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We need to radically improve our relationship with nature, and that 
requires rethinking decisions and reorganising many processes.  

Leila Nachawati and Maja Romano (2023) 
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Abstract 

The presence of hazardous substances in buildings introduces significant challenges 

to project scheduling, budget estimation, and occupant and worker safety in 

renovation and demolition activities. In Swedish renovation and demolition projects, 

allocating approximately 15% of the budget for unforeseen events and encountering 

of unexpected substances has become a standard practice. However, the actual costs 

for abatement and decontamination often exceed these estimates. Given the urgency 

to renovate aging buildings to current standards and the increasing focus on circular 

construction for material reuse and recycling, developing predictive tools for 

hazardous substances in buildings is crucial. Leveraging environmental data from 

pre-demolition audits, indoor radon measurements, and advanced algorithms offers 

new avenues for predicting hazardous substances. This thesis investigates the 

application of data-driven methods in predicting and interpreting patterns of in situ 

hazardous substances in existing buildings. 

        A comprehensive literature review establishes the thesis foundation, 

highlighting the lack of cost-effective methods for predicting hazardous substances 

at the building level. To bridge this gap, regional hazardous material and national 

indoor radon databases were compiled, with rigorous data quality and quantity 

assessments. Inspection records and radioactive substance measurements were 

digitized and integrated with building registers, enabling detailed analysis of 

detection rates across various building types and municipalities. This thesis 

advances the use of such data in statistical, machine learning, and neural network 

models to predict the presence of hazardous substances. The performance of these 

models was evaluated for their ability to estimate the probability and geospatial 

distribution of buildings likely containing substances such as polychlorinated 

biphenyl, asbestos, radioactive concrete, and high indoor radon levels. 

        The predictive models’ outcomes offer insights into the occurrence and 

frequency of hazardous substances, enabling the implementation of risk-based pre-

demolition inspections and circular construction management. The proposed 

method is adaptable, scalable and suitable for inventorying hazardous substances in 

regional and national building stocks. Continuous data integration from various 

regions, while maintaining representativeness of the Swedish building stock 

improved the models’ generalizability and robustness. These predictions can guide 

policy design, helping authorities and municipalities screen and remediate 

contaminated buildings. They also assist in assessing uncertainties of hazardous 
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substances in building maintenance, renovation, demolition, and supporting 

building owners and contractors in safe and compliant practices. 

 

Keywords: Hazardous material, Pre-demolition audit, Building stock, Machine 

learning, Risk assessment, Circular construction 
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Sammanfattning 

Förekomst av farliga ämnen i byggnader medför betydande osäkerheter i 
projektplanering och budgetuppskattning och innebär hälso och säkerhetsrisk för de 
boende och för arbetstagare som är involverade i renoverings- och rivningsaktiviteter. 
Det är praxis inom svenska byggprojekt att avsätta ungefär 15% av budgeten för att 
hantera oväntade risker av farliga ämnen och oförutsedda händelser. De faktiska 
kostnaderna för sanering och dekontaminering överstiger dock ofta dessa 
uppskattningar. Givet behovet av att renovera åldrande byggnader för att uppfylla 
dagens byggnadsstandard och det ökande fokuset på cirkulärt byggande för att främja 
återanvändning och återvinning av material, är utveckling av nya verktyg för att 
förutsäga närvaron av farliga byggsubstanser av yttersta vikt. Tillgängligheten av 
miljödata från inventeringar före rivning och mätningar av inomhusradon, tillsammans 
med tillgången till avancerade algoritmer, erbjuder nya möjligheter att förutsäga 
förekomst av farliga ämnen. Avhandlingen syftar till att undersöka potentialen att 
använda datadrivna metoder för att förutsäga och tolka mönster av förekomst av farliga 
ämnen i det befintliga byggnadsbeståndet. 
        En omfattande litteraturgenomgång lägger grunden för denna avhandling och 
belyser bristen på kostnadseffektiva metoder för att förutsäga förekomsten av olika 
farliga ämnen på byggnadsnivå. För att adressera dessa kunskapsluckor skapades en 
regional databas för farliga ämnen och en nationell databas för inomhusradon, vilka 
genomgick rigorösa utvärderingar av datakvalitet och kvantitet. Inventeringsprotokoll 
och mätningar av radioaktiva ämnen digitaliserades systematiskt och integrerades med 
byggnadsregistret, vilket möjliggjorde mer detaljerade analyser av detektionsfrekvenser 
i olika byggnadstyper och kommuner. Avhandlingen banar vägen för användningen av 
dessa data för att träna statistiska modeller, maskininlärningsmodeller och neurala 
nätverksmodeller för att förutsäga förekomst av farliga ämnen. Modeller utvärderades,  
tolkades och användes därefter för att uppskatta sannolikheten för geografiska 
fördelningar av byggnader som potentiellt innehåller farliga ämnen så som 
polyklorerade bifenyler, asbestmaterial, radioaktiv betong och höga 
inomhusradonnivåer. 
        De prediktiva modellernas utfall ger insikter i förekomsten av farliga ämnen och 
hjälper till att möjliggöra genomförandet av riskbaserade inspektioner före rivning och 
cirkulärt byggande. Den föreslagna metoden är anpassningsbar, skalbar och lämplig för 
inventering av farliga ämnen i regionala och nationella byggnadsbestånd. Kontinuerlig 
dataintegration från olika regioner, med bibehållen representativitet för det svenska 
byggnadsbeståndet, förbättrade modellernas generaliserbarhet och robusthet. Dessa 
förutsägelser kan vägleda policyutformning, hjälpa myndigheter, kommuner och 
fastighetsägare att screena och åtgärda byggnader där farliga ämnen förekommer. De 
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hjälper också till att bedöma osäkerheter om farliga ämnen vid byggnadsunderhåll, 
renovering, rivning och hjälper byggnadsägare och entreprenörer att välja säkra metoder 
i enlighet med rådande regelverk. 
 

Nyckelord: Farliga ämnen, Miljöinventering, Byggnadsbestånd, Maskininlärning, 
Riskbedömning; Cirkulärt byggande 
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Popular Science Summary 

Addressing hazardous materials is a critical step for the construction industry to 

grapple with the challenges of sustainability and circular practices. Over the past 

century, hazardous materials have been used in construction worldwide 

unintendedly. With a large number of existing buildings approaching the end of their 

service life, renovations and selected demolitions are required to meet modern 

standards and ensure comfortable living environments. However, these efforts are 

often hindered by the high risk of encountering hazardous materials unexpectedly 

during renovation and demolition, leading to project delays, cost overruns, and 

safety concerns for the reuse and recycling of reclaimed building components in 

their next lifecycles. 

        To address this risk, many European countries have made pre-demolition 

audits mandatory or strongly recommended as a means to characterize and quantify 

in situ hazardous materials to ensure safe construction and demolition waste 

management. Nevertheless, the research in the field of hazardous materials in 

circular building practices has often been fragmented, existing in “disciplinary silos” 

within different domains of environmental science, public health, or engineering. 

Regulations also sometimes clash, with differences between chemical regulation 

and circular economy policies. So far, no holistic studies have tackled diverse 

hazardous materials in the context of the building industry from an overarching 

perspective. 

        This thesis sought to bridge these knowledge gaps by proposing a 

comprehensive method for predicting in situ hazardous substances and 

benchmarking the performance of different predictive modeling approaches. It 

utilized historical environmental inventories and indoor radon measurements, 

creating digital datasets on a building-by-building basis for predictive modeling and 

pattern identification. Machine learning and statistical pipelines were developed to 

enable effective data analysis, model training, evaluation, and prediction for 

hazardous materials and radioactive substances in existing buildings. A data-driven 

approach that offers decision support for stakeholders was developed, enabling cost-

efficient in situ hazardous substance assessment for both individual buildings and 

large-scale building stock. The prediction outcomes, with their probability 

distributions, are expected to guide risk-based inspections in existing buildings 

likely to have contamination. This holistic approach is a crucial building block for 

a future where construction, renovation, reconstruction, and demolition is both 

resource-efficient and environmentally responsible. 
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Definitions and Acronyms 

Asbestos-containing materials (ACM) 
 Asbestos has different forms in construction products, such as 

chrysotile, amosite, and crocidolite. They can cause asbestosis, 

mesothelioma, and lung cancer at high levels of exposure. 

Artificial neural network (ANN) 
 ANN is derived from biological neural networks that have neurons 

interconnected in various layers of the networks. It can be used for 

both supervised and unsupervised learning. 

Accuracy (ACC) 
 Accuracy is measured by the number of true positives and true 

negatives divided by the total number of data points in a dataset. 

ACC = ( TP + TN ) / ( P + N ) 

TP: True positive 

TN: True negative 

P: Positive 

N: Negative 

Area under the ROC Curve (AUC) 
 AUC is a scale variable estimating the overall performance of a 

binary classifier by representing the degree or measure of 

separability with a range between 0.5 and 1.0. 

Building Information Model (BIM) 
 BIM is a digital representation of the physical and functional 

characteristics of a facility that manages information on a 

construction project throughout its life cycle. 

Bayesian quantile regression 
 Bayesian quantile regression is a statistical approach combining 

quantile regression with Bayesian inference that models the 

conditional distribution of a dependent variable, allowing for the 

direct estimation of different quantiles while incorporating prior 

knowledge and handling uncertainty. 
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Bayesian Information Criteria (BIC) 
 BIC describes how well a model captures the underlying structure 

of the data and is used for model selection. It regulates model 

complexity by introducing a penalty under the maximum likelihood 

estimation. 

BIC = log(n)k − 2log(̂L) 

n = the number of data points 

k = the number of free parameters to be estimated 

̂L = the maximized value of the likelihood function of the model  

Circular Economy (CE) 
 CE is a model of production and consumption that applies principles 

of sharing, leasing, reusing, repairing, refurbishing, and recycling 

existing materials and products to extend the life cycle of products. 

Cohen’s kappa 
 Cohen’s kappa coefficient is a statistic that is used to measure inter-

rater or intra-rater reliability for qualitative items. It measures the 

agreement between two raters who each classify N items into C 

mutually exclusive categories. 

Data mining 
 Data mining is an analytical technology that extracts and analyzes 

underlying relationships from large-amount and multi-attribute 

information. 

Data corruption 
 Data corruption refers to errors in computer data due to unintended 

changes to the original data that may occur during the storage, 

writing, reading, transmission, or processing of data. 

Deep neural network (DNN) 
 DNN is a class of ANN algorithms for complicated learning tasks 

that simulates human neurons and form networks of multiple input 

layers, hidden layers, and output layers. 

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 
 DBSCAN is a density-based clustering algorithm that finds core 

samples of high density and expands clusters from vector array or 

distance matrix. 

Energy Performance Certificates (EPC) 
 EPC is a rating scheme that provides information on the building’s 

energy consumption produced by an independent certified energy 

expert and the certificate is valid for ten years. 
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Empirical Distribution Matching (EDM) 
 EDM is a bias-correction method and is implemented by obtaining 

the inverse empirical cumulative distribution function for the 

observed values and the machine learning estimate at the distribution 

scale. 

F1 
 F1 is a harmonized mean of Precision (PRE) and Recall (REC) and 

works well for imbalanced data. It is a scale variable with a range 

between 0-1.0. 

F1 = 2 ( REC * PRE / ( REC + PRE ) ) 

Micro-F1: Calculate metrics globally by counting the total true 

positives, false negatives, and false positives. 

Macro-F1: Calculate metrics for each label and find their 

unweighted mean. This does not take label imbalance into account. 

Weighted-F1: Calculate metrics for each label, and find their 

average weighted by the number of true instances for each label. 

Geographical Information System (GIS) 
 GIS is a computer system and software that stores, manages, 

analyzes, and maps geographically reference information. 

Gaussian diffusion model 
 Gaussian diffusion models use Gaussian processes to simulate or 

describe the diffusion of particles, heat, information, or other 

quantities over time and space. 

Hierarchical clustering 
 Hierarchical clustering is an unsupervised learning method for 

cluster analysis that builds a hierarchical structure of data in a 

dendrogram (hierarchical tree) to reveal relationships among 

clusters. 

K-Nearest Neighbors (k-NN) 
 k-NN is a non-parametric supervised learning classifier estimating 

the likelihood of regression and classification based on what group 

the data points nearest to it belong to. 

Kernal regression 
 Kernel regression is a type of non-parametric statistical technique 

used for estimating the conditional expectation of a random variable. 

It estimates relationships between variables when the underlying 

relationship is unknown or complex, which is particularly effective 

in smoothing and curve-fitting applications. 
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K-means clustering 
 K-means clustering is an unsupervised learning method for cluster 

analysis that partitions n datapoints into K clusters where the sum of 

the squared distances between the objects and their assigned cluster 

mean is minimized. 

Life Cycle Analysis (LCA) 
 LCA is a methodology for assessing the environmental impacts such 

as emissions and resource use throughout the life cycle of a product 

or a service. 

Material Flow Analysis (MFA)/ Material Stock Analysis (MSA) 
 MFA and MSA are scalable environmental accounting approaches 

for quantifying specific or multiple materials at various geographical 

and institutional scales. 

Municipal cadastral register (Property map) 
 The municipal cadastral register was reported from municipalities to 

the Swedish Cadastral and Land Registration Authority for the 

property map data product updates. 

Missing Completely at Random (MCAR) 
 The missingness of data is independent both of observable variables 

and unobservable parameters of interest. It occurs entirely at random 

and the analysis performed is unbiased. 

Missing at Random (MAR) 
 The missingness of data can be fully accounted for by variables 

where there is complete information. To prevent induced parameter 

bias in analysis, the parameter can be estimated asymptotically with 

Full Information on Maximum Likelihood. 

Missing not at Random (MNAR) 
 The missingness of data is neither MAR nor MCAR, of which the 

value of the variable that is missing is related to the reason it is 

missing. 

Naïve Bayes (NB) 
 Naïve Bayes is a probabilistic supervised learning algorithm based 

on Bayes theorem for solving classification problems. 

Ontology-based method 
 The ontology-based method involves knowledge representation, 

data integration and management, semantic reasoning, information 

retrieval, and analysis. The ontology serves as the foundational 

framework for organizing information, data processing, or problem-

solving for a specific domain.  
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Pre-demolition audit inventory 
 Pre-demolition audit inventory, also called waste audit inventory or 

environmental inventory, documents the presence and amount of 

hazardous substances that is used as a basis for construction and 

demolition waste management in renovation and demolition 

activities. 

Polychlorinated biphenyls (PCB) 
 PCB is a mixture of chlorinated organic chemicals consisting of 209 

congeners with no known taste or small and range in consistency 

from oil to waxy solid. Due to non-flammable, chemically stable, 

high boiling point, and electrical insulating properties, they were 

used extensively in industrial and commercial applications, such as 

plasticizers in building sealants. 

Preferred reporting items for systematic reviews and meta-analyses (PRISMA) 
 PRISMA is an evidence-based checklist with 27 items used for 

improving transparent reporting in systematic reviews, which covers 

all aspects of the manuscript including title, abstract, introduction, 

methods, results, discussion, and funding. 

Partial Least-Square-Discrimination Analysis (PLS-DA) 
 PLS-DA is a dimension-reduction technique used for classifying 

categorical dependent variables. 

Principal component analysis (PCA) 
 PCA is a dimensionality reduction unsupervised learning method 

used for reducing the dimensionality of datasets by transforming a 

large set of variables into a smaller one without losing much of the 

information. 

Precision (PRE, Positive predictive value) 
 Precision is measured by the number of true positives divided by the 

total number of positive predictions. 

REC = TP / ( TP + FP ) 

Pseudo-R2 
 Pseudo-R

2
 is a performance measure for logistic regression based on 

the log-likelihood for the model compared to the log-likelihood for 

a baseline model using the formula: 

pseudo R
2
 = 1-(MSE/Var(Y)) 

MSE: average square error 

Var: variance 

Y: a set of variables 
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Pearson correlation 
 Pearson correlation indicates the degree of linear correlation 

between two variables yet does not imply causation. It gives 

information about the magnitude of the association, or correlation, 

and the direction of the relationship. 

Receiver Operating Characteristic curve (ROC curve) 
 ROC curve is a graphical plot that illustrates the diagnostic ability 

of a binary classifier with varied discrimination thresholds where the 

true positive rate is plotted against the false positive rate. 

Recall (REC, Sensitivity) 
 The recall is measured by the number of true positives divided by 

the total number of actual positives. 

REC = TP / ( TP + FN ) 

Spatial interpolation 
 Spatial interpolation is a method used in geostatistics and geographic 

information systems to estimate unknown values at certain locations 

based on known values at nearby locations. Such techniques are for 

example inverse distance weighting, kriging, splines, natural 

neighbor interpolation, trend surface analysis, and radial basis 

functions. 

Swedish real estate taxation register (Real property register) 
 The Swedish real estate taxation register includes information on tax 

data transferred from the Swedish Tax Agency to the Swedish 

Cadastral and Land Registration Authority. 

Selective demolition 
 The removal of materials from a demolition site in a pre-defined 

sequence before demolition or renovation to maximize recovery and 

recycling performance. 

Semi-selective demolition 
 Semi-selective demolition is when demolition companies selectively 

collect all hazardous substances and that part of the non-hazardous 

substances that would overly reduce the quality of the stony fraction. 

Soft Independent Modeling of Class Analogies (SIMCA) 
 SIMCA is a pattern recognition method that describes each class 

separately in a principal components (PC) space. Unknown samples 

are compared to the PCA class models and assigned to the class 

according to their analogy with the calibration samples. 
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1. Introduction  

The urgency of transitioning toward a circular built environment to mitigate climate 

change and caution with resources cannot be overstated. In Europe, the construction 

sector is responsible for half of all extracted materials and total energy use, as well 

as one-third of water use and waste generation (European Commission, 2022). In 

the trajectory towards functional circular construction, the housing sector is 

implementing decarbonization and adaptation strategies, including renovation, 

reconstruction, and selective demolition, which are integrated with circular 

economy (CE) approaches. Such strategies aim to extend the service life of existing 

buildings and enhance their whole-lifecycle performance (Nußholz et al., 2023). 

However, the widespread presence of hazardous materials impedes progress in 

building material recovery and environmental impact reduction in the construction 

industry (Lewis, 2019; López Ruiz et al., 2020). Consequently, managing the risk 

of hazardous materials is crucial for achieving resource efficiency in circular 

construction practices (Bodar et al., 2018).  

        To manage the uncertainty associated with hazardous materials in situ, risk-

based inspections are essential for the sustainable maintenance of both operational 

and end-of-life buildings (Kim et al., 2018). Pre-demolition audit is one of the 

examples, where contaminated components are identified to evaluate the quality of 

materials in construction and demolition waste (CDW) during collection and sorting 

processes (ECORYS, 2016). The environmental inventories created prior to 

reconstruction or demolition are vital to ensuring safe management of demolition 

waste by facilitating decontamination planning and waste handling schemes 

(Wahlström et al., 2019). Over the years, the accumulation of numerous 

environmental inventories has presented new opportunities to deepen our 

understanding of hazardous substance prevalence in existing building stocks. 

However, these data have not yet been digitally systemized nor explored in research. 
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1.1. Problem Statement 
Unaligned Legislations on Reducing Material-derived Carbon 
The increasing costs and scarcity of raw materials, coupled with objectives to reduce 

material-embodied carbon emissions, require immediate adoption of circular 

economy practices in the construction sector (European Commission, 2021). This 

shift is accompanied by updated regulations that emphasize efficient resource 

utilization and necessitate quality assurance for secondary materials in the 

construction market, which also impose new demands for hazardous materials 

management (Rašković et al., 2020). Key legislative developments are for instance, 

the Renovation Wave (European Commission, 2020b), the European Green Deal 

(European Commission, 2019), and the new Circular Economy Action Plan 

(European Commission, 2020a), all of which are expected to significantly impact a 

large portion of existing building stock. However, the major challenge identified is 

the lack of alignment between these EU policies and the EU REACH regulation 

(Registration, Evaluation, Authorisation and Restriction of Chemicals) (European 

Chemicals Agency, 2007). The disconnect lies in the separate governance of waste 

legislation and substance-specific legislation, which currently do not fully support 

emerging closed-loop initiatives (Bodar et al., 2018). The focus of REACH used to 

be the production and use phases, rather than the entire life cycle of chemicals, 

which inadequately addresses the prolonged use and eventual re-entry of hazardous 

components in buildings into waste streams. To facilitate safe and sustainable 

material reuse, frameworks for preliminary risk management have been proposed to 

assess potential hazards in reclaimed or recycled materials (Bodar et al., 2018). 

Nevertheless, further exploration is needed to predict, quantify, and characterize in 

situ hazardous substances in the building stock to support this transition. 

Practical Challenges in the Construction Sector 
To align with the circular economy trend, the construction industry faces several 

challenges. A significant hurdle is the limited understanding of the distribution and 

extent of hazardous materials remaining, which impedes effective hazardous 

material management from passive mitigation measures to proactive 

decontamination (Bergmans et al., 2017; ECORYS, 2016; Rašković et al., 2020; 

Wahlström et al., 2020). The unforeseen discovery of hazardous substances in 

decommissioned construction products introduces uncertainties in cost and schedule 

planning (Wahlström et al., 2019), and poses risks to occupational health (Cook et 

al., 2022) during renovation and demolition activities. Although most hazardous 

substances are now banned or strictly regulated, the risk of exposure persists 

globally (Cook et al., 2022). Therefore, developing new tools or guidelines for risk 

mitigation and identification of hazardous materials in CDW streams, both during 

and post-construction or reconstruction, is imperative (Arevalillo et al., 2017). 

Understanding the approximate presence of in situ hazardous materials can enhance 
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material quality management and traceability systems. This knowledge is crucial for 

facility management in predictive maintenance and in the construction industry, 

particularly in semi-selective demolition processes, to prevent secondary 

contamination of CDW (Bergmans et al., 2017; Wahlström et al., 2019).  

1.2. Theoretical Framework 
This thesis is grounded in the following knowledge domains: construction and 

demolition waste management, urban informatics, and the application of artificial 

intelligence, as depicted in Figure 1.1. The primary objective is to explore the 

feasibility of developing data-driven methodologies for predicting the presence of 

hazardous materials in situ within the construction sector. This involves leveraging 

the potential of applied AI to enhance urban informatics strategies, specifically in 

the context of construction and demolition waste management. 

 
Figure 1.1. Interdisciplinary research scope. 
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1.2.1. Research Scope 

Applied AI is used as as a key leveraging technique for hazardous material 

assessment, utilizing extensive data derived from urban informatics. The knowledge 

domains underpinning the study are elaborated and exemplified below. 

Construction and Demolition Waste (CDW) 
Efficient management of Construction and Demolition Waste (CDW) is crucial for 

enhancing material recovery rates and closing resource loops with huge potential 

for carbon footprint reduction according to the EU Circular Economy Action Plan 

and the revised Waste Framework Directive (2008/98/EC, amended 2018/815) 

(Wahlström et al., 2020). With nearly 40% of total waste generated by the 

construction sector (European Commission, 2022), the need for effective CDW 

management strategies concerning waste prevention, reuse, and recycling is 

underscored. Key barriers identified included: ineffective CDW regulation and 

insufficient economic incentives from policy measures, underdeveloped reverse 

logistics and dissembly or remanufacture infrastructure, quality concerns of 

recovered components resulting in low readiness of secondary material market, lack 

of comprehensive business models and marketplace, insufficient information on 

historical product usage in buildings (Bergmans et al., 2017; Sandberg & Hultegård, 

2021; Villoria Sáez & Osmani, 2019; Wahlström et al., 2020).  

        Meanwhile, practical CDW management protocols have been developed at 

both EU and national levels to refine pre-demolition audits and waste handling 

processes (ECORYS, 2016; Wahlström et al., 2019). In Sweden, a tailored resource 

and waste guideline was established by the construction industry to inform pre-

demolition audit inventories (Byggföretagen, 2019). Suggested future research 

avenues include pollutant identification and control in CDW for enhanced 

recyclability, performance evaluation and lifecycle traceability of CDW products, 

and the efficient integration of information technology in CDW management (Ajayi 

et al., 2015; Wu et al., 2019).  

Urban Informatics (UI) 
Urban informatics (UI) is an emerging field that focuses on understanding, 

managing, and designing systems in built environment through computational 

approaches (Shi et al., 2021). This field has gained momentum with the 

advancement of digitalization, leading to a paradigm shift in traditional building 

stock research towards more quantitative analyses (Kohler, 2018; Shi et al., 2021). 

Urban informatics encapsulates the dynamic interplay among various urban 

components, such as morphology, mobility, space-time patterns, energy and 

infrastructure systems, and spatial economics, by integrating systems theories and 

methods from urban science, geomatics, and informatics (Shi et al., 2021). 

Nowadays, 55% of the global population resides in urban areas and the figure is 

projected to rise to 68% by 2050 (UN Habitat, 2022). This rapid urbanization 
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underlines the critical need for addressing anthropogenic greenhouse gas (GHG) 

emissions by redeveloping carbon-neutral urban infrastructure and building stocks 

(Chen et al., 2023). In response to new legislation and resource constraints, 

contemporary research in building stock is increasingly focused on the 

decarbonization of built environments. This includes improving energy efficiency 

and promoting material reuse and recovery in construction (Chen et al., 2023).  

        Urban informatics fosters the creation of synergistic solutions for complex 

urban challenges by integrating stakeholders’ needs with multidimensional data 

from various sectors (Shi et al., 2021). This approach is operationalized through 

multi-scale methodologies: building information modeling (BIM) and lifecycle 

analysis (LCA) at the building scale; material flows and stock analysis (MFA) at the 

regional level; and remote sensing and geographic information systems (GIS) at the 

continental scale. The application of these modeling techniques, in conjunction with 

data from digital infrastructures, enables comprehensive management of building 

stocks, addressing social, environmental, and economic aspects (Carbonari et al., 

2019; Koutamanis et al., 2018; Lucchi et al., 2018).  

Applied Artificial Intelligence (AI) 
Applied artificial intelligence (AI) refers to the utilization of intelligent, autonomous, 

and purpose-driven computational systems for data-centric problem-solving and 

decision-making (Darko et al., 2020). Under the umbrella term of AI, key subfields 

can be categorized into expert systems, agent systems, and machine learning (ML) 

(Norvig & Russell, 2021). Expert systems utilize if-then rules to facilitate decision-

making, avoiding the use of procedural codes (Wȩglarz & Gilewski, 2017). When 

presented with new queries, these systems leverage an inference engine to extract 

applicable rules and facts from knowledge bases, thereby deducing new information. 

In contrast, agent systems deploy multiple intelligent entities that autonomously 

interact with their environment using sensors and actuators to accomplish specific 

objectives (Xiang et al., 2022). Machine learning differs from these systems by 

relying on mathematical and architectural models, representing knowledge tasks 

related to pattern recognition (Raschka & Mirjalili, 2019). Common AI techniques 

widely applied in the architecture, engineering, and construction (AEC) industry 

including genetic algorithms for structural and design optimization, neural networks 

for predicting structure strength, convolutional neural networks for damage 

detection, fuzzy logic for uncertainty assessment, and machine learning for system 

identification and structural health monitoring.  

        Machine learning, in particular, has gained traction in building research due to 

its capability to autonomously learn from data, progressively improving by learning 

from errors without explicit programming. Common ML functionalities include 

supervised classification and regression (using decision-tree, support vector 

machine, naïve Bayes, and neural network methods), unsupervised clustering and 

dimensional reduction (employing K-means, DBSCAN, and hierarchical clustering 

methods) (Yan et al., 2020). Literature has shown promising potential for ML to 
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enhance building performance throughout its lifecycle (Hong et al., 2020). 

Predominant applications of ML in building operation and maintenance involve 

fault detection, diagnostics, energy efficiency, post-occupancy evaluation, and 

building control for energy savings, grid interactivity, and comfort enhancement 

(Hong et al., 2020). Additionally, ML is increasingly being deployed in building 

retrofitting for identifying retrofit potentials, evaluating energy-saving measures, 

characterizing buildings, and in building design for parametric design and 

evaluation. Its application extends to construction, encompassing cost optimization 

analysis, construction management, defect detection, Building Information 

Modeling (BIM), and CDW management. 

1.2.2. Interdisciplinary Field 

Data-driven hazardous material management 
Data-driven hazardous material management focuses on assessing the risk of 

contamination in existing buildings by leveraging building-specific environmental 

data and comprehensive building databases. Since the 1970s, global bans on 

asbestos-containing materials (ACM) and PCB (Polychlorinated Biphenyls)-

containing products have been enacted, accompanied by national strategies for 

intervention in most countries (Westerholm et al., 2017, Kim and Yu, 2014). 

Similarly, the recognition of indoor radon as a health hazard has led to regulations 

on radioactive materials (Copes & Peterson, 2014; Kim & Yu, 2014). Despite the 

prohibition of these hazardous materials for decades, their widespread historical use 

in construction poses ongoing occupational and public health risks. For instance, 

asbestos is responsible for approximately 250,000 deaths annually worldwide 

(Westerholm et al., 2017), PCB exposure has been linked to increased mortality 

(Parada et al., 2020; Ruder et al., 2014), and indoor radon is estimated to cause 3-

14% of lung cancers globally each year (Cook et al., 2022).  

