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Fig. 5. Car stopping distance dataset.

distributions (Table 1). Basic quantile functions with the median centered at zero are called standard quantile functions 
(Gilchrist, 2000) denoted here as S(u|θ) = Q s(u|θ) − Q s(0.5|θ).

A simple linear regression of a random variable Y given the covariate X can be written as

yi = α + βxi︸ ︷︷ ︸
deterministic term

+ εi︸︷︷︸
stochastic term

, (20)

where yi is the i-th observation of Y , xi is i-th observation of covariate X , α and β are unknown intercept and slope, 
respectively. The εi represents the error, which in ordinary least squares (OLS) regression is assumed (or forced through 
the link function) to be normally distributed with the mean of zero. An alternative way of representing the error term is 
through a standard quantile function εi = Sε(ui |θ), where ui is the depth corresponding to the error εi in the regression 
model with the intercept α, slope β and the shape parameter θ (which are assumed to be independent).

yi = α + βxi + Sε(ui|θ), (21)

We want to emphasize that the traditional quantile regression introduced by Koenker (2005) is in essence semi-
parametric, because it does not require the user “to specify the distribution of the error term as it is allowed to take 
any form” (Yu and Moyeed, 2001). The regression Equation (21) represents the parametric quantile regression (PQR), because 
in this type of regression the error term is modeled explicitly (Gilchrist, 2008; Sharma and Chakrabarty, 2020; Su, 2015; 
Dean and King, 2009; Muraleedharan et al., 2016; Perri and Tarsitano, 2007, 2008).

Note that the deterministic term in (21) can be viewed as a location parameter in the quantile function

Q Y (ui|μi, θ) = μi + Sε(ui|θ), (22)

where μi = α + βxi . Likewise, if the stochastic component Sε(ui |θ) is made dependent on the covariate xi , the resulting 
PQR QF can capture the heteroscedasticity of the error term.

The depth ui can be found by inverting the quantile function ui � Q̂ −1
Y (yi |μi, θ). In cases where inverting the PQR 

QF may be analytically difficult (e.g. when the Sε(ui, θ) is not invertible), the numerical approximation can be used (see 
Section 4 above). Once the depths u = {u1, u2, . . . , un} are found, the likelihood of N observations y = {y1, y2, . . . , yn} given 
parameter θ can be calculated using the density quantile function corresponding to the PQR QF.

Because the deterministic term μi in PQR QF Q Y (ui |μi, θ) is additive and does not depend on the depth ui it can be 
dropped from the derivative.

[qY (ui |μi, θ)]−1 =
[

dQ Y (ui|μi, θ)

du

]−1

=
[

dSε(ui|θ)

du

]−1

= [qε(ui|θ)]−1, (23)

where [qε(ui |θ)]−1 is the density quantile function of the error term.
We illustrate the application of PQR using the car stopping distance data from Gilchrist (2000), sec. 12.4. The dataset 

(Fig. 5) contains 30 observations of the car speed and the corresponding stopping distances. As suggested by the physics’ 
kinetic energy equation (Lutus, 2021) the speed of the car is proportional to the square root of the braking distance. We can 
draw a mean regression line through the observations, as shown in Fig. 5 relating the car to the square root of the stopping 
distance using ordinary least squares (OLS). In the rest of this section we will estimate the quantile regression lines for the 
median, the 5th, and the 95th quantile using the PQR.

One of the simplest quantile functions which could be used to model the error in PQR is the logistic quantile function 
Q (u) = ln(u) − ln(1 − u). The distribution of the errors in the stopping distance model might be less “peaked” than the 
standard logistic distribution due to various factors (about vehicles or the drivers) not included in the model. Therefore, 
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adding some effect of the standard uniform quantile function u (Lampasi, 2008) might be reasonable. Flattened Logistic 
Distribution (FLD) described by Sharma and Chakrabarty (2019) combines the standard QFs of logistic and uniform distribu-
tions by applying positive affine transformation for scale and shape parameters (ref. Addition and Linear Combination rules 
in Table 1).

Q ε(u|χ,η,κ) = χ + η

⎡
⎢⎣ln(u) − ln(1 − u)︸ ︷︷ ︸

logistic

+κ × u︸︷︷︸
uniform

⎤
⎥⎦ , (24)

where χ is the location parameter, η, κ > 0 are scale and shape parameters, respectively. For the standard quantile function 
Sε(u|κ) = Q ε(u|κ) − Q ε(0.5|κ), the location should be set to 0 and the scale set to 1.

The Flattened Logistic Distribution is symmetrical. This assumption might be too restrictive for modeling the residuals 
in the car stopping distance model (e.g. because of inertia). Sharma and Chakrabarty (2020) replaced the logistic quantile 
function in the FLD with the skew-logistic quantile function; the resulting QF can be referred to as the flattened skew-
logistic distribution (FSLD).

The FSLD QF and the DQF are

Q ε(u|χ,η, δ,κ) = χ + η

⎛
⎜⎝(1 − δ) ln(u) − δ ln(1 − u)︸ ︷︷ ︸

skew-logistic

+κ × u︸︷︷︸
uniform

⎞
⎟⎠

[qε(u|χ,η, δ,κ)]−1 =
[
η

(
1 − δ

u
+ δ

1 − u
+ κ

)]−1

.

(25)

Since the variance in the speed Y increases with the car stopping distance X , a heteroscedastic model can be used to 
describe the error term in the PQR for the stopping distances. The resulting PQR QF and the corresponding DQF can be 
expressed as

Q Y (u|α,β, θ; x) = α + β
√

x + Sε(u; θ)
√

x

[qY (u|θ; x)]−1 =
[

dQ Y (u|α,β, θ; x)

du

]−1

= 1√
x
[qε(u; θ)]−1,

(26)

where α, β are intercept and slope, θ = {η, δ, κ} represent the parameters of the standard flattened logistic distribution 
Sε(u; θ) with the density quantile function [qε(u|θ)]−1, u is the depth corresponding to the error in the model for the 
speed y given the stopping distance x and the regression parameters {α, β, θ}. The depth u can be computed by inverting 
the PQR QF u � Q̂ −1

Y (y|α, β, θ; x) (26).
For each of the n observations of speed in the sample Y = {y1, y2, . . . , yn} we can compute Q Y = {Q Y (u1|α, β, θ, x1), . . . ,

Q Y (un|α, β, θ, xn)}, such that ui � Q̂ −1
Y (yi |α, β, θ, xi), i = {1, 2, . . .n}.

Let’s further assume that the expert’s prior belief about the intercept was elicited using a set of quantile-probability pairs 
and the best fit was achieved using the FLD quantile function with hyperparameters χ = 1, η = 1, and κ = 10. Similarly, the 
expert belief about the slope is described by the FSLD with hyperparameters χ = 2, η = 2, δ = 0.8, and κ = 2.

Since FLD and FSLD are quantile distributions, the prior for the parameters α and β of PQR must be defined in the 
quantile form. This means that the density quantile functions f (Q α(v)), f (Q β(w)) and the Jacobian adjustments |qα(v)|, 
|qβ(w)| can be dropped, as explained in Section 3.2 above.

f (Q α(v), Q β(w), θ |Q Y , x) ∝ L(θ; Q Y , x) f (Q α(v))|qα(v)| f (Q β(w))|qβ(w)| f (θ) =⇒
f (Q α(v), Q β(w), θ |Q Y , x) ∝ L(θ; Q Y , x) f (θ).

(27)

Therefore, the posterior distribution of the PQR parameters α = Q α(v), β = Q β(w), and θ can be expressed using the 
quantile-based likelihood (and the quantile-based prior for parameters α and β).
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Table 3
Summary of the posterior samples from the FSLD PQR model.

parameter mean median q5 q95 rhat

v 0.3452 0.3458 0.3224 0.3632 1.012
Q(v) 3.8107 3.8201 3.4817 4.0702 1.012
w 0.4599 0.4598 0.4485 0.4715 1.013
Q(w) 4.5148 4.5133 4.4254 4.6059 1.013
eta 0.2691 0.2625 0.1937 0.3655 1.014
k 0.1142 0.0804 0.0063 0.3171 1.057
dlt 0.8065 0.8329 0.5766 0.9426 1.084

Fig. 6. Posterior predictive quantiles (0.05, 0.5, 0.95) for stopping distances. (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)

f (α,β, θ |Q Y , x) ∝ L(θ; Q Y ,α,β, θ, x) f (θ)

L(θ; Q Y ,α,β, θ, x) =
n∏

i=1

f (Q Y (ui |α,β, θ; xi)) =
n∏

i=1

[
qε(ui|θ)

√
xi

]−1

Q Y (u|α,β, θ; x) = α + β
√

x + Sε(u; θ)
√

x

u
y� Q Y (α,β, θ; x)

v
α� FLD(1,1,10)

w
β� FSLD(2,2,0.8,2)

η ∼ Exp(1/10)

δ ∼ Beta(2,1)

κ ∼ Exp(1/0.1),

(28)

where f (θ) = f (η) f (δ) f (κ). Note that, as we discussed in Section 2.3, the Parametric Regression Quantile Function 
Q Y (u|α, β, θ; x) is not invertible and therefore it would be inappropriate to write Y ∼ Q Y (u|α, β, θ; x). Instead, we indi-

cate u y� Q Y (α, β, θ; x), which means that the likelihood is defined via the QF and needs to be inverted to find the random 
variate u corresponding to observations y. This notation also helps distinguish between the random variate used for likeli-
hood (u) and those used by the quantile-based priors (v and w for the parameters α and β , respectively).

The PQR model has been validated using the Simulation-Based Calibration (Cook et al., 2006; Modrák et al., 2022; Talts 
et al., 2020) in Stan. The diagnostic plots provided in the Supplementary Materials, show that the PQR model parameters 
are successfully recovered for all widths of the posterior credible intervals.

We ran 2500 post-warmup iterations and 4 chains using the Robust Adaptive Metropolis algorithm by Vihola (2012)
implemented in fmcmc package (Vega Yon and Marjoram, 2019) in R (R Core Team, 2021). The code is provided in the 
Supplementary Materials.

Table 3 summarizes the posterior distribution of the parameters in the parametric quantile regression model for the car 
stopping distances.

Posterior predictive check (Gabry et al., 2019) can be done by generating a grid of values for the car stopping distances x
and using randomly sampled parameters from the posterior distribution to compute the value of the response y using the 
PQR QF. Since in the PQR the regression equation is expressed in terms of the depth u we can extract the coherent (non-
crossing) quantile regression lines for any set of fractiles. Fig. 6 illustrates hypothetical outcome plots for the 5th, 50th, and 
95th quantile regression lines. The solid red lines are the conditional mean curves, representing the respective predictive 
quantiles.

11

71



D. Perepolkin, B. Goodrich and U. Sahlin Computational Statistics and Data Analysis 187 (2023) 107795

In order to assess the empirical goodness of fit, we calculated the proportion of data points falling below the 5th, 50th, 
and 95th predictive quantile. Out of n = 30 observations, 93% of observations fell inside the conditional 95% posterior pre-
dictive interval (shown as the outer solid red lines on the plot), while 57% of observations turned out below the predictive 
median curve.

6. Discussion and conclusion

In the past 20 years, many examples of using quantile distributions for the approximate Bayesian computation (ABC) 
appeared in the literature (Allingham et al., 2009; Drovandi and Pettitt, 2011; Dunson and Taylor, 2005; McVinish, 2012; 
Smithson and Shou, 2017). ABC methods normally do not require computation of the likelihood, which, in case of the 
quantile distributions, is convenient, as these distributions lack an explicit CDF and PDF.

Regardless of whether the distribution is defined by the CDF of the QF, the defining function sometimes needs to be 
inverted. If the inverse does not exist in closed form, the function has to be inverted numerically. In the case of the density-
based likelihood, the inverse distribution function may be needed for sampling from the posterior (e.g. for the posterior 
predictive check). In the case of the quantile-based likelihood, the inverse is needed for computing the intermediate depth 
values, corresponding to observations (conditional on covariates) for every draw of the parameters. No numerical inversion 
of the quantile function is needed for defining the quantile-based prior. A wide selection of efficient root-finding algorithm 
implementations in the popular statistical software makes the inversion of custom quantile functions accessible. We provide 
a generic wrapper for inverting arbitrary quantile functions using Brent method in the accompanying R package (Perepolkin, 
2019). Further research of custom root-finding algorithms for non-decreasing functions on unit-interval can make inverting 
of quantile function even more computationally efficient.

