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Abstract. Exposure to excessive indoor radon causes around 500 lung cancer deaths in Sweden 
annually. However, until 2020, indoor radon measurements were only conducted in around 16% 
of Swedish single-family houses and 17% of multifamily houses. It is estimated that 
approximately 16% of single-family houses exceed the indoor radon reference level of 200 
Bq/m3, and the corresponding situation in multifamily houses is unknown. Measuring indoor 
radon on an urban scale is complicated and costly. Statistical and machine learning, exploiting 
historical data for pattern identification, provides alternative approaches for assessing indoor 
radon risk in existing dwellings. By training MARS (Multivariate Adaptive Regression Splines) 
and Random Forest (RF) regression models with the data labels from the radon measurement 
records in the Swedish Energy Performance Certification registers, property registers, soil maps, 
and the radiometric grids, the correlations between response and predictive variables can be 
untangled. The interplay of the key features, including uranium and thorium concentrations, 
ventilation systems, construction year, basements, and the number of floors, and their impact 
magnitudes on indoor radon concentrations, are investigated in the study. The regression models 
tailored for different building classes were developed and evaluated. Despite the data 
complexity, the RF models can explain 28% of the variance in multifamily houses, 24% in all 
buildings, and 21% in single-family houses. To improve model fitting, more intricate supervised 
learning algorithms should be explored in the future. The study outcomes can contribute to 
prioritizing remediation measures for building stocks suspected of high indoor radon risk.  

1. Introduction 
Indoor radon has been regarded as the second leading cause of lung cancer worldwide; in particular, 

inhalation of radon gas and its progeny is fatal to cause damage to the human genome [1,2]. Radon-222 

from uranium-238 and its radiative progenies attaching to dust particles and being inhaled into the lungs 

[3] is estimated to cause around 500 deaths annually in Sweden [4]. The exposure to high radon doses 
is especially severe in Nordic countries because of airtight energy conservation measures [2]. To monitor 

the health and safety risk of indoor radon and encourage affordable remediation measures, most 

countries adopt three radon concentration intervals: (i) 200 Bq/m3 for residential and public buildings 
and as the highest acceptable level for new buildings, (ii) 400 Bq/m3 for existing buildings, (iii) 1000 

Bq/m3 for obligatory decontamination. The baseline for indoor radon concentration was introduced in 

1981 in Sweden and subsequently adjusted to 200 Bq/m3. According to the Act of Environmental Goals, 
the radon levels in schools, preschools, and residential buildings should be lower than 200 Bq/m3 [5].  

        The primary sources of indoor radon gas are ground, groundwater, and building materials, where 

84-91% of indoor radon attributes to the ground [6]. Measuring radon gas and investigating radon 

sources in buildings are advised considering the atmospheric pressure synergies between ground radon 
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and radon from building materials. However, remediating indoor radon is challenging due to the 

complicated interplay between radon sources, geological conditions, and unique characteristics of 

individual buildings. The dynamic changes in radon gas concentrations depend on uranium levels in the 
ground, soil types, building typologies, construction materials, foundations, and ventilation types [3,4,7]. 

According to the latest report (2021:28) by the Swedish Radiation Safety Authority (SSM) [4], the 

surface uranium concentration and the soil types correlate to indoor radon levels positively. Olsthoorn 
et al. [13] verified the proposition by mapping the gamma radiation and household radon measurements 

with postal codes. Their findings further show that newly built houses have a relatively lower correlation 

to indoor radon than older buildings, which can be explained by the effectiveness of the ground radon 

protection techniques, such as radon vacuum or radon well, air diffuser or air cushion, and shield layer. 
Indoor radon levels are suspected to be affected by soil types, where buildings situated on clay are prone 

to a higher radon risk [4]. However, the uncertainties are high due to low sample numbers in the previous 

study, and more soil data on the national scale are needed to confirm the degree of correlation. 
        Other building-related factors can also affect indoor radon concentrations. Swedjermark [2] found 

that the construction year is closely associated with high radon levels in the Swedish building stock, 

with the highest average levels between the 1940s and mid-1970s. The upward trend reversed after 1980 

when the production of radioactive concrete ceased, and the national reference level of indoor radon 
was introduced [8]. Likewise, the empirical results from the ELIB survey suggested that buildings built 

before 1980 with slab-on-ground foundations and basements tended to have higher radon levels [7]. 

