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Interacting particle systems for opinion dynamics:
the Deffuant model and some generalizations

Timo Hirscher

Department of Mathematical Sciences
Chalmers University of Technology

and University of Gothenburg

Abstract

In the field of sociophysics, various concepts and techniques taken from statisti-
cal physics are used to model and investigate some social and political behavior
of a large group of humans: their social network is given by a simple graph and
neighboring individuals meet and interact in pairs or small groups. Although
most of the established models feature rather simple microscopic interaction
rules, the macroscopic long-time behavior of the collective often eludes an ana-
lytical treatment due to the complexity, which stems from the interaction of the
large system as a whole.

An important class of models in the area of opinion dynamics is the one
based on the principle of bounded confidence: Individuals hold and share opin-
ions with others in random encounters. Their mutual influence will lead to up-
dated opinions approaching a compromise, but only if the distance of opinions
was not too large in the first place. A much-studied representative of this class
is the model, which was introduced by Deffuant et al. in 2000: Neighboring in-
dividuals meet pairwise and symmetrically move towards the average of the two
involved opinions if their difference does not exceed a given threshold.

In the first paper of this thesis, we study the Deffuant model with real-valued
opinions on integer lattices, using geometric and probabilistic tools as well as
concepts from statistical physics. These prove to be very effective in the analysis
of the model on the integer lattice in dimension 1, i.e. the two-sidedly infinite
path Z, and is adapted to give at least partial results for the lattice in higher
dimensions as well as infinite percolation clusters. In papers 2 and 3, we stay
on Z but consider a generalization of the model to higher-dimensional opinion
spaces, namely vectors and absolutely continuous probability measures, as well
as to more general metrics than the Euclidean, used to measure the distance
between two opinions.

The last appended paper deals with “water transport on graphs”, a new com-
binatorial optimization problem related to the possible range of opinions for a
fixed individual given an initial opinion configuration. We show that on finite
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graphs, the problem is NP-hard in general and prove a dichotomy that is partly
responsible for the fact that our methods used in the analysis of the Deffuant
model are less effective on the integer lattice Zd, d ≥ 2: If the initial values are
i.i.d. and bounded, the supremum of values at a fixed vertex – achievable with
help of pairwise interactions as in the Deffuant model – depends non-trivially
on the initial configuration both for finite graphs and Z, while it a.s. equals the
essential supremum of the marginal distribution on higher-dimensional lattices.

Keywords: Deffuant model, bounded confidence, opinion dynamics, sociophysics, con-

sensus formation, general opinion space, percolation, pumpless water transport.
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1
Introduction

Two friends, Jakob and Johan, meet by coincidence at Brunnsparken in central
Gothenburg. They haven’t seen each other in a long time, so they sit down in a
café and have a chat. Since both of them are interested in new technologies, they
soon start talking about the changes that the city planners intend to implement
before Gothenburg’s 400th anniversary in 2021. At some point, the question
comes up how many of the busses will be running on renewable energies only
by then. While Jakob is convinced that about 30 percent of the busses will be
independent of fossil fuels, Johan is more pessimistic. His guess is that the frac-
tion of local busses running on clean energy might be one tenth in 5 years from
now. He points out that such changes are expensive and take time, especially in
the public sector. Jakob argues that the pilot project ElectriCity in fact shows
the city’s effort towards such a change and that economic considerations could
actually become a driving force away from fossil fuels in near future. During
the exchange, they consider each other’s arguments as well-founded and valid.

If confronted with the same question after their conversation, Jakob might
have adapted his guess down to one fourth, Johan his instead up to 15 per-

1



2 INTRODUCTION

cent. Had Johan instead met an excessively optimistic Jakob claiming that all
of Gothenburg’s busses will be electric by 2021, both of them would have rated
the view of the other as unrealistic, his arguments as not worth considering and
hence left the café without updating their guesses.

This everyday phenomenon called selective exposure – people in general try
to avoid new pieces of information likely to challenge their decisions and be-
liefs all too much – gained substantial attention in the field of psychology when
Festinger [21] provided a solid theoretical framework in his book entitled “A
Theory of Cognitive Dissonance”, which was published in 1958. Following his
pioneering work, a considerable number of experiments were conducted in or-
der to describe, understand and explain this defensive behavior, that occasionally
gets in the way when people actually try to form a knowledgeable opinion and
in many cases accounts for the persistence of faulty beliefs. An extensive syn-
opsis of these studies together with a thorough discussion of the area of conflict
between curious open-mindedness and protective stubbornness in the process of
information selection can be found in [34].

In an extremely simplified version, these competing principles are imple-
mented in models for opinion formation based on bounded confidence (which
will be reviewed in Section 4): On the one hand, people in general tend to assim-
ilate, i.e. to adapt their points of view towards the opinion of others if confronted
with their valid arguments. This process, on the other hand, only takes place if
there is a certain trust in the position of one’s discussion partner; if it is too far
off our own standpoint, we are not willing to debate and re-evaluate our beliefs.

The idea to study opinion formation processes in a group of people using
models with extremely simplified interaction rules is anything but new. The first
attempts, however, were mere reinterpretations of mathematical models, used
in statistical physics to describe interactions of elementary particles, and did not
feature aspects of reflective behavior such as bounded confidence. Already in the
1930s, the theoretical physicist Ettore Majorana, a student of the famous Enrico
Fermi, wrote an article titled “The value of statistical laws in physics and social
sciences” [47]. It was originally supposed to be published in a sociology journal,
hence to present the beneficial use of methods and ideas from statistics in physics
to scholars of a different discipline and in this way to establish a connection
between the two fields. This essay, however, was carelessly discarded and kept
in a drawer until Majorana mysteriously disappeared on a boat trip from Palermo
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to Napels in 1938.
The manuscript was found by his brother and finally published in 1942,

thanks to the efforts of Giovanni Gentile Jr., a former co-author and friend of
Majorana. Despite its novel ideas, the fact that the paper was written in Ital-
ian and published posthumously limited its impact considerably. In fact, there
was no translation into English until Mantegna [48] presented the article in the
journal “Quantitative Finance” as recently as in 2005. Due to the fact that this
last publication of Majorana received very little attention and therefore did not
cause any notable further research efforts, it was not until the 1970s that the-
oretical physicists once more got interested in phenomena from social science
and finally put Majorana’s suggestion into practice: to see opinion dynamics in
large groups as interacting particle systems and then exploit the fact that these
are amenable to a rigorous mathematical modelling and an analysis based on
statistical laws.

As a first step, statistical models – originally designed to describe the dy-
namic development of an ensemble of interacting particle spins on atomic level
– were used to model the opinion formation in a social group of individuals mu-
tually influencing each other. One of the major aims was to reinterpret known
phenomena from physics, such as phase transitions or ordered and disordered
states, in the new sociological context and by that to relate purely mathematical
aspects of the model’s dynamics to common social phenomena in group behav-
ior.

During the last two decades more and more physicists and mathematicians
started similar attempts to understand the opinion dynamics in a large group
of individuals by using simplistic interaction models and to analyze them by
applying qualitative and quantitative methods from statistical physics. The fact
that new social phenomena which arose with the advancement of the internet,
like e-mail correspondences for example, feature large groups of individuals,
simple interactions and allow for a computational treatment of the corresponding
large datasets contributed substantially to this evolution.
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Can elementary magnets go on strike?

– A historical account

2.1 Statistical mechanics and the Ising model

Taking into consideration that the research area of opinion dynamics is rooted
in the discipline of physics, the story really began in the second half of the 19th
century, when James Clerk Maxwell, Ludwig Boltzmann and Josiah Willard
Gibbs elaborated the ideas of Daniel Bernoulli to describe the kinetic dynamics
in gases statistically and in this way launched the branch of statistical mechanics.
Their pioneering idea was not to focus on each single particle and its individual
movements, but to characterize the whole system with a set of parameters and
their distributions among the possible states of the system, the so-called statisti-
cal ensemble.

The starting point of opinion dynamics based on statistical physics, a field
that later became labelled as sociophysics, was however not the branch of ther-

5



6 A HISTORICAL ACCOUNT

modynamics but the closely related field dealing with ferromagnetism. Just like
water changing its state of matter depending on the temperature, ferromagnetic
material undergoes a phase transition in the sense that macroscopic properties
of the matter are changed. Well above a certain critical temperature, the fer-
romagnetic material is unmagnetic on a macroscopic scale (if not exposed to
a strong external magnetic field); well below this temperature however, a phe-
nomenon that is called spontaneous magnetization occurs: the microscopic mag-
netic dipole moments, originating from atomic spins, start to align and turn the
material into a magnet – even in the absence of an external field.

Already in 1907, Pierre Weiss [66] tried to explain this behavior, building
on earlier work by Pierre Curie. He used an approach that became known as
mean field theory: In a large statistical system, the effects of all other particles
on one fixed particle is replaced by their statistical average. This approximation
turns a many-body problem with interactions, which in general is very difficult
to solve exactly, into a one-body problem with external field. Clearly, this is a
rather crude simplification as the fluctuating interaction of the considered parti-
cle with the rest of the system is approximated by a time-independent effective
field. Nevertheless, it made the spin problem tractable and allowed Weiss to
draw conclusions explaining the two different phases of ferromagnetic material.
The mean field theory approximation is however only qualitatively accurate and
fails to give satisfactory answers to questions about the behavior near the phase
transition. For temperatures near the critical one, the actual local magnetic fields
are rapidly varying in time and consequently turn their statistical average into a
quite poor representation of their effect.

A slightly different approach to explain ferromagnetic behavior was the fol-
lowing theoretical model that physicist Wilhelm Lenz invented in 1920 and pro-
posed to his student Ernst Ising for further studies two years later: A collec-
tion of n atoms is arranged to form a regular atomic lattice. Their elementary
magnetic dipoles, often simply called spins, can be either in the state “up” or
“down”, represented by the numerical values +1 and −1 respectively. All spins
taken together form what is called a spin configuration σ ∈ {−1,+1}n. If we
assume that neighboring spins interact with a certain coupling strength J and
that the material is exposed to an external magnetic field h, the configuration σ
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is attributed a total energy given by the Hamiltonian function

H(σ) = −J
∑

〈i,j〉
σiσj − µh

∑

i

σi, (2.1)

where the first sum is taken over all pairs 〈i, j〉 of nearest neighbors in the atomic
lattice and µ denotes the magnetic moment. While the minus sign of the second
term is mere convention (as the magnetic moment actually is antiparallel to the
spin), J > 0 corresponds to a ferromagnetic interaction. Thus, in the ferromag-
netic case, the energy of the configuration decreases with both the number of
nearest neighbor pairs having spins pointing into the same direction and spins
aligned in accordance with the external field.

Following a basic physical principle, the system will act in a way to mini-
mize the free energy, which makes states of low energy more probable in thermal
equilibrium. This is captured by the so-called Gibbs measure attributing proba-
bility

P(σ) =
1

Zβ
e−βH(σ) (2.2)

to a fixed spin configuration σ, with the partition function Zβ =
∑
σ e−βH(σ)

being the appropriate normalizing constant. The model parameter β, called the
inverse temperature, is given by β = 1

kB T
, where kB denotes a (positive) phys-

ical constant, the so-called Boltzmann constant, and T is the temperature (in
degree Kelvin). If we consider the case with no external field (i.e. h = 0), it is in-
tuitively obvious from (2.2) that for high temperature all possible configurations
nearly have the same probability, while for low temperature configurations with
high energy (i.e. many opposing nearest neighbor pairs) are almost excluded.

For a finite system, this transition happens smoothly and a phase transition
in the sharp (mathematical) sense can only be observed in the case of infinitely
many particles, commonly known as thermodynamic limit. On the infinite d-
dimensional grid Zd, we can consider the spatial average of spins which is called
magnetization of the material and defined by

〈σ 〉 = lim
n→∞

1

|Λn|
∑

i∈Λn

σi, (2.3)

where Λn = {−n, . . . , n}d. With this notion in hand, we can distinguish be-
tween a paramagnetic, disordered phase in which the magnetization is almost
surely 0 and a ferromagnetic, ordered phase in which non-zero magnetization
has positive probability.
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In his PhD thesis, Ising [37] analyzed the one-dimensional case and found
that the correlation of spin values decays exponentially with the distance of two
sites, which implies that the magnetization equals 0. He erroneously concluded
that the model does not feature any phase transition even in higher dimensions.
This claim was proven wrong by Rudolf Peierls [54] about one decade later.
He investigated the two-dimensional zero-field Ising model (i.e. on the square-
lattice Z2 with h = 0) and proved that it has a non-zero magnetization at suf-
ficiently low temperatures. As the model without external field must have zero
magnetization at sufficiently high temperatures, he was the first to show that
a model from statistical mechanics exhibits a phase transition. A few years
later, Lars Onsager [53] computed the critical temperature for the zero-field Ising
model on the square-lattice rigorously and found it to be

Tc =
2 J

kB · ln(1 +
√

2)
.

The Ising model on the square-lattice still is one of the simplest mathematical
models that does feature the phenomenon of a phase transition.

To simulate a configuration of the Ising model on a finite graph with given
external parameters (T and h), the standard approach is to use the Monte Carlo
method based on the well-known algorithm by Metropolis–Hastings. In this
rejection sampling algorithm, applied to the Ising model, one starts with a ran-
dom configuration and then performs single spin updates according to the fol-
lowing rule: Pick a site uniformly at random and flip its spin with probability
min{e−β∆H , 1}, where ∆H is the invoked change of the total energy. In the
ferromagnetic regime without external field, flipping the spin at a chosen site
might be rejected only if the majority of its neighbors agrees with the current
spin as this implies ∆H > 0. Evidently, a low temperature will considerably
favor flips decreasing the energy over flips increasing it and therefore drive the
system towards more ordered states with growing patches of aligned spins.

A different way to incorporate the microscopic evolution in a ferromagnet
at a fixed temperature with help of the Ising model is the so-called Glauber
dynamics. In this algorithm, to flip the randomly chosen spin has probability

1
1+eβ∆H . In contrast to the Metropolis–Hastings algorithm, here even transitions
to lower energy states might be rejected, but the tendency to order remains as
updates towards lower energy have probability larger than 1

2 , towards higher
energy less than 1

2 .
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In a long chain of atoms, these alignments at low temperature do take place
as well, but for any temperature above absolute zero, thermal fluctuations will
consistently break the aligned parts of the chain and in this way prevent a global
alignment of the system. This is the reason why the model on Z does not achieve
a global magnetization even for low temperatures. A quite comprehensive ex-
positon of the early years of statistical physics including a more detailed dis-
cussion of mean field theory and the Ising model from a slightly more physical
point of view can be found in [38].

2.2 Sociophysics

Even though the proposal by Majorana to start treating social phenomena by us-
ing statistical models of reduced complexity and to focus on how microscopic
interaction rules entail macroscopic properties of the system, that can be com-
pared to global observables, went more or less unheard by the social sciences,
the striking similarity between interacting elementary magnets and simplified
processes of group behavior led physicists about 30 years later to finally estab-
lish this connection.

In a colloquium in 1969, physicist Wolfgang Weidlich suggested to com-
pare the interactions within a group of individuals holding opposing attitudes
towards a given yes-no question with ferromagnetism, more precisely the dy-
namics of the Metropolis–Hastings algorithm applied to the Ising model. Two
years later, he published this idea in the article ‘The statistical description of
polarization phenomena in society’ [64] in which he elaborated how the math-
ematical model intended to describe and explain ferromagnetism with help of
statistical mechanics can be put into a sociological context: In the sociological
reinterpretation, the interaction strength J corresponds to the willingness of an
individual to adopt the attitude of the majority among its neighbors and the tem-
perature as a model parameter for the social pressure exerted on each individual
(low temperature corresponding to high social pressure). An external magnetic
field (i.e. h 6= 0) is understood to shape some preference of one attitude over
the other, shared by all individuals. Weidlich derived the stationary distributions
for different values of h and J and even included a section in which a possible
comparison between model and real data is discussed. Furthermore, he already
suggested natural extensions of this initial link between social dynamics and sta-
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tistical physics: More than two possible attitudes could be considered, h and J
could be replaced by sets of parameters {hi} and {Jij} (i.e. chosen to be de-
pending on the individuals and nearest-neighbor pairs respectively) and letting
the transition probability to flip the spin at a given site depend not only on the
current configuration of its neighbors, but also on its own history could introduce
a sense of tradition or stubbornness.

In 1982, Galam et al. [27] used the Ising model on Kn, the complete graph
on n vertices, to describe the collective behavior in a plant where dissatisfied
workers might start a strike. Using a mean field theory approach, they rediscov-
ered the phase transition described in the foregoing section and interpreted the
regime of high temperature as an individual phase (mutual influences are very
limited) and low temperature as a collective one (the group behaves coherently),
separated by a critical phase in which small changes in the system can lead to
drastic changes in the group. In contrast to the physical application of the Ising
model, where a collection of atoms is forming a regular lattice, it is reasonable
to consider the underlying interaction network among workers in a small plant
to be all-to-all, meaning that every worker can actually influence all his fellow
workers.

Following these seminal papers, an increasing number of related models
were introduced, motivated and analyzed – in the past two decades predom-
inantly with the help of computer simulation. The principle interaction rules
diverged slowly but surely from particle physics and today the area of socio-
physics comprises an abundance of models for opinion dynamics in groups. The
most noted among these will be reviewed in the following chapters.

Just as in any cross-disciplinary application, the question has to be adressed
whether these interacting particle systems are suitable to model human group be-
havior or not. Interestingly enough, already Weidlich [64] and Galam et al. [27]
tried to survey the advantages as well as limitations of and possible objections
against applying a simplified model from statistical mechanics in a sociological
context. Apparently, there are glaring differences between the two fields of ap-
plication. Possibly most important is the contrasting complexity of the elemen-
tary components: In physics, the systems consist of relatively simple objects,
usually atoms and molecules, the behavior of which is relatively well under-
stood; hence the complex evolution of the collective arises from the interaction
patterns. In social science, however, the collective consists of a large number of
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human beings and the behavior of each single individual is already the outcome
of a complex interplay between physiology and psychology of which only very
little is understood. Especially the fact that in all common models for opinion
dynamics the individuals are presupposed to behave adaptively (i.e. reacting to
external influences) and not strategically (i.e. following a certain plan they have
in mind) seems to be an unrealistic assumption. Apart from that, one has to
admit that humans differ a great deal from one another in many aspects while
it is rather safe to consider atoms of the same kind as perfectly identical. It is
doubtful whether the few parameters needed to capture the state of a physical
system are sufficient to describe the properties of a collection of human beings.

In a nutshell, the reduction of humans to identical and simplistic elements in
a large system is a quite controversial issue and critics might come to the con-
clusion that reducing the complexity on microscopic level to such an extent that
the system makes a treatment using tools from statistical physics possible with-
out changing the essential macroscopic phenomenology is a hopeless task. One
could even take this one step further and claim that researchers were tempted
by the substantial progress in the study of collective phenomena in the field
of physics to apply these models in other contexts, such as social behavior in
groups, and established this connection at any sacrifice.

Nevertheless, one cannot deny the fact that there are certain phenomena in
the dynamics of group behavior (both animal and human), that show striking
structural similarities to ferromagnetism and suggest a meaningful relation be-
tween the two. Just like the spins in an ensemble of atoms, the individuals might
be in a chaotic state at first – meaning that no large scale structure exists – but
then gradually align and finally undergo a transition from disorder to order in
the sense that the system exhibits large scale regularities, which in the physi-
cal context correspond to a state of low energy. In their article “A theory of
social imitation”, Callen and Shapero [7] name the collective movement in a
school of fish or a flock of birds, the synchronous flashing of fireflies as well as
temporary fashion styles as prominent examples: Without any leader, the group
becomes increasingly homogeneous through local interaction and alignment un-
til a consistent collective is formed – similarly to spontaneous magnetization of
ferromagnetic matter not exposed to an external field.

For prey, being a part of a homogeneous group provides a certain degree of
safety against predator attacks. In the context of social interactions and opinion
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formation in groups, the drive towards order is due to the tendency of interacting
individuals to become more alike, an effect called social influence. This effect is
often intensified by the known psychological phenomena of selective attention
and pleasure of recognition: Our brain is geared towards filtering out relevant in-
formation, giving an advantage to things we can relate to. The idea of a selective
internal filter was originally proposed by Broadbent [5] in 1958 and later refined
and elaborated with help of various experiments investigating human habits and
capabilities of handling information input (see also [20]). The pleasure of recog-
nition (which incidentally is an important aspect in the composition of musical
and literary work, see [57]) as well as the phenomenon of selective exposure,
mentioned in the introduction, are closely intertwined with the inclination of
people in general to meet and interact with others that resemble themselves in
various aspects and share central attitudes, a behavior referred to as homophily.
This term was introduced by Lazarsfeld and Merton [42], who considered two
forms of homophily: value homophily, based on shared values and beliefs, as
well as status homophily, based on a similar cultural background. The form that
is most relevant in the context of opinion dynamics, induced homophily, which
is based on similarity emerging from regular contact and mutual influence, was
added and studied later (see for instance [50]). In this form it is most obvious
how homophily can lead to a self-enhancing process and play a central role in
the homogenization of a social group.

If we stick to the metaphor, ordered low energy states in statistical mechan-
ics correspond to consensus or uniformity in the context of opinion dynamics
and disordered states of higher energy in turn to fragmentation or disagreement.
One of the main questions in social dynamics is – similarly to the situation in
statistical physics – under which circumstances the microscopic interactions will
lead to such a transition, since if there were no interactions, in both contexts het-
erogeneity would prevail.

Apart from this rather heuristic relation, there are other important arguments
that alleviate the problem of reducing humans to elementary particles: In statis-
tical physics most of the qualitative properties of a larger-scale system do not
depend on the microscopic details of the dynamics but instead on global prop-
erties like symmetries, dimensionality or conservation laws. Diverse models
exhibit essentially similar phenomena (e.g. phase transitions) despite their dif-
ferent rules and patterns, making these features in some sense model-invariant, a
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concept called universality. In this respect it is at least justifiable that modelling
a few of the most important properties of single individuals will capture the es-
sential driving forces of the evolution and thereby give meaningful results when
it comes to qualitative features of the model’s large scale behavior. In addition to
that, just as many other complex systems, the opinion formation in a large group
of humans is of statistical nature, i.e. a large number of comparable microscopic
elements compose a macroscopic object, which has properties that are formed
by the collective but the contribution of any individual particle is negligible. A
statistical approach therefore seems to be quite reasonable. In fact, this argument
was brought up already by Majorana [47] in the 1930s.

The lack of analytical means that could be applied to the common models for
social dynamics as well as the increasing computational power resulted in nu-
merous simulation-based analyses beginning in the 1990s. On the one hand they
surely complement the analytical study of such models based on tools from sta-
tistical physics, on the other hand simulation-approaches are limited to a rather
small number of individuals. Even if it seems to be sufficient for an examina-
tion of the opinion formation in social groups, as mentioned before, the concept
of order-disorder phase transitions is rigorously defined only in the limit of a
system with infinitely many particles. A number of individuals that is not suffi-
ciently large might therefore cause finite size effects that invalidate conclusions
drawn from a comparison with analog systems in physics, in which the number
of interacting particles is commonly by far larger than in a social group. In this
respect it is of vital importance to be able to figure out which macroscopic fea-
tures are robust with respect to changes in the number of interacting individuals
by analyzing the used model for different orders of magnitude of the system’s
size.





3
Opinion dynamics

Since there are many situations in everyday life where it is necessary for a group
of people to form a point of view with majority appeal in order to make a shared
decision (especially in a democratic framework, as discussed in [4]), it has al-
ways been a major focus of social science to understand the opinion formation
process in a larger group of socially interacting individuals (for a broader intro-
duction of the concept of ‘public opinion’ and an overview of some early efforts
of social scientists in this area of research, see [14]). Inspired by statistical me-
chanics, in particular Weidlich’s sociological reinterpretation of the Ising model
for ferromagnetism, various models for opinion dynamics arose in the sequel.

In this chapter, we will shortly introduce a number of models used in the
field of opinion dynamics that are either based on or very similar to interacting
particle systems from statistical physics. First, we will list commonly used net-
work structures and opinion spaces, then describe the characteristic interaction
rules of the most common models. Before we engage in this review, it should
be mentioned that not all of the models which appeared in the early years of
opinion dynamics were inspired by statistical mechanics.

15
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In 1974, for instance, DeGroot [17] presented a different approach to de-
scribe the dynamics of an opinion formation process, reminiscent of a finite
Markov chain. In his model, n individuals update their opinions in rounds and
compose their new ones as a weighted average of all current opinions:

ηt+1(i) =
n∑

j=1

pij ηt(j), (3.1)

where ηt(i) is the opinion of individual i after round t and pij is the weight it
attributes to the opinion of individual j. In the definition of the model, DeGroot
does however not specify (deliberately) which convex set the initial opinions
belong to; could be real numbers, vectors or probability distributions. He con-
siders the weights, which form a row-stochastic matrix P = (pij)i,j , to be time-
independent. This allows to transfer standard results about the asymptotics of
time-homogeneous finite Markov chains to the model: A consensus is reached
(starting from a general set of initial opinions), in the sense that all opinions
converge to a common limit, if and only if the matrix P , taken as one-step tran-
sition matrix, corresponds to a Markov chain in which all recurrent states belong
to the same aperiodic communication class. Then the unique stationary distri-
bution gives the weights according to which the common limiting opinion is
composed.

Note that the iterated matrix products that represent the array of opinions
at later times are multiplications from the left (as apposed to multiplications
from the right in the case of a Markov chain). A stochastic process of this kind
is commonly known as repeated averaging. A few years later, Chatterjee and
Senata [11] addressed the more general case in which the weights depend on
time. They establish sufficient conditions on the sequence of weight matrices
for the opinions to converge to a common limit.

3.1 Underlying social network structures

No matter if we consider the model of DeGroot based on repeated averaging
or interacting particle systems based on models from statistical mechanics, the
following is apparently true for opinion dynamics in general: When it comes to
the question whether the individual opinions will converge to a common limit
or not, it is a very important aspect, between which of the individuals there is
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a potential for mutual influence – in other words the topology of the interaction
network. We think of the individuals as nodes that form a social network (given
by a simple graph) in which a connection between two individuals that enables
them to influence each other is represented by an edge.

Under the assumption that the interaction is all-to-all, often termed com-
plete mixing, the mean field approximation becomes particularly useful. In most
cases it makes an analytical treatment possible in the sense that solving the cor-
responding differential equations will give insights about the long-term behav-
ior. However, already in today’s globalized companies this assumption is hardly
realistic – not to mention the extremely sparse networks of e-mail correspon-
dences and the like. For this reason, all of the models we are about to review
were mainly considered on much sparser networks than the complete graph.

Finite graphs

Clearly, all simulation-based analyses are confined to opinion dynamics on finite
social networks. A particularly simple example is that of a finite square lattice:
It features two dimensions (which as we know from the Ising model can make
a crucial difference to dimension 1) and still has comparably few edges. The
necessary compromise between the efforts to keep both computation time and
boundary effects to a minimum, led to samples comprising a number of indi-
viduals roughly ranging from n = 102 to n = 2002. In some simulations (e.g.
in [2], [22] and [49]), the boundary conditions were taken to be periodic in order
to remediate their negative impact on the homogeneity of the network. In [16],
where both a complete graph and a finite square lattice were used to represent the
underlying social network, the authors accentuated the fact that a grid features
many short cycles (measured against the relatively small number of edges) just
like real social networks do. In respect of its striking regularity it might however
be questioned if this makes a square lattice an appropriate candidate to model
social relations.

More sophisticated choices for the interaction network that have been stud-
ied, among others, are realizations of random graph models such as the three
introduced by Erdős–Rényi, Barabási–Albert and Watts–Strogatz: The so-called
Erdős–Rényi graph, often simply denoted by G(n, p), is a random graph on n
nodes, in which each of the

(
n
2

)
possible edges is independently chosen to be

present with probability p. If the size of this network is varied, it might be suit-
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able to choose p = c
N−1 in order to keep the average degree constant (at the

chosen value c).
The Barabási–Albert model is one of the most popular algorithms for gen-

erating random scale-free networks, i.e. graphs with a degree distribution that
follows a power law (at least in the tail)

N(d) ∼ d−γ ,

where N(d) is the fraction of nodes with degree d and γ a parameter typically
valued in the range [2, 3].

The model is based on a principle called preferential attachment: The net-
work is built incrementally from a core of m fully connected individuals by
adding new nodes one by one, each choosing m older nodes to connect to with
a probability proportional to their degree. Scale-free networks proved to be re-
alistic models for e-mail networks or friendship graphs, both popular objects of
study in the branch of social network analysis.

Figure 3.1: A typical Barabási–Albert network, for m = 1, of comparatively
small size (n = 70).

Lastly, the algorithm proposed by Watts and Strogatz generates a simple
random graph that has two main features found in real social networks: local,
strongly connected clusters and short average path lengths. Graphs of this kind
are called small-world networks. The algorithm features three parameters (the
number of nodes n, the mean degree 2m as well as the rewire probability β) and
proceeds as follows: Given the set of nodes Zn = {0, . . . , n − 1} placed on a
circle, first, a directed ring lattice is constructed by including an arrow from each
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node i to its m immediate successors, i.e.

~E = {(i, j); i, j ∈ Zn, 1 ≤ j − i (mod n) ≤ m}.

Then, all of these directed edges are processed in lexicographical order and re-
placed by undirected ones: With probability 1 − β, the arrow (i, j) simply gets
transformed into the edge 〈i, j〉. With probability β, however, it gets rewired
and instead the edge 〈i, k〉 is included, where k is picked uniformly at random
from the elements of Zn \ {i, j}, that are currently not linked to i (neither by an
arrow nor by an undirected edge).

In this way, for β positive but small, a few of the local connections get re-
placed by long-range relations and a small-world network is formed. For ex-
treme choices of β, this is not the case: β = 0 corresponds to the regular ring
lattice with degree 2m and for β = 1, the algorithm returns a graph with average
degree 2m in which all edges were placed randomly, see Figure 3.2.

β = 0 β = 0.2 β = 1

Figure 3.2: Output of the Watts–Strogatz algorithm for n = 15, m = 2 and
different values of β.

The same idea can of course be applied to square lattices etc. as well.
It should be mentioned that there have been various efforts to implement

opinion dynamics on adaptive random networks. Gil and Zanette [29], for ex-
ample, proposed a model in which the social network is given by the complete
graph initially, but whenever two agents meet and fail to agree on one opinion,
the link in between them is deleted with a certain probability. This procedure
leads to a gradual thinning of the network until only homogeneous opinion clus-
ters remain.

Although certainly more realistic, the coevolution of opinions and relations
adds substantially to the complexity of the problem. A different approach to
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implement homophily is the one of bounded confidence: While the network
stays unchanged, neighboring agents only interact if their opinions are reason-
ably close. Models of this kind are reviewed in Section 4.1.

Infinite graphs

In a probabilistic analysis of opinion formation processes, as opposed to studies
that are simulation-based, considering infinite networks becomes feasible and in
fact, it often makes both the arguments and results more elegant: Tools like the
law of large numbers or ergodicity might be applied and turn phenomena that
occur with high probability on finite networks into almost sure events. Apart
from that, infinite systems can serve as idealized approximations to finite but
very large systems.

Major parts of this thesis deal with opinion dynamics on the, in a way, sim-
plest infinite network: the two-sidedly infinite path. To be more precise, we
consider the graph with vertex set Z and edge set E = {〈v, v + 1〉; v ∈ Z}, see
Figure 3.3 below for an illustration.

−3 −2 −1 0 1 2 3

Figure 3.3: A section of the two-sidedly infinite path Z.

Since it marks a natural next step, we also looked at its higher-dimensional
equivalent: the d-dimensional lattice, i.e. the graph G = (V,E) with V = Zd

and E = {〈u, v〉; u, v ∈ V, ‖u− v‖2 = 1}, where d ≥ 2 and ‖ . ‖2 denotes the
Euclidean norm.

Additionally, we investigated opinion dynamics on the infinite cluster of su-
percritical i.i.d. bond percolation on the lattice Zd, d ≥ 2, a standard represen-
tative for the class of infinite random graphs. The concept of i.i.d. bond perco-
lation is in effect nothing else but the formal procedure to get the Erdős–Rényi
graph from the complete graphKn as described above – applied to more general
graphs, in our case the integer lattice: For every edge, we decide independently
if it is kept (with probability p) or removed (with probability 1− p). A maximal
set of vertices linked by kept edges is called a cluster. For a more extensive
introduction of the model, we refer to the book by Grimmett [31].

Broadbent and Hammersley [6] introduced this model in 1957 and proved
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that for all d ≥ 2, there exists a critical probability pc (depending on and mono-
tonically decreasing with d) that marks a phase transition in the following sense:
For p < pc there will almost surely be only finite clusters, while for p < pc a.s.
a unique infinite cluster exists.
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Figure 3.4: A segment of i.i.d. bond percolation on the square lattice, with
parameter p = 0.4 to the left and p = 0.6 to the right.

In 1980, Kesten [39] proved that pc = 1
2 for the square lattice, completing

an earlier result by Harris [33], who established pc ≤ 1
2 by showing that there

is a.s. no infinite cluster for bond percolation on the square grid with parameter
p = 1

2 .

3.2 Opinion spaces

Just as DeGroot noted in the penultimate section of [17], when it comes to the
mathematical modeling of opinions there are no rigid limits: They could be
represented by numbers, vectors or even probability distributions. One only has
to make sure that the opinion space is geared towards the interaction rule of the
model, i.e. that it is closed with respect to all possible opinion updates.

Adopted from the Ising model, the first attempts to study opinion dynamics
based on statistical mechanics featured {+1,−1}-valued opinions. As long as
the evolution of attitudes towards a single yes-no question is to be modelled, this
might seem sufficient, but already allowing an agent to be in the state ‘irresolute’
makes it necessary to include more than two opinion values i.e. to depart from
binary variables. As counterpart to discrete-valued opinions, normally used to
represent choices, over time there appeared models featuring opinion variables,
continuously distributed on [0, 1] or even the whole set of non-negative real num-
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bers. Besides the fact that in many situations, e.g. estimating a certain unknown,
a continuous opinion space is more natural, it simplifies to implement compro-
mising behavior of interacting agents holding different opinions: The restriction
to discrete opinions sometimes forces imitating behavior (one agent takes on the
exact opinon of another).

Actually, there is a rather crucial downside to interaction rules of this kind:
During the updates, the aggregate value of opinions changes, which violates the
idea of (mass) conservation found in many physical systems. Surely, this is not
a natural property in a social science setting, where mutual influences in general
are asymmetric. However, as mentioned before, global properties of interacting
particle systems (like conservation laws) play an important role, not least in the
mathematical analysis. As a consequence, updates based on imitation – which
are simple taken by themselves but render it impossible to adopt arguments using
the principle of mass conservation – potentially make a model more involved
from a technical point of view. This is one reason why considering continuous
opinions can be quite different; the fact that a concept like ‘majority opinion’
does not have an equivalent in the continuous setting is another.

Accompanying the advances in the field of opinion dynamics, a growing
interest in the natural extension to vector-valued opinions arose. In 1997, Axel-
rod [1] was one of the first to publish an article focussed on higher-dimensional
opinions as opposed to earlier publications considering opinions to be scalar
variables. He coined the notion of cultural dynamics interpreting the opinion
vector as ‘culture’ of an individual, comprising “the set of individual attributes
that are subject to social influence”. In his original model, the mindset of an
agent comprises 5 features which can take on any one of 10 traits. In short,
the opinion space is given by {0, 1, . . . , 9}5. Due to the reasons named above,
it didn’t take long until variants with continuous higher-dimensional opinion
spaces emerged.