        Moreover, the growing trend of reusing materials from CDW in circular 

construction raises stringent requirements for contaminant-free materials. 

Prioritizing risk mitigation, control, and monitoring of hazardous exposure, research 

focuses on the safe management and optimal disposal of these materials. Previous 

studies have concentrated on identifying the sources, pathways, types, and quantities 

of asbestos (Kim & Hong, 2017; Nam et al., 2015; Song et al., 2016; Franzblau et 

al., 2020; Govorko et al., 2019; Mecharnia et al., 2019) and PCB-containing 

materials (Diefenbacher, 2016; Shanahan et al., 2015; Herrick et al., 2016; Diamond 

et al, 2010) through field and laboratory investigations. On the other hand, indoor 

radon research has characterized influencing factors and their association with 

active monitoring (Cerqueiro-Pequeño et al., 2021; Valcarce et al., 2022), as well as 

the forecast of long-term indoor radon concentration trends (Kropat et al., 2015a; 

Kropat et al., 2015b; Elío et al., 2019). Currently, challenges in data-driven 



37 

applications for CDW include poor data quality and limited representation of 

knowledge in case studies (Yan et al., 2020). Future research is suggested to develop 

a holistic data mining framework, extract knowledge from unstructured data, and 

evaluate advanced data mining techniques to address these challenges (Yan et al., 

2020).  

1.3. Previous Research 
The identification and quantification of in situ hazardous substances are crucial for 

effective building stock decontamination and achieving material circularity. Current 

CDW management highlights the importance of traceability of hazardous materials 

to mitigate potential disturbances and emissions during building operation and 

retrofitting phases (Wu et al., 2019). Despite established EU and national guidelines 

for CDW management, adequate and precise information on the building structure 

and building material constitution for exiting buildings is missing (Rašković et al., 

2020). As a consequence, various sources of demolition-related information are 

employed for decision support in renovation and deconstruction planning, including 

building permit documentation, drawings, field survey records, BIM models, etc. 

(Rašković et al., 2020).  

        Machine learning and statistical techniques are utilized to impute missing 

values and generate insights from incomplete, finite information. For instance, Yang 

et al., (2021) developed aggregated behavior-based ML models from waste 

generation behaviors to handle project-level missing not at random data, yielding 

satisfactory results. Mecharnia et al. (2019) predicted the presence of asbestos 

materials using an ontology-based approach with incomplete temporal data on 

marketed products. So far, the potential of using waste audit inventories as input 

data for training ML models remains unexplored and unsystemized. The reliability 

of waste audit inventory heavily depends on available documentation and field 

survey results, making the distinction and volume estimation of hazardous materials 

uncertain (Rašković et al., 2020). Therefore, it is beneficial to compile environment-

specific data, integrate them into large-scale building databases, and determine their 

utility for contamination assessment. 

        In addition to data extraction, digital tools and methodologies for estimating 

waste stream types and volumes at the urban scale are proposed to support 

sustainable CDW management and the selection of appropriate urban mining 

strategies (Powell et al., 2015; Rašković et al., 2020). A primary focus of ML-related 

studies in the CDW domain is on predicting waste generation (Akanbi et al., 2020; 

Cha et al., 2017, 2020; Yu et al., 2019) and the reuse of building components 

(Deepika et al., 2022). However, these ML applications do not facilitate quality 

evaluation of in situ building materials, leaving the characteristics of remaining 

hazardous materials unknown. Conducting comprehensive pre-demolition audits is 
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resource-intensive, as many hazardous substances are not visually distinct and 

require individual building-based in situ sampling and laboratory analysis (Powell 

et al., 2015). Furthermore, since inventory results inform project management 

planning and tendering of disposal services, deviations from actual waste types and 

quantities can incur financial and environmental costs for contractors and property 

owners (Franzblau et al., 2020; Rašković et al., 2020). Thus, it is of great necessity 

to ensure accurate information on the waste audit operations meanwhile expanding 

the capacity of hazardous material screening (Rašković et al., 2020).  

        In Appendix I, literature related to data-driven applications for building 

contamination prediction is summarized. A comprehensive inventory of urban 

asbestos and PCB is a critical first step in identifying and quantifying their 

occurrence in the built environment for contaminant removal or remediation (Glüge 

et al., 2017). Various data sources have been explored for this purpose and analyzed 

using statistical or machine learning techniques. These include registers of buildings 

undergoing asbestos abatement from demolition databases (Franzblau et al., 2020), 

ACM characterization from landfills (Powell et al., 2015), self-reporting of 

recognized ACM via a mobile app (Govorko et al., 2017, 2018, 2019), field 

inventory and surveys on historical plants of ACM (Wilk et al., 2015, 2017, 2019),  

remote sensing data on ACM (Krówczyńska et al., 2020; Raczko et al., 2022), air 

sampling for PCB (Diamond et al., 2010; Diefenbacher et al., 2016; Kolarik et al., 

2016; Robson et al., 2010a), and indoor radon measurements (Adelikhah et al., 2021; 

Elío et al., 2019; Khan et al., 2021; Kropat et al., 2015a; Kropat et al., 2015b; Oni 

et al., 2022; Sarra et al., 2016; Valcarce et al., 2022). Few studies adopt ML 

approaches to predict ACM and indoor radon, with most research remaining 

descriptive in hazardous substance characterization from a bottom-up perspective. 

On the contrary, material flow and material stock analyses offer a top-down 

perspective on hazardous material metabolism, enabling impact assessment of 

hazardous substances.  

        However, both top-down and bottom-up approaches exhibit limitations in 

accurately estimating hazardous material in building stocks at an urban scale. 

Previous analyses of stocks and flows have been plagued by significant uncertainties, 

particularly regarding the detailed composition of components and their lifespans 

(Bergsdal et al., 2014; Donovan & Pickin, 2016a). Aggregated data, encompassing 

annual production, import, and historical usage of hazardous materials, relies on 

various assumptions, leading to considerable variability in sensitivity analyses 

(Bergsdal et al., 2014; Donovan & Pickin, 2016a). Conversely, field sampling 

methods, while detailed, demand substantial resources for widespread 

implementation and are generally limited to airborne contaminants (Shanahan et al., 

2015). Hence, the results from atmospheric chemical transport models may not 

comprehensively represent the entire building stock. Additionally, the geographic 

variability of certain hazardous substances warrants attention, as the level of 

exposure significantly fluctuates based on the age and type of buildings in question 

(Robson et al., 2010b). Given these challenges, data-driven approaches emerge as 
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promising alternatives, offering the potential to identify patterns of hazardous 

substances through historical inspection records and to estimate their likelihood of 

presence in buildings that have not been inspected. 

1.4. Research Gaps 
The absence of scalable, cost-efficient methods to systematically determine the 

probability of in situ hazardous substances in existing buildings impedes risk 

assessment and the planning of safe and cost-effective renovation and demolition. 

Gap 1 Assessing the information availability and usability of pre-demolition audit 

inventories. 

As part of the EU Construction and Demolition Waste Management Protocol, pre-

demolition audits have become either mandatory or a partially voluntary practice 

for renovation and demolition permit applications in many European countries. Yet, 

the environmental information amassed over the years remains largely untapped due 

to a lack of standardization and digitalization, resulting in challenges in combining 

it with from other building registers. Therefore, harnessing the potential of these 

inventory data to characterize and estimate the residual hazardous substances in the 

building stock presents a significant opportunity. 

Gap 2 Investigating data-driven techniques for predicting contamination in the built 

environment. 

To date, machine learning has been underutilized in identifying hazardous 

substances within the building stock. Previous research in this area has 

predominantly utilized statistical methods for descriptive purposes rather than 

predictive analytics. Consequently, the specific challenges and opportunities of 

using data-driven approaches in this context remain largely unexplored.  

Gap 3 Enhancing knowledge and awareness of in situ hazardous substances for 

circular building stock management. 

Current knowledge about the presence of in situ contaminants is incomplete and 

difficult to confirm, complicating environmental inspections, selective demolition, 

and waste sorting. Concerns about hazard exposure add uncertainty to project 

timelines and cost estimates, as well as the safe management of demolition waste 

and remediation efforts. To advance circular construction practices and improve the 

quality of CDW, there is a need to develop extensive knowledge about the patterns 

of hazardous material presence and the extent of contamination within the building 

stock.  
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1.5. Research Focus 
Aim  The primary goal is to explore the potential of applying data analytics and 

machine learning in predicting and interpreting the presence patterns of in situ 

hazardous substances in existing building stock as a decision support for relevant 

actors. 

The research questions are sequentially interrelated as fundamental elements of the 

machine learning pipeline, aligning with the previously identified research gaps. 

RQ1 focuses on assessing the availability and quality of environmental inventory 

data and identifying suitable target materials for machine learning predictions. RQ2 

delves into the identification of appropriate modeling techniques considering data 

constraints and evaluates model performances. RQ3 is a rather open question 

exploring how the developed models and discerned patterns can facilitate the 

estimation of residual hazardous substances for risk-based inspection planning prior 

to renovation and (selective) demolition. 

RQ1    Data gathering 
What is the potential of using data from building registers and pre-demolition audit 

inventories for mapping hazardous substances in the building stock? 

RQ2    Method development 
Which predictive methods can be used to estimate the presence of hazardous 

substances in buildings? 

RQ3   Prediction results 
With what certainty can the presence of hazardous substances in the building stock 

be predicted? 

        Figure 1.2 below illustrates the thesis structure for two thematic tracks, 

employing three data-driven methodologies. Appended papers are grouped 

according to the research questions they address. Research works focusing on 

hazardous materials such as asbestos and PCB are indicated in blue, while those 

concentrating on radioactive substances such as radioactive concrete and indoor 

radon are highlighted in brown. This consistent color scheme is applied across the 

thesis for ease of navigation and comprehension. Paper I corresponds to RQ1 and 

offers an extensive overview of data-driven applications in managing in situ 

hazardous materials. It reviews state-of-the-art literature to establish a theoretical 

framework for the study. Paper II and its preceding study, Conf I, elaborate on RQ1, 

detailing the data gathering process for acquiring input data from environmental 

inventories of CDW and building registers. These empirical works aim to create a 

digital hazardous material dataset from pre-demolition audit inventories. Paper III-

VI and Conf II concern RQ2 and RQ3, with specific emphasis on hazardous 
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materials and radioactive substances, respectively. Paper III serves as a pilot study 

to test ML applications in predicting asbestos and PCB-containing materials. Paper 

IV extends the work of Paper III, broadening the prediction scope to various 

hazardous materials across multiple building types. Paper V is an independent study 

examining a statistical learning method to estimate the presence of radioactive 

concrete (so called blue concrete) in major Swedish cities, based on inventory 

records of demolished and renovated buildings. Paper VI and Conf III address the 

prediction of indoor radon using varied ML and statistical modeling approaches. 

 
Figure 1.2. Thesis structure with thematic and methodological dimensions. 
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1.6. Liminations 
The thesis has three primary delimitations concerning data, specifically focusing on 

(i) the quality of inventory data, (ii) the availability of key data features, and (iii) 

assumptions regarding building typology. Each delimitation is accompanied by a 

thorough description of its causes and the data processing techniques employed to 

mitigate their impacts: 

Data quality of inventories 
The thesis involves textual knowledge discovery by transforming unstructured 

empirical data from the CDW field into systemized digital data. The data quality of 

pre-demolition audit inventories was evaluated in terms of accuracy, completeness, 

reliability, relevance, and timeliness. Significant efforts were made to digitize these 

inventories accurately, converting inspection records into a coherent hazardous 

material dataset. A cross-validation workshop was conducted with the project team 

to ensure consistent documentation and agreement on the interpretation of detection 

records. Despite efforts to maintain completeness, some missing values are 

unavoidable due to the scope of inspections and inventory details. Lacking 

descriptions of generic characteristics were supplemented with information from 

additional sources, such as building registers and property maps, though the state of 

uninspected building components remained unknown. 

        The reliability of data was gauged considering the inspectors’ experience and 

competence levels and the number of samples collected, yet verification of 

inspection records was not feasible, posing a risk of judgment errors. The granularity 

of data varied, depending on whether the source of inventory was substance-level 

(e.g., demolition and control plans) or material-level (e.g., protocol templates and 

reports). The dataset design only included relevant and frequently available 

information to ensure appropriate and sufficient hazardous substance 

documentation. The constantly changing state of the building stock and the potential 

mismatch between inspection records and building register data posed challenges in 

assessing the timeliness of inventories. With the alteration of existing building stock, 

old building registers may be eliminated or renewed, leading to increasing 

uncertainty as opposed to the date of inventories. 

Data availability of key features 
The study aims to develop a comprehensive hazardous substance prediction pipeline, 

utilizing general building characteristics as training features. Nevertheless, the 

occurrence patterns of certain hazardous substances are specific to component use 

and building type. For example, PCB capacitors and sealants are prevalent in large 

non-residential buildings with high electricity demand (Diamond et al., 2010; 

Shanahan et al., 2015), and the likelihood of detecting ACM increases with building 

age and building physical footprint (area per floor) (Song et al., 2016). To refine 
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model training, it was necessary to include relevant features tailored to specific 

hazardous substances. Other potential critical features, such as construction 

materials and proximity to hazardous material production plants, were suggested in 

the literature (Kropat et al., 2014; Wilk et al., 2015) but were not always available 

in building databases, limiting the predictive performance of ML models. 

Information such as foundation types, crucial for indoor radon concentration 

predictions, was only accessible in selective municipal databases. As such, features 

not universally available were excluded from the national-scale analysis.  

Assumptions on building typology 
Aggregating buildings with similar typologies is a way to simplify the complexity 

in the building stock analysis, assuming that buildings with similar functions and 

ages in neighboring areas have particular constitutions (Berggren & Wall, 2019). 

The building stock was clustered into different types based on location, construction 

year, and usage, with the dataset’s partition level depending on the data size of 

dependent and independent variables for prediction. To enable an accurate inference 

of the analytical results, observations were divided into subgroups for modeling 

based on building category and usage codes from municipality cadastral registers. 

The primary categorization of building types is into residential and non-residential 

dwellings, further subdivided into ten distinct building classes for detailed analysis. 

Machine learning models were developed for each building class subgroup, with 

other categorical variables such as municipality or postcode employed as dummy 

features for model training and interpretation. 

1.7. Content Structure 
The thesis is structured into three main sections - the prologue, main body, and 

epilogue. The prologue offers an overview of the research topic, followed by a 

detailed introduction to the data and digital techniques employed in the study. This 

is encompassed in Chapter 1 Introduction and Chapter 2 Materials and Methods. 

The main body, represented by Chapter 3, presents key research findings, drawn 

from appended papers and a comprehensive report, segmented into four distinct 

sections. The thesis concludes with the epilogue, comprising Chapter 4 Discussion 

and Chapter 5 Conclusions, which collectively encapsulate the study’s final insights 

and findings. 
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2. Materials and Methods 

The chapter offers a comprehensive overview of the materials and methods used in 

the thesis. Employing the framework of Knowledge Discovery in Database (KDD), 

the materials are depicted in gray and the methods in white, segmented into three 

successive parts in Figure 2.1. Section 2.1 elaborates on qualitative approaches, 

aligning theoretical and practical knowledge of the research domain through a 

systematic literature review and the collection of industry insights. Section 2.2 

focuses on the empirical aspect, detailing the process of data gathering and analysis 

of pre-demolition audit inventories from buildings that underwent renovation or 

demolition between 2010 and 2022. It describes the procedures for assembling and 

validating the database, evaluating it, and conducting exploratory data analysis. 

Section 2.3 presents quantitative approaches for predictive modeling, patterns 

evaluation, and predictive analysis. The selection of relevant data analytic and 

modeling techniques is tailored to the objectives of the analysis, considering data 

quality, quantity, and the desired predictive performance.  

 
Figure 2.1. Materials and methods illustrated based on the framework of 

Knowledge Discovery in Database. 

        Various elements of the KDD framework were related to the material and 

methodology used in the papers, as depicted in Figure 2.2. Paper I reviewed 

academic publications and gray literature using science mapping and content 

analysis to explore state-of-the-art research developments. Paper II and Conf I 
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merged building registers and environmental inventories, assessing their data 

quality using data analytic and statistical methods. Papers III and IV further 

performed descriptive analysis (such as summarization, clustering, and association) 

and predictive analysis (utilizing machine learning classification models) on the 

hazardous material dataset. This was done to discern patterns, identify correlations, 

and evaluate the likelihood of asbestos and PCB presence in buildings. Paper V 

deduced the occurrence of radioactive concrete by analyzing detection records from 

environmental inventories and indoor radon measurements using a learning 

Bayesian network. Finally, Paper VI and Conf II resembled the data-driven 

modeling approach and pipeline to predict indoor radon concentrations and intervals 

in the Swedish building stock.  

 
Figure 2.2. Representation of materials and methods in the appended papers. 

2.1. Qualitative Approaches 
Figure 2.3 illustrates the alignment of knowledge in hazardous material 

management, bridging the gap between theoretical frameworks and practical 

applications. This was achieved by conducting a systematic literature review, which 

outlined the theoretical evolution in the field and identified existing gaps and 

limitations in current studies. Concurrently, inputs from relevant industry 

stakeholders were gathered to verify their research needs and priorities. Aligning 

theoretical insights with practical realities is crucial for steering the research in a 

direction that enhances the practical applicability and utility of the research findings.  
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Figure 2.3. Outline of qualitative study approaches. 

2.1.1. Systematic Literature Review 

In Paper I, a two-fold approach was employed for the systematic literature review. 

The first part involved assessing the scientific progress in the knowledge domain, 

while the second part focused on identifying data-driven approaches and their input 

data in relevant studies. The literature search was conducted using Web of Science 

and Google Scholar, utilizing a combination of search phrases such as “hazard”, 

“(artificial intelligence) AI or machine learning”, and “building” linked by Boolean 

operators. This process resulted in the retrieval of 307 documents, which were 

analyzed using the R library Biblioshiny for bibliometric analysis (University of 

Naples Federico II, 2023). The meta-data of the acquired literature was examined to 

describe the research development, conceptual structure, and intellectual structure 

of the field in the first phase of science mapping (Chen, 2017). Research 

development was quantified by the number and thematic distribution of scientific 

publications. Subsequently, the conceptual structure was clarified through co-word 

and word dynamic analysis, using multiple correspondence analysis (MCA) 

(STHDA, 2017) to illustrate the relationships and evolution among keywords. The 

historiographic mapping was depicted in citation networks and three-field plots 

(Garfield, 2004), showcasing the knowledge contributions from authors and their 

publication outlets.  

        The second part of the paper, the content analysis, utilized the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework 

(Moher et al., 2009) to gauge the relevance of the literature for more detailed 

analysis. Through this funnel-like process, 57 papers with middle to high relevance 

regarding machine learning applications in CDW management, asbestos, and PCB 

topics were selected for critical literature review. From these, 16 highly relevant 

papers were synthesized following the activity flows in the EU Construction and 
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Demolition Waste Management Protocol (ECORYS, 2016). This synthesis 

summarized the state-of-the-art machine learning applications and input data used 

for identifying hazardous materials, source separation, and on-site collection. 

2.1.2. Industrial Input Collection 

To gather industrial insights from the construction industry on our research 

development, a dialogue was initiated with actors from the Swedish CDW sector 

through a workshop with stakeholders and expert interviews. The workshop was 

designed to facilitate collaborative discussions among construction industry 

participants to obtain valuable feedback (Lain, 2017), whereas expert interviews 

were conducted to deepen the knowledge of pre-demolition audits and 

decontamination practices. Expert interviews focused on delving deeper into pre-

demolition audits and decontamination practices. This approach bridged the gap 

between theoretical research and practical application by combining diverse 

stakeholder perspectives with specialized expert knowledge. A workshop titled 

“Identification of hazardous materials with applied AI” was conducted in November 

2022 with two discussion sessions and an intermediary presentation. The structure 

of the workshop was as follows:  

• Introduction to the research topic (10 min) 

• Part I: Research question answering and open discussion (40 min) 

• Presentation of preliminary research results (15 min) 

• Part II: Gathering feedback on the research (10 min) 

• Discussion of next steps (10 min) 

        Table 2.1 below details the sectors, positions, and expertise of the 13 workshop 

participants. A diverse and balanced representation from various sectors of the 

CDW value chain was a key consideration in participant selection. The outcomes of 

the workshop were then used for a stakeholder needs analysis, which helped to 

understand the problem’s scope and identify key actors interested in utilizing the 

predictive models. This same network was later leveraged for disseminating the 

research findings in December 2023, as described in section 4.3.2.  
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Table 2.1. Overview of the participants in the workshop. 

Sector Position Field of expertise 

Academic Senior researcher Sustainable renovation 
Academic Researcher Building stock research 
Academic PhD candidate Circular construction, applied AI 

Construction firm A R&D manager BIM, digitalization 
Consultancy firm B Building specialist Material inventory, applied AI 
Consultancy firm B Technical manager Inventory, circular construction 
Consultancy firm B Procurement Demolition, recycling 
Consultancy firm C Senior consultant Pre-demolition audits 
Consultancy firm C Senior consultant Pre-demolition audits 
Consultancy firm D Senior consultant Pre-demolition audits 

Decontamination firm Consultant Circular construction 
Client Senior project leader Demolition development 

Housing authority Senior project leader Circular construction, digitalization 

        Thereafter, a semi-structured interview was scheduled with an in-house expert 

to gather detailed insights on pre-demolition audits and decontamination practices. 

The problem-centered interview was regarded as an effective method for delving 

into implicit and in-depth knowledge within a specific area (Döringer, 2021). It 

employed an interactive-dialogue interview approach guided by a pre-defined 

interview protocol, aiming a deep exploration of the interviewee’s individual 

perspectives. In January 2023, an expert interview was conducted with a senior 

environmental engineer, who has over 16 years of combined industrial and research 

experience. Prior to the interview, a semi-structured questionnaire, divided into two 

sections encompassing 11 questions, was shared with the expert. The first part of 

the questionnaire addressed pre-demolition audits, while the second focused on 

decontamination processes. This was followed by a comprehensive one-and-a-half-

hour online discussion, which allowed for an in-depth exploration of the topics. The 

findings from both the stakeholder need analysis and this expert interview were 

systematically compiled and are presented in Section 3.1.2. 

2.2. Data Gathering and Analytics 
Data curation is an iterative process that involves selection and organization of 

potential features into databases for specific predictive analyses. For this study, 

various environmental information sources concerning asbestos, PCB, radioactive 

concrete, and indoor radon were screened, gathered, and analyzed to trace the 

presence of hazardous substances in the Swedish building stock. As depicted in 

Figure 2.4, two distinct databases were created: one for hazardous materials and 

another for indoor radon. These databases were assembled by integrating building-
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specific environmental data with generic building stock data, thereby establishing a 

robust foundation for model training and predictive tasks. A key step in this process 

was the use of the national real estate index, combined with building addresses, as 

primary matching keys. This approach enabled the creation of comprehensive 

datasets with high granularity, pinpointing the location of identified hazardous 

substances at the individual building level. The methodologies and specifics of this 

data gathering workflow are detailed in Paper II and Conf I for the hazardous 

material database, and in Paper VI for the indoor radon database. These descriptions 

provide a clear insight into the procedures for database compilation and their 

subsequent application in hazardous materials and substances prediction. 

 
Figure 2.4. Data coupling between building specific and generic data. 

2.2.1. Database Curation 

The hazardous material database and the indoor radon database were created using 

Feature Manipulation Engine (FME) and Python for statistical and machine learning 

modeling to estimate remaining hazardous substances in the building stock that lack 

existing inventories or indoor radon measurements using a method established by 

Johansson et al. (2017). 

Hazardous Material Database 
In compliance with the EU Waste Framework Directives (European Commission, 

2008), carrying out a pre-demolition audit is a mandatory or conditionally voluntary 

practice in EU countries. These audits include a desk study of building 

documentation and maintenance protocols, field surveys for materials and 
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substances identification, classification, and sampling, along with management 

recommendations and reporting. In Sweden, these environmental inventories are 

essential for building permit applications for renovation, reconstruction, extension, 

and demolition (Grönberg, 2017). However, they are not included or integrated in 

the national building databases due to a lack of systemization and digitalization.  

        The created hazardous material database collates building environmental data 

from these pre-demolition audit inventories with generic building data. The database 

contains approximately 1,100 observations of environmental and PCB inventories 

from buildings renovated or demolished between 2010-2022 in Stockholm, 

Gothenburg, Malmö, and Kiruna municipalities. The initial case study in 

Gothenburg in 2020, presented in Conf I and Paper II, was followed by expanded 

searches in Stockholm (Paper III) in 2021, and later in Malmö and Kiruna (Paper 

IV) between 2022-2023. 

        To standardize and compile various hard-copy inventory records into a 

consistent template, a protocol template was created based on the format introduced 

by the City of Gothenburg. This protocol included information on inspection extent, 

completeness, and detected hazardous materials. The documentation in reports was 

detailed based on the list of hazardous waste from the resource and waste guidelines 

and thorough with lab analysis of material samples, whereas control and demolition 

plans typically had simpler formats with free-text descriptions of detected 

substances. Consequently, a list of common hazardous substances and materials was 

included in the dataset, covering various components such as mercury, CFC/HCFC, 

PCB, asbestos, PVC, and radioactive concrete. Unlisted materials were categorized 

under “other components”. This approach balanced the need for sufficient 

observational data without losing crucial details. A cautious principle was followed 

in the digital transformation to ensure correct documentation of affirmed detection 

versus unknown or unsure records of hazardous materials through an internal 

workshop of transforming ten observations with the research team.   

        The building database comprises data from the Swedish real estate taxation 

register, municipality cadastral register, Energy Performance Certificates (EPCs), 

and building footprint maps from the metropolitan regions of Stockholm, 

Gothenburg, and Malmö (Swedish Land Survey, 2022), detailed in Table 2.2. The 

matched registers of inventoried buildings were appended to the inventory template 

for model training, while the remaining building registers were utilized for model 

predictions. Google Maps and property maps served as supplementary data sources 

for building validation during data preprocessing and merging. The step-by-step 

process of creating the hazardous material dataset is outlined in Conf I Table 1, with 

detailed data specifications provided in Paper II Table 1. Each observation in the 

database includes comprehensive information on building cadastres and 

characteristics, types and quantities of hazardous components, and building 

materials. Machine learning models for asbestos- and PCB-containing materials, 

developed from this database, are described in Papers III-IV. Additionally, the 

radioactive concrete dataset was partly derived from the hazardous material 
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database and partly from the indoor radon measurements in the municipalities of 

Gävle and Umeå. Detailed data specification of the radioactive concrete dataset and 

learning Bayesian network modeling are described in Paper V.  

Table 2.2. Overview of attributes in the hazardous material database. 
Source Aggregation Attribute* Variable type 

Pre-demolition 
audit inventory 

Building 

National property index Matching key 
Address Matching key 

Building type1 Independent 
Building usage Ancillary 

Construction year1 Independent 
Renovation year1 Independent 
Renovation extent Ancillary 

Floor/inventory area1 Independent 
Inventory types Ancillary 

Scope Ancillary 
Inventory date Ancillary 

Auditors Ancillary 
Decontamination Ancillary 

Asbestos detection Dependent 
Asbestos components Dependent 

PCB detection Dependent 
PCB components Dependent 

Radioactive concrete Dependent 
Radioactive concrete component Dependent 

Municipal 
cadastral register Building 

National property index Matching key 
Postcode Independent 

Postal location Ancillary 
Building category code Independent 

Building type code Independent 
Construction year4 Independent 

 Floor area4 Independent 

Swedish Real 
Estate Taxation 

Register 
Property 

National property index Matching key 
Property type2 Independent 

Construction year2 Independent 
Renovation year1 Independent 

Floor area2 Independent 

Energy 
Performance 
Certificates 

Building 

National property index Matching key 
Address Matching key 

EPC approved date Ancillary 
EPC building category Independent 

EPC building type Independent 
Construction year3 Independent 
Renovation year2 Independent 
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Source Aggregation Attribute* Variable type 

Energy 
Performance 
Certificates 

 

Building 

Heated floor area3 Independent 
 Number of floors Independent 
 Number of apartments Independent 
 Number of stairwells Independent 
 Number of basements Independent 
 Ventilation types Independent 

Building 
footprint map 

Building 
Building physical footprint5 Independent 

Number of floors Independent 

*Variables marked with superscripts were found in multiple registers. The numbers 

signified quality ranking when consolidating multiple entries into a singular record.  

Indoor Radon Database 
In 1981, Sweden’s first indoor radon reference limit of 200 Bq/m

3
 was introduced 

as part of the national radon program (Rönnqvist, 2021). Subsequently, several 

extensive indoor radon surveys have been conducted, including the ELIB survey 

between 1991-1992, the Radon Survey in the 2000s, and the BETSI survey from 

2007-2009. These surveys have focused on residential buildings, yielding a 

significant number of long-term average indoor radon measurements: 340,000 in 

single-family houses and 440,000 in multifamily houses (Rönnqvist, 2021).  