Buildings built on a concrete slab appear more airtight than buildings with crawl space or load-bearing 
foundations [3]. On the other hand, ventilation systems facilitating air exchange with outdoor air can 

dilute indoor radon [9]. Natural or exhaust ventilation systems may create negative air pressure indoors 

and have an adverse impact on radon concentration by increasing the leakage of ground radon from the 
foundations or basements [7]. Yet balanced ventilation systems can lower radon concentration as indoor 

air is exchanged with outdoor air without negative pressure [10]. Single-family houses built before 1980 

and multifamily houses built before 1940 in Sweden tend to be equipped with a natural ventilation 

system, making them more vulnerable to ground radon and ineffective in reducing radon from building 
materials. Therefore, the choice of ventilation systems as a remediation means for indoor radon depends 

on radon sources and building typologies and has to assess case by case [3]. Despite the complexity, 

several radon remediation measures are effective, including ground foundation sealing, enhancement of 
ventilation, and removal of radioactive building materials [3,9]. The empirical study has shown that 

reducing indoor radon concentration by 40%-85% is possible if remediation measures are implemented 

appropriately. 

2. Scope of the paper  
The study explores the possibility of predicting indoor radon levels by comparing statistical and machine 

learning techniques for residential and non-residential dwellings. The study adopts data analytics and 
regression to achieve the two objectives: (i) describe correlations between predictors and the response 

variable, and (ii) train and evaluate statistical and machine learning models for radon level prediction. 

Descriptive and predictive analyses for existing buildings were performed by coupling the indoor radon 

measurements, building registers, and the geological factors related to radioactive substances and soils. 
Exploiting data-driven approaches can overcome the contextual limitations of simulation case studies 

for specific buildings and increase model generalizability to the generic building stock. It could also 

enhance the knowledge of how and to what extent anthropogenic and geogenic factors interact and 

evaluate buildings prone to high radon risk. 

3. Materials and methods 
The radon dataset used in the study integrates data from the Swedish Energy Performance Certificates 
(EPCs), property registers, and geophysical aerial measurements of gamma radiation for uranium, 

potassium, thorium, and soil types. The collected raw datasets were merged into the radon dataset using 

Feature Manipulation Engine (FME), a spatial extract, transform, and load tool. Data pre-processing 
was performed, including data cleaning of duplicated values from aerial geophysical measurements of 

the radioactive substances, data aggregation of the average substance concentration for each building 

based on the building footprint maps, mapping the soil type for corresponding buildings in multiclass 
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classification, and removal of invalid radon measurements conducted less than two months or beyond 

the heating seasons. The extreme values outside the 95% confidence interval (CI), buildings containing 

radioactive concrete, and missing values of the yearly average radon levels were eliminated. The 
remaining dataset contains 156,072 properties built between 1930-2020 from 290 municipalities. This 

value distribution of the annual average radon concentration aligns with the national average from the 

previous BETSI and the SSM studies. Further, data were stratified based on the building class – single-
family houses, multifamily houses, schools, and other buildings.  
        Subsequently, data analytics and visualization were carried out to understand the underlying data 

structure and correlations. The relationships between the radon concentrations and the other independent 

variables, including geological and geographical factors, building usage, and building parameters, were 

estimated. Using the interquartile range rule on measured values, such as annual average radon level, 

weighted average concentrations of uranium, thorium, and potassium, the outliers in each data subset 
were identified and removed from modeling. Similar criteria for eliminating extreme values were 
applied to the other four subsets. The data show the non-Gaussian distribution and non-linear patterns; 