The quantile-based inference opens up a wide set of new distributions to serve as likelihood and/or prior in Bayesian 
models. Although many flexible density-defined distributions have been proposed in recent decades (Jones, 2015; Steel and 
Rubio, 2015), quantile distributions play an important role in certain field applications (Nair et al., 2013; Chalabi et al., 2012), 
as well as in expert knowledge elicitation and decision analysis (Mikkola et al., 2021; Hadlock, 2017; Powley, 2013). Besides, 
the flexibility offered by the distributions defined in terms of the quantile function (Gilchrist, 2007), and in particular 
their easily extensible nature (Table 1), allows ultimate freedom in expressing the expert-informed priors. In this paper we 
showed the connection of quantile parameter transformation to inverse transform sampling and used quantile distribution 
as a prior for regression parameters.

Multivariate versions of quantile distributions have been explored in the past (Field and Genton, 2006; Vineshkumar 
and Nair, 2019), but their adoption in the scientific literature remains low. One possibility of utilizing the flexibility of the 
quantile distributions in a multivariate setting is to employ them as marginal distributions for bivariate copulas, which 
can be assembled into higher-dimensional structures using vines (Czado, 2019; Kurowicka and Joe, 2011). When used as 
priors (Wilson, 2018), the copula structure can be elicited from the experts (Elfadaly and Garthwaite, 2017) along with the 
marginal quantile-probability pairs for fitting the quantile distribution (O’Hagan et al., 2006; Mikkola et al., 2021). Versatile 
and user-friendly multivariate quantile distributions represent an opportunity for further research.

Gilchrist (2007) provides a review of the traditional approach to quantile regression, as proposed by Koenker and Bassett 
(1978) and contrasts it with the fully parametric approach taken by PQR (Gilchrist, 2000, 2008; Su, 2015). The parametric 
approach to regression provides coherent (non-crossing) estimates of posterior quantiles, allowing the scientists to model 
the distribution of the error term explicitly (instead of making assumptions). Note that the parametric quantile regression 
may also be used with invertible distributions (logistic, normal, etc), as long they have computable QF and QDF (�−1(u)

and �−1(u)/du, for normal distribution).
Traditionally, the fitting of parameters in quantile distributions was performed using the matching of moments or L-

moments (Gilchrist, 2008; Asquith, 2007; Karvanen and Nuutinen, 2008), matching of percentiles (Karian and Dudewicz, 
2011), location and scale-free shape functionals (King and MacGillivray, 2007), distributional least squares/absolutes 
(Gilchrist, 2007; Sharma and Chakrabarty, 2020), and maximum likelihood (Rayner and MacGillivray, 2002; Su, 2007; Tar-
sitano, 2005). The various methods of obtaining parameter estimates for the quantile distributions have been extensively 
studied and compared, primarily in application to GλD (King and MacGillivray, 1999; Karian and Dudewicz, 2011; Fournier 
et al., 2007; Tarsitano, 2010), but also to some other distributions (Rayner and MacGillivray, 2002; Jeong-Soo, 2005). This 
paper generalizes the approach to quantile-based likelihood (Gilchrist, 2000; Rayner and MacGillivray, 2002; Haynes and 
Mengersen, 2005; Nair et al., 2020) connecting the previous research on parametric quantile regression (Gilchrist, 2008; Su, 
2015; Sharma and Chakrabarty, 2020) with more recently introduced work on quantile-based priors (Nair et al., 2020) and 
implementing both of these concepts in Stan (Gabry and Češnovar, 2022) and R (Vega Yon and Marjoram, 2019).

Since the definition of quantile function is usually mathematically simpler (and more easily extendable) than the re-
spective CDF and PDF (Gilchrist, 2000), quantile-based priors represent an inexpensive and flexible way of incorporating prior 
knowledge in Bayesian models. The unit sampling space may offer some additional computational advantage for MCMC/HMC 
algorithms. The quantile-based formulation of the prior may not be appropriate if the sampler constraints need to be defined 
on the parameter level (e.g. prior truncation). In such a case, the traditional density-based prior may be more useful.

Quantile-based likelihoods open a wide range of possibilities for designing flexible data generative models for special ar-
eas of application (e.g. Govindarajulu for reliability problems, Wakeby for modeling of floods, GLD in other instances) where 
the density-based equivalent is not available. The alternatives usually involve falling back to the non-Bayesian estimation 

12

72



D. Perepolkin, B. Goodrich and U. Sahlin Computational Statistics and Data Analysis 187 (2023) 107795

methods (Karian and Dudewicz, 2011; Asquith, 2007; Karvanen and Nuutinen, 2008) or using the approximate computation 
algorithms (Drovandi et al., 2011; Dunson and Taylor, 2005; McVinish, 2012), both of which are outside of the scope for this 
paper. The availability of efficient MCMC samplers (Gabry and Češnovar, 2022) and modern root-finding algorithms (Schäling, 
2011), make quantile-based likelihood computationally feasible. Gilchrist (2000) writes: “The lack of use of maximum like-
lihood is surprising as it is perfectly straightforward if one uses the general-purpose maximization software available rather 
than look for specific formulae for estimators”. We share his sentiment.

Embracing and expanding the use of quantile distributions in Bayesian analysis can enable new solutions for old problems 
and enrich the toolkit available to scientists for performing hard inference tasks. We hope that the quantile-based inference
methods presented in this paper can contribute to the expanding body of knowledge about the use of quantile functions in 
Bayesian statistics and fuel further research in the area of quantile distributions.

Data availability

The qpd R package used in this paper is available on Github at https://github .com /dmi3kno /qpd. Contact corresponding 
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Abstract
This paper extends the application of quantile-based Bayesian inference to probability distributions defined in terms of quan-
tiles of observable quantities. Quantile-parameterized distributions are characterized by high shape flexibility and parameter
interpretability, making them useful for eliciting information about observables. To encode uncertainty in the quantiles elicited
from experts, we propose a Bayesian model based on the metalog distribution and a variant of the Dirichlet prior. We discuss
the resulting hybrid expert elicitation protocol, which aims to characterize uncertainty in parameters by asking questions
about observable quantities. We also compare and contrast this approach with parametric and predictive elicitation methods.
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1 Introduction

1.1 Parametric and predictive approach to
elicitation

Bayesian parametric inference is about updating prior beliefs
about the model parameters in light of new observations. The
underlying assumption is that an expert’s prior knowledge (or
lack thereof) can be translated into a subjective probability
distribution of model parameters through the process of elic-
itation (Winkler 1967). The direct elicitation of parameters
represents a structural approach to extracting an expert’s
knowledge (Kadane 1980). This approach requires that the
expert comprehends the model and the role a specific param-
eter plays within it. Unfortunately, some parameters may be
abstract, challenging to interpret (such as α and β parameters
in the Gamma distribution), and at times not independent, as
is the case with parameters in a hierarchical model.
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An alternative approach involves eliciting information
about observable quantities, possibly conditioned on observ-
able covariates (Kadane and Wolfson 1998), which may
be more intuitive and relatable for experts. The elicita-
tion of predictions aims to assess the expert’s uncertainty
regarding future observations (Gelman et al. 2013). Kadane
and Wolfson (1998) advise against eliciting moments, with
the exception of possibly the first moment (the arithmetic
average). Instead, assessment should be carried out using
quantiles or probabilities from the predictive distribution.
The challenge with eliciting the predictive distribution is that
it makes no distinction between the randomness explained by
the model and the uncertainty about the parameters within it.
Without this distinction, updating the expert predictions with
the data coming from the new observations may be challeng-
ing.

While the non-Bayesian elicitation often stops at the
quantiles or probabilities related to the expert’s predictive
judgment (Spetzler and Staël Von Holstein 1975; Morgan
2014; Keeney and von Winterfeldt 1991; Hanea et al. 2021),
the Bayesian school of thought attempts to devise a method
to infer the prior distribution, which could have led to the par-
ticular predictions expressed by the expert (Akbarov 2009;
Hartmann et al. 2020; Winkler 1980; Kadane and Wolfson
1998; Bockting et al. 2023; Manderson and Goudie 2023).
Kadane (1980) refer to this process of eliciting the predictive
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distribution followed by inferring the prior as the predictive
approach, as it leverages predictions to derive the distribution
of parameters.

1.2 Aims of the paper

In this paper, we propose a hybrid elicitation approach,
which combines the elicitation of observable quantities with
the elicitation of the associated uncertainty. This method
combines elements of both the predictive and structural
approaches to elicitation and can be employed to establish
the prior distribution for a model defined by a quantile-
parametrized distribution.

Quantile-parameterized distributions (QPDs) (Keelin and
Powley 2011; Hadlock 2017) are parameterized by a set of
quantile-probability pairs describing a random variable. As
a result, the parameters in a QPD are measured on the same
scale as the random variable they represent. These distribu-
tions can be utilized to model either uncertainty about future
observations (predictive distribution) or the distribution of an
unobservable parameter (prior distribution). For a compre-
hensive review of quantile-parameterized distributions, we
refer to Perepolkin et al. (2023b).

Until now there has been, to the best of our knowledge, no
published research on how to update the quantile parameters
of a QPD in light of the new observations. This paper extends
the principles of quantile-based Bayesian inference (Pere-
polkin et al. 2023a) tomodels parameterized by quantiles and
proposes a prior distribution capable of capturing uncertainty
in the quantile parameters. The proposed approach enables
the elicitation and Bayesian updating of a variable quantity
with minimal assumptions about the underlyingmodel struc-
ture.

1.3 Paper structure

Section 2 introduces the method of quantile-based inference
as proposed by Rayner and MacGillivray (2002) and Nair
et al. (2020), and summarized in Perepolkin et al. (2023a).
This method of inference is related to using one of the
quantile-based distributions (Perepolkin et al. 2023b), which
lack an explicit distribution function (CDF) and probability
density function (PDF), as either prior or likelihood com-
ponents within a Bayesian model. Quantile-based priors and
likelihoods rely on substitutions derived from the inverse dis-
tribution function, known as the quantile function (QF).

In Sect. 3, we delve into a subclass of quantile-based
distributions parameterized by sets of quantile-probability
pairs (Fig. 1). We provide a brief overview of the litera-
ture concerning different methods for constructing quantile-
parameterized distributions (QPDs). Our particular focus is
on the quantile-based quantile-parameterized metalog distri-
bution (Keelin 2016), chosen for its parameter flexibility.

In Sect. 4 we introduce the Bayesian model in which
the likelihood is expressed using the metalog distribution,
parameterized by a set of quantile-probability pairs. We
demonstrate how uncertainty in these parameters can be
specified through a variant of the Dirichlet distribution. Sec-
tion5 describes the elicitation of the QDirichlet prior and
introduces a novel hybrid elicitation process for obtaining
quantile-probability pairs along with the uncertainty asso-
ciated with them. We illustrate our approach with excerpts
from a hypothetical interview. The accompanying qpd R
package (Perepolkin 2019), implements several quantile-
parameterized distributions and includes functionality for
supporting the elicitation of the Dirichlet and Connor–
Mosimann distributions (Elfadaly and Garthwaite 2013).

Section 6 discusses the MCMC-based algorithm used for
updating parameters in a quantile-parameterized distribution.
In this paper, we employ Hamiltonian Monte Carlo algo-
rithm in Stan, interfaced by the cmdstanr package in R
(Gabry and Češnovar 2022). An alternative implementation
using the Robust Adaptive Metropolis algorithm by Vihola
(2012), interfaced by the fmcmc package (Vega Yon and
Marjoram 2019), is available in the Supplemental Materi-
als. The models proposed in this paper have been validated
using Simulation-Based Calibration (Cook et al. 2006; Mod-
rák et al. 2022; Talts et al. 2020). The results of the simulation
studies (provided in Appendix C in Supplemental Materials)
demonstrate the successful recovery of the parameter values
for all widths of the posterior credible intervals.

We conclude the paper by discussion and summary of the
results in Sect. 7.