The border between cultural and scalar opinion dynamics is not sharp and
many similarities exist. However, there are models featuring multidimensional
opinions that do not have counterparts with scalar opinions and are therefore
qualitatively different. In addition to that, as soon as the distance between two
opinions matters (as is the case for bounded confidence models, see Section
4.1), the geometry comes into play. Regardless of the fact that there are many
more standard metrics to choose from in higher dimensions, there is one very
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important difference even in Euclidean geometry: Consider a set A, its convex
hull A and a point x /∈ A. In dimension d ≥ 2, the distance of x to A is in
general strictly less than the distance to the set A itself, see Figure 3.5 for an
illustration. This is not true for d = 1 and makes compromising in some sense
more powerful in higher dimensions when it comes to bridging gaps in between
different opinions.

x

A

x

A

Figure 3.5: Forming convex combinations can crucially reduce gaps – yet only
in dimension d ≥ 2.

There have in fact been very few attempts to represent opinions by prob-
ability distributions, although this can be seen as a very natural way of mod-
elling indetermination. In 2008, Martins [49] proposed a model in which the
individuals are given two choices and internally hold a distribution embodying
their preference. When they interact, they only tell each other which of the two
options they would prefer and then update their probabilities according to the
information received. From a mathematical point of view, a distribution on a fi-
nite probability space is nothing but a vector from the simplex of corresponding
dimension, hence the opinion space still finite-dimensional. In this thesis, even
infinite-dimensional opinion spaces, more precisely a model in which opinions
are given by absolutely continuous distributions on [0, 1], will be considered.

3.3 Interaction rules

In what follows, we are going to list some of the standard models used in socio-
physics. All of them share similar ideas and they were studied with the common
aim to define opinion states of the whole population (e.g. consensus or disagree-
ment) and to determine if and how the range of the model’s parameters splits
up into different regimes, according to the long-time behavior of the model: In
most of the cases, the dynamics tends to reduce the variability compared to the
initial opinion values, a trend that can lead to a state of consensus in the long
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run, depending on the model specifications.
This subsection is dedicated to models that are still very close to those used

in statistical mechanics, while in the next chapter we will review models that
include rational behavior which might not have a counterpart in elementary
physics. For further references and a more detailed discussion of the listed mod-
els, we refer the reader to the comprehensive survey article ‘Statistical physics
of social dynamics’ [9] by Castellano, Fortunato and Loreto.

(a) Voter model
Shortly after Weidlich’s sociological reinterpretation of the Ising model, in
1973, this interacting particle system was introduced by Clifford and Sud-
bury [12] as a model for two spatially competing species and later named for
its natural interpretation in the context of opinion dynamics among voters.
Its definition is very simple: Each individual holds an opinion given by a
{−1,+1}-valued variable. At every time step, one individual is selected at
random and will then adopt the opinion of another agent, picked uniformly
among its neighbors.

On regular lattices the evolution of this model is to some extent similar to
the Ising model – in one dimension, that is on the two-sidedly infinite path
Z, it actually corresponds exactly to the limiting case of the Ising model
with zero temperature. Based on well known results about random walks on
grids, Clifford and Sudbury were able to conclude that on the integer lattice
in dimension d ∈ {1, 2} any fixed finite subset of agents will a.s. finally
agree (on one of the two opinions), while this does not hold for d ≥ 3. This
behavior comes from the fact that a simple random walk on the lattice is
recurrent (i.e. will a.s. return to its starting point) in dimension 1 and 2, but
transient (i.e. the event that there is no return to the starting point has non-
zero probability) in dimension 3 and higher. A more exhaustive analysis
including ergodic theorems and a complete description of all invariant mea-
sures was done by Holley and Liggett [36] in 1975. Later, the voter model
was studied on various other social networks and qualitatively different be-
havior was found also on small-world networks for instance (see [10]).

Variants of the model include the multitype voter model (introduced by
Spitzer [59]), in which more than two opinion values are possible, as well
as the constrained voter model (introduced by Vazquez et al. [63]) which
is defined as follows: Each agent is in one of three states (‘left’, ‘right’ or
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‘center’) and interactions as described above can only occur involving at
least one centrist (as the extremists, ‘left’ and ‘right’, are assumed to ignore
each other). This behavior is a discrete analog of the so-called bounded
confidence principle (see Chapter 4).

(b) Majority rule model
A finite collection of n individuals is considered, a fraction p+ of which
initially holds opinion +1, all others the opinion −1. The interaction rule is
reminiscent of the one in the voter model, however agents do not necessarily
meet in pairs: At each iteration a random group of individuals is chosen, and
all group members then adopt the majority opinion inside the group. In the
simplest version, the size of the chosen groups is a fixed odd number. But
there are various variants with random size and different ways to resolve a
tie in a group consisting of an even number of individuals. The model was
introduced by Galam [26] and proposed to describe public debates.

Another model based on the majority rule is the so-called majority-vote
model. Just like in the Ising model, spins are updated one at a time. At
each step, the spin to be updated takes on the value of the majority of its
neighbors with probability 1 − q, the minority value with probability q and
is chosen uniformly from {−1,+1} if there is a tie. For q = 0 this cor-
responds to the Metropolis–Hastings kinetics for the zero-field Ising model
at zero temperature (except for the fact that given a tie, the Metropolis–
Hastings algorithm will perform a flip with probability 1), for q = 1

2 to
the Glauber dynamics at infinite temperature. The majority-vote model was
introduced by Liggett [44], however slightly different from what became
standard as he considered an individual to be part of its own neigborhood.
Based on simulations, de Oliveira [18] showed that the model, considered
on the square lattice, exhibits an order-disorder phase transition when q is
increased. More recent studies verified this property also for small-world
networks [8] and the Erdős–Rényi graph [55].

(c) Hierarchical majority rule model
A structurally different model based on the majority rule was proposed by
Galam [25]: A group of n = rk individuals (r, k ∈ N) equipped with iden-
tically distributed {−1,+1}-valued opinions is considered, but no social
network is specified. Let p0 denote the probability for the opinion to be +1.
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Instead of forming a consensus by interacting, they iteratively elect group-
representatives: In the first round, all individuals are randomly divided into
groups of size r. In every group a representative is chosen among the mem-
bers sharing the majority opinion of the group – uniformly among all mem-
bers if r is even and there is a tie. This procedure is then iterated among
the elected representatives until a single leader is chosen in the kth round. If
pi denotes the probability that a representative on hierarchical level i holds
opinion +1, the recursion is given by

pi+1 =

r∑

l= r+1
2

(
r

l

)
pli (1− pi)r−l if r is odd and

pi+1 =
1

2

(
r
r
2

)
p
r
2
i (1− pi)

r
2 +

r∑

l= r
2 +1

(
r

l

)
pli (1− pi)r−l if r is even.

(d) Sznajd model
There are different versions of this model sharing the same basic interaction
principle. The following is not the one originally introduced by Sznajd-
Weron and Sznajd [62] although the most popular variant. The individuals
are again considered to occupy the sites of a graph (forming the interac-
tion network) and to hold {−1,+1}-valued opinions. A pair of neighboring
agents is picked and if they agree, all their neighbors adopt this opinion as
well (illustrated in Figure 3.6 below). If they disagree, however, nothing
happens.
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Figure 3.6: Update rule in the Sznajd model: If the two neighbors picked
(black) agree, they impose their opinion on all other individuals
linked to them (gray).
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The Sznajd model is designed to incorporate the typical human behavior
to be influenced more easily by a group of people that agree on a certain
topic, compared to the influence of single individuals. Variants of the model
have in fact been applied in order to describe and analyze voting behavior in
elections.

(e) CODA model
In 2008, Martins [49] presented a new model featuring binary choices (be-
tween options A and B say, again represented by a spin σ ∈ {+1,−1}) that
is based on continuous opinions and discrete actions (CODA) in the follow-
ing sense: An opinion is in fact given by a probability distribution (more
precisely the odds p

1−p are considered, where p denotes the probability the
considered individual attributes to option A being the better choice, 1 − p
consequently the probability for the complementary option B). When agents
interact, they only tell each other their preference (i.e. σ = +1 correspond-
ing to p > 1

2 or σ = −1 corresponding to p < 1
2 ) but not the precise value

of p.

From this piece of information, the opinions are updated with a Bayesian
reasoning: Let α := P(σ = +1 |A) denote the probability that an agent
believes in A if that actually is the better choice and β := P(σ = −1 |B)

the analog for B in place of A. Assuming rational agents, one might think of
α and β to be larger than 1

2 . When individuals i and j meet and share their
preferences, σi and σj , the prior odds pi

1−pi of agent i get updated to

P(A |σj = +1)

P(B |σj = +1)
=

pi
1− pi

· α

1− β ,

if σj = +1 and to pi
1−pi ·

1−α
β otherwise.

These interaction rules make the model distinct from the ones introduced so
far in two different ways: On the one hand, despite binary choices, the agents
hold continuous opinions and as a consequence hold back some information
when they interact. On the other, despite pairwise interactions, the model
does equip the agents with a certain memory of the past, which is normally
not the case for adaptive behavior in this setting. Both features can be seen
to incorporate traits of human behavior.





4
Incorporation of selective exposure

There are many phenomena in opinion formation processes in groups, that can
not be captured by the models based on or closely related to the Ising model.
Although contrarian behavior can be incorporated into the Ising model by con-
sidering antiferromagnetic material (i.e. J < 0), as discussed already by Callen
and Shapero at the end of [7], this again leads to conformity even though only
on antiparallel sublattices. In order to include phenomena like homophily or
individual strong-willed behavior and persisting extremism, additional concepts
had to be implemented, such as bounded confidence for instance.

As alluded to in the introduction, models that incorporate this principle in-
volve in their interaction rules the mental defense mechanism known as selective
exposure, a psychological phenomenon which can not be found in the interplay
of physical particles: When two individuals meet, they will only influence each
another if their current opinion values are not too far apart from each other. More
precisely, in most of the models there exists a parameter θ ≥ 0 shaping the tol-
erance of the individuals: If the current opinion value of an agent is η, other
agents holding opinions at a distance larger than θ from η will just be ignored.

29
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Many of the bounded confidence models listed below have also been re-
viewed in [45]. Let us continue the list from the foregoing chapter with the
interacting particle system that is the core theme of this thesis.

4.1 Bounded confidence models

(f) Deffuant model
Besides the aforementioned tolerance θ, this model features another param-
eter, µ ∈ (0, 1

2 ], that embodies the willingness of an individual to approach
the opinion of the other in a compromise. Encounters always happen in
pairs, so if agents u and v meet at time t, holding opinions a, b ∈ R respec-
tively, the update rule reads as follows:

(ηt(u), ηt(v)) =

{
(a+ µ(b− a), b+ µ(a− b)) if |a− b| ≤ θ,
(a, b) otherwise,

where ηt(u) denotes the opinion of agent u at time t. The idea behind this
is simple: When two individuals interact and discuss the topic in question,
they will only rate the opinion encountered as worth considering if it is close
enough to their own personal belief. If this is the case, however, they will
have a constructive debate and their opinions will symmetrically get closer
to each other – in the special case µ = 1

2 , they will separate having come
to a complete agreement at the average of the opinions they hold before the
interaction.

In this manner, groups of compatible agents concentrate more and more
around certain opinion values (their initial average) and once each such clus-
ter of individuals is sufficiently far from neighboring ones, the final opinions
are formed and all groups will from then on only become more homoge-
neous by internal interactions.

When Deffuant, Neau, Amblard and Weisbuch introduced this model in [16]
(some authors refer to it as Deffuant–Weisbuch model), it was considered
on a finite number of agents having i.i.d. initial opinions, distributed uni-
formly on [0, 1]. As social network they chose the complete graph and a
finite square lattice respectively. The encounters occurred in discrete time
by picking at each time step a pair of agents uniformly at random from the
edge set of the underlying interaction network graph. Depending on the
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values of the model parameters, θ and µ, in their simulation-studies they
observed one of the following two long-time scenarios: Either the agents
ended up in one opinion cluster (corresponding to a consensus) or split into
several clusters (fragmentation or disagreement). A controversial point in
this context is the size threshold beyond which a small number of outliers
are considered minor clusters.

Stauffer et al. [61] introduced a discretized version of the model, in which
the opinions can take on values from the set {1, 2, . . . , q}, q ∈ N, and are
rounded to the nearest integer after an update of the form described above.
There have also been attempts to analyze the model with the tolerance pa-
rameter θ varying from individual to individual, revealing that in such a
generalization it is the individuals with largest tolerance that ultimately de-
termine the system’s behavior.

In a recent publication [58], the idea of variable confidence bounds θt(v)

that depend on the current opinion values has been presented: the more
extreme the opinion ηt(v) of an agent v, the smaller the corresponding value
of θ. This extension of the Deffuant model bears resemblance to the relative
agreement model (see below).

(g) Hegselmann–Krause model
The model introduced in [35] is quite similar to the Deffuant model, only
the rule for encounters (which again happen in discrete time) is different:
Given a network graph, at every time step each individual interacts with all
its compatible neighbors at once and takes the average as its new opinion.
If we let ∼ denote the reflexive adjacency relation, i.e. u ∼ v if u = v or u
and v are neighbors in the graph, and ηt(u) once more the opinion of agent
u at time t, we can write the update rule as follows:

ηt+1(v) =
1

Nt(v)

∑

u∼v
|ηt(u)−ηt(v)|≤θ

ηt(u) for all v, (4.1)

where the sum runs over the set of agents that consists of v plus its compat-
ible neighbors and Nt(v) =

∣∣{u; u ∼ v, |ηt(u) − ηt(v)| ≤ θ}
∣∣ is the size

of this set at time t. Note that in contrast to the Deffuant model, the mean
opinion is not conserved over time.

When it comes to simulations of the model, the major disadvantage of the
Hegselmann–Krause model compared to the one introduced by Deffuant et
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al. is that for a dense interaction network averages of large groups of agents
have to be calculated. This makes the running time until a meaningful pat-
tern – allowing to decide whether the system approaches consensus or frag-
mentation – emerges rather long. However, for a finite number of individuals
the system converges to a stable state in finite time: Once the opinion clus-
ters are formed and all agents in one fixed cluster are compatible with one
another, they will completely agree after one more time step making further
changes of their opinions impossible.

The two models for opinion dynamics introduced by Deffuant et al. as well as
Hegselmann and Krause, as described above, can be transferred to higher-di-
mensional opinions without any further changes – only the notion of distance
has to be specified: We need to replace the absolute value by a suitable metric,
which then determines the confidence ranges around a given opinion.

The vectorial version of both models was studied in [24] for instance – on
the complete graph with opinion vectors from the unit square [0, 1]2. Both the
Euclidean and the supremum norm (i.e. || . ||2 and || . ||∞) were used as distance
metric, shaping circular and square confidence ranges respectively. The gen-
eralization of the Deffuant model on the two-sidedly infinite path Z to higher-
dimensional opinion spaces is the object of investigation in two of the appended
papers (see below): While in Paper B, vector-valued opinions are considered and
the Euclidean as well as other metrics used as notions of distance, Paper C deals
with the case of opinions given by absolutely continuous probability measures
on [0, 1] and the total variation as distance metric.

(h) Axelrod model
The model proposed by Axelrod [1] in 1997 was actually the first one intro-
ducing the concept of bounded confidence. However here, rather than hav-
ing a sharp threshold, the probability of interaction decays gradually with
respect to the distance of the two opinions involved: Think of the individu-
als again as nodes of a network. Every single one of them is endowed with
an opinion vector in {1, 2, . . . , q}d, each coordinate of which is understood
to represent one of d cultural features and q is the number of possible traits
per feature. In that sense, the opinion vector η(i) = (η1(i), . . . , ηd(i)) is
modelling the current beliefs and attitudes of agent i with respect to d inter-
related topics.
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In an elementary step of the dynamics an individual i and a neighboring one,
say j, are randomly selected and interact with probability

pi,j =
1

d

d∑

k=1

1{ηk(i)=ηk(j)}, (4.2)

which is scaling with the number of shared attitudes. If they interact, one
of the features in which they disagree (i.e. k such that ηk(i) 6= ηk(j)) is
chosen uniformly at random and individual j assumed to be convinced by
the arguments of i, in other words ηk(j) is set to be equal to ηk(i), just like
in the multitype voter model.

The Axelrod model became quite popular among social scientists for the fact
that it includes two principles (which we mentioned earlier) that are consid-
ered to be typical in cultural assimilation: social influence, i.e. interacting
makes people more alike, and homophily – humans tend to interact more
frequently with others that share essential beliefs, attitudes and behaviors.
Obviously, this model also features two kinds of absorbing states: Either all
opinions are the same (consensus) or any two neighboring opinions do not
share one single trait (disagreement).

Following the seminal paper of Axelrod [1] – who focussed on i.i.d. initial
opinion vectors being uniform on {1, 2, . . . , q}d and finite square lattices
as network – several analyses based on numerical simulations have been
performed and show that the value of q determines whether the final state
reached will be consensus or disagreement, for different networks and initial
distributions.

In the original model, the actual values of the coordinates are mere labels:
It does not make a difference if two neighbors have traits that differ by 1 or
q− 1. In [19] a more metric variant of the model has been considered in the
sense that the interaction probability in (4.2) is changed to

pi,j =
1

d

d∑

k=1

(
1− |ηk(i)− ηk(j)|

q − 1

)
.

A further variant of the Axelrod model was suggested in the paper by Def-
fuant et al. [16] as a multidimensional counterpart of the Deffuant model:
They considered the traits to be binary variables (corresponding to q = 2
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above) and neighbors interact only if the number of features they disagree
on does not exceed a given threshold. So the interaction probability becomes
a step function at some given confidence bound. Also the interaction rule
itself was defined slightly different: Once the random feature the individu-
als i and j disagree on is selected, j is not convinced of ηk(i) by default but
adapts with probability µ ∈ (0, 1

2 ].

(i) Relative agreement model
Shortly after introducing the Deffuant model, the authors Deffuant, Am-
blard, Weisbuch and Faure [15] came up with yet another model shap-
ing opinion formation under bounded confidence: In the so-called relative
agreement model, the mindset of an individual is characterized not only
by a continuous real-valued opinion, but also by an associated uncertainty.
Agents start from i.i.d. opinions, uniformly distributed on [−1, 1], and the
interaction rules are as follows: Individuals meet pairwise and when agent
i (holding opinion xi and uncertainty ui) encounters agent j (opinion xj ,
uncertainty uj), they interact only if the intervals [xi − ui, xi + ui] and
[xj − uj , xj + uj ] overlap. Under this premise, let

hij = min{xi + ui, xj + uj} −max{xi − ui, xj − uj}

denote the overlap. If hij > uj , i.e. xj ∈ [xi − ui, xi + ui], the opinion and
uncertainty value of agent i get updated from (xi, ui) to

(
xi + µ · (hijuj − 1) · (xj − xi), ui + µ · (hijuj − 1) · (uj − ui)

)

and analogously for agent j. The parameter µ ∈ (0, 1
2 ] plays essentially the

same role as in the Deffuant model. Besides the fact that the relative agree-
ment model (just like the Axelrod model) implements a more gradual decay
of confidence with distance of opinions, there is another feature that makes
it a less idealized simplification of real-life opinion dynamics: the asym-
metry in its interactions. Even if hij > max{ui, uj}, implying that both
agents update their opinion and uncertainty when they meet, the amount of
influence agents have on each other differs. Individuals with low uncertainty
influence others more compared to those with high uncertainty value.

In [15], the model was simulated with the complete graph as interaction
network. In a later work [2], Amblard and Deffuant studied the model addi-
tionally on both a regular grid and a small-world network.
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Having listed some of the most common models for opinion dynamics, which
incorporate the idea of bounded confidence, it should be mentioned that in recent
years, there have been first attempts to apply these interacting particle systems to
areas outside the field of opinion formation in groups. For example, Morărescu
and Girard [51] used a variant of the weighted Hegselmann–Krause model to de-
fine a randomized algorithm designed to detect communities in networks: Given
the network G = (V,E) and opinion processes {ηt(v)}v∈V , they considered
the confidence bound to be decreasing in time – to be more precise, they set
θt = Rρt for appropriately chosen constants R > 0 and ρ ∈ (0, 1) – and
defined the set of active links at time t as

E(t) = {(u, v) ∈ E; |ηt(u)− ηt(v)| ≤ θt}.

The weighted version is a generalization of the original Hegselmann–Krause
model in the sense that the arithmetic mean in (4.1) gets replaced by a weighted
convex combination (to account for the fact that the influences of compatible
neighbors contributing to the updated opinion might not be equally strong). To-
gether with the time-dependent confidence bound, the update rule thus reads

ηt+1(v) =
∑

u∼v
|ηt(u)−ηt(v)|≤θt

pt(v, u) ηt(u) for all v.

The authors chose the weights to be given by doubly stochastic invertible ma-
trices P (t) =

(
pt(u, v)

)
u,v∈V , that depend on E(t) only. They showed that

under these technical assumptions, the model started with absolutely continuous
opinions converges almost surely in finite time and their algorithm then returns
the stable opinion clusters as communities of the graph.

The idea behind it is easy to grasp: Strongly connected local clusters of
the graph perform enough updates to become more alike before the confidence
bound gets so small that it prevents further assimilation. Sparsely connected
parts of the network instead, will most likely not manage to homogenize fast
enough and thus freeze with multiple opinions. In fact, this community detection
algorithm performed quite well when tested on standard benchmark graphs and
compared to more established algorithms in this field, such as the traditional
methods of graph partitioning and spectral clustering or the popular one based
on edge centrality, which was proposed by Girvan and Newman in 2002. For a
detailed introduction to the topic of community detection in graphs as well as a
presentation of the standard techniques just named, we refer to [23].
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4.2 Disagreement versus consensus – earlier inves-
tigations of the Deffuant model

Now that we have put the model, which Deffuant et al. proposed first, into the
broader context of other common models for opinion formation processes, we
want to give a short overview of the results that have been achieved in earlier
analyses of the Deffuant model.

The findings in the original paper [16] were threefold. Starting from i.i.d.
initial opinions, uniformly distributed on [0, 1], the authors simulated various
configurations in order to understand the influence of the parameters θ and µ
as well as the underlying network topology in respect of the model’s long-term
behavior.

For the complete mixing case with n = 1000 individuals (i.e. the interaction
network is the complete graph K1000), Deffuant et al. noted that a confidence
parameter θ = 1

2 most likely leads to consensus (pretty much at the expectation
1
2 ), whereas θ = 1

5 causes a fragmentation into two finally homogeneous groups
(with opinion values roughly at 1

4 and 3
4 respectively). Besides this dichotomy of

regimes, by keeping θ fixed they found that the convergence parameter µ and the
model size n influence the convergence time only, not the qualitative behavior,
which as a consequence primarily depends on θ. The persistent opinions were
arranged equidistantly and their number scaled roughly like b 1

2θ c.
When they tracked the opinion evolution of single agents from their initial

opinions to one of the several persistent ones in the fragmentation case, µ turned
out to be influential after all: They observed that the overlap of ranges (in terms
of initial opinions) that finally led to one of the persistent opinions strongly de-
pends on µ. For µ = 1

2 agents holding initial opinions in regions between two
persistent ones could basically end up in either of the two groups, while for
smaller values (e.g. µ = 1

20 ) almost every individual joined the cluster, whose
final opinion was closest to its initial opinion value. So in a certain sense, the
parameter µ determines how conservative the individuals are – both in the mi-
croscopic interactions and overall.

In addition to that, they simulated the model also for agents occupying the
sites of a square lattice (of size 29 × 29). Here, essentially the same qualitative
behavior was found: for θ > 0.3 a large group consensus around 1

2 with few
extrem-valued outliers and no consensus for smaller values of θ. In the frag-
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mentation case, however, the variety of scattered opinions was way bigger than
in the setting of complete mixing, as clusters of individuals that are compatible
in terms of opinion values can be separated spatially and in this way be prevented
from interacting.

In another article published by almost the same group of authors [65], an
investigation concerning heterogeneous confidence bounds was added: They
simulated the complete mixing case on 200 individuals with confidence bound
θ = 1

5 , except for 8 individuals among them featuring a larger value (θ = 2
5 ).

It is important to note that individual θ-values in the Deffuant model in gen-
eral violate mass conversation: An encounter of two agents, whose difference in
opinions lies in between their different values of θ, leads to the situation where
the one with larger θ performs an opinion update, the other one does not.

Nevertheless, an interesting combination of the fragmentation and consensus
case over the course of time could be observed in the simulations: In the short
run clustering depends on the lower confidence bound, in the long run it depends
on the higher bound. First, the majority of agents formed two incompatible opin-
ion clusters at a distance larger than 1

5 , then the few ‘open-minded’ agents started
to act as mediators between these groups and slowly but steadily brought them
within talking distance of each other, which finally led to a global consensus –
not at 1

2 though, as asymmetric interactions are not average preserving and can
cause such a drift. The transition time from one regime to the other depended
very much on the proportion of individuals with larger confidence bound.

In addition to it, Deffuant et al. simulated the model with confidence bounds
decreasing in time (which can be seen to describe the reasonable process of
positions hardening in the course of time). In the simplest fragmentation case
this led to major opinion clusters at values of about 0.60 and 0.42 – closer to
each other than in the case of constant confidence bounds. Clearly, this arises
from the fact that the opinions gather in a convergence movement first, before
the confidence bound becomes too small and they split into two incompatible
groups.

A completely different approach to the original model with fully mixed pop-
ulation, i.e. everybody interacts with everybody else, was pursued by Ben-Naim
et al. [3]. They did not run any computer simulations of the agent based model,
but considered a density based model instead (assuming that the number of indi-
viduals is large – a method termed thermodynamical limit in statistical physics):
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If P (x, t) denotes the density of agents having opinion x at time t and µ is fixed
to be 1

2 , the following rate equation arises:

∂

∂t
P (x, t) =

∫∫

|x1−x2|≤θ

P (x1, t)P (x2, t)
[
δ(x− x1+x2

2 )− δ(x− x1)
]

dx1 dx2,

where δ(.) denotes the Dirac delta function.
Given i.i.d. unif([0, 1]) initial opinions and θ = 1 (i.e. no bounded confi-

dence restriction), they showed that the density converges to a delta function at
the initial mean 1

2 . In the non-trivial cases (θ < 1), however, the rate equation is
no longer analytically solvable. Ben-Naim and his co-workers solved it numeri-
cally (after having discretized the opinion space into 200

θ equally spaced states)
and discovered some further interesting facts about the persistent opinion clus-
ters: In the long term, the density converges to a finite weighted sum of delta
functions, i.e.

P (x,∞) =

r∑

i=1

mi δ(x− xi),

where x1, . . . , xr are the persistent opinions and mi, 1 ≤ i ≤ r, the masses of
(that means the fraction of agents ending up in) the corresponding clusters. The
conservation laws (for mass and mean) obviously force

r∑

i=1

mi = 1 as well as
r∑

i=1

mi xi = 1
2 .

As could be expected, the behavior in the case of absent confidence restric-
tion (namely r = 1, x1 = 1

2 ) was also found for values θ > 1
2 , while for θ < 1

2

the number of clusters (at pairwise distance larger than θ) is larger than 1, in
fact r ≥ 3. In addition to that, they also found that there occur three types of
persistent opinion clusters: major (mass > θ), minor (mass < θ

100 ) and a central
cluster located at opinion value 1

2 . All of them are generated (and the central
cluster annihilated) in a periodic sequence of bifurcations as θ is decreased. The
first major clusters appear for θ < 1

4 , which coincides well with the findings of
Deffuant et al. who only considered major clusters and disregarded single out-
liers sticking to extrem opinions. Actually Ben-Naim et al. considered θ = 1 to
be fixed, the initial opinions instead to be i.i.d. unif([−∆,∆]) with variable ∆,
but a simple rescaling translates their results to the original model.

The heuristics they used and implemented, inspired by the methods in statis-
tical physics, were more rigorously applied and verified in a rather recent work
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by Gómez-Serrano et al. [30]. They motivate the mean-field approach mathe-
matically and prove that the long-term behavior of the limiting case (infinitely
many particles) is similar to that of the model with a very large but finite number
of completely mixing agents.

Laguna et al. [40] discovered another feature of the long-term behavior in
the Deffuant model with complete mixing which is governed by the convergence
parameter µ: The fraction of agents that end up in the two most extreme opinion
clusters (which Ben-Naim et al. already showed to be minor but of larger order
compared to the other minor clusters) is scaling with µ. For θ < 1

2 and larger
values of µ, the formation of central opinions is fast enough to seclude many
agents holding extreme initial opinions from the unification process. If µ is
comparatively small, however, those extremists have enough time to become
more moderate in order to be included in one of the major opinion clusters later
on. In this sense, even if it may sound counterintuitive, for θ < 1

2 the formation
of a partial consensus in the population actually benefits from a slower pace in
the dynamics.

Stauffer and Meyer-Ortmanns [60] were among the first ones to follow up
on the idea by Deffuant et al. to consider the model with an interaction topol-
ogy other than the complete graph. They used random graphs generated by the
Barabási–Albert model as underlying network – the usual undirected version (in-
troduced in Section 3.1) as well as a directed one. The results of their computer
simulations suggest that the transition from fragmentation to consensus happens
for the value of θ being about 0.4 (on both the directed and undirected network).
Unlike the case of a fully mixed population, the number of persistent opinions in
the non-consensus case not only depends on θ but also on n, the number of indi-
viduals (for the same reason as in the case of a square lattice). The dependence
of the number of clusters on n (with θ fixed) was estimated to be linear.

In 2004, Fortunato [22] investigated the threshold for a complete consensus
among the agents – as opposed to previous notions of consensus describing the
formation of a widely adapted main stream opinion neglecting some few outliers
(in other words: only one major cluster). He simulated the Deffuant model on
a complete graph, a square lattice with perodic boundary conditions as well as
two random graphs – those originating from the Barabási–Albert and the Erdős–
Rényi model. In the latter, he chose to adapt the probability p (with which an
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edge is kept) to the number n of agents in such a way that the average degree,
(n− 1)p, stays roughly constant.

Fortunato made two central observations: Firstly, the critical value for θ
above which a complete consensus is formed equals 1

2 in all four social topolo-
gies, irrespectively of µ. Secondly, on each of the four networks the probability
of complete consensus converges to a step function at the threshold θ = 1

2 when
the number of individuals is increased.

It has to be mentioned at this point that he performed update steps as ordered
sweeps over the population (for the sake of simplicity): In each round every
individual gets – one after the other – the opportunity to interact with a randomly
selected neighbor. This is different from the original update rule where the edge
along which the next potential interaction takes place is picked uniformly at
random. For large regular systems, however, this seems unlikely to matter.

The first result for the Deffuant model considered on an infinite graph was
published by Lanchier [41] in 2011. He studied the standard Deffuant model
(i.i.d. unif([0, 1]) initial opinions) on the two-sidedly infinite path Z using the
following geometric idea: Instead of analyzing the opinion profiles {ηt(v)}v∈Z
directly, where ηt(v) denotes the opinion of individual v at time t, he considered
what he calls their broken line representation, i.e. {ξt(v)}v∈Z with

ξt(0) = 0 and ξt(v) =





∑
0≤u≤v−1

(2ηt(u)− 1), if v > 0,

∑
v≤u≤−1

(2ηt(u)− 1), if v < 0.

Using quite intricate geometric arguments and the concentration inequality due
to Azuma–Hoeffding, he verified a set of properties for this concatenation of two
symmetric random walks (one evolving forwards, one backwards in time; both
starting at the origin) which allowed to prove the following result:

Theorem 4.1. Consider the Deffuant model on the graph G = (V,E), where
V = Z and E = {〈v, v + 1〉; v ∈ Z}. If µ ∈ (0, 1

2 ] is arbitrary but fixed, the
initial opinions are i.i.d. unif([0, 1]) and {ηt(v)}v∈Z denotes the opinion profile
at time t, then the following holds:

(i) For θ > 1
2 , all neighbors are eventually compatible in the sense that for all

v ∈ Z:
lim
t→∞

P(|ηt(v)− ηt(v + 1)| ≤ θ) = 1.
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(ii) For θ < 1
2 , with probability 1 there will be infinitely many v ∈ Z with

lim
t→∞

|ηt(v)− ηt(v + 1)| > θ.

One thing that is quite remarkable about this phase transition in the behavior
of the Deffuant model is the fact that it already occurs for the one-dimensional
lattice – in marked contrast to the Ising model.

Häggström [32] used different techniques to reprove and slightly sharpen this
result – showing that in the consensus regime (i), all opinions actually converge
almost surely to the mean 1

2 of the initial distribution. The crucial idea in his
proof resides in the connection of the opinion dynamics of the Deffuant model
to a non-random interaction process, which he proposed to call Sharing a drink
(SAD). The SAD-procedure is dual to the opinion formation in the sense that it
keeps track of the opinion genealogy of an individual, i.e. the contributions of
all initial opinions to the current composition of its opinion.

This idea could in fact be employed to generalize the result for the Deffuant
model on Z to initial opinion configurations other than i.i.d. unif([0, 1]), as was
done in Paper A (see below) and by Shang [56] simultaneously and indepen-
dently.





5
Extreme opinions and water transport

In their analyses of the Deffuant model on Z featuring i.i.d. unif([0, 1]) initial
opinions, both Lanchier [41] and Häggström [32] singled out agents that are
cast-iron centrists. These agents start with an opinion value close to the mean
1
2 and will never move far away from it (irrespectively of future interactions),
due to the fact that the influences they can possibly be exposed to are – loosely
speaking – either close to the mean as well or marginal. The opinion ηt(v), of an
agent v ∈ Z at a later time t > 0, is a convex combination of all initial opinions
and the maximally possible contributions on Z decay inversely proportional to
the graph distance. Hence, the initial opinion profile {η0(v)}v∈Z can be such
that agent v sits well-shielded in a large section of individuals equipped with
initial opinions close to 1

2 and all individuals holding more extreme opinions are
too far away to have a significant influence on v.

With this idea in mind (leaving aside the fact that the bounded confidence
restriction might actually eliminate possible influences), obvious candidates for
vertices of this kind are what Häggström [32] calls two-sidedly ε-flat vertices

43
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and Lanchier [41] denotes by the random set

Ω0 =
{
v ∈ Z; 1

2 − ε < 1
n+1

v+n∑

u=v

η0(u), 1
n+1

v∑

u=v−n
η0(u) < 1

2 + ε, ∀n ≥ 0
}
.

If the initial opinions are i.i.d. unif([0, 1]), it can be verified that the set Ω0 is
almost surely non-empty (in fact of infinite cardinality) for all ε > 0, see Prop.
1.1 in [41] or Lemma 4.3 in [32], and that the opinion at two-sidedly ε-flat ver-
tices will be confined to the interval [ 1

2−6ε, 1
2 +6ε] for all times, see Lemma 6.3

in [32]. This consideration, however, is adjusted to the geometry of the underly-
ing network Z and does not answer the question whether on more general graphs
as well (e.g. higher-dimensional grids), we can find vertices whose opinions are
constrained to stay close to the mean by the initial profile already.