thus, the statistical learning approach, i.e., Multivariate Adaptive Regression Splines (MARS), and the 

machine learning method, i.e., Random Forest (RF), were chosen for model comparison. Both models 

are non-parametric, generalized regression tree models that generate prediction results by hierarchically 

and successively pruning predictive variables and removing features until the optimal performance is 
reached in cross-validation [11]. However, the MARS algorithm features piecewise linear or cubic 

splines with hinge functions to improve data fitting [12]; while the random forest algorithm exploits the 

ensemble of decision trees trained with the bagging method. Derived variables such as area, stairwell, 

and apartments per floor were created. Then the data was partitioned into 70% for training and testing 

and 30% for validation. The ten best features were identified based on high F-scores for respective data 
groups for model training and comprehensive regression metrics, i.e., Mean-Absolute-Error (MAE), 

Mean-Squared-Error (MSE), Root-Mean-Squared-Error (RMSE), coefficient determination (R2) was 

applied to evaluate models’ performance. Lastly, residual plots illustrating the difference between the 

actual and the predicted value were created to ascertain the models’ uncertainty.  

4. Results 
4.1 Data analytics and visualization 

The clean radon dataset for the Swedish building stock with 123,000 observations consists of 49% 

single-family houses, 41% multifamily houses, 5% other buildings, and 5% school buildings. This 

distribution is representative given approximately a comparable proportion of each building class in 
Sweden - 93% residential dwellings, 7% non-residential dwellings - based on the data from Statistics 

Sweden in 2021 [13]. Around 23-28% of missing values were detected in variables including basements, 

number of floors, stairwells, and apartments. Figure 1 below shows the shares of buildings in radon 

levels grouped by key variables, including building classes, construction periods, ventilation types, and 
potassium, uranium, and thorium concentrations. The last row includes all observations as a baseline for 

the clustering comparison with other subgroups of the same category. The results show that around 12-

13% of buildings exceed the highest accepted radon level of 200 Bq/m3. Single-family houses are more 
likely to be exposed to high radon levels than other building classes. Yet, the exceptionally high radon 

levels (above 500 Bq/m3) were measured more frequently in non-residential dwellings. Buildings built 

between the 40s, 50s, and 60s are measured with high radon concentrations, with proportions of 15%, 
21%, and 19% of buildings above the reference level. Besides, 16% of buildings equipped with natural 

ventilation are exposed to radon above 200 Bq/m3, whereas the percentage for buildings equipped with 

balanced ventilation is less than 8%. The radon pattern in buildings installed with exhaust ventilation 

aligns approximately with the baseline of the radon level in buildings regardless of ventilation type. 
Regarding the impact of the geological factors, the ground radioactive substances correlate to indoor 

radon positively, where the extreme concentrations account for the highest radon levels. Compared to 

potassium and thorium, the association between uranium and radon level is substantial, with evident 
increment across various levels. The baseline radon values in buildings correspond to the potassium 

concentrations of 2-3%, the uranium concentrations of 3-3.5 ppm, and the thorium concentrations of 6-

10 ppm. 
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Figure 1. The shares of buildings across radon levels by building classes, construction periods, 

ventilation types, potassium, uranium, and thorium concentrations.   

  Further plotting the distribution of measured radon along the construction year and the 
radioactive substance concentrations by building class, basements, and soil types, as presented in 
Figure 2. The uneven distribution indicates that the relationship between response and predictive 
variables is highly complicated and non-linear. Thus, measured values were transformed into square 
root, and non-parametric algorithms were chosen for modeling.  
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Figure 2. Measured radon distribution by construction year and radioactive substance concentrations. 
4.2. Statistical and machine learning modeling 
The confidence interval and variable correlation to radon of each building class subset were 
examined and presented in Table 1. The mean annual average radon concentration lies at 113 Bq/m3. 