2 Quantile-based Bayesian inference

The use of non-invertible quantile-based distributions as
either a likelihood (Rayner and MacGillivray 2002; King
1999) or a prior (Nair et al. 2020) is not a novel concept in sci-
entific literature. Rayner and MacGillivray (2002) described
a three-step process for computing the log-likelihood of a
quantile-based distribution. They applied this method to esti-
mate the parameters of the g-and-k and generalized g-and-h
distributions using maximum likelihood estimation. Simi-
larly, Nair et al. (2020) employed quantile function substitu-
tions to express both prior and likelihood in a quantile form.
They calculated the posterior Bayes estimator of the parame-
ters in theGovindarajulumodelwith uniformandgeneralized
exponential priors. Perepolkin et al. (2023a) summarized the
approaches to quantile-based inference and provided several
examples of applying the principles of inference with quan-
tile functions in both univariate and regression settings.

For a random sample x = {x1, x2, . . . xn}, the posterior
distribution of θ over the parameter space � can be summa-
rized as:
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Fig. 1 Probability distributions,
quantile-based distributions and
parameterization by quantiles

f (θ |x) ∝ L(θ; x) f (θ) (1)

where f (θ |x) is the posterior distribution of θ after having
observed the sample x , f (θ) is the prior distribution of θ ,
and L(θ; x) = ∏n

i=1 f (xi |θ) is the density-based form of
the likelihood.

Consider a set of conditional probabilities u = {ui |θ} =
{F(xi |θ)}, i = {1, 2, . . . n}, corresponding to the sample
x of the observable x with distribution function F given
the parameter θ , called depths. The conditional probabil-
ities u are degenerate random variables that are entirely
determined given the observations x and the value of
the parameter θ . They are called depths, because they
indicate how “deep” a particular observation is within
the distribution. Using the depths u, we can calculate
Q = {Q1(u1), Q2(u2), . . . Qn(un)|θ}, where Q(u|θ) =
F−1(u|θ) represents the quantile function or inverse cumu-
lative distribution function (CDF). Since Q(ui |θ) = xi , we
can substitute Q for x , and the Bayesian inference formula
(1) becomes:

f (θ |Q) ∝ L(θ; Q) f (θ) (2)

We refer to this form of the likelihood L(θ; Q) =
∏n

i=1 f (Q(ui |θ)) = ∏n
i=1[q(ui |θ)]−1 as quantile-based

because it relies on the calculation of intermediate depths
ui = F(xi |θ), i = {1, 2, . . . n}. Here [q(ui |θ)]−1 is recipro-
cal to the derivative of the quantile function Q(ui |θ) called
the density quantile function (Perepolkin et al. 2023a).

Both forms of the likelihood, L(θ; Q) and L(θ; x), are
equivalent and yield the same posterior beliefs about the
parameter θ (Perepolkin et al. 2023a).

3 Quantile parameterization of distributions

In this section, we consider a special class of distributions
where the parameters are specified by quantile-probability
pairs (Fig. 1), and see how the concept of quantile-based
inference (Perepolkin et al. 2023a) can be applied to these
distributions, as well.

A set of n quantile-probability pairs, denoted as S =
{(pi , qi )}, i = {1, 2, . . . n}, can be thought of as compris-
ing a pair of ordered vectors: a vector of probabilities p and
a vector of quantiles q, with p = {p1, . . . pn}, pi ∈ [0; 1],
and q = {q1, ..qn}, i = {1, 2, . . . n}. As CDF F(x) = p
is a non-decreasing function, the vectors p and q are con-
sidered properly ordered iif qi ≤ qi+1,∀qi ∈ q, and
pi ≤ pi+1,∀pi ∈ p. Additionally, the quantile-probability
pairs within the set S are considered distinct iff ∀{(pi , qi )} ∈
S, ∃!{(p j , q j )} = {(pi , qi )}, j �= i , i = {1, 2, . . . n},
j = {1, 2, . . . n}. In this paper, we refer to the set of n dis-
tinct, properly ordered quantile-probability pairs as a size-n
quantile-probability tuple (QPT) denoted by {p, q}n .

3.1 SPT-parameterization

A recent review (Perepolkin et al. 2023b) describes two
methods for constructing distributions parameterized by
quantile-probability pairs:

• By reparameterization of existing distributions, or
• Through an optimization step, where the distribution
parameters are mapped to quantiles using least squares
or similar algorithms.
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Distributions falling under in the first category are typ-
ically parameterized by the symmetric percentile triplet
(SPT), a QPT of size 3. In the SPT, the middle cumu-
lative probability p2 = 0.5 represents the median, while
p1 = 1 − p3 = α, α ∈ (0, 0.5) (e.g. {0.25, 0.50, 0.75} or
{0.10, 0.50, 0.90}). Examples of SPT-parameterized QPDs
include the Myerson distribution (Myerson 2005), the John-
son Quantile-Parameterized distribution (J-QPD) (Hadlock
and Bickel 2017), and their generalizations (Perepolkin et al.
2023b; Hadlock and Bickel 2019). A special case of SPT-
parameterization also exists for the metalog distribution
(Keelin 2016). For the purposes of this paper, we do not con-
sider SPT-parameterized QPDs, including the SPT-metalog,
Myerson, or J-QPD, due to their strict requirement for sym-
metric probability parameterization.

3.2 Parameterization using implicit functions

Keelin and Powley (2011) and Powley (2013) introduce an
alternative method of parametrizing a distribution by a set
of quantile-probability pairs. This method relies on the finite
Taylor series expansion of parameters within a known quan-
tile function as linear functions of the cumulative probability
p.

The authors created the SimpleQ-Normal (SQN) distribu-
tion by taking the quantile function of a normal distribution
x ≡ μ + σ�−1(p), and making the parameters μ and σ

functions of p; specifically, μ(p) = a1 + a4 p and σ(p) =
a2+a3 p. In a similar vein, Keelin (2016) proposed the meta-
logistic (metalog) distribution by making the parameters μ

and s in the logistic quantile function x ≡ μ+slogit(p)be the
functions of p, i.e.μ = a1+a4(p−0.5)+a5(p−0.5)2+. . .

and s = a2 + a3(p − 0.5) + a6(p − 0.5)2 + . . . . Here, μ

represents the mean, s is proportional to the standard devia-
tion such that σ = sπ/

√
3, logit(p) = ln(p/(1 − p)) is the

log-odds of probability p ∈ [0, 1] and ai , i = {1, 2, . . . n}
are real constants.

In both cases, the quantile function Q(p) whose param-
eters also depend on p is an implicit function. This means
that such a quantile function cannot be simply computed for
arbitrary values of p. Nevertheless, with a set of n quantile-
probability pairs, it is possible to determine the constants
ai , i = 1, 2 . . . n, by solving a system of n linear equations
(Keelin and Powley 2011; Powley 2013). This system can be
represented as the matrix Equation (3).

a = P−1q (3)

Keelin and Powley (2011) show the conditions under
which a size-n QPT {p, q}n can uniquely determine the con-
stants a = {a1, . . . an}. Additional details of the metalog
distribution, including the composition of the matrix P, can
be found in Appendix A in Supplemental Materials.

The shape flexibility of the QPD increases with the
number of terms added to the finite Taylor expansion of
parameters within the parent distribution. To estimate the
coefficients for the n-term quantile-parameterized distribu-
tion a = {a1, . . . an}, a minimum of n quantile-probability
pairs is required. The order of the terms, denoted as n, is con-
strained by the size of the parameterizing QPT m, (n ≤ m),
and concerns for overfitting. The QPT used for parameteriz-
ing a distribution can be obtained through expert elicitation
or from the empirical CDF (ECDF), which is constructed
from a sample of observations. The ECDF begins at zero and
increments by 1/m at each of them data points in the sample,
representing the fraction of observations that are less than or
equal to the specified value (Wasserman 2006).

Depending on the relationship between the size of the
parameterizing QPT m and the number of terms n in the
QPD QF we use the following terminology:

• When the size of the parameterizing QPT m equals the
number of terms n in the QPD QF, i.e. m = n, we refer
to the process of estimating the vector of coefficients
a = {a1 . . . an} as “fitting”, and we call the resulting
QPD “properly parameterized”. In properly parameter-
ized QPDs, the QF curve is guaranteed to pass through
everyQPTpoint.We label the n-termmetalog parameter-
ized by the n-size QPT {p, q}n as the proper n-metalog.

• When the size of the parameterizing QPT m exceeds the
number of terms n in the QPD’s QF (for example, when
the QPT is derived from the sample ECDF and m > n),
we refer to the process of estimating the vector of coef-
ficients a = {a1 . . . an} as “approximating”, and we call
the resulting QPD “approximated”. Such approximation
is typically achieved through optimization or regression,
and the resultingQF curve is no longer guaranteed to pass
through every QPT point. We designate the n-term met-
alog parameterized by the m-size QPT {p, q}m, m > n
as the approximate n-metalog.

Given the matrix Equation (3), we have two alterna-
tive parameterizations for the proper n-metalog: it can
either be directly parameterized by the coefficients a =
{a1, . . . an} (referred to as the A-parameterization) or indi-
rectly parameterized by a QPT {p, q}n (referred to as the
QPT-parameterization). Therefore, in this paper, when we
mention the proper n-metalog, the notations QMn (u|a) and
QMn (u|p, q) (where u|a or u|p, q represents the depths cor-
responding to the observation x) are used interchangeably.
In the case where the metalog is approximated, only the A-
parameterization is suitable because the number of metalog
terms n is not determined by them data points from theECDF
used to estimate the parameter vector a via Equation (3).
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4 QDirichlet-metalogmodel

In this section, we introduce a Bayesian model with the
likelihood defined by the proper n-term metalog. Since the
metalog is a quantile-based distribution (Fig. 1), we employ
the quantile-based likelihood following Equation (2). The
quantile-based likelihood relies on the intermediate depths
u|θ , which correspond to the sample of observations x .
Since a closed-form CDF for the metalog distribution is not
available, we resort to numerical approximation, denoted as
u = Q̂−1

X (x) (Perepolkin et al. 2023a).

4.1 Parameter uncertainty

To account for the uncertainty in the QPT parameters of a
quantile-parameterized likelihood, such as the metalog, we
must introduce uncertainty either in cumulative probabili-
ties or the corresponding quantile values (or both). Coles
and Tawn (1996) specified the prior for an extreme value
model in terms of the quantile values for certain fixed cumu-
lative probability values. Crowder (1992) suggested that the
prior can be constructed based on the space of probabilities,
with fixed quantiles. In a recent paper on predictive elici-
tation, Hartmann et al. (2020) divided the observable space
into several exhaustive andmutually exclusive categories and
asked experts to assign probabilities that the next observation
falls into each of the categories, treating these probabilities as
uncertain. They assigned aDirichlet prior to these probability
judgments.

We follow a similar approach by using the quantile val-
ues provided by the expert to partition the outcome space.
We then characterize the uncertainty in the correspond-
ing cumulative probabilities using the Dirichlet distribution
(together referred to as the QDirichlet prior). Our method
of constructing a prior distribution for the simplex 	 shares
similarities with the approach adopted by Bürkner and Char-
pentier (2020) for modelling monotonic effects in ordinal
regression. The parameter vector of theDirichlet distribution,
in conjunction with the vector of elicited quantiles, serves as
hyper-parameters for the proposed QDirichlet prior, which
captures the uncertainty in the parameters of the quantile-
parameterized model.

4.2 The QDirichlet prior

Consider a size-nQPT {p, q}n , consisting of a vector of prob-
abilities p and a vector of quantile values q. Now, consider
an extended vector of probabilities b = {0, p, 1} of size
n + 2, containing the vector p. Additionally, consider a for-
ward difference 	 = {	1 . . . 	n+1}, where 	i = bi+1 − bi ,
i = 1, 2, . . . (n + 1), which is a simplex of size n + 1. The
simplex 	 is properly ordered iif it is based on the properly
ordered vector b, and consequently, also p.

To transform the simplex 	 back into the vector of prob-
abilities p, the cumulative sum 
n

1() can be used, so that

p = 
n
1(	) : p j = ∑ j

i=1 	i , j ∈ (1 . . . n), assuming
the simplex 	 is properly ordered. If, for any reason, the
simplex 	 can no longer be considered properly ordered,
we can use an index vector of distinct values, denoted as
I = {I1 . . . .In} : I j = {1, 2, . . . n}, j = {1, 2, . . . n},
∃!I j = Ii , j �= i . This index vector can be used to restore
the proper order before accumulating the simplex 	 into the
probability vector p.