The indoor radon database encompasses a broader range of attributes and a larger 

dataset compared to the hazardous material database, as detailed in Table 2.3. It 

includes anthropological and geographical data from the Swedish Cadastral and 

Land Registration Authority (Swedish Land Survey et al., 2022), i.e., building 

parameters and coordinates, as well as geological data from the Geological Survey 

of Sweden’s (SGU) Web Map Service databases (Swedish Land Survey et al., 2022), 

i.e., radioactive substance concentrations and soil types, as training features. By 

merging these data with the nationwide indoor radon measurements from the latest 

EPCs and municipality open databases, the indoor radon database was created with 

around 190,000 measured properties between the 1990s and 2021.  

        Afterward, the annual average indoor radon levels, derived from aggregated 

measurement values, serve as dependent features for long-term exposure prediction. 

Supplementary variables, such as measurement dates, periods, and methods, were 

employed to filter out invalid observations. A comprehensive data analysis was 

conducted on all valid data, followed by the extraction of a subset of recent 

measurements post 2015 for modeling purposes. Metadata for the indoor radon 

database is extensively documented in Paper VI Appendix A1. The database 

underpins the regression models for indoor radon concentrations presented in Conf 

II and the multi-class classification models for intervals described in Paper VI. 
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Table 2.3. Overview of attributes in the indoor radon database. 
Source Aggregation Attribute Variable type 

Municipal 
open database 

Building 

National property index Matching key 
Address Matching key 

Indoor radon measurement dates Ancillary 
Indoor radon measurement period Ancillary 
Indoor radon measurement type Ancillary 

Indoor radon annual average Independent 
Highest level of indoor radon Ancillary 

Radioactive concrete Ancillary 
Floor area Ancillary 

Municipal 
cadastral 
register 

Building 

National property index Matching key 
Address Matching key 

County code Ancillary 
County name Ancillary 

Municipality code Ancillary 
Municipality name Ancillary 

Building category code Ancillary 
Building type code Ancillary 

Coordinate longitude Independent 
Coordinate latitude Independent 

Geographical adjustment factor Independent 

Energy 
Performance 
certificates 

Property 

National property index Matching key 
Address Matching key 

Heated floor area Independent 
Indoor radon measurement dates Ancillary 
Indoor radon measurement type Ancillary 

Indoor radon annual average Dependent 
Number of floors Independent 

Number of apartments Independent 
Number of stairwells Independent 
Number of basements Independent 

Ventilation types Independent 

Geological 
Survey of 
Sweden 

databases 

Coordinates 

Potassium concentration Independent 
Thorium concentration Independent 
Uranium concentration Independent 

Soil type code Independent 
Soil specification Ancillary 

Soil collection methods Ancillary 
Soil collection scale Ancillary 
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Investigation of empirical data 
A broad examination of building environmental documents was conducted to gather 

information on past hazardous substance investigations in Sweden. Efforts to find 

empirical data on asbestos and PCB yielded limited results, as inventory records 

were stored at individual municipalities, and no data were available on their 

production plants. However, historical surveys of radioactive concrete and indoor 

radon at the national scale were found in open databases managed by the Geological 

Survey of Sweden and some municipalities. This information served as a 

supplementary data source, enhancing the understanding of radioactive substance 

presence patterns and their correlation with other factors. Additionally, statistics 

from these past surveys provided a benchmark for data validation and comparative 

analysis of results.  

        From 1929 to 1975, radioactive concrete was extensively used in construction 

across Sweden. The negative impacts of this material were not recognized until 

1980, leading to extensive surveys between 1979 and 1981. These surveys involved 

vehicle-based gamma radiation measurements across 150 municipalities, as 

depicted in Figure 2.5. On the mapped districts, the green line indicates the vehicle’s 

route, red circles identify houses with elevated gamma radiation levels due to 

radioactive concrete, and blue circles mark houses with high gamma radiation that 

might be caused by radioactive concrete and thus require further investigation. 

Despite these inventories being outdated due to ongoing changes in the building 

stock and the lack of follow-up decontamination information, they still provide 

insight into the prevalence of radioactive concrete in existing buildings. Another 

search thread led to the discovery of aerial images indicating high gamma radiation, 

potentially signifying buildings containing radioactive concrete, as shown in Figure 

2.6. However, this type of information was sporadically available and challenging 

to validate on a large scale. 

 
Figure 2.5. Inventory of buildings with radioactive concrete via vehicle 

measurements of gamma radiation (Geological Survey of Sweden, 1979). 
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Figure 2.6. Identification of buildings potentially containing radioactive concrete 

(highlighted in red frames) based on geophysical aerial measurements of uranium 

gamma radiation conducted by the Geological Survey of Sweden. 

        In 1983, an indoor radon threshold level of 400 Bq/m
3
 was introduced in 

Sweden, which was further reduced to 200 Bq/m
3
 in 2004. Adhering to these 

regulatory reference levels necessitated the importance of indoor radon 

measurements, both for monitoring gamma radiation exposure and for 

implementing remediation in buildings exceeding these thresholds. To discern the 

impact of geological and geographical factors on indoor radon levels, digital map 

data regarding radioactive substances and soil types were accessed from the 

Geological Survey of Sweden, as illustrated in Figure 2.7. Concurrently, indoor 

radon measurement data were acquired from the open APIs of various 

municipalities.  

        Directly inferring the relationship between these variables from the 2D urban-

scale radioactive maps proved unfeasible. Therefore, this data was converted into a 

digital, tabular dataset. This transformed dataset was then combined with additional 

indoor radon measurements, sourced from EPCs, to facilitate predictive modeling. 

This integration of diverse data sources allowed for a more comprehensive analysis 

of indoor radon levels, taking into account both environmental factors and building 

characteristics. 
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Figure 2.7. Geographical charts of geological data on radioactive substances and 

indoor radon in Gävle. 

2.2.2. Data Preprocessing 

Data preprocessing, including data validation and evaluation, data cleaning, missing 

data imputation, and handling of imbalanced data, was performed on the compiled 

databases to establish high-quality datasets for subsequent analysis and modeling. 

Tools such as online spreadsheets, and the Python libraries Numpy (Harris et al., 

2020) and scikit-learn (Pedregosa et al., 2011) were employed for these operations. 

        First and foremost, data validation was conducted to control the consistency 

in building attributes between building-specific data and building register data. This 

step was particularly crucial when integrating empirical data sources into 

established databases for the creation of the hazardous material dataset. Registers 

sharing the same real estate index were retrieved, and common variables from these 

data sources, alongside property maps and Google Street Views, were utilized to 

identify matching buildings. For multi-entry attributes such as construction year, 

floor area, and building usage, data were consolidated into single entries, 

Indoor radonSoil type

Uranium Potassium Thorium
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prioritizing accuracy in the following order: inventories, real estate taxation 

registers, EPCs, and municipal registers.  

        For the indoor radon dataset, ancillary variables in the measurements were 

examined to exclude invalid data, such as measurements shorter than two months, 

those conducted outside the heating season, or prior to the year 2000. In instances 

where multiple measurements were available for the same property, the most recent 

data were retained, emphasizing the importance of data timeliness for accurate 

historical data and updated registers management. 

        Thereafter, a data assessment matrix was formulated to appraise the quality and 

quantity of the heterogeneous inventory data. This evaluation took into account 

multiple dependent variables, building classes, and regional stock compositions. 

The hazardous material dataset underwent this assessment to pinpoint data 

subgroups with better quality and more substantial data volume. The following 

equation, outlined in Papers II-IV, was applied within the data assessment matrix 

for evaluating the hazardous material dataset. 

   

! = ($% × '% + 	$* × '* + 	$+ × '+ + 	$, × ',)
. 	× 	/ 

 

y = Assessment score [0 - 100]. 

I = Inventory type for weighting observations. I = 1 if is report (r), I = 0.75 if is 

protocol (p), I = 0.5 if is control plan (c), and I = 0.25 if is demolition plan (d). 

n = The number of observations in the subgroup [0 < n]. 

N = The number of observations in the entire dataset. 

K = Weight based on data size. K = 1 if n >= 400, K = 0.75 if 300 =< n < 400, K = 

0.5 if 200 =< n < 300, K = 0.25 if 100 =< n < 200, K = 0 if n < 100. 

 

        For each subgroup of hazardous materials and building classes, a larger number 

of detailed inventory implies a higher assessment score and a greater modeling 

potential. In the case of continuous indoor radon measurements, a descriptive 

analysis was conducted to assess data count, value range, and mean values across 

building classes, aiding in determining the distribution and variations between 

different data subgroups. Data cleaning was performed to selectively refining data 

subsets of interest and eliminating incorrect, corrupted, or duplicated entries. Given 

that various hazardous substances were commonly used in construction between 

1930 and 1980, buildings from this era within the Swedish building stock were a 

primary focus. This specific subset was extracted from both the hazardous materials 

and indoor radon databases for outlier detection and removal. The Interquartile 

Range (IQR) method, which is particularly effective for non-Gaussian distributions 

by calculating cutoffs at 1.5 times the IQR from both the 75th and 25th percentiles, 

was utilized in Paper VI and Conf II to identify and exclude anomalous data for 

predictive variables. Subsequently, the numerical data were standardized, and 

categorical data were encoded for further processing. 
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        Observations containing large numbers of missing data in the datasets were 

either removed or imputed based on the types of missing data, Missing Completely 

at Random, Missing at Random, and Missing Not at Random. The Python library 

missingno was employed to visually represent the presence and extent of missing 

data in matrix and bar formats. Variables with missing values exceeding 30% were 

excluded from the feature set to minimize their impact on prediction results. This 

process was tailored to individual data subgroups due to considerable variations in 

variable availability among building classes and regions. Continuous variables 

identified as Missing Completely at Random were imputed using the k-NN 

algorithm in Paper IV, where the average of k nearest neighbors was calculated for 

imputation uniformly or weighted by distance. Correlations between dependent and 

independent variables guided the feature selection in multivariate imputation.  

        Both the hazardous material dataset and the indoor radon dataset showed 

skewed class distributions, characterized by a low incidence of positive hazardous 

material detections and few observations with elevated indoor radon levels. This 

imbalance led to classifier bias towards the majority class, often resulting in 

misclassification of the minority class. To address this, various techniques were 

employed, including resampling, data augmentation, algorithm adjustments, 

selecting appropriate evaluation metrics, and threshold moving. Initially, 

oversampling of the minority class, either through replication or using the Synthetic 

Minority Oversampling Technique (SMOTE) to create synthetic instances, was 

applied. Algorithm adjustments were then made by incorporating sample weights 

based on inverse class frequency. Evaluation metrics such as the Area Under the 

Receiver Operating Characteristic Curve (AUC) and the F1 score (the harmonic 

mean of precision and recall) were chosen over accuracy to assess imbalanced 

classification more effectively. Finally, optimal threshold values were determined 

through threshold shifting in ROC curves and Precision-Recall curves to maximize 

AUC and F1 scores.  

2.2.3. Explorative Data Analysis 

Data analytics were conducted on the cleaned datasets to establish a preliminary 

understanding of the dataset structures and the interrelationships among variables. 

Utilizing Python’s statistical visualization libraries, Matplotlib (Hunter, 2007) and 

Seaborn (Waskom, 2021), sample distribution and correlation analysis for both the 

hazardous material dataset and the indoor radon dataset were carried out. These 

analyses became a foundation for subsequent algorithm selection and variable 

transformation. Thereafter, feature selection was performed with scikit-learn to 

pinpoint critical features for statistical and machine learning modeling. 

        The analysis of sample distribution, which reflects the probability distribution 

of statistics from numerous samples drawn from a specific population, was pivotal 

in identifying potential skewness in the dataset. This involved estimating standard 
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deviations, confidence intervals, and the upper and lower limits. Graphical 

representations of numerical variables, such as construction year, floor area, number 

of floors, and indoor radon measurements, were created in various formats including 

histograms, scatterplots, boxplots, violin plots, and strip plots. Boxplots were used 

for comparing the summary statistics regarding the spread of mean, median, 

minimum, maximum, and outlier values across different data subgroups. Violin 

plots complemented this by showcasing the kernel density distribution of each 

variable, providing insights into the shape of the distribution. The density 

distribution or probability distribution was then normalized to depict the frequency 

distribution of building parameters across both training and prediction sets, aiding 

in assessing how representative the building samples were of municipal or regional 

building stock. Lastly, strip plots, which are essentially categorical scatterplots with 

jitter, were employed to enhance the visualization provided by violin plots. These 

plots were instrumental in representing the underlying distribution of the data, 

offering a more nuanced view of the relationships and patterns within the dataset. 

        Correlation analysis, also known as bivariate analysis, was implemented to 

explore the relationships between dependent and independent variables and to 

quantify these relationships in terms of correlation coefficients. The hazardous 

material and indoor radon datasets, which comprise a mix of data types, were 

analyzed using Pearson correlation matrices to identify relationships between pairs 

of variables. These relationships were visually represented in heatmaps. 

Clustergrams, which combine heatmaps with dendrograms, facilitated hierarchical 

cluster analysis and provided a visual means to understand the patterned clustering 

of variables. In addition to this, the p-value (the level of marginal significance within 

a hypothesis test) for each pairwise relationship was computed to ascertain which 

variables significantly enhanced model fit in statistical terms. 

        Feature selection was integrated into a model-based pipeline to minimize the 

number of input variables. This reduction not only lowers computational costs but 

can also enhance model performance. Various techniques were employed in the 

thesis based on their unique strengths, such as f-test in the analysis of variance 

(ANOVA), selectKbest, selectPercentile, and recursive feature elimination (RFE). 

The F statistic in ANOVA measures the joint effect of all variables, helping to 

determine if the variance between the means of two populations is significant, and 

is typically used in conjunction with p-values. The selectKbest and selectPercentile 

algorithms, which operate based on f-values, return either the top k highest scores 

or a certain percentile of the highest scores, respectively. In contrast, RFE iteratively 

identifies the best feature set by gradually removing the least important features 

until the desired number of features remains. The selection and number of features 

are closely linked to model performance. Therefore, datasets derived from different 

data preprocessing methods were examined during model training to identify 

optimal combinations. 
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2.3. Quantitative Approaches 
Data-driven approaches encompassing statistical modeling, machine learning, and 

neural networks. These were employed to develop predictive models for hazardous 

substances. Given the non-linear relationships and intricate interdependencies 

among variables, non-parametric algorithms were selected for predictive modeling. 

These algorithms do not presuppose a specific model structure; rather, they adapt to 

the form of the data. Figure 2.8 presents the mapping of algorithms, evaluation 

metrics, and model explainability techniques employed in the thesis. Papers III and 

IV explored numerous supervised learning classifiers to predict asbestos and PCB-

containing materials in buildings, while Paper V utilized a statistical approach for 

estimating the presence of radioactive concrete. The prediction of indoor radon 

concentrations was addressed in Conf II, which compared the performance and 

feature selection between statistical and machine learning models. Paper VI 

advanced this line of inquiry by predicting indoor radon levels using both machine 

learning and neural network modeling. 

        The subsequent section provides a detailed overview of each component of the 

modeling pipeline. This includes model training, where algorithms learn the best 

combination of weights and bias to minimize a loss function; hyperparameter 

tuning, which involves optimizing the settings within each model to improve 

performance; model evaluation, where the effectiveness of a model is assessed; and 

output interpretation, which involves making sense of the model’s predictive results. 

This comprehensive approach ensures that the predictive models are not only 

accurate but also interpretable and relevant to the needs of the study. 
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Figure 2.8. Mapping of predictive modeling approaches used in the papers. 

        The hazardous material and the indoor radon datasets were partitioned into 

training and validation sets with comparable proportions of each label. The training 

data then underwent a series of steps in the machine learning pipeline – model 

training, hyperparameter tuning, model evaluation, and output interpretation. K-fold 

cross-validation was employed on the training set, which averages model 

performance over k iterations. Given the class imbalance present in both datasets, 

the Synthetic Minority Oversampling Technique (SMOTE) was used to augment 

minority classes such as positive detection records and high indoor radon intervals. 

Additionally, sample weights within algorithms were adjusted to address this 

imbalance. Optimal threshold moving was also explored to minimize false negatives 

and maximize AUC and (macro-)F1 in the ROC curve and Precision-Recall curve. 

Thereafter, a random grid search was conducted to evaluate various combinations 

of hyperparameters, fine-tuning the model until the point of minimum loss. The lead 

models’ performance in both cross-validation and the validation set (approximately 

20% of the dataset) were assessed using the F1 and AUC metrics for classification 

tasks, and Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean 

Squared Error (RMSE), and R-squared for regression tasks. The influence of data 



62 

size on model performance was evaluated by analyzing learning curves for both 

training and validation. 

        To untangle the gray-box models and interpret the prediction outputs, 

explanation plotting functions such as variable importance, SHapley Additive 

exPlanations (SHAP), and partial dependence (PD) plots were utilized. Variable 

importance, calculated from the gains in loss functions during the construction of 

tree-based algorithms, highlighted the relative influence of each feature. SHAP 

values quantified the contribution and magnitude of feature impact on both local 

(individual observation level) and global (entire dataset level) predictions. PD plots 

revealed the marginal effect of a single feature on the dependent variable across 

various models, assuming independence between features. By measuring the change 

in the mean response, the average impact of variables on the model’s predictions 

was ascertained. Finally, the developed models were applied to the prediction set. 

The outcomes of these predictions were then analyzed using statistical description 

and geospatial visualization tools, providing a comprehensive understanding of the 

model’s applicability and effectiveness. 

2.3.1. Statistical Modeling 

Statistical modeling serves as an alternative inference approach to machine learning, 

for approximating reality and deriving inferences. Using statistical hypothesis tests 

and statistical estimators, the mathematical relationship between a dependent 

variable and one or more independent variables can be mapped into functions. 

Statistical models are non-deterministic and stochastic, representing probability 

distributions rather than specific values (James et al., 2023), and explaining 

relationships between variables (Hastie et al., 2016). Hence, these models are 

versatile, and their prediction results are straightforward to interpret, supporting 

deductive-, inductive-, and abductive reasoning. Statistic modeling is particularly 

prevalent in the AEC sector, favored for its high interpretability, ease of 

implementation, and established methodology (Wei et al., 2019). They have shown 

commendable performance in handling incomplete data, as evidenced in the 

literature. Examples include the ontology-based approach for predicting Asbestos-

Containing Materials (ACM) in buildings based on product timelines (Mecharnia et 

al., 2019), and a multicriteria analysis of existing building stocks using Bayesian 

Networks (Carbonari et al., 2019). Nevertheless, statistical models have 

shortcomings in terms of complexity and their capacity to manage real-time, high-

dimensional, mixed-source datasets common in construction settings, especially 

when dealing with missing or noisy data (Yan et al., 2020).  

        In this thesis, statistical models were developed to extract insights from 

historical data, fit the stochastic nature of the compiled data, and construct predictive 

models for statistical inference. Python libraries pgmpy (Ankan & Panda, 2015) and 

py-earth (Friedman, 1991; Rudy, 2013) were used for modeling Learning Bayesian 
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Networks (BN) in Paper V and Multivariate Adaptive Regression Splines (MARS) 

in Conf II, respectively. Logistic Regression (LR) and Generalized Linear Model 

(GLM) were built in Papers III and IV via Python libraries scikit-learn and H2O. A 

comprehensive overview of the architecture, strengths, and limitations of each 

statistical model is presented in Table 2.4 below. 

Table 2.4. Overview of statistical modeling algorithms used in the thesis (adapted 

from James et al., 2023).  
Algorithm Architecture Strength & limitations 

Learning Bayesian 
Network 

 

+ Graphical and interpretable 
+ Model interdependencies 
+ Account for uncertainty 
- Limited to discrete variables 
- Undetermined prior selection 
- Computationally demanding  

Logistic regression 

 

+ Classification 
+ Simple implementation 
+ Perform well in low-
dimensional or small datasets 
- Multi-collinearity 
- Limited to binary classification 
 

Generalized linear 
model 

 

+ Classification & regression 
+ Stepwise forward or backward 
variable selection 
- Sensitive to outliers 
- Multi-collinearity 
 
 

Multivariate 
Adaptive 

Regression Splines 

 

+ Regression 
+ Flexible implementation 
+ Robust to outliers 
+ Easy interpretation 
- Susceptible to overfitting 
- Cannot handle missing values 
 

 

        Bayesian Network (BN), a framework for representing and reasoning under 

conditions of uncertainty (Cheng et al., 2002), shows promising results in estimating 

the presence of hazardous materials, i.e., radioactive concrete in buildings. 

Algorithms that utilize information-theoretic analysis for learning BN structure 

from data were employed to estimate the probability of radioactive concrete in 

buildings via structure learning and parameter learning (Cheng et al., 2002). Eight 
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variables suspected to be associated with the presence of radioactive concrete were 

discretized into three to five intervals using binning techniques, such as construction 

year, floor area, building class, the average distance to historical radioactive 

concrete manufacturing plants, number of floors, stairwells, and apartments. 

Structural learning algorithms were then used to construct the underlying graph 

skeleton, including the mapping of factor dependencies and the determination of 

edge direction in the graph. Subsequently, the generated directed acyclic graphs 

(DAGs) underwent evaluation using scoring functions such as K2, BDeu (Bayesian 

Dirichlet equivalent uniform), and BIC (Bayesian Information Criterion). The 

DAGs with the highest scores were selected for further parameter learning, where 

we computed the conditional probability distribution (CPD) using Bayesian 

Parameter Estimation.  

        After configuring the BN models, causal inference and network analytics, i.e., 

predictive, diagnosis, and sensitivity analysis, were performed to enhance the 

understanding of the networks’ behavior. Predictive analysis assessed the models’ 

performance in predicting the presence of radioactive concrete, varying the number 

of evidence inputs to reflect data availability. Diagnostic analysis focused on 

identifying key factors in detecting radioactive concrete by examining changes in 

posterior probabilities. Sensitivity analysis involved rebinning variables, 

particularly building classes, to pinpoint those contributing significantly to output 

variation. Thereafter, the Bayesian network models were transformed into causal 

network models to identify causal dependencies between factors and applied the 

backdoor adjustment method to iterate models with and without do-adjustment. 

        Parametric models, specifically logistic regression (LR) and generalized linear 

models (GLM), were utilized to classify materials containing asbestos and PCB. LR, 

as described by Raschka & Mirjalili (2019). They fit data using predefined functions 

with fixed parameters and are suitable for estimating binary outcomes’ probabilities. 

The LR models assume a linear relationship between dependent and independent 

variables, serving as a baseline against more sophisticated statistical and machine 

learning algorithms during model development. Conversely, the GLM models 

extend ordinary linear regression to accommodate non-linear, categorical, or 

continuous data. This extension, noted by McCullagh & Nelder (1983), allows the 

variance of each observation to be modeled as a function of its predicted value. By 

employing appropriate link functions – normal density for normal distribution, logit 

or sigmoid for binomial distribution, and log for Poisson distribution – the linear 

association of dependent variables is facilitated. The performance of developed 

classifiers was then evaluated with the confusion matrix and the significance of 

variables was assessed through coefficient magnitudes. 

        For modeling indoor radon concentrations, non-parametric multivariate 

adaptive regression splines (MARS) models were employed, given the dataset’s 

non-Gaussian and non-linear characteristics. The MARS algorithm adeptly fits the 

dataset with either piecewise linear or cubic splines, utilizing hinge functions for 

automatic adjustment. This method, as articulated by Kartal Koc & Bozdogan 
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(2015), is represented through equations encompassing intercepts, coefficients, 

hinges, and features. The MARS models’ performance was evaluated using metrics 

including mean squared error (MSE), root mean squared error (RMSE), mean 

absolute error (MAE), and the coefficient of determination (R-squared). These 

metrics were instrumental in quantifying deviations between predicted and actual 

values across the training and validation sets. Furthermore, the models’ the the 

model fit to the data and the assumptions underlying linear regression, quantified as 

the differences between the observed values and the values predicted by a model, 

was evaluated using residual plots. Then Q-Q plots were created to compare two 

probability distributions by plotting their quantile against each other, facilitating 

data distribution comparison and data skewness assessment. 

2.3.2. Machine Learning 

Machine learning approaches are differentiated based on the availability of labels in 

the data, broadly classified into supervised learning, unsupervised learning, and 

reinforcement learning, as categorized by (Raschka & Mirjalili, 2019). Supervised 

learning involves fitting models to labeled datasets to generate predictive outcomes 

in regression and classification. In contrast, unsupervised learning focuses on 

representation learning without predefined labels, aiming to uncover hidden patterns 

in data through methods such as clustering and association. Reinforcement learning, 

meanwhile, involves an agent learning to make decisions in a dynamic environment, 

balancing between exploration and exploitation within a framework of actions and 

rewards. 

        This thesis delves into various non-parametric algorithms, significant for their 

lack of predefined assumptions about data mapping functions. These algorithms 

have been explored and compared across diverse problem settings. They are 

primarily categorized into model types such as distance-based algorithms, including 

support vector machines (SVM) and k-nearest neighbors (k-NN), as well as decision 

tree-based models including random forest (RF), gradient boosting (GB), extreme 

gradient boosting (XGBoost), categorical boosting (Catboost), and stacked 

ensemble. These categories are detailed in Table 2.5. The focus here is on supervised 

learning models, developed to benchmark their performance in predicting 

contamination in buildings at different lifecycle stages, including maintenance, 

retrofit, and end-of-life. For model development, Python libraries scikit-learn and 

H2O were utilized, as detailed in Papers III, IV, VI, and Conf II.  
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Table 2.5. Overview of machine learning algorithms used in the thesis (adapted 

from Raschka & Mirjalili, 2019).  
Algorithm Architecture Strength & limitations 

Support vector 
machine 

 

+ Classification & regression 
+ Perform well in small datasets 
+ Flexible implementation 
- Susceptible to dimensionality 
- Cannot handle missing values 
- Sensitive to outliers 

k-Nearest 
Neighbors 

 

+ Classification & regression 
+ Flexible implementation 
+ No training required 
- Susceptible to dimensionality 
- Sensitive to k & distance metric 
- Sensitive to outliers 

Random forest 
(Distributed 

random 
forest/Extremely 
randomized trees) 

 

+ Classification & regression 
+ Handle high dimensional data 
+ Handle missing values 
+ Reduced variance 
+ Parallel processing 
- Computationally expensive 
- Susceptible to overfitting 

Gradient boosting/ 
Extreme gradient 

boosting/ 
Categorical 

boosting 
 

+ Classification & regression 
+ High accuracy and robust 
+ Handle high dimensional data 
+ Handle missing values 
+ Reduced bias and overfitting 
+ No regularization required 
- Require extensive tuning 

Stacked ensemble 

 

+ Classification & regression 
+ Handle high dimensional data 
+ High accuracy and robust 
- Increase the risk of overfitting 
- Complex implementation 
 

 

        The kernel SVM operates by maximizing the margin space around the decision 

boundary, delineating an optimal hyperplane for handling non-linear data, as 

outlined by Raschka & Mirjalili (2019). In this study, the radial basis function kernel 

was employed, with careful tuning of the gamma parameter (defining kernel width) 

and the C parameter (regulating the trade-off between maximizing the margin and 
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minimizing misclassification errors). Concurrently, the k-nearest neighbors (k-NN) 

algorithm, a distance-based method, was utilized. It classifies instances based on a 

majority vote from the k nearest neighbors. The choice of k is important, as a smaller 

k might increase sensitivity to noise, whereas a larger k could lead to underfitting. 

The kernel SVM and k-NN were selected for their adaptability in small dataset 

scenarios and efficiency in achieving high performance with limited computational 

resources. However, these models also have limitations, including sensitivity to 

dimensionality and outliers, and inability to produce insights on feature importance. 

        Decision-tree-based models were employed for their robustness and high 

performance in classification and regression tasks. These scale-invariant tree 

ensemble models combine outputs from base learners to train a meta-learner, aiming 

to enhance prediction accuracy while reducing errors. This is achieved through 

various methods: bagging for fully-developed decision trees, boosting for shallow 

trees, and hybrid techniques such as stacking, blending, voting, and cascading. 

Specifically, Random Forest (RF) utilizes bagging to combine multiple predictions 

from resampled base learners, while Gradient Boosting (GB), Extreme Gradient 

Boosting (XGBoost), and Categorical Boosting (CatBoost) leverage boosting to 

sequentially transfer predictions from one learner to the next, focusing on correcting 

misclassifications made by predecessors. XGBoost and CatBoost are particularly 

adept at handling numerical and categorical data, respectively, employing gradient 

boosting to iteratively generate weak learners in a manner that minimizes loss and 

reduces the likelihood of overfitting. Recognizing the strengths and weaknesses of 

each method, four types of tree ensemble learning were trained in parallel as sub-

models and then integrated into a stacked meta-learner to determine the optimal 

combination of model contributions.  