Among others, single-family houses have the highest mean radon level of 118 Bq/m3, while school 

buildings have the least mean level of 97 Bq/m3. The mean levels are similar between multifamily 
houses and other buildings, but the latter has a much higher standard deviation. The Pearson biserial 

correlation shows that uranium concentration is the most considerable factor to indoor radon, 

followed by natural ventilation, basements, and thorium concentration. On the other hand, 

construction year, balanced ventilation with heat exchange, and the number of floors have counter 
effects. The data on the number of stairwells and apartments are too few in schools and other 

buildings, and no coefficients were generated. Several soil types are found to be correlated to indoor 

radon, but their impact magnitude is not as profound as radioactive substances and building 

parameters. In general, the coefficients are significant and coherent across building types.  

Table 1. Summary of the Pearson correlation between response and predictive variables. 

Category Predictive variable  Single-family 
house  

Multifamily 
house 

School 
building 

Other 
building 

All 
buildings 

Radon mean confidence interval 118 ± 1 105 ± 1 97 ± 3 105 ± 20 111 ± 1 
  Square root indoor radon level [Bq/m3] 
Building 
parameter  

Construction year  -0.28*** -0.22*** -0.14*** -0.16*** -0.23*** 
Floor area [m2] 0.03*** 0.05*** 0.10*** 0.04** -0.00 
Basements 0.22*** 0.11*** 0.13*** 0.12*** 0.16*** 
Number of floors -0.12*** -0.02*** 0.11*** 0.03* -0.05*** 
Number of stairwells -0.02** 0.13*** N/A N/A 0.06*** 
Number of apartments -0.03*** 0.06*** N/A N/A 0.02*** 
Natural ventilation 0.18*** 0.11*** 0.04** 0.11*** 0.17*** 
Exhaust ventilation -0.06*** 0.13*** 0.01 0.05*** 0.04*** 
Exhaust (heat pump) -0.17*** -0.05*** -0.04** -0.02 -0.09*** 
Balanced ventilation -0.02*** -0.00 0.03* 0.03* -0.02*** 



13th Nordic Symposium on Building Physics (NSB-2023)
Journal of Physics: Conference Series 2654 (2023) 012086

IOP Publishing
doi:10.1088/1742-6596/2654/1/012086

6

 
 
 
 
 
 

 

Balanced (heat exch.) -0.12*** -0.21*** 0.01 -0.08*** -0.20*** 
Radioactive 
substance 

Sqrt. potassium [%] 0.09*** 0.06*** 0.05*** 0.04*** 0.07*** 
Sqrt. uranium [ppm] 0.22*** 0.23*** 0.15*** 0.17*** 0.22*** 
Sqrt. thorium [ppm] 0.15*** 0.13*** 0.10*** 0.13*** 0.13*** 

Soil type† Sandy moraine 0.02*** 0.06*** 0.04** 0.05*** 0.05*** 
Others -0.01** -0.06*** -0.02 0.00 -0.04*** 
Glacial clay 0.03*** 0.03*** 0.02 0.01 0.03*** 
Moraine -0.02*** -0.04*** 0.12 0.02 -0.02*** 
Postglacial clay 0.03*** 0.05*** -0.06*** -0.00 0.03*** 
Postglacial sand -0.04*** -0.05*** -0.06*** -0.08*** -0.05*** 
Filling -0.02** -0.03*** 0.02 -0.02 -0.04*** 
Glaciofluvial sed. sand -0.02*** -0.03*** 0.01 -0.04** -0.02*** 
Postglacial fine sand -0.02*** -0.00 -0.03* -0.04** -0.01*** 
Postglacial fine clay 0.01 0.00 -0.01 0.01 0.01** 
Clayey moraine 0.01 -0.01** -0.03 -0.00 -0.00* 
Mountain 0.00 0.02*** 0.03* 0.01 0.01*** 

Statistics Count (N) 27,838 45,495 4,745 5,395 79,944 
P-Value (The level of marginal significance within a hypothesis test): * p<.1, ** p<.05, ***p<.01 