To express prior uncertainty in the simplex 	, we can
use the Dirichlet distribution (Johnson et al. 1997) with a
hyperparameter vector α of size n + 1, conditional upon the
specified quantile values q. We refer to this particular variant
of the Dirichlet prior as theQDirichlet prior, as its parameter
vector α is specified in relation to the fixed quantile values
q.

4.3 Themetalog likelihood

We adopt the notation for quantile-based likelihoods intro-
duced in Perepolkin et al. (2023a), where u

x� . . . should be
read as “the depths u corresponding to the random variable
x inversely distributed as …”. Consequently, QDirichlet-
Metalog model can be expressed as follows:

u
x� Metalog(p, q)

	 ∼ Dirichlet(α|q);
p = 
n

1(	);
(4)

where 	 is a simplex of size n + 1, 
n
1() is the cumulative

sum operator, p is a size-n vector of cumulative probabilities
and q is the corresponding size-n vector of quantiles. Fur-
thermore, u is the depth corresponding to the observable x
given the parameterizing QPT {p, q}. The depths u can be
computed (typically numerically) by inverting the quantile

function Q̂−1(x |p, q). Themetalog quantile function is indi-
rectly parameterized by the QPT {p, q}n through the vector
of metalog coefficients a, determined by the matrix Equation
(3).

In Model (4), the prior is represented by the Dirichlet dis-
tribution with hyperparameter α specifying the uncertainty
in the cumulative probabilities and a vector q representing
the quantile values corresponding to the sampled cumula-
tive probabilities (QDirichlet prior). The metalog (quantile-
based) likelihood parameterized by the QPT {p, q}n relies
on depths u which can be estimated using the numerical
inverse of the metalog quantile function (Perepolkin et al.
2023a).
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4.4 Eliciting Dirichlet distribution

Elfadaly and Garthwaite (2013) describe a method for infer-
ring the parameter vectors of the Dirichlet and Generalized
Dirichlet (Connor–Mosimann) distributions from the condi-
tional univariate beta distributions. In this method, the expert
assesses the quartiles of the probability for each category
using the elicitation of the symmetric percentile triplet (SPT)
as follows:

1. The expert assesses the probability quartiles for the first
category p1.

2. The expert is then asked to assume that the median value
they provided in the assessment of p1, is in fact the correct
probability (true value) for the first category.

3. Next, the expert proceeds to assess the SPT for the
next category, conditional upon the previous assessment,
denoted as p2|p1.

4. The three quartiles of p2|p1 are divided by 1 − p1 to
normalize them, i.e. p∗

2 |p1.
5. The hyperparameters of the beta distribution representing

p∗
2 |p1 are the determined.

6. Steps 3–5 are repeated for all categories, except the last
one.

Elfadaly and Garthwaite (2013) also propose an improve-
ment to Pratt et al. (1995)’s method of fitting the beta
distribution to the elicited conditional SPTs based on the
normal approximation described in Patel and Read (1996).
The α and β parameters of the conditional beta-distributions
are then normalized and the hyperparameter vector α =
{α1 . . . αn+1} is estimated.

The elicitation method proposed by Elfadaly and Garth-
waite (2013) can be applied to assess the uncertainty in the
cumulative probabilities that parametrize the metalog likeli-
hood. If elicitation starts with the left tail of the distribution,
the first category will coincide with the first cumulative prob-
ability p1 in the parameter vector p. Subsequent (higher)
cumulative probabilities will always be conditional upon and
include the median value of the lower probability. If the elic-
itation is performed out of order, which might be expedient
to avoid anchoring effects (Spetzler and Staël Von Holstein
1975; Abbas et al. 2008), the integer index vector I of the
same size can be provided alongwith the results of the assess-
ment to restore the proper ordering of the simplex 	 after
sampling and before its accumulation into the vector of prob-
abilities p.

Note that the parameter vector p in the model (4) is not
independent: it is paired with the vector of fixed quantile
values q. There are several approaches to specifying the
hyperparameter vector q.

• Predictive distribution. The vector q could be coming
from the characterization of the prior predictive distribu-
tion. In this scenario, we could ask the expert to specify
their uncertainty regarding the next observation using
standard predictive elicitation techniques described in
Morgan et al. (1990) or Spetzler and Staël Von Hol-
stein (1975). Predictive elicitation results in the QPT
{p∗, q∗}n , of which vector q∗ can be adopted as the true
values of q, while the vector of cumulative probabilities
p∗ can serve as the initial values for the MCMC/HMC
algorithm.

• Hypothetical sample. Alternatively, the vector q could
be viewed as a representative sample from the predictive
distribution. Randomly sampling the predictive distri-
bution has the advantage that the values closer to the
distribution’s mode are more likely. However, if the sam-
pled values ofq are too closely spaced, fitting theMetalog
to the QPT {p, q}n within the MCMC loop may become
challenging.

The primary goal of eliciting the vector q is to position
the prior on the data (x) scale and provide a reasonable base-
line for the follow up elicitation. In fact, the hyperparameter
vector q specifies the location of the QDirichlet prior, while
the hyperparameter vector α is responsible for defining its
shape.

5 Applications

In this section, we provide an example of hybrid elicitation
for parameterizing the QDirichlet prior to describe the uncer-
tainty in the {p, q}n parameters of the proper metalog.

5.1 Steelhead trout weights

We take a sample of 100 observations from the records
of steelhead trout weights captured and released in Babine
River, Canada, spanning the years of 2006-2014 (Fig. 2).
The dataset has been published by Keelin (2016) and is also
included in the rmetalog (Faber and Jung 2021) package,
which is accessible on CRAN.

Our goal is to elicit prior beliefs regarding the distribution
of fish weights from a hypothetical expert and subsequently
update those beliefs in light of the sampled data. Sections5.2
and 5.3 outline the elicitation process and provide details on
the required diagnostics for prior specification and posterior
inference.
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Fig. 2 Summary of the sample from the steelhead trout dataset

Table 1 Quantile-probability pairs for the predictive distribution of fish
weights

Cumulative probability, p* Weight in lbs, q*

0.1 4

0.5 9

0.9 17

5.2 Specifying location of the prior

The hybrid elicitation involves of two phases: the elicitation
of quantile values q and the elicitation of uncertainty in the
associated cumulative probabilities (i.e. potential vectors of
p that could correspond to the specified q).

Imagine conducting an interview with an experienced fly-
fisherman to gather information about steelhead troutweights
inCanadian rivers.Webeginwith the elicitation of the predic-
tive QPT using the probability-value (PV) method (Spetzler
and Staël Von Holstein 1975; Abbas et al. 2008). After
guiding the expert through essential preparatory steps (moti-
vating, structuring, conditioning, encoding and verification),
we elicit the following predictive QPT {p∗, q∗}3 (Table 1).

Physical weight can be represented by non-negative val-
ues, suggesting the use of a distribution bounded on the left.
To model this, we employ a semi-bounded log-metalog for
the predictiveQPTvalues (Fig. 3). Notably, the three cumula-
tive probabilities p∗ provided by the expert divide the y-axis
of the CDF into four distinct bands (highlighted by different
colors in Fig. 3). These bands can be seen as categories into
which a weight of a randomly drawn fish could fall on the
empirical CDF curve. Similar to the approach taken in Hart-
mann et al. (2020), we use the elicited quantile values q∗ to
partition the outcome space into the exhaustive and mutually
exclusive categories. The widths of the bands correspond to
the increments in cumulative probabilities provided by the

Fig. 3 Probability bands corresponding to the four fish size categories

Table 2 SPT for the count of the small fish (less than 4 lbs)

Cumulative probability Fish count

Small fish 0.25 70

0.50 90

0.75 120

All fish counts are out of the sample of 1000

expert, as represented by the simplex 	 in the model (Equa-
tion (4)).

In the second step of the hybrid elicitation we elicit uncer-
tainty regarding these probability band widths 	, using the
values q as reference points to delineate the categories to
which the random variate pi ∈ p, i = {1, 2, . . . n} would
be associated.

5.3 Hybrid elicitation of the QDirichlet prior

The predictive QPT {p∗, q∗}n we elicited earlier does
not inherently incorporate uncertainty (except for potential
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Fig. 4 Conditional beta distribution fitted to the quartiles provided by the expert

imprecision or inconsistencies in the expert’s expression of
belief). During this phase, we ask the expert to consider
uncertainties surrounding their quantile assessments, aiming
to distinguish aleatory from epistemic uncertainties (Knight
1921). A possible drawback of commencing with predictive
elicitation, as we did above, is that the specified vector p∗
might anchor the expert’s belief to these values, potentially
affecting the range of probabilities that the expertwould asso-
ciate with the vector q. The expert might be inclined to allow
only a small and likely symmetrical variation around the ini-
tially specified p∗ values, hesitating to revise their judgments.
On the other hand, the specified p∗ values can serve as a
starting point for discussion with the expert, validating their
beliefs, and deliberately challenging the expert to reassess
them.

The term “aleatory” signals the use of the sampling frame,
prompting us to shift from assessing the properties of popula-
tion to the evaluating the properties of an imaginary sample.
In this elicitation phase, we transform the cumulative prob-
abilities into natural frequencies (Gigerenzer 2011), treating
the values of pi ∈ p, i = {1, 2, . . . n} as proportions within
a hypothetical large sample.

Recall that the expert has supplied us with a predic-
tive QPT {p∗, q∗}3, where p∗ = {0.1, 0.5, 0.9} and q∗ =
{4, 9, 17} (Table 1).

Interviewer:
Consider a large sample of steelhead trout caught in
British Columbia over the past few years, let’s say
1000 fish. Based on your assessment, it’s expected that
around 100 fish would weigh less than 4 lbs.

The elicited predictive QPT is interpolated with a log-
metalog and presented in Fig. 3. Considering the sampling
frame, the curve we’ve drawn through the three points pro-
vided by the expert is just one of numerous empirical CDF
curves that could be constructed given the inherent sampling
uncertainty.

Table 3 Conditional SPTs for the counts of the fish in the 1000 fish
sample

Category∗ P25 P50 P75

1 Small fish 0.07 0.090 0.12

2 Medium fish 0.34 0.410 0.50

4 Huge fish 0.05 0.075 0.15

∗Small fish is under 4 lbs, Medium fish is 4–9 lbs, Huge fish is over 17
lbs

Table 4 Dirichlet parameter
vector

Category a

1 Small fish 3.77

2 Medium fish 12.86

4 Huge fish 2.70

3 Large fish 10.72

Table 5 Connor–Mosimann
parameter vectors

Category a b

1 Small fish 5.87 55.24

2 Medium fish 6.77 8.01

4 Huge fish 1.32 5.25

We proceed with the elicitation by asking the expert to
contemplate the fish weight cutoff of 4 lbs.

Interviewer:
Let’s delve into this hypothetical sample of 1000 fish.
According to your assessment, there should be approx-
imately 100 fish weighing less than 4 lbs. We will
interpret this assessment as you believing that there’s
about equal chance that the actual number of “small”
fish (weighing less than 4 lbs) in this sample is either
above or below 100. In essence, we interpret it as the
median assessment. Would you like to reconsider this
value?
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Fig. 5 Prior predictive check for Dirichlet distribution

At this stage, the expert may choose to adjust their assess-
ment of the median. Once the median value of the first
category is confirmed, we can proceed with the elicitation of
the range around it. We follow the conventional fixed proba-
bility encodingmethod (Abbas et al. 2008; Spetzler and Staël
Von Holstein 1975) asking the expert about the range of fish
counts in the sample (which actually represent cumulative
probabilities) corresponding to the quartiles or the 10th/90th
percentile.

Suppose, the expert has furnished us with the revised
median and the 50% Interquartile Range (IQR) around the
initially assessed probability p∗

1 = 0.1 for the count of
“small” fish in the hypothetical sample of 1000, as summa-
rized in Table 2.

From this information, we can promptly deduce the uncer-
tainty in the “width” of our first bin. It is now characterized
by a symmetric percentile triplet {0.07, 0.09, and 0.12} with
α = p1 = 1 − p3 = 0.25. Employing this SPT, we can fit
the beta distribution (Fig. 4) using the method proposed in
Elfadaly and Garthwaite (2013).