In the standard Deffuant model, the existence of agents that will hold an
opinion close to the mean 1

2 , no matter how the random interactions take place,
force a supercritical behavior of the system (for θ sufficiently large) as they will
always be at speaking terms with the whole range of opinions [0, 1] then. Lorenz
and Urbig [46] addressed the question, for which values of θ an asymptotic con-
sensus on Kn can be enforced (alternatively prevented) if the interactions are
not random but chosen in an elaborate succession, i.e. the agents follow a prede-
fined communication plan, adjusted to the initial opinion profile. More precisely,
Lorenz and Urbig define θlow (resp. θhigh) as the infimum (resp. supremum) of
confidence bounds, such that returning to random encounters after an appropri-
ately chosen finite succession of interactions will lead to consensus (disagree-
ment) with probability 1, and prove

max
1≤k≤n−1

∆xk ≤ θlow ≤ max
1≤k≤n−1

k−1∑

j=0

µj ∆xk−j as well as

θhigh = max
1≤k≤n−1

(
1

n− k
n∑

i=k+1

xi −
1

k

k∑

j=1

xj

)
,

where ∆xi = xi+1−xi, for 1 ≤ i ≤ n−1, and (x1, . . . , xn) denotes the vector
of initial opinions {η0(i)}ni=1 in increasing order. These results are verified by
exhibiting a communication plan that circumvents (resp. aims for) the creation
of large gaps in the opinion range.

In the same way as for gaps, one can try to manipulate the interaction scheme
in such a way that the opinion of one fixed agent gets as extreme as possible
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(which might then answer the question if there are nodes stuck with an opin-
ion close to the mean for all times right from the beginning). If we drop the
bounded confidence restriction, this combinatorial optimization problem can be
seen as the task of transporting water on a graph without pumps: Agents are
reinterpreted as identical water barrels on a plane, their social network as a
system of (locked, water-filled) pipes connecting them and the opinion values
as the corresponding water levels. Opening pipe 〈u, v〉 will lead to an update
(η(u), η(v)) 7→ ((1−µ) η(u)+µ η(v), (1−µ) η(v)+µ η(u)), where µ ∈ (0, 1

2 ]

can be chosen arbitrarily. We then want to maximize the water level in a fixed
barrel (target vertex) by opening and closing the locks in an appropriate order.

If we disregard the option to close locks, the problem turns into finding a
connected subset of nodes including the target vertex with maximal average; a
concept known as greedy lattice animal, which will be introduced and reviewed
in the next section. Its relation to the water transport problem, which is relevant
in the analysis of the Deffuant model as outlined above, will be discussed in
Section 5.2.

5.1 Greedy lattice animals and site percolation

In 1993, Cox, Gandolfi, Griffin and Kesten [13] introduced the notion of greedy
lattice animals: They considered an i.i.d. family of positive random variables
{Xv; v ∈ Zd} and the set of connected subsets comprising n vertices of the
grid including the origin, Ξ0(n) := {ξ ⊆ Zd; 0 ∈ ξ, |ξ| = n, ξ is connected}.
A set ξ ∈ Ξ0(n) with maximal weight

∑
v∈ξXv is called a (vertex) greedy

lattice animal (of size n), its weight denoted by Nn.
With respect to the common marginal distribution, represented by X0, the

random variable associated to the origin, they established the following asymp-
totic bound (where log+(x) is a short notation for the positive part of the loga-
rithm, i.e. max{log(x), 0}):

Theorem 5.1. If for some a > 0,

E
(
Xd

0 (log+X0)d+a
)
<∞, (5.1)

then there exists a constant M ∈ R such that

lim sup
n→∞

Nn
n
≤M almost surely.
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In a subsequent publication, Gandolfi and Kesten [28] improved this result
by verifying that the moment condition for the marginal distribution in fact im-
plies a.s. linear growth of Nn in n: They showed that given (5.1), there exists a
constant N ∈ R such that limn→∞

Nn
n = N almost surely and in L1.

Recall that in the model of i.i.d. bond percolation, which was introduced
in Subsection 3.1, we take a graph and toss independent p-biased coins to de-
cide which of the edges are kept and removed respectively. Applying the same
thinning procedure not to the edges but to the vertices of a graph instead – i.e.
independently, each vertex is chosen to be kept (with probability p) or erased
along with all edges it is incident to (with probability 1 − p) – is called i.i.d.
site percolation. Similarly as for bond percolation, in dimension d ≥ 2, there
exists a critical probability pc ∈ (0, 1) for i.i.d. site percolation on Zd marking
the emergence of an infinite cluster. Note that the critical probabilities for bond
and site percolation on the integer lattice of dimension at least 2 are related but
not equal. For further details we refer once again to Grimmett [31].

Relating both concepts, greedy lattice animals and site percolation, Lee [43]
proved among other things the following:

Theorem 5.2. Fix d ≥ 2 and consider an i.i.d. family of positive bounded ran-
dom variables {Xv; v ∈ Zd}, the sets Ξ0(n) and random variables Nn, for
n ∈ N, as above. Let pc denote the critical probability of i.i.d. site percolation
on Zd, R := inf{r ∈ R; X0 ≤ r almost surely} be the essential supremum of
the marginal distribution and N the almost sure limit of Nnn . Then the following
holds:

(i) If P(X0 = R) < pc, then N < R.

(ii) If P(X0 = R) ≥ pc, then N = R.

The case P(X0 = R) > pc is particularly easy and exhibits the connection
to site percolation most obviously: If we disregard all nodes but those v ∈ Zd

with Xv = R, with probability 1 an infinite cluster remains. The origin can
be connected to this cluster through finitely many other nodes, which guaran-
tees a nested sequence {ξn}n∈N of connected sets containing the origin with
limn→∞ 1

n |{v ∈ ξn; Xv = R}| = 1.

Apart from these results, the idea of a vertex greedy animal (as defined
above) can of course be applied to more general graphs than integer lattices.
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5.2 Optimizing pumpless water transport

In the context of making a fixed agent’s opinion (respectively the water level
at a target vertex) most extreme, we don’t care about the number of involved
vertices, hence with respect to greedy lattice animals the following definition is
most appropriate:

For a fixed graph G = (V,E), target vertex v and water levels {η(u)}u∈V ,
let us call a finite set C ⊆ V a lattice animal (LA) for v if C contains v and
is connected. C is a greedy lattice animal for v if it maximizes the average of
water levels over such sets, i.e. if its average equals the value

GLA(v) := sup
C LA for v

1

|C|
∑

u∈C
η(u).

Note that with this altered definition, a greedy lattice animal need not neces-
sarily exist for infinite graphs, as GLA(v) might not be attained.

If κ(v) denotes the supremum of water levels attainable at v by opening
and closing locks, GLA(v) can be used as a lower bound on κ(v) only. As a
consequence, for i.i.d. unif([0, 1]) initial water levels, we can not conclude from
Theorem 5.2 and P(η(0) = 1) = 0 that on Zd, the highest possible water level
at the origin 0 is bounded away from 1 with positive probability.

In fact, the two problems – greedy lattice animals and water transport – as
related as they might seem, are quite different from a technical point of view:
The option to shut open locks introduces a temporal dimension and makes it cru-
cial, which moves are performed first. To get the idea, consider the elementary
example depicted in Figure 5.1 below.

1.00.2

0.5

1.00.3

0.4
A

F

D E

B C

Figure 5.1: A simple water transport instance on 6 nodes.

If A is chosen to be the target vertex, the greedy lattice animal is given
by the set {A,B,C,D,E} with a value of GLA(A) = 0.58. Vertex F can
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however be used to improve the two bottlenecks B and D. This is done most
beneficially, if the pipe 〈D,F 〉 is opened first (until the two water levels have
balanced out completely at 0.4), then closed and thereafter the same procedure
repeated for the edge 〈B,F 〉, leading to κ(A) = 0.62. Further, this simple
water transport instance exemplifies the enhanced structural complexity of the
problem: While it is sufficient to consider spanning trees when searching for a
greedy lattice animal, additional edges forming circles might become important
in the corresponding water transport problem, as it is the case here.

In Paper D (see below), we address the water transport problem both on finite
and infinite graphs and consider its complexity. It turns out that one does not gain
from opening several pipes simultaneously or chosing the mixture parameter
µ in a move to be less than 1

2 , i.e. closing a pipe before the contents of the
two connected barrels have levelled completely. Furthermore, we found that in
dimension d ≥ 2 and given i.i.d. unif([0, 1]) initial opinions, the water level of
a fixed vertex of the integer lattice Zd can almost surely be raised as close to 1

as desired – in contrast to both greedy lattice animals and dimension d = 1.
This fact is one of the main obstacles when trying to generalize the results

established for the Deffuant model on the two sidedly-infinite path Z to higher
dimensions, as it invalidates one of the most central arguments.



6
Summary of appended papers

Paper A:
Further results on consensus formation in the Deffuant model

(co-authored with Olle Häggström)

The contribution of this paper to the analysis of long-term behavior in the Def-
fuant model featuring real-valued opinions on infinite graphs can be broken
down into three parts.

The first one – as alluded to in Section 4.2 – is the extension of the statement
from Theorem 4.1 to more general initial distributions. As was done in [41]
and [32], we consider the model on Z with i.i.d. initial opinions, this time how-
ever distributed according to a general law L(η0) in place of unif([0, 1]). Build-
ing on the ideas from [32], we were able to settle all cases in which the mean
E η0 of the initial marginal distribution is well-defined: If L(η0) is bounded,
there exists a critical value θc for the parameter θ that marks a sharp phase tran-
sition in the long-term behavior from almost sure disagreement (the agents split
into finite, incompatible but finally homogeneous segments) to a.s. complete

49
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consensus (all opinions converge to the mean E η0). The value of θc depends
on two characteristics of the distribution L(η0): its mean and its support. More
precisely, the critical value turns out to be

θc = max{E η0 − essinf(η0), esssup(η0)− E η0, h}, (6.1)

where the essential infimum and supremum mark the extreme ends of the support
and h denotes the length of its largest gap (which means the largest subinterval
I ⊆ [essinf(η0), esssup(η0)] with P(η0 ∈ I) = 0). In the case of an unbounded
initial distribution – under the assumption that not both E η+

0 and E η−0 are in-
finite – the model a.s. behaves subcritically (disagreement) for any choice of
θ > 0. Note that this matches the statement for the bounded case, since θc as
defined in (6.1) becomes infinite for an unbounded initial distribution.

In addition to that, we point out how these results can be transferred to spe-
cial cases of dependent initial opinions. For the arguments used to be valid, it
is sufficient that the initial configuration is ergodic and fulfils an additional re-
quirement, that is called finite energy condition in percolation theory (and was
introduced by Newman and Schulman [52]).

In the second part, the model is considered on higher-dimensional integer
lattices Zd, d ≥ 2. Although the central ideas of proof from dimension one
do not transfer to higher dimensions, elaborating some of the arguments allows
us to prove at least the following partial result: If the marginal distribution of
the i.i.d. initial configuration is bounded and θ sufficiently large (strictly larger
than 3

4 in the case of unif([0, 1]) initial opinions for example), the opinion of
every agent will still almost surely converge to the mean of the initial distribu-
tion. In addition to this, on the one hand we show that the opinions converge in
distribution for any value of θ and on the other hand discuss a generalization to
transitive, amenable graphs.

In the last part, we consider the Deffuant model on the infinite cluster of su-
percritical i.i.d. bond percolation on Zd, d ≥ 2. In this setting one can retrieve
the results derived for the full grid and on top of that, we were able to show that
for small values of θ, the opinions of the agents belonging to the infinite cluster
cannot converge to one fixed value. Neighboring individuals could, however,
still come to a complete agreement in the long run without their opinions con-
verging to a deterministic limit (corresponding to the type of consensus, which
Lanchier [41] formulated in part (i) of Theorem 4.1).
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Paper B:
The Deffuant model on Z with higher-dimensional opinion
spaces

As mentioned in Section 3.2, this paper deals with the generalization of the Def-
fuant model on Z to vector-valued opinions. In the first part, we generalize the
findings for univariate opinions from Paper A to multivariate opinions and stick
to the Euclidean norm as natural replacement for the absolut value (which was
taken to measure the distance between two opinions in the case of real-valued
opinions). Using geometric arguments, that are considerably more involved than
in the case of scalar opinions, we manage to verify properties of the support of
the opinion distribution L(ηt) for times t > 0, depending on the initial distri-
bution L(η0). Especially the notion of a gap in the support of L(η0) has to be
properly defined and analyzed in higher dimensions in order to play the same
role as for univariate distributions.

In the second part, we allow for more general metrics ρ to be employed
as measures of distance – determining if the opinions of two agents are close
enough for them to interact. We are able to transfer the results from the Eu-
clidean case, given that ρ satisfies appropriate extra conditions: weak convexity,
local domination by the Euclidean distance and sensitivity to unbounded coordi-
nates. Through several examples, the necessity of these additional assumptions
is verified.

Paper C:
Overly determined agents prevent consensus in a generalized
Deffuant model on Z with dispersed opinions

The generalization of the original Deffuant model in terms of opinion spaces is
taken one step further in this paper: We consider the model on Z, in which opin-
ions are represented by absolutely continuous probability distributions on [0, 1].
In comparison to finite-dimensional opinions, the expectation of L(η0) corre-
sponds to the so-called intensity measure in the context of random probability
distributions.

For the sake of concreteness, we consider a model in which the initial opin-
ions are given by symmetric triangular distributions: Initially, for each agent
v ∈ Z independently, a vector (U, V ) from the uniform distribution on [0, 1]2
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is drawn. Then v gets attributed the random measure given by the density
that is 0 outside [m,M ] and linear on both [m, m+M

2 ] and [m+M
2 ,M ], where

m := min{U, V } and M := max{U, V }. This way of representing opinions
can be seen as an improvement over real-valued opinions introducing the idea of
uncertainty (around a favored value).

For this model, we calculate the intensity measure and verify that extremely
determined agents (i.e. |U − V | very small) will a.s. prevent consensus for any
θ ∈ (0, 1), given that the total variation is used to measure the distance between
two opinions.

If the determination is bounded, in the sense that the random vector (U, V )

is taken from unif([0, 1]2) conditioned on |U − V | ≥ γ, for a fixed constant
γ ∈ (0, 1), the picture changes. The phase transition in the long-term behavior
from a.s. disagreement to a.s. consensus, known from the investigations dealing
with finite-dimensional opinion spaces, reappears and we are able to calculate
the precise threshold value θc.

Paper D:
Water transport on graphs

(co-authored with Olle Häggström)

Incited by the impossibility of transferring the ideas used in the analysis of the
Deffuant model on Z to higher-dimensional grids, we defined and analyzed a
combinatorial optimization problem that can be seen as pumpless water trans-
port on a graph: The agents holding different opinion values are reinterpreted as
identical water barrels that are filled to different levels, the interactions (still tak-
ing place along the edges of the network) as opening the lock in the pipe between
the two nodes for a certain time span. In this manner, we essentially consider
the same interacting particle system and only think of converging water levels
instead of compromising individuals, but we drop the randomness of encounters
and the confidence bound restriction.

Asking for the maximal amount of water that can be accumulated in a fixed
target barrel by opening and closing the locks in an elaborate succession is
closely related to the question of how extreme the opinion of an agent possi-
bly can become depending on the initial configuration. First, we provide some
tools to describe and analyze optimal strategies to maximize the water in a given
barrel and solve the optimization problem for different types of finite graphs.
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Then, we consider the problem’s complexity and prove by a polynomial reduc-
tion of the satisfiability problem 3-SAT to a suitably chosen instance of the water
transport problem that the latter is NP-hard.

Finally, we verify a fact that in a manner of speaking accounts for the differ-
ent challenges faced in the analysis of the Deffuant model on the integer lattice
Zd, depending on the dimension d: Given i.i.d. unif([0, 1]) initial water levels,
the highest achievable amount in a fixed barrel depends on the initial configura-
tion in a non-deterministic way both for finite graphs and the two-sidedly infinite
path Z. For all other quasi-transitive infinite graphs, however, the level can a.s.
be increased to a value as close to 1 as desired by opening (and closing) the locks
in an appropriate order. The crucial feature of the underlying graph turns out to
be, whether or not the graph contains a neighbor-rich half-line, i.e. an infinite
path with sufficiently many extra vertices attached to it.
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Abstract

The so-called Deffuant model describes a pattern for social interaction, in which two
neighboring individuals randomly meet and share their opinions on a certain topic, if
their discrepancy is not beyond a given threshold θ. The major focus of the analyses,
both theoretical and based on simulations, lies on whether these single interactions
lead to a global consensus in the long run or not. First, we generalize a result of
Lanchier for the Deffuant model on Z, determining the critical value for θ at which a
phase transition of the long term behavior takes place, to other distributions of the
initial opinions than i.i.d. uniform on [0, 1]. Then we shed light on the situations where
the underlying line graph Z is replaced by higher-dimensional lattices Zd, d ≥ 2, or
the infinite cluster of supercritical i.i.d. bond percolation on these lattices.
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1 Introduction

Let G = (V,E) be a simple graph, i.e. having undirected edges and neither loops
nor multiple edges. The considered graph may either be finite or infinite with bounded
maximal degree. Furthermore, without loss of generality we can assume G to be con-
nected, since in what follows one could consider the connected components seperately
otherwise. Every vertex is understood to represent an individual and will at each time
t ≥ 0 be assigned a value representing its opinion. All the edges in E are connec-
tions between individuals allowing for mutual influence. There are a number of models
for what is called opinion dynamics, which are qualitatively different but share similar
ideas, see [2] for an extensive survey.

The Deffuant model (introduced by Deffuant et al. [3]) featuring two model parameters
µ ∈ (0, 1

2 ] and θ ∈ (0,∞) is defined as follows. At time t = 0, the vertices are assigned
i.i.d. initial opinions, in the standard case uniformly distributed on the interval [0, 1]. In
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†Chalmers University of Technology, Sweden. E-mail: olleh@chalmers.se
‡Chalmers University of Technology, Sweden. E-mail: hirscher@chalmers.se
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addition, serving as a regime for the random encounters, every edge e ∈ E is assigned
a unit rate Poisson process. The latter are independent of each other and the initial
distribution of opinion values. Denote the opinion value at v ∈ V at time t by ηt(v),
which remains unchanged until at some time t a Poisson event occurs at an edges
incident to v, say e = 〈u, v〉. The opinion values of u and v just before this happens may
be ηt−(u) = lims↑t ηs(u) =: a and ηt−(v) = lims↑t ηs(v) =: b respectively.

If these values are within the confidence bound θ, they come symmetrically closer
to each other, if not they stay unchanged, i.e.

ηt(u) =

{
a+ µ(b− a) if |a− b| ≤ θ,
a otherwise

and similarly (1.1)

ηt(v) =

{
b+ µ(a− b) if |a− b| ≤ θ,
b otherwise.

Observe that µ is modelling the willingness of the individuals to step towards other
opinions encountered that fall within their interval of tolerance, shaped by θ. In other
words, a value of µ close to 0 represents a strong reluctance to change one’s mind.
For the process to be well-defined, on the one hand one has to make sure that neither
two Poisson events occur simultaneously nor that there is a limit point in time for the
events occuring on edges incident to one fixed vertex. But since the maximal degree is
bounded and we assume the vertex set to be countable, this is almost surely the case.
On the other hand, there is a more subtle issue in how the simple interactions shape
transitions of the whole system on an infinite graph – is it well-defined there as well?
For infinite graphs with bounded degree, this problem is settled by standard techniques
in the theory of interacting particle systems, see Thm. 3.9 on p. 27 in [11].

The most natural question to ask seems to be, if the individual opinions will converge
to a common consensus in the long run or if they are going to be split up into groups of
individuals holding different opinions. In this regard let us define the following types of
scenarios for the asymptotic behavior of the Deffuant model on a connected graph as
t→∞:

Definition 1.1.

(i) No consensus
There will be finally blocked edges, i.e. edges e = 〈u, v〉 s.t.

|ηt(u)− ηt(v)| > θ,

for all times t large enough. Hence the vertices fall into different opinion groups.

(ii) Weak consensus
Every pair of neighbors {u, v} will finally concur, i.e.

lim
t→∞

|ηt(u)− ηt(v)| = 0.

(iii) Strong consensus
The value at every vertex converges, as t→∞, to a common limit l, where

l =

{
the average of the initial opinion values, if G is finite

E η0, if G is infinite.
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Let the scenario in which we have weak consensus, but at some vertices v the value ηt(v)

is not converging be called strictly weak consensus. Whether strictly weak consensus
can actually occur (for some graphs and some initial distributions) is an open problem.

On finite graphs, strictly weak consensus is impossible as the opinion average is pre-
served over time and in general the answer to the question whether we get consensus
in the long run or not clearly depends on the initial setting. With independent initial
opinions distributed uniformly on [0, 1] even for values of θ close to but smaller than 1

consensus might be prevented, albeit with a small probability, e.g. when we get stuck
right from the beginning with all the opinions being close to either 0 or 1 leaving a
gap larger than θ in between, preventing any two individuals situated at different ends
of the opinion range from compromising. In the interdisciplinary area labelled “socio-
physics” some work has been done in simulating the long-term behavior of this model
on various types of finite graphs, such as in [15].

On infinite regular lattices however, the picture is different and the minimal exam-
ple almost settled. For the graph on Z in which consecutive integers are joined by
edges, Lanchier [10] showed for the standard case with i.i.d. unif([0, 1]) distributed ini-
tial values that regardless of µ, which is just controlling the speed of convergence, the
threshold between no consensus and consensus θc is 1

2 , which is the essence of Theorem
2.1.

In this paper, we investigate what happens when this basic setting is generalized, in
two different directions. In Section 2 we stay on the one-dimensional lattice, i.e. the line
graph on Z, but allow for more general initial distributions and are able to settle most
but not all cases of i.i.d. initial configurations (see Theorem 2.2). We also generalize
the model slightly to allow for dependent initial opinions given by stationary ergodic
sequences that satisfy the so-called finite energy condition, known from percolation
theory. (The generalization of the Deffuant model to multivariate opinions can be found
in the upcoming paper [7].)

In Section 3, Z is replaced by the general regular lattice Zd. For d ≥ 2 most of
the techniques developed for the one-dimensional case Z break down, but we are at
least able to show that there won’t be disagreement for a sufficiently large confidence
bound, larger than 3

4 in the standard i.i.d. uniform case (see Theorem 3.1). Further-
more, the arguments used transfer with only minor changes to the more general case
of an infinite, locally finite, transitive and amenable graph (see Remark 3.6).

Finally, in the last section we consider the Deffuant model on the random subgraph
of Zd given by supercritical i.i.d. bond percolation independent of the random variables
driving the opinion dynamics, i.e. the initial configuration and the Poisson processes.
Besides an extension of the result we derived for the full grid to this setting (Theo-
rem 4.2), a lower bound for values of θ allowing for strong consensus on the infinite
component is established (Theorem 4.3).

We find it slightly surprising that we can prove this last result for supercritical per-
colation (with p < 1) but not for the full lattice. The more common situation for random
processes living on supercritical percolation clusters is that these are easier to handle
on the full lattice.

2 Generalized initial configurations on Z

2.1 Independent and identically distributed initial opinion values

Theorem 2.1 (Lanchier). Consider the Deffuant model on the graph (Z, E), where
E = {〈v, v + 1〉, v ∈ Z} with i.i.d. unif([0, 1]) initial configuration and fixed µ ∈ (0, 1

2 ].
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(i) If θ > 1
2 , the model converges almost surely to strong consensus, i.e. with proba-

bility 1 we have: limt→∞ ηt(v) = 1
2 for all v ∈ Z.

(ii) If θ < 1
2 however, the integers a.s. split into (infinitely many) finite clusters of

neighboring individuals asymptotically agreeing with one another, but no global
consensus is approached.

For the line graph, the critical value θc equals thus 1
2 , but what happens at criticality is

still an open question. Lanchier’s result was reproven by Häggström using somewhat
more basic techniques (see [5], Thm. 6.5 and Thm. 5.2).

It turns out that the methods in [5] can be adapted to i.i.d. initial distributions beyond
the unif([0, 1]) case. In the following theorem, we determine θc in all cases except when
the distribution’s positive and negative parts both have infinite expectation (this case
remains unsolved). Upon completing this work, we learned that a similar extension
was simultaneously and independently done by Shang [14]. Part (a) of our Theorem
2.2 conflicts with Thm. 1 in [14], the discrepancy being due to Shang overlooking the
crucial effect that gaps in the support of the distribution of η0 have, if they are large.

Theorem 2.2. Consider the Deffuant model on Z as described earlier with the only
exception that the initial opinions are not necessarily distributed uniformly on [0, 1] (but
still i.i.d.).

(a) Suppose the initial opinion of all the agents follows an arbitrary bounded distri-
bution L(η0) with expected value E η0 and [a, b] being the smallest closed interval
containing its support. If E η0 does not lie in the support, there exists some maxi-
mal, open interval I ⊂ [a, b] such that E η0 lies in I and P(η0 ∈ I) = 0. In this case
let h denote the length of I, otherwise set h = 0.

Then the critical value for θ, where a phase transition from a.s. no consensus to a.s.
strong consensus takes place, becomes θc = max{E η0 − a, b − E η0, h}. The limit
value in the supercritical regime is E η0.

(b) Suppose the initial opinions’ distribution is unbounded but its expected value exists,
either in the strong sense, i.e. E η0 ∈ R, or the weak sense, i.e. E η0 ∈ {−∞,+∞}.
Then the Deffuant model with arbitrary fixed parameter θ ∈ (0,∞) will a.s. behave
subcritically, meaning that no consensus will be approached in the long run.

Before embarking on the proof of this generalized result, let us recall some key ingredi-
ents of the proof for the standard uniform case in [5]. The arguably most central among
these is the idea of flat points. A vertex v ∈ Z is called ε -flat to the right in the initial
configuration {η0(u)}u∈Z if for all n ≥ 0:

1

n+ 1

v+n∑

u=v

η0(u) ∈
[

1
2 − ε, 1

2 + ε
]
. (2.1)

It is called ε-flat to the left if the above condition is met with the sum running from v−n
to v instead. Finally, v is called two-sidedly ε-flat if for all m,n ≥ 0

1

m+ n+ 1

v+n∑

u=v−m
η0(u) ∈

[
1
2 − ε, 1

2 + ε
]
. (2.2)

In order to grasp the crucial role of flat points another concept has to be mentioned,
namely the representation of ηt(v) as a weighted average of initial opinions (see La. 3.1
in [5]). This convex combination of initial opinions can be written in a neat form, using
as a tool the non-random pairwise averaging procedure Häggström called Sharing a

EJP 19 (2014), paper 19.
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drink (SAD) in [5]. In the latter, one has an initial profile {ξ0(v)}v∈Z, with ξ0(0) = 1 and
ξ0(v) = 0 for all v 6= 0, symbolizing a full glass of water at site 0 and empty ones at all
other sites. The averaging is now done as in (1.1) but without the threshold θ and the
encounters are no longer random, but given by a sequence of edges. Elements of [0, 1]Z

that can be obtained by a finite such sequence are called SAD-profiles. An appropriately
tailored SAD-procedure will then mimick the dynamics of the corresponding Deffuant
model backwards in time in such a way that the state ηt(0) in the Deffuant model at any
given time t > 0 can be written as a weighted average of states at time 0 with weights
given by an SAD-profile. In [5], general properties of SAD-profiles and consequences
for ηt(0) are derived. For example, the opinion value at a vertex which is two-sidedly
ε-flat in the initial configuration can throughout time not move further away than 7ε

from its initial value (see La. 6.3 in [5]).

Proof of Theorem 2.2. (a) The proof of this part will be subdivided into three steps
marked by (i), (ii) and (iii).

(i) At first, let us suppose that the initial opinions are distributed on [0, 1] accord-
ing to L(η0) having expected value E η0 = 1

2 and mass around the expectation
as well as at least one of the extremes, i.e. for all ε > 0 we have

P (η0 < ε or η0 > 1− ε) > 0, P
(

1
2 − ε ≤ η0 ≤ 1

2 + ε
)
> 0.

Then we claim that the result of Theorem 2.1 still holds true.

To prove this generalization of the standard uniform case is in fact to check that the
crucial conditions in Häggström’s [5] proof are met. First of all, the i.i.d. property
guarantees that the distribution of the initial configuration is translation invariant,
hence both the left- and right-shift of the system (that is v 7→ v − 1 ∀ v ∈ Z and
v 7→ v + 1 ∀ v ∈ Z respectively) are measure-preserving.

The proof of La. 4.2 in [5] showing that P(v is ε-flat to the right) > 0 for every ε > 0

and v ∈ Z only uses the Strong Law of Large Numbers (SLLN), local modification
(which employs that P

(
1
2 − ε ≤ η0(v) ≤ 1

2 + ε
)
> 0 for all ε > 0, which we assumed)

as well as E η0 = 1
2 .

By symmetry the same is true for ε-flatness to the left and the additional assumption
that P(η0 /∈ [ε, 1 − ε]) > 0 provides the missing ingredient to mimick Prop. 5.1 and
Thm. 5.2 in [5] verbatim: If θ < 1

2 , pick ε > 0 small enough such that θ ≤ 1
2 − 2ε.

With positive probability any given site v is prevented from ever compromising with
its neighbors already by the initial configuration, namely if v − 1 is ε-flat to the left,
v + 1 ε-flat to the right and v itself an outlier in the sense that η0(v) /∈ [ε, 1− ε]. This
establishes the subcritical case (i) in Theorem 2.1.

To show P(v is two-sidedly ε-flat) > 0 for all v ∈ Z, ε > 0 (in La. 4.3 in [5]) it is used
once more that P

(
1
2 − ε ≤ η0 ≤ 1

2 + ε
)
> 0. Following the reasoning of Sect. 6 in [5]

literally will settle the supercritical case. The only change that has to be made in
order to adapt to the generalized setting is that the expected energy at time t = 0,
i.e. E (η0(v)2) ∈ (0, 1] in La. 6.2, is no longer 1

3 as for the uniform distribution. This
minor change is not crucial however, since only the value’s finiteness is used in the
proof of Prop. 6.1.

(ii) Now suppose the initial distribution is as in (i), but fails to have mass around
the expectation 1

2 and leaves a gap of width h ∈ (0, 1], i.e. there exists some
maximal (open) interval I ⊂ [0, 1] of length h such that 1

2 lies inside I and
P(η0 ∈ I) = 0. Then we claim that the critical value becomes θc = max{ 1

2 , h}.
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Changing the assumptions concerning the initial distribution of opinions as in (ii)
will affect both the sub- and supercritical case as outlined in step (i). Clearly, the
limiting behavior a.s. cannot be consensus for θ < h due to the fact that with proba-
bility 1 we will have initial opinion values both below and above 1

2 . Since an update,
according to (1.1), can only take place between neighbors that are either both be-
low or both above 1

2 , sites with initial values above the gap I will throughout time
stay above it and the same holds for initial values below the gap. In particular,
edges that are blocked due to incident values lying on different sides of the gap I

in the beginning will stay blocked for ever, making consensus impossible.

For θ > h, however, the behavior is pretty much as in the first case. Neverthe-
less, when it comes to show that there will be arbitrarily flat points with positive
probability, one has to go about somewhat differently due to the fact that for suffi-
ciently small ε, P

(
η0 ∈ [ 1

2 − ε, 1
2 + ε]

)
= 0, which implies that no site can be ε-flat in

the initial configuration by the very definition of flatness (taking n = 0 in (2.1) and
m = n = 0 in (2.2) respectively).

Let the gap interval be denoted by I = (α, α+ h) and fix δ > 0. Choose two rational
numbers in [0, 1

2 ) ∩ [α − δ, α] and ( 1
2 , 1] ∩ [α + h, α + h + δ] respectively, say p and q,

and define I1 := [p, α] and I2 := [α+ h, q]. Since I is maximal, one can choose these
rationals in such a way that

P(η0 ∈ I1) > 0 as well as P(η0 ∈ I2) > 0.

-
0 1

2
1

-�
I1 I2

α α+h

I

p q

Clearly, there exist natural numbers m,n

s.t. m
m+n p + n

m+n q = 1
2 . As numbers from

I1 and I2 differ not more than δ from p and
q respectively, the average of m numbers
from I1 and n numbers from I2 surely lies
within [ 1

2 − δ, 1
2 + δ].

Thus, we get that for any fixed k ∈ N = {1, 2, . . . }:

P


 1

k(m+ n)

k(m+n)−1∑

v=0

η0(v) ∈
[

1
2 − δ, 1

2 + δ
]

 > 0. (2.3)

Now let us consider some fixed time point t > 0 and the corresponding configu-
ration {ηt(v)}v∈Z. There is a.s. an infinite increasing sequence of not necessarily
consecutive edges (〈vk, vk + 1〉)k∈N to the right of site 0, on which no Poisson event
has occurred up to time t.

Clearly, their positions are random, so let lk := vk+1 − vk, for k ∈ N, denote the
random lengths of the intervals in between and l0 := v1 − v0 + 1 the one of the
interval including 0, where 〈v0 − 1, v0〉 is the first edge to the left of the origin
without Poisson event. Since the involved Poisson processes are independent, it
is easy to verify that the lk, k ∈ N0 = {0, 1, 2, . . . }, are i.i.d., having a geometric
distribution on N with parameter e−t.

For δ > 0, let Aδ be the event that l0 is finite and only finitely many of the events
{lk ≥ kδ}, k ∈ N, occur. Then their independence and the Borel-Cantelli-Lemma
tell us that Aδ has probability 1. On Aδ however the following holds a.s. true:
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lim sup
v→∞

1

v + 1

v∑

u=0

ηt(u) = lim sup
v→∞

1

v + 1

v∑

u=v0

ηt(u)

≤ lim sup
v→∞

1

v + 1

v∑

u=v0

η0(u) + δ

= lim
v→∞

1

v + 1

v∑

u=0

η0(u) + δ =
1

2
+ δ.

The inequality follows from the fact that the Deffuant model is mass-preserving
in the sense that ηt(u) + ηt(v) = ηt−(u) + ηt−(v) in (1.1), hence for all k ∈ N:∑vk
u=v0

η0(u) =
∑vk
u=v0

ηt(u). For the average at time t running from v0 to some
v ∈ {vk + 1, . . . , vk+1} to differ by more than δ from the one at time 0, the interval
has to be of length more than kδ, since vk ≥ k and ηt(u) ∈ [0, 1] for all t, u. This,
however, will happen only finitely many times. Since δ was arbitrary and mimicking
the same argument for the limes inferior, we have established that

lim
v→∞

1

v + 1

v∑

u=0

ηt(u) =
1

2
almost surely. (2.4)

Now fix ε > 0 such that h+ ε
3 < θ, choose δ = ε

6 in (2.3) as well as the rationals p, q
and integers m,n accordingly. Due to (2.4) there exists some integer number k s.t.
the event

A :=

{
1

v + 1

v∑

u=0

ηt(u) ∈
[

1
2 − ε

3 ,
1
2 + ε

3

]
for all v ≥ N

}

has probability greater than 1 − e−2t, where N := k(m + n) − 1. Let B in turn be
the event that there was no Poisson event on 〈−1, 0〉 and 〈N,N + 1〉 up to time t,
hence P(B) = e−2t. Finally, let C be the event that the initial values η0(0), . . . , η0(N)

were all in [p, q], km of them below 1
2 , kn above 1

2 , and the Poisson firings on the
edges 〈0, 1〉, . . . , 〈N−1, N〉 up to time t are sufficiently numerous such that, given B,
ηt(u) ∈ [ 1

2 − ε
3 ,

1
2 + ε

3 ] for all u ∈ {0, . . . , N}. Note that q− p ≤ h+ 2δ < θ, hence every
such Poisson event will lead to an update, and that the independence of the initial
configuration and the Poisson processes together with the considerations leading
to (2.3) imply that C has positive probability. Furthermore, C is independent of B
and A ∩B cannot have probability 0, since

P(A ∩B) = P(A) + P(B)− P(A ∪B) > (1− e−2t) + e−2t − P(A ∪B) ≥ 0.