     After numeral model training and testing iterations, the best-performed MARS and Random 
Forest regressions for each subset were identified using input features with the highest F-scores, 

described in Table 2. The fitted MARS models were described as the equation below (h stands 

for hinge). The finding shows that key features in both models are nearly identical and consistent 
with the coefficient’s direction from the previous Pearson correlation. Next, the fitted models 

were applied to the validation subsets to evaluate their prediction performance with regression 

metrics. The results from Table 3 show that random forest models outperform MARS models in 

predicting radon levels in all buildings and residential buildings. However, MARS models have 
higher prediction power over schools and other buildings. The errors measured in the training 

subset are similar to those in the validation subset, indicating no overfitting or underfitting. The 

highest prediction performance is found in multifamily houses with an average R2 of 0.275, 
followed by all buildings (R2 = 0.24) and single-family houses (R2 = 0.21). For school buildings, 

MAE, MSE, and RMSE are not specifically high compared to the others, yet their R2 is much 

lower. Other buildings show the least predictable in both MARS and Random Forest regressions. 

Table 2. Equations of MARS models and the selected features of the RF models are sorted by F-scores. 
Subset Model Equations and features 
Single-

family house 
MARS Y = 77.90 - 0.04*Construction year - 3.14* h (Sqrt. uranium - 3.18) + 0.72* h (5 - 

NumFloors) + 0.55*Basements - 0.99*Balanced (heat exch.) - 1.13*Exhaust (heat pump) 
+ 0.39* Natural ventilation + 2.84* h (Sqrt. uranium - 1.2) 

RF Construction year, Basements, Sqrt. uranium, Natural ventilation, Exhaust (heat pump), 
Sqrt. thorium, AreaperFloor, NumFloors, Balanced (heat exch.), Sqrt. potassium 

Multifamily 
house 

MARS Y = 57.68 - 20.14* h (Sqrt. uranium - 3.47) - 0.02*Construction year - 1.27* Balanced 
(heat exch.) + 4.36* h (Sqrt. potassium - 1.67) + 1.86* h (1.67 - Sqrt. potassium) + 

0.61*Sandy moraine + 0.02* h (AreaperApartment – 137.31) - 0.02* h 
(AreaperApartment - 82) + 19.19* h (Sqrt. uranium - 3.07) - 2.59* h (3.07 - Sqrt. 

uranium) - 0.55*Exhaust (heat pump) + 1.32*Mountain 
RF Construction year, Sqrt. uranium, Balanced (heat exch.), Exhaust ventilation, 

NumStairwells, Sqrt. thorium, Basements, Natural ventilation, AreaperFloor, Others 
School 

building 
MARS Y = 63.20 - 0.01* h(155-AreaperStairwell) + 1.35* Sqrt. uranium - 0.03*Construction 

year - 1.86*Postglacial fine sand 
RF Sqrt. uranium, Basements, NumStairwells, Construction year, NumFloors, 

AreaperStairwell, Area, Postglacial fine sand, AreaperFloor, Sqrt. thorium 
Other 

building 
MARS Y = 61.34 – 1.71* h(2.77- Sqrt. uranium) – 0.03*Construction year - 0.73*Natural 

ventilation – 0.65*Balanced ventilation 
RF Sqrt. uranium, Construction year, Sqrt. thorium, Basements, Natural ventilation, 

Balanced (heat exch.) 
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All buildings MARS Y = 51.2 - 0.02*Construction Year + 1.12* h (Sqrt. uranium - 1.95) - 2.23* h (1.95 - 
Sqrt. uranium) - 1.08*Balanced (heat exch.) - 0.15*NumFloors + 3.98* h (Sqrt. 

potassium - 1.66) + 1.03* h (1.66 - Sqrt. potassium) - 0.57*Exhaust ventilation + 
0.28*Basements + 0.26*Sandy moraine 

RF Construction year, Sqrt. uranium, Balanced (heat exch.), Natural ventilation, Basements, 
Sqrt. thorium, Exhaust (heat pump), Sqrt. potassium, NumStairwells, Sandy moraine 