We then proceed to with the conditional elicitation of
probabilities for the remaining fish weight categories and

uncertainties associatedwith them, conditional on themedian
values of the previously elicited categories. During this
phase, we ask the expert:

Interviewer:
Let’s assume that in the sample of 1000 fish, precisely
90 were found to be small (weighing less than 4 lbs).
What would be your estimate of the number of fish that
would fall within the weight range of 4 to 9 lbs in such
a sample?

In this question, we are soliciting the expert’s input for
a conditional probability distribution. Therefore, we do not
hold the expert accountable for their previous assessment,
where they implied that approximately half of the population
would weigh 9 lbs or less (as suggested by the cumulative
probability of 0.5).Weanticipate that themedian countwould
be close to 500 fish, but not necessarily an exact match. Our
aim is to elicit the count of fish weighing between 4 and
9 lbs. However, if the expert prefers to provide us with the
count corresponding to the “exceedance probability” (i.e.,
for 2 categories combined), we should subtract the median
count of the first category, which is 90.
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Fig. 6 Prior predictive check for Connor–Mosimann distribution

For a total of N groups, we should only need to conduct
N − 1 elicitations (a total of 3 elicitation of triplets in our
case). It might be convenient to elicit the top quantile (repre-
senting the upper tail of the CDF) as 1−∑3

i=1 pi ) and leave
the quantiles for the “Large fish” category (fish weighing
between 9 and 17 lbs) to be calculated from the remaining
information.

Let’s assume that, after eliciting the three conditional SPTs
and converting the hypothetical sample counts to probabil-
ities, we obtain the following assessments (Table 3). Note,
that the assessments for the category 3 Large fish are missing
from the table. They are implied (and will be inferred from)
the rest of the data.

5.4 Fitting Dirichlet and Connor–Mosimann
distributions

We can utilize the elicited conditional SPTs to derive param-
eter vectors for the Dirichlet (Table 4) or Connor–Mosimann
(Table 5) distributions following the process in Elfadaly and
Garthwaite (2013). The algorithm for transforming the con-

ditional SPTs into parameter vector(s) is implemented in the
qpd R package (Perepolkin 2019).

TheDirichlet distribution defines a strong negative depen-
dence between the elements of the simplex 	, meaning that
an increase in the probability of one element necessarily
decreases the probability of every other element (Balakrish-
nan 2014). The Connor–Mosimann distribution relaxes this
assumption of a strong negative correlation between the cat-
egories, allowing for amore flexible encoding of dependence
between the quantiles (Wilson 2017).

5.5 Prior predictive check

Prior predictive checks are crucial for providing the expert
with feedback on the elicited values and diagnosing potential
issues (Gabry et al. 2019). Since uncertainties in the quantile
probabilities were elicited as conditional probabilities, it is
important to show to the expert the impact of the provided
probability ranges on the overall multivariate distribution.
This can be accomplished, for example, usingmarginal plots.
We can draw samples from the Dirichlet distribution (Fig. 5)
or the Connor–Mosimann distribution (Fig. 6) and present
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Fig. 7 Summary of the posterior draws for 	 simplex

the expert with an overview of the parameter distribution in
the same format that will be used for the posterior predictive
check (Fig. 8 in Sect. 6).

6 MCMC implementation

To sample from the posterior distribution of 	,we employed
the Hamiltonian Monte Carlo (HMC) algorithm in Stan,
interfaced via the cmdstanr package (Gabry and Češnovar
2022) in R. An alternative implementation using the Robust
Adaptive Metropolis algorithm by Vihola (2012), imple-
mented in the fmcmc package (Vega Yon and Marjoram
2019), is provided in the Supplemental Materials

We validated the QDirichlet-Metalog model using the
Simulation-Based Calibration algorithm (Cook et al. 2006;
Modrák et al. 2022; Talts et al. 2020). As evident from the
diagnostic plots in the Supplemental Materials Appendix C,
the parameter 	 is successfully recovered for all widths of
the posterior credible interval.

We have also performed Simulation-Based Calibration
for the model with QCM (Generalized Dirichlet) prior. The
diagnostic plots also indicate the successful recovery of the
parameter vector for all widths of the posterior credible inter-
val.

To fit the QDirichlet-Metalog model, we used 2500 post-
warmup iterations and 4 chains. The posterior distribution of
the parameter	 is presented in Table 6 and Fig. 7. The results
reveal a significant reduction in the uncertainty regarding the
cumulative probabilities corresponding to the quantile values
of 4, 9, and 17 lbs. Specifically, the lowest value 4 lbs corre-
sponds to a cumulative probability range of 0.03−0.09, while
the upper value 17 lbs corresponds to a range of 0.89−0.96,
both representing 90% credible intervals.

Additionally, the posterior predictive check demonstrates
a reduction in uncertainty regarding the parameter 	. Com-
pare the posterior predictive check in Fig. 8) with the prior
predictive checks shown in Figs. 5 and 6.

7 Discussion

Over the last two decades, several probability distributions
with interpretable parameters defined on the same scale as
observable quantities were proposed (Myerson 2005; Keelin
and Powley 2011; Hadlock and Bickel 2017). The primary
goal of research into quantile-parameterized distributions is
to simplify the elicitation process and make it more accessi-
ble for experts. In our proposed hybrid elicitation framework,
tailored specifically for models with quantile-parameterized
likelihoods, experts are encouraged to adopt a sampling
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Fig. 8 Posterior predictive check for the QDirichlet-Metalog model

frame.This replaces the challenging taskof expressinguncer-
tainty about cumulative probabilities with a simpler task of
expressing uncertainty about natural frequencies in a hypo-
thetical sample (Gigerenzer 2011; Hoffrage et al. 2002,
2015).

The elicitation method for Dirichlet distribution proposed
by Elfadaly and Garthwaite (2013) asks the expert to assume
that the median of the previously assessed category pi−1

is, in fact, the true value of the probability for the category
i − 1. It then proceeds to elicit the value pi for the next
category i , conditional on this assessment. We believe that
such conditioning can be made simpler if one adopts the
natural frequency framework. Inputs elicited from the expert
in the natural frequency frame can be easily validated through
simulation, providing the expert with immediate feedback on
the implications of their judgments for the model.

In Bayesian analysis, we see quantile-parameterized and
parametric likelihoods as complementary. Initiating a model
with a likelihood expressed by a quantile-parameterized dis-
tribution can be advantageous when only QPT judgments
from experts are available, no specific choice for a parametric
distribution is evident, and data is limited. As data becomes
more abundant and our understanding of the data-generating

Table 6 Posterior sample summary for the simplex 	

Category Mean Median q5 q95 rhat

Small 0.0552 0.0536 0.0306 0.0862 1.000

Medium 0.4328 0.4318 0.3763 0.4927 1.000

Huge 0.0724 0.0703 0.0427 0.1093 1.001

Large 0.4396 0.4398 0.3803 0.4986 1.000

process improves, a transition to a parametric likelihood can
be justified.

TheQDirichlet-Metalogmodel described in this paper can
be applied in conjunction with a predictive approach to elic-
itation (Kadane 1980). Assuming that the only information
elicited from the expert is the predictive QPT {p, q}n , the
quantiles q vector can be combined with a uniform Dirich-
let prior, allowing the data alone to define the posterior for
the simplex 	. Given that the Dirichlet distribution is a gen-
eralization of the Beta distribution to higher dimensions, a
weakly informative prior can be specified with a unit vector,
i.e. Dirichlet(1, 1, . . . 1). We discuss inference using weakly
informative priors in Appendix B in SupplementalMaterials.
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Fig. 9 Prior elicitation hypercube

Parametric elicitation aims to describe the epistemic
uncertainty contained in the parameters of the model with
the help of experts. On the other hand, predictive elicitation
aims to describe the uncertainty in the next observationwith-
out distinguishing between the randomness in the model and
the lack of knowledge about the model parameters.

Mikkola et al. (2023) proposed the prior elicitation
hypercube with 7 dimensions related to the elicitation of
prior distributions (Fig. 9). Following this classification, the
proposed hybrid elicitation falls under the category of a
univariate, parametric, prior-specific (D1), model-specific
(D2) elicitation method, conducted in the observable space
(D3). Hybrid elicitation leverages the approach proposed
by Elfadaly and Garthwaite (2013) to derive the parame-
ter vector(s) of the (Generalized) Dirichlet distribution (D4).
This process relies on the simple arithmetic computations
(D5) to transform the parameters of the conditional marginal
beta distributions into the (Generalized) Dirichlet parameter
vector(s). Furthermore, hybrid elicitation adopts an active,
iterative elicitation approach (D6), requiring minal assump-
tions about the expert’s familiarity with statistical concepts,
such a detailed understanding of the underlying generative
model (D7).

Hybrid elicitation begins by describing the next observa-
tion, but subsequently shifts to characterizing the uncertainty
inherent in the predictive assessment itself. This is achieved
by describing a hypothetical sample from the target popu-
lation corresponding to the cumulative probabilities. These
probabilities, in conjunction with a set of quantile val-
ues, serve as parameters within the quantile-parameterized
model. Hybrid elicitation, similar to predictive elicitation,
deals with observable quantities. However, like parametric
(structural) elicitation, it ultimately results in characterizing
the uncertainty in themodel parameters. Thus, hybrid elicita-
tion can be seen as an observation-level parametric elicitation
specifically designed for for quantile-parameterized models.

Supplemental materials
Supplemental materials contain the R and Stan code for all
examples used in the article. Appendix A includes the details
of metalog distribution. Appendix B provides the details of
theQDirichlet-metalogmodelwithweakly informative prior.
Appendix C includes the results of Simulation-Based Cali-
bration for both models discussed in the paper.
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Abstract

Effective waterfowl management demands precise estimates of presence and abundance. Financial con-
straints hinder monitoring efforts, prompting the utilization of citizen science data. However, these op-
portunistic datasets exhibit taxonomic preferential sampling bias, manifested in inflated implied absences.
To address this, we propose an attention adjustment based on species list shortage (SLS), a measure of
deviation of observation list length from local species richness. Testing its efficacy, we develop a two-stage
Zero Adjusted continuous Poisson model for species distribution, applying log-transformations to mitigate
overdispersion. The bias-adjusted model, evaluated against systematically observed data, emerges as a
promising approach to enhance predictive performance while accounting for observer biases in opportunistic
surveys.

Keywords: species distribution model, species list length, informative prior, INLA, bias

1. Introduction

1.1. Waterfowl management
The waterfowl management task entails responsible stewardship and conservation of a diverse avian family,

encompassing ducks, swans, and geese, classified under the Order Anseriformes and the Family Anatidae
(Williams, 1997; Roberts et al., 2018). These species hold significant ecological importance, contributing
to nutritional cycles, offering recreational opportunities, and playing a pivotal role in conservation efforts
(MacMillan et al., 2004).

Among the variety of species within the waterfowl family, a strong focus lies on the management of
geese. In Europe, goose management is strategically organized through Adaptive Species Management
Plans, primarily targeting four key species: the Greylag goose (Anser anser), the Barnacle Goose (Branta
leucopsis) comprising two distinct sub-populations with separate flyways, the Pink-footed Goose (Anser
brachyrhynchus), and the Taiga Bean Goose (Anser fabalis) (Madsen et al., 2017). Additionally, a sizable
population of Canada Goose (Branta canadensis), recognized as an invasive species, coexists with varying
degrees of regulation. Europe is also home for the Greater white-fronted goose (Anser albifrons), Lesser white-
fronted goose (Anser erythropus) and Red-breasted goose (Branta ruficollis). Of particular conservation
significance are the Lesser white-fronted goose and the Red-breasted goose, both globally threatened and
warranting heightened conservation attention (Fox et al., 2017).
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The regulatory landscape for these species is diverse, with some, such as the Greylag goose, being subject
to relatively unrestricted hunting, while others enjoy protected status, precluding harvest (Tombre et al.,
2021). All goose species face multifaceted challenges arising from environmental shifts, climate change,
urban sprawl, alterations in land use, and the expansion of agricultural activities (Fox and Madsen, 2017).
The overarching objective of goose management is to ensure the preservation of ecosystems essential for
sustaining robust populations, concurrently addressing the adverse impacts—such as potential damage to
human interests—stemming from the proliferation of these avian species. More specifically, a central and
daunting task of goose management in Europe and North America is to reduce the conflict with agriculture
due to growing populations and new migratory habits of geese (Bradbeer et al., 2017; Eythórsson et al.,
2017; Tombre et al., 2013).