2.3.3. Artificial Neural Network 

The experimental component of the thesis delves into artificial neural networks 

(ANNs) and deep neural networks (DNNs), integral to the machine learning (ML) 

field, facilitating both supervised and unsupervised representation learning. Given 

the limited size and low dimensionality of the hazardous material and indoor radon 

datasets, neural networks with simpler architectures were evaluated for their 

performance relative to traditional ML models. ANNs, as noted by Goodfellow et 

al. (2016), are capable of automatic feature learning and handling missing data, 

though they necessitate categorical embedding during data preprocessing, 

contrasting with distance-based or tree-based models. Multilayer perceptrons 

(MLPs) were selected as the primary neural network type, considering their 

suitability for tabular data without time dependencies, such as inspection and 

measurement records. These MLPs were used to estimate the probabilities of 

hazardous materials and indoor radon concentrations. The development of these 

multilayer, feed-forward neural network models utilized Keras, a Python interface 
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for TensorFlow, and the H2O library. These models were trained employing 

stochastic gradient descent with back-propagation, as detailed in Papers IV and VI. 

Additionally, other deep learning applications were suitable for other purposes: 

convolutional neural networks (CNNs) for image recognition and classification, 

autoencoders and generative adversarial networks (GANs) for dimensionality 

reduction and information retrieval, and recurrent neural networks (RNNs) for 

modeling serial data with consideration for short and long-term temporal 

dependencies. These applications are outlined in Table 2.6. 

Table 2.6. Overview of neural network algorithms (adapted from Raschka & 

Mirjalili, 2019).  
Algorithm Architecture Strength & limitations 

Multilayer 
perceptrons 

 

+ Classification & regression 
+ Handle missing values 
+ Parallel processing 
+ Automatic feature learning 
- Require extensive training 
- Difficult model interpretation 

Convolutional 
neural network 

 

+ Image recognition& classification 
+ High performance 
+ Automated feature extraction 
+ Robust to noise 
+ Support transfer learning 
- Computationally expensive 
- Difficult with small datasets 

Autoencoder 

 

+ Dimension reduction 
+ Automated feature extraction 
+ Anomaly detection 
- Computationally expensive 
- Difficult latent space  
interpretation  

Generative 
adversarial nets 

 

+ Data augmentation 
+ Semi-supervised learning 
+ Anomaly detection 
+ Missing data imputation 
- Require extensive training 
- Risk of model collapse 

Recurrent neural 
network 

 

+ Sequential and time-series data 
+ A wide range of applications 
- Require extensive training 
- Prone to exploding 
- Prone to gradient vanishing 
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        Hyperparameter tuning was performed to search for the optimal combination 

of layers and neurons, activation functions, optimization methods, learning rates, 

dropout rates, training epochs, and batch size for the neural network models. The 

choice of output and loss functions was tailored to the nature of the classification 

task: sigmoid activation with binary cross-entropy for binary classification, and 

softmax activation with categorical cross-entropy for multi-class classification. To 

address the issue of imbalanced class distribution in the dataset, sample weights 

were calculated and integrated into the weighted metric.  

        Further, the training history of lead models was examined, where loss was 

plotted against training epochs or the number of trees. This analysis was conducted 

across the train, cross-validation, and validation sets to gain insights into the models’ 

learning and generalization behaviors, particularly focusing on their capability to fit 

data and maintain representativeness. The performance of these models was 

evaluated using the same metrics as the preceding models, specifically macro-F1 

score and area under the curve (AUC). Apart from these evaluations, an in-depth 

analysis of influential features in the ANN models was performed. This analysis 

was grounded in the Gedeon method (Gedeon, 1997), which considers the weights 

connecting input features to the first two hidden layers, thereby providing insights 

into the features’ contributions to predictions. 

2.3.4. Predictive Analytics 

The predictive component of this research involved extracting features from the 

Swedish building stock for buildings that were not inspected or measured, 

specifically to estimate the probability of containing hazardous substances. In Paper 

IV, this approach yielded predictions regarding the presence of asbestos and PCB-

containing materials, with results including both predicted labels and probabilities 

for buildings in Stockholm, Gothenburg, Malmö, and Kiruna, as depicted in Figure 

2.9. The distribution of these probabilities, with respect to specific asbestos and 

PCB-containing materials, was analyzed across various building categories and 

construction years. Subsequently, OSMnx—a Python library tailored for street 

network data collection and analysis—was employed to obtain building footprint 

data from OpenStreetMap (Boeing, 2017). This data facilitated the creation of 

choropleth maps, which visualized the predicted probabilities of asbestos and PCB 

materials in building clusters, with a focus on municipality-owned residential 

buildings in Stockholm. 
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Figure 2.9. Building footprint maps of the studied municipalities (OpenStreetMap, 

2023). 

        Paper V extended this methodology to the predictive analysis of radioactive 

concrete in five municipalities: Stockholm, Gothenburg, Malmö, Gävle, and Umeå. 

This analysis utilized probabilistic inference based on Bayesian hierarchical 

modeling, integrating three base models to produce joint and disjoint probability 

distributions. These distributions were conditioned on key variables such as building 

class, construction year, presence of a basement, floor area, and proximity to known 

GävleUmeå

KirunaMalmö

Stockholm Gothenburg
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historical radioactive concrete plants. By interfacing with local building registers, 

the models facilitated the estimation of probabilities for individual buildings, 

considering the combined influence of multiple variables. 

        The prediction of indoor radon levels was specifically focused on the Swedish 

metropolitan areas of Stockholm, Gothenburg, and Malmö. These regions were 

selected due to the high volume of indoor radon measurements available, with their 

geographical representation detailed in Figure 2.10. In Paper VI, statistical 

summaries of historical indoor radon measurements were retrieved to allow the 

comparison with the predicted measured and predicted non-measured buildings 

within these regions. Such a comparative approach enabled a thorough evaluation 

of the model’s sensitivity in predicting indoor radon levels on a regional scale and 

the reliability of the resultant predictions. The outcomes of these predictions were 

methodically detailed, showcasing the distribution of building shares with varying 

indoor radon levels by region and building category. 

 
Figure 2.10. Swedish metropolitan areas (SCB, 2005). 
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3. Research Findings 

The chapter is structured according to the research layout connecting research 

questions, research scope, and articles, as shown in Figure 3.1. Section 3.1 explores 

data-driven approaches in managing in situ hazardous materials and examines the 

CDW industry, incorporating insights from a stakeholder workshop and an expert 

interview. Section 3.2 outlines the workflow for curating and processing data from 

pre-demolition audits, essential for assessing hazardous material records quality and 

quantity (RQ1). Sections 3.3 and 3.4 delve into data analysis and predictive 

modeling for hazardous substances, with Section 3.3 focusing on asbestos and PCB 

(blue) and Section 3.4 on radioactive concrete and indoor radon (brown). These 

sections form the basis for a statistical modeling and machine learning pipeline 

(RQ2) and explore model application in estimating probabilities of hazardous 

substance in the Swedish building stock (RQ3). 

 
Figure 3.1. Research layout. 
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3.1. State-of-the-art 
The section offers a comprehensive overview of the present state of research and 

industrial practices related to in situ hazardous material management. Section 3.1.1 

details various data sources and digital tools used for identifying hazardous 

materials at multiple scales, recognizing waste, and facilitating onsite sorting. This 

includes a detailed examination of technologies and methodologies employed in 

detecting and managing hazardous materials at different scales. Subsection 3.1.2 

presents insights gleaned from engaging dialogues with stakeholders in the Swedish 

construction sector. These discussions focus on current practices in hazardous 

material identification and decontamination processes, providing a practical 

perspective on the topic. The cross-comparison allows the thesis to identify and 

establish clear research directions, particularly regarding the need for and potential 

benefits of digital applications in hazardous material management. This approach 

ensures that the research is grounded in both theoretical understanding and practical 

realities, making it relevant and applicable to ongoing challenges and advancements 

in the field of construction and demolition waste management. 

3.1.1. Research Front of Hazardous Material Management 

The science mapping conducted in Paper I revealed a complex interplay among 

various research domains, with significant publication increases over years in 

Environmental Sciences and Ecology (34%), Public, Environmental, and 

Occupational Health (23%), and Engineering (18%) between 1990 and 2020, 

focusing on hazardous building material management. A predominant theme in 

earlier studies was the measurement of exposure and remediation of risks associated 

with specific contaminants, particularly asbestos and PCB materials. This indicates 

a shift in the perception of hazardous materials, transitioning from an occupational 

to a public health hazard, particularly in relation to existing building stocks. 

Surprisingly, the literature on radioactive concrete was scarce, with only a marginal 

percentage (approximately 4%) of references discussing in situ hazardous materials 

in buildings. The few existing studies, primarily published in journals related to 

Construction and Building Technology, concentrated on sampling, monitoring, 

mitigation, remediation measures, and risk management in disaster scenarios. The 

paucity of literature shows a significant gap in systematic perspectives on managing 

the risks of hazardous substances in existing buildings. 

        Furthermore, the co-word analysis identified “discipline silos,” particularly in 

terms of the frequency and extent of comprehensive hazardous material studies. 

Two distinct conceptual clusters were recognized: one focusing on asbestos-related 

diseases for workers, and the other on indoor exposure to PCB-contaminated 

materials. Word dynamic analysis, tracking the cumulated occurrences of keywords, 
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showed a marked increase in attention to asbestos and PCB exposure in buildings 

since 2013. Moreover, the intellectual structure’s direct citation network revealed 

an evolving research paradigm over the past three decades. Initial studies in the 

1990s focused on asbestos occurrence and decontamination, shifting towards 

asbestos-related diseases in subsequent years. Since the 2000s, the scope broadened 

to encompass the relationship between pollution and health, paralleled by research 

into mapping asbestos roof coverings and urban-scale inventories. Studies on PCB 

sources and emissions also gained traction during this period, evidenced by a more 

interconnected citation network. With the increasing adoption of circular economy 

principles in the construction sector, ensuring the safety of material disassembly, 

reuse, and recycling has become a pivotal concern. A surge in related research was 

observed in the 2010s, with several studies focusing on characterizing hazardous 

materials in existing buildings and construction and demolition waste. As depicted 

in Figure 3.2, these studies span over various scales and purposes, employing data-

driven approaches for hazardous material management. 

 
Figure 3.2. State-of-the-art applications for hazardous material management 

organized by scales and purposes (adapted from Paper I with additional literature 

on indoor radon and PCB). 

        Among these approaches, analytical or statistical methods (highlighted in gray) 

emerged as the most prevalent in addressing different aspects and scales of 
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hazardous material management. For example, stock and flow models were utilized 

to estimate the lifecycle of asbestos products (Donovan & Pickin, 2016; Zoraja et 

al., 2021) and PCB (Bergsdal et al., 2014; Diamond et al., 2010; Glüge et al., 2017) 

in national building stocks. The mapping of asbestos-cement roofing and the factors 

influencing their quantities were explored through rule-based analysis for image 

classification (Gibril et al., 2017) and correlation studies at a regional scale (Wilk et 

al., 2015). Detailed descriptive analyses of specific asbestos components in 

buildings were conducted using various methodologies, including Cohen’s kappa 

statistics (Govorko et al., 2017, 2018, 2019), ontology and rule-based methods 

(Mecharnia et al., 2019), Pearson correlation (Franzblau et al., 2020), and waste 

sampling during source separation (Powell et al., 2015). 

        In addition, the diffusion of PCB products at the urban scale was estimated 

using multimedia and air transport models (Csiszar et al., 2014), regression models 

(Melymuk et al., 2013), and Gaussian diffusion models (Diefenbacher et al., 2015, 

2016). At the substance level, the bottom-up source inventory of specific PCB 

components was mapped using sampling and GIS tools (Robson et al., 2010; 

Shanahan et al., 2015). Concurrently, indoor radon maps were developed on 

continental (Elío et al., 2019) or national scales (Adelikhah et al., 2021; Kropat, et 

al., 2015a; Sarra et al., 2016) employing spatial interpolation techniques, quantile 

Bayesian regression, and kernel regression. 

        The systematic literature review showed a limited number of studies 

integrating supervised or unsupervised machine learning methods (highlighted in 

yellow) with empirical data for hazardous substance quantification. Prominent 

examples include the application of the random forest algorithm for predictive 

mapping of asbestos-cement roofing, utilizing remote sensing and physical 

inventory data (Abriha et al., 2018; Wilk et al., 2017, 2019), and indoor radon 

concentration prediction based on the automated classification of lithological units 

(Kropat et al., 2015b). Additionally, non-destructive methods for asbestos fiber 

detection were proposed, using principal component analysis and discriminant 

function analysis on hyperspectral images (Bonifazi et al., 2018, 2019). The 

prediction of PCB sources and factors influencing air concentration in contaminated 

buildings was modeled using field sampling data and principal component analysis 

(Kolarik et al., 2016). However, the implementation of neural network techniques 

(indicated in orange) in hazardous material management remains nascent, with 

limited examples in indoor radon and asbestos prediction. Convolutional neural 

networks have shown promise in identifying asbestos roofing from aerial imagery 

(Krówczyńska et al., 2020; Raczko et al., 2022), while artificial neural networks and 

recurrent neural networks were employed for estimating indoor radon exposure 

from meteorological and geological factors (Oni et al., 2022) and forecast and 

monitor the development of indoor radon concentrations (Khan et al., 2021; 

Valcarce et al., 2022) respectively.    

        Overall, these studies indicate that the data-driven applications identified have 

potential to support the processes outlined in the EU CDW Management Protocol, 
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particularly in material characterization, identification, and source separation. 

However, there is a noteworthy need of advanced predictive modeling for 

characterizing and identifying hazardous substances at the building level. The scope 

of existing studies is often confined to local contexts due to limitations in data 

accessibility and availability. Most research has focused on descriptive statistics of 

specific hazardous building components, utilizing various sources of environmental 

data, such as visual inspection guided by mobile app questionnaires (Govorko et al., 

2017, 2018, 2019), asbestos product databases (Mecharnia et al., 2019), physical 

asbestos inventories (Krówczyńska et al., 2020; Raczko et al., 2022; Wilk et al., 

2017, 2019), and demolition inspection reports (Franzblau et al., 2020). The 

exploration of pre-demolition audit inventories as input data for analyzing and 

modeling the presence patterns of hazardous substances remains uncharted in the 

literature. Given that the research silos focused on specific substances and the 

methodological constraints of descriptive analysis, environmental inventories offer 

a new avenue to address these challenges. They provide comprehensive inspection 

records of hazardous substances and materials across Swedish municipalities, 

presenting an opportunity to bridge existing gaps in the field. 

3.1.2. Present Status and Opportunities in the Swedish CDW Sector 

This section sums up findings from dialogues with industry via a workshop and an 

expert interview. The documentation from the workshop was systematically 

examined in a stakeholder need analysis, and the insights gleaned from expert 

interviews were compiled. To maintain clarity and focus, these results were 

organized thematically, centering on topics related to pre-demolition audits and 

decontamination practices. The section concludes with a comprehensive summary, 

synthesizing key findings from both the workshop and expert interviews.  

Information availability of hazardous materials 
The accessibility of information regarding hazardous materials is a crucial aspect of 

planning for CDW management. This planning typically involves synthesizing 

information from various sources, including desk studies – such as historical 

environmental inventories, building documents, and drawings – and field surveys, 

which encompass material, reuse, recycling inventories, and destructive sampling. 

Historical inventories and building registers are particularly valuable as they can 

indicate potential contamination in buildings accumulated over years of usage, 

thereby guiding auditors in environmental investigations. Additionally, information 

about building renovations, including the nature and timeline of changes, is vital for 

comprehensive pre-demolition audits. However, a significant challenge arises from 

the lack of data on renovation years and extent. This gap is often due to many 

renovations not being recorded in building permit systems. For instance, minor 
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alterations such as changing floor mats in the 1960s were typically not documented, 

whereas significant modifications, such as updating ventilation systems, required 

mandatory reporting. Subsequently, the sorted material and environmental 

inventories form the basis for subsequent procurement processes. BIM systems have 

not yet been extensively utilized for CDW planning in existing dwellings, possibly 

due to the unavailability or inaccessibility of such comprehensive information for 

older buildings. 

The extent of hazardous material problems 
The prevalence of hazardous materials in renovation and demolition projects is of 

significant concern. Most of the participants responded that they sometimes (43%) 

or often (29%) encounter hazardous materials in renovation or demolition projects, 

while none reported never (0%). These responses vary, likely reflecting differences 

in building types and ages, as well as the experience of the participants. The 

unexpected discovery of hazardous materials such as asbestos and PCB during 

renovations or demolitions poses additional risks, including the potential spread of 

contaminants to soil and groundwater. Therefore, having a robust construction 

management organization capable of making ad-hoc decisions is vital. 

        The impact of hazardous materials on project timelines and costs is significant 

and varies according to the types and amounts of materials discovered. Participants 

generally agree that projects involving hazardous material decontamination take 

considerably longer, sometimes double the time and cost, compared to projects 

without such materials. In extreme cases, these issues can delay project 

commencement, leading to substantial financial penalties. Such delays not only 

affect the initial demolition or decontamination stages but also have cascading 

effects on subsequent contractor schedules, necessitating additional resources for 

renegotiation. This is particularly critical in projects with fixed deadlines, such as 

hospital reconstructions, where schedules for demolition, decontamination, and 

rebuilding are tightly interlinked.  

        Pre-demolition auditors can also play a vital role in assisting with project 

timing adjustments in light of potential decontamination interventions. Currently, 

the quality of pre-demolition audits and environmental inventories varies widely 

across regions. This variation is attributed to a shortage of competent auditors 

amidst high market demand, coupled with inadequate quality control by authorities 

and property owners. The legislative requirements for auditor qualifications differ 

from hazardous materials. From a procurement standpoint, accurately estimating the 

extent of hazardous materials for project planning is challenging without high-

quality inventories. There is a pressing need for detailed information from these 

inventories, regarding the extent and location of hazardous components, to be 

communicated to contractors and clients. Furthermore, there is a need for industry-

wide education, to be conducted regularly, to standardize pre-demolition audit 

practices and inventory documentation. This standardization could be based on the 

Swedish Construction Federation’s checklist. Additionally, feedback from 
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contractors and clients, both during and after audits, is crucial for auditors to refine 

their practices. 

Hazardous material risk assessment and remediation 
In construction projects, approximately 15% of the budget is typically allocated as 

a buffer to manage the unforeseen discoveries and risks associated with hazardous 

materials. Standard checklists have been developed for scenarios where hazardous 

materials are suspected. These include immediate work cessation, evacuation, and 

event reporting. However, determining the rational allocation of extra buffer to 

mitigate unknown risks in procurement is challenging. The extent of these 

additional costs varies depending on whether the project is privately or publicly 

funded. In public procurement, budgets may double due to inflated pricing from 

project partners, whereas private projects often involve fewer actors and typically 

offer a budget price rather than a fixed price. The phase of construction also 

influences the cost implications; for example, if hazardous materials are discovered 

during foundation digging, the cost can be significantly higher. 

        Most companies adhere to the regulations set by the Swedish Working 

Environment Agency, which include reporting incidents, material sampling, follow-

up actions, and planning. It is crucial for clients to engage experienced contractors 

who are proficient in decontamination routines and proactive in maintaining work 

environment safety. The responsibility extends beyond just the entities performing 

decontamination; it is important to impose requirements on all project partners 

involved in exposure risk. Currently, the understanding and management of 

hazardous material risks are more prevalent among decontamination companies 

than demolition firms. There is a pressing need for enhanced regulatory 

requirements for demolition companies, including mandatory occupational 

education and certification, supported by project leaders. 

Inventory of hazardous wastes 
Pre-demolition audits in construction projects are fundamentally driven by systems 

thinking and a methodical approach to hypothetical searching. Auditors focus on 

understanding the reasons for the existence of specific hazardous materials, as this 

knowledge directs them to potential additional occurrences. For instance, asbestos 

has historically been used in buildings for its waterproofing, fireproofing, and 

electrical insulating properties, while PCB was used for its chemical stability, fire 

resistance, and insulating capabilities. It is, therefore, essential for procurement 

documents to mandate destructive sampling in pre-demolition audits, given that 

many hazardous materials only become detectable once demolition is underway. 

There have been instances where environmental inventories overlooked hidden 

hazardous materials, necessitating comprehensive reviews during and after 

renovations. To address this, supplementary inventories or post-demolition 

inventories are advisable, facilitating discussions with those responsible for the 
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initial environmental inventory. Additionally, some contractors conduct material 

reuse or recycling inventories to supplement pre-demolition audit inventories. 

        Different methods are employed to detect and quantify hazardous materials: 

PCB sealants are measured using scanners to determine their presence in meters, 

while PCB capacitors are counted. Asbestos detection typically involves polarized 

light microscopy or scanning electron microscopy to identify fiber types, with 

positive identification requiring at least 0.1% asbestos content, which can range 

between 5-100%. There are indicators for possible asbestos presence in fireproofing 

materials, with sealants often appearing similar but varying in fireproofing 

components. Therefore, sampling remains the only reliable method for detecting 

these hazardous substances. Besides, more synergies have been observed in 

detecting various asbestos-containing materials than PCB-containing ones across 

building types or construction periods. This is likely due to asbestos being more 

prevalent than PCB. Key factors in identifying these materials include the 

construction year, building type, location, and room type within the building.  

        Urban development policies also significantly influence the presence of 

hazardous materials in existing building stocks. In Stockholm and Gothenburg, a 

larger share of the multifamily building stocks were constructed during the Million 

Homes Program, characterized by modular design and factory production. The 

sealants used in joints between these modules often contained asbestos to enhance 

fire and waterproofing properties, only detectable upon dismantling the moisture 

protection. Notably, many buildings from the 1960s and 1970s have undergone 

renovations where original hazardous materials were removed. Some school 

buildings from this period were demolished due to poor energy performance or 

moisture damages. 

        The risk of secondary contamination is higher with PCB compared to asbestos, 

leading to more stringent regulation of its contamination levels. Furthermore, the 

tolerance threshold for PCB contamination in buildings is higher than that for soil 

contamination. PCB, along with Pulmonary Arterial Hypertension (PAH), can leak 

and cause severe environmental consequences, entailing costly post-handling 

processes. It is crucial to consider these factors in the evaluation and management 

of hazardous materials. A thorough understanding of the characteristics and 

historical usage of materials such as asbestos and PCB is vital in guiding their 

detection. Commonly found materials include asbestos-containing pipe insulation, 

cement panels, tile or clinker joints, floor mats, floor mat glue, and ventilation 

channels, as well as PCB-containing joints in multifamily houses or school 

buildings. PCB can also penetrate adjacent materials, leading to secondary 

contamination that may not be classified as hazardous but can impact occupant 

health. For PCB waste handling, disposal of PCB-contaminated gypsum board in 

landfills is prohibited. The characterization of asbestos and PCB materials in 

Sweden is listed below.  
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Asbestos-containing materials: 

• Pipe insulation: Typically covered by plastics. 

• Valves: Characterized by a square hole for natural ventilation. 

• Door and window insulation: Found in fire doors, window putty, opaque 

windows, and balcony partition windows. 

• Windowsill: Resemble marble imitation, difficult to remove. 

• Cement panel: For external use, they often have hexagon patterns and are 

UV-resistant; internal panels are yellowish, used for wind protection. 

Commonly found in walls of school buildings, multifamily houses, and 

elevator shafts. 

• Tile and clinker joint: Identified by the smooth edges of ceramic tiles, which 

are slightly thicker. Asbestos was occasionally added as an additive at 

construction sites. 

• Floor mat glue: Visually identifiable in black or yellow colors. Black glue 

contains asbestos and PAH, capable of penetrating building materials up to 2 

cm over time. 

• Floor mat: PVC and vinyl floor mat may be re-glued with asbestos-

containing floor mat glue. They often have multiple layers, including a 

patterned PVC film on the surface. 

• Ventilation channel: Difficult to remove; typically, buildings have only one 

type of ventilation system, so testing one is usually sufficient. 

• Joint or sealant: Used for fireproofing, especially in technical applications 

such as the joint between window frames and walls. Not associated with PCB 

joints, as asbestos joints are not found on facades. 

 

PCB-containing materials: 

• Joint or sealant: Sometimes found in hatches. PCB sealants in ventilation 

systems are yellowish and require cutting for detection. 

• Double-glazed sealed window: Rare and often replaced due to low 

performance. 

• Capacitor: Found in older lamps or burners. 

• Acrylic flooring: Technically viable for about 10 years, few remain, typically 

used as non-slip floors in kitchens. 

        Pre-demolition audits are intricate endeavors that demand a high level of 

craftsmanship, skill, and experience. The decision-making process for selecting 

sampling points and material types is deeply rooted in a blend of professional 

knowledge, practical experience, and adherence to legal requirements. Auditors 

often rely on results from previous audits to inform their decisions regarding new 

sampling points. Acquiring proficiency in understanding buildings and their 

material use, mastering inventory techniques, and navigating relevant legislation is 
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a time-intensive process. In practice, auditors must consider practical issues and 

resource availability beforehand, utilizing all senses during field investigations. 

        Specific attention is required during asbestos sampling to ensure 

contamination protection and adherence to procedural guidelines. This includes 

preparing adequate tools, ensuring an ample supply of sample bags for different 

substances to prevent cross-contamination, and safe storage of collected samples. 

Consequently, pre-demolition audits are both costly and time-consuming. The cost 

for sampling is estimated at approximately 500-1000 SEK for each asbestos sample, 

500 SEK for each PCB sealant sample, and 1500 SEK for each PCB concrete sample. 

The time and cost to conduct an environmental inventory vary depending on the 

type of building: 

• Single-family house: Simple and fast inventory, typically requiring a maximum 

of one day of fieldwork and 1-2 days for a short report. The cost ranges from 

15-30k SEK, with 3-5 samples typically collected. 

• Multifamily house: Requires 1-5 days of fieldwork, with more extensive data 

collection and a 2-5 day reporting period. The number of samples can range 

from 15-50, incurring costs between 75-200k SEK. 

• School building: For facilities accommodating 500-1000 students, with 

features such as elevators, large kitchens, dining rooms, gymnastic buildings, 

and shower rooms, the audit can take 2-5 days of fieldwork. Reporting may 

require 3-5 days, with 25-75 samples collected, and costs ranging from 100-

250k SEK. 

• Office building: The size and complexity of office buildings can vary greatly, 

influencing the duration of the audit (1-10 days of fieldwork) and reporting (2-

10 days). The number of samples may range from 15-100, with associated costs 

between 75-350k SEK. 

Decontamination of hazardous wastes 
The decontamination of buildings contaminated with asbestos and PCB is governed 

by the guidelines AFS 2006:1 and SFS 2007:19. The procedural details are outlined 

on the website ”sanerapcb.nu,” which specifies the requisite steps for effective 

decontamination. Two primary methods are employed: isolating and 

decontaminating each location individually or sealing off a larger area for collective 

treatment. A critical aspect of this process is the prevention of dust migration to 

uncontaminated areas. The procedure concludes with an exhaustive dust-cleaning 

phase. To verify the absence of asbestos or PCB, post-cleaning sampling is 

conducted. 

        Furthermore, the decontamination process involves specific financial 

implications with a starting fee and a post fee. For asbestos, the costs are determined 

by the weight of the materials, ranging from 1500 to 2500 SEK per ton. This 

procedure requires prior registration, at least one day before the commencement of 
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remediation. In contrast, PCB decontamination mandates engagement with local 

municipal authorities. Contractors must submit sampling results and a detailed 

decontamination plan at least three weeks in advance to obtain the necessary 

permissions. Ultimately, property owners bear the responsibility for submitting final 

compliance reports. 

Prospects for pre-demolition audit practice 
The need for standardized and cohesive requirements in Swedish pre-demolition 

audits is imperative due to distinct environmental legislations governing 

contaminated land and buildings. Currently, the disjointed legislative framework 

concerning CDW often leads to ambiguity in assigning accountability between 

authorities, consequently shifting the responsibility of hazardous material 

management to property owners. Moreover, the lack of mandatory certification for 

conducting pre-demolition audits results in minimal client demand for inventory 

quality in Sweden. While auditors are required to undergo training for asbestos 

inventory, the educational provision for PCB inventory is limited to only half a day. 

To elevate the standard of pre-demolition audits, the introduction of a personal 

certification process complemented by comprehensive occupational training is 

recommended. 

        The integration of a machine learning-based decision support tool could 

significantly aid property owners in risk assessment and informed investment 

decisions. This tool could provide a predictive overview of demolition costs, 

offering valuable foresight. Although such a tool would not replace the necessity of 

pre-demolition audits, it could serve as a crucial adjunct to enhance the 

comprehensiveness of inventories. For regulatory bodies such as the Swedish 

National Board of Housing, Building, and Planning, the application of this tool 

necessitates rigorous validation. Additionally, the development of a machine-

readable digital data model for inventories holds potential benefits beyond 

compliance, such as facilitating material reuse and recycling. The next step would 

involve the creation of a digital inventory protocol and an Application Programming 

Interface (API) for AI services. Collaborative development of a digital inventory 

template by municipalities and industry stakeholders could ensure that the data 

collated serves broader applications. 
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Summary 
Perspectives from industry representatives reveal that environmental inventories 

conducted by qualified auditors are essential for mitigating risks associated with 

hazardous materials, forming a critical foundation for both decontamination and 

waste disposal planning. The environmental investigation, guided by a hypothesis-

driven approach, relies on information sourced from building documents, drawings, 

and historical inventories. Key parameters such as the construction year, building 

usage, renovation history, specific location, and type of rooms in the building serve 

as indicators for the presence of hazardous materials. It is noted that certain 

hazardous materials may co-occur, such as asbestos in floor mats and adhesives, 

while others do not exhibit such synergies, as seen with asbestos and PCB joints. A 

thorough understanding of material characteristics and historical usage patterns is 

instrumental in detecting these materials. 