This gives that the conditional probabilities P(A|B) and P(C|B) are both strictly
greater than 0.

Given B, we can apply the coupling trick, commonly known as local modification,
precisely as in the proof of La. 4.2 in [5] to find that P(A ∩ B ∩ C) > 0. A one-line
calculation shows that A ∩ B ∩ C implies the ε-flatness to the right of site 0 in the
configuration at time t.

Since the distribution of {ηt(u)}u∈Z is still translation and left-right reflection invari-
ant, every site v ∈ Z is ε-flat to the right (or left) at time t with positive probability
on the one hand, and on the other this allows us to follow the argument in (i) settling
the subcritical case and forcing θc ≥ max{ 1

2 , h}.
A short moment’s thought verifies that ε-flatness to the right of site v and ε-flatness
to the left of site v−1 simultaneously imply two-sided ε-flatness of both, v and v−1.
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Let Arv, B
r
v , C

r
v be the sets appearing above, corresponding to site v and “right”, and

Alv−1, B
l
v−1, C

l
v−1 the ones corresponding to v − 1 and “left”. The involved indepen-

dences lead to

P(Arv ∩Brv ∩ Crv ∩Alv−1 ∩Blv−1 ∩ Clv−1)

= P(Arv ∩ Crv ∩Alv−1 ∩ Clv−1|Brv ∩Blv−1) · P(Brv ∩Blv−1)

= P(Arv ∩ Crv |Brv ∩Blv−1) · P(Alv−1 ∩ Clv−1|Brv ∩Blv−1) · P(Brv ∩Blv−1)

= P(Arv ∩ Crv |Brv) · P(Alv−1 ∩ Clv−1|Blv−1) · P(Brv ∩Blv−1) > 0,

since P(Brv ∩ Blv−1) = e−3t > 0. Hence two-sided ε-flatness at time t has posi-
tive probability as well. Following the argument corresponding to the supercrit-
ical case in (i), using the preserved translation invariance of the distribution of
{ηt(u)}u∈Z once more, we find that there will be consensus in the long run, if only
θ > max{ 1

2 , h}.
Putting both arguments together, this proves the claim θc = max{ 1

2 , h}.

(iii) Finally, suppose that [a, b] is the smallest closed interval containing the support
of the initial opinions’ distribution and that the latter features a gap of width
h ∈ [0, b − a] around the expected value E η0 ∈ [a, b]. Then we claim that the
critical value becomes θc = max{E η0 − a, b − E η0, h} and the limit in the case
of strong consensus is E η0.

Clearly, the dynamics of the Deffuant model are not effected by translations of the
initial distribution (x 7→ x+ c for some constant c ∈ R). A scaling (x 7→ x

c , c ∈ R>0)
has the only effect that the value for the parameter θ has to be rescaled too, in order
to get identical dynamics.

Let c := max{E η0 − a, b− E η0} and consider the linear transformation

x 7→ x−E η0
2 c + 1

2 .

The transformed initial distribution satisfies the assumptions in step (ii) and leaves
a gap of width h

2 c around the mean 1
2 . Therefore, the considerations in (ii) allow us

to conclude

θc = 2 c ·max{ 1
2 ,

h
2 c} = max{c, h} = max{E η0 − a, b− E η0, h}.

Note that the limit of an individual opinion in the supercritical case is the retrans-
formed equivalent of 1

2 , i.e. 2 c ·
(

1
2 + (E η02 c − 1

2 )
)

= E η0.

(b) To prove the statement on unbounded initial distributions we have to treat two
cases, namely the one where E |η0| < ∞ and the other where exactly one of both
E η+

0 ,E η
−
0 is infinite.

(i) In case of an unbounded initial distribution with existing first moment and
expectation E η0 <∞, the SLLN reads (for arbitrarily chosen v ∈ Z):

P

(
lim
n→∞

1

n+ 1

v+n∑

u=v

η0(u) = E η0

)
= 1.

Consequently, there exists some number r > 0 s.t.

P

(
1

n+ 1

v+n∑

u=v

η0(u) ∈ [E η0 − r,E η0 + r] for all n ∈ N0

)
> 0.
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Slightly abusing the definition (the expectation 1
2 in (2.1) would have to be

replaced by E η0), one could say that with positive probability site v is r-flat to
the right.

Let the confidence bound θ take on some value in (0,∞). Strictly along the
lines of Prop. 5.1 in [5], it follows that if v − 1 and v + 1 are r-flat to the left
and right respectively and simultaneously η0(v) /∈ [E η0− r− θ,E η0 + r+ θ] – an
event with positive probability – the values at v−1 and v+1 will throughout all
of time stay within the interval [E η0−r,E η0 +r] leaving the edges 〈v−1, v〉 and
〈v, v + 1〉 blocked. Since this happens at every site v with positive probability,
ergodic theory tells us that it will almost surely occur at infinitely many sites.

(ii) Now suppose that the expectation of η0 exists only in the weak sense, i.e.
E η0 ∈ {−∞,+∞}. Once more, symmetry allows us to focus on the case
E η+

0 =∞, E η−0 <∞. In this case the SLLN reads

P

(
lim
n→∞

1

n

v+n∑

u=v+1

η0(u) =∞
)

= 1. (2.5)

We can assume P(η0 < 0) > 0, otherwise a translation (irrelevant for the dy-
namics) as in the last step of (a) will reduce the problem to this setting. Some
one-sided version of the idea of proof using flatness can then be employed.

Let the confidence bound θ ∈ (0,∞) be arbitrary but fixed. By (2.5), for suffi-
ciently large N ∈ N the following event has non-zero probability:

AN :=

{
1

n

v+n∑

u=v+1

η0(u) > θ for all n ≥ N
}
.

Local modification is again the key step to advance. Let ξ := L(η0) denote the
distribution of η0 and ξ|(θ,∞) its distribution conditioned on the event {η0 > θ}.
Clearly, ξ is stochastically dominated by ξ|(θ,∞), i.e. ξ � ξ|(θ,∞), implying

L
(
(η0(u))u≥v+1

)
=
⊗

u≥v+1

ξ �
(

v+N⊗

u=v+1

ξ|(θ,∞)

)
⊗
( ⊗

u>v+N

ξ

)
.

Let B be the event {η0(v + 1) > θ, . . . , η0(v + N) > θ}, which has non-zero
probability, and

A1 :=

{
1

n

v+n∑

u=v+1

η0(u) > θ for all n ∈ N
}
.

The stochastic domination from above yields:

P(A1) ≥ P(A1 ∩B) = P(AN ∩B) = P(AN |B) · P(B)

≥ P(AN ) · P(B) > 0.

The very same ideas as in the proof of Prop. 5.1 in [5] show that ifA1 occurs and
the edge 〈v, v + 1〉 doesn’t allow for an update, irrespectively of the dynamics
on {u ∈ Z, u ≥ v + 1}, we have that ηt(v + 1) > θ is preserved for all times
t > 0. By symmetry the same holds for site v − 1 and the half-line to the
left, i.e. {u ∈ Z, u ≤ v − 1}. Independence of the initial opinions therefore
guarantees that with positive probability, the initial configuration can be such
that η0(v) < 0 and the values at sites v − 1 and v + 1 are doomed to stay above
θ, blocking the edges adjacent to v once and for all. Ergodicity makes sure that
with probability 1 infinitely many sites will get stuck this way.
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Example 2.3. (a) As a first toy application of the above result, let us consider the Def-
fuant model on Z in which the initial values are independently distributed according
to a beta distribution Beta(α, β), where the two real numbers α, β > 0 represent the
parameters of this family of distributions. That means η0 has support [0, 1] and its
distribution the density function

fα,β(x) =
1

B(α, β)
xα−1 (1− x)β−1, for x ∈ [0, 1],

where the normalizing factor is given by the beta function

B(α, β) =

∫ 1

0

tα−1 (1− t)β−1 dt.

Since fα,β > 0 on the open interval (0, 1), there are no gaps in the support and a
simple calculation shows E η0 = α

α+β . Consequently, part (a) of Theorem 2.2 shows
that the critical value for the confidence bound separating the regimes of consensus
and fragmentation is

θc =

{
α

α+β , if α ≥ β
β

α+β , otherwise
=

max{α, β}
α+ β

.

This example appears in [14] as well.

(b) Letting the initial values be independently drawn from a uniform distribution on the
discrete set {−0.8,−0.3, 0.7, 0.8}, [−0.8, 0.8] is the minimal closed interval containing
the support of L(η0). Obviously, there is a gap of width h = 1 around the mean
E η0 = 0.1. Applying part (a) of Theorem 2.2 we can conclude that

θc = max{E η0 − (−0.8), 0.8− E η0, h} = max{0.9, 0.7, 1} = 1.

(c) If we take the initial opinions to be i.i.d. and uniform on the set [0, 1
8 ]∪ [ 7

8 , 1] instead,
its expectation is E η0 = 1

2 . But even though P(|η0 − E η0| > 1
2 ) = 0, a choice of

θ ∈ ( 1
2 ,

3
4 ) will a.s. lead to no consensus, as θc = 3

4 , again by part (a) of the above
theorem. The next proposition actually shows that even for θ = θc the limiting
scenario will a.s. be no consensus.

For a bounded initial distribution whose support has a large gap around its mean, we
can deal with the behavior at criticality:

Proposition 2.4. Let the initial opinions be again i.i.d. with [a, b] being the smallest
closed interval containing the support of the marginal distribution, and the latter fea-
ture a gap (α, β) of width β − α > max{E η0 − a, b − E η0} around its expected value
E η0 ∈ [a, b].

At criticality, that is for θ = θc = max{E η0 − a, b − E η0, β − α} = β − α, we get the
following: If both α and β are atoms of the distribution L(η0), i.e. P(η0 = α) > 0 and
P(η0 = β) > 0, the system approaches a.s. strong consensus. However, it will a.s. lead
to no consensus if either P(η0 = α) = 0 or P(η0 = β) = 0.

Proof. In order to prove this statement, we can follow the arguments in the proof
of part (a) of Theorem 2.2. By the translation and scaling invariance of the dynam-
ics as described in step (iii) of the cited proof, we can restrict ourselves to the case
in step (ii) and assume that the support of L(η0) is a subset of [0, 1], E η0 = 1

2 and
P (η0 < ε or η0 > 1− ε) > 0 for all ε > 0. Note that under these further assumptions,
we have θ = θc = β − α > 1

2 .
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If both ends of the gap are atoms, we can follow the reasoning in the supercritical
case in step (ii) of the proof of Theorem 2.2 (a) and for every δ > 0 choose natural
numbers m,n such that m

m+n α + n
m+n β ∈ [ 1

2 − δ, 1
2 + δ], to get (2.3). Using such a

collection of initial opinions, i.e. m times the value α and n times β, all of them will
be precisely within the confidence bound, hence allow for the manipulation described
above as local modification. Having arbitrarily flat points with positive probability at
time t > 0, θ > 1

2 guarantees a.s. strong consensus.
The negative statement is easy to handle. If without loss of generality P(η0 = α) = 0,

with probability 1 there will be no initial value lying in the interval [α, β). Since θ = β−α,
this gap cannot be bridged. We refer once more to step (ii) in the proof of part (a) of
Theorem 2.2 for a more detailed reasoning.

Does Proposition 2.4 constitute progress in the attempt to solve the critical case in
the setting of uniformly distributed initial opinions (the open problem mentioned right
after Theorem 2.1)? Probably not, since in this setting, due to the large width of the gap
β−α > max{E η0−a, b−E η0}, the criticality comes only from the gap in the distribution,
not the distance between the mean and the extreme ends of the initial distribution.

As already mentioned in the introductory section, a next step of generalization in
terms of the initial opinions would be vector-valued distributions. Despite the fact that
this seems to be a minor modification it invokes major changes and would thus exces-
sively expand this section, which is why it is omitted here and treated as a separate
topic in [7].

2.2 Dependent initial opinion values

The definition of the Deffuant model generalizes straightforwardly to dependent ini-
tial configurations. Considering that – in our treatment of the model on Z in the fore-
going subsection – the independence of initial opinions was merely used to deduce
translation invariance and ergodicity with respect to shifts as well as for the local mod-
ification, it is a valid question in how far the results of Theorem 2.2 can be generalized
to initial configurations {η0(v)}v∈Z that do not form an i.i.d. sequence. The example
below shows that stationarity and ergodicity of the sequence of initial opinions is not
enough to retain the results from Subsection 2.1. In order to be able to locally modify
the configuration as done in the proof of Theorem 2.2, we have to add an extra condi-
tion, which is a natural extension to continuous state spaces of the well-known finite
energy condition of percolation theory (see for instance Def. 2 in [1]).

Definition 2.5. Let {ξv}v∈Z be a stationary sequence of random variables. It is said
to satisfy the finite energy condition if it allows conditional probabilities such that the
conditional distribution of ξ0 given {ξv}v∈Z\{0} almost surely has the same support as
the marginal distribution L(ξ0).

Carefully checking its proof with this extra condition in hand, we can get the following
generalization of Theorem 2.2:

Theorem 2.6. Consider the Deffuant model on Z with initial opinion values {η0(v)}v∈Z.
If {η0(v)}v∈Z is a stationary sequence of random variables, ergodic with respect to shifts
and satisfying the finite energy condition, the results of Theorem 2.2 still hold true.

To see that the added assumption that conditioning on the configuration apart from a
given site v will not change the support of the distribution at site v is essential and can
not be dropped, see the following example.

Example 2.7. Let U be a random variable, uniformly distributed on {−4,−3, . . . , 4}.
The initial configuration will now be made up of blocks of length 9 centered in the sites
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{ck}k∈Z := {U + 9 k}k∈Z. Each block will independently be either of the form η0(ck) = 1
2

and η0(v) = 0 for v ∈ {ck − 4, . . . , ck − 1, ck + 1, . . . , ck + 4} or η0(ck) = 1
2 and η0(v) = 1 for

v ∈ {ck − 4, . . . , ck − 1, ck + 1, . . . , ck + 4}, both with probability 1
2 .

The initial configuration {η0(v)}v∈Z defined in this way is translation invariant and
ergodic with respect to shifts, having the marginal distribution L(η0) concentrated on
{0, 1

2 , 1} with P(η0 = 0) = P(η0 = 1) = 4
9 and P(η0 = 1

2 ) = 1
9 .

If Theorem 2.1 applied, the critical value should be θc = 1
2 but it is not hard to see

that for θ < 4
5 compromises are at first confined to happen within intervals consisting

of blocks of the same kind and can thus only lead to values in [0, 1
10 ]∪ [ 9

10 , 1] at sites next
to a neighboring block of the other kind, see also Thm. 2.3 in [5]. This means that the
edges connecting two blocks of different kind will be blocked throughout time forcing
a.s. no consensus.

Due to the fixed block size, the sequence {η0(v)}v∈Z as defined above is obviously not
mixing. An easy modification, for instance allowing random block lengths taking values
9 and 11, shows that even an initial configuration which is given by a stationary mixing
sequence of random variables does not, in general, allow for the results of the i.i.d. case
to be transferred.

3 Upper bound for the critical range of θ on Zd

3.1 Application of energy arguments

Moving on to higher dimensions as far as the underlying lattice is concerned pro-
vides the opportunity to go around blocked edges and there is no handy generalization
of the notion of flatness. Among other things, these changes render most of the ar-
guments used in the Z case void. Enough can be resurrected, however, to establish a
lower bound for θ above which consensus is achieved. Throughout Sections 3 and 4
(Theorem 4.3 being an exception) we will only assume that the configuration of initial
opinion values {η0(v)}v∈Zd is stationary and ergodic with respect to shifts of the kind
Ti : v 7→ v + ei, where ei is the ith standard basis vector of Rd for i ∈ {1, . . . , d}.

Theorem 3.1. Consider the Deffuant model on the d-dimensional lattice Zd.

(a) If the initial values are distributed uniformly on [0, 1] and θ > 3
4 , the configuration

will a.s. approach weak consensus, i.e.

P
(

lim
t→∞

|ηt(u)− ηt(v)| = 0
)

= 1

for all u, v ∈ Zd s.t. 〈u, v〉 forms an edge.

(b) For general initial distributions on [0, 1] the range of θ, where final consensus is
guaranteed, is non-trivial, i.e. including values smaller than 1, unless the initial
values are concentrated on 0 and 1, taking on both values with positive probability.

To prove this, we need first to establish some lemmas, the first one involving the idea of
energy, introduced in Sect. 6 of [5] (not to be confused with the completely unrelated
concept of finite energy from Subsection 2.2).

Assume the initial values {η0(v)}v∈Zd have a stationary distribution, ergodic with
respect to shifts and the marginal distribution has bounded support, without loss of
generality we can take [0, b] to be the smallest closed interval containing it. Denote by
Wt(v) = E(ηt(v)) the energy at vertex v at time t, where E : [0, b] → R≥0 is some fixed
convex function. If a Poisson event occurs at the edge e = 〈u, v〉 at time t, and the
values at u and v, ηt−(u) and ηt−(v) respectively, are within θ, energy is transferred and
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(possibly) lost along the edge. The latter to the amount

wt(e) := (Wt−(u) +Wt−(v))− (Wt(u) +Wt(v)). (3.1)

Since ηt(u) = (1−µ) ηt−(u) +µ ηt−(v) and ηt(v) = (1−µ) ηt−(v) +µ ηt−(u), the convexity
of E gives:

Wt(u) +Wt(v) ≤ (1− µ)Wt−(u) + µWt−(v) + (1− µ)Wt−(v) + µWt−(u)

= Wt−(v) +Wt−(u),

i.e. the non-negativity of wt(e). Let T denote the sequence of arrival times of the Poisson
events at e and define the accumulated energy loss along e as

W loss
t (e) :=

∑

s∈T∩[0,t]

ws(e).

Finally, let E(v) denote the set of edges incident to v and define the total energy at-
tributed to vertex v as

W tot
t (v) := Wt(v) +

1

2

∑

e∈E(v)

W loss
t (e). (3.2)

Note that by (3.1) the sum W tot
t (v)+W tot

t (u) is preserved when an update along the edge
〈u, v〉 takes place. Along the lines of La. 6.2 in [5] we can show the following analog:

Lemma 3.2. For every v ∈ Zd and t ≥ 0 we have

E [W tot
t (v)] = E [W0(0)]. (3.3)

Proof. Note first that for fixed time t the process {W tot
t (v)}v∈Zd only depends on the

initial configuration and the independent Poisson processes attributed to the edges. Its
distribution is therefore translation invariant and the process ergodic with respect to
shifts.

Let Λn = [−n, n]d denote the box of sidelength 2n centered at the origin 0. It contains
|Λn| = (2n+1)d vertices of the grid Zd and there are 2d (2n+1)d−1 edges linking vertices
inside Λn to vertices outside of the box. The set of such edges is called edge boundary
of Λn and denoted by ∂EΛn.

The multivariate version of Birkhoff’s Theorem, attributed to Zygmund (see e.g.
Thm. 10.12 in [8]), tells us that

lim
n→∞

1

|Λn|
∑

v∈Λn

W tot
t (v) = E [W tot

t (0)] almost surely. (3.4)

Note that the statement of (3.4) is still true if we pass from the original sequence of sets
(Λn)n∈N to any subsequence.

Translation invariance of the configuration implies E [W tot
t (v)] = E [W tot

t (0)] for all
sites v and by definition W loss

0 (e) = 0 for all edges e since at time 0 no Poisson event has
occurred yet, hence W tot

0 (0) = W0(0).

Let us now choose a subsequence (Λnk
)k∈N such that

∞∑

k=1

|∂EΛnk
|

|Λnk
| <∞. (3.5)

As mentioned, (3.4) clearly implies

lim
k→∞

1

|Λnk
|
∑

v∈Λnk

W tot
t (v) = E [W tot

t (0)] almost surely. (3.6)
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In order to establish the claim it is therefore left to show that the limit in (3.6) is constant
over time.

Take ε > 0 small and fix a time interval [t, t + ε]. Note that the energy function E is
bounded on [0, b] by M := max{E(0), E(b)}, due to its convexity. Let Nn,ε be the number
of Poisson events on edges in ∂EΛn within the time interval (t, t + ε], see Figure 1, and
An be the event

An :=
{
Nn,ε ≥ 1

M

(
|∂EΛn|+

√
|Λn|

)}
.

The number on every single edge is a Poisson distributed random variable with param-
eter ε, consequently having mean and variance ε.

As those random variables are independent, a choice of ε such that ε ≤ 1
M yields

using Chebyshev’s inequality:

P(An) ≤ P
(
Nn,ε − ENn,ε ≥ 1

M

√
|Λn|

)
≤M2 var(Nn,ε)

|Λn|
≤M |∂EΛn|

|Λn|
.

Λn

0

Figure 1: The interactions on the boundary of the box Λn in the time interval
[t, t+ ε] are few compared to the size of the box for large n.

In view of (3.5), the Borel-Cantelli-Lemma shows that almost surely only finitely many
Ank

will occur. In order to conclude, we have to show that this implies

lim
k→∞

1

|Λnk
|
∑

v∈Λnk

W tot
t+ε(v) = lim

k→∞
1

|Λnk
|
∑

v∈Λnk

W tot
t (v), (3.7)

which in turn guarantees that the limit in (3.6) is constant over time.

It is not hard to convince yourself that Poisson events off ∂EΛnk
will not change∑

v∈Λnk
W tot
t (v) and every single event on ∂EΛnk

can change the sum of total energies
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in Λnk
by at most M . Therefore, on the complement of Ank

, we get that

1

|Λnk
|

∣∣∣∣∣
∑

v∈Λnk

W tot
t+ε(v)−

∑

v∈Λnk

W tot
t (v)

∣∣∣∣∣ ≤
M

|Λnk
| ·Nnk,ε <

|∂EΛnk
|

|Λnk
| +

1√
|Λnk
|
.

As this converges to 0 when k →∞, we have shown that (3.7) holds almost surely, which
concludes the proof.

Lemma 3.3. For the Deffuant model on the lattice Zd as above, with threshold param-
eter θ ∈ (0, b], the following holds a.s. for every two neighbors u, v ∈ Zd:

Either |ηt(u)− ηt(v)| > θ for all sufficiently large t, i.e. the edge 〈u, v〉
is finally blocked, or

lim
t→∞

|ηt(u)− ηt(v)| = 0, i.e. the two neighbors will finally concur.

(3.8)

Proof. The above lemma corresponds to Prop. 6.1 in [5] and the original proof general-
izes to the higher-dimensional setting with only minor changes.

As the times between Poisson events on a single edge are exponentially distributed,
the memoryless property ensures that given a finite collection of edges and some fixed
time s, the edge which experiences the next Poisson event is chosen uniformly at ran-
dom. Let us take E : x 7→ x2 as energy function and fix e = 〈u, v〉 as well as some δ > 0.
If there is a Poisson event at e at time t and the opinion values of u and v are not more
than θ apart from each other, energy to the amount of wt(e) = 2µ (1−µ)(ηt−(u)−ηt−(v))2

is lost along the edge, see (3.1). If |ηt−(u)− ηt−(v)| ∈ (δ, θ], such an increase of W loss
t (e)

would be at least 2µ (1 − µ) δ2. The opinion values of u and v can only change if
one of the 4d − 1 edges incident to either u or v experiences a Poisson event. Given
|ηs(u)− ηs(v)| ∈ (δ, θ] for some fixed time s, the probability that it is in fact e where the
first Poisson event after time s on an edge incident to either u or v occurs is 1

4d−1 .
By the extended version of the Borel-Cantelli-Lemma (involving conditional prob-

abilities, see e.g. Cor. 6.20 in [8]) such an increase will happen infinitely often, if
|ηt(u)− ηt(v)| ∈ (δ, θ] for arbitrarily large t, forcing (W loss

t (e))t≥0 to diverge. This cannot
happen with positive probability, since according to Lemma 3.2 we have

E [W loss
t (e)] ≤ 2E [W tot

t (v)] = 2E [W0(0)] ≤ 2 b2.

Hence, it follows that a.s. |ηt(u)− ηt(v)| /∈ (δ, θ] for sufficiently large t.
For small values of δ, more precisely δ < θ

2 , the margin |ηt(u) − ηt(v)| cannot jump
back and forth between [0, δ] and (θ, b], since single updates can change the value at any
site by no more than µθ ≤ θ

2 . Consequently, for 0 < δ < θ
2 , the following holds almost

surely:

lim sup
t→∞

|ηt(u)− ηt(v)| ∈ [0, δ] or lim inf
t→∞

|ηt(u)− ηt(v)| ∈ (θ, b].

For δ can be chosen arbitrary small and there are only countably many edges, the claim
is established.

Lemma 3.4. The probability that there will be finally blocked edges is either 0 or 1.

Proof. Fix an edge e = 〈u, v〉 and assume that P(e is finally blocked) = 0. By translation
invariance of the process, this has to be true for all edges e ∈ E. The union bound
together with the preceeding lemma gives:

P( lim
t→∞

|ηt(u)− ηt(v)| = 0 ∀u, v ∈ Zd) = 1.
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For P(e is finally blocked) > 0, let N(v) denotes the number of edges incident to site v
that are finally blocked. Then the ergodicity of {η0(v)}v∈Zd and the independent Poisson
processes attributed to the edges with respect to shifts, forces that almost surely the
following holds (using Zygmund’s Ergodic Theorem):

lim
n→∞

1

|Λn|
∑

v∈Λn

N(v) = E [N(0)] = 2d · P(e is finally blocked) > 0.

Hence, with probability 1 infinitely many edges will be finally blocked.

Having derived these auxiliary results, we can proceed to prove the main result of this
section:

Proof of Theorem 3.1. (a) Given some confidence bound θ ≥ 1
2 , the value at every ver-

tex which is incident to a finally blocked edge must be finally located in one of the
intervals [0, 1 − θ) or (θ, 1]. Due to Lemma 3.3 this holds for every vertex almost
surely if there are edges which are finally blocked. The foregoing lemma tells us,
that if an edge is finally blocked with positive probability, we get

lim inf
t→∞

|ηt(v)− 1
2 | ≥ θ − 1

2 for all v ∈ Zd a.s. (3.9)

Choosing the energy function E : x 7→ |x− 1
2 | and applying Lemma 3.2 we find:

E
[

lim inf
t→∞

Wt(v)
]

= E
[

lim inf
t→∞

|ηt(v)− 1
2 |
]

≤ lim inf
t→∞

E
[
|ηt(v)− 1

2 |
]

≤ lim inf
t→∞

E [W tot
t (v)]

= E [W tot
0 (v)] = 1

4 ,

where Fatou’s Lemma was used in the first inequality and the non-negativity of
W loss
t (e) in the second. If we assume P(e is finally blocked) > 0 for some, hence any

e, the first expectation must be at least θ− 1
2 by (3.9), which leads to a contradiction

if θ is larger than 3
4 .

(b) Note that no special feature of unif([0, 1]) was used, but E
[
|η0 − 1

2 |
]

= 1
4 . Conse-

quently, the above result still holds if unif([0, 1]) is replaced by some other distri-
bution L(η0) on [0, 1] and the bound 3

4 replaced by E
[
|η0 − 1

2 |
]

+ 1
2 simultaneously.

Furthermore, this bound is non-trivial, i.e. less than 1, provided P(η0 ∈ {0, 1}) < 1

for this implies E
[
|η0 − 1

2 |
]
< 1

2 . If however η0 ∈ {0, 1} almost surely, trivially only
θ = 1 will not allow for finally blocked edges, given η0 is not a.s. constant.

Remark 3.5. (a) There are two major differences to the results on Z. Firstly, even if
intuitively appealing it is no longer ensured that weak consensus as described in
Theorem 3.1 will lead to consensus in the strong sense, i.e. that every individual
value converges to the mean. By ergodicity we know

lim
n→∞

1

|Λn|
∑

v∈Λn

1{ lim
t→∞

ηt(v) exists} = P
(

lim
t→∞

ηt(0) exists
)
.

In the case of consensus, the indicator functions on the left hand side are either
all 0 or all 1. In other words, for θ such that weak consensus is guaranteed, the
existence of the limits is an event with probability either 0 or 1. In the latter case
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another application of ergodicity and dominated convergence show that this limit
must be the mean of the initial distribution:

lim
t→∞

ηt(v) = lim
n→∞

1

|Λn|
∑

u∈Λn

lim
t→∞

ηt(u)

= E
[

lim
t→∞

ηt(v)
]

= lim
t→∞

E [ηt(v)] = E [η0(v)],

where the first equality follows from weak consensus, the last is Lemma 3.2 with
the identity as energy function.

Secondly, it is no longer clear that we can talk about a critical value for θ separat-
ing the parameter space neatly into a sub- and a supercritical regime, since final
consensus is not necessarily an increasing event in θ. By Lemma 3.4 it is clear that
for fixed θ we have that all neighbors finally concur with probability either 0 or 1.
Hence both cases can not occur simultaneously but there might be a range for θ in
which they alternate, unlike in the case of Z.

(b) Let us next consider another example. Taking for instance unif({0, 1
2 , 1}) as distribu-

tion of the initial values, the reasoning in part (b) of the theorem shows that finally
blocked edges are in this case only possible for

θ ≤ E
[
|η0 − 1

2 |
]

+ 1
2 = 1

3 + 1
2 = 5

6 .

For other distributions it might even be beneficial to choose some different con-
vex energy function giving a potentially sharper bound on θ ≥ 1

2 of the kind: The
probability for finally blocked edges can only be non-zero for θ such that

inf{E(x), x ∈ [0, 1− θ) ∪ (θ, 1]} ≤ E
[
E(η0)

]
.

Clearly, this inequality is trivial if the minimal value min{E(x), x ∈ [0, 1]} is attained
on [0, 1− θ) ∪ (θ, 1]. If this is not the case, it reads

min{E(1− θ), E(θ)} ≤ E
[
E(η0)

]
, (3.10)

due to the convexity of E . Choosing E such that it vanishes on the support of L(η0)

will only give the trivial bound θ ≤ 1
2 + sup{|x− 1

2 |, x ∈ supp(L(η0))}.
In addition, Jensen’s inequality tells us that regardless of the chosen convex energy
function, from (3.10) we cannot get a bound on θ so sharp that E η0 /∈ (1 − θ, θ).
Since in this case we trivially have

inf{E(x), x ∈ [0, 1− θ) ∪ (θ, 1]} ≤ E
(
E η0

)
≤ E

[
E(η0)

]
.

Finally, a gap in the distribution of η0 also reduces the scope of (3.10), since for
P(η0 ∈ (1− θ, θ)) = 0 we get:

E(η0) ≥ inf{E(x), x ∈ [0, 1− θ) ∪ (θ, 1]} a.s.

This trivially implies the above inequality.

In summary, the same factors obstructing consensus in the Deffuant model on Z
reappear in this treatment of the higher-dimensional case (cf. part (a) of Theorem
2.2).
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(c) Next, it is worth noting that the energy function chosen in the proof of Theorem
3.1 is in fact best possible regarding (3.10) for symmetric distributions. If E is
rescaled by some positive factor or translated by adding a constant, the inequality
(3.10) stays unchanged. In the case of a symmetric distribution the inequality is
symmetric around 1

2 , which is why it holds for the pair (x 7→ E(x), θ) if and only if it

holds for (x 7→ E(1− x), θ). A symmetrization of the kind Ẽ(x) = 1
2 (E(x) + E(1− x))

will thus not change the right-hand side and at most increase the left-hand side if
E(θ) 6= E(1− θ), making the condition only stricter.

Therefore, an energy function giving the best bound on parameters θ allowing for
finally blocked edges through (3.10) can be assumed to be symmetric on [0, 1] and
having the image set [0, 1

2 ]. Set X := 1
2 + |η0 − 1

2 |, a [ 1
2 , 1]-valued random variable,

which by the symmetry of η0 implies E [E(X)] = E [E(η0)]. The largest θ satisfying
(3.10) is then the unique one (larger than 1

2 ) for which E(θ) = E [E(η0)]. Note that
the convexity of the energy function forces it to be strictly monotonous where it is
not attaining its minimum, which is 0, and a choice such that E(η0) = 0 a.s. will only
give a trivial bound on θ as discussed above.

Another look at Jensen’s inequality tells us that E [E(X)] ≥ E(EX), with strict in-
equality if E is not linear on supp(L(X)). If this inequality is strict, larger values
for θ than EX will also satisfy (3.10). Being linear on supp(L(X)) and convex
means being linear at least on the smallest interval containing the support, i.e.
I := conv(supp(L(X))). How E is defined on [ 1

2 , 1] \ I is irrelevant, so we may as-
sume it to be linear on all of [ 1

2 , 1]. The assumptions on symmetry and image set
finally force E to be the function x 7→ |x− 1

2 |.

-

6

0

1
2

1
4

2
3

1

PPPPPPP�
�
�
��EL(η0)

(d) In the case of an asymmetric distribution of η0 there are actually better choices.

Consider the example sketched on the right, where
P(η0 = 0) = 1

3 , P(η0 = 2
3 ) = 1

2 , P(η0 = 1) = 1
6 , and

the energy function is piecewise linear as shown.

Taking x 7→ |x − 1
2 | as energy function shows via

(3.10) that finally blocked edges are only possible
for

θ ≤ E
[
|η0 − 1

2 |
]

+ 1
2 = 1

2 ( 1
2 + 1

6 ) + 1
2 = 5

6 .

Taking E piecewise linear with E(0) = 1
4 , E( 2

3 ) = 0 and E(1) = 1
2 gives in turn

E [E(η0)] = 1
6 = E( 2

9 ) = E( 7
9 ), hence a.s. no blocked edges for θ > 7

9 , which is slightly
better.

Note however that for every convex E there are always linear functions l1, l2 such
that l1(1 − θ) = E(1 − θ), l2(θ) = E(θ) and l1, l2 ≤ E . Taking their maximum will
give a convex function leaving the left-hand side of (3.10) unchanged and at most
decreasing the right-hand side. By an appropriate affine transformation of the kind
y 7→ a y+c, a > 0 this function can be altered to have image set [0, 1

2 ] without chang-
ing the condition on θ that follows from (3.10) as mentioned above. Consequently,
the sharpest bound using (3.10) will even in the asymmetric case always be estab-
lished by some piecewise linear function with only one bend mapping to [0, 1

2 ] as in
the example.

(e) It is worth remarking, that the bounds coming from (3.10) applied to the model with
i.i.d. initial opinions on Z are a lot closer to the truth for centered distributions.

The best we can come up with for the uniform case is 3
4 and for unif({0, 1

2 , 1}) even
5
6 , whereas Theorem 2.2 tells us that on Z the actual bound on θ to allow for finally
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blocked edges is 1
2 in either case. In the asymmetric example from above, we get

the bound θ ≤ 7
9 which is not too far off its critical value θc = 2

3 on Z.

For a distribution of η0 which is strongly concentrated around the mean, for in-
stance P(η0 = 0) = P(η0 = 1) = 1

n , P(η0 = 1
2 ) = n−2

n , with n large, the bound
derived using x 7→ |x − 1

2 | as energy function is θ ≤ E
[
|η0 − 1

2 |
]

+ 1
2 = 1

n + 1
2 . The

corresponding critical value on Z according to Theorem 2.2 is again 1
2 , hence quite

well approximated.