To effectively manage goose populations on a flyway scale, precise estimates of their presence and abundance
are imperative. Accurate data are crucial for developing population models, determining harvest quotas,
and implementing habitat enhancement strategies (Baveco et al., 2017; Jensen et al., 2008; Moriguchi et al.,
2013). However, this necessitates a comprehensive understanding of the extent to which various landscapes
are utilized by geese.

A species distribution model is designed to forecast the presence and abundance (count) of geese at a
specific location. Given the likely disparate mechanistic processes governing the presence and abundance of
geese, a model capable of handling these two aspects separately is warranted.

1.2. Presence-only data
Unfortunately, the current landscape of goose management is challenged by financial constraints, with

monitoring efforts facing the brunt of shrinking budgets (Johnson et al., 2023). In response to these fiscal
challenges, researchers have turned to leveraging abundant yet inherently biased opportunistically collected
citizen science data found in online databases, including the Global Biodiversity Information Facility (GBIF)
(GBIF, 2023) and eBird (Sullivan et al., 2009). Notably, citizen science databases present a set of biases, pri-
marily arising from deviations in observation protocols. Observations are often recorded at the convenience
of contributors, without adhering to a specified instruction or protocol (Chauvier et al., 2021; Dorazio, 2014;
Phillips et al., 2009; Stolar and Nielsen, 2015; Warton et al., 2013).

1.3. Preferential taxonomic sampling
A principal challenge in opportunistic surveys lies in the oversight, neglect or misidentification of observed

species. Observers, motivated by diverse interests, may selectively record favorite species, document unusual
occurrences, or strive to document every species they encounter on a trip (out of habit or because of their
understanding of the value of systematic approach to wildlife observation) (Di Cecco et al., 2021). Taxonomic
preferential sampling, a scientific term for the phenomenon for this kind of selective attention, results in
the selective registering of certain species, potentially leaving others underrecorded or unrecorded (Dorazio,
2014).

Szabo et al. (2010) used species list length as a proxy for observation effort - longer lists indicate higher
commitment to registering all encountered species. In addition, the longer is the species list, the higher is
the confidence in implied absences. The absences on species lists of observers with taxonomic preference
bias do not signify true absence. In contrast, absences on lists of systematically observing individuals can
be interpreted as true absences with higher confidence.

The primary concern in this study is related to implied absences (given the method we adopted for the
pseudo-absence imputation). Even though there could be some inaccuracy in the counts reported by unex-
perienced observers, the reports of abundance are not subject to the same kind of bias. Therefore, we posit
that presence should be modeled separately from abundance.
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1.4. Proposed methodology
To address taxonomic preferential sampling, we propose a bias adjustment similar to distance sampling

methodologies (Eberhardt, 1967; Farr et al., 2021; Royle et al., 2004; Yuan et al., 2017). The foundational
principle in distance sampling involves identifying an ideal state. For example, observers are more likely to
detect species in immediate proximity to roads. The probability of detection attenuates with increasing dis-
tance from the road, following a detection function with a scale parameter governing the rate of attenuation
(Martino et al., 2021; Ribeiro et al., 2023; Sicacha-Parada et al., 2021).

Species list length reaches its ideal state when it equals local species richness (i.e., it includes all species
expected to occur in the surrounding environment) (Boersch-Supan et al., 2019; Kelling et al., 2015). The
difference between the species list length and the local species richness, which we term species list shortage
(SLS), serves as a measure of deviation from the ideal state, quantifying the number of species overlooked
and/or unreported by an observer. An SLS adjustment (which we refer to as the attention adjustment) is
essentially correcting probability of discovery, and not abundance, which should be reflected in the model.

To summarise, the proposed methodology is comprised of these steps:
1. Build a species richness model
2. Calculate SLS for every observation from the predicted species richness and species list length
3. Build a Species Distribution Model that separates presence from abundance with SLS bias adjustment

applied on the presence part of the model
4. Evaluate predictive performance against data which is assumed to be free from taxonomic sampling

bias

The aim of the paper is to test whether the proposed attention adjustment using SLS can improve the
predictive performance of a species distribution model when evaluated against the observations with com-
prehensive species lists.

To implement the proposed methodology, the following contribution are made. A Zero Adjusted Poisson
(hurdle) model (Arab, 2015; Zuur, 2017) was selected to allow for bias adjustment in presence part of the
species distribution model. Such isolation of the presence process is not achievable with the more commonly
used Zero Inflated Poisson (Wenger and Freeman, 2008). To complement the data collected by systematic
monitoring programs and augment the size of the held-out data, observations with the complete species lists
were extracted from eBird (Sullivan et al., 2009).

2. Materials and Method

2.1. Data
Opportunistic data
The Global Biodiversity Information Facility (GBIF) is an international organization maintaining the

online repository of wildlife observations contributed by participating institutions (GBIF, 2023). GBIF
operates under the widely adopted hierarchical biodiversity data standard, Darwin Core, embraced by a
majority of contributing institutions. Notably, in Sweden the foremost contributor to GBIF is the Swedish
Species Gateway, also known as SLU Artdatabanken (Artportalen), developed and managed by the Swedish
Species Information Centre on behalf of the Swedish Environmental Protection Agency (Bradter et al.,
2018; Henckel et al., 2020; Jönsson et al., 2023; Ruete et al., 2017, 2020; Snäll et al., 2011). Artportalen
serves as a platform for the collection of raw species observations from researchers, conservationists, and
private individuals through its web interface, accessible on both desktop and mobile devices. Within GBIF,
these observations, categorized as occurrences, are organized hierarchically under events, which, in turn, are
grouped under collections - potentially corresponding to observations made by different organizations.

We adopt an event-centered approach (Szabo et al., 2010), where the unit of analysis is a wildlife visit by
a unique observer at a specific time and location. An event may encompass observations of various species,
collated into an event species list. In this paper we use the term visit as a more granular definition of an event
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adopted by Darwin Core data standard. In some cases GBIF allows observations from different locations to
be combined under the same eventID. In order to differentiate between the species lists collected in different
locations, we define a visit as a unique combination of the observer (as recorded in recordedBy), GBIF’s
eventID (when available), and geographic coordinates. When eventID is absent, we supplement it with the
combination of the data collectionCode (e.g., Artportalen, eBIRD, etc.), observer, verbatim locality,
and observation date.

Systematic monitoring data
In a Swedish context, one of the most systematically collected datasets of bird observations is derived from

the Swedish Bird Survey (Svensk Fågeltaxering) program (Fågeltaxering, 2023). This initiative relies mainly
on the dedicated efforts of volunteers and knowledgeable ornithologists who conduct bird counts at specified
times throughout the year in predefined locations, employing consistent method. The Swedish Bird Survey
program encompasses various sub-programs, including standard routes, summer point routes, winter point
routes, coastal bird routes, night routes, seabird routes during the breeding season, and seabirds in autumn
and winter (Fågeltaxering, 2023).

A standard route consists of eight 1 km-line transects and eight five-minute points within a 2 by 2 km
square. The routes are strategically distributed across a sparse and regular grid to comprehensively cover
the entire country. The primary objective of the Swedish Bird Survey program is to compile statistics and
report general population trends (Liljebäck et al., 2021).

The merits of the Swedish Bird Survey dataset are in its consistent temporal and spatial aspects, fea-
turing regular observations at fixed locations covering diverse land types through a national grid system.
The standardized route lengths ensure uniform observation effort, while the survey’s comprehensiveness is
maintained by the professionalism of participating ornitologists. This systematic approach, consistently
applied over many years, yields historical records valuable for long-term analyses. Swedish Bird Survey
data, integrated into GBIF through Artportalen.se, possess a unique collection code, distinguishing it from
non-systematically collected observations, including those made by citizen scientists in Sweden.

Complete checklists
Despite the intrinsic value of systematically collected Swedish Bird Survey data, the comparison to more

abundant presence-only (non-systematic) data prompts inquiry into the extent of their divergence. One
dataset marginally inferior to systematically collected Swedish Bird Survey is eBird (Sullivan et al., 2009),
an online ornithological observation database reliant on volunteer-contributed data. Distinct from Artpor-
talen, eBird utilizes a data entry form, wherein contributors are encouraged to select a species checklist for
completion. While not obligated to record every species, contributors can mark an entry as a “complete
checklist” if they are submitting the records for all species observed (see Figure 1).

Figure 1: Confirmation menu on eBIRD.org platform

Though eBird complete checklists share some similarities with the Swedish Bird Survey, they deviate in
terms of data collection, being gathered in random locations, at random times, and covering variable spatial
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extents and durations. Despite these sampling challenges, they can be regarded as presence-absence data.
The absence of species on eBird checklists implies true absence with higher confidence. Integration of eBird
records into GBIF necessitates the identification and exclusion of these records from presence-only datasets.
Unfortunately, the relevant completeness flag is not transferred to GBIF, requiring a dataset integration to
discern eBird records with complete checklists and infer absences.

Artportalen also offers a checklist feature, analogous to eBird. However, this option is not a default
choice and requires a separate login, which might explain lack of popularity of this data entry option. If
the observation data are entered through the checklist, the observation is marked by special text in the
comment field, which makes it difficult to parse these records out and impossible to see if the submitted
checklist is complete, unless it is filed as part of a specific campaign or project, such as the Swedish Bird
Survey (Fågeltaxering, 2023).

(a) Number of observations by observer (b) Mean Species List Length by observer

Figure 2: Observer contributions to GBIF

Observing the observers
Citizen science contributions are notably diverse, raising concerns about the potential biases introduced

by varying levels of engagement (Feldman et al., 2021; Grimmett et al., 2020; Jönsson et al., 2023). In
the Swedish province Skåne, a total of 4,666,523 bird observations were submitted to the GBIF between
2013 and 2022. A total of 83% of these observations (contributed by 5,746 observers) have proper event
identification, enabling their aggregation with other observations made during the same visit by the same
observer.

Remarkably, the top 1% of observers (by number of observations) accounted for 47% of all avian observation
records, while the top 20% contributed a staggering 96% of the total records (Figure 2a). In terms of event
species lists, the top 1% of observers, defined by the number of lists, contributed 36% of all species lists,
with the top 20% contributing 95% of the lists. Mean species list length (MSLL) varies from 1 to 101, with
the top 1% of observers (by MSLL) beginning at an average list length of 17 (Figure 2b). This stratification
shows that there is a substantial contributions made by a selected group of observers, and that there’s large
variation in the species list lengths among the contributors.

Environmental data
In the context of waterfowl species distribution modeling, particularly for geese, certain environmental

features consistently hold relevance due to the distinct biology and behavior exhibited by these species.
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For instance, Jensen et al. (2008) studied the spring-staging behavior of pink-footed geese in Mid-Norway.
The authors used various environmental covariates, including the coverage proportion of roads and vertical
features within the geographical grid cell, the mean coverage proportion of vertical features in the neighboring
cells, distance to open water, and elevation above sea level. A study by Moriguchi et al. (2013) modeled
the distribution of East-Asian greater white-fronted geese in Japan. Environmental covariates considered in
this research included minimum temperature (obtained from WorldClim), average elevation, proportion of
rice fields, urban and lake areas, distance to lakes, maximum snow depth, and latitude-longitude, combined
by principal component analysis. Subsequently, Li et al. (2017) added human population density to the list
of influential factors.

Typically, a study area is subdivided into contiguous sub-areas of equal size (cells), wherein covariate values
are assumed to be constant. In our study, we utilized the 2018 Swedish National Landcover data (Nationella
Marktäckedata, NMD), presented in the form of raster grids with a resolution of 10 x 10 m. To mitigate
potential imprecision in geo-referencing and to smooth out spatial effects, we aggregated the raster data by a
factor of 100. Additionally, we posited that the cell size of 1 x 1 km roughly corresponds to the area feasible
for a single observer to inspect during an average trip. It’s noteworthy that, unlike eBIRD, GBIF does not
document observational efforts in terms of time or spatial extent, thus necessitating the assumption about
average effort area at this resolution.