        Particularly, buildings erected during the Million Homes Programme are 

identified as having a higher likelihood of containing hazardous materials, 

especially in residential and school buildings within urban areas. Presently, 

approximately 15% of additional budgeting is allocated for unanticipated 

decontamination and disposal of hazardous materials. This figure is comparatively 

lower than the actual costs incurred in asbestos abatement, which account for 20.1% 

of the total demolition costs in residential dwellings in the City of Michigan 

(Franzblau et al., 2020). For clients and contractors, project delays often have more 

severe implications than extra costs, including penalties for contract breaches, 

postponement of subcontractor work, and equipment rental expenses. Given that the 

detection of several hazardous materials necessitates destructive sampling, it is 

recommended that the scope of the pre-demolition audit be contractually established 

to facilitate thorough decontamination planning and support safe hazardous material 

management through supplementary and post-inventory processes. 

        Moreover, the establishment of an industry-wide training or certification 

system, in tandem with a unified legislative framework, is proposed to enhance 

proficiency in hazardous material management and address the evolving demands 

of the CDW market. Additionally, the incorporation of data-driven applications, 

such as digital inventory protocols, machine learning techniques, and associated 

data models, can significantly contribute to the transition towards circular 

construction. These technological advancements have the potential to revolutionize 

various aspects of the industry, including material reuse and recycling, and the risk 

assessment of hazardous materials. 
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3.2. Data Preprocessing and Analysis (RQ 1) 
This section examines the empirical documentation of existing pre-demolition audit 

inventories, with an emphasis on data transformation and systematization. In Conf 

I, a case study was featured that delved into the search for available building-related 

environmental information within inspection records. Following this, Paper II 

restructured and represented inventory information, then evaluating data usability 

through a specifically designed data assessment matrix. This data-driven approach 

not only enhances the understanding of the current state of pre-demolition audit 

inventories but also contributes to the development of more efficient methods for 

data handling and analysis in this domain. 

3.2.1. Hazardous Material Detection Records in Inventories 

The descriptive analysis of the pre-demolition audit inventories revealed disparities 

in both the availability and reliability of information across different types of 

inventories. The detail level of these inventories ranged from the most 

comprehensive in consultancy reports to the least in demolition plans, with 

protocols and control plans falling in between. Consultancy reports and protocols 

typically encompass exhaustive records of hazardous waste detection, adhering to 

the standards outlined in the “Industrial Resource and Waste Guidelines for 

Construction and Demolition” (Byggföretagen, 2019). These reports and protocols 

often detail the inventory of hazardous materials by type and quantity, particularly 

for larger or more complex buildings, through a combination of visual inspection 

and laboratory analysis of material samples collected during field surveys. The 

reports specify the scope of inspection, inventory extent, and information about the 

auditors involved. 

        In contrast, control plans and demolition plans tend to provide only general 

inspection records for simpler buildings, making it challenging to ascertain the 

completeness of inspection due to their aggregated or often missing information in 

free-text formats. The majority of reports focused on schools, commercial-, 

industrial-, office buildings, and multifamily houses, while single-family houses 

were predominantly covered in protocols, demolition plans, and control plans. A 

further analysis of auditor experience levels revealed that reports composed 

primarily by hazardous waste experts (96%) exhibited the highest data quality. 

Other inventories were predominantly conducted by contractors (55%), private 

individuals (27%), and hazardous waste experts (18%). 

        The analysis also highlighted discrepancies between inventories when 

evaluating the detection rates and missing values for hazardous substances. PCB, 

for instance, was detected in 63% of reports, 51% in demolition plans, 49% in 

protocols, and 19% in control plans. Conversely, asbestos detection varied 
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significantly across different document types, with the highest rates in reports (84%) 

and demolition plans (70%) in the Gothenburg renovated or demolished building 

stock, compared to lower rates in protocols (51%) and control plans (47%). A more 

granular investigation by components showed higher positive detection rates for 

nearly all asbestos and PCB materials. These findings suggest that relying on a 

single source for determining the presence of hazardous substances could introduce 

statistical uncertainties, as inventory types correlate with building classes. This 

association was further validated by recompiling detection rates according to 

building classes, revealing that the presence of hazardous materials is specific to 

building classes and should be considered when partitioning data for subsequent 

modeling. 

        Figure 3.3 presents the variation in the quantities of inventoried PCB and 

asbestos materials across different municipalities and building classes. PCB joints 

were the most commonly inventoried among other PCB materials, followed by 

double-glazed sealed windows, capacitors, and acrylic flooring across all building 

classes. As for asbestos, pipe insulation and tile or clinker were most frequently 

inspected, with asbestos valves being least common, consistent across regional 

building stocks. The majority of the hazardous material database inventories derived 

from multifamily houses, followed by single-family houses and non-residential 

buildings. Inspections of asbestos in floor mats, ventilation, and joints were less 

frequent in industrial buildings compared to other building classes. In particular, 

most inspected buildings were located in the Stockholm and Gothenburg 

municipalities, outnumbering those in Malmö and Kiruna by a significant margin 

due to different sizes of cities. These summative findings offer crucial insights into 

the data structure concerning regional and building compositions and were taken 

into account for later predictive result inference. 

 
Figure 3.3. Detection records of PCB and asbestos materials shown by 

municipalities and building classes (data sourced from Paper IV). 
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        The production of PCB and asbestos were common from the year 1930 to 1990, 

with their peak usage in construction occurring between 1965 and 1974. Figure 3.4 

provides an insightful analysis of the correlation between the detection of asbestos 

and PCB substances across various construction years, underscoring the building 

stock most susceptible to contamination. The findings reveal a non-linear 

probability distribution, indicating that buildings constructed more recently, 

particularly after 1973, are less likely to contain either PCB or asbestos. 

Additionally, the data suggests an uneven distribution, with buildings erected 

between 1940 and 1955 likely to contain either PCB or asbestos. The likelihood of 

dual contamination from both asbestos and PCB becomes more pronounced in 

buildings constructed between 1955 and 1973. Following this period, the probability 

of detecting asbestos and PCB in buildings drops significantly and continues to 

decline towards the end of the 1980s. This analysis provides insights into the 

temporal trends of hazardous material usage in construction, informing targeted 

approaches for contamination assessment and remediation. 

 
Figure 3.4. Probability distribution of buildings with single, double, and non-

detection of PCB and asbestos materials across the construction year (data sourced 

from Paper IV). 

        Figure 3.5 presents stacked histograms to depict the frequency of detection for 

various asbestos and PCB materials across different buildings. This graphical 

representation offers insights into the prevalence of these hazardous substances in 

the building stock. The analysis of PCB materials reveals that 67.9% of the observed 

buildings contained no PCB materials. However, 23.7% of the buildings had one 

type of PCB material, while 8.4% contained at least two different PCB materials. 

Buildings constructed between 1955 and 1960 exhibited a significantly higher 

likelihood of containing multiple types of PCB materials compared to those built in 

the periods 1950-1980 and 1930-1950. 



87 

 

 
Figure 3.5. Stacked histograms of sample distributions for multiple detections of 

PCB (top two) and asbestos materials (bottom two) across the construction year 

(data sourced from Paper IV). 

        In contrast, the observations for asbestos materials showed a different pattern. 

Only 35.3% of buildings had no asbestos materials. Around 17.8% contained at least 

one type of asbestos, 14.8% had two types, and 10.7% contained three types of 

asbestos materials. Remarkably, approximately 21.4% of the observations indicated 

the presence of at least four different asbestos materials. A trend of increasing 

asbestos contamination was particularly evident in buildings constructed between 

1955 and 1975, with the peak probability of detecting multiple types of asbestos 

occurring between 1965 and 1975. These distinctive patterns in the probability 

distributions underscore the construction year as a critical factor in determining the 

presence of hazardous building materials. The temporal analysis reveals specific 

periods with elevated likelihood of contamination, providing valuable insights for 

targeted hazardous material management in buildings from these eras. 

        The hierarchical cluster matrix illustrated in Figure 3.6 provides a 

comprehensive analysis of the associations between the presence of PCB and 

asbestos-containing materials in various buildings. The results predominantly 

indicate low correlations both within and between different types of PCB and 

asbestos components. However, exceptions were observed where significant 

statistical correlations were identified. A noteworthy correlation was found between 

asbestos ventilation channels and asbestos tiles or clinker, exhibiting a coefficient 

of 0.62. Similarly, a correlation coefficient of 0.61 was observed between PCB 

joints and asbestos tiles or clinker. These correlations suggest a concurrent presence 

of these materials, particularly in specific types of buildings, presumably 

multifamily houses. Such synergies in material usage patterns, evident from the 

No. PCB type

No. ACM type
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analysis, could be attributed to the construction practices prevalent during certain 

periods. These findings are instrumental in enhancing the predictive inference of 

hazardous materials in the Swedish building stock. By understanding the distinct 

presence patterns of hazardous materials, especially in specific building classes, this 

analysis facilitates more targeted and effective strategies for hazardous material 

detection and management in the renovation and demolition processes. 

 
Figure 3.6. Variable correlation between asbestos and PCB materials. Coefficients 

with statistical significance are marked with asterisks (data sourced from Paper 

IV). 

3.2.2. Evaluation of Inventory Records 

Evaluating the representativeness and quality of data from inventory records is a 

crucial step in predictive modeling, particularly for determining the suitability for 

using them as training data. Paper II revealed that the inventory data encompassed 

approximately 2.2% of Gothenburg’s building stock constructed between 1929 and 
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1982, as per building count. Essential building parameters including construction 

year, renovation year, floor area, and number of floors were extracted from both the 

training and prediction sets for comparative analysis of their distributions. Analysis 

using normalized density distributions and box plots showed that the median 

construction and renovation year intervals (1962-1964 and 1996-1998, respectively) 

were similar across both data subsets. It was observed that most buildings in the 

prediction set were constructed later, predominantly in the 1970s, with significant 

renovations around 1990 and 2005. The training set exhibited broader ranges in 

floor area and number of floors, likely due to the extensive demolition and extension 

activities in low-rise and simple buildings, such as storages and garages. 

        In Paper IV, the research extended its scope to encompass four distinct 

municipalities, resulting in a considerably improved alignment of building 

characteristics across the various data subsets for enhanced validity of the study’s 

findings. This expansion allowed for a more comprehensive and representative 

analysis of building attributes, such as construction year, number of floors, 

basements, and stairwells. However, the training set still showed an 

overrepresentation of larger buildings with more apartments, indicating a potential 

bias in the data. This was further confirmed by differences in building class 

distributions between subsets: the training set had a nearly equal distribution among 

various building classes (18% single-family houses, 19% multifamily houses, 24% 

school buildings, 20% office and commercial buildings, and 19% industrial 

buildings), whereas the prediction set predominantly comprised 80% of single-

family houses and 16% of multifamily houses, with a minimal representation of 

non-residential buildings (4%). 

        Subsequent analysis focused on identifying building subgroups within the 

training set that exhibited high quality and quantity of data, assessing their 

suitability for predictive modeling. The development of a data assessment formula 

and matrix, as introduced in Paper II, facilitated the data evaluation of hazardous 

materials across different building classes based on inventory types and quantities. 

This approach was applied in Papers II-IV. Top assessment scores for PCB and 

asbestos-containing materials were consistently found in school buildings, 

commercial buildings, multifamily houses, and industrial buildings. However, the 

ranking of hazardous materials varied depending on the characteristics of 

inventoried buildings across different sampled municipalities (Gothenburg in Paper 

II, Gothenburg and Stockholm in Paper III, and an expanded set including 

Gothenburg, Stockholm, Malmö, and Kiruna in Paper IV). Despite variations in the 

training set, certain materials such as asbestos pipe insulation, asbestos tiles or 

clinker, asbestos door or window insulation, asbestos ventilation channels, and PCB 

joints consistently achieved high scores, supported by a substantial number of 

inventories from reports and protocols. 
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3.3. Prediction of Hazardous Materials (RQ2 & 3) 
This section synthesizes the outcomes of predicting asbestos and PCB-containing 

materials in buildings constructed from 1930 to 1985, elucidating the machine 

learning pipelines developed specifically for this research context. Paper III details 

preliminary efforts to forecast the presence of a single type of both asbestos and 

PCB material. Conversely, Paper IV introduces a comprehensive machine learning 

framework designed for predicting various types of asbestos and PCB materials 

across distinct building categories. The lead models were then applied to data from 

buildings yet to be investigated, enabling an estimation of the likelihood and spatial 

distribution of residual hazardous materials within the Swedish building stock. 

3.3.1. Predictive Modeling for Hazardous Building Materials  

The aggregated results from the application of machine learning and neural network 

models, as detailed in Table 3.1, demonstrate the ability to discern presence patterns 

for a range of PCB and asbestos-containing materials. Values highlighted in bold 

represent the superior performance of lead models for specific hazardous materials. 

Key data preprocessing strategies, such as data resampling, augmentation of 

minority classes, and adjustment of sample weights, proved effective in mitigating 

label imbalance during model training. The models exhibited consistent 

performance metrics, particularly in terms of Area Under the Curve (AUC) and F1 

scores, while maintaining close error rates between training and validation sets, 

lending greater confidence to their performance evaluation. 

        Among the various models tested, tree ensemble models – including 

Distributed Random Forest or Extremely Randomized Trees (DRF/XRT), Gradient 

Boosting (GB), Extreme Gradient Boosting (XGBoost), Categorical Boosting 

(CatBoost), and Stacked Ensemble models – generally outperformed others. High 

AUC scores were achieved for predicting the presence of asbestos door and window 

insulation (0.93), asbestos ventilation channels (0.90), PCB joints (0.88), asbestos 

floor mat glues (0.88), and PCB capacitors (0.86) in residential buildings. On the 

contrary, the predictive performance in non-residential buildings was marginally 

lower, with models for asbestos door insulation, PCB capacitors, asbestos joints or 

sealants, PCB joints, and asbestos pipe insulation yielding AUC scores of 0.85, 0.76, 

0.76, 0.75, and 0.75, respectively. The overlap in the detection of these hazardous 

materials across different building types underscores the prevalence of their distinct 

presence patterns within the Swedish building stock. 
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Table 3.1. Performance evaluation of predictive models for PCB and asbestos 

materials prediction using the AUC metric (1e-2), as detailed in Papers III-IV.  
Algorithm* L S K C G R B X N E 

All buildings 
PCB joint - - - - 64 76 78 74 66 - 
PCB double-glazed window - - - - - - - 60 - 60 
PCB capacitors - - - - 73 82 82 79 80 - 
PCB acrylic floor - - - - 24 41 61 48 44 66 
ACM pipe insulation - - - - 65 79 80 78 73 - 
ACM door insulation - - - - 74 85 84 83 80 - 
ACM panel - - - - 68 71 70 66 71 - 
ACM tile/clinker - - - - 57 73 75 73 65 - 
ACM floor mat glue - - - - 64 73 75 71 68 - 
ACM floor mat - - - - - - - 63 - 62 
ACM ventilation channel - - - - - 79 78 76 75 80 
ACM joint/sealant - - - - 70 77 80 75 69 - 
Residential buildings (single-family and multifamily houses) 
PCB joint - - - - 84 81 88 81 - 85 
PCB double-glazed window - - - - 56 - - 61 - 46 
PCB capacitors - - - - 86 84 82 66 - 79 
PCB acrylic floor - - - - - - - - - - 
ACM pipe insulation 62 79 82 96 72 81 74 75 80 78 
ACM door insulation for multifamily house 73 88 93 84 70 90 
ACM panel - - - - 76 84 77 75 65 82 
ACM tile/clinker - - - - 55 74 83 82 51 80 
ACM floor mat glue - - - - 69 - - 88 68 88 
ACM floor mat - - - - 46 - - 61 44 54 
ACM ventilation channel - - - - 84 89 85 83 74 90 
ACM joint/sealant - - - - - 78 79 74 - 75 
Non-residential buildings (school, office/commercial, industrial buildings) 
PCB joint 86 83 78 99 58 - - 75 - 72 
PCB double-glazed window for school building 66 68 60 66 - 66 
PCB capacitors - - - - 75 - - 76 - 75 
PCB acrylic floor - - - - 41 - - 68 - 37 
ACM pipe insulation - - - - 65 76 75 73 - 74 
ACM door insulation - - - - 80 - - 85 - 85 
ACM panel - - - - 57 65 62 59 - 65 
ACM tile/clinker - - - - 60 67 69 63 - 66 
ACM floor mat glue - - - - 70 72 73 71 - 69 
ACM floor mat - - - - 54 67 68 65 - 67 
ACM ventilation channel - - - - 70 74 68 66 - 72 
ACM joint/sealant - - - - 61 72 76 73 - 73 

*Abbrevidation of algorithms: L (logistic regression, LR), S (support vector machine, SVM), K 
(k nearest neighbors, k-NN), C (categorical boosting, CatBoost), G (generalized linear model, 
GLM), R (distributed random forest or extremely randomized trees, DRF/XRT), B (gradient 
boosting, BG), X (extreme gradient boosting, XGboost), N (deep neural network, DNN), and E 
(stacked ensemble). 
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        The performance variances observed in the prediction models, as detailed in 

Papers III and IV, can be attributed to the expanded training data size and feature 

sets. In Paper III, the categorical boosting models demonstrated exceptionally high 

performance compared to other algorithms, suggesting a potential overfitting issue. 

On the other hand, neural networks, due to their less-than-ideal performance and 

similarity to simpler models such as generalized linear models that were deemed 

less suitable for training with structurally small datasets. The feature sets used in 

these studies also varied. Paper III utilized supplementary categorical variables such 

as the city and EPC category as training features. In contrast, in Paper IV, these 

attributes were replaced with the postcode, building category, and building types, in 

addition to derived features such as building physical footprint, area per stairwell, 

and area per apartment. The learning curve analysis indicated that model 

performance improved with increasing data size, achieving optimal results with a 

minimum of 100 observations. Paper IV findings suggested that simple models with 

approximately 20-55 trees and 5-13 depths were optimal, balancing the risks of 

overfitting and underfitting. 

        Furthermore, the aggregated feature importance based on lead models, as 

illustrated in Figure 3.7, highlighted that floor area, building physical footprint, 

construction year, postcode, and the number of floors collectively contributed to 

predicting PCB and asbestos materials in residential buildings. These parameters 

were instrumental in characterizing building categories and typologies, with the 

postcode particularly relevant to variations in building stocks across different 

geographical regions. For non-residential buildings, the construction year and 

postcode emerged as the most critical features, exerting significant impact 

magnitudes relative to others. Interestingly, the scaled feature importance varied 

between hazardous materials and building categories. Some materials had a 

dominant predictor, while others were influenced by an aggregation of features. 

Moreover, even the same materials exhibited different predictor sets based on the 

building category. Given these insights, it is advisable to develop individual 

predictive models tailored to specific regions and building categories, provided 

there is a sufficient volume of data for such data partition. 
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Figure 3.7. Aggregated feature importance of leader models for PCB and asbestos 

material prediction in residential and non-residential buildings (data sourced from 

Paper IV). 

        Afterwards, SHAP values were computed, aiding in the interpretation of the 

predicted presence of asbestos and PCB materials in both residential and non-

residential buildings, as depicted in Figure 3.8. The analysis revealed significant 

feature impacts of leader models for specific hazardous materials in residential and 

non-residential buildings, illustrated in Appendix II. In residential buildings, 

significant impacts were observed for PCB joints, double-glazed sealed windows, 

asbestos in door and window insulation, tiles or clinker, floor mat glue, floor mats, 

and ventilation channels. In non-residential buildings, most asbestos materials, 

excluding ventilation channels, demonstrated pronounced feature impacts. Other 

materials exhibited less significant distinctions. The detailed patterns of their 

presence are identified as follows: 

• PCB joints: Identified predominantly in medium to large post-war residential 

buildings with medium building footprints but lacking natural ventilation, also 

Residential buildings

Non-residential buildings
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commonly detected in post-war non-residential buildings in urban areas with 

medium to large footprints and floor areas, and balanced ventilation systems. 

• PCB double-glazed sealed window: Found in large residential buildings 

constructed post-1970s in rural areas with basements, but without natural or 

exhaust ventilation systems, also present in smaller multi-storey post-war non-

residential buildings in urban settings with medium footprints, basements. 

• PCB capacitor: Detected in medium to large residential buildings with exhaust 

ventilation and medium footprints. Early-built commercial or industrial 

buildings without balanced ventilation also showed occurrences. 

• Asbestos pipe insulation: Common in medium to large post-war multifamily 

houses with multiple stories and significant footprints, also observed in medium 

to large multistory non-residential buildings from the early period, particularly 

in urban areas with exhaust or balanced ventilation. 

• Asbestos door and windows insulation: Predominantly found in medium to 

large post-war multifamily houses with large footprints and exhaust ventilation, 

also seen in medium to large multi-story post-war commercial or industrial 

buildings in urban areas with basements but without exhaust ventilation. 

• Asbestos panel: Detected in multi-story residential buildings built later with 

medium to large footprints, also found in post-war non-residential buildings in 

urban areas with balanced ventilation and significant footprints and floor areas. 

• Asbestos tile and clinker: Identified in multi-story residential buildings with 

natural ventilation and substantial footprints, also found in post-war non-

residential buildings, particularly industrial buildings, with large footprints 

lacking balanced ventilation with heat exchangers, but present in urban areas 

with balanced ventilation. 

• Asbestos floor mat glue: Appeared in medium early-built residential buildings 

in urban areas with medium to large footprints and exhaust ventilation, but not 

balanced ventilation, also presented in large post-war non-residential buildings 

in urban areas with basements. 

• Asbestos floor mat: Found in small, low-rise residential buildings in urban 

areas built post-1950s, with medium footprints and basements, but without 

exhaust ventilation, also observed in large multi-story post-war industrial 

buildings in urban areas with significant footprints and basements, but lacking 

exhaust ventilation. 

• Asbestos ventilation channel: Common in small, low-rise post-war residential 

buildings with balanced ventilation with heat exchangers or exhaust ventilation 

with heat pumps, also presented in medium-sized post-war non-residential 

buildings. 

• Asbestos joints: Detected in medium to large residential buildings with 

significant footprints, also found in multi-story post-war non-residential 

buildings with large footprints, basements, and balanced ventilation. 
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3.3.2. Hazardous Material Prediction in the Building Stock 

An examination of the sample distribution was conducted to assess the 

representativeness of the inventoried buildings in relation to the regional building 

stock with valid postcodes, prior to initiating prediction. The 287 sampled 

residential buildings constituted approximately 0.21% of the total residential 

building stock, which numbers 95,344. Despite the relatively small sample size, the 

proportional representation of municipalities within the sample was fairly consistent 

(40% Stockholm, 40% Gothenburg, 18% Malmö, 2% Kiruna in the training set; 

41% Stockholm, 41% Gothenburg, 17% Malmö, 1% Kiruna in the prediction set). 

In contrast, about 1% of non-residential buildings, totaling 3,788, were sampled. 

The sampling exhibited a significant oversampling of Stockholm’s non-residential 

buildings in both the training set (51% Stockholm, 32% Gothenburg, 15% Malmö, 

2% Kiruna) and the prediction set (41% Stockholm, 35% Gothenburg, 23% Malmö, 

1% Kiruna) 

        Figure 3.8 presents a comparison of the normalized density distributions for 

the training and prediction sets across various building categories, considering key 

features such as construction year, floor area, and building physical footprint. The 

analysis indicated that the training set tended to oversample residential buildings 

constructed between 1945 and 1970, and non-residential buildings built before 

1970. Conversely, it undersampled smaller residential buildings with floor areas and 

physical footprints less than 1000 m², as well as non-residential buildings with floor 

areas below 4000 m². However, the distribution of building physical footprints in 

the training set aligns closely with that in the prediction set for non-residential 

buildings. This alignment suggests that the buildings inventoried in the four 

municipalities predominantly predate the bans on PCB (1973-1978) and asbestos 

(1975-1982). Consequently, this skew in the sampling may result in higher positive 

detection rates and frequencies of detecting multiple hazardous materials in the 

statistics than their actual prevalence rates in the overall Swedish building stock. 
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Figure 3.8. Normalized density distribution of training and prediction sets per 

building category by construction year, floor area, and building physical footprint 

(data sourced from Paper IV). 

        In Paper IV, the estimation of the presence of specific asbestos and PCB 

materials within regional building stocks was conducted at two different scales: 

global (encompassing the entire dataset) and local (focusing on individual cases). 

At the global scale, the prediction models generated binary labels, which were used 

to compute aggregated statistics for each municipality and building category. Table 

3.2 provides a comparative analysis of the positive detection rates of inventoried 

buildings in the training set against the estimated rates for non-inventoried buildings 

in the prediction set. Additionally, the table includes details on the performance of 

each model and the data size for each subgroup, aiding in the assessment of 

uncertainty in the prediction outcomes. 

Residential buildings Non-residential buildings
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        The findings indicated that the predicted proportions of buildings 

contaminated with hazardous materials were generally lower than those derived 

from statistical analysis, particularly in the case of residential buildings. This 

observation aligns with the dense concentration of post-war buildings noted in 

Figure 3.9. When comparing the detection rates of hazardous materials across all 

building categories, the rates in the prediction set were lower and more closely 

aligned with those found in residential buildings. This is due to the fact that 

residential buildings account for nearly 95% of the overall building stock, whereas 

they represent only around 37% of the observations in the training set. The 

discrepancy in these proportions suggests that a higher number of non-residential 

buildings, compared to residential buildings, have undergone renovation or 

demolition with detailed inventories in the past decade in the municipalities 

included in the study. This could also imply a more comprehensive documentation 

of hazardous materials in non-residential buildings, impacting the prediction 

outcomes and their interpretation. 

Table 3.2. Comparison between the positive detection rates of asbestos and PCB 

materials between the statistics of inventoried buildings (I) and prediction of non-

inventoried buildings (P), as detailed in Paper IV. 

Building Stockholm Gothenburg Malmö Kiruna Total 
I P I P I P I P I P 

Residential (N) 114 39,248 115 39,225 6 16,725 52 146 287 95,344 
Non-residential 254 1,563 161 1,324 74 885 10 16 501 3,788 

All (N) 368 40,811 276 40,549 80 17,610 62 162 788 99,132 
PCB capacitor (%)  

Residential 
(AUC= 0.86) 

0.33 0.10 0.27 0.04 0 0.01 1.00 0.78 0.36 0.02 

Non-residential 
(AUC= 0.76) 

0.53 0.30 0.62 0.58 0.18 0.48 0.80 0.56 0.56 0.44 

All buildings 
(AUC= 0.82) 

0.49 0.12 0.50 0.19 0.17 0.28 0.93 0.99 0.51 0.18 

Asbestos pipe insulation (%)  
Residential 

(AUC= 0.81) 
0.81 0.63 0.52 0.43 1.00 0.77 0.92 0.31 0.72 0.57 

Non-residential 
(AUC= 0.75) 

0.65 0.98 0.45 0.83 0.83 0.98 1.0 0.75 0.61 0.92 

All buildings 
(AUC= 0.80) 

0.71 0.56 0.48 0.28 0.84 0.56 0.94 0.81 0.65 0.44 

Asbestos door and window insulation  (%)  
Residential 

(AUC= 0.91) 
0.81 0.20 0.43 0.10 NA 0.12 1.00 0.12 0.67 0.14 

Non-residential 
(AUC= 0.85) 

0.60 0.57 0.47 0.51 0.87 0.80 0.67 0.25 0.58 0.60 

All buildings 
(AUC= 0.84) 

0.67 0.23 0.46 0.14 0.87 0.23 0.90 0.21 0.61 0.19 
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        At the local scale, the prediction models were employed to ascertain the 

likelihood of hazardous material presence in individual buildings, with results 

visualized both on aggregated and individual building bases. Figure 3.9 displays the 

estimated probability distributions for the presence of PCB capacitors, asbestos pipe 

insulation, and door and window insulation, categorized by building types and 

plotted against the construction year. These distributions are annotated with mean 

values and 95% confidence intervals to provide a clearer statistical perspective. The 

analysis revealed that non-residential buildings generally exhibited a higher 

probability for hazardous material contamination compared to residential buildings 

across all three evaluated cases. Residential buildings showed a comparatively 

greater likelihood of containing asbestos door and window insulation than asbestos 

pipe insulation or PCB capacitors. However, a noticeable downward trend in the 

predicted probability of containing these hazardous materials was observed post-

1970s. Interestingly, older buildings constructed between 1930 and 1945 did not 

exhibit significantly lower probabilities than those built during the post-war period, 

a pattern potentially attributes to renovations undertaken in the 1970s. 