That we get the right answer for a non-constant distribution concentrated on {0, 1}
is due to the huge gap. For a slightly changed symmetric version, for example
P(η0 = 0) = P(η0 = 1) = n−1

2n , P(η0 = 1
2 ) = 1

n , again n large, however, the best
bound we get following the reasoning of the above theorem is

θ ≤ E
[
|η0 − 1

2 |
]

+ 1
2 = 1

2 · n−1
n + 1

2 = 1− 1
2n

and this is far off the true value on Z, which is once more θc = 1
2 .

(f) As in Theorem 2.2, the general case where the initial distribution’s support is con-
tained in [a, b], a < b ∈ R, can be treated by appropriate translation and scaling.

In conclusion, the results from Section 2 show that for d = 1 and a sequence of initial
values satisfying the finite energy condition (see Definition 2.5), there exists a critical
parameter θc (which is 1

2 in the standard uniform case) at which a phase transition from
no consensus to strong consensus takes place. Strictly weak consensus could only exist
for the unsolved case of θ = θc.

Theorem 3.1 states that the case of no consensus is impossible for initial marginal
distributions that attribute a positive probability to (0, 1) and θ large enough ( 3

4 in the
uniform case).

Remark 3.6. The results from Theorem 3.1 can actually be generalized from the grid
Zd to any infinite, locally finite, transitive and amenable (connected) graph G = (V,E).
In this generality, the configuration of initial opinions would have to be ergodic with
respect to the graph automorphisms instead of shifts, of course.

Recall that a graph is called locally finite if every vertex has a finite degree, which
together with the regularity of a transitive graph implies bounded degree. A graph is
called amenable if there exists a sequence (Fn)n∈N of finite sets such that the ratio of
boundary and volume |∂EFn|

|Fn| tends to 0 as n → ∞. Such sequences are called Følner
sequences.

In the case of an infinite, locally finite, transitive and amenable connected graph, we
can choose the Følner sequence (Fn)n∈N as an increasing sequence with

⋃
n∈N Fn = V ;

see the appendix of [6] for further details. As a replacement for Zygmund’s ergodic
theorem, we can then use the mean ergodic theorem for L2-functions which can be
found as Thm. A.5 in [6], with (Fn)n∈N stepping in for (Λn)n∈N:

lim
n→∞

1

|Fn|
∑

v∈Fn

W tot
t (v) = E [W tot

t (0)] in L2,

where 0 is some fixed vertex of G. It is not a problem that this result only gives L2-
convergence instead of almost sure convergence, since L2-convergence is stronger than
convergence in probability and the latter implies almost sure convergence of a subse-
quence, which is enough for our purposes.
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3.2 Consequences in terms of stochastic dominance

From the area of probabilistic risk analysis the following orders of stochastic dom-
inance are known, which make it possible to rewrite the results from the foregoing
subsection obtained by using energy arguments in a nice way.

Definition 3.7. Let X,Y be two random variables with finite expectation and Fcx de-
note the set of all convex, Ficx the set of all increasing convex functions on R.

(i) X is said to be smaller than Y in the usual stochastic order, commonly denoted by
X ≤st Y , if for all a ∈ R:

P(X > a) ≤ P(Y > a).

(ii) X is said to be smaller than Y in the convex order, commonly denoted by X ≤cx Y ,
if for all functions ϕ ∈ Fcx for which the corresponding expectations exist:

E [ϕ(X)] ≤ E [ϕ(Y )].

(iii) X is said to be smaller than Y in the increasing convex order, commonly denoted
by X ≤icx Y , if for all functions ϕ ∈ Ficx for which the corresponding expectations
exist:

E [ϕ(X)] ≤ E [ϕ(Y )].

It is obvious from the definition that ≤cx implies ≤icx. Furthermore, the converse is true,
if the expectations of both random variables coincide, i.e.

X ≤cx Y ⇔ X ≤icx Y and EX = EY,

see for example Thm. 4.A.35 in [13].

An easy coupling argument (using quantile transformation) shows that ≤st implies
≤icx.

Proposition 3.8. Let (ηt(v))t≥0 denote the piecewise constant jump process describing
the value at some fixed vertex v ∈ Zd throughout time, as before. Furthermore, let the
initial values again be distributed on [0, b] and E η0 be the corresponding expected value.

For any two points in time 0 ≤ s ≤ t, we have ηt(v) ≤cx ηs(v). This in turn directly
implies |ηt(v)− E η0| ≤icx |ηs(v)− E η0|.

Proof. First of all, it is worth remarking that the partial orders ≤cx and ≤icx are actually
defined on the set of distributions and do therefore not depend on a random variable X
itself but rather on L(X). The distribution of ηt(v) is by symmetry the same for every
v ∈ Zd, hence it is enough to consider one fixed vertex.

Let ϕ be a convex function on R. For every t ≥ 0 the random variable ηt(v) lies in
[0, b] and since convexity implies continuity on closed intervals, ϕ attains its minimum

c := min
{
ϕ(x), x ∈ [0, b]

}
.

Hence E : x 7→ ϕ(x)−c is a non-negative convex function on [0, b] and therefore a proper
choice as energy function as outlined in the beginning of the foregoing subsection.

Let Wt(v) = E(ηt(v)) denote the energy attributed to the chosen vertex at time t and
W tot
t (v) = Wt(v) + 1

2

∑
e∈E(v)W

loss
t (e) its total energy, just as in (3.2). Lemma 3.2 tells us

that E [W tot
t (v)] = E [W0(v)] for all t ≥ 0 and the fact that (W loss

t (e))t≥0 is non-decreasing

EJP 19 (2014), paper 19.
Page 20/26

ejp.ejpecp.org



Further results on consensus formation in the Deffuant model

and non-negative for every edge e gives accordingly

E [Wt(v)] = E [W tot
t (v)]− 1

2

∑

e∈E(v)

E [W loss
t (e)]

≤ E [W tot
s (v)]− 1

2

∑

e∈E(v)

E [W loss
s (e)] = E [Ws(v)]

≤ E [W0(v)] for 0 ≤ s ≤ t.
If we plug in the special form of E chosen above (and add c along the chain of inequali-
ties) this reads:

E
[
ϕ(ηt(v))

]
≤ E

[
ϕ(ηs(v))

] (
≤ E

[
ϕ(η0(v))

] )
.

Since ϕ ∈ Fcx was arbitrary, this proves the first part of the claim.
To see that (|ηt(v) − E η0|)t≥0 is a non-increasing sequence with respect to ≤icx one

only has to note that the function x 7→ |x − E η0| is convex. A short moment’s thought
reveals that the composition of an increasing convex with a convex function is again
convex. Thus, for any ϕ ∈ Ficx the already proved part applied to the convex function
x 7→ ϕ(|x− E η0|) provides

E
[
ϕ(|ηt(v)− E η0|)

]
≤ E

[
ϕ(|ηs(v)− E η0|)

]
,

which in turn proves |ηt(v)− E η0| ≤icx |ηs(v)− E η0|.

This proposition in hand makes it possible to reprove the result from Theorem 3.1: Al-
ready in 1979, Meilijson and Nádas [12] showed that Y ≤icx X implies Y ≤st hL(X)(X),
where the function hµ denotes the mean residual life of a random variable with distri-
bution µ, i.e.:

For Z ∼ µ and t ∈ R s.t. µ
(
(t,∞)

)
> 0 : hµ(t) := E [Z |Z > t].

Having the initial distribution L(η0) = unif([0, 1]) means |η0 − 1
2 | ∼ unif([0, 1

2 ]), which
gives

hunif([0,1/2])(t) = 1
4 + t

2 .

Consequently, we get |ηt− 1
2 | ≤st

1
4 + Z

2 , where Z ∼ unif([0, 1
2 ]), another contradiction to

(3.9) if θ > 3
4 .

That the processes (ηt(v))t≥0 are non-increasing in the convex order renders it possi-
ble to conclude convergence in distribution. This however is far from the almost sure
convergence derived in the one-dimensional case.

Proposition 3.9. Let (ηt(v))t≥0 be as before. There exists a [0, b]-valued random vari-

able η∞ such that ηt(v)
d→ η∞ for every v ∈ Zd.

Proof. Again, symmetry ensures that if the statement holds true for some vertex v it is
valid for all such. Building on a famous result of Straßen and following ideas of Doob,
Kellerer showed in 1972 that for a family of probability measures {µt}t≥0 which is non-
decreasing in the increasing convex order there always exists a submartingale with
the corresponding marginals, see Thm. 3 in [9]. Therefore, the non-increasing family
{L(ηt(v))}t≥0 can be interpreted as the marginal distributions of a supermartingale
(Xt)t≥0. As the mean of these distributions is constant, which follows from Lemma
3.2 as mentioned in the above remark and corresponds to the stronger condition of
non-increasing ordering w.r.t. ≤cx, (Xt)t≥0 actually is a martingale.

Doob’s martingale convergence theorem guarantees a random variable X∞ such
that (Xt)t≥0 converges to X∞ almost surely, hence in distribution. Writing η∞ instead
of X∞ establishes the claim.
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4 On the infinite cluster of supercritical bond percolation

In this section we consider the Deffuant opinion dynamics on the random subgraph
of Zd, d ≥ 2, which is formed by supercritical i.i.d. bond percolation, independent of
the initial configuration and the Poisson processes determining the times of potential
opinion updates.

That means, each edge of the grid is independently chosen to be open with a fixed
probability p ∈ (0, 1]. One of the classical results in percolation theory tells us that for
d ≥ 2, there exists a critical value pc(d) ∈ (0, 1) for p above which we will a.s. find an
infinite cluster and that this cluster is a.s. unique. The common notation for the event
that some vertex v sits in the infinite cluster is {v ↔∞}. Slightly abusing this notation
we will write {e↔∞} for the event that the edge e is part of the infinite cluster.

The fact that ergodicity, one essential element to derive the results from the fore-
going section, is preserved when we consider the (random) subgraph of Zd formed by
i.i.d. bond percolation allows for an immediate transfer of the corresponding results for
the whole grid.

Lemma 4.1. Let the Deffuant model with initial values drawn from a distribution on
[0, b] and parameter θ ∈ (0, b] be as above, but now take place on the graph of a super-
critical i.i.d. bond percolation on Zd which is independent of the initial configuration
and the Poisson processes. Then the lemmas of the foregoing section extend as follows:

(a) E [W tot
t (v) | v ↔∞] = E [W0(0)]

(b) Given the edge 〈u, v〉 is open, we get as in Lemma 3.3 that a.s.
|ηt(u)− ηt(v)| > θ for sufficiently large t or limt→∞ |ηt(u)− ηt(v)| = 0.

(c) The probability that some edges of the infinite cluster will be finally blocked in the
Deffuant model is either 0 or 1.

Proof. (a) Using the notation from Lemma 3.2 and its line of reasoning, it is obvious
that the process {W tot

t (v) · 1{v↔∞}}v∈Zd is ergodic with respect to shifts. Hence
instead of (3.4) one has

lim
n→∞

1

|Λn|
∑

v∈C∞∩Λn

W tot
t (v) = E [W tot

t (0) · 1{0↔∞}] a.s., (4.1)

where C∞ denotes the infinite percolation cluster. By the same argument as in the
quoted lemma, the left-hand side is constant over time and we thus get

P(v ↔∞) · E [W tot
t (v) | v ↔∞] = E [W tot

t (v) · 1{v↔∞}]
= E [W tot

t (0) · 1{0↔∞}]
= E [W0(0) · 1{0↔∞}]
= P(0↔∞) · E [W0(0)],

using symmetry and independence. Dividing by the probability for percolation of a
given vertex P(v ↔ ∞), which is non-zero for supercritical percolation, yields the
claim.

(b) To get the second statement one simply has to mimick Lemma 3.3. The only things
changing are that we have to condition on the event of e = 〈u, v〉 being open in the
realization of the i.i.d. bond percolation and the probability at a given point in time
that e will be the next edge incident to either u or v where a Poisson event occurs
is no longer precisely 1

4d−1 but bounded from below by the same value (since some
of the other edges might be closed).
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(c) Following the proof of Lemma 3.4, let us consider the probability that some given
edge e is open, further belongs to the infinite percolation component and is finally
blocked in the Deffuant dynamics. If

pblock := P(e↔∞, e finally blocked) = 0,

the union bound and part (b) guarantee that a.s. all neighbors in the infinite com-
ponent will finally concur. If this probability is positive, however, and N(v) denotes
the number of edges incident to v, open in the realization of the i.i.d. bond per-
colation, that will get finally blocked in the Deffuant model, another application of
Zygmund’s Ergodic Theorem yields:

lim
n→∞

1

|Λn|
∑

v∈C∞∩Λn

N(v) = E
[
N(0) · 1{0↔∞}

]
= 2d · pblock > 0 a.s.

Hence with probability 1, there will be (infinitely many) edges that belong to the
infinite percolation component and are finally blocked.

Having checked that these auxiliary results transfer appropriately to the setting of su-
percritical percolation, the following equivalent to Theorem 3.1 can be verified with the
very same reasoning as before:

Theorem 4.2. Consider the Deffuant model on the subgraph of Zd, d ≥ 2, formed by
an independent supercritical i.i.d. bond percolation as described above.

(a) If the initial values are distributed uniformly on [0, 1] and θ > 3
4 , a.s. we will finally

have weak consensus in the infinite percolation cluster, i.e. for all u, v ∈ Zd given
the event {u, v ↔∞} we have

P
(

lim
t→∞

|ηt(u)− ηt(v)| = 0
)

= 1.

(b) For general initial distributions on [0, 1], the range of θ, where final consensus of
the infinite cluster is guaranteed, is non-trivial, i.e. including values smaller than
1, unless the initial values are concentrated on 0 and 1, taking on both values with
positive probability.

Proof. Given the event that v ∈ Zd is in the infinite percolation cluster which contains
(open) edges that are finally blocked by the opinion dynamics we get as in (3.9)

lim inf
t→∞

|ηt(v)− 1
2 | ≥ θ − 1

2 a.s.

Choosing again E : x 7→ |x− 1
2 | as energy function the above lemma and the conditional

version of Fatou’s Lemma yield the following chain of inequalities:

θ − 1
2 ≤ E

[
lim inf
t→∞

|ηt(v)− 1
2 |
∣∣ v ↔∞

]

≤ lim inf
t→∞

E
[
|ηt(v)− 1

2 |
∣∣ v ↔∞

]

≤ lim inf
t→∞

E
[
W tot
t (v)

∣∣ v ↔∞
]

= E
[
W tot

0 (v)
]

= E
[
|η0(v)− 1

2 |
]
.

Consequently, for blocked edges to occur in the infinite percolation cluster we have to
have θ ≤ 3

4 in the standard case of unif([0, 1]) initial opinions and θ ≤ 1
2 +E

[
|η0(v)− 1

2 |
]

in the general case.
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So far, this seems like just a generalization of Section 3. In the percolation setting
however, a coupling argument allows to prove a result concerning the other end of the
θ-spectrum, under slightly stronger conditions on the initial opinion configuration (see
also Remark 4.5 below).

Theorem 4.3. Consider again the Deffuant model on the infinite cluster of supercritical
percolation, this time with i.i.d. initial opinion values distributed on [0, 1], s.t. [0, 1] is the
minimal closed interval containing the support of the marginal distribution. In addition,
we require the percolation parameter p to be less than 1.

For θ < 1
2 the probability that the opinion dynamics approach strong consensus on

the infinite percolation cluster is 0.

Proof. The line of reasoning to prove this statement is by contradiction. Assuming
strong consensus for some fixed value of θ in (0, 1

2 ), we are going to show that there will
be finally blocked edges in the infinite percolation component with positive probability.
This contradicts part (c) of Lemma 4.1.

To that end let us consider two coupled copies of the supercritical i.i.d. bond percola-
tion, see Figure 2. Fix an edge e = 〈u, v〉 and let the two copies coincide on E(Zd) \ {e}.
Let p ∈ (0, 1) denote the probability for an edge to be open in the percolation model
and A be the event that the edges incident to u other than e are closed and v sits in
the infinite component. By a coupling argument using local modification it can easily
be seen that this event has positive probability if p is supercritical.

c
c
c
c
c

c
c
c
c
c

c
c
c
c
c

c
c
c
c
c

u v

c
c
c
c
c

c
c
c
c
c

c
c
c
c
c

c
c
c
c
c

u v
e

Copy 1 Copy 2

Figure 2: Two appropriately coupled copies of the same i.i.d. percolation process on
Zd on which the opinion dynamics procedure takes place.

Now we want to couple the two copies in such a way that with positive probability e is
closed in copy 1 and open in copy 2 under the event A. Let U be a unif([0, 1])-distributed
random variable, independent of the percolation process on E(Zd) \ {e}. Declare e to
be open in copy 1 if U < p, closed otherwise, and open in copy 2 if U > 1− p and closed
otherwise. This defines two proper i.i.d. bond percolation processes.

If B denotes the event that the edge e is closed in copy 1 and open in copy 2, we
get P(B) = min{p, 1 − p} > 0. By independence we also have that the event A ∩ B has
positive probability.

Since the event that there is strong consensus on the infinite percolation cluster is
ergodic with respect to shifts, it is a 0-1-event. Due to the assumption it must have
probability 1. Define δ := 1

2 − θ, which is positive.
Let us now restrict our attention to the event A ∩ B and the first copy. Since v lies
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in the infinite component, there is a time T <∞ s.t.

P
(
|ηt(v)− E η0| < δ

2 for all t ≥ T | A ∩B) > 0. (4.2)

Note that given A∩B, in copy 1 the process (ηt(v))t≥0 is independent of η0(u) as well as
the Poisson process attributed to e. By the choice of θ and the properties of the initial
distribution we get in addition:

P
(
η0(u) /∈ [E η0 − (θ + δ

2 ),E η0 + (θ + δ
2 )]
)
> 0.

If we finally define C to be the event that A ∩ B occurs, no Poission event occurs at e
before T , |ηt(v)− E η0| < δ

2 for all t ≥ T and |η0(u)− E η0| ≥ θ + δ
2 , independence of the

latter events conditioned on A ∩B makes sure that C occurs with positive probability.

If we run the opinion dynamics on both copies simultaneously it is obvious that they
behave identically as long as no Poisson event occurs for e. Given the event C the
values at u and v are further than θ apart from time T on. Hence, even in the second
copy, there will never be an interaction between the two since no Poisson event occurs
at e before time T . In other words, with probability at least P(C) > 0 there will be no
consensus in the infinite percolation cluster of the second copy, to which given A ∩ B
both u and v belong. Since both copies underly the same distribution, this contradicts
the assumption that we have strong consensus. It is worth noting that strictly weak
consensus can not be excluded since the argument in (4.2) does not hold for the weak
case.

Remark 4.4. The two results of Theorem 4.2 and 4.3 put together imply the following:
The Deffuant model on the infinite cluster, formed by supercritical i.i.d. bond perco-
lation on Zd with non-trivial percolation parameter p ∈ (pc, 1), featuring i.i.d. initial
opinions having a non-degenerate marginal distribution on [0, 1] – in the sense that it at-
tributes positive probability to (0, 1), [0, ε) and (1− ε, 1] for all ε > 0 – either approaches
weak consensus for all θ ∈ (0, 1] or there is a phase transition in this parameter.

Remark 4.5. Similarly to the ideas in Subsection 2.2, we can relax the strong condition
of independence when it comes to the initial opinion values and still receive the same
result. In the proof of Theorem 4.3, the only instance where more than stationarity
and ergodicity with respect to shifts of the initial configuration {η0(v)}v∈Zd was used
is in the conclusion that the event C has positive probability. This however can also
be guaranteed without the independence of initial opinion values, if only {η0(v)}v∈Zd

additionally satisfies the finite energy condition as laid down in Definition 2.5 but now
with Zd in place of Z.
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Abstract. When it comes to the mathematical modelling of social interaction pat-
terns, a number of different models have emerged and been studied over the last
decade, in which individuals randomly interact on the basis of an underlying graph
structure and share their opinions. A prominent example of the so-called bounded
confidence models is the one introduced by Deffuant et al.: Two neighboring in-
dividuals will only interact if their opinions do not differ by more than a given
threshold θ. We consider this model on the line graph Z and extend the results
that have been achieved for the model with real-valued opinions by considering
vector-valued opinions and general metrics measuring the distance between two
opinion values. As in the univariate case there turns out to exist a critical value
θc for θ at which a phase transition in the long-term behavior takes place, but θc

depends on the initial distribution in a more intricate way than in the univariate
case.

1. Introduction

Consider a simple graph G = (V,E) and assume the vertex set V to be either
finite or countably infinite with bounded maximal degree. The vertices are assumed
to represent individuals and each of them is assigned an opinion value. The edges
in E – being connections between individuals – are understood to embody the
possibility of mutual influence. For that reason it is no restriction to focus on
connected graphs, as the components could be treated individually otherwise. From
different directions including social sciences, physics and mathematics, there has
been raised interest in various models for what is called opinion dynamics and
deals with the evolution of such a system under a given set of interaction rules.
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These models are qualitatively different but share similar ideas, see Castellano
et al. (2009) for an extensive survey.

The Deffuant model – introduced by Deffuant et al. (2000) – is one of those and
features two parameters, the confidence bound θ > 0 and the convergence parameter
µ ∈ (0, 1

2 ], shaping the willingness to approach the other individual’s opinion in a
compromise. There are two types of randomness in the model: One is the random
initial configuration, meaning that at time t = 0 the vertices are assigned identically
distributed opinions, the other are the random encounters thereafter. Serving as a
regime for the latter, all the edges in E are assigned unit rate Poisson processes,
which are independent of one another and the initial configuration. Whenever a
Poisson event occurs on an edge, the corresponding adjacent vertices interact in the
manner described below. Just like in most of the analyses of this model, we will
consider i.i.d. initial opinion values, but comment on how the considerations can
be generalized.

By ηt(v) we denote the opinion value at vertex v ∈ V at time t ≥ 0. The current
value will not change until at some future time t a Poisson event occurs at one of
the edges incident to v, say e = 〈u, v〉, which then might cause an update. Let
ηt−(u) := lims↑t ηs(u) = a and ηt−(v) := lims↑t ηs(v) = b be the two opinion values
of u and v, just before this happens.

If these opinions lie at a distance less than the confidence bound θ from one
another, they will symmetrically take a step, whose size is scaled by µ, towards
a common compromise, if not they stay unchanged. Although there is a section
on vector-valued binary opinions in the original paper by Deffuant et al. (2000),
using a different model, the Deffuant model with the interaction rule just described
was originally only defined for opinions being real-valued and the absolute value as
notion of distance. In order to broaden the original scope of this model to vector-
valued opinions, the natural replacement for the absolute value is the Euclidean
distance

d(x, y) = ‖x − y‖2 =
√

(x − y)2, for all x, y ∈ Rk.

Given this measure of distance, the rule for opinion updates in the Deffuant model
reads as follows:

ηt(u) =

{
a + µ(b − a) if ‖a − b‖2 ≤ θ,
a otherwise

and similarly (1.1)

ηt(v) =

{
b + µ(a − b) if ‖a − b‖2 ≤ θ,
b otherwise.

Note that choosing k = 1 gives back the original model.
As the assumptions on the graph force E to be countable, there will almost surely

be neither two Poisson events occurring simultaneously nor a limit point in time
for the Poisson events on edges incident to one fixed vertex. Yet in addition to that
there is a more subtle issue in how the simple pairwise interactions shape transitions
of the whole system in the infinite setting, putting it into question whether the whole
process is well-defined by the update rule (1.1). For infinite graphs with bounded
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degree, however, this problem is settled by standard techniques in the theory of
interacting particle systems, see Thm. 3.9 on p. 27 in Liggett (1985).

One of the most natural questions in this context – motivated by interpretations
coming from social science – seems to be, under what conditions the individual
opinions will converge to a common consensus in the long run and under what
conditions they are going to split up into groups of individuals holding different
opinions instead. In this regard let us define the following types of scenarios for the
asymptotic behavior of the Deffuant model on a connected graph as time tends to
infinity:

Definition 1.1.

(i) No consensus
There will be finally blocked edges, i.e. edges e = 〈u, v〉 s.t.

‖ηt(u) − ηt(v)‖2 > θ,

for all times t large enough. Hence the vertices fall into different opinion
groups.

(ii) Weak consensus
Every pair of neighbors {u, v} will finally concur, i.e.

lim
t→∞

‖ηt(u) − ηt(v)‖2 = 0.

(iii) Strong consensus
The value at every vertex converges, as t → ∞, to a common limit l, where

l =

{
the average of the initial opinion values, if G is finite

E η0, if G is infinite

and L(η0) denotes the distribution of the initial opinion values.

The first analyses of the Deffuant model and similar opinion dynamics were strongly
simulation-based and thus confined to a finite number of agents. In Fortunato
(2004) for example, the long-term behavior of the Deffuant model on four different
kinds of finite graphs was simulated: Two deterministic examples – the complete
graph and the square lattice – as well as two random graphs – those given by
the Erdős-Rényi model as well as the Barabási-Albert model. He found strong
numerical evidence that, given initial opinions that are independently and uniformly
distributed on [0, 1], a confidence threshold θ less than 1

2 leads to a fragmentation

of opinions, θ > 1
2 leads to a consensus – irrespectively of the underlying graph

structures that were considered. Later, the simulation studies were extended to the
generalization of the Deffuant model to higher-dimensional opinion values, see for
instance Lorenz (2006).

There are however crucial differences between the interactions on a finite com-
pared to an infinite graph. In the finite case, statements about consensus or frag-
mentation tend to be valid not with probability 1 but at best with a probability
that is close to 1: In the standard case of i.i.d. unif([0, 1]) initial opinions for exam-
ple, any non-trivial confidence bound, i.e. θ ∈ (0, 1), can lead to either consensus or
fragmentation depending on the initial values and the order of interactions. Fur-
thermore, the fact that the dynamics (1.1) preserves the opinion average of two
interacting agents implies that strong consensus follows from weak consensus on a
finite graph. This does not have to hold in an infinite setting.
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The first major step in terms of a theoretical analysis of the model on an infinite
graph was taken by Lanchier (2012), who treated the model on the line graph Z
– similarly with an i.i.d. unif([0, 1]) configuration. His main result implies that
there is a phase transition at θ = 1

2 from a.s. no consensus to a.s. weak consensus.
These findings were reproven and slightly sharpened by Häggström (2012) to the
statement of Theorem 2.1 below, using a non-random pairwise averaging procedure
on Z which he termed Sharing a drink (SAD) to get a workable representation of
the opinion values at times t > 0.

Using his line of argument, the results were generalized to initial distributions
other than unif([0, 1]) by Häggström and Hirscher (2014) as well as Shang (2013),
independently. In Häggström and Hirscher (2014), the analysis of the Deffuant
model was in addition to that extended to other infinite graphs, namely higher-
dimensional integer lattices Zd and the infinite cluster of supercritical i.i.d. bond
percolation on these lattices.

In this paper we stay on the infinite line graph, that is the integer numbers Z with
consecutive integers forming an edge. The direction in which we want to broaden
the analysis is – as already indicated – the generalization of the Deffuant model on
Z to vector-valued opinions. In Section 2, we give a brief summary of the results
for real-valued opinions derived in Häggström and Hirscher (2014), together with
the key ideas and tools that were used there.

In Section 3 we establish corresponding results for the case of higher-dimensional
opinions sticking, as indicated above, to the Euclidean norm as measure of distance
between the opinions of interacting agents. Actually, the main results (Theorem
3.2 and 3.15) in this section match the statement for real-valued opinions (Theorem
2.2) in the sense that the radius of the initial distribution as well as the largest gap
in its support – the generalized definitions of which you will find in Definition 3.1
and 3.14 – determine the critical value for θ at which there is a phase transition from
a.s. no consensus to a.s. strong consensus. While the concept of a distribution’s
radius straightforwardly transfers to higher dimensions, the one of a gap has to be
properly redefined and investigated. Doing this, we can in fact characterize the
support of the opinion values at times t > 0, see Proposition 3.13. Even though we
will throughout the paper consider the initial opinions to be i.i.d. it is mentioned in
the remark after Theorem 3.15, how the arguments can be extended to particular
dependent initial configurations in the way it was done in Häggström and Hirscher
(2014).

Section 4 finally deals with the generalization of the Deffuant model to distance
measures other than the Euclidean, in both one and higher dimensions. We pin
down properties a general metric ρ (used to determine whether two opinions are
close enough to compromise or not) needs to have in order to allow for the results
from Section 3 to be preserved (see Theorem 4.3 and 4.11). Examples are given to
illustrate the necessity of the requirements imposed on ρ.

At this point it should be mentioned that the vectorial model that was already in-
troduced in the original paper by Deffuant et al. (2000) and analyzed quite recently
by Lanchier and Scarlatos (2014) does not fit the general framework of this paper.
Unlike all opinion dynamics considered here, its update rule is different from (1.1)
and especially not average preserving, leading to substantial qualitative differences.
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2. Background on the univariate case

Theorem 2.1 (Lanchier). Consider the Deffuant model on the graph (Z, E),
where E = {〈v, v + 1〉, v ∈ Z} with i.i.d. unif([0, 1]) initial configuration and fixed
µ ∈ (0, 1

2 ].

(i) If θ > 1
2 , the model converges almost surely to strong consensus, i.e. with

probability 1 we have: limt→∞ ηt(v) = 1
2 for all v ∈ Z.

(ii) If θ < 1
2 however, the integers a.s. split into (infinitely many) finite clusters

of neighboring individuals asymptotically agreeing with one another, but no
global consensus is approached.

Accordingly, for independent initial opinions that are uniform on [0, 1], the critical
value θc equals 1

2 , with subcritical values of θ leading a.s. to no consensus and
supercritical ones a.s. to strong consensus. The case when the confidence bound
actually takes on value θc is still an open problem. The ideas Häggström (2012) used
to reprove the above result were adapted to accommodate more general univariate
initial distributions leading to a similar statement for all such having a first moment
E η0 ∈ R∪{−∞, +∞}, see Thm. 2.2 in Häggström and Hirscher (2014), which reads
as follows:

Theorem 2.2. Consider the Deffuant model on Z with real-valued i.i.d. initial
opinions.

(a) Suppose the initial opinion of all agents follows an arbitrary bounded distribu-
tion L(η0) with expected value E η0 and [a, b] being the smallest closed interval
containing its support. If E η0 does not lie in the support, let I ⊆ [a, b] be the
maximal, open interval such that E η0 lies in I and P(η0 ∈ I) = 0. In this case
let h denote the length of I, otherwise set h = 0.

Then the critical value for θ, where a phase transition from a.s. no consensus
to a.s. strong consensus takes place, becomes θc = max{E η0 − a, b − E η0, h}.
The limit value in the supercritical regime is E η0.

(b) Suppose the initial opinions’ distribution is unbounded but its expected value
exists, either in the strong sense, i.e. E η0 ∈ R, or the weak sense, i.e. E η0 ∈
{−∞,+∞}. Then the Deffuant model with arbitrary fixed parameter θ ∈ (0, ∞)
will a.s. behave subcritically, meaning that no consensus will be approached in
the long run.

The situation at criticality is unsolved with the exception of the case when the
gap around the mean is larger than its distance to the extremes of the initial
distribution’s support. Given this condition, however, the following proposition –
which is Prop. 2.4 in Häggström and Hirscher (2014) – settles the question about
the long-term behavior for critical θ:

Proposition 2.3. Let the initial opinions be again i.i.d. with [a, b] being the small-
est closed interval containing the support of the marginal distribution, and the latter
feature a gap (α, β) of width β − α > max{E η0 − a, b − E η0} around its expected
value E η0 ∈ [a, b].

At criticality, that is for θ = θc = max{E η0 −a, b−E η0, β −α} = β −α, we get the
following: If both α and β are atoms of the distribution L(η0), i.e. P(η0 = α) > 0
and P(η0 = β) > 0, the system approaches a.s. strong consensus. However, it will
a.s. lead to no consensus if either P(η0 = α) = 0 or P(η0 = β) = 0.
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Since the same line of reasoning was used in both Häggström (2012) and Häggström
and Hirscher (2014) to derive the results we just stated, it is worth taking a closer
look on the key concepts involved, especially as they will be the foundation for most
of the conclusions drawn in the upcoming sections.

The presumably most central among these is the idea of flat points. If E η0 ∈ R,
a vertex v ∈ Z is called ε-flat to the right in the initial configuration {η0(u)}u∈Z if
for all n ≥ 0:

1

n + 1

v+n∑

u=v

η0(u) ∈ [E η0 − ε, E η0 + ε] . (2.1)

It is called ε-flat to the left if the above condition is met with the sum running from
v − n to v instead. Finally, v is called two-sidedly ε-flat if for all m,n ≥ 0

1

m + n + 1

v+n∑

u=v−m

η0(u) ∈ [E η0 − ε, E η0 + ε] . (2.2)

However, in order to understand how vertices being one- or two-sidedly ε-flat in
the initial configuration play an important role in the further evolution of the
configuration another concept is indispensable, namely the non-random pairwise
averaging procedure Häggström (2012) called Sharing a drink (SAD).

Think of glasses being placed at all integers, the one at site 0 being brimful, all
others empty. Just as in the Deffuant model, neighbors interact and share, but this
time without randomness and confidence bound. In other words, we start with the
initial profile {ξ0(v)}v∈Z, given by ξ0(0) = 1 and ξ0(v) = 0 for all v 6= 0, and a finite
sequence (en)N

n=1 of edges along which updates of the form (1.1) are performed, i.e.
for the profile {ξn(v)}v∈Z after step n and en+1 = 〈u, u + 1〉 we get {ξn+1(v)}v∈Z
by

ξn+1(u) = (1 − µ) ξn(u) + µ ξn(u + 1),
ξn+1(u + 1) = µ ξn(u) + (1 − µ) ξn(u + 1);

(2.3)

all other values stay unchanged.
Elements of [0, 1]Z that can be obtained in such a way are called SAD-profiles.

The crucial connection to the Deffuant model is that the opinion value ηt(0) at any
given time t > 0 can be written as a weighted average of values at time t = 0 with
weights given by an SAD-profile, see La. 3.1 in Häggström (2012). The fact that
all SAD-profiles share certain properties (the most important being unimodality)
renders it possible to derive characteristics of the future evolution of the Deffuant
dynamics given the initial configuration. For instance, the opinion value at a two-
sidedly ε-flat vertex in the initial configuration can never move further than 6ε
away from the mean, see La. 6.3 in Häggström (2012).

These two vital ingredients – flat points and SAD-profiles – of the line of argu-
ment in Häggström (2012) and Sect. 2 in Häggström and Hirscher (2014) can be
adapted in order to analyze the Deffuant model with vector-valued opinions, as we
will see in the following section.

3. Deffuant model with multivariate opinions and the Euclidean norm
as measure of distance

Having characterized the long-term behavior of the Deffuant dynamics on Z
starting from a general univariate i.i.d. configuration, the next step of generalization
with regard to the marginal initial distribution is, as indicated in the introduction,
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to allow for vectors instead of numbers to represent the opinions. Like in the
univariate case, we want the initial opinions to be independent and identically
distributed, just now with some common distribution L(η0) on Rk. This will ensure
ergodicity of the setting (with respect to shifts) as before.

In this section we will consider Rk to be equipped with the Borel σ-algebra
generated by the Euclidean norm, denoted by Bk.