Selected covariates
We computed the proportion of the focal cell area classified as agricultural land, specifically NMD classes 3

and 42, representing arable land and other open land with more than 10% vegetation coverage, respectively.
Additionally, we assessed the proportion of the focal cell area covered by water, including NMD classes 2
and 61, which encompass lakes, water courses, open sea areas, and wetlands. A spatial factor covariate
indicating whether any of the aggregated cells are part of Natura-2000 protected areas (SPA, SCI) was also
integrated into our model.

To quantify the distance to residence, we utilized OpenStreetMap to extract a polygon layer showing land
use designated as residential. The inclusion of distance to road as either a covariate or a thinner has been
a common practice in numerous studies (Adde et al., 2021; Cretois et al., 2021; Escamilla Molgora et al.,
2022a,b; Geurts, 2023; Koshkina et al., 2017; Milanesi et al., 2020; Morera-Pujol et al., 2023; Ramesh et al.,
2022; Sicacha-Parada et al., 2021; Stolar and Nielsen, 2015). We extracted the road network, encompassing
primary, secondary, and motorway roads, along with associated link roads, regular roads, and trunks.

We implemented several data restrictions, applying spatial, temporal, and taxonomic constraints to effec-
tively manage the model’s size:

• Spatial Subset: The entire dataset, including GBIF/eBIRD observational records and spatial covariates
(NMD), was confined to the North-East part of the Skåne province, comprised of Osby, Östra Göinge,
Bromölla, Hässleholm, and Kristianstad municipalities.

• Temporal Subset: Observations considered in the analysis were limited to the period from 2013 to
2022, and including the months of April through August each year. The first half of this timeframe
(2013-2017) was used to train the species richness model, while the subsequent data (2018-2022) was
reserved for the primary species distribution model. The hold-out data for evaluation was extracted
from the data for 2018-2022. This strategy ensured the estimation of species richness on entirely
non-overlapping data.

• Taxon Focus: The species distribution model was developed to predict the distribution of the broad
category of geese, comprising the genera Anser, Branta, and Chen. The amalgamation of observations
of all goose species into a single category serves to provide some additional protection against possible
misclassification by citizen scientist observers and alleviate individual species detection bias.
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2.2. Species richness model
The species richness model aims to predict the number of unique species (defined by unique GBIF

speciesKey) observed in each focal cell within the study area. For each raster cell, we tallied the unique
species encountered across years, observers, and events. Given the assumption that bird species richness
cannot be zero at any location in Sweden, cells with zero species richness counts (for which no observations
in GBIF were found) were filled with missing values accordingly.

We assume that regional gamma diversity (Hunter Jr and Gibbs, 2006) varied negligibly among years and
that it had no long-term trend during the study period. We also assume that even a single encounter of a
unique bird species during the study period suffices to include it in the richness count. This aggregation of
counts mitigates observer-specific preferential sampling bias, providing a species richness estimate somewhat
independent of individual sampling preferences (though influenced by collective observer preferences).

Species richness is amenable to modeling through an inhomogeneous Poisson model. Following the notation
in Fithian et al. (2015), we consider random set 𝒮 = 𝑠𝑖 ⊆ 𝒟 of locations 𝑠𝑖 for all species varieties in a
geographical domain 𝒟 (the species process). The presence of a particular species at location 𝑠 is akin to
its participation in the local ecosystem, evidenced by at least one sighting during the observation period.
The Inhomogeneous Poisson Process (IPP) characterizes the species process with an intensity function 𝜆(𝑠),
mapping sites 𝑠𝑖 to non-negative values (here 𝜆(𝑠) quantifies how many 𝑠𝑖 occur in the vicinity of 𝑠). The
intensity is conveniently modeled in log-linear form:

log𝜆(𝑠) = 𝛽0 +
𝑀

∑
𝑚=1

𝛽𝑚𝑥𝑚(𝑠)

Here, 𝛽0 is the intercept, and 𝛽𝑚 represents individual coefficients for the covariate value 𝑥𝑚(𝑠). In
systematic sampling, data would be compiled from locations 𝐴𝑖 in 𝒟, registering the species richness 𝑁𝒮(𝐴𝑖)
at each location. While the target quantity - number of unique bird species observed in location 𝑠𝑖 - represents
a count, we opted for a continuous version of the Poisson distribution due to overdispersion caused by large
variance in the number of visits to individual locations. To address this, we log-transformed the counts.
Given the exclusion of zero counts, this transformation did not result in information loss (O’Hara and Kotze,
2010). The continuous version of the Poisson (xPoisson) distribution was used:

Prob(𝑦) = 𝜆𝑦

𝑦! 𝑒𝑥𝑝(−𝜆)

where 𝑦 > 0 is the response variable, and 𝜆 is the expected value. In the continuous version, 𝑦! is computed
using the integer part of 𝑦.
We specified the species richness model with the following formulation:

𝜆𝑠𝑖
∼ 𝛽0 + 𝛽1𝐿𝑣(𝑠𝑖) + 𝛽2𝐿𝑤(𝑠𝑖) + 𝛽3𝐼𝑝(𝑠𝑖) + 𝛽4𝐷𝑟(𝑠𝑖) + 𝜏(𝑠𝑖)

log(𝑌𝑠𝑖
) ∼ xPoisson(log(𝜆𝑠𝑖

))
Here, 𝐿𝑣 and 𝐿𝑤 represent the proportions of vegetation- and water-covered areas in the focal cell, respec-
tively; 𝐼𝑝 is a factor indicating whether the focal cell constitutes a protected area; 𝐷𝑟 denotes the distance
to the nearest residential area; and 𝜏(𝑠𝑖) is the spatial autocorrelation term representing the SPDE model
with a Matern prior (Lindgren and Rue, 2015). The observation points are situated on a regular grid
corresponding to the aggregated raster for the covariates.

We used the predicted species log-richness as a thinning adjustment to mitigate taxonomic preferential sam-
pling bias, as explained in the subsequent section. The corresponding code is available in the Supplementary
Materials.
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2.3. Thinning function and prior specification
Species distribution models, especially those built on presence-only data, often incorporate adjustments

to address preferential sampling bias. This bias can arise from two primary sources: preferred location and
preferred taxonomy. Rarely do these biases act in isolation. Specific locations, such as bird-watching sites,
may undergo more extensive sampling due to observer motivation to spot their preferred species.

Studies by Sicacha-Parada et al. (2021) and Geurts (2023) employ distance to roads as the adjustment
factor to address the higher observation density in locations with road access (i.e., the preferred location
bias). Although we extracted the road network from OpenStreetsMaps and computed the distance to the
nearest road for each location on a grid, given the dense road network in Skåne, we observed no improvement
in predictive performance. Consequently, we opted to exclude this adjustment to maintain model parsimony.

To address the preferred taxonomy bias, we suggest contextualizing the observation of target species (or
genera of geese) in relation to other species observed during the same visit. Our hypothesis posits that if the
species list length approximates local species richness, then omitted species from the list can be confidently
treated as true absences.

We aggregated bird species observations from the study region and computed the species list length, defined
as the count of unique speciesKey codes on the observation list for a unique visit. Records related to focused
ring-recapture programs that did not include any geese were excluded.

For comparability with the log-richness predictions from the model in Section 2.2, we opted to log-transform
the species list length. Since the list of species cannot be shorter than 1, no information loss occurs in the
chosen transformation (O’Hara and Kotze, 2010). Therefore, the species list shortage metric, utilized for
bias adjustment in the species distribution model, is computed as the non-negative difference between the
predicted log-richness for location 𝑖 and the log species list length from visit 𝑗 (denoted as 𝑆𝐿𝐿𝑗).

𝑆𝐿𝑆𝑗 = max[0, log(𝑌𝑖) − log(𝑆𝐿𝐿𝑗)]

We employed a log-negative exponential distance function, denoted as 𝑑(𝑆𝐿𝑆, 𝜎) = exp(−𝜎𝑆𝐿𝑆). This
function scales the Species List Shortage (SLS) using the parameter 𝜎, rendering the bias log-linear within
the likelihood specification for the Zero-Adjusted xPoisson model, as discussed in the subsequent section.

2.4. Species Distribution Models
Existing species distribution models in the literature, particularly those based on presence-only data, com-

monly employ Poisson models (Gelfand and Shirota, 2019; Boersch-Supan et al., 2019; Cretois, 2021; Warton
et al., 2013; Renner et al., 2015) and Zero-Inflated Poisson models (Martínez-Minaya et al., 2018; Wenger
and Freeman, 2008; Nolan et al., 2022). Despite the increasing abundance of most goose species in recent
decades, they still constitute a relatively small portion of all birds in Skåne. Biological knowledge also
indicates that certain locations are unsuitable for geese due to sensitivity to noise (Simonsen et al., 2016,
2017), likely aversion of areas with tall structures (Johnson et al., 2014), optimization of locations to min-
imize predator encounters, lack of foraging habitat, and a general tendency to avoid humans (Fox, 2019;
Humphrey et al., 2023). Hence, it is reasonable to anticipate a substantial number of locations with zero
goose counts. Factors contributing to goose abundance may differ, including the availability of sufficient
food, open area size, distance to roosting sites, etc (Jensen et al., 2008; Chudzińska et al., 2015).

Consequently, a model capable of handling a substantial number of inflated zeros in the data and distin-
guishing between the causes of presence and abundance is essential.

The Zero-Inflated Poisson (ZIP) model (Zuur, 2017), characterized by a combination of binomial and
Poisson features, addresses one of these requirements, namely accommodating large number of zero counts.
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Prob(𝑦|𝜆) = 𝑝 × 1𝑦=0 + (1 − 𝑝) × Poisson(𝑦|𝜆)
𝐸(𝑦) = (1 − 𝑝)𝜆

𝑉 𝑎𝑟(𝑦) = (1 − 𝑝)(𝜆 + 𝜆2𝑝)
= 𝐸(𝑦)(1 + 𝜆𝑝)

The Zero-Adjusted Poisson (ZAP) model (Zuur, 2017), commonly known as the hurdle model, represents
an advancement over ZIP by incorporating the truncated version of the Poisson distribution:

Prob(𝑦|𝜆) = 𝑝 × 1𝑦=0 + (1 − 𝑝) × Poisson(𝑦|𝑦 > 0, 𝜆)

𝐸(𝑦) = 1
1 − exp(−𝜆)𝑝𝜆

𝑉 𝑎𝑟(𝑦) = 1
1 − exp(−𝜆)𝑝(𝜆 + 𝑝𝜆2) − ( 1

1 − exp(−𝜆)𝑝𝜆)
2

= 𝐸(𝑦) [1 − exp(−𝜆)𝐸(𝑦)]

The ZAP model allows modeling absences (𝑦 = 0) separately from abundances (𝑦 > 0). The parameters 𝑝
and 𝜆 can be modelled using distinct but possibly overlapping sets of covariates.

Due to the overdispersion of counts, we log-transformed the abundance counts of geese. Consequently,
instead of using the zero-truncated Poisson in our ZAP model, we opted for the continuous (non-truncated)
version, where zero log-abundance corresponds to the count of one.

In order to test the efficacy of attention adjustment we compare predictive performance of the model with
SLS (implemented as a covariate and as a bias adjustment) to the predictive performance of an equivalent
model without SLS.