 
Figure 3.9. Predicted probability distribution of selected asbestos and PCB 

materials along the construction year by all buildings (in continuous line) and 

building categories (in dashed line), as detailed in Paper IV. 

PCB capacitors

ACM pipe insulation

ACM door and windows insulation
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        Furthermore, the research extended to the creation of hazardous material 

atlases for Stockholm’s public housing, utilizing building footprint maps. These 

atlases facilitated the mapping and geospatial analysis of hazardous material 

probabilities at the district level. Through a color-coded building schema, potential 

correlations between the presence of hazardous materials and clusters of buildings 

more prone to contamination were discerned. This approach provides a novel 

perspective on understanding and visualizing the geospatial distribution of 

hazardous material probabilities within urban environments. 

3.4. Estimation of Radioactive Substances (RQ2 & 3) 
This section delves into the feasibility of transferring the proposed data-driven 

prediction methodology, originally developed for hazardous materials, to the 

prediction of radioactive substances in buildings. Specifically, Paper V investigates 

the potential of predicting the presence of radioactive concrete, employing an 

alternative statistical approach based on Bayesian network learning. Furthermore, 

in Conf II and Paper VI, an exploration by applying machine learning regression 

and multi-class classification techniques, respectively, is extended. These methods 

are utilized to forecast indoor radon concentrations and their distribution intervals 

within the national building stock. 

3.4.1. Predictive Modeling for Radioactive Substances 

The investigation focused on the prevalence and impact of radioactive concrete-

containing materials in the existing building stock constructed between 1930 and 

1980. It is well-known and also proved that buildings with radioactive concrete 

exhibited higher indoor radon concentrations, as demonstrated on a logarithmic 

scale for a broader range analysis, detailed in Figure 3.10. The average indoor radon 

concentration in buildings devoid of radioactive concrete was significantly lower, 

recorded at 94 ± 6 Bq/m³, compared to 319 ± 31 Bq/m³ in buildings with radioactive 

concrete. This difference was more pronounced in single-family houses (286 

Bq/m³), followed by multifamily houses (99 Bq/m³), school buildings (45 Bq/m³), 

and other non-residential buildings (125 Bq/m³), as depicted in Figure 3.9. The 

detection rates of radioactive concrete varied by building type: approximately 14% 

in single-family houses, 49% in multifamily houses, 9% in school buildings, and 

24% in other non-residential building categories. Records pertaining to the specific 

components containing radioactive concrete were often vague. However, where 

information was available, radioactive concrete was most frequently identified in 

walls, facades, floors or foundations, and other structural elements such as 

stairwells, chimneys, and air-conditioning service areas. 
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Figure 3.10. Probability distribution of logarithmic indoor radon concentration by 

building classes with and without radioactive concrete detection (data sourced 

from Paper V). 

        The correlation matrix presented in Paper V revealed a significantly negative 

correlation between the geographical proximity to radioactive concrete 

manufacturing plants and the presence of radioactive concrete in residential 

buildings. Specifically, the correlation coefficients were -0.89 for single-family 

houses and -0.87 for multifamily houses, indicating a higher prevalence of 

radioactive concrete in buildings located closer to these factories. In multifamily 

houses, the number of basements also exhibited a negative correlation (coefficient 

is -0.40). Conversely, positive correlations were observed with the construction year 

(coefficient is 0.37), number of apartments (coefficient is 0.26), and floor areas 

(coefficient is 0.21) in multifamily houses. Additionally, the number of floors in 

school buildings showed a strong positive correlation (coefficient is 0.71) with the 

presence of radioactive concrete. These findings were substantiated through 

diagnostic analysis of the Bayesian networks developed during structural learning. 

This analysis highlighted the average distance to radioactive concrete 

manufacturing plants as a pivotal attribute affecting the presence of radioactive 

Single-family houses Multifamily houses

School buildings Other buildings
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concrete across different building classes. This factor, in combination with building 

class, construction year, and floor area, was particularly influential. The directed 

acyclic graphs from structural learning further revealed the interconnections 

between construction year, number of basements, floor area, and building class. 

        In Table 3.3, a compilation of the conditional probability distributions derived 

from the parametric learning of models with the highest Bayesian Information 

Criterion (BIC) scores is shown. The compiled data indicate an average detection 

rate of radioactive concrete in 36% of the observations. Buildings most likely to 

contain radioactive concrete were those constructed between 1968 and 1975, 

especially multifamily and other non-residential buildings, excluding schools, with 

basements and located 300-600 km from historical radioactive concrete production 

sites. However, factors such as floor areas, number of floors, stairwells, and number 

of apartments exhibited no direct dependency on the presence of radioactive 

concrete. These findings are consistent with the patterns identified in previous 

exploratory data analyses performed in Paper V. 

Table 3.3. Aggregated conditional probability distributions of Bayesian network 

models learned from radioactive concrete detection records, as detailed in Paper V. 

Variable Value representation 
Radioactive concrete 

Positive Negative 

Dataset  36% 64% 

Construction 
year 

1930-1955 23% 77% 
1955-1960 40% 60% 
1960-1968 60% 40% 
1968-1975 30% 70% 
1975-1980 12% 88% 

Average distance 
(km) 

below 300 62% 38% 
300-600 83% 17% 

above 600 2% 98% 

Basements/ 
Building class 

No/Single-family house 8% 47% 
Yes/Single-family house 14% 44% 
No/Multifamily house 58% 5% 
Yes/Multifamily house 53% 37% 

No/School building 16% 27% 
Yes/School building 6% 9% 

No/Other non-residential building 19% 21% 
Yes/ Other non-residential building 28% 11% 

         
  



102 

        In addition to the factors contributing to indoor radon levels, their distribution 

was also quantified across different building classes. As reported in Paper VI, the 

mean annual indoor radon concentration in Swedish buildings was 110 ± 1 Bq/m³, 

with approximately 12.4% of buildings exceeding the 200 Bq/m³ reference level. 

Particularly, single-family houses (118 ± 2 Bq/m³) recorded higher than average 

indoor radon levels, with 13.9% surpassing the reference threshold, the highest 

proportion among all building classes. In contrast, school buildings exhibited the 

lowest mean indoor radon concentration. Non-residential dwellings frequently 

registered extremely high indoor radon levels (above 500 Bq/m³). These 

observations align with findings presented in Conf II, which utilized heat maps to 

demonstrate the distribution of indoor radon levels across various building 

categories. Buildings particularly vulnerable to high indoor radon concentrations 

were identified as those constructed between 1940 and 1960, with natural 

ventilation, and located in areas with elevated uranium content. The correlation 

study in Conf II and subsequent data analysis and visualization in Paper VI further 

detailed the relationships between indoor radon levels and a range of building 

parameters, geogenic factors, and geographic attributes for each building class. 

        Predictive modeling for indoor radon concentration estimation involved 

regression techniques. The performance of multivariate adaptive regression splines 

and random forest models, with r-squared values of 0.13 and 0.24 respectively, was 

in line with existing literature but not entirely satisfactory. Consequently, an 

alternative approach using multi-class classification was explored. This involved 

categorizing indoor radon levels into three intervals, in accordance with current 

legislative guidelines: low level (below 200 Bq/m³), medium level (200-400 Bq/m³), 

and high level (above 400 Bq/m³). By applying the SMOTE technique for label 

imbalance adjustment, the XGBoost models demonstrated significant improvement 

in prediction performance (F1 scores for single-family houses is 0.93, multifamily 

houses is 0.95, school buildings is 0.94, other non-residential buildings is 0.96), 

outperforming the deep neural network models (F1 scores for single-family houses 

is 0.66, multifamily houses is 0.74, school buildings is 0.64, other non-residential 

buildings is 0.68). The confusion matrix for the XGBoost models, presented in 

Table 3.4, indicated average error rates ranging from 4.3% to 6.5% across different 

building classes. These errors predominantly occurred in the misclassification of 

medium-level indoor radon concentrations as low level. The misclassification rates 

for high indoor radon levels were relatively low in residential buildings but 

increased in non-residential buildings. 
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Table 3.4. Confusion matrix of the XGBoost models for indoor radon prediction, 

as detailed in Paper VI. 

Indoor radon level 
True label (N)  

Low Medium High Error rate 

Predicted 

label 

Single-family houses 

Low 820 45 18 7.1% 
Medium 79 788 16 10.8% 

High 8 5 871 1.5% 
Average 907 838 905 6.5% 

Multifamily houses 

Low 3261 116 23 4.1% 
Medium 228 3100 62 8.5% 

High 39 21 3341 1.8% 
Average 3528 3247 3426 4.8% 

School buildings 

Low 286 9 3 4.0% 
Medium 18 279 2 6.7% 

High 7 0 292 2.3% 
Average 311 288 297 4.4% 

Other non-residential buildings 

Low 434 7 5 2.7% 
Medium 29 414 4 7.4% 

High 12 0 435 2.7% 
Average 475 421 444 4.3% 

        Learning curves were generated for the XGBoost models to analyze the 

balance between bias and variance in indoor radon modeling across different 

building classes, as depicted in Figure 3.11. The results indicated a marked 

reduction in logarithmic loss (logloss) when the number of decision trees ranged 

from 20 to 25 in the models, applicable across training, cross-validation, and 

validation phases. The diminution of logloss persisted until reaching a minimum, 

with the optimal number of trees indicated by green lines, approximately between 

110 and 155 trees. The validation and cross-validation curves displayed a high 

degree of congruence. However, a discernible divergence between the training and 

validation curves suggested a potential risk of overfitting as the number of pruned 

trees increased. This pattern of learning curve behavior was consistently observed 

across all building class subgroups. 
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Figure 3.11. The learning curve for indoor radon interval prediction by building 

classes (data sourced from Paper VI). 

        In Figure 3.12, the significance of various features in predictive models tailored 

for distinct building categories is delineated, thereby facilitating model 

interpretation. This analysis reveals a consistent trend in the variables that exert 

influence in both XGBoost and DNN models within identical building 

classifications. For single-family houses, features such as construction year, natural 

ventilation, and building physical footprint were found to be crucial in estimating 

intervals of indoor radon levels. Conversely, multifamily houses displayed a similar 

hierarchical importance of features, with construction year, building physical 

footprint, total floor area, and the presence of exhaust ventilation systems being 

deemed important features. In the case of school buildings, the primary determinants 

identified included the physical building footprint, floor area, and the presence of 

basements. A more varied set of influencing factors was observed in other non-

residential buildings, including aspects such as floor area, building physical 

footprint, geographical adjustment factors, the presence of basements, geographical 

latitude, construction year, and the inclusion of exhaust ventilation systems. 

Single-family houses Multifamily houses

School buildings Other buildings
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Figure 3.12. Feature importance for indoor radon interval prediction by building 

classes (data sourced from Paper VI). 

        In Appendix III, partial dependence plots (PDPs) is shown to delineate the 

marginal effect of key variables on indoor radon levels. These plots illustrate the 

impact of each variable by measuring changes in mean responses. Individual PDP 

plots were specifically tailored for different building classes, delineating the 

relationship between the target function and selected features. In these plots, the 

influence of each feature is represented distinctly by green lines for XGBoost 

models and black lines for DNN models. These findings offer a nuanced 

understanding of how various factors influence indoor radon levels across different 

building classes. 

• Single-family houses: An increased level of indoor radon was particularly 

observed in single-family houses constructed around the 1960s. 

• Multifamily houses: Buildings built between 1945 and 1980 exhibited 

increased indoor radon levels. Additionally, multifamily houses with a building 

physical footprint exceeding 2000 m² and located at latitudes above 58° showed 

a higher likelihood of high indoor radon levels. 

• School buildings: The impact of construction year on indoor radon levels in 

school buildings was relatively subtle, displaying no distinct patterns. However, 

school buildings with physical footprints around 800 m² or floor areas between 

2000 m² to 5000 m² were prone to higher indoor radon levels. 

• Other non-residential buildings: For other non-residential building types 

(excluding school buildings), those buildings situated in the areas with 

geographical adjustment factors ranging from 0.9 to 1.4 were more likely to 

experience medium levels of indoor radon. 

Single-family houses Multifamily houses School buildings Other buildings
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3.4.2. Radioactive Substances Prediction in the Building Stock 

To enhance the generalizability of the model given the limited size of the training 

dataset, building registries from the five sampled municipalities — Stockholm, 

Gothenburg, Malmö, Gävle, and Umeå — were utilized. As detailed in Table 3.5, 

the training dataset comprised approximately 2% of the regional building stock 

constructed between 1930 and 1980, predominantly featuring single-family houses. 

This distribution suggests a potential bias in the Bayesian network models, where 

overrepresented building classes could disproportionately influence the learning of 

Bayesian networks from the data. Consequently, this bias might skew the models 

developed through structural and parameter learning, resulting in improved 

generalization for single-family houses. However, the allocation of the training 

dataset across different building classes was relatively balanced, with the exception 

of other non-residential buildings, which appeared to be underrepresented. 

Addressing this imbalance is crucial for achieving a representative training set that 

accurately reflects the diversity of the regional building stock. 

Table 3.5. Statistics of regional building stock (1930-1980) for radioactive concrete 

estimation (data sourced from Paper V).  

Building class 
Single-

family house 

Multifamily 

house 

School 

building 

Other non-

residential 

building 

Total 

Training size (N) 1,841 312 101 170 2,424 
Buildings (N) 83,998 17,634 13,026 1,338 115,996 

Training share (%) 2 2 1 13 2 

        In the Bayesian network models, the estimation of joint probabilistic 

distributions (where the sum of probabilities for all statuses of a variable equals 

100%) of radioactive concrete for individual variables was presented in Table 3.6. 

Combining multiple variables to query specific statuses is also possible to yield 

probability estimation. The findings showed that approximately 33.7% of the 

regional building stock is likely to contain radioactive concrete in building 

components. In particular, buildings located within a 600 km radius from 

radioactive concrete manufacturing plants exhibited over tenfold increase in the 

likelihood of containing radioactive concrete compared to those outside this zone. 

Furthermore, the data indicated that around 59% of buildings constructed between 

1960 and 1968 had a higher propensity for containing radioactive concrete, 

compared to those built between 1975 and 1980, which presented a markedly lower 

risk at only 2%. The likelihood of radioactive concrete presence was observed to 

increase with large floor area. Approximately 35% of buildings spanning between 

360-1500 m² and 50% of those with floor area above 1500 m² were estimated to 

potentially contain radioactive concrete. Among various building types, multifamily 

houses exhibited the highest probability, at 19.6%, which is more than double that 
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of other non-residential buildings and fivefold higher than that of single-family 

houses and school buildings. While the existence of basements suggested a slightly 

increased probability, it was not identified as a direct indicator of radioactive 

concrete presence. 

Table 3.6. Predicted joint conditional probability distribution of radioactive 

concrete in regional building stock of studied municipalities, as detailed in Paper V. 

Variable Status 
Radioactive concrete 

Positive Negative 

Average - 33.7% 66.3% 

Average distance 
(km) 

below 300 13.8% 8.0% 
300-600 15.1% 3.1% 

above 600 1.2% 58.9% 

Construction year 

1930-1955 4.8% 16.3% 
1955-1960 7.6% 11.6% 
1960-1968 15.6% 10.8% 
1968-1975 5.7% 12.4% 
1975-1980 2.0% 13.3% 

Floor area (m2) 

below 150 2.6% 13.2% 
150-220 2.7% 13.7% 
220-360 5.0% 13.6% 
360-1500 9.6% 15.1% 

above 1500 12.8% 12.0% 

Building class 

Single-family house 4.1% 28.6% 
Multifamily house 19.7% 16.7% 

School building 3.4% 9.7% 
Other non-residential building 8.6% 9.3% 

Basements 
No 11.7% 22.9% 
Yes 24.3% 41.3% 

        An similar approach for ensuring data representativeness was applied to the 

indoor radon training dataset, which featured a larger dataset size and an expanded 

building stock in the prediction set. Table 3.7 details the statistics for building stocks 

constructed between 1930 and 1980 in each Swedish metropolitan area based on 

valid EPC in 2023, compared with the national building stock. The analysis revealed 

a predominance of data from the Stockholm region in the training set, followed by 

considerable contributions from the Gothenburg and Malmö regions. Noteworthily, 

a higher frequency of indoor radon measurements was observed in multifamily 

houses and school buildings, approximately 2.5 times that of single-family houses 

and other non-residential buildings. This pattern of indoor radon measurement 

distribution was consistent across the metropolitan regions. On average, the training 

set encompassed 25% of properties in Swedish metropolitan areas, corresponding 

to 8.2% of the entire national building stock.  
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Table 3.7. Statistics of Swedish metropolitan building stock (1930-1980) for indoor 

radon prediction (data sourced from Paper VI). 

Metropolitan* Building class 
Training 

size (N) 

Training 

share (%) 

Buildings 

(N) 

Building 

share (%) 

Stockholm 
region 

Single-family house 20,769 27 77,071 16 
Multifamily house 18,819 59 31,866 21 

School building 1,820 54 3,382 7 
Other building 1,977 24 8,405 43 

Gothenburg 
region 

Single-family house 4,014 9 44,808 9 
Multifamily house 4,685 35 13,301 9 

School building 695 39 1,773 3 
Other building 670 15 4,382 22 

Malmö region 

Single-family house 2,580 8 33,082 7 
Multifamily house 2,076 20 10,175 7 

School building 324 26 1,247 2 
Other building 310 9 3,420 17 

Total 

Single-family house 27,363 18 154,961 33 
Multifamily house 25,580 46 55,342 37 

School building 2,839 44 6,402 13 
Other building 2,957 18 16,207 82 

 Sum 58,739 25 232,912 33 

Sweden 

Single-family house - - 474,600 100 
Multifamily house - - 150,405 100 

School building - - 50,660 100 
Other building - - 19,731 100 

*Swedish metropolitans imply the most populated areas in the Stockholm region, 
Gothenburg region, and Malmö region with a total of 51 municipalities. 
 

        The lead XGBoost models were utilized on property registers across Swedish 

metropolitan regions to estimate the proportion and characteristics of the building 

stock susceptible to high indoor radon levels. To assess model reliability, two 

datasets were prepared: properties with recorded indoor radon measurements and 

properties lacking such measurements, categorized by building classes for 

prediction purposes. The prediction results for properties with measurements were 

contrastive with the actual distribution of indoor radon levels as per statistical 

records. It was observed that the models tended to misclassify 1-3% of medium and 

high indoor radon intervals as low. Despite this underestimation, the predicted 

distributions closely mirrored the actual ones. Statistical data indicated that 9-13% 

of the building stock in the Stockholm region has indoor radon level higher than the 

reference limit, whereas in the Gothenburg and Malmö regions, only 2-6% have. A 

exception was multifamily houses in Gothenburg, where 12% exhibited medium to 

high indoor radon levels. 

        After evaluating model uncertainty, these models were applied to the set of 

properties without indoor radon measurements. As anticipated, the prevalence of 
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medium and high indoor radon levels in these predictions was lower than in the 

statistical data, likely due to the assumption that buildings with existing indoor 

radon measurements were suspected to have higher indoor radon exposure. The 

predicted shares and statistical data were then normalized based on data sizes across 

building classes and metropolitan regions, as depicted in Figure 3.13. This graph 

illustrates diverse rates of indoor radon measurement, with 40-80% of building 

stock in the Stockholm region having been measured, in contrast to only 18-40% in 

the Gothenburg and Malmö regions, particularly among single-family houses, 

multifamily houses, and other non-residential buildings. The substantial number of 

unmeasured buildings could contribute to lower model accuracy in predicting 

specific building categories, likely due to their limited representation in the training 

dataset, thereby explaining the underestimation of medium and high indoor radon 

levels in the predicted shares for Gothenburg and Malmö. 

 
Figure 3.13. Normalized indoor radon interval distribution in the Swedish 

metropolitan building stock, as detailed in Paper VI. 
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4. Discussion 

This section discusses the complexities associated with data transformation and 

matching, representativeness assessment of empirical data, and methodological 

benefits and limitations. Afterwards, the findings on the detection records of 

hazardous substances, prediction performance of models, and identified patterns 

were compared with the results in former studies, highlighting both alignments and 

deviations from previous studies. Finally, the chapter concludes with an overarching 

discussion that extends beyond the technical findings, reflecting on the broader 

scientific and societal contributions of the study. 

4.1 Data and Methodological Limitations 
The study primarily relies on empirical data from environmental inventories and 

indoor radon measurements to develop a data-driven approach for assessing 

contamination in existing buildings. The effectiveness and scope of the predictive 

model are substantially influenced by where and how the data were collected, while 

the model performance and generalizability were closely associated with the quality 

and timeliness of sample observations in relation to the population. The challenges 

addressed in the thesis could be summarized into three interrelated aspects: (1) 

assembling data from diverse inspection and measurement records spanning wide 

geographical and temporal ranges, (2) accounting for the dynamic nature of building 

stocks, which includes ongoing developments, demolitions, and regional differences 

in building typologies, and (3) the complexities associated with real-world 

validation at an urban scale. These challenges highlight the inherent heterogeneity 

and evolving characteristics of building stocks, underscoring the need for 

comprehensive and high-quality data as a foundation for predictive modeling.  

        In response to these challenges, the thesis focuses on buildings built between 

1930 and 1980, a period prior to the regulation of hazardous materials. This 

selection targets buildings situated in the most populated areas to be representative 

of the general Swedish building stock in terms of the amount of buildings. The 

analysis and modeling are then refined based on building categories or classes, 

facilitating approximate inference with more closely matched instances. Given the 

absence of a central, digital repository for building environmental inventories, 

considerable effort was dedicated to accurate data transformation and the cleaning 
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of invalid or incomplete inventory records. The thesis details the issues encountered 

during data processing and method development, offering insights and 

recommendations for future improvements in this field. 

4.1.1. Complexity in Data Transformation and Matching 

The iterative process of transforming data from building environmental inventories 

into digital datasets forms a significant part of this thesis. The lack of a standard 

format for inventories and mandated quality control lead to considerable variation 

in the extent and quality of inventories across municipalities. This variation 

introduces uncertainties in interpreting the documentation, especially when typical 

statements for instance, “did not inspect”, “did not detect”, or “did not exist,” fail to 

clarify the presence of specific hazardous materials. This ambiguity primarily 

compromises the quality and quantity of available detection records and was 

partially improved by introducing supplementary information requirements in 

existing pre-demolition audits; such as the knowledge and experience level or 

certification of auditors, documents on previously executed pre-demolition audits, 

the choice and representativeness of samples, and post-audit of hazardous waste 

after demolition or renovation activities, etc. (Pereira et al., 2021). Mangold et al. 

(2015) and Pasichnyi et al. (2019) encountered similar data quality challenges. The 

former improved estimation of heated floor areas (Atemp) using regression analysis, 

while the latter proposed validation levels for EPC data quality by adding or 

modifying EPC variables. In this way, uncertainty associated with the inspection 

and diagnostic records of in-situ hazardous materials could be better assessed and 

quantified. This problem of data incompletenes was less prevalent in the analysis of 

indoor radon measurements, owing to the availability of a comprehensive digital 

data in the EPC register. 

        Retrieving data from inventories posed another challenge due to the often 

limited descriptions of inspected buildings or their components in inventory 

documents. Key details such as building address, construction year, renovation year, 

floor area, and number of floors are crucial for accurate spatial matching between 

building-specific data from empirical sources, i.e., environmental inventories and 

indoor radon measurements, and generic national building registers from the 

building database (Johansson et al., 2017). Such complementary information is 

sometimes insufficient or missing, making data coupling of historical inspection or 

measurement records with up-to-date building registers uncertain. Issues in data 

merging include unmatched building parameters possibly due to renovation, 

inadequate information from inspected buildings for proper register allocation, 

elimination of building registers post-demolition, discrepancies between the number 

of inventoried and registered buildings, and aggregated inventories from multiple 

buildings. Currently, multiple building entries from registers are retrieved using 

matched real estate indices, with missing cadastral and building variable data filled 
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in through backward data searches on Google Street View and hitta.se’s plot map (a 

Swedish search engine that offers telephone directory, addresses and maps). This 

manual process is time-consuming and impractical for large-scale digitization of 

inventories across numerous municipalities. 

        To overcome the aforementioned limitations in data quality, quantity, and 

merging, establishing a uniform digital repository for building environmental data, 

akin to the existing EPC register, is necessary. This repository would be used to 

consolidate various digital inspection protocols, including pre-demolition audit 

inventories, indoor radon measurements, and building defect diagnostics. Pereira et 

al. (2020) proposed a similar global standard for building inspections and 

diagnostics to ensure uniform level of details in classification. Integrating the 

proposed repository with a digital pipeline for automated data collection, matching, 

and processing would enhance modeling capabilities. Providing inspectors with 

access to building database queries and permit documents during desk studies and 

inventories would enable more thorough, hypothesis-driven pre-demolition audits 

or indoor radon measurements. Furthermore, considering the dynamic nature of 

building stocks, linking registers from building databases of authorities and 

municipalities is essential to integrate observation units and synchronize data 

updates. Despite legal challenges, such integration could prevent the formation of 

database silos and outdated registers, facilitating accurate data retrieval and 

coupling. 

4.1.2. Data Representativeness of Empirical Data 

Representativeness of training sets is critical for assuring model generalizability 

across the building stock (Clemmensen & Kjærsgaard, 2022; Schat et al., 2020). 

The training set were analyzed to define the application scope, sample sizes and 

their representative populations. The hazardous material dataset contained smaller 

fractions of observations from several municipalities and had prediction sets at the 

local scale, while the indoor radon dataset had rather large nationwide samples but 

primarily from large municipalities and had a prediction set at the regional scale. 

Statistical distributions of critical building parameters, such as construction year, 

floor area, and building physical footprint, were consistently compared between the 

training and prediction sets among datasets (Clemmensen & Kjærsgaard, 2022). 

        The findings indicate that while the building physical footprints were similar 

across datasets, buildings constructed during 1945-1964 (Folkhemmet, The 

People’s Home era) and 1965-1974 (the Million Homes Programme) were 

disproportionately represented. This overrepresentation stems from the data 

collection method’s inherent bias, focusing on renovated or demolished buildings, 

which are more frequently audited. Consequently, large, complex, and public 

buildings, for which the environmental inventory quality is higher, represented a 

small portion of the building stock. This led to a skewed dataset, particularly in some 
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building categories. Residential buildings, comprising 36% of the training set, 

contrasted with their actual 91% representation in terms of number of buildings in 

the Swedish building stock (Statistics Sweden, 2023). A similar issue emerged in 

the analyses of the radioactive concrete dataset due to limited access to data, 

resulting in constrained variable intervals, such as distances to radioactive concrete 

manufacturing factories. Analyses of the indoor radon dataset, benefiting from 

extensive samples from EPC data and municipality open APIs, encountered fewer 

of the aforementioned issues. 

        There are multiple methods to estimate and correct selection bias, such as two-

step statistical resampling according to population distribution followed by 

adjusting label proportion, or bootstrapping bias estimates and correcting sample 

estimates with replacement. Nonetheless, modifying the training set’s sample 

distribution could introduce biased labels into smaller subgroups during data 

replication, while eliminating oversampled subgroups might reduce the training set 

size. Additionally, computing percentile bootstrap estimates from a single building 

feature, such as construction year, may not be effective in binary classification tasks. 

To address this issue, the dataset was partitioned based on building category or class, 

ensuring minimum data size in each subgroup and creating predictive models 

accordingly. This approach aimed to obtain representative samples as a microcosm 

of the target population, relevant for drawing historical inferences or making 

predictions for the majority (Clemmensen & Kjærsgaard, 2022). To enhance 

building stock coverage and robustness against distribution shifts, expanding the 

data pool in size and geographic representation is essential for future environmental 

inventory collection.  

4.1.3. Methodological Benefits and Limitations 

Compared to other data-driven methods for detecting in situ hazardous substances, 

this proposed approach offers several advantages. The first is its methodological 

comprehensiveness, encompassing a wide range of prediction targets and building 

classes. Unlike prior studies focusing solely on asbestos or PCB, this approach is 

not limited to specific hazardous materials, as it utilizes environmental inventories 

documenting multiple materials. The inventories, randomly collected from various 

building classes renovated or demolished in the past decade, reflect the diverse 

building stock and the actual presence of hazardous materials. 

        Another significant benefit is the method’s flexibility, allowing for easy 

adaptation to different regional or national building stocks. Given that building 

stocks are inherently dynamic and analytical results can quickly become outdated, 

it is crucial to develop models capable of frequent updates. As additional data from 

other municipalities become available, new inventory or measurement data can 

easily be integrated into existing models, enabling continuous training. This 
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adaptability also allows models developed for one hazardous material to be swiftly 

applied to others.  

        However, certain methodological limitations must be acknowledged. 

Misclassification errors in some labels persist, and model performance could be 

enhanced by increasing training set size, minority class representation, and feature 

availability. The precision of binary predictions depends on the data volume of 

labels from each class. Incorporating underrepresented observations improves data 

representativeness, model granularity, and accuracy. Missing critical features in 

registers, such as building materials, renovation years, and historical hazardous 

material manufacturing locations for PCB and asbestos, or foundation types and 

radioactive concrete presence for indoor radon prediction, can limit classifier 

effectiveness. Variable renewal rates in registers also pose a risk of data mismatches 

for older inventories. Consequently, environmental inventories from the last decade 

(2010-2022) were prioritized to align with EPC register updates. 