Definition 3.1. If the distribution of η0 has a finite expectation, define its radius
by

R := inf
{
r > 0, P

(
η0 ∈ B[E η0, r]

)
= 1
}

,

where B[y, r] := {x ∈ Rk, ‖x − y‖2 ≤ r} denotes the closed Euclidean ball with
radius r around y. Note that the radius of an unbounded distribution is infinite.

The notion of ε-flatness easily translates to the new setting by just replacing the
intervals by balls: If E η0 ∈ Rk, a vertex v ∈ Z is called ε-flat to the right in the
initial configuration {η0(u)}u∈Z if for all n ≥ 0:

1

n + 1

v+n∑

u=v

η0(u) ∈ B[E η0, ε], (3.1)

similarly for ε-flatness to the left and two-sided ε-flatness – compare with (2.1) and
(2.2).

With these notions in hand we can state and prove a higher-dimensional ana-
logue of Theorem 2.2, valid for initial distributions whose support does not feature
a substantial gap around the mean. The proof of this result will be a fairly straight-
forward adaptation of the methods for the univariate case indicated in Section 2.
In contrast, the more general case treated in Theorem 3.15 requires invoking more
intricate geometrical considerations.

Theorem 3.2. In the Deffuant model on Z with the underlying opinion space
(Rk, ‖ . ‖2) and an initial opinion distribution L(η0) we have the following limiting
behavior:

(a) If L(η0) has radius R ∈ [0, ∞) and mass around its mean, i.e.

P
(
η0 ∈ B[E η0, r]

)
> 0 for all r > 0, (3.2)

the critical parameter is θc = R, meaning that for θ < R we have a.s. no
consensus and for θ > R a.s. strong consensus.

(b) Let η0 = (η
(1)
0 , . . . , η

(k)
0 ) be the random initial opinion vector. If at least one

of the coordinates η
(i)
0 has an unbounded marginal distribution, whose expected

value exists (regardless of whether finite, +∞ or −∞), then the limiting behav-
ior will a.s. be no consensus, irrespectively of θ.

Proof : (a) To show the first part is just like in the univariate case (included in
part (a) of Theorem 2.2) little more than following the arguments in the last
two sections of Häggström (2012): The central arguments go through even for
vector-valued opinions as the crucial properties of the absolute value that were
used are shared by its replacement in higher dimensions, the Euclidean norm.
Because of that, we only sketch the main line of reasoning and refer to Sect. 6
in Häggström (2012) and Sect. 2 in Häggström and Hirscher (2014) for a more
thorough presentation of the arguments.
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First of all, the (multivariate) Strong Law of Large Numbers – in the follow-
ing abbreviated by SLLN – tells us that the averages in (3.1) for large n are
close to the mean in Euclidean distance. For ε > 0 fixed, choose N ∈ N such
that the event

A :=

{
1

n + 1

n+1∑

u=1

η0(u) ∈ B[E η0,
ε
3 ] for all n ≥ N

}

has positive probability. Using (3.2) and the fact that the initial opinions
are i.i.d., we can locally modify the configuration to conclude that the event
{η0(v) ∈ B[E η0,

ε
3 ] for v = 1, . . . , N +1}∩A has positive probability, implying

the ε-flatness to the right of site 1 – just as it was done in La. 4.2 in Häggström
(2012).

For θ < R, the probability of {η0 /∈ B[E η0, θ + ε]} is non-zero for ε small
enough, hence a vertex can be at distance larger than θ from B[E η0, ε] initially.
Due to the independence of initial opinions, the event that site −1 is ε-flat to
the left, 1 is ε-flat to the right and η0(0) /∈ B[E η0, θ+ε] has positive probability.
Using the SAD representation, it follows – mimicking Prop. 5.1 in Häggström
(2012) – that given such an initial configuration the opinion value at site 1 will
be a convex combination of averages in (3.1) for all times t > 0 and thus in
B[E η0, ε], due to the convexity of Euclidean balls. The same holds for site −1
and the half-line to the left. Consequently, the edges 〈−1, 0〉 and 〈0, 1〉 will stay
blocked for ever. Ergodicity of the initial opinion sequence ensures that with
probability 1 (infinitely many) vertices will get isolated that way, which settles
the subcritical case.

In the supercritical regime, i.e. θ > R, we focus on two-sidedly ε-flat vertices:
If site 0 is ε-flat to the left and 1 is ε-flat to the right, both are two-sidedly
ε-flat – using again the convexity of B[E η0, ε]. By independence this event
has positive probability, by ergodicity we will a.s. have (infinitely many) two-
sidedly ε-flat vertices. Mimicking La. 6.3 in Häggström (2012) literally, we find
that vertices which are two-sidedly ε-flat in the initial configuration will never
move further than 6ε away from the mean, irrespectively of future interactions.
Choosing ε > 0 small, such that 7ε < θ − R say, will ensure that updates
along edges incident to two-sidedly ε-flat vertices will never be prevented by
the distance of opinions exceeding the confidence bound.

The proof of Prop. 6.1 in Häggström (2012), which states that neighbors
will either finally concur or the edge between them be blocked for large t,
can be adopted as well: Its central idea – borrowed from physics – that every
individual starts with an initial amount of energy that is then partly transferred
partly lost in interactions works regardless whether the opinions {ηt(v)}v∈Z
are shaped by numbers or vectors. Merely in the current setting, the term
Wt(v) = (ηt(v))2, that defines the energy at vertex v at time t, has to be
read as a dot product. Again, if the opinions ηt(u), ηt(v) of two neighbors are
within the confidence bound but ‖ηt(u) − ηt(v)‖2 ≥ δ for some fixed δ > 0,
Wt(u) + Wt(v) decreases by at least 2µ(1 − µ)δ2 when they compromise. This
can not happen infinitely often with positive probability as the expected energy
at time t = 0 is E W0(v) = E (η 2

0 ) < ∞ and the expectation of Wt(v) is both
non-increasing with t and non-negative. For details see Prop. 6.1 and La. 6.2
in Häggström (2012).



The Deffuant model on Z with higher-dimensional opinion spaces 417

Following from the considerations above, two-sidedly ε-flat vertices and their
neighbors therefore have to finally concur with probability 1, forcing the opinion
values of the neighbors to eventually lie at a distance strictly less than 7ε from
the mean as well. By our choice of ε, this conclusion propagates inductively
showing that the limiting behavior will a.s. be strong consensus, if we let ε tend
to 0.

(b) In order to prove the second claim, we use part (b) of Theorem 2.2, focussing
on the ith coordinate only. Fix θ ∈ (0, ∞). Since

|xi − yi| ≤ ‖x − y‖2 for all vectors x, y ∈ Rk and i ∈ {1, . . . , k},

a distance of more than θ in the ith coordinate of the opinion vectors for two
neighbors u, v implies that the edge between them is blocked. The arguments
used for unbounded distributions in Theorem 2.2 – see Thm. 2.2 in Häggström
and Hirscher (2014) – show that under the given conditions, there are a.s.
vertices that differ more than θ from both their neighbors in the ith coordinate
(with respect to the absolut value) in the initial configuration and this will not
change no matter whom their neighbors will compromise with. Consequently,
the corresponding opinion vectors will always be at Euclidean distance more
than θ.

�
Remark 3.3. Pretty much as in the univariate setting, the case where all unbounded
coordinates of η0 do not have an expected value (neither finite nor +∞ nor −∞)
remains unsolved by Theorem 3.2.

When it comes to bounded initial distributions which do have a large gap around
the mean, the picture in higher dimensions drastically changes – something that
will require several preliminary results before we are ready to state and prove this
section’s main result, Theorem 3.15. The major difference to the univariate case
is that with higher-dimensional opinions the update along some edge 〈u, v〉 can
actually lead to a situation, where both u and v come closer to the opinion cor-
responding to a third vertex w, which lies within the confidence bound of neither
η(u) nor η(v), see the below picture.

η(w)

η(u)

η(v)

In the case of real-valued opinions this is impossible, because in that setting an
update along 〈u, v〉 always increases min{|η(u) − η(w)|, |η(v) − η(w)|}, if η(w) does
not lie in between η(u) and η(v).

To illustrate how this changes the conditions, let us consider the initial distribu-
tions unif(Sk−1), where Sk−1 denotes the Euclidean unit sphere in Rk. For k = 1
this is just unif({−1, 1}), which by Theorem 2.2 has the trivial critical value θc = 2.
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For k ≥ 2 however, the fact that opinions close to each other can compromise in
order to form a central opinion will bring θc down to the radius 1 of the distribution
as we will see in the sequel.

The statement of the main result in this section, Theorem 3.15, resembles very
much the one of Theorem 2.2 (a), only the notion of a gap in the initial distribution
has to be reinterpreted in the higher-dimensional setting, making the proof of this
generalized result rather technical. However, while establishing auxiliary results,
we will gain additional information about the set of opinion values that can occur
in the Deffuant model at times t > 0 depending on the initial distribution and
the confidence bound. When it comes to the initial distribution L(η0), the most
important features besides its expected value are its support and the corresponding
radius.

Definition 3.4. Consider an Rk-valued random variable ζ. Its support is the
following subset of Rk, which is closed with respect to the Euclidean metric:

supp(ζ) :=
{
x ∈ Rk, P

(
ζ ∈ B[x, r]

)
> 0 for all r > 0

}
.

Observe that this definition corresponds to the standard notion of spectrum of a
measure, see for example Thm. 2.1 and Def. 2.1 in Parthasarathy (1967) – applied
to the distribution of a random variable.

If the initial distribution has a finite expectation, the radius can also be written
as

R = sup {‖E η0 − x‖2, x ∈ supp(η0)} ,

as the following proposition shows.

Proposition 3.5. If E η0 ∈ Rk, we have

inf
{
r > 0, P

(
η0 ∈ B[E η0, r]

)
= 1
}

= sup {‖E η0 − x‖2, x ∈ supp(η0)} . (3.3)

Proof : First, consider a set A which is compact in (Rk, ‖ . ‖2) and a subset of the
complement of supp(η0). We claim that these properties imply P(η0 ∈ A) = 0.
Indeed, for every point x ∈ A ⊆ (supp(η0))

c there exists a radius rx > 0 s.t.
P
(
η0 ∈ B[x, rx]

)
= 0. Let B(y, r) denote the open Euclidean ball with radius r

around y, then {B(x, rx), x ∈ A} is an open cover of A, which by compactness has
a finite subcover {B(xi, rxi), 1 ≤ i ≤ n}. Consequently

P(η0 ∈ A) ≤ P
(
η0 ∈

n∪

i=1

B[xi, rxi ]
)

= 0.

If r is greater than the supremum in (3.3) it follows that supp(η0) ⊆ B(E η0, r).
Since

(
B(E η0, r)

)c
=

(
B[E η0, r + 1] \ B(E η0, r)

)
∪
( ∪

q∈Qk\B[E η0,r+1]

B[q, 1]

)

and the right-hand side is a countable union of nullsets with respect to L(η0), we
get P

(
η0 ∈ B[E η0, r]

)
= 1, which means that r is greater or equal to the infimum

in (3.3).
On the other hand, if r is less than the supremum in (3.3), there exists a point

x ∈ supp(η0)\B[E η0, r], which consequently has a positive distance δ to the closed
ball B[E η0, r]. This gives

P
(
η0 ∈ B[E η0, r]

)
≤ 1 − P

(
η0 ∈ B[x, δ

2 ]
)

< 1.
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In other words, r does not appear in the set the infimum is taken over. Putting
both arguments together proves (3.3). �
Definition 3.6.

(i) For a finite graph G = (V, E) and an edge e = 〈u, v〉 ∈ E let the update
described in (1.1), considered as a deterministic map on the set of Rk-valued
profiles, be denoted by T θ

e . So if T θ
e is applied to ξ = {ξ(v)}v∈V it just means

that all values stay unchanged with the only exception of(
T θ

e ξ(u)
T θ

e ξ(v)

)
=

(
(1 − µ) ξ(u) + µ ξ(v)
µ ξ(u) + (1 − µ) ξ(v)

)
if ‖ξ(u) − ξ(v)‖2 ≤ θ. (3.4)

(ii) Consider a finite section {1, . . . , n} of the line graph, a finite sequence (ei)
N
i=1

of edges ei ∈ {〈1, 2〉, . . . , 〈n − 1, n〉} and some values x1, . . . , xn in supp(η0).
Such a triple will from now on be called a finite configuration.
To update the configuration (with respect to θ) will mean that we take the val-
ues x1, . . . , xn as initial opinions, i.e. we set η0(v) = xv for all v ∈ {1, . . . , n},
and then apply T θ

eN
◦ T θ

eN−1
◦ . . . ◦ T θ

e1
to {η0(v)}v∈{1,...,n}.

Slightly abusing the notation, let the outcome, i.e. the final opinion values
{T θ

eN
◦ . . . ◦ T θ

e1
η0(v)}v∈{1,...,n}, be denoted by {ηN (1), . . . , ηN (n)}.

(iii) Let ν denote the initial distribution L(η0). For θ > 0, let Dθ(ν) denote the set
of vectors in Rk which the opinion values of finite configurations can collec-
tively approach, if updated according to confidence bound θ. More precisely,
x ∈ Dθ(ν) if and only if for all r > 0, there exist some n ∈ N = {1, 2, . . . },
x1, . . . , xn ∈ supp(η0) and (ei)

N
i=1 as above, such that updating the configu-

ration with respect to θ yields ηN (v) ∈ B[x, r] for all v ∈ {1, . . . , n}.

It is worth emphasizing that finite configurations are supposed to mimick the dy-
namics of the Deffuant model, interpreting (ei)

N
i=1 as the locations of the first N

Poisson events on the edges 〈0, 1〉, 〈1, 2〉, . . . , 〈n − 1, n〉, 〈n, n + 1〉 in (strict) chrono-
logical order. In this respect, considering θ, we can choose the sequence (ei)

N
i=1

such that only Poisson events causing an actual update are considered by simply
eliminating all events on edges where the opinions of the two vertices are more than
θ apart.

Note that according to the definition, Dθ(ν) depends on supp(η0) and θ, as well
as µ, the latter being less obvious. See Example 3.18 below for an instance where µ
actually makes a difference. Let us now turn to various properties of the set Dθ(ν).

Lemma 3.7. Fix the distribution ν of η0 and let Dθ(ν) and R be defined as above.

(a) Dθ(ν) is closed and increases with θ.

(b) supp(η0) ⊆ Dθ(ν) ⊆ conv(supp(η0)) ⊆ B[E η0, R] for all θ > 0, where conv(A)
denotes the convex hull, A the closure of a set A.

Proof : (a) The first claim follows directly from the definition: For a sequence
(xn)n∈N in Dθ(ν) such that ‖x − xn‖2 → 0 and every r > 0, there exists
some xn ∈ B[x, r

2 ]. Due to xn ∈ Dθ(ν), there exists a finite configuration with
all final opinion values in B[xn, r

2 ]. But since B[xn, r
2 ] ⊆ B[x, r], this implies

x ∈ Dθ(ν).
As for the second claim, since we are free to choose the edge sequence in

finite configurations, it is obvious that making θ larger only allows for more
options when we are to come up with a setting that brings the opinion values
collectively inside B[x, r] for some given x ∈ Rk and r > 0.
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(b) The first inclusion is trivial, as for x ∈ supp(η0) the finite configuration with
n = 1, x1 = x will do. The second inclusion is due to the fact that every update
of opinions is a convex combination, see (3.4). Consequently, all final opinion
values of finite configurations lie within conv(supp(η0)). The last inclusion,
which is meaningful only for R < ∞, follows from Proposition 3.5 and the fact
that B[E η0, R] is both convex and closed.

�

It should be mentioned that an easy corollary to Carathéodory’s Theorem on the
convex hull states that the convex hull of a compact set in Rk is compact as well. If
η0 has a bounded support, this implies that the convex hull of supp(η0) is actually

closed, i.e. conv(supp(η0)) = conv(supp(η0)).

Example 3.8. To get familiar with the idea behind Dθ(ν), let us consider the discrete
real-valued initial distribution given by P(η0 = 1

n ) = 1
2n , n ∈ N. It is not hard to

see that this implies supp(η0) = { 1
n , n ∈ N} ∪ {0}. Having the Taylor expansion of

the logarithm in mind we find

E η0 =
∞∑

n=1

1

n 2n
= −

(
−

∞∑

n=1

( 1
2 )n

n

)
= − ln(1 − 1

2 ) = ln(2).

By Theorem 2.2 we get θc = R = ln(2), since P(η0 ∈ [0, 1]) = 1 and the largest gap
in between the point masses is 1

2 .
For two point masses situated at x and y at distance 0 < ‖x − y‖2 ≤ θ, all

convex combinations of x, y are in Dθ(ν): For α ∈ [0, 1] and r > 0, take m,n ∈ N
s.t. ∣∣∣∣

m

m + n
− α

∣∣∣∣ ≤
r

4 max{‖x‖2, ‖y‖2}
.

Let us set up a finite configuration with m + n vertices, x1 = . . . = xm = x and
xm+1 = . . . = xm+n = y as well as enough Poisson events on every edge (in an
appropriate order) such that – having updated the configuration according to the
edge sequence – the outcome ηN (v) will be at distance less than r

2 from the average
m

m+n x + n
m+n y for all v ∈ {1, . . . ,m + n}. Since all the opinion values lie in an

interval of length at most θ in the beginning and hence always will, we could choose
the edge sequence by always taking the edge with largest current discrepancy next,
to see that a finite sequence with the claimed property exists. This will ensure

‖ηN (v) − (αx + (1 − α)y)‖2 ≤ r
2 + ‖( m

m+n x + n
m+n y) − (αx + (1 − α)y)‖2

≤ r
2 + | m

m+n − α| · ‖x‖2 + |α − m
m+n | · ‖y‖2

≤ r,

hence αx + (1 − α)y ∈ Dθ(ν). This observation together with the fact that gaps of
width larger than θ can not be bridged leads to

Dθ(ν) = [0, 1
nθ

] ∪ { 1
n , n < nθ},

where nθ := max{n ∈ N, 1
n−1 − 1

n > θ}.

Lemma 3.9.

(a) For all x ∈ Rk and 0 ≤ δ < θ
2 , the set Dθ(ν) ∩ B[x, δ] is convex.

(b) If R < ∞, then D2R(ν) = conv(supp(η0)) = conv(supp(η0)).
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(c) The connected components of Dθ(ν) are convex and at distance at least θ from

one another. If Dθ(ν) is connected, then Dθ(ν) = conv(supp(η0)).
(d) If R < ∞ and ν has mass around its mean, i.e. condition (3.2) holds, then

Dθ(ν) = conv(supp(η0)) already for θ > R.
(e) For R < ∞, the set-valued mapping

{
(0,∞) → Bk

ϑ 7→ Dϑ(ν)

is piecewise constant with only finitely many jumps on [δ,∞) for all δ > 0.
(f) If Dθ(ν) is connected and E η0 finite, then E η0 ∈ Dθ(ν)

Proof : (a) The proof of the first part of this lemma follows the idea of the above
example. Let y, z ∈ Dθ(ν) and their distance be 0 < ‖y − z‖2 ≤ 2δ < θ. Let
ε = θ − 2δ > 0. For any ε ≥ r > 0, there exist finite configurations χ1 and χ2

with final values in B[y, r
4 ] and B[z, r

4 ] respectively. For α ∈ [0, 1] choose again
m, n ∈ N s.t. ∣∣∣∣

m

m + n
− α

∣∣∣∣ ≤
r

4 max{‖y‖2, ‖z‖2}
.

We define a new finite configuration by putting m copies of χ1 and n copies
of χ2 next to each other: Their finite sections of the line graph (together with
the assigned initial values) will be concatenated blockwise – the order among
the blocks being irrelevant – by adding an edge between two consecutive blocks
in order to form the underlying line graph of a larger finite configuration. To
get an edge sequence for the whole configuration we will simply string together
the edge sequences of the individual copies, again in a blockwise manner and
arbitrary order.

Updating according to the edge sequence will then bring all the opinion
values within distance θ of one another. Therefore, we can bring the final
outcomes arbitrarily close, say at distance at most r

4 , to the average of the
initial values, let’s denote it by x, by just adding a large enough (but finite)
number of Poisson events on each edge (appropriately ordered as before). From
the properties of the chosen building blocks, χ1 and χ2, it readily follows that
the initial average is at distance at most r

4 from m
m+n y + n

m+n z. This entails
for every vertex v of the finite configuration

‖ηN (v) − (αy + (1 − α)z)‖2 ≤ r
4 + ‖x − (αy + (1 − α)z)‖2

≤ r
4 + r

4 + ‖( m
m+n y + n

m+n z) − (αy + (1 − α)z)‖2

≤ r
2 + | m

m+n − α| · ‖y‖2 + |α − m
m+n | · ‖z‖2

≤ r,

which shows αy + (1 − α)z ∈ Dθ(ν).
(b) By Lemma 3.7 it is enough to show D2R(ν) ⊇ conv(supp(η0)). Thus, letting

x, y ∈ supp(η0) ⊆ B[E η0, R], we have to show that conv({x, y}) ⊆ D2R(ν). But
since ‖x − y‖2 can be at most 2R, this is done as described in Example 3.8,
just the line segment conv({x, y}) plays now the role of the interval considered
there.

(c) First of all, the connected components of Dθ(ν) are actually path-connected
and moreover the pathes can be chosen to be polygonal chains: Assume that
a connected component C contains more than one path-connected component.
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Fix one such, say C1. Due to connectedness of C, a second one C2 must exist s.t.
the Euclidean distance between C1 and C2 is 0. But part (a) then implies that
also C1 ∪C2 is path-connected, a contradiction. Moreover, using the statement
of part (a) we can transform any curve in Dθ(ν) to a polygonal chain which
completely lies in Dθ(ν).

Let us turn to the convexity of connected components. Fix a component C
of Dθ(ν) and x, y ∈ C, s.t. ‖x − y‖2 ≥ θ, since otherwise (a) guarantees

conv({x, y}) = {αx + (1 − α)y, α ∈ [0, 1]} ⊆ C.

By the above, there exists a polygonal chain in Dθ(ν), say

l :=

{
[0, 1] → Rk

s 7→ l(s)

such that l(0) = x, l(1) = y and l is continuous and piecewise linear. Let us
define x0 = x, xj+1 = l(sj), where sj := max{s ∈ [0, 1], ‖xj − l(s)‖2 = θ

2},
if ‖xj − y‖2 ≥ θ and xj+1 = y otherwise. Using (a) and these intermediate
points shows that we can assume without loss of generality a certain sparseness
of the chain, namely that its intermediate points x1, . . . , xn are s.t. pairwise
distances in {x = x0, x1, . . . , xn, xn+1 = y} are at least θ

2 and hence n ≤ 2L
θ ,

where L denotes the length of the original chain. Note that the modification
of the polygonal chain as just described will only decrease its length. Given a
polygonal chain in Dθ(ν) connecting x and y, let us assume that the minimal
angle at an intermediate point is π − 2α < π at xj . Considering B[xj ,

θ
2 ] and

using (a) once more, we can replace xj by the two intersection points of the

ball’s boundary and the chain – x
(1)
j , x

(2)
j – and conclude that the new polygonal

chain through the nodes x, x1, x2, . . . , xj−1, x
(1)
j , x

(2)
j , xj+1, . . . , xn, y still lies in

Dθ(ν) and is shorter – at least by the amount of θ · (1 − cos(α)).

❜
❜

❜
❜

❜❜

✧
✧
✧
✧

✧✧

xj

x
(1)
j

x
(2)
j

α

θ
2

r

r r

We can then sparsify the updated chain as described above and denote the
result by l1. Iterating the whole procedure gives a sequence (lm)m∈N of shorter
and shorter polygonal chains in Dθ(ν) connecting x and y. Since the length is
bounded below by ‖x − y‖2, the internal angels must approach π uniformly. Let
π − 2α1, . . . , π − 2αn be the angles at x1, . . . , xn. An easy geometric argument
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yields that all points on the chain are at distance at most

n∑

j=1

tan(2α1 + · · · + 2αj)L ≤ 8nL
π

n∑

j=1

αj ≤ 16L2

πθ

n∑

j=1

αj .

from the line through x and x1, if
∑n

j=1 αj ≤ π
8 , as tan(z) ≤ 4

π z for all z ∈ [0, π
4 ].

This also holds for the endpoint y, which is why the maximal distance of a point

on the chain to the line segment between x and y is bounded by 32L2

πθ

∑n
j=1 αj .

Let nm and (α
(m)
j )nm

j=1 correspond to lm. Then

nm∑

j=1

α
(m)
j ≤ 2L

θ max
1≤j≤nm

α
(m)
j

m→∞−→ 0

implies that the sequence (lm)m∈N must approach the line segment between x
and y, i.e. conv({x, y}) = {αx + (1 − α)y, α ∈ [0, 1]}, uniformly – in the sense
that

max
s∈lm

min
z∈conv({x,y})

‖s − z‖2 → 0 as m → ∞.

Since C being a component of Dθ(ν) is closed, we find conv({x, y}) ⊆ C, which
proves the convexity of C.

Assuming that there are two points in different connected components, say
x ∈ C1, y ∈ C2 s.t. ‖x − y‖2 < θ, already implies (by part (a)) that C1 ∪ C2

is connected, as before. Finally, if Dθ(ν) is connected, what we just proved
induces that it is convex. Being a closed superset of supp(η0), this implies

conv(supp(η0)) ⊆ Dθ(ν),

which by Lemma 3.7 is all that needed to be shown.
(d) Let us now assume that ν has not only a finite radius but also mass around its

mean, that is E η0 ∈ supp(η0). For θ > R, Dθ(ν) is then connected, which by
part (c) implies the claim. Indeed, let ε ∈ (0, θ − R) and choose a point x in
B[E η0, ε]∩ supp(η0). By the choice of ε, all points in B[E η0, R] are at distance
less than θ from x, which by the reasoning in part (a) and Dθ(ν) ⊆ B[E η0, R]
(see Lemma 3.7) implies conv({x, y}) ⊆ Dθ(ν) for all y ∈ Dθ(ν), hence the
connectedness of Dθ(ν).

(e) The first thing to notice is that, given R < ∞, for all θ > 0 the set Dθ(ν) has
finitely many connected components. Indeed, choose a point xi in each, then
the open balls B(xi, θ) must be disjoint by (c) and lie within B(E η0, R + θ).
Consequently, there can’t be more than (R+θ

θ )k of them.
Let C1, . . . , Cn be the connected components of Dδ(ν), for some δ > 0, and

d ≥ δ the minimal distance between them. When θ is made larger than d,
at least two of the components merge. Hence there can be only n − 1 further
jumps. For δ ≤ θ < d we have Dθ(ν) = Dδ(ν).

(f) The last claim can easily be proved by contradiction. Let us therefore assume
that E η0 /∈ Dθ(ν). As this set is closed, there exists some y ∈ Dθ(ν) such
that the Euclidean distance from E η0 to Dθ(ν) is given by ‖E η0 − y‖2 > 0.
Let us define x := 1

2 (E η0 + y). By the convexity of Dθ(ν) we can conclude
(z − y) · (x − y) ≤ 0 for all z ∈ Dθ(ν): If there existed some z ∈ Dθ(ν) such
that (z − y) · (x − y) > 0, y would not be closest to E η0 in Dθ(ν). Using this,
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as well as supp(η0) ⊆ Dθ(ν), we can conclude

E
(
(η0 − x) · (y − x)

)
> 0,

and (E η0 − x) · (y − x) < 0,

a contradiction.

�
Example 3.10.

(a) To get an impression of how Dθ(ν) grows with θ, let us consider the initial
distribution on R3 given by unif({(2, 1, 0), (2, −1, 0), (−2, 0, 1), (−2, 0, −1)}), i.e.
featuring four point masses at the given vertices. It is easy to check that
E η0 = (0, 0, 0) and R =

√
5, see Figure 3.1.

Since all pairwise distances are at least 2, Dθ(ν) = supp(η0) for θ < 2.
For θ ≥ 2 the opinion values (2, 1, 0) and (2, −1, 0) can compromise, same for
(−2, 0, 1) and (−2, 0, −1). This implies that Dθ(ν) contains both line segments
{(2, α, 0), α ∈ [−1, 1]} and {(−2, 0, α), α ∈ [−1, 1]}. The latter are at distance
4, hence we can conclude

Dθ(ν) =





{(2, 1, 0), (2, −1, 0), (−2, 0, 1), (−2, 0, −1)}, for θ < 2

{(2, α, 0), (−2, 0, α), α ∈ [−1, 1]}, for θ ∈ [2, 4)

conv({(2, 1, 0), (2, −1, 0), (−2, 0, 1), (−2, 0, −1)}), for θ > 4.

For θ = 4 it depends on whether the values (−2, 0, 0), (2, 0, 0) can be achieved
or merely approximated by finite configurations, in other words µ (see also
Example 3.18). Note how Dθ(ν) grows by forming local convex hulls.

If we choose unif({(0.99, 1, 0), (0.99,−1, 0), (−0.99, 0, 1), (−0.99, 0, −1)}) to
be the initial distribution instead, we can observe a certain chain reaction effect.
θ ≥ 2 brings the point masses pairwise within the confidence bound as before,
but this time also their convex hulls. So for this distribution ν we find

Dθ(ν) =

{
supp(η0), for θ < 2

conv(supp(η0)), for θ ≥ 2.

(b) Example 3.8 already shows that the mapping ϑ 7→ Dϑ(ν) can have infinitely
(but still countably) many jumps on (0, ∞). Taking the discrete initial distri-
bution given by

P(η0 = 2n) = 1
3n and P(η0 = −2n) = 1

3n , for n ∈ N,
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Figure 3.1. Dθ(ν) for η0 being uniformly distributed on the set
{(2, 1, 0), (2, −1, 0), (−2, 0, 1), (−2, 0, −1)}, evolves with growing θ.

shows that part (e) of Lemma 3.9 doesn’t hold for the case R = ∞, i.e. under
the weaker condition that E η0 is finite.

(c) Coming back to the example mentioned above, where η0 ∼ unif(Sk−1) for some
k ≥ 2, it is not hard to see that Dθ(ν) = B[0, 1] for all θ > 0. Indeed, since
supp(η0) = Sk−1 is connected and supp(η0) ⊆ Dθ(ν), it has to be contained
in a connected component of Dθ(ν). All such are convex by Lemma 3.9, hence
conv(Sk−1) = B[0, 1] ⊆ Dθ(ν). The reverse inclusion follows directly from part
(b) of Lemma 3.7.

Definition 3.11. For θ > 0 and t ≥ 0, let the support of the distribution of ηt be
denoted by suppθ(ηt).

The support of ηt evidently depends on θ. However, for t = 0 it holds that
suppθ(η0) = supp(η0) irrespectively of θ, as the dynamics of the model is not
yet involved. Note that for values of θ where Dθ(ν) increases, suppθ(ηt) can actu-
ally depend on µ as well, see Example 3.18 below. Let us next derive properties of
suppθ(ηt) similar to those of Dθ(ν).

Lemma 3.12.

(a) For 0 < s < t we get suppθ(ηs) = suppθ(ηt).
(b) suppθ(ηt) increases with θ and for all θ > 0:

supp(η0) ⊆ suppθ(ηt) ⊆ conv(supp(η0)) ⊆ B[E η0, R].

Proof : (a) suppθ(ηs) ⊆ suppθ(ηt) readily follows from the fact, that for every set
A P(ηs(v) ∈ A) > 0 implies P(ηt(v) ∈ A) > 0, since with positive probability
there won’t be any Poisson events on the edges 〈v − 1, v〉 and 〈v, v + 1〉 in the
time interval [s, t] forcing ηs(v) = ηt(v).

But the reverse inclusion is also true. To see this we will locally mod-
ify the configuration: x ∈ suppθ(ηt) if and only if for all r > 0, there ex-
ists some n ∈ N such that the event that ηt(0) ∈ B[x, r] and at least one
of the edges 〈−n, −n + 1〉, . . . , 〈−1, 0〉 and 〈0, 1〉, . . . , 〈n − 1, n〉 respectively,
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has not experienced any Poisson event up to time t has positive probability.
That the Poisson events occurring on 〈−n,−n + 1〉, . . . , 〈n − 1, n〉 up to t al-
ready occur in the same order up to time s (and no further events) has pos-
itive probability. Due to the fact that the Poisson events are independent of
the starting configuration, such a modification of the interactions establishes
P(ηs(0) ∈ B[x, r]) > 0.

(b) To prove the monotonicity in θ, we will dissect the event described in part (a)
a little more closely. For x ∈ suppϑ(ηt) and r > 0, let us consider the event
that ηt(0) ∈ B[x, r] and at least one of the edges between −n and 0 as well
as between 0 and n has not experienced any Poisson event up to time t. For
sufficiently large n this has positive probability as mentioned before. Fix n to
be large enough in this respect and denote the corresponding event by A.

Let again (ei)
N
i=1 encode the chronologically ordered locations of the random

but finite number of Poisson events occurring up to time t on the edge set
〈−n,−n+1〉, . . . , 〈n− 1, n〉. Further, let (eij )

N ′
j=1 be the subsequence of (ei)

N
i=1

which contains only those edges on which a difference exceeding the confidence
bound prevented the occurring Poisson event from invoking an actual update
of opinions. Since there are only finitely many choices for the sequence (ei)

N
i=1

and its corresponding subsequence, if N ∈ N is fixed, and N is a.s. finite, we
can partition the event A into {Am, m ∈ N} according to the different choices
of (ei) and (eij ). Note that for the subsequences to be considered equal not
only their length and ordered elements must coincide, but also the set of indices
{ij , 1 ≤ j ≤ N ′} has to be identical. From P(A) > 0 we can conclude that
there must be some Am which has positive probability. In other words, there
exists a set C ⊆ (Rk)2n−1 s.t.

P
(
(η0(v))n−1

v=−n+1 ∈ C
)

> 0

and given a starting configuration in C, Poisson events on the edges given by
the fixed sequence (ei)

N
i=1 corresponding to Am will ensure, in the Deffuant

model with confidence bound ϑ, that the final value at 0 is in B[x, r].
Let B be the event that the locations of all Poisson events on the edge

set {〈−n,−n + 1〉, . . . , 〈n − 1, n〉} up to t are given by the subsequence of
(ei)

N
i=1 which is obtained by removing the elements of (eij ). Given B and

{(η0(v))n−1
v=−n+1 ∈ C}, the dynamics of the Deffuant model with confidence

bounds ϑ and θ ≥ ϑ respectively will coincide up to time t between the two
edges without Poisson events shielding 0 from −n and n. Since B has positive
probability and the Poisson events are independent of {(η0(v))n−1

v=−n+1 ∈ C}
this implies that x ∈ suppϑ(ηt) forces x ∈ suppθ(ηt) for all θ ≥ ϑ, hence the
claimed monotonicity.

When it comes to the second statement, the first inclusion was actually
proved in (a) as the argument used in order to show suppθ(ηs) ⊆ suppθ(ηt) is
also valid for s = 0. The second and third inclusion can be verified as in part
(b) of Lemma 3.7.

�

The following proposition reveals how the set Dθ(ν) comes into play in the analysis
of the long-term behavior of the Deffuant model.
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Proposition 3.13. If ϑ 7→ Dϑ(ν) has no jump in [θ−ε, θ+ε] for fixed θ and some
ε > 0, the following equality holds true for all t > 0:

suppθ(ηt) = Dθ(ν).

Proof : Before proving this result, we want to mention that given R < ∞, the
continuity assumption can be weakened: If R < ∞ and ϑ 7→ Dϑ(ν) has no jump
at θ, part (e) of Lemma 3.9, already implies that Dϑ(ν) is constant on an interval
[θ − ε, θ + ε] for suitably small ε > 0.