Baseline model (no adjustment)
Zero-Adjusted xPoisson model for goose presence and abundance:

𝜃𝑠𝑖
∼ 𝛼0 + 𝛼1𝐿𝑣(𝑠𝑖) + 𝛼2𝐿𝑤(𝑠𝑖) + 𝛼3𝐼𝑝(𝑠𝑖) + 𝜂(𝑠𝑖)

𝑍𝑗𝑠𝑖
∼ Binomial(logit(𝜃𝑠𝑖

))

𝑍𝑗𝑠𝑖
= {0 if 𝑌𝑗𝑠𝑖

= 0
1 if 𝑌𝑗𝑠𝑖

> 0
𝜆𝑠𝑖

∼ 𝛽0 + 𝛽1𝐿𝑣(𝑠𝑖) + 𝛽2𝐿𝑤(𝑠𝑖) + 𝛽3𝐼𝑝(𝑠𝑖) + 𝜏(𝑠𝑖)
log(𝑌𝑗𝑠𝑖

|𝑌𝑗𝑠𝑖
> 0) ∼ xPoisson(log(𝜆𝑠𝑖

))

Here 𝑝𝑠𝑖
= 1− logit(𝜃𝑠𝑖

) represent the probability of absence. Covariates in both parts of the model include
the proportion of vegetation (𝐿𝑣) and water (𝐿𝑤)covering the target cell 𝑠𝑖, an indicator of whether the cell
includes protected territory (𝐼𝑝), and model-specific Gaussian fields 𝜂(𝑠𝑖) and 𝜏(𝑠𝑖).
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Attention adjustment as covariate
The binomial part of the Zero-Adjusted xPoisson model includes the attention adjustment as a covariate

as follows:

𝜃𝑗𝑠𝑖
∼ 𝛼0 + 𝛼1𝐿𝑣(𝑠𝑖) + 𝛼2𝐿𝑤(𝑠𝑖) + 𝛼3𝐼𝑝(𝑠𝑖) + 𝛼4𝑆𝐿𝑆𝑗(𝑠𝑖) + 𝜂(𝑠𝑖)

𝑍𝑗𝑠𝑖
∼ Binomial(logit(𝜃𝑗𝑠𝑖

))

Attention adjustment as thinner
The binomial part of the Zero-Adjusted xPoisson model with the attention adjustment included as a

thinner:

𝜃𝑗𝑠𝑖
∼ 𝛼0 + 𝛼1𝐿𝑣(𝑠𝑖) + 𝛼2𝐿𝑤(𝑠𝑖) + 𝛼3𝐼𝑝(𝑠𝑖) + 𝑑(𝑆𝐿𝑆𝑗, 𝜎) + 𝜂(𝑠𝑖)

𝑍𝑗𝑠𝑖
∼ Binomial(logit(𝜃𝑗𝑠𝑖

))
𝜎 ∼ logitMyerson(1, 3, 10, 0.1)

where 𝑑(𝑆𝐿𝑆, 𝜎) = exp(−𝜎𝑆𝐿𝑆) is log-negative-exponential distance function.

A custom prior for parameter 𝜎 was derived from expert judgment, using elicited quantiles as parameters
in the logit-Myerson distribution (Perepolkin et al., 2023) (Figure 3). The implied lower bound of the
parameter value 𝜎 is 𝑄(0, 1, 3, 10, 0.1) = 0.2.

Figure 3: The CDF and the PDF of the logit-Myerson distribution used as a prior for the scale parameter in the thinning
function

We implemented the models using the Integrated Nested Laplace Approximation (INLA) (Rue et al., 2009;
Lindgren and Rue, 2015), interfaced by the inlabru package (Bachl et al., 2019) in R. The code is provided
in the Supplementary materials.

2.5. Prediction scores
For assessing model performance, the following prediction scores were used (lower scores indicate better

performance):

• Absolute error (AE): Measures the absolute deviation of observed counts from the predicted median,
calculated as AE𝑖 = 𝑦𝑖 − median𝑖. AE serves as a proper scoring rule for the median.
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• Squared error (SE): Calculated as the squared difference between counts and the predicted mean,
expressed as SE𝑖 = [𝑦𝑖 − 𝐸(𝑌𝑖|data)]2. SE functions as a proper scoring rule for the expectation.

• Dawid-Sebastiani (DS) score. Given by DS𝑖 = [𝑦𝑖−𝐸(𝑌𝑖|data)]2
𝑉 (𝑌𝑖|data) + log[𝑉 (𝑌𝑖|data)]. DS serves as a proper

scoring rule for the predictive mean (𝐸(𝑌𝑖)) and variance (𝑉 (𝑌𝑖)).
The posterior predictive variance (𝑉 𝑎𝑟(𝑌𝑖)) for the predicted count 𝑌𝑖 is based on the count expectations

(𝜇𝑖) and variances (𝜉2
𝑖 ) of the model predictions for each grid cell, conditioned on the model predictor 𝑥𝑖.

The posterior predictive variance of the count 𝑌𝑖 is:

𝑉 𝑎𝑟(𝑌𝑖) = 𝐸(𝑉 (𝑌𝑖|𝑥𝑖)) + 𝑉 𝑎𝑟(𝐸(𝑌𝑖|𝑥𝑖))
= 𝐸(𝜉2

𝑖 ) + 𝑉 (𝜇𝑖)
- (Negated) Log score (LG): Represents the logarithm of the observation probability, defined as LG𝑖 =
− log[𝑃 (𝑌𝑖 = 𝑦𝑖|data)]. LG is a strictly proper score (Gneiting and Raftery, 2007).

3. Results

3.1. Species richness predictions
We assume that the species richness, corresponding to the regional gamma diversity (Hunter Jr and Gibbs,

2006), remained relatively stable from 2013 to 2022. Accordingly, we utilize the location-specific predictions
derived from the model trained on observations spanning the initial five years (Figure 4a) as an estimate
of the species richness in corresponding locations for the subsequent 5-year period (Figure 4b). The model
predicts higher log-richness values along the coastal regions and the lakes.

(a) Log-richness data on 1x1 km grid (b) Predicted log-richness

Figure 4: Species log-richness and predictions
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3.2. Parameter estimates
All covariates contribute to predictions, with the exception of the proportion of vegetation in the binomial

part of the baseline model (Table 1 provides).

The coefficients in the two bias adjusted models are very similar (Table 2, Table 3). The negative coefficient
for SLS as a covariate implies that for a given species richness the probability of presence increases with the
length of the species list. The influence of the thinner is also negative (indicated as -sigma*sls in Table 3).

Table 1: Fixed effect estimates for the baseline SDM

mean sd 0.025quant 0.5quant 0.975quant
L_w_present 2.061 0.308 1.460 2.061 2.668
L_v_present 0.531 0.279 -0.016 0.530 1.079
Intercept_present -4.450 0.175 -4.797 -4.448 -4.111
L_w 0.585 0.200 0.193 0.585 0.976
L_v 0.939 0.188 0.570 0.939 1.308
Intercept -13.533 0.117 -13.764 -13.532 -13.306

Table 2: Fixed effect estimates for the SDM with attention adjustment as covariate

mean sd 0.025quant 0.5quant 0.975quant
L_w_present 3.618 0.299 3.034 3.617 4.207
L_v_present 1.223 0.266 0.701 1.222 1.746
sls -1.558 0.048 -1.651 -1.558 -1.464
Intercept_present -2.725 0.165 -3.051 -2.723 -2.406
L_w 0.579 0.205 0.177 0.580 0.979
L_v 0.933 0.191 0.556 0.933 1.307
Intercept -13.531 0.118 -13.765 -13.530 -13.300

Table 3: Fixed effect estimates for the SDM with attention adjustment as thinner

mean sd 0.025quant 0.5quant 0.975quant
L_w_present 3.621 0.299 3.037 3.620 4.211
L_v_present 1.224 0.266 0.702 1.223 1.747
-sigma*sls -0.772 0.037 -0.845 -0.772 -0.698
Intercept_present -2.725 0.165 -3.052 -2.724 -2.406
L_w 0.579 0.204 0.179 0.580 0.978
L_v 0.933 0.191 0.558 0.934 1.306
Intercept -13.531 0.118 -13.764 -13.530 -13.301

3.3. Predictive performance
The model incorporating SLS as a covariate exhibits superior performance (smaller scores) across the means

of all metrics (Table 4), but not when we compare the quantiles for AE and SE (Figure 5).

Both models with SLS contribute to a reduced variance in predictive scores seen over observations in the
held-out dataset (Figure 5). The scores that rely on computed variance and observation probability (DS
and LG) are more concentrated.
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Table 4: Mean predictive scores by model

Model MAE MSE MDS MLG
SLS_covariate 1.111 1.727 2.165 2.095
SLS_thinner 1.293 1.923 2.580 2.120
Baseline 1.210 1.970 8.621 3.416

Figure 5: Comparison of Absolute Error (AE), Squared Error (SE), Dawid-Sebastiani Score (DS), and (Negated) Log Score
(LG) across the three species distribution models. Smaller is better.

4. Discussion

The model comparison shows that the species list shortage contributes to improved predictive performance,
primarily by concentrating the distribution of scores across observations. The method of implementing SLS
made little difference.

Model limitations
Predicting waterfowl distribution poses challenges due to the intricate nature of bird biology, habitat

preferences, communal behavior, and their considerable mobility. The model in this study overlooks the
daily local commutes of birds between foraging grounds and water roosts. While our environmental covariates
capture general habitat preferences, introducing a time-aware model could enhance predictions, considering
the interaction between the time of day and preferred habitat.

Our observations are confined to the period of April through August each year, missing variations in bird
behavior. Specifically, during the nesting period in April-May, birds tend to stay closer to water, while by
late summer, increased mobility is observed as offspring mature (Cramp and Simmons, 1977).

Migratory patterns of some goose species were not considered in our model. While the majority of geese,
mainly Greylag Goose and Canada Goose, are considered residents in Skåne, some species within the broad
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goose genera migrate through Sweden in fall and spring, or come to Skåne to spend the winter (Ekberg and
Nilsson, 1994). Models focusing on flyway scales are more suitable for estimating the migration patterns of
waterfowl.

The model we presented lacks consideration for the biological distinctions among various goose species
in Southern Sweden. For instance, the nesting preference of Canada Goose for lakes of boreal type differs
from wetlands in open areas favored by Greylag Goose. Our model benefits from mitigating preferential
sampling bias through simultaneous modeling of multiple species, as indicated by Fithian et al. (2015).
However, separate modeling of individual species within the broader goose genera could offer a more nuanced
understanding of their biology and preferences.

Our environmental covariates are rudimentary, lacking data on crop types in Sweden’s agricultural land-
scapes. Considering the varying nutritional preferences of geese over their annual cycle (Cramp and Simmons,
1977) could likely enhance predictive performance. However, the temporal window (breeding time) of the
data set in the present study makes the lack of crop data less problematic, as this is when geese stay mainly
in and close to wetlands, and spend less time foraging in agricultural areas. Modeling local-scale movements
of geese may be better accomplished with an Agent-Based Model approach, explicitly accounting for daily
energy balance and the tradeoff between flying to remote, energy-rich foraging grounds and staying close to
roosting locations.

Human-geese interactions were omitted from our model. While distance to human residence positively
contributed to the richness model, we refrained from including it in the species distribution model due to its
potential impact on both the probability of discovery (birds closer to human residences are more likely to be
spotted and reported) and the probability of presence (wild geese tend to avoid human settlements). The
same applies to another popular bias-correction covariate, distance to road. As explained by Fithian et al.
(2015), addressing this confounding factor requires specialized approaches, likely involving hierarchical and
simultaneous modeling of multiple species.

Our species richness model relies on a strong assumption about the probability of discovery, related to the
challenge of collating counts across locations with disparate sampling efforts, as evident in Figure 4. The
uneven distribution of visits, particularly to popular locations, skews the probability of discovery towards
complete account for all resident species, while locations with infrequent visits may not have had a chance to
adequately explore local species richness. The preferential sampling we aim to address results in an uneven
distribution of the probability of detection across locations 𝑠𝑖, rendering our pooling of species across time,
visits, and observers only partially successful.

To appropriately capture the probability of discovery for each species 𝑘 in the richness model, explicit
modeling of the probability of detection is necessary. Such modeling should consider factors such as the
probability of detection in a single visit, the number of visits, and specific environmental covariates influ-
encing the probability of discovery.

Future research
Despite these limitations, it is evident that Species List Length is an important feature that warrants

explicit consideration when informing models using citizen science data. The results confirm that longer
species lists align with higher observation effort (Roberts et al., 2007; Szabo et al., 2010). The proposed
methodology of combining the species list length and richness can be developed further. The model would
benefit from more accurate richness estimates.

Citizen science data remains a valuable but underexplored resource. We encourage scientists to scrutinize
observation circumstances, fostering the adoption of scientifically grounded sampling practices, including
checklist adherence and formal observation protocols. The data collection process is as informative as
the data itself, and meticulous sampling protocols are paramount to yield meaningful insights. The bias-
adjusted model, evaluated against systematically observed data, emerges as a promising approach to enhance
predictive performance while accounting for observer biases in opportunistic surveys.
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