        To implement these data-driven approaches, some prerequisites are necessary. 

Identifying a common key for data coupling between environmental data and 

building registers is crucial. Without it, predictive analysis is hindered by 

incomplete data and high missing value counts. Previous studies, limited to 

descriptive analysis and statistical inference, often lacked access to building 

databases and identifiers. Training models on small datasets risks overfitting, while 

training on heterogeneous samples can lead to underfitting and poor performance. 

Therefore, data partitioning must balance similarity in building characteristics with 

adequate subgroup data size. With increasing public awareness of contaminant 

exposure and material circularity, the prevalence of environmental inventories and 

indoor radon measurements is growing. Countries including Canada, Poland, France, 

and others have established national databases for asbestos and/or PCB inventory. 

This expanding data pool lays a solid foundation for replicating the data-driven 

approach in other contexts and developing new digital data collection and 

processing pipelines. 

4.2 Result Implications 
The section outlines the overall implications of the study’s results, ranging from 

statistical descriptions to model performance and pattern interpretation. This 

investigation presents Sweden’s first comprehensive statistical and predictive 

analysis into asbestos, PCB, and radioactive concrete-containing materials. 

Comparing the thesis findings with previous nationwide surveys and literature is 

essential for identifying potential dataset skewness and verifying the reliability of 

the training data. Prior research on in situ hazardous materials largely focused on 

quantity estimation and mapping, whereas this study concentrates on predicting the 

probability distribution and characterization of these materials. Limited previous 
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studies, whose statistics are useful for benchmarking, enable comparison of 

hazardous material detection rates among building stocks and evaluation of the 

predictive performance of various modeling approaches. The study leverages 

feature correlations identified in previous research (outlined in section 3.1.1), expert 

assumptions from industrial inputs (detailed in section 3.1.2), and descriptive 

statistics from this research (presented in Papers IV-VI) to validate the prediction 

results and discern patterns of hazardous substances. This comprehensive approach 

enhances the relevance of the study’s findings. 

4.2.1. Statistics of Hazardous Substance Records 

The PCB statistics derived from environmental inventories in Swedish 

municipalities revealed the average detection rates (47%) slightly higher than those 

reported in the former BETSI survey (Swedish National Board of Housing Building 

and Planning (2010), which estimated that at least 34% of Swedish buildings 

constructed or renovated between 1956 and 1973 contained PCB. This discrepancy 

might be due to incomplete PCB inventory during 2007-2008 in the BETSI survey, 

suggesting that the actual number of buildings with PCB could be higher. This study 

indicated that capacitors were the most frequently detected PCB-containing 

materials (51%), followed by joints or sealants (21%), as detailed in Table 4.1. 

Acrylic flooring had the lowest detection rate (3%). However, the detection of PCB 

in paint and plaster remained unclear due to few records in the environmental 

inventories. To determine PCB detection rates in door closers and oil-containing 

cables, their data sizes also need expansion. 

Table 4.1. Detection rates of PCB-containing materials in buildings. 

Building 
Robsen et al. (2010) / 

Diamond et al. (2010) 
Paper IV 

Location Toronto, Canada Sweden 
Year built 1945-1980 1930-1985 
Number 455 786 

Category 
All buildings except 
single-family houses 

All buildings 

Material Available record (N) (%positive detection) 

Joints or sealants 455 (14%) 406(21%) 
Double-glazed sealed window - 336(17%) 

Capacitors - 291(51%) 
Acrylic flooring - 271(3%) 

Door closer - 78(42%) 
Cable with oil - 95(16%) 
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        These findings are consistent with existing literature, which identifies 

transformers and building sealants as the primary sources of PCB legacy (Shanahan 

et al., 2015), particularly in schools, hospitals, and downtown commercial buildings 

(Diamond et al., 2010). Previous studies, however, provided limited data on local 

PCB detection rates per building material, indicating a need for more 

comprehensive measurements of total mass in buildings and concentrations in 

specific components. For instance, it was assumed that around 14% of PCB-

containing joints and sealants were present in buildings built between 1945 and 1980 

in Toronto (Diamond et al., 2010; Robson et al., 2010a), but the prevalence of PCB 

in other building components was not thoroughly investigated. Bergsdal et al. 

(2014) estimated that Norwegian non-residential and residential building stocks 

contained 231 tonnes and 156 tonnes of PCB, respectively. This estimate included 

82 tonnes in joints, 95.5 in double-glazed sealed windows, 124.9 tonnes in 

capacitors and lighting fixtures, 82 tonnes in plaster, and 2.8 tonnes in paint. These 

estimates provide insight into the accumulated mass and suggest the prevalence of 

various PCB materials, but they do not directly translate into detection rates and 

thus are not included in Table 4.1. The need for more detailed and comprehensive 

data to accurately assess PCB presence in building materials is evident. 

        Contrastingly, in situ asbestos materials in dwellings were more 

comprehensively characterized in terms of their presence and quantity, as detailed 

in Table 4.2. The study revealed that asbestos was detected in 78% of the Swedish 

building stock. This finding aligns with the BETSI survey by the (Swedish National 

Board of Housing Building and Planning (2010), which reported asbestos in 40% 

of single-family houses and 50% of multifamily houses, particularly those built 

between 1961 and 1975 (50% in single-family houses, 75% in multifamily houses) 

and before 1960 (56% in single-family houses, 69% in multifamily houses). 

        The most prevalent sources of asbestos in the Swedish building stock were pipe 

insulation (65%), door or window insulation (61%), and cement panels (60%). The 

secondary sources included floor mats (49%), joints or sealants (49%), ventilation 

channels (42%), and floor mat glue (40%). These detection rates, especially in parts 

of the building stock from the Million Homes Programme, were higher than those 

reported in other countries. For instance, Franzblau et al. (2020) found a 95% 

detection rate in abandoned residential buildings in the City of Michigan, while 

Govorko et al. (2019) concluded that 82% of Australian houses contained asbestos, 

frequently found in floor mats, door or window insulation, and cement panels 

(Franzblau et al., 2020; Govorko et al., 2019; Krówczyńska et al., 2020). Song et al.  

(2016) reported that 85% of buildings they studied contained asbestos, with 73% of 

samples containing asbestos materials, predominantly in ceiling installations. 

However, certain asbestos materials, such as tile or clinker, floor mat glue, joint or 

sealant, and valve, were not explored in previous studies, making direct 

comparisons impossible. The comprehensive nature of this study’s findings, 

covering a broad spectrum of asbestos-containing materials, underscores its 

significance in understanding asbestos prevalence in building stocks. 
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Table 4.2. Detection rates of asbestos-containing materials in buildings. 

Building 
Franzblau et al. 

(2020) 

Govorko et 

al. (2019) 

Krówczyńska 

et al. (2020) 
Paper IV 

Location Michigan, US Australia Poland Sweden 
Year built 1885- 1985-1990s N/A 1930-1985 
Number 605 702 6,287 786 

Category 
Residential 
dwellings 

Residential 
dwellings 

All buildings All buildings 

Material Available record (N) (%positive detection) 

Pipe insulation 115 (19%) 77 (11%) - 468 (65%) 

Door/wind. 
insulation 

181 (30%) 
171 (28%) 
135 (22%) 

- 
- 
- 

- 
- 
- 

372 (61%) 
- 
- 

Cement panel 
291 (48%) 
204 (34%) 
136 (22%) 

310 (44%) 
126 (18%) 
68 (10%) 

2892 (46%) 
- 
- 

322 (60%) 
- 
- 

Tile or clinker - - - 455 (36%) 
Floor mat glue - - - 376 (40%) 

Floor mat 310 (51%) 187 (27%) - 365 (49%) 
Vent. channel 192 (2%) - - 310 (42%) 
Joint/sealant - - - 261 (49%) 
Switchboard - 351 (50%) - 71 (27%) 

Valve - - - 144 (35%) 

        Radioactive concrete, while rare in other countries, was extensively used in 

Swedish construction from 1929 to 1975. Early investigations of its prevalence in 

the Swedish building stock included gamma radiation scanning by vehicles in the 

1980s, the ELIB survey in the 1990s (Sedin & Hjelte, 2004), and the BETSI survey 

in 2010 (Swedish National Board of Housing Building and Planning, 2010). The 

ELIB survey found that radioactive concrete resulted in an increase of the average 

indoor radon level by 10% in single-family houses and 20% in multifamily houses, 

based on comparisons between 42 buildings with radioactive materials and 672 

without. Khan et al. (2021) reported a 63% increase in average indoor radon levels 

in residential dwellings built with radioactive concrete, which is lower than the 

findings of this study that indicate two to four times higher indoor radon 

concentration in 398 residential buildings with radioactive concrete compared to 

1,808 buildings without. Additionally, the study revealed that about 18% of the 

Swedish building stock constructed between 1930-1980 contained radioactive 

concrete, surpassing the previous estimate of 6-7% for buildings built before 2005, 

as identified in the BETSI survey. The likelihood of encountering radioactive 

concrete was highest in buildings erected between 1960 and 1968, corroborating 

findings from the BETSI survey that the maximum likelihood of radioactive 

concrete presence was in buildings built between 1961 and 1975, and before 1960. 
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        On the other hand, nationwide indoor radon surveys in Sweden, conducted 

nearly every decade, provided accessible statistics on annual average concentrations 

and the proportion of buildings with indoor radon levels above the reference level. 

The shares of buildings exceeding the reference level were similar across different 

studies: 11% in the ELIB survey, 10% in the latest report from the Swedish 

Radiation Safety Authority (SSM), and 12% as reported in this thesis. The annual 

average indoor radon concentration of 110 Bq/m
3
 found in this study aligns with the 

ELIB survey’s 108 Bq/m
3
. However, the average indoor radon levels in single-

family houses were slightly lower than those in previous surveys, while the levels 

in multifamily houses were higher. This discrepancy could be attributed to the 

selection of building stock from 1930-1980 for this study, a period characterized by 

extensive use of radioactive concrete in major housing production programs, leading 

to generally higher indoor radon concentrations. 

Table 4.3. Statistics of radioactive substances from Swedish indoor radon surveys. 

Radon survey 
ELIB 
survey 

Radon 
Survey 

BETSI 
survey 

SSM 
report 

Papers  
V-VI 

Time 1991/1992 2000s 2007/2008 
2007/200

9 
2023 

Data size 1,360 215,000 1800 387,347 114,857 
Construction year -1988 - -2005 -2020 1930-80 

Building category 
Residential 
buildings 

Residential, 
schools, care 

homes 

Residential 
buildings 

All 
buildings 

All 
buildings 

 Count of building (N) (%share above 200 Bq/m3) 

Single-family house 
714 

(17%) 
215,000 
(35%) 

(14%) 340,000 
(16%) 

53,533 
(14%) 

Multifamily house 
646 
(7%) 

44,200 
(28%) 

(7%) 440,000 
(17%) 

49,139 
(12%) 

School building 
- - - 1,005 

(-%) 
5,660 
(9%) 

Other building 
- - - 2,342 

(19%) 
6,525 
(9%) 

Total 1,360 
(11%) 

- - 387,347 
(10%) 

114,857 
(12%) 

 Annual average indoor radon concentration (Bq/m3) 
Single-family house 141 - 124 128-136 118 
Multifamily house 75 - - 79 105 

School building - - - 105 98 
Other building - - - 106 105 

Total 108 - - - 110 
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4.2.2. Performance Evaluation of Prediction Models 

The study explored statistical approaches, machine learning models, and neural 

networks to evaluate their methodological strengths and weaknesses in predicting 

hazardous substances. It was found that Bayesian network and tree ensemble 

classifiers, such as DRF/XRT, GBM, XGBoost, and CatBoost, were more effective 

than neural networks for estimating the probability distribution of hazardous 

materials using tabular environmental inventory data. Bayesian networks offered 

superior model explainability, particularly in understanding dependencies and 

causal relationships between variables and in providing conditional probability 

distributions under various evidence combinations. Machine learning classifiers, on 

the other hand, excelled in prediction granularity and accuracy for individual 

buildings, handling missing values and high-dimensional datasets. Both types of 

models were adaptable to new data inputs and efficient in anomaly detection. 

        The model performance in this study was compared with other research in 

Table 4.4. Due to a lack of literature on PCB materials and radioactive concrete 

prediction, the model evaluation focused on asbestos-containing building materials. 

The machine learning models developed in this study achieved higher performance 

(AUC = 0.61-0.93 for residential buildings, AUC = 0.65-0.85 for non-residential 

buildings) compared to the random forest regression models (Pseudo-R
2 
= 0.76 for 

all buildings) by Wilk et al. (2019), which used similar feature sets but smaller 

datasets for predicting asbestos cement panels. To further minimize logarithmic loss, 

incorporating additional variables such as distance to historical hazardous material 

manufacturing plants and material-specific features could be beneficial. 

Understanding error types and introducing penalties in cost-sensitive learning, as 

well as increasing the training dataset size, are essential for future model refinement. 

        Krówczyńska et al. (2020) and Raczko et al. (2022) used CNN models for 

recognizing asbestos-cement roofing in Poland, achieving 88-93% overall accuracy. 

However, their approach, limited to image data and a single material type, lacked 

the flexibility of the method proposed in this study, which is capable of categorizing 

various indoor, built-in, or non-visual hazardous materials and utilizing existing pre-

demolition audit data. This distinction highlights the adaptability and broader 

applicability of the proposed method in hazardous substance prediction. 
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Table 4.4. Comparison of model performance for asbestos material prediction. 

Dataset 

specification 
Wilk et al. (2019) 

Krówczyńska et 

al. (2020)/ Raczko 

et al. (2022) 

Paper IV 

Application 
Map and quantify 
asbestos-cement 

products 

Identify asbestos-
cement roofing on 

aerial images 

Predict probability of 
asbestos materials and 

their spatial distribution 

Input data 
Field inventory of 
asbestos-cement 

roof 

Aerial image of 
asbestos roofing 

Environmental inventory 

Data size 6,287 3,124 287 499 

Algorithm RF regression 
CNN image 
recognition 

LR, SVM, k-NN, GLM, 
DRF/XRT, GBM, 
XGBoost, DNN, 
Stacked ensemble 

classification 

Feature 

Social-economic 
data, building 
features (roof 
slope, type), 
localization 

(manufacturing 
plants) 

- 

Postcode, building 
category, building type, 
construction year, floor 
area, numbers of floors, 
basements, ventilation 

types, building physical 
footprint 

Label 
Asbestos-cement 
products (type, 

quality, amount) 

Image signature of 
building roof (type 
of roofing, degree 

of roof pitch) 

Asbestos components 
(detection, quantity) 

Category All buildings All buildings Residential 
Non-

Residential 

Material 
Performance metrics (1e-2) 

Pseudo-R2 Overall accuracy AUC 

Pipe insulation - - 81 75 
Door/win.insul. - - 93 85 
Cement panel 76 88-93 84 65 
Tile or clinker - - 83 69 
Floor mat glue - - 88 73 

Floor mat - - 61 68 
Vent. channel - - 90 74 
Joint/sealant - - 78 76 
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        Similarly, non-parametric regression tree models and supervised classifiers 

were utilized to predict indoor radon concentrations and their intervals. Both MARS 

models and random forest models employed a hierarchical pruning approach during 

training to clarify feature importance and coefficients. However, these models were 

only partially successful in accurately fitting the complex indoor radon 

measurement data. The regression models, which used a simplified feature set and 

a smaller dataset, demonstrated lower performance compared to models developed 

by Kropat et al. (2015a) using kernel regression and Kropat et al. (2015b) with 

BART and RF. This disparity could be attributed to the different reference levels 

used – 300 Bq/m³ in Switzerland as opposed to 200 Bq/m³ in Sweden. 

        Reformulating the prediction problem into a consecutive multi-classification 

of indoor radon intervals yielded significant performance improvements when using 

XGBoost models (macro-F1 between 0.93-0.96). Despite the large size of the 

dataset, neural network models only achieved moderate macro-F1 scores of 0.64-

0.74. The classification errors in these models might be due to several factors: the 

presence of unknown building conditions with radioactive concrete in some training 

data, the absence of key features such as foundation type, and a scarcity of 

observations in the higher indoor radon interval labels. These findings highlight the 

importance of comprehensive feature selection and the potential limitations of 

model performance in predicting indoor radon levels. 

Table 4.5. Comparison of model performance for indoor radon prediction. 
Dataset 

specification 
Kropat et al. 

(2015a) 
Kropat et al. 

(2015b) 
Conf II Paper VI 

Input data 
Indoor radon 

measurements 
Indoor radon 

measurements 
Indoor radon 

measurements 
Indoor radon 

measurements 
Data size 240,000 240,000 79,944 34,983 

Algorithm Kernel regression 
BART*, RF 
regression 

MARS, RF 
regression 

XGBoost, DNN 
classification 

Feature 

Building type, 
foundation type, 

construction year, 
detector type, 
coordinates, 

altitude, lithology, 
temperature, 

Building type, 
foundation type, 

construction year, 
detector type, 
coordinates, 

altitude, lithology, 
temperature, 

Building 
paramters, 
radioactive 
susbstance, 

soil type 

Building 
paramters, 
radioactive 

susbstance, soil 
type 

Category All buildings All buildings All buildings All buildings 

Application 
Predict spatial 

radon distribution 
Predict spatial 

distribution of radon 
Predict indoor 

radon level 
Predict indoor 
radon interval 

Indoor radon 
Performance metrics (1e-2) 

R2 R2 R2 Macro-F1 
Concentration 28 29-33 13-24 - 

Intervals - - - 93-
96 

64-74 

*BART: Bayesian additive regression trees. 
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4.2.3. Interpretation of the Identified Patterns and Prediction 

The identified patterns and predictive model results offer insights for evaluating 

expert assumptions and findings from previous studies. However, the presence 

patterns and feature impact magnitude of each hazardous material varied across 

building categories, making it challenging to generalize the findings due to regional 

building stock and building class differences. Although the model performance for 

residential buildings was higher than for non-residential buildings, the smaller data 

size and less pronounced feature impact in residential buildings should be 

considered when assessing prediction robustness. 

        Distinctive patterns of PCB capacitors were noted in the existing building stock. 

Early-built non-residential buildings, except schools, lacking balanced ventilation 

with heat exchangers, and large residential buildings with exhaust ventilation were 

more likely to contain PCB capacitors. PCB joints were more common in medium 

to large post-war non-residential buildings, especially commercial buildings with 

balanced ventilation. This aligns with findings by Diamond et al. (2010), who found 

in situ PCB mass to be proportional to a building’s volume and electricity demand. 

Consequently, large downtown commercial and public infrastructure buildings had 

significant volumes of PCB capacitors. Non-inventoried residential buildings built 

between 1930 and 1980 in Stockholm, Gothenburg, Malmö, and Kiruna showed a 

lower likelihood (2%) of containing PCB capacitors compared to inventoried ones 

(36%), possibly due to PCB capacitors had already been removed during earlier 

renovations. However, 44% of non-inventoried non-residential buildings were 

estimated to contain PCB capacitors, similar to the rate in inventoried buildings 

(56%). Glüge et al. (2017), Robson et al. (2010a), and Shanahan et al. (2015) 

mapped total PCB per unit building space and city ward, but they are not comparable 

to this study’s findings. 

        The presence of asbestos materials also varied, with material-specific feature 

impacts identifiable to varying extents, potentially useful for characterizing 

contaminated buildings. In residential buildings, building typology-related features 

(building physical footprint, number of floors, construction year, municipality) were 

significant, whereas construction year and location (using postcodes) were key for 

asbestos detection in non-residential buildings. The likelihood of finding asbestos 

panels was higher in medium-sized postwar buildings with larger physical footprints, 

consistent with Song et al. (2016), who noted an increase in asbestos detection 

likelihood with building age and area ratio in South Korea. Wilk et al. (2015) 

identified determinants for asbestos-cement roofing in Poland, including proximity 

to asbestos manufacturing plants and local economic conditions. However, the 

study’s local correlation with asbestos use in buildings could not be fully explored 

due to data limitations. The estimated likelihood of encountering asbestos in non-

inventoried residential buildings was lower (72% versus 57% for pipe insulation 

and 67% versus 14% for door and window insulation) compared to inventoried 

buildings. Conversely, the probability of detecting asbestos in non-inventoried non-
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residential buildings was predicted to be higher or equal. To enhance result certainty, 

increasing the training sample size for residential buildings is needed to better 

represent the residential stock. 

        Average distance to radioactive concrete manufacturing plants, building class, 

construction year, and floor area were significant factors in the presence of 

radioactive concrete in the Swedish building stock. Radioactive concrete was found 

to be more prevalent in multifamily houses and other non-residential buildings than 

in school buildings and single-family houses. Especially, the probability of 

radioactive concrete presence increased with floor area but was not linked to the 

presence of basements. Specifically, radioactive concrete was most likely detected 

in multifamily houses with basements built during 1960-1968. These findings are 

consistent with current expert assumptions, such as those by Clavensjö & Åkerblom 

(2020), suggested that a significant portion of radioactive concrete-containing 

buildings were multifamily houses built during the Million Homes Programme, as 

well as some single-family houses and high-rise buildings in specific municipalities. 

Prior studies identified radioactive concrete in various building components, but its 

presence in non-residential buildings had not been investigated until this study, 

which characterized it in walls, floors, foundations, and other components in school 

buildings and other non-residential buildings. 

        The study also interpreted the interplay between features and indoor radon 

concentration for each building class, identifying buildings prone to high indoor 

radon levels. These included single-family houses built in the 1960s with natural 

ventilation, postwar multifamily houses above the 58° latitude with large floor areas 

and exhaust ventilation, and school buildings with basements and building size 

(including floor areas and building physical footprint) within specific intervals. 

Other non-residential buildings within certain geological zones (referring to 

latitudes) and size ranges (including floor area and building physical footprint) were 

also identified. Key contributing factors to indoor radon were found to be 

construction year, ground uranium concentration, and natural ventilation, while 

balanced ventilation with heat exchangers had a mitigating effect. 

        The general conclusions align with previous research by Olsthoorn et al. (2022) 

and Khan et al. (2021), highlighting the correlation between indoor radon and 

uranium concentration, particularly in older buildings with natural ventilation. The 

SSM report by Rönnqvist (2021) also noted higher indoor radon levels in older 

buildings and those with natural ventilation, but found no significant decrease in 

indoor radon levels in newly-constructed workplace buildings. This study’s findings 

on indoor radon trends across building classes correspond with the thesis’s findings. 

Yet the purported correlation between clay soil and indoor radon was not supported 

by this study, indicating its minimal impact. Moreover, previous attempts to 

estimate the number of dwellings exceeding indoor radon reference levels varied 

significantly. The SSM report’s estimate was higher than the estimation in the 

BETSI survey but closer to the findings in the ELIB survey. This study advanced 

these estimates by providing more detailed predictions of indoor radon intervals for 
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each Swedish metropolitan region, revealing varying shares of buildings exceeding 

the 200 Bq/m³ threshold. The lower ratios in non-measured building stocks suggest 

that past measurements were more frequently conducted in buildings suspected of 

high indoor radon exposure. 

4.3 Research Contributions 
The research addresses the gaps in scalable and cost-efficient methods for 

comprehensive urban-wide inventories and estimation of in situ hazardous materials. 

Figure 4.1 in the thesis provides a synthesis of the research contributions in relation 

to the gaps identified in Section 1.3.2. Conf I and Paper II played a pivotal role in 

reviewing the usability of pre-demolition audit inventories of building 

environmental information and their digital transformation. By integrating building 

registers with environmental inventories from the past decades across four Swedish 

municipalities, the research enabled detailed descriptive analyses. These analyses 

focused on the detection rates of various PCB and asbestos components, 

differentiated by building classes and municipalities. Furthermore, an evaluation of 

the inventory types, data sizes, and proportions of missing values for each data 

subgroup in the constructed data matrix was conducted. This assessment led to the 

identification of building components with high assessment scores, earmarked for 

advanced predictive modeling. 

        Papers III and Conf II delved into the advantages and limitations of data-driven 

applications for predicting hazardous substances. This exploration involved 

preliminary development of several predictive approaches, encompassing statistical 

methods, machine learning, and neural network models. These models were trained 

and evaluated to determine the most suitable approaches for predicting hazardous 

materials and radioactive substances. The research also scrutinized modeling 

requirements, such as minimum data size, building class composition, and sample 

representativeness, in the context of regional building stocks. 

        Finally, the developed predictive models for in situ PCB, asbestos materials, 

radioactive concrete, and indoor radon, as detailed in Papers IV-VI, traced the 

presence patterns of hazardous substances by quantifying the correlation and impact 

magnitude of key features. The resulting probability distributions and labels of 

hazardous substances offer a valuable tool for contamination screening, aiding in 

the prioritization of comprehensive material sampling or indoor radon 

measurements in the building stock. This holistic approach to hazardous material 

prediction represents a significant advancement in addressing urban environmental 

challenges. 
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Figure 4.1. Research contributions. 

4.3.1. Scientific Contributions 

The thesis represents pioneering research in the utilization of information in pre-

demolition audit inventories. It illustrates a workflow for analyzing and modeling 

existing building environmental inventories, overcoming the challenges of 

digitizing and merging unstructured data with building registers. The creation of 

hazardous material and indoor radon databases facilitated comprehensive 

investigations of in situ hazardous substances within the Swedish building stock. 

Previously, such extensive digital datasets, covering various building types and 

regions and linked to national building databases, did not exist, hindering the ability 

to trace numerous hazardous building materials on an urban scale. 

        In the literature, urban-wide PCB and asbestos stock inventories have been 

addressed using bottom-up or top-down approaches, tailored to specific substance 

properties. Empirical data from measurements and field sampling were utilized to 

estimate the asbestos and PCB in building stocks based on the estimated number 

and size of the buildings constructed during selected periods. Prior studies using 



126 

bottom-up approaches focused on source-centric inventory at the component and 

building levels, concentrating on mass and emission estimation per location 

(Diamond et al., 2010; Robson et al., 2010b; Tadas et al., 2011; Neitzel et al., 2020) 

or per sample (Franzblau et al., 2020; Govorko et al., 2019; Powell et al., 2015), and 

mapping their spatial distribution (Diefenbacher et al., 2016; Shanahan et al., 2015; 

Wilk et al., 2017, 2019). However, significant concentration variations between and 

within buildings (Bergsdal et al., 2014) posed challenges in generalizing results and 

applying them to other contexts. Conversely, top-down studies estimated the 

lifespan of hazardous components to assess hazardous material output and stock 

over extended periods, based on cumulative PCB or asbestos use data in tonnes per 

application and building category (Bergsdal et al., 2014; Donovan & Pickin, 2016b; 

Glüge et al., 2017; Zoraja et al., 2021). These approaches generally resulted in high 

uncertainty in lifespan estimations and aggregated findings lacking the granularity 

necessary to determine hazardous materials in individual buildings. 

        This thesis overcomes these limitations with a data-driven approach, 

employing descriptive analysis and predictive modeling of inspection or 

measurement records at the component level. The analytical results offer detailed 

insights into various hazardous materials and radioactive substances across different 

building categories or classes, age cohorts, and geographical areas. A digital toolbox 

was developed for predicting hazardous substances in regional and metropolitan 

building stocks, encompassing asbestos, PCB materials, radioactive concrete, and 

indoor radon. Component-specific machine learning models, optimized through 

cross-validation and hyperparameter tuning, demonstrated optimal performance. 

The patterns identified in the models’ interpretations highlight critical attributes for 

high-resolution detection of each hazardous substance, supporting existing expert 

assumptions. Application of the model to regional building databases enabled both 

top-down analysis of building stock probability distribution and bottom-up 

contamination prediction for individual, previously uninvestigated buildings. These 

prototype models provide a cost-efficient method for screening potential hazardous 

substances in both local and large-scale building stocks and offer the flexibility for 

extension to other regions and the possibility for updates with new inspection or 

measurement data. 

4.3.2. Societal Contributions 

The research findings significantly contribute to the broader implementation of the 

EU Construction and Demolition Pre-demolition Audit Protocol (ECORYS, 2016) 

and the EU Guideline for the Waste Audits Before Demolition and Renovation 

Works of Buildings (European Commission, 2018), focusing on contaminated 

building material screening. For countries with available building-specific 

environmental data, i.e., environmental inventories, indoor radon measurement 

records, and building registers, the proposed data-driven methods can be replicated 
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and applied. At the national level, they support the circular transition efforts of the 

Swedish construction sector to achieve environmental and climate goals (Swedish 

National Board of Housing Building and Planning, 2023) by: (1) mapping current 

pre-demolition audit practices and offering managerial recommendations to 

enhance inventory documentation; (2) examining the usability of environmental 

inventory information to create a machine-readable dataset structure; (3) proposing 

predictive models as digital tools for identifying in situ hazardous materials and 

facilitating their safe, circular management. The results are presented to industry 

stakeholders and public authorities in a follow-up workshop, exploring practical 

applications of the models in current construction practices for improved hazardous 

material management during building retrofit and demolition. 