Let us first focus on the inclusion suppθ(ηt) ⊇ Dθ(ν). For every fixed x in
Dθ(ν) = Dθ−ε(ν) and all r > 0, there exists a finite configuration with n ∈ N,
x1, . . . , xn ∈ supp(η0) and edge sequence (ei)

N
i=1, such that updating the config-

uration with respect to the confidence bound θ − ε yields ηN (v) ∈ B[x, r] for
all v ∈ {1, . . . , n}. Let further t > 0 be fixed. Due to xv ∈ supp(η0), we get
P(η0 ∈ B[xv, ε]) > 0.

Consequently, in the Deffuant model on Z the following event has positive
probability: η0(v) ∈ B[xv, ε] for all v ∈ {1, . . . , n}, up to time t Poisson events
have occurred on neither 〈0, 1〉 nor 〈n, n + 1〉 and the locations of the events on
〈1, 2〉, . . . , 〈n − 1, n〉 are chronologically ordered given by (ei)

N
i=1. Note that ev-

ery Poisson event which leads to an update in the given finite configuration does
the same in this configuration of the whole model with respect to parameter θ,
as the margins coming from slightly altered initial values are convex combina-
tions of the initial margins η0(v) − xv and thus always bounded by ε. This shows
P(ηt(1) ∈ B[x, r + ε]) > 0, hence x ∈ suppθ(ηt).

When it comes to the reverse inclusion, consider again the Deffuant model with
confidence bound θ. By definition, x ∈ suppθ(ηt) if and only if for all r > 0 :
P(ηt(v) ∈ B[x, r]) > 0. But every such value ηt(v) is formed by (finitely many)

convex combinations starting from a finite collection of initial values {η0(u)}v+l
u=v−k.

Part (a) of Lemma 3.9 shows that ηs−(u), ηs−(v) ∈ Dθ+ε(ν) immediately implies
ηs(u), ηs(v) ∈ Dθ+ε(ν) after an update along the edge 〈u, v〉 at time s, since this
can only occur if the former are at distance less than or equal to θ. Due to
{η0(u)}v+l

u=v−k ⊆ supp(η0) ⊆ Dθ+ε(ν), we can use this consideration in an inductive
argument to verify ηt(v) ∈ Dθ+ε(ν) and hence

suppθ(ηt) ⊆ Dθ+ε(ν) = Dθ+ε(ν) = Dθ(ν). �

Note that if ϑ 7→ Dϑ(ν) has a jump at θ, the subtle issue with critical compromises,
as considered in Proposition 2.3, reappears. To make this point clear, let us consider
the initial distribution ν = unif({ 1

4 , 3
4}), for which we find

D 1
2
(ν) = supp1

2
(ηt) = [ 14 , 3

4 ].

Taking η0 ∼ unif
(
[0, 1

4 ] ∪ [ 34 , 1]
)

instead yields

[0, 1] = D 1
2
(ν) ) supp 1

2
(ηt) = [0, 1

4 ] ∪ [ 34 , 1].

Definition 3.14. Given an initial distribution L(η0) = ν, define the length of the
largest gap in its support as

h := inf{θ > 0, Dθ(ν) is connected}.
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Following this definition we get h = 0 for ν = unif(Sk−1) and k ≥ 2, but h = 2
for ν = unif(S0). Considering the other two distributions appearing in the above
example, we observe that unif({(2, 1, 0), (2, −1, 0), (−2, 0, 1), (−2, 0, −1)}) has h = 4
and unif({(0.99, 1, 0), (0.99, −1, 0), (−0.99, 0, 1), (−0.99, 0,−1)}) instead h = 2. In
addition, parts (b) and (d) of Lemma 3.9 tell us that h ≤ 2R if R is finite and
h ≤ R if additionally E η0 ∈ supp(η0).

Having generalized the notion of a gap in a distribution on R to higher dimensions
finally allows us to formulate and prove a result corresponding to the cases of
Theorem 2.2 that were omitted by Theorem 3.2.

Theorem 3.15. Consider the Deffuant model on Z with an initial distribution on
(Rk, ‖ . ‖2) that is bounded, i.e.

R = inf
{
r > 0, P

(
η0 ∈ B[E η0, r]

)
= 1
}

< ∞,

and h being the length of the largest gap in its support. Then the critical value for
the confidence bound, where a phase transition from a.s. no consensus to a.s. strong
consensus takes place is θc = max{R, h}.
Proof : Having analyzed the qualitative differences invoked by higher-dimensional
opinion values, the proof of this theorem is to a large extent similar to the one of
part (a) of Thm. 2.2 in Häggström and Hirscher (2014), which is Theorem 2.2 in
the foregoing section. Let us consider the following three scenarios:

(i) For θ < h we cannot have consensus:
By definition of h the set Dθ+ε(ν) is not connected for ε > 0 sufficiently small;
by Lemma 3.9 (e) we can choose ε such that ϑ 7→ Dϑ(ν) has no jump at θ + ε
and thus (by Proposition 3.13) get Dθ+ε(ν) = suppθ+ε(ηt) for all t > 0. In
addition, Lemma 3.9 (c) tells us that there exist two connected components,
say C1 and C2, both being convex and at distance at least θ + ε from the
corresponding complementary part of suppθ+ε(ηt), i.e. ‖x − y‖2 ≥ θ + ε for
all x ∈ Ci, y ∈ suppθ+ε(ηt) \ Ci and i = 1, 2.

By Lemma 3.12 we know that supp(η0) ⊆ suppθ(ηt) ⊆ suppθ+ε(ηt). In the
Deffuant model with confidence bound θ opinions in C1 cannot compromise
with opinions in suppθ(ηt) \ C1 ⊆ suppθ+ε(ηt) \ C1 and thus never leave the
convex set C1. The same holds for C2.

Consequently, we get P(η0(v) ∈ Ci) = P(ηt(v) ∈ Ci) > 0, for i = 1, 2.
For a fixed vertex v, it follows from the independence of initial opinions that
P(η0(v) ∈ C1, η0(v + 1) ∈ C2) > 0, which dooms the edge 〈v, v + 1〉 to be
blocked for all t ≥ 0, due to ‖ηt(v) − ηt(v + 1)‖2 ≥ θ + ε. Ergodicity of the
initial configuration ensures that a.s. infinitely many neighboring vertices will
be prevented from compromising by holding opinions in C1 and C2 respec-
tively, hence no consensus in the long run.

(ii) For θ < R we cannot have consensus: In the regime θ < R, for any fixed
ε ∈

(
0, R−θ

2

)
there exists some point y ∈ supp(η0) \ B[E η0, θ + 2ε]. Choose z

to be the point on the line segment connecting E η0 and y which has Euclidean
distance ε to E η0, see the below picture. With the help of this point, define
the following half-space: H := {x ∈ Rk, (x − z) · (y − z) ≤ 0}. Clearly,
B[E η0, ε] ⊆ H and according to the same argument as in part (f) of Lemma
3.9 we find P(η0 ∈ H) > 0, as the contrary would imply

E [(η0 − z) · (y − z)] > 0 > (E η0 − z) · (y − z),
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a contradiction.

Using this auxiliary construction, we can finish the proof of this subcase
following the argument in the proof of Theorem 2.2 (b), see Thm. 2.2 in
Häggström and Hirscher (2014). As the distribution is bounded, the SLLN
states

P

(
lim

n→∞
1

n

v+n∑

u=v+1

η0(u) = E η0

)
= 1. (3.5)

Consequently, for sufficiently large N ∈ N the following event has non-zero
probability:

AN :=

{
1

n

v+n∑

u=v+1

η0(u) ∈ H for all n ≥ N

}
.

Let ξ denote the (real-valued) distribution of (η0 − z) · (y − z) and ξ|(−∞,0]

its distribution conditioned on the event {(η0 − z) · (y − z) ≤ 0} = {η0 ∈ H}.
Obviously, ξ|(−∞,0] is stochastically dominated by ξ, i.e. ξ|(−∞,0] � ξ, which
implies (

v+N⊗

u=v+1

ξ|(−∞,0]

)
⊗
( ⊗

u>v+N

ξ

)
�
⊗

u≥v+1

ξ.

Let B be the event {η0(v+1) ∈ H, . . . , η0(v+N) ∈ H}, which has non-zero
probability by independence, and

A1 :=

{
1

n

v+n∑

u=v+1

η0(u) ∈ H for all n ∈ N

}
.

Rewriting the event AN as

AN =

{
1

n

v+n∑

u=v+1

(
η0(u) − z

)
·
(
y − z

)
≤ 0 for all n ≥ N

}
,

the stochastic domination from above yields:

P(A1) ≥ P(A1 ∩ B) = P(AN ∩ B) = P(AN |B) · P(B)

≥ P(AN ) · P(B) > 0.

The very same ideas as in the proof of Prop. 5.1 in Häggström (2012) show
that if A1 occurs and the edge 〈v, v + 1〉 doesn’t allow for an update up to
time t > 0, irrespectively of the dynamics on {u ∈ Z, u ≥ v + 1}, we get that

ηt(v + 1) is a convex combination of the averages { 1
n

∑v+n
u=v+1 η0(u), n ∈ N},
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hence in H as the latter is convex. By symmetry, the same holds for site v −1
and the half-line to the left, i.e. {u ∈ Z, u ≤ v − 1}. Independence of the
initial opinions therefore guarantees that with positive probability, the initial
configuration can be such that η0(v) ∈ B(y, ε) and the values at sites v − 1
and v +1 are doomed to stay in H, blocking the edges adjacent to v once and
for all, as the distance of y to H is at least θ + ε. Ergodicity makes sure that
with probability 1 infinitely many sites will get stuck this way.

(iii) For θ > max{R, h} we get a.s. strong consensus:
Choose β such that 0 < β < θ − max{R, h}. From the definition of h and
Lemma 3.9 (e), we can conclude E η0 ∈ Dθ−β(ν). Because of that, for all
ε > 0, there exists a finite configuration such that the final opinion values all
lie in B[E η0,

ε
6 ], i.e. n ∈ N, x1, . . . , xn ∈ supp(η0) and an edge sequence (ei)

N
i=1

from {〈1, 2〉, . . . , 〈n − 1, n〉}, s.t. updating the configuration with respect to
the confidence bound θ − β yields ηN (v) ∈ B[E η0,

ε
6 ] for all v ∈ {1, . . . , n},

see Definition 3.6. From this point on, we can go about as in step (ii) of the
proof of Thm. 2.2 (a) in Häggström and Hirscher (2014):

Let us consider some fixed time point t > 0 and the corresponding con-
figuration {ηt(v)}v∈Z. With probability 1, there exists an infinite increasing
sequence of not necessarily consecutive edges (〈vk, vk + 1〉)k∈N to the right of
site 1, on which no Poisson event has occurred up to time t.

Let lk := vk+1 − vk, for k ∈ N, denote the random lengths of the intervals
in between and l0 := v1 − v0 + 1 the one of the interval including 1, where
〈v0 − 1, v0〉 is the first edge to the left of 1 without Poisson event. Since
the involved Poisson processes are independent, it is easy to verify that the
lk, k ∈ N0 = {0, 1, 2, . . . }, are i.i.d., having a geometric distribution on N
with parameter e−t.

For δ > 0, let Aδ be the event that l0 is finite and only finitely many of
the events {lk ≥ k δ

R}, k ∈ N, occur. Then their independence and the Borel-
Cantelli lemma tell us that Aδ has probability 1. On Aδ however the following
holds a.s. true:

lim sup
v→∞

∥∥∥1

v

v∑

u=1

ηt(u) − E η0

∥∥∥
2

= lim sup
v→∞

∥∥∥1

v

v∑

u=1

(
ηt(u) − E η0

)∥∥∥
2

= lim sup
v→∞

∥∥∥1

v

v∑

u=v0

(
ηt(u) − E η0

)∥∥∥
2

≤ lim sup
v→∞

∥∥∥1

v

v∑

u=v0

(
η0(u) − E η0

)∥∥∥
2

+ δ

= lim sup
v→∞

∥∥∥1

v

v∑

u=1

(
η0(u) − E η0

)∥∥∥
2

+ δ

= δ.

The second and second to last equality follow from the finiteness of v0, the
last equality from the SLLN applied to the sequence (η0(u))u≥1, stating

lim
v→∞

1

v

v∑

u=1

η0(u) = E η0 almost surely.
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The inequality is due to the fact that the Deffuant model is mass-preserving
in the sense that ηt(u) + ηt(v) = ηt−(u) + ηt−(v) in (1.1), hence for all k ∈ N:∑vk

u=v0
η0(u) =

∑vk

u=v0
ηt(u). For the average at time t running from v0 to

some v ∈ {vk + 1, . . . , vk+1} to differ by more than δ from the one at time 0,
the interval has to be of length more than k δ

R , since ‖ηt(u) − E η0‖2 ∈ [0, R]
for all t, u and vk ≥ k. This, however, will happen only finitely many times.

Since δ > 0 was arbitrary, we have established that even for t > 0

lim
v→∞

1

v

v∑

u=1

ηt(u) = E η0 almost surely. (3.6)

Now we are going to use the finite configuration from above and a conditional
version of the so-called local modification, a technique often used in percolation
theory. Due to (3.6), there exists some integer number k s.t. the event

A :=

{
1

v

v∑

u=1

ηt(u) ∈ B[E η0,
ε
3 ] for all v ≥ kn

}

has probability greater than 1 − e−2t.
Let B in turn be the event that there was no Poisson event on 〈0, 1〉 and

〈kn, kn + 1〉 up to time t, hence P(B) = e−2t. Finally, let C be the event that
the initial values satisfy

η0(ln + i) ∈ B[xi,min{β, ε
6}], for all 0 ≤ l ≤ k − 1 and 1 ≤ i ≤ n,

and the Poisson firings on the edges 〈0, 1〉, . . . , 〈kn, kn + 1〉 up to time t are
given by a concatenation of the k finite sequences given by shifting (ei)

N
i=1 ln

vertices to the right, 0 ≤ l ≤ k − 1. In other words, up to time t there are
no Poisson events on the k + 1 edges {〈0, 1〉, 〈n, n + 1〉, . . . , 〈kn, kn + 1〉} and
the dynamics in the k blocks {ln + 1, . . . , (l + 1)n} resembles the dynamics
of the finite configuration, accordingly leading to ηt(v) ∈ B[E η0,

ε
3 ] for all

v ∈ {1, . . . , kn}, see also the proof of Proposition 3.13. Note that C has non-
zero probability, C ⊆ B and also A ∩ B has strictly positive probability as
P(A ∩ Bc) ≤ P(Bc) = 1 − e−2t < P(A).

Consider two configurations {η′
0(v)}v∈Z and {η′′

0 (v)}v∈Z, independent from
each other and having the same distribution as {η0(v)}v∈Z underlying the
dynamics of the Deffuant model. Then also the compound configuration

η̃0(v) =

{
η′
0(v), for v ∈ {1, . . . , kn}

η′′
0 (v), for v /∈ {1, . . . , kn}

has the i.i.d. distribution of the initial configuration. With positive proba-
bility A ∩ B occurs for the initial configuration {η′′

0 (v)}v∈Z and C for the
initial configuration {η′

0(v)}v∈Z. The fact that (η̃s(v))v∈Z equals {η′
s(v)}v∈Z

on {1, . . . , kn} and {η′′
s (v)}v∈Z outside {1, . . . , kn} for s ∈ [0, t] given B, to-

gether with the independence of the involved building block configurations,
shows that with positive probability A ∩ B ∩ C ′ holds for the configuration at
time t, where

C ′ =
{
ηt(v) ∈ B[E η0,

ε
3 ] for all v ∈ {1, . . . , kn}

}
.

An easy calculation reveals that A ∩ C ′ implies the ε-flatness to the right
of site 1 in the configuration at time t. By symmetry in left and right, the
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same holds true for the site 0 and ε-flatness to the left with respect to the
configuration {ηt(v)}v∈Z. As the two parts {ηt(v)}v≤0 and {ηt(v)}v≥1 of the
configuration at time t are conditionally independent given there was no Pois-
son event on the edge 〈0, 1〉 up to time t, we have actually shown that the
origin is two-sidedly ε-flat with respect to the configuration {ηt(v)}v∈Z with
positive probability.

The supercritical case is now settled as in part (a) of Theorem 3.2. Follow-
ing the reasoning of Sect. 6 in Häggström (2012), the proof of La. 6.3 there
tells us that a two-sidedly ε-flat vertex will never move further than 6ε away
from the mean and Prop. 6.1 guarantees that two neighbors will a.s. either
finally concur or end up further than θ apart from each other. Choosing
0 < ε < θ−R

6 the latter is impossible for vertices neighboring a two-sidedly
ε-flat vertex, which means that they will a.s. finally concur and the same
holds true for every vertex by induction. Ergodicity of the setting at time t
guarantees that there will be a.s. (infinitely many) two-sidedly ε-flat vertices
forcing almost sure strong consensus.

�

Remark 3.16. It is worth emphasizing that only the support and expected value
of a bounded initial distribution determine the critical value for θ: As long as it
does not affect the support, the dependence relations between the coordinates of
the random vector η0 do not influence the critical parameter θc.

Furthermore, having proved this result for more general multivariate distribu-
tions, part (a) of Theorem 3.2 becomes a special case of Theorem 3.15, since using
part (d) of Lemma 3.9 shows that the maximal gap in a distribution of η0 with
mass around its mean cannot be larger than its radius, i.e. h ≤ R.

Finally, the requirement that the initial opinions are independent is not as vital
as it might seem. The independence was merely used to guarantee that we can
locally modify initial configurations and still obtain events with positive proba-
bility. Consequently, the i.i.d. property can be replaced by the weaker condition
that {η0(v)}v∈Z is a stationary sequence, ergodic with respect to shifts and allow-
ing conditional probabilities such that the conditional distribution of η0(0) given
{η0(v)}v∈Z\{0} almost surely has the same support as the marginal distribution
L(η0), with the above conclusions remaining valid. This last condition is a natural
extension to continuous state spaces of the well-known finite energy condition from
percolation theory – for a more detailed discussion of this extension to dependent
initial opinions, see Sect. 2.2 in Häggström and Hirscher (2014).

Example 3.17.

(a) With Theorem 3.15 in hand, we can finally settle the case of η0 ∼ unif(Sk−1).
Irrespectively of k, this distribution has radius R = 1, but for k = 1, the
maximal gap is h = 2, for k > 1 instead h = 0. By the above theorem, we can
conclude

θc = max{R, h} =

{
2, for k = 1

1, for k ≥ 2.

In short, the fact that Sk−1 is disconnected for k = 1 but connected for k ≥ 2
makes all the difference.
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(b) If the random vector η0 has independent coordinates, each being Bernoulli
distributed with parameter p ∈ (0, 1), i.e. for all 1 ≤ i ≤ k

P
(
η
(i)
0 = 1

)
= 1 − P

(
η
(i)
0 = 0

)
= p,

its support is the hypercube {0, 1}k and the expected value E η0 = p e, where
e is the k-dimensional vector of all ones. The radius of this initial distribution
is R = max{‖E η0 − 0‖2, ‖E η0 − e‖2} =

√
k max{p, 1 − p}. It is not hard to

see that a distribution with the hypercube as its support has the maximal gap
h = 1. Indeed, for θ < 1 no two opinion values can interact, for θ > 1 all
neighboring corners get within the confidence bound and their pairwise convex
hulls form the edges of the hypercube, hence their union is a connected set
giving Dθ(ν) = [0, 1]k, for θ > 1, by means of Lemma 3.9.

In conclusion, the Deffuant model with this initial distribution features the
critical value

θc =

{
1, for k = 1 or k = 2, 3 and p ∈ [1 − 1√

k
, 1√

k
]√

k max{p, 1 − p}, for k ≥ 4 or k = 2, 3 and p /∈ [1 − 1√
k
, 1√

k
].

As stated in the above remark, independence of the individual coordinates is not

essential, as long as the support stays unchanged. A relation like η
(1)
0 = 1−η

(2)
0

in the Bernoulli example with parameter p = 1
2 however, will influence both

supp(η0) and as a consequence θc as well.

Example 3.18. There is one more crucial change when the opinions in the Deffuant
model on Z are given by vectors instead of real numbers. The parameter µ, shaping
the size of compromising steps, which was of no particular interest so far, can
actually play a crucial role in the critical case.

In order to verify this claim, let us consider the two-dimensional initial distribu-
tion given by unif({(0, 0), (1, 0), ( 1

π , 1)}), which is depicted below. Given θ = 1 we
have

[0, 1] × {0} ⊆ suppθ(ηt) for all t > 0,

following the reasoning of Example 3.8. But the point ( 1
π , 0) can only be approxi-

mated, never attained by ηt(v), if µ is rational for example. For µ = 1
π on the other

hand, the event that ηt(v) = ( 1
π , 0) has positive probability for t > 0, which leads

to supp(ηt) = conv(supp(η0)).

Note that for this distribution, we have h = 1 > R, since E η0 = 1
3 (1 + 1

π , 1). Simi-
larly to the proof of the above theorem, we can conclude that the Deffuant model
on Z with confidence bound θ = θc = 1 and this initial distribution approaches
almost surely no consensus for µ ∈ (0, 1

2 ] ∩ Q and almost surely strong consensus

for µ = 1
π :

If µ is rational, vertices holding the initial opinion ( 1
π , 1) can never compromise

with such holding an opinion (a, 0) since a is rational and can therefore not be 1
π .

Consequently, we will have a.s. no consensus due to blocked edges.
If µ = 1

π however, we can come up with a finite configuration allowing for
the local modification, which guaratees the existence of two-sidedly ε-flat vertices:
Actually n = 3 is enough and

x1 = (1, 0), x2 = (0, 0), x3 = ( 1
π , 1)
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-

6

0

1

11
π

L(η0)

r r

r
r E η0

will be an appropriate choice of starting values, if the edge sequence (ei)
N
i=1 begins

with e1 = 〈1, 2〉, e2 = 〈2, 3〉, since that will bring the value at site 1 to (1 − 1
π , 0),

the one at 2 to ( 1
π , 1

π ) and the one at 3 to ( 1
π , 1− 1

π ), all lying in B[E η0,
1
2 ], and thus

their pairwise distances are all less than the confidence bound. If the edge sequence
contains the edge pair (〈1, 2〉, 〈2, 3〉) enough times, the final values of the finite
configuration will all lie at Euclidean distance at most ε

3 from the initial average
1
3 (x1 + x2 + x3) = E η0 for any fixed ε > 0. Note that in the present case, when
transforming the finite configuration into a part of the dynamics on the whole line
graph, we don’t have to worry about taking small balls around the initial values xi

in order to get an event C with positive probability, since the xi are atoms of the
initial distribution. Taking small balls would actually invalidate the argument due
to the fact that the parameter θ is pinned to the critical value θc = 1 not allowing
for small marginals.

Another fact – adding to part (e) of Lemma 3.9 – that can be seen from this example
is that the jumps of the mapping ϑ 7→ Dϑ(ν) do not have to be continuous from
the right in the sense that

Dθ(ν) =
∩

ϑ>θ

Dϑ(ν).

Given µ ∈ Q we get for this initial distribution

Dθ(ν) =





supp(η0), for θ < 1

[0, 1] × {0} ∪ {( 1
π , 0)}, for θ = 1

conv(supp(η0)), for θ > 1,

hence there can actually be a double jump.

4. Metrics other than the Euclidean distance

Having investigated the changes that multidimensional opinion values cause in
the Deffuant model, another interesting aspect is the impact of the measure of
distance between two opinions. What happens if we apply some general metric ρ
other than the natural choice given by the Euclidean norm?

Although this generalization does not entirely fit the framework as laid out in
Section 1, it is not worth repeating all the definitions as one would simply have to
replace all appearing distances ‖x − y‖2 by ρ(x, y) correspondingly. Note however
that switching to a general metric ρ influences the dynamics of the Deffuant model
only in determining which opinion values are within ‘speaking distance’, that is
allowing for an update if neighbors with corresponding opinions interact. Once the
two values are close enough in this respect, the updated opinion values will just
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be the convex combinations described in (1.1), even if the straight line connecting
both values might no longer be the geodesic between them (as in the Euclidean
case) and the steps taken towards the arithmetic average can be of different length
if ρ is not translation invariant.

With respect to the considerations in the foregoing section, the following prop-
erties of a distance measure play an important role.

Definition 4.1. Consider a metric ρ on Rk.

(i) Let the metric ρ be called sensitive to coordinate i, if there exists a function
ϕ : [0, ∞) → [0, ∞) such that lims→∞ ϕ(s) = ∞ and for any two vectors
x, y ∈ Rk with |xi − yi| > s, it holds that ρ(x, y) > ϕ(s).

(ii) Call ρ locally dominated by the Euclidean distance, if there exist some γ, c > 0
such that for x, y ∈ Rk with ‖x − y‖2 ≤ γ it holds that

ρ(x, y) ≤ c · ||x − y||2. (4.1)

(iii) Finally, let ρ be called weakly convex if for all x, y, z ∈ Rk:

ρ(x, αy + (1 − α) z) ≤ max{ρ(x, y), ρ(x, z)} for all α ∈ [0, 1].

The convexity of balls Bρ(x, r) = {y ∈ Rk, ρ(x, y) < r} generated by the metric
is a crucial feature. It is not hard to check that the balls generated by ρ are
convex if and only if the metric is weakly convex: Sufficiency is obvious, since
y, z ∈ Bρ(x, r) immediately gives conv({y, z}) ⊆ Bρ(x, r). As to necessity, if there
are x, y, z ∈ Rk, α ∈ (0, 1) s.t. ρ(x, αy + (1 − α) z) > max{ρ(x, y), ρ(x, z)}, we can
choose r ∈ (max{ρ(x, y), ρ(x, z)}, ρ(x, αy + (1 − α) z)) and conclude that Bρ(x, r)
can not be convex. It should be mentioned that when talking about the metric
space (Rk, ρ), we will always assume that it is equipped with the Borel σ-algebra
generated by the metric ρ.

If ρ is locally dominated by the Euclidean distance, we can find a constant
C = C(θ) such that (4.1) holds in fact for all x, y ∈ Rk with ρ(x, y) ≤ θ if c is
replaced by C: If ‖x − y‖2 > γ but ρ(x, y) ≤ θ, we can conclude that

ρ(x, y) ≤ θ ≤ θ
γ ‖x − y‖2,

hence C := max{c, θ
γ } will do.

Definition 4.2. Let the Deffuant model with respect to a general distance measure
ρ be defined just as in Section 1, with the only change that the restriction of the
confidence bound in (1.1) will now rule that Poisson events cause updates only
if ρ(a, b) ≤ θ, where a, b denote the opinion values at the corresponding vertices.
As the convexity of balls is enormously important in the analysis presented in the
foregoing section, in what follows ρ will be assumed to be weakly convex.

No consensus still means that we have finally blocked edges, that is some 〈u, v〉
s.t. ρ(ηt(u), ηt(v)) > θ for all t large enough. Similarly, the convergence notion in
the definition of consensus is now based on the distance ρ.

As before, the initial opinions are i.i.d. with some common distribution L(η0)
on Rk. If the distribution of η0 has a finite expectation, we define its radius with
respect to ρ as

Rρ := inf
{
r > 0, P

(
η0 ∈ Bρ(E η0, r)

)
= 1
}

,

similarly to the Euclidean case, see Definition 3.1.
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Likewise, the notion of ε-flatness transfers to the new setting as follows: A vertex
v ∈ Z is called ε-flat (with respect to ρ) to the right in the initial configuration
{η0(u)}u∈Z if for all n ≥ 0:

1

n + 1

v+n∑

u=v

η0(u) ∈ Bρ(E η0, ε), (4.2)

similarly for ε-flatness to the left and two-sided ε-flatness.

By imposing appropriate additional restrictions on the weakly convex metric ρ
and the initial distribution, we can retrieve the result of Theorem 3.2 also in this
generalized setting. The extra restriction on L(η0) is that E [η 2

0 ] is finite, as this
is no longer directly implied by the finiteness of the initial distribution’s radius
(just think of a bounded metric). The Cauchy-Schwarz inequality implies that this
constraint is equivalent to the finiteness of the entries in the covariance matrix
corresponding to the distribution of η0, which is why we will simply refer to it as
having a finite second moment, just as in the univariate case.

Finally, note that if we fix an initial distribution L(η0), due to the update
rule (1.1), all possible future opinion values lie in the convex hull of its support,
conv(supp η0). For this reason it will suffice in every respect that ρ is weakly convex
(and possibly locally dominated by the Euclidean norm) on conv(supp η0) only, not
the entire Rk.

Theorem 4.3. In the Deffuant model on Z with the underlying opinion space
(Rk, ρ) and an initial opinion distribution L(η0) we have the following limiting
behavior:

(a) If ρ is locally dominated by the Euclidean distance and L(η0) has a finite second
moment, a finite radius Rρ ∈ [0, ∞) and mass around its mean, i.e.

P
(
η0 ∈ Bρ(E η0, r)

)
> 0 for all r > 0, (4.3)

the critical parameter is θc = Rρ, meaning that for θ < Rρ we have a.s. no
consensus and for θ > Rρ a.s. strong consensus.

(b) Let η0 = (η
(1)
0 , . . . , η

(k)
0 ) be the random initial opinion vector. If one of the

coordinates η
(i)
0 has an unbounded marginal distribution (with respect to the

absolute value), its expected value exists (regardless of whether finite, +∞ or
−∞) and ρ is sensitive to this coordinate, the limiting behavior will a.s. be no
consensus, irrespectively of θ.

Proof : (a) The proof of this theorem is exactly the same as the proof of Theorem
3.2. One only has to check that the additional requirements on ρ make up
for the crucial properties of the Euclidean norm that were used in the cited
proof. The (multivariate) SLLN states that the averages in (4.2) for large n
are close to the mean in Euclidean distance, hence with respect to ρ due to
(4.1). Local modification of the initial profile will then guarantee the existence
of one-sidedly ε-flat vertices.

The crucial role of ε-flat vertices is preserved by the weak convexity of ρ:
The proof of Prop. 5.1 in Häggström (2012) shows that given an edge 〈v − 1, v〉
along which there have been no updates yet, the opinion value at v is a convex
combination of averages as in (4.2), hence lies in Bρ(E η0, ε) as well, if v was
ε-flat to the right with respect to the initial configuration, due to convexity of
the ρ-balls.
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As to the supercritical regime, the a.s. existence of two-sidedly ε-flat ver-
tices follows from the a.s. existence of one-sidedly ε-flat vertices and the i.i.d.
property of the initial configuration, just as in the Euclidean case. The weak
convexity of ρ is needed once more to conclude that the opinion values of two-
sidedly ε-flat vertices stay close to the mean, just as in La. 6.3 in Häggström
(2012).

When we want to apply the argument of Prop. 6.1 in Häggström (2012),
stating that neighbors will a.s. either finally concur or the edge between them
be blocked for large t, it is essential that condition (4.1), together with the
finite second moment, allows once again to borrow the energy idea. The ex-
tra condition of a finite second moment implies the finiteness of the expected
initial engergy E [W0(v)] = E [η0(v)2], as mentioned just before the theorem.
If the opinions ηt(u), ηt(v) of two neighbors are within the confidence bound
with respect to ρ but ρ(ηt(u), ηt(v)) ≥ δ for some δ > 0, then due to (4.1):
||ηt(u) − ηt(v)||2 ≥ δ

C , where C = max{c, θ
γ } > 0, see the comments after Defi-

nition 4.1. This will cause an energy loss of at least 2µ(1 − µ)( δ
C )2 when they

compromise. Again, this cannot happen infinitely often with positive probabil-
ity as the expected energy at time t = 0 is finite and the expected total energy
preserved over time.

(b) Given ρ is sensitive to coordinate i, the idea of proof of the second claim can
be reutilized as well. The sensitivity leads to the fact that there is some s > 0
s.t. |xi − yi| > s implies ρ(x, y) > θ. As alluded in the proof of Theorem
3.2, the arguments used for unbounded distributions in Thm. 2.2 in Häggström
and Hirscher (2014) show that under the given conditions, there are a.s. ver-
tices that differ more than s from both their neighbors in the ith coordinate
(with respect to the absolut value) in the initial configuration and this will not
change no matter whom their neighbors will compromise with. Consequently
the corresponding opinion vectors will always be at ρ-distance more than θ.

�
Example 4.4.

(a) The Lp-norm for general p ∈ [1, ∞] on Rk is defined as follows:

‖x‖p :=
( k∑

i=1

|xi|p
) 1

p
for p ∈ [1,∞) and ‖x‖∞ := max

1≤i≤k
|xi|.

In fact, these norms are all equivalent. More precisely, for 1 ≤ q < p ≤ ∞:

‖x‖p ≤ ‖x‖q ≤ k

(
1
q − 1

p

)
‖x‖p.

This implies for all p ∈ [1, ∞]:

‖x‖p ≤
√

k ‖x‖2.

In other words all induced metrics ρ(x, y) = ‖x−y‖p, are – to be precise globally
– dominated by the Euclidean distance.

It is easy to check that the norm axioms guarantee the convexity of balls,
hence the metric induced by ‖ . ‖p is weakly convex for any p ∈ [1,∞].

Furthermore, ‖x‖p ≥ k

(
1
p −1
)
‖x‖1 ≥ k

(
1
p −1
)
|xi| for all 1 ≤ i ≤ k implies

sensitivity to every coordinate. In conclusion, both parts of Theorem 4.3 can
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be applied to the Deffuant model with the metric induced by some Lp-norm,
i.e. ρ(x, y) = ‖x − y‖p, p ∈ [1, ∞], as distance measure.

(b) If the definition of ‖ . ‖p is extended to values for p in (0, 1), the corresponding
functions are not subadditive, hence do not induce a metric.

Raised to the power p, we get the distance measures

ρp(x, y) :=
(
‖x − y‖p

)p
=

k∑

i=1

|xi − yi|p,

which are in fact metrics for all p ∈ (0, ∞) and obviously sensitive to every
coordinate. For p ∈ (0, 1) these metrics fail to have convex balls. For p ∈ [1, ∞)
however, they are weakly convex which can be seen from the weak convexity of
‖ . ‖p as follows:

ρp(x, αy + (1 − α) z) =
(∥∥x −

(
αy + (1 − α) z

)∥∥
p

)p

≤
(
max{‖x − y‖p, ‖x − z‖p}

)p

= max{ρp(x, y), ρp(x, z)}.

The metrics ρp, p ∈ [1, ∞) are no longer equivalent to the Euclidean distance,
but still locally dominated in the sense of (4.1). In conclusion, Theorem 4.3
equally applies to the Deffuant model where distances are taken with respect
to ρp.

More generally, given ϕ = (ϕi)
k
i=1 with non-negative functions ϕi defined on

R≥0 we can consider

ρϕ(x, y) :=
k∑

i=1

ϕi

(
|xi − yi|

)
.

For this to be a proper metric, the ϕi have to be convex satisfying ϕi(s) = 0 if
and only if s = 0. Defined this way ρϕ is convex, in particular weakly convex.
It will be locally dominated by the Euclidean distance by default and sensitive
to coordinate i if and only if ϕi(s) is unbounded as s → ∞.