Table 3. Performance evaluation between the MARS and the Random Forest regression models. 
 Training subset Validation subset 

Subset Model MAE MSE RMSE R2 MAE MSE RMSE R2 
Single-family 

house 
MARS 2.94 21.13 4.60 0.12 2.91 16.49 4.06 0.15 

RF 2.20 7.55 2.75 0.21 2.22 7.65 2.77 0.21 
Multifamily 

house 
MARS 2.81 13.90 3.73 0.14 2.88 14.77 3.84 0.12 

RF 2.05 6.76 2.60 0.27 2.08 6.89 2.63 0.28 
School building MARS 2.77 14.36 3.79 0.08 2.81 17.24 4.15 0.08 

RF 2.25 7.59 2.75 0.05 2.24 7.67 2.77 0.07 
Other building MARS 3.04 21.45 4.63 0.03 3.09 66.50 8.15 0.02 

RF 2.80 7.87 2.81 0.01 2.20 7.50 2.74 0.02 
All buildings MARS 2.39 8.39 2.90 0.13 2.39 8.40 2.90 0.13 

RF 2.16 7.31 2.70 0.24 2.17 7.38 2.72 0.24 

        Figure 3 below displays the residual plots to quantify the models’ uncertainty in terms of 

standardized residuals between the actual and the predicted values for all buildings. From the residuals 

and fitted plots, it is recognized that the residuals of the RF models are much lower than the MARS 

model, which lies within the boundary of ± 10. Yet, the clear trend of asymmetric distribution shows 
room for model improvement. On the contrary, the residuals in the MARS model have more even 

distribution along the X-axis, but the lower boundary is large, and outliers are detected. The normal Q-

Q plots in the MARS model imply that the training and testing regressions align closely with potential 

data skew, while the RF model does not experience the same problem but needs to improve model fit.  

 
Figure 3.  Residual plots for MARS regression (left) and Random Forest regression (right).  

5. Discussions 
The results from the data analytics and visualization aligned with the findings in the literature [4,9,14]. 

The yearly average radon in single-family houses lies at 118 Bq/m3, with 13% of buildings exceeding 

200 Bq/m3, slightly lower than the previous estimation (128 Bq/m3 and 16%). No detailed radon 
statistics specific to multifamily houses, schools, and other buildings were found; thus, the study 

compiles the pilot results for future cross-validation. Uranium concentration, construction year, 

ventilation types, basements, and the number of floors are recognized as the most pronounced indicators 
for radon risk screening, which are in good agreement with previous studies [8,15,16]. Despite the 

improved understanding of feature importance and intertwined effects, creating regression models in 

predicting indoor radon levels for the heterogenous building stock is extremely challenging. The effort 

in estimating the radon levels for individual buildings was explored using statistical and machine 
learning. Compared to other predictive radon mapping studies using kernel estimation [15] and RF [16] 

that explain 28-33% variance, the RF models in the study, with 28% explanation, perform slightly less 

well in predicting radon for individual buildings. On the other hand, the developed model is less complex 



13th Nordic Symposium on Building Physics (NSB-2023)
Journal of Physics: Conference Series 2654 (2023) 012086

IOP Publishing
doi:10.1088/1742-6596/2654/1/012086

8

 
 
 
 
 
 

 

than the comprehensive model developed by Kropat et al. [16], making it more adaptable to other 

countries or regions. A higher dimensional dataset that includes geographical and atmospheric factors 

and more intricate models like deep neural networks should be considered in future research for indoor 
radon prediction.  

6. Conclusions 
The study assesses the national average indoor radon level affected by potential contributing factors and 
delineates the fraction of buildings exceeding the reference level. Uranium and thorium concentrations, 

construction year, ventilation types, basements, and the number of floors, are identified as closely 

associated with indoor radon in every building class. Random Forest regression models perform better 
than MARS models in predicting indoor radon in multifamily houses with the 28% variance explanation, 

while 24% for all buildings and 21% for single-family houses.  
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