        Figure 4.2 underscores the study’s contributions in relation to the existing pre-

demolition audit process (left) and potential future research directions (right). A 

digital environmental inventory dataset, comprising historical detection records of 

hazardous materials integrated with building registers, was established, paving the 

way for predictive model development. This pilot effort lays a crucial foundation 

for future work in developing digital inventory protocols and data processing 

pipelines. Additionally, numerous machine learning models for predicting asbestos 

and PCB materials were developed, capable of estimating the presence of hazardous 

materials in buildings not yet inventoried. These models could be further 

incorporated into web interfaces, such as H2O Wave (realtime web applications and 

dashboards for AI), enabling CDW actors to estimate the probability distribution of 

hazardous materials in individual buildings. This would facilitate risk-based 

inspections and material sampling, enhancing the overall efficiency and safety of 

building retrofit and demolition process. 

 
Figure 4.2. Exploitation of scientific results to the current pre-demolition audits 

and future prospects. 
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        Relevant authorities responsible for housing, planning, radiation safety, and 

public health could benefit from contaminant screening and monitoring of buildings 

identified as having a high probability of contamination from a macro-perspective. 

Meanwhile, property owners and demolition or waste handling companies could use 

these results to inform their decontamination planning and hazardous waste 

management strategies. Enhanced knowledge of the presence of in situ hazardous 

substances in existing buildings is crucial for developing policy instruments for 

resource-efficient remediation. In addition to industry-side resource and waste 

guidelines for construction and demolition (Byggföretagen, 2019), the predictive 

outcomes could aid in risk-based inspection for semi-selective demolition, assessing 

the reusability of reclaimed materials and promoting quality assurance. 

        To fully realize the potential of this digital tool as a decision-support system 

for hazardous material assessment before renovation and demolition, further 

development of the current digital dataset and models is necessary. The primary 

digital infrastructure that needs establishment is a protocol for collecting and 

maintaining building environmental information, including data requirements and 

metadata criteria for auditors and authorities. Another key step is integrating the 

models into a web interface, enabling probability queries for non-inventoried and 

unmeasured buildings for public access. This would make building environmental 

information more readily available for desk studies in pre-demolition audits. Digital 

inspection records and preliminary prediction results could assist property owners 

in defining specifications for pre-demolition audit procurements, outlining 

inventory scope and field sampling requirements. Lastly, appending empirical data 

on the cost and time associated with material sampling and decontamination to the 

model delivery would enable a more accurate estimation of budgets and schedules 

for renovation and demolition strategy formulation.   
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5. Conclusions 

In conclusion, this thesis is about predicting the presence of hazardous substances, 

including hazardous materials and radioactive substances, in the Swedish building 

stock at both regional and individual levels using data-driven methods. The 

predictive outcomes of tree-ensemble machine learning models, presented as 

probabilities and labels, facilitate the estimation of contamination. This probability 

assessment aids in prioritizing buildings for comprehensive environmental 

inventories or indoor radon measurements. The predictions indicate that non-

inventoried and unmeasured buildings constructed between 1930 and 1980 have 

lower contamination levels than those assessed by existing environmental 

inventories and indoor radon measurements. This discrepancy is likely due to the 

overrepresentation of non-residential buildings and those built between the 1950s 

and 1970s in the inventory data. Additionally, buildings suspected of containing 

radioactive concrete or exhibiting excessive indoor radon levels were more 

frequently measured. The underrepresentation of residential buildings, which form 

the majority of the actual building stock in numbers, contributes to higher 

uncertainty in the findings. 

        The study also identifies a higher than average probability of hazardous 

material detection in medium to large-scale postwar urban buildings, which explains 

the lower predicted contamination exposure in the overall unaccounted building 

stock. To improve the accuracy and reliability of the predictive models, it is 

recommended to expand the training dataset. This expansion should aim to align 

more closely with the prediction set’s composition, particularly in terms of building 

class, construction year, and physical building footprint. Such enhancements will 

refine the predictive capability, offering a more precise and comprehensive 

understanding of hazardous material presence in the Swedish building stock. 

5.1 Concluding Findings for Each Research Question 
In alignment with the research aim of utilizing data analytics and machine learning 

to predict and interpret the presence of in situ hazardous substances in existing 

building stock as a decision support for relevant actors, three research questions 

were formulated and addressed, with their brief answers presented in Figure 5.1. 

The summarized findings confirmed the effectiveness of employing supervised 
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statistical and machine learning learning techniques on hazardous substance 

presence. Environmental inventories and indoor radon measurement records served 

as label data, while building registers, along with geologic and geographic attributes, 

were utilized as training data. 

        This developed approach provides valuable decision support for relevant 

stakeholders in the building sector. It enables them to assess the extent of building 

contamination, thereby facilitating safer and more predictable material sorting and 

handling in CDW management. The application of machine learning approach on 

building-specific environmental data offers a significant advancement in managing 

hazardous substances in the built environment. This methodology not only enhances 

the accuracy of building component contamination assessment but also contributes 

to the optimization of resource management and waste reduction strategies, aligning 

with broader environmental and sustainability objectives. 

 
Figure 5.1. Summary of research questions and corresponding findings. 
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More detailed and in-depth elaboration of each answer was presented as follows: 

RQ1  What is the potential of using data from building registers and pre-demolition 
audit inventories for mapping hazardous substances in the building stock? 

The study involved compiling data from various types of environmental inventories 

with different levels of detail and inspection certainty, submitted as a basis for 

renovation, retrofit, re-purpose, and demolition permit applications. This data 

collection method provided diverse sample, yet also led to potential data skewness 

and selection bias, particularly the oversampling of buildings from 1945-1974, 

known as the People’s Home and the Million Homes Programme era, and the 

overrepresentation of non-residential buildings compared to the Swedish building 

stock composition. These biases were addressed through data clustering for building 

category-specific modeling, as described in Paper IV. Besides, a major challenge 

highlighted in Papers II-III was the standardization of unstructured environmental 

inventory data into a digital dataset, complicated by municipality-based data silos, 

inconsistent documentation, hard copy formats, diverse file formats, and unclear 

inspection scopes. These issues likely stemmed from insufficient quality control of 

submitted inventories and lack of verification in post-demolition audits, resulting in 

a high volume of missing data and unreliable inspection records. Furthermore, the 

renewal of building registers posed limitations on accessing old inventories and 

hindered automated data matching.  

        Despite these challenges, the hazardous material dataset is unique and valuable, 

providing empirical records for identifying multiple hazardous materials, such as 

PCB-containing joints or sealants, double-glazed sealed windows, capacitors, 

acrylic flooring, and asbestos-containing materials, for instance pipe insulation, 

window or door insulation, cement panels, tiles or clinker, floor mat glue, floor mats, 

ventilation channels, and joints or sealants. High-quality, granular component data 

were primarily sourced from consultant reports or protocols detailing diagnostic 

results, as found in Conf I. By incorporating more comprehensive inventories from 

other municipalities, the study facilitated statistical analysis of inventoried records 

with wide geographical coverage, encompassing various building typologies and 

age cohorts. 

        Table 5.1 details the data constitution in each subgroup and highlights top-

scoring hazardous materials across building classes and municipalities. Remarkably, 

the detection records of PCB and asbestos materials in large and complex buildings 

from Stockholm and Gothenburg municipalities showed promising potential. The 

detection rates for asbestos tile or clinker and pipe insulation in multifamily houses 

and school buildings were particularly noteworthy. To increase the training set size, 

data subgroups per building class were merged into residential and non-residential 

categories, with building categories and classes incorporated as features in 

predictive modeling. 



132 

Table 5.1. Score ranking of hazardous materials based on the data assessment 

matrix. Values in bold are the scores above 70 indicating data subgroups with high 

data quality and quantity,  and hyphens imply missing values. 
Hazardous material Municipality SF* MF* S* C* I* 

ACM tile or clinker 

Stockholm 22 96 94 74 70 

Gothenburg 34 70 74 70 70 

Malmö 0 0 50 25 25 
Kiruna 0 25 0 0 0 

ACM pipe insulation 

Stockholm 23 93 68 74 71 

Gothenburg 50 68 74 48 70 

Malmö 0 25 25 50 25 
Kiruna 0 68 0 0 0 

ACM ventilation 

Stockholm 0 74 48 74 75 

Gothenburg 0 44 75 46 50 
Malmö - 0 25 25 0 
Kiruna - 25 - 0 0 

ACM floor mat 

Stockholm 22 70 71 74 74 

Gothenburg 0 48 75 48 74 

Malmö 0 0 50 50 25 
Kiruna 0 0 - 0 0 

ACM joint 

Stockholm 24 74 69 74 74 

Gothenburg 0 50 50 24 50 
Malmö - 0 50 50 25 
Kiruna 0 0 - 0 0 

ACM floor mat glue 

Stockholm 21 71 70 74 70 

Gothenburg 37 46 74 47 48 
Malmö 0 0 50 25 25 
Kiruna 0 0 0 0 0 

ACM door or window 
insulation 

Stockholm 21 71 70 74 74 

Gothenburg 36 47 74 48 48 
Malmö - - 0 25 25 
Kiruna - 25 0 0 0 

PCB joint 

Stockholm 22 69 68 71 70 

Gothenburg 34 69 74 48 68 
Malmö 0 0 50 49 25 
Kiruna 0 - 0 0 - 

PCB double-glazed  
sealed window 

Stockholm 22 46 68 71 71 

Gothenburg 35 46 74 48 48 
Malmö - 0 25 25 0 
Kiruna 0 0 0 0 0 

ACM panel 

Stockholm 19 48 68 74 70 

Gothenburg 32 46 50 44 46 
Malmö - 0 25 25 25 
Kiruna 0 25 0 0 0 
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Hazardous material Municipality SF* MF* S* C* I* 

PCB capacitor 

Stockholm 24 38 68 46 68 
Gothenburg 52 44 73 46 66 

Malmö - 0 25 0 0 
Kiruna 0 25 0 0 0 

PCB acrylic floor 

Stockholm 21 44 68 47 69 
Gothenburg 34 42 74 46 46 

Malmö - 0 25 0 0 
Kiruna - - 0 - - 

*Building classes investigated were single-family houses (SF), multifamily houses (MF), 
school buildings (S), commercial or office buildings (C), and industrial buildings (I).  

RQ2  Which predictive methods can be used to estimate the presence of hazardous 
substances in buildings? 

Data-driven methods, such as statistical modeling, machine learning, and neural 

networks, can be utilized to predict the presence of hazardous substances in 

buildings and to identify their presence patterns to various extent. Among the twelve 

algorithms examined, tree-ensemble classifiers with added sample weights, 

including random forest, gradient boosting, XGBoost, and stacked ensemble models, 

demonstrated optimal performance. These classifiers were particularly effective in 

the binary classification of hazardous materials using input data from environmental 

inventories, as well as in the multi-class classification of indoor radon intervals 

based on measurement records. Table 5.2 presents the lead model types and their 

performance in predicting PCB and asbestos materials across different building 

categories, excerpted from Paper IV. In general, higher model performances were 

achieved in residential buildings. Asbestos door or window insulation and 

ventilation channels were predicted with high AUC scores above 0.9. Satisfactory 

prediction results (AUC: 0.65-0.88) were also obtained for PCB joints or sealants, 

capacitors, asbestos floor mat glue, cement panels, tile or clinker, pipe insulation, 

and joints or sealants in both residential and non-residential buildings. 
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Table 5.2. Performance of lead models for hazardous material prediction by 

building categories evaluated with AUC (1e-2) and listed in descending order. 
Hazardous material Residential Non-residential All buildings 

ACM door insulation 
Gradient Boosting XGBoost Gradient Boosting 

93 85 84 
ACM ventilation 

channel 
Stacked ensemble Random forest Stacked ensemble 

90 74 80 

PCB joint 
Gradient Boosting XGBoost Gradient Boosting 

88 75 78 

ACM floor mat glue 
XGBoost/ Stacked 

ensemble 
Gradient Boosting Gradient Boosting 

88 73 75 

PCB capacitors 
Generalized linear 

model 
XGBoost 

Random forest/ 
Gradient Boosting 

86 76 82 

ACM panel 
Random forest Random forest 

Random forest/ 
Neural network 

84 65 71 

ACM tile/clinker Gradient Boosting Gradient Boosting Gradient Boosting 
83 69 75 

ACM pipe insulation 
Random forest Gradient Boosting Gradient Boosting 

81 75 80 

ACM joint/sealant 
Random forest Gradient Boosting Random forest 

78 76 78 

PCB acrylic floor 
-* XGBoost Stacked ensemble 
-* 68 66 

ACM floor mat 
XGBoost Gradient Boosting XGBoost 

61 68 63 

PCB double-glazed 
sealed window 

XGBoost 
Generalized linear 

model 
XGBoost 

61 66 60 

*Detection of PCB acrylic floor in residential buildings was highly imbalanced and failed in 
training because of one cardinality (the number of possible values that a feature can assume).  
 

        In the comparative analysis in Paper VI, XGBoost models significantly 

outperformed neural network models in predicting indoor radon intervals across 

different building classes, achieving macro-F1 scores ranging from 0.93 to 0.96, 

compared to the neural network models’ scores of 0.64 to 0.74. The annual average 

indoor radon concentrations from national measurements were categorized into 

three intervals, aligning with current legislative requirements. To address the 

imbalance in the indoor radon intervals dataset, where the low label (0-200 Bq/m³) 

was overrepresented and the medium labels (200-400 Bq/m³) and high labels (above 

400 Bq/m³) were underrepresented, the study employed missing data imputation 

using k-NN (k-Nearest Neighbors) and resampling with SMOTE (Synthetic 

Minority Over-sampling Technique). Additionally, sample weight adjustments 
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were made in the algorithms. These methods resulted in an average error rate of 

4.5% across building classes, except for single-family houses, which exhibited a 

slightly higher error rate of 6.5%. Notably, there were higher error rates in predicting 

the medium interval (6.7-10.8%) compared to the low (2.7-7.1%) and high intervals 

(1.5-2.7%). In contrast, regression modeling for indoor radon concentration 

prediction in Conf II was less successful, achieving lower performance than 

previous studies. This outcome suggests that while XGBoost models are highly 

effective in classification tasks for indoor radon prediction, traditional statistical and 

random forest regression modeling may face challenges in capturing the 

complexities of indoor radon concentration variations across different building 

types and conditions. 

Table 5.3. Model performance for indoor radon prediction by building classes. 

Algorithm 
Single-family 

house 

Multifamily 

house 

School 

building 

Other 

building 

Multi-class classification with macro-F1 metric (1e-2) 

XGBoost 93 95 94 96 
Neural network 66 74 64 68 

Regression with R2 metric (1e-2) 

Random forest 21 28 7 2 
MARS 15 12 8 2 

        Learning Bayesian networks from environmental inventory data offers an 

alternative approach for unraveling the patterns of hazardous materials. This method 

investigated in Paper V involves structural and parameter learning to recognize 

factor dependencies, depicted in directed acyclic graphs (DAGs), and to compute 

conditional probability distributions. As illustrated for radioactive concrete in Table 

5.4, various DAGs were generated using different types and numbers of input nodes, 

employing algorithms such as constraint-based estimator, max-min hill-climb, and 

tree search. The key advantage of Bayesian models lies in their superior output 

explainability, beneficial for post-modeling data analytics, as well as assisting 

causal inference. However, a trade-off exists in lower model resolution compared 

to machine learning or neural network models, as a result of numerical data binning 

used in approximate probability inference. 

        Additionally, the study explored the presence of radioactive concrete-

containing materials across different building classes and investigated the impact of 

various building parameters, such as construction year, presence of basement, and 

ventilation types, on indoor radon concentrations. It was noted that the detection 

records for radioactive concrete components were statistically described and 

analyzed by building class, and predictive modeling was performed for estimating 

radioactive concrete in five Swedish municipalities. To enhance the models’ 

performance and generalizability, including additional radioactive concrete 

inspection records from either environmental inventories or indoor radon 

measurements in more municipalities is necessary. 
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Table 5.4. Performance of Bayesian network models for radioactive concrete 

prediction. 
Model Algorithm BIC Edges in structure learning 

1.1 

Constraint-
based 

estimator 
(pc) 

-2729 

P(Floor area, Building class, Basement, 
Radioactive concrete) = Pr (Building class | 

Radioactive concrete) Pr (Floor area | Building 
class) Pr (Floor area | Basement) 
Pr (Building class | Basement) 

2.1 
Max-min 
hill-climb 
(mmhc) 

-3051 

P(Construction year, Building class, Basement, 
Radioactive concrete) = Pr (Building class | 

Radioactive concrete) Pr (Basement | Construction 
year) Pr (Radioactive concrete | Construction 

year) Pr (Building class | Basement) 

3.1 

Max-min 
hill-climb 

(mmhc)/ tree 
search (ts) 

-3123 

P(Floor area, Average distance, Radioactive 
concrete) = Pr (Radioactive concrete | Distance to 
historical manufacturing plants) Pr (Distance to 

historical manufacturing plants | Floor area) 

RQ3  With what certainty can the presence of hazardous substances in the building 
stock be predicted? 

The predictive outcomes for the presence of hazardous substances, both for regional 

building stock and individual buildings, are provided in the form of probabilities 

and labels in Paper IV. The application scale for models of hazardous materials and 

radioactive concrete was set at the municipality building stock level, while indoor 

radon interval prediction models were applied to metropolitan building stock, based 

on geographical representativeness and the size of training samples. By utilizing the 

lead predictive models on building stock lacking environmental inventories or 

indoor radon measurements, the estimated shares of buildings or properties with a 

higher contamination probability were calculated, and their geospatial probability 

distribution visualized on building footprint maps. Model reliability and result 

certainty, particularly for indoor radon interval prediction, were evaluated by 

benchmarking the statistical shares against those predicted from existing 

measurements in Paper VI. 

        Prediction results suggest that the extent of contamination for the building 

stock built between 1930-1980 is considerably lower than the statistics from 

inspected and measured buildings. This discrepancy might be due to the 

overrepresentation of non-residential buildings (63%) and buildings constructed 

between the 1950s-1970s in the inventory data, along with more frequent 

measurements in buildings suspected of having radioactive concrete or high indoor 

radon exposure. In reality, and in prediction datasets, residential buildings constitute 

approximately 95% of the building stock in numbers, predominantly single-family 

houses, which are underrepresented in the inventory and indoor radon datasets, 

leading to higher uncertainty. Hence, the lower predicted contamination exposure 
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in the overall non-inventoried or unmeasured building stock aligns with current data, 

indicating a higher likelihood of detecting hazardous materials in medium to large 

postwar urban buildings. To refine the predictive models, it is necessary to increase 

the data size for underrepresented observations in the training set, based on the 

sample distribution of the prediction set, reflecting the building parameters of class, 

construction year, and building physical footprint. Radioactive concrete, conversely, 

was predicted to be more prevalent in the Swedish building stock than assumed in 

the BETSI survey (Swedish National Board of Housing Building and Planning 

(2010). 

        Overall, it appears that there is no single rule-of-thumb summarizing the 

presence patterns of hazardous substances; instead, these patterns should be 

contextualized within regional building stock and building typology. Critical 

features and their impact magnitude on the presence of in situ hazardous substances 

in the Swedish building stock were highlighted through model interpretation, 

employing feature importance heatmaps, SHAP values, and partial dependent plots. 

The presence of PCB and asbestos-containing materials was primarily associated 

with construction year, building physical footprint, floor area, and location 

(represented as postcode). Other specific building parameters related to certain 

hazardous materials also played a role, with patterns varying between building 

categories. According to the findings in Paper V, radioactive concrete was more 

commonly detected in multifamily houses, with its determinants being the distance 

to historical hazardous material manufacturing plants, building class, and 

construction year. Key attributes for predicting indoor radon included building 

physical footprint, floor area, construction year, coordinates, exhaust ventilation, 

uranium concentrations, basements, and natural ventilation, each with varying 

impact magnitudes across different building classes. These indicators not only 

confirmed some existing expert assumptions but also provided new insights, 

offering a holistic perspective on tracing in situ hazardous substances in the Swedish 

building stock. 

5.2 Suggestions for Future Research 
Future prospects based on the thesis work could be evolved in several directions:  

Inventory dataset expansion on sampling size, geographical variety, and quantity 
information of hazardous materials 
Currently, the developed models predict the probability of the occurrence of several 

asbestos and PCB components at the building level for municipalities with data 

samples, trained by building categories with limited granularity. If more 

observations from adjacent geographical areas become available, regional models 

could be created based on building class or construction period, considering region-
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specific building practices. The assembly and compilation process would benefit 

from digital inventory protocols provided by municipalities. To enhance the models’ 

generalizability to the national building stock, environmental inventories from all 

286 Swedish municipalities are needed to obtain representative samples that reflect 

the diversity of regional building stock. The prototype models could then serve as 

checkpoint models, updating cost-efficiently with new observations in the training 

set. With expanding scope of data collection from environmental inventories, 

predictive modeling could advance beyond binary classification to quantify the 

amount of detected hazardous components. Such information, occasionally 

available in inventories, has the potential for descriptive analysis or regression 

modeling for estimating hazardous material quantities based on building typologies, 

volumes, location, and construction traditions. These environmental data could be 

reorganized into a cloud-based semantic data model, integrating them into 

geometric data such as BIM, building logbooks, and 3D point cloud models, 

ensuring data completeness and facilitating data retrieval for analysis and modeling. 

Prototype model refinement and validation in real-world cases 
The next critical step is refining and validating prototype models in real-world 

scenarios. Addressing sample selection bias and potential systematic bias in tree 

ensemble models through data preprocessing is vital. Control function approaches 

in machine learning regression (Brewer & Carlson, 2021) and empirical distribution 

matching (Belitz & Stackelberg 2021) could correct biases, though their 

effectiveness in classification models requires further research. Refining models 

through cost-sensitive learning for imbalanced classification, particularly weighting 

false negative errors of hazardous substances higher, could improve prediction 

performance. In addition, iterative experiments with different cost matrices could 

minimize misclassification errors. Validating the models in ongoing renovation or 

demolition projects is essential before integrating them into a web interface. 

Continuous development of contamination risk assessment framework 
The thesis has aimed to promote risk-informed pre-demolition audit inspections to 

design effective renovation and demolition planning strategies. Implementing and 

continuously developing the contamination risk assessment framework, comprising 

probability and consequence modules, is crucial. While the probability of hazardous 

material detection in existing buildings has been estimated, the extent of 

contamination requires further investigation, with inputs on the quantity of detected 

hazardous materials. Regarding the consequence of suspected hazardous materials, 

comprehensive information on practical field sampling and decontamination is 

needed. Quantifying these risk factors would enable the creation of an overarching 

decision support tool for estimating project time schedules, budgets, and working 

safety with regard to the presence of hazardous materials. The outcomes of the 

contamination risk assessment framework would include tailored renovation and 

demolition planning recommendations for efficient audits and waste management. 
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Appendix I  Literature on Building 
Contamination Applications 

Table A1. Literature on data-driven building contamination prediction. 

Substance Application Method Reference 

Asbestos 

Asbestos building 
stock quantification 

Statistical modeling 
(descriptive analysis; 

material flow analysis) 

(Donovan & 
Pickin, 2016b; 

Zoraja et al., 2021) 
ACM 

characterization 
Statistical modeling 

(descriptive analysis) 
(Franzblau et al., 

2020) 

ACM separation 
Statistical modeling 

(Sampling) 
(Powell et al., 

2015) 

ACM identification 
Statistical modeling 
(descriptive analysis; 

mobile app) 

(Govorko et al., 
2017, 2018, 2019) 

ACM prediction 
Statistical modeling 

(ontology and rule-based 
methods) 

(Mecharnia et al., 
2019) 

Feature 
identification for 

ACM roofing 

Statistical modeling 
(correlation) (Wilk et al., 2015) 

ACM roofing 
amount 

identification and 
estimation 

Machine learning 
(random forest) 

(Wilk et al., 2017, 
2019) 

Deep learning (remote 
sensing; CNN) 

(Krówczyńska et 
al., 2020; Raczko 

et al., 2022) 

PCB 

PCB building stock 
quantification 

Statistical modeling 
(descriptive analysis; 

material flow analysis; 
dynamic mass flow) 

(Bergsdal et al., 
2014; Glüge et al., 

2017) 

PCB emission 
estimation 

Statistical modeling 
(mass-balance fugacity 

model; GIS) 

(Diamond et al., 
2010; Robson et 

al., 2010b) 
Machine learning (field 
sampling; GIS; PCA) 

(Kolarik et al., 
2016) 

Statistical modeling 
(Concentration 
propagation) 

(Shanahan et al., 
2015) 
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Substance Application Method Reference 

PCB 
 

Spatial distribution 
of PCB estimation 

Statistical modeling 
(Gaussian diffusion 

model; multi-
compartment box model) 

(Diefenbacher et 
al., 2015, 2016) 

Statistical modeling 
(regression model) 

(Melymuk et al., 
2013) 

Statistical modeling 
(multimedia and air 

transport model) 

(Csiszar et al., 
2014) 

Indoor 
radon 

Continental or 
national indoor 

radon map 
generation 

Statistical modeling 
(spatial inference; 

interpolation) 

(Adelikhah et al., 
2021; Elío et al., 

2019) 

National indoor 
radon prediction 

Statistical modeling 
(kernel regression; 

probability estimation) 

(Kropat et al., 
2015a; Kropat et 

al., 2014) 

Machine learning 
(random forest; Bayesian 
additive regression trees; 

k-medoids clustering) 
Deep learning (ANN) 

(Kropat et al., 
2015b) 

 
 

(Oni et al., 2022) 

Spatial clusters of 
radon-prone areas 

Statistical modeling 
(Bayesian spatial 

quantile regression; 
stepwise analysis) 

(Sarra et al., 2016) 

Indoor radon 
monitoring 

Deep learning (RNN) 
(Khan et al., 2021; 

Valcarce et al., 
2022) 
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Appendix II  SHAP Summary Plots 
for Hazardous Materials Prediction 

 
(i) PCB-containing materials 

PC
B 

jo
in

ts

Residential buildings Non-residential buildings

PC
B 

do
ub

le
 g

la
zin

g 
w

in
do

w
PC

B 
ca

pa
cit

or
s



156 

 

As
be

st
os

 p
ip

e 
in

su
la

tio
n

Residential buildings Non-residential buildings
As

be
st

os
 d

oo
r &

 w
in

do
w

 in
su

la
tio

n
As

be
st

os
 p

an
el

As
be

st
os

 ti
le

s o
r c

lin
ke

r



157 

 

(ii) Asbestos-containing materials 
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Figure A1(i-ii). SHAP summary plots of lead models for hazardous materials 

prediction in residential and non-residential buildings. Geographically, the initial 

digit of postcodes in Swedish cities corresponds to specific regions: Stockholm is 

represented by 1, Malmö by 2, Gothenburg by 4, and Kiruna by 9. Regarding the 

building type codes, educational facilities are classified under codes 8 and 21. 

Single-family houses fall within the range of 30-32 and 35, while multifamily 

houses are categorized as 33. Industrial buildings are identified with codes 40-53, 

and office or commercial structures are marked as 99. 
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Appendix III  Partial Dependent Plots 
for Indoor Radon Level Prediction 
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(ii) Building physical footprint 
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(iii) Floor area 

 

(iv) Geographical adjustment factor 
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(v) Coordinate longitude 

 

(vi) Coordinate latitude 

Figure A2(i-vi). Partial dependent plots for indoor radon level prediction by 

building classes and features. The green lines representing the results from the 

XGBoost models, and black lines indicating those from the DNN models. 
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Tackling hazardous materials in circular 
construction
Alarming evidence from cutting-edge research has shed light on a concerning 
reality – six out of nine planetary boundaries have been breached with irreversible 
consequences looming on the horizon. While there’s a resounding call to reduce 
our anthropogenic impact on Earth’s systems, the construction industry seems 
to march in the opposite direction, continuously consuming more resources. To 
address this challenge of “building better from less,” the construction industry 
is setting its sights on embracing circular practices. This transition is seen as an 
inevitable path to reduce the industry’s climate impact. However, the road to 
integrating circular strategies – regenerating, narrowing, slowing, and closing 
resource loops – into current construction practices is slow and laden with 
challenges. One major obstacle lies in the misconceptions and misperceptions that 
pervade the construction industry regarding the costs, benefits, and feasibility of 
circular building practices. The thesis addresses the risk of unexpected encountering 
of hazardous substances in existing building stock by proposing predictive models 
as a decision support to assist stakeholders in estimating the presence of hazardous 
substances.

The doctoral thesis is composed by Pei-Yu 
Wu in collaboration with Lund University and 
RISE Research Institutes of Sweden. With a 
cross-disciplinary educational background 
from Architecture in Bachelor and Design and 
Construction Project Management in Master, 
Pei-Yu brings years of relevant professional 
experience to her research. Now, she channels 
her passion and expertise into the realms 
of circular construction and digital built 
environments, harnessing the power of applied 
AI to push the boundaries of her field.
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