Example 4.5. The extra condition (4.1) cannot be dropped. Let us consider the
discrete metric ρ(x, y) = 1{x 6=y} – which is weakly convex – on R. Clearly, it is
not locally dominated by the Euclidean metric. Let η0 have the mixed distribution
with constant density 1

4 on [−1, 1] and point mass 1
2 at 0. Hence L(η0) has expec-

tation 0 and radius 1 (actually both with respect to ρ and the Euclidean distance).
Regarding (4.3), we find P(η0 ∈ Bρ(0, ε)) ≥ 1

2 for all ε ≥ 0. Take µ ∈ (0, 1
2 ] to be

a transcendental number (e.g. 1
π ). Furthermore, we choose θ ≥ 2 which obviously

makes blocked edges impossible.
At every time t, ηt(v) is a finite (but random) convex combination of the initial

opinions {η0(y)}y∈Z, say

ηt(v) =
∑

y∈Z
ξv,t(y) η0(y), (4.4)

which is the SAD representation, see La. 3.1 in Häggström (2012). Almost surely,
there are two edges that do not experience Poisson events up to time t and enclose
v. It is not hard to show – by induction on the (a.s. finitely many) Poisson events
occurring up to time t on the edges between those two – that the non-zero factors
ξv,t(y) in the representation of ηt(v) are (random) polynomials in µ with integer
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coefficients. Furthermore, for y 6= v they have no constant term, for y = v the
constant term equals 1: At time 0 we find ξu,0(y) = 1{u=y} for all u, y ∈ Z. With a
Poisson event at time s on the edge 〈u, u + 1〉 that actually causes an update, the
coefficients change according to

ξu,s(y) = (1 − µ) ξu,s−(y) + µ ξu+1,s−(y)
ξu+1,s(y) = µ ξu,s−(y) + (1 − µ) ξu+1,s(y),

for all y ∈ Z, compare with (2.3). This establishes the induction step.

Using the representation (4.4) we find for two neighbors u, v:

ηt(v) − ηt(u) =
∑

y∈Z

(
ξv,t(y) − ξu,t(y)

)
η0(y).

As ξv,t(v)− ξu,t(v) is a non-zero polynomial in µ with integer coefficients, it cannot
be zero. Additionally, due to the fact that θ ≥ 2, the ξ-factors only depend on the
Poisson events, which implies that the two random variables

X :=
1

ξv,t(v) − ξu,t(v)

∑

y 6=v

(
ξv,t(y) − ξu,t(y)

)
η0(y)

and η0(v) are independent. Since P(η0(v) = 0) = P(η0(v) 6= 0) = 1
2 , we get

P(ηt(v) − ηt(u) 6= 0) ≥ P(X = 0, η0(v) 6= 0) + P(X 6= 0, η0(v) = 0) = 1
2 .

This leads to

P
(

lim sup
t→∞

ρ
(
ηt(u), ηt(v)

)
= 1
)

≥ 1
2

for all neigbors u, v, which renders even weak consensus impossible.
In fact, with this choice of initial distribution and metric, the Deffuant model

exhibits a limiting behavior that is not a.s. approaching one of the scenarios de-
scribed in Definition 1.1, since it does not feature blocked edges, nor almost sure
consensus formation in the long run – instead at any time t the opinions of two
neighbors are with probability at least 1

2 at distance 1, always at speaking terms
but not converging.

Since the choice of θ is trivial, we can find out what happens by looking at
the Deffuant model employing the Euclidean distance instead. By Theorem 3.2 all
opinions will a.s. approach the mean 0, but whenever two of them do not coincide
they are at ρ-distance 1.

Example 4.6. To illustrate the importance of the sensitivity in part (b) of Theorem
4.3, let us consider the two metrics d(x, y) = ‖x − y‖2, that is the Euclidean metric,
and

ρ(x, y) =

{
‖x − y‖2, if ‖x − y‖2 ≤ 1

1, otherwise.

Evidently, ρ is not sensitive to any coordinate and that it is weakly convex is not
hard to check either: For r < 1 the balls Bρ(x, r) are the same as the Euclidean
balls, for r ≥ 1 we get Bρ(x, r) = Rk. So in either case it is a convex set.

For simplicity, let us take k to be 1 – the Euclidean distance is then induced by
the absolute value – and choose the standard normal distribution N (0, 1) as initial
distribution. Due to ρ(x, y) ≤ |x − y|, ρ is locally dominated by the Euclidean
distance. As the normal distribution has a finite second moment and mass around
its mean, part (a) of Theorem 4.3 shows that in the Deffuant model using ρ as the
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distance measure, the radius Rρ = 1 marks the critical value for θ at which we have
a phase transition from a.s. no consensus to a.s. strong consensus.

In the Deffuant model using the Euclidean distance however, there will a.s. be
no consensus irrespectively of θ according to Theorem 2.2 (b).

The final aim will now be to prove a generalization of Theorem 3.15 to the Deffuant
model with general metric ρ instead of the Euclidean. In order to be able to do
this we have to transfer the necessary auxiliary results leading to Theorem 3.15,
essentially by replacing all occurring Euclidean distances by distances with respect
to ρ, however it requires small adjustments.

Definition 4.7. Consider a random variable ξ on (Rk, ρ). The support of its
distribution is the following subset of Rk, closed with respect to ρ:

supp(ξ) :=
{
x ∈ Rk, P

(
ξ ∈ Bρ(x, r)

)
> 0 for all r > 0

}
. (4.5)

Remark 4.8. The last argument in the proof of Proposition 3.5 is still valid in the
general case and verifies supp(η0) ⊆ Bρ[E η0, Rρ] for all initial distributions bounded
with respect to ρ. The first part of its proof, i.e. showing that supp(η0) ⊆ B[E η0, r]
implies P(η0 ∈ B[E η0, r]) = 1, is based on the theorem of Heine-Borel – stating
that closed and bounded sets are compact in (Rk, ‖ . ‖2) – which does not hold for
general metric spaces. For the discrete metric (see Example 4.5) and a probability
measure without point masses, the set defined in (4.5) is in fact empty.

If however (Rk, ρ) is separable, i.e. there exists a countable dense subset, we
get P(ξ ∈ supp(ξ)) = 1 for any random variable ξ – see e.g. Thm. 2.1, p. 27 in
Parthasarathy (1967) – and thus the full statement of Proposition 3.5.

Given ρ is locally dominated by the Euclidean distance, we can immediately
conclude that (Rk, ρ) is separable, since due to (4.1) the set Qk is not only dense
in (Rk, ‖ . ‖2) but also in (Rk, ρ).

In conclusion, if (Rk, ρ) is separable and η0 has a finite expectation, its distribu-
tion’s radius can be written as Rρ = sup{ρ(E η0, x), x ∈ supp(η0)}.

Adjusting the definition of Dθ(ν) (see Definition 3.6) to the general setting by substi-
tuting ρ-balls for Euclidean balls – let us denote the resulting set by Dρ

θ (ν) – allows
to reuse the arguments in the lemmas dealing with its properties. Although refer-
encing to Proposition 3.5, in order to prove Lemma 3.7 only supp(η0) ⊆ B[E η0, R]
was needed, hence its statement is true for any weakly convex ρ – with the terms
related to closure now referring to the topology generated by ρ.

As the final conclusions similar to Theorem 3.15 will require ρ to be locally
dominated by the Euclidean distance, let us assume for the remainder of this section
that ρ is not only weakly convex but also (4.1) holds.

When it comes to the central Lemma 3.9, the claims that can be modified to
hold for such ρ as well without major efforts read as follows (again connectedness
and closure refer to the topology generated by ρ):

Lemma 4.9. Let ρ be a weakly convex metric locally dominated by the Euclidean
distance.

(a) For all x ∈ Rk and 0 ≤ δ < θ
2 , the set Dρ

θ (ν) ∩ Bρ[x, δ] is convex.
(b) The connected components of Dρ

θ (ν) are convex and at ρ-distance at least θ

from one another. If Dρ
θ (ν) is connected, then Dρ

θ (ν) = conv(supp(η0)).
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(c) If Rρ < ∞ and ν has mass around its mean, i.e. condition (4.3) holds, then

Dρ
θ (ν) = conv(supp(η0)) for all θ > Rρ.

(d) If Dρ
θ (ν) is connected and E η0 finite, then E η0 ∈ Dρ

θ (ν)

Proof : The proof is essentially identical to the one of Lemma 3.9. In part (a) we
only have to choose m, n ∈ N such that

∣∣∣∣
m

m + n
− α

∣∣∣∣ ≤
min{ r

4c , γ
2 }

max{‖y‖2, ‖z‖2}
.

Then

‖( m
m+n y + n

m+n z) − (αy + (1 − α)z)‖2 ≤ | m
m+n − α| · ‖y‖2 + |α − m

m+n | · ‖z‖2 ≤ γ,

which together with (4.1) implies

ρ
(
ηN (v), αy + (1 − α)z

)
≤ r

2 + ρ
(

m
m+n y + n

m+n z, αy + (1 − α)z
)

≤ r
2 + c ‖( m

m+n y + n
m+n z) − (αy + (1 − α)z)‖2

≤ r
2 + c (| m

m+n − α| · ‖y‖2 + |α − m
m+n | · ‖z‖2) ≤ r.

As to part (b), we can follow the first part of the proof of Lemma 3.9 (c) replacing
every Euclidean distance by ρ until the angles are considered. Since Bρ[xj ,

θ
2 ] might

be oddly shaped, we can define r := min{ θ
2c , γ} > 0 and consider the Euclidean

ball B[xj , r] which by (4.1) is contained in Bρ[xj ,
θ
2 ]. Cutting short an angle α as

described there, will now reduce the (Euclidean) length of the polygonal chain by
at least 2r · (1−cos(α)) and the argument goes through yielding that the Euclidean
closure of the component C connected with respect to ρ contains conv({x, y}). It
follows from the generalized statement of Lemma 3.7 that being a component of
Dρ

θ (ν), C is ρ-closed. This in turn implies that C is also closed with respect to the
Euclidean distance, using (4.1), and hence containing conv({x, y}). The rest of the
claim easily follows, again by replacing ‖x − y‖2 by ρ(x, y).

Part (c) is an easy consequence of the arguments leading to (a) and (b) that can
be verified just as in the proof of Lemma 3.9 (d).

Finally, the only insight needed to accept the proof of Lemma 3.9 (f) as proof of
claim (d) above is that Dρ

θ (ν), being closed in (Rk, ρ), is also closed in the Euclidean

space (Rk, ‖ . ‖2), due to (4.1). �

Definition 4.10. Corresponding to Definition 3.11, let the support of the distri-
bution of ηt in the Deffuant model with parameter θ and distance measure ρ be
denoted by suppρ

θ(ηt).
Respectively, the length of the largest gap in supp(η0) with respect to ρ will be

given by

hρ := inf{θ > 0, Dρ
θ (ν) is connected in (Rk, ρ)},

compare with Definition 3.14.

Following the arguments in the proof of Lemma 3.12 with scrutiny reveals that
the corresponding statements are also true for suppρ

θ(ηt) in place of suppθ(ηt)
and Bρ[E η0, Rρ] substituting B[E η0, R] – actually even for metrics which are only
weakly convex and not locally dominated by the Euclidean distance for only the
convexity of Bρ[E η0, Rρ] is needed. Concerning Proposition 3.13 however, we will
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not bother with the proof of a similar statement for the Deffuant model with general
ρ. The only fact needed in the upcoming theorem is

suppρ
θ(ηt) ⊆ Dρ

θ+ε(ν) for ε > 0,

which readily follows from the last argument in the proof of this very proposition.
Having followed up the crucial intermediate steps makes it possible to slightly mod-
ify the proof of Theorem 3.15 in order to get an argument establishing the following
result:

Theorem 4.11. Consider the Deffuant model on Z with opinion values in (Rk, ρ),
where the corresponding distance measure ρ is a weakly convex metric, locally dom-
inated by the Euclidean distance. Assume it features an initial opinion distribution
which has a finite second moment and is bounded with respect to ρ, i.e.

Rρ = inf
{
r > 0, P

(
η0 ∈ Bρ[E η0, r]

)
= 1
}

< ∞.

If hρ denotes the length of the largest gap in its support, then the critical value for
the confidence bound, where a phase transition from a.s. no consensus to a.s. strong
consensus takes place is θc = max{Rρ, hρ}.

Proof : As mentioned, the reasoning follows closely the proof of Theorem 3.15. In
case (i), where θ < hρ we can conclude from Lemma 3.12 and the above remarks
that for ε > 0 such that θ + ε < hρ it follows that

supp(η0) ⊆ suppρ
θ(ηt) ⊆ Dρ

θ+ε(ν).

The set Dρ
θ+ε(ν) is not connected (with respect to ρ) by definition of hρ, hence

comprises convex components C1 and C2 at ρ-distance at least θ + ε (see Lemma
4.9). Again, we can choose the components such that P(η0 ∈ Ci) > 0 for i = 1, 2,
since if we had P(η0 ∈ C1) = 1, the fact that C1 is closed with respect to ρ would
give supp(η0) ⊆ C1 and so (using its convexity and the generalization of Lemma
3.7)

Dρ
θ+ε(ν) ⊆ conv(supp(η0)) ⊆ C1.

But C1 = Dρ
θ+ε(ν) contradicts the disconnectedness.

Consequently, for a fixed vertex v independence of the initial opinions guarantees
that the event {η0(v) ∈ C1, η0(v + 1) ∈ C2} has positive probability, which dooms
the edge 〈v, v + 1〉 to be blocked by ρ(ηt(v), ηt(v + 1)) ≥ θ + ε for all t ≥ 0. Indeed,
in the Deffuant model with parameter θ, ηt(v) can not leave the convex set C1 since
suppρ

θ(ηt) \ C1, being a subset of Dρ
θ+ε(ν) \ C1, is at distance at least θ + ε to C1

for all t. The same holds for ηt(v + 1) and C2 respectively. Due to ergodicity, the
existence of blocked edges is therefore an almost sure event.

The analysis of case (ii), θ < Rρ, requires likewise only minor adjustments of the
argument in the proof of Theorem 3.15. To begin with, the finite second moment
of η0 implies E η0 ∈ Rk, which is not ensured by Rρ < ∞ itself. Let this time y

be an element of supp(η0) \ Bρ[E η0, θ + 2ε], which is non-empty for ε ∈ (0, R−θ
2 ).

Since both Bρ[y, θ + ε] and Bρ[E η0, ε] are convex and closed – with respect to ρ
and thus ‖ . ‖2 due to (4.1) – as well as disjoint, we can choose z1 ∈ Bρ[y, θ + ε] and
z2 ∈ Bρ[E η0, ε] such that

‖z1 − z2‖2 = min{‖a − b‖2, a ∈ Bρ[y, θ + ε] and b ∈ Bρ[E η0, ε]} > 0
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and then define z = 1
2 (z1 + z2) and the half-space H with respect to this point z

accordingly. Note that H contains Bρ[E η0, ε] and is disjoint from Bρ[y, θ+ε], just as
in the Euclidean setting, because of the convexity of ρ-balls and the choice of z1, z2.
Moreover, the local domination property (4.1) forces Bρ[E η0, ε] to be a superset of
B[E η0, δ], where δ = min{ ε

c , γ}, and thus that E η0 lies in the Euclidean interior of
H. Having established this, we can follow the rest of the argument (beginning with
(3.5), which again follows from the finite second moment of η0) literally, having in
mind that y has ρ-distance larger than θ + ε to H.

Finally, in the supercritical case (iii), i.e. θ > max{Rρ, hρ}, we only have to take
Lemma 4.9 as a replacement for Lemma 3.9 and again write ρ for the appearing
Euclidean distances. It is crucial to notice, that limits with respect to the Euclidean
distance as in the SLLN and (3.6) are also limits with respect to ρ, once again
using (4.1). Furthermore, in several places either the triangle inequality or the
convexity of Euclidean balls was used, but being a weakly convex metric, ρ has the
corresponding properties. Using the idea of energy to conclude that two neighbors
will a.s. either finally concur or end up with opinions further than θ apart from each
other, the fact that ρ is locally dominated by the Euclidean distance is indispensable
and employed as in the proof of Theorem 4.3 (a). This is also where the finiteness
of the second moment is needed. �

Example 4.12. In order to discern in how far the results of this section do actually
add to the univariate case as well, let us finally consider a metric on R which is not
translation invariant. One can take for example ρ(x, y) = |x3 − y3| for all x, y ∈ R.
This metric ρ obviously generates convex balls, in other words is weakly convex.
However, since

|x3 − y3|
|x − y| = |x2 + xy + y2| → ∞ as x, y → ∞

it is not locally dominated by the absolut value. Nevertheless, as long as we consider
a fixed bounded distribution this problem can be overcome – as was pointed out
just before Theorem 4.3 – since on any bounded interval (4.1) holds for ρ and some
properly chosen c > 0.

If we consider the initial distribution ν = unif{−1
2 , 1

2}, which has radius Rρ = 1
8 ,

we can conclude from Theorem 4.11, that the critical value for the confidence bound
is θc = ρ(−1

2 , 1
2 ) = 1

4 . Unlike the Euclidean case, this value will change with a

translation of the initial distribution: Taking η0 + 3
2 instead of η0, in other words

ν = unif{1, 2} as marginal distribution for the initial configuration, we find Rρ = 37
8

and θc = ρ(1, 2) = 7.
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Abstract

During the last decades, quite a number of interacting particle systems
have been introduced and studied in the border area of mathematics and
statistical physics. Some of these can be seen as simplistic models for
opinion formation processes in groups of interacting people. In the one
introduced by Deffuant et al. agents, that are neighbors on a given net-
work graph, randomly meet in pairs and approach a compromise if their
current opinions do not differ by more than a given threshold value θ. We
consider the two-sidedly infinite path Z as underlying graph and extend
former investigations to a setting in which opinions are given by probabil-
ity distributions. Similar to what has been shown for finite-dimensional
opinions, we observe a dichotomy in the long-term behavior of the model,
but only if the initial narrow-mindedness of the agents is restricted.

1 Introduction
The research field that became known as opinion dynamics originated from sim-
ple models for interacting elementary particles established in statistical physics,
introduced to figure out how microscopic interaction rules lead to macroscopic
properties of the whole system. Due to the strong link between statistical me-
chanics and spatial stochastic processes, interest among mathematicians was
raised and in the course of a few decades an abundance of new models with sim-
ilar but qualitatively different interaction schemes was introduced and analyzed,
primarily by computer-based stochastic simulations. The survey article [1] gives
a broad overview of the different models and their analyses and applications.

Despite their radical limitations in terms of complexity, these models at-
tracted more and more the attention of the social sciences and were used to

∗Research supported by a grant from the Swedish Research Council
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describe group behavior on an elementary level and to explain real life phe-
nomena. In 2000, Deffuant et al. [3] suggested a simple model that features a
bounded confidence restriction: Neighbors talk to each other in pairs and their
opinions are updated towards a compromise only if the opinions they hold just
before they meet are not further apart than a given threshold. This is meant
to capture the realistic phenomenon that people tend to modify their attitude
on a specific topic when talking to others, but not if they consider the views of
their discussion partner as so alien as to seem like complete nonsense.

In mathematical terms, the Deffuant model is structured as follows: First,
we are given a simple connected graph G = (V,E), that shapes the underlying
network. The vertices are understood to represent agents holding individual
opinions on a certain topic. The edges of the graph are supposed to represent
the connections between these individuals and entail a possible mutual influence
among neighbors. The vertex set V can be either finite or countably infinite. In
the latter case the maximal degree in G is commonly assumed to be bounded.

Then there are two model parameters: the already mentioned confidence
bound θ > 0 and the convergence parameter µ ∈ (0, 12 ], shaping the step size
towards a compromise when two opinions are updated. Opinions usually take
values in R. A higher-dimensional analog was considered in [7] and here we will
extend the model further. For these generalizations, we need to specify a metric
d that is used to measure the distance of two opinions and takes over the task
of the absolute value in the original model.

The first source of randomness is the configuration of initial opinions. Even
though there have been attempts to look at settings with dependent initial
opinions (see for example Section 2.2 in [6]) the usual setting is to take i.i.d.
initial opinions which then evolve dependencies by interacting. The opinion
value at vertex v ∈ V and time t ≥ 0 will be denoted by ηt(v).

The second source of randomness in the model is the succession of pairwise
encounters. On finite graphs, the next pair of neighbors to meet is picked
uniformly at random. On infinite graphs, the corresponding equivalent is to
assign i.i.d. Poisson processes on all edges of the graph: Whenever a Poisson
event occurs on the edge e = 〈u, v〉, i.e. a jump in the Poisson process associated
with e, the agents u and v interact in the following way: Assume the event
happens at time t and the opinions of u and v just before are given by ηt−(u) =
lims↑t ηs(u) =: a and ηt−(v) = lims↑t ηs(v) =: b respectively. Then, depending
on the distance of a and b, there might be an update according to the following
rule:

ηt(u) =

{
a+ µ(b− a) if d(a, b) ≤ θ,
a otherwise

and similarly (1)

ηt(v) =

{
b+ µ(a− b) if d(a, b) ≤ θ,
b otherwise.

Given our assumptions, E is countable, so there will almost surely be neither

2



two simultaneous Poisson events nor a limit point in time for the Poisson events
on edges incident to one fixed vertex. This guarantees the well-definedness of
the process by (1) for finite G. The extension to infinite graphs with bounded
degree is not immediately obvious but a standard argument, see Thm. 3.9 in
[11].

When it comes to the long term behavior of the system, it is quite natural
to ask whether the agents will form a consensus to which all the opinions con-
verge or not. Let us properly define and distinguish the following two opposing
asymptotics of the Deffuant model as time tends to infinity:

Definition 1
(i) Disagreement

There will be finally blocked edges, i.e. edges e = 〈u, v〉 ∈ E s.t.

d(ηt(u), ηt(v)) > θ,

for all times t large enough. Hence the vertices fall into different opinion
groups, that are incompatible with neighboring ones.

(ii) Consensus
The value at every vertex converges, as t→∞, to a common limit l, where

l =





1
|V |

∑
v∈V

η0(v), if G is finite

E η, if G is infinite

and L(η) denotes the distribution of the initial opinion values.

Even though these two regimes intuitively seem to be complementary, for infinite
graphs it is far from obvious that the asymptotics of the model is necessarily
given by one or the other (cf. Def. 1.1 in [6] and also the remark at the end of
Section 5).

In this paper, we are going to consider the two-sidedly infinite path Z as
underlying graph, i.e. V = Z and E = {〈v, v + 1〉, v ∈ Z}. The first result for
this setting was published in 2011 and is due to Lanchier [10], who showed a
sharp phase transition from almost sure disagreement to almost sure consensus
at θ = 1

2 , given initial opinions, that are i.i.d. unif([0, 1]). Shortly thereafter,
Häggström [5] reproved Lanchier’s findings using a quite different approach; then
Häggström and Hirscher [6] extended them to general univariate distributions for
L(η). In [7], the case of vector-valued opinions and different distance measures
was examined.

One aspect that could be considered unrealistic in these models is the fact
that even though opinions are random, for a fixed realization they were given
by numbers or vectors, hence entirely determined – not doing justice to the
extremely common phenomenon of uncertainty in people’s opinions. In what
follows, we are going to introduce and analyze a variant of the Deffuant model
on Z, where the opinions are given by random absolutely continuous measures
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on [0, 1]. The support of these measure-valued opinions can be seen to repre-
sent uncertainty: the more concentrated the measure, the more determined the
agent.

As a general preparation for an extension of the model in this direction, in
Section 2 we will introduce the total variation distance (which will be used as
distance measure) and recall a Strong law of large numbers (SLLN) for contin-
uous densities, due to Rubin, replacing the common SLLN which was a crucial
ingredient in the case of finite-dimensional opinions.

The model with measure-valued opinions is outlined in Section 3. We con-
sider random symmetric triangular distributions as initial opinions and find that
for this setting overly determined agents (i.e. agents whose initial opinion is con-
centrated on sufficiently short intervals) prevent consensus for all θ ∈ [0, 1), cf.
Theorem 3.1.

The results for finite-dimensional opinion spaces listed above will be sketched
in more detail in Section 4. Central ideas from [5] will be presented as they prove
to be useful in our setting as well.

In Section 5 the main result for the setting with unrestricted symmetric
triangular distributions, Theorem 3.1, is proved: We show that the behavior of
the model is trivial in this case as extremely determined agents will have and
keep a total variation distance close to 1 to their neighbors’ opinions.

If we put a restriction on the initial determination of the agents by disallow-
ing triangular distributions that have a support of length less than a fixed value
γ, the familiar phenomenon of a phase transition in θ from a.s. disagreement
to a.s. consensus reappears. This case, as well as the precise dependency of
the threshold value θc on the parameter γ are elaborated in Section 6. In the
final section, we breifly discuss possible other initial configurations and earlier
attempts to incorporate inhomogeneous open-mindedness of the agents.

2 Distance and convergence of absolutely contin-
uous random measures

As indicated, we want to generalize the Deffuant model on Z further by looking
at opinions that are no longer numbers or vectors but probability distributions
instead. These random distributions can be seen to shape indeterminacy in the
agents: Even with initial opinion profile and sequence of encounters fixed, the
opinion of an individual at a given time is not a fixed value but a probability
measure. Initially, the agents are independently assigned random measures from
a common distribution. When they meet and their current opinion measures do
not differ by more than θ, with respect to a fixed metric on probability measures,
the new opinions will be given by convex combinations of the old ones, just as
described in (1).

In order to quantify the difference between two distributions there are quite
a few metrics to choose from. The so-called total variation distance is among
the most common ones.
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Definition 2
Let µ and ν be two probability distributions on a set S. The total variation
distance between the two measures is then defined as

‖µ− ν‖TV := sup
A⊆S
|µ(A)− ν(A)|.

As the total variation distance of two probability distributions is a number
in [0, 1], the non-trivial values for θ lie in (0, 1) for this model. Further, note
that the total variation distance of two probability distributions µ and ν, that
are absolutely continuous with respect to the Lebesgue measure on R and have
densities f and g respectively, is given by

‖µ− ν‖TV =
1

2

∫

R

∣∣f(x)− g(x)
∣∣ dx.

In addition, if µ and ν are distributions on [0, 1], we can immediately conclude
‖µ−ν‖TV ≤ 1

2 ‖f−g‖∞, where ‖f‖∞ = supx∈[0,1]
∣∣f(x)

∣∣ denotes the supremum
norm on [0, 1]R.

To be able to transfer the findings from the Deffuant model on Z featuring
real- or vector-valued opinions, we further need an equivalent for the Strong
law of large numbers (SLLN) geared towards the densities of random measures.
The following result of Rubin [13] serves our purposes.

Let U,U1, U2, . . . denote a sequence of independent, identically distributed
random variables with values in an arbitrary space Y . Given a compact topo-
logical space X, consider a map f : X × Y → R, that is measurable in the
second argument for each x ∈ X.

Theorem 2.1 (SLLN for continuous densities)
If there exists an integrable function g on Y such that |fy(x)| < g(y) for all
x ∈ X and y ∈ Y , as well as a sequence of measurable sets (Si)i∈N with

P
(
U ∈

⋂

i∈N
S c
i

)
= 0,

and the property that {fy( . ), y ∈ Si} is equicontinuous on X for all i ∈ N, then
with probability 1,

lim
n→∞

1

n

n∑

i=1

fUi(x) = E fU (x)

uniformly in x ∈ X and the limit function is continuous.

The measure with density E fU is commonly called intensity or intensity mea-
sure, see e.g. Section 1.2 in [8] for a more general introduction.
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3 Initial opinions given by random triangular dis-
tributions

For concreteness, let us pick the initial opinions from a specific class of absolutely
continious distributions. A rather natural choice, departing from real-valued
opinions (which can be seen as Dirac delta measures), are symmetric triangular
distributions on random subintervals of [0, 1], the endpoints of which are chosen
uniformly from [0, 1].

More precisely, let us consider the initial opinions {η0(v), v ∈ Z} to be
picked in the following way: Consider {U(v), v ∈ Z} to be an i.i.d. sequence
of unif([0, 1]2) random vectors. The node v will be assigned an initial opinion
given by the random absolutely continuous probability measure with density

f
(v)
0 (x) =





0, x /∈ (m,M)(
2

M−m
)2 · (x−m), x ∈ (m, m+M

2 ]

−
(

2
M−m

)2 · (x−M), x ∈ (m+M
2 ,M)

(2)

= 2
|y−z| ·

(
1− 2

|y−z| ·
∣∣x− y+z

2

∣∣)+, x ∈ [0, 1], (3)

where U(v) = (y, z) and m := min{y, z}, M := max{y, z}, see Figure 1.

x
m m+M

2
M 10

y

2
M−m

f0(x)

x
m M 10

y

0.5

1

F0(x)

Figure 1: The density and distribution function of a symmetric triangular
distribution on [m,M ].

Seen from a different angle, to get the initial opinion of a fixed agent, we
first choose a central opinion value C uniformly from [0, 1] and then a spread for
the support of the distribution uniformly among [0,min{C, 1 − C}]. That this
procedure is equivalent to the one described above is an immediate consequence
of the change of variable formula, see the proof of Lemma 5.1 (especially Figure
3) for more details.

Note that this model features two qualitatively different forms of extreme
initial opinions: One the one hand – as in the original model – the agents can
have opinions lying at the edges of the spectrum (i.e. concentrated close to 0 or
1 in this case), on the other an individual opinion can be very determined in the
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sense that U(v) is close to the diagonal (i.e. |y− z| very small), which provokes
a highly concentrated density and necessarily a large distance to a vast majority
of possible initial opinions.

This effect is quite realistic: Irrespectively of their opinion being exceptional
or mainstream, people that are extremely narrow-minded or determined are
usually neither willing to consider the opinion nor to accept the arguments of
others, let alone to compromise. In this sense, even though the mathematics are
closely related to the case of finite-dimensional opinions, the extension of the
model to measure-valued opinions introduces an additional real life phenomenon.

For symmetric triangular distributions on [0, 1] without any restriction on
the minimal length of their support, we are going to show that the model exhibits
a trivial behavior:

Theorem 3.1
Consider the Deffuant model on Z, where the initial opinions are given by in-
dependently assigned random triangular distributions as described in (3). Then
for all θ ∈ [0, 1), the system almost surely approaches disagreement in the long
run if the total variation distance is used to measure the distance between two
opinions.

For the proof of this result, we refer the reader to Section 5. Since this
setting allows to reuse results from the finite-dimensional case, we first want to
give a brief overview of these in the following section.

4 Background
As mentioned in the introduction, the first analytic result about consensus for-
mation in the Deffuant model on Z was established by Lanchier [10] and deals
with opinion profiles that are initially given by an i.i.d. sequence of unif([0, 1])
random variables. The distance between two opinions was taken to be the abso-
lute value of their difference. Häggström [5] used different techniques to reprove
and slightly sharpen this result. His arguments were later adapted to accommo-
date other univariate initial distributions as well, leading to an analog covering
all marginal distributions that have a first moment E η0 ∈ R ∪ {−∞,+∞}, see
Thm. 2.2 in [6]:

Theorem 4.1
Consider the Deffuant model on the graph (Z, E), where E = {〈v, v+1〉, v ∈ Z},
with fixed parameter µ ∈ (0, 12 ]. Let the initial configuration be given by an i.i.d.
sequence of real-valued random variables, having the common distribution L(η0),
and the distance of two opinions by the absolute value of their difference.

(i) Given a bounded distribution L(η0) with expected value E η0, let [a, b] de-
note the smallest closed interval containing its support. If E η0 does not
lie in the support, let I ⊂ [a, b] denote the maximal, open interval with
E η0 ∈ I and P(η0 ∈ I) = 0. In this case, set h to be the length of I,
otherwise set h = 0.
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Then the critical value for θ, marking the phase transition from a.s. dis-
agreement to a.s. consensus, becomes θc = max{E η0− a, b−E η0, h}. The
common limit value in the supercritical regime is E η0.

(ii) Suppose the distribution L(η0) is unbounded but its expected value exists,
i.e. E η0 ∈ R ∪ {−∞,+∞}. Then the Deffuant model with arbitrary fixed
parameter θ ∈ (0,∞) will a.s. behave subcritically, meaning that disagree-
ment will be approached in the long run.

With an appropriate adaptation to the more involved geometry of vector-
valued opinions, the main ideas in [5] further served to establish similar results
for the Deffuant model on Z with opinion space Rd, d > 2, and more general
distance measures, see Thm. 3.15 and Thm. 4.11 in [7].

Since the same line of reasoning was used in both [5], [6] and [7] to derive the
results for finite-dimensional opinion spaces we just mentioned, let us now take
a closer look on the used key concepts and crucial auxiliary results. They form
the base for most of the conclusions we will be able to draw in the case of
infinite-dimensional opinions.

In [5], Häggström presents two central ideas, whose effect turns out to be
highly limited to paths, but combined they prove to be quite powerful in the
analysis of the Deffuant model on the infinite path Z. The first one is the notion
of flat points:

Definition 3
Consider the initial i.i.d. configuration {η0(u)}u∈Z with common marginal dis-
tribution L(η0) on an opinion space X (e.g. R or Rd), which we consider to be
equipped with the metric ρ. Under the premise that the mean E η0 of the initial
distribution exists and given ε > 0, a vertex v ∈ Z is called ε-flat to the right
(with respect to the initial configuration), if for all n ≥ 0:

1

n+ 1

v+n∑

u=v

η0(u) ∈ Bε
(
E η0

)
, (4)

where Br(x) := {y ∈ X, ρ(x, y) ≤ ε} denotes the (closed) ρ-ball around x ∈ X
with radius r > 0. A vertex v is called ε-flat to the left if the above condition is
met with the sum running from v−n to v instead. Finally, v is called two-sidedly
ε-flat if for all m,n ≥ 0

1

m+ n+ 1

v+n∑

u=v−m
η0(u) ∈ Bε

(
E η0

)
. (5)

The crucial role vertices, that are one- or two-sidedly ε-flat with respect to
the initial configuration, can play in the further evolution of the configuration
becomes more obvious in the light of the second key idea, the non-random
pairwise averaging procedure Häggström [5] proposed to call Sharing a drink
(SAD) on Z.
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Glasses are put along the infinite path at all integers; the one at site 0 is
full, all others are empty. Similarly to the Deffuant model, neighbors interact
and share, but now we skip randomness and confidence bound: The procedure
starts with the initial profile {ξ0(v)}v∈Z, given by ξ0(0) = 1 and ξ0(v) = 0 for
all v 6= 0. In each step, we choose an edge, along which an update of the form
(1) is executed; more precisely, if we are given the profile {ξn(v)}v∈Z after step
n and choose 〈u, u+ 1〉 for the next round, we get

ξn+1(u) = (1− µ) ξn(u) + µ ξn(u+ 1),
ξn+1(u+ 1) = µ ξn(u) + (1− µ) ξn(u+ 1),

ξn+1(v) = ξn(v) for all v /∈ {u, u+ 1}.
(6)

The resulting profiles, after we have performed this procedure a finite number
of rounds, will be called SAD-profiles. Besides the facts that they feature only
finitely many non-zero elements, the elements are all positive and sum to 1,
there are less obvious properties that these profiles share which we will collect
in the following lemma (for proofs, see Lemmas 2.2, 2.1 and Thm. 2.3 in [5]):

Lemma 4.2
Consider the SAD-procedure on the infinite path Z, started in vertex v, i.e. with
ξ0(u) = δv(u), u ∈ V . Then we get the following:

(i) All achievable SAD-profiles are unimodal.

(ii) If the vertex v only shares the water to one side, it will remain a mode of
the SAD-profile.

(iii) The supremum over all achievable SAD-profiles started with δv at another
vertex w equals 1

d+1 , where d is the graph distance between v and w.

The connection to the Deffuant model is established in Lemma 3.1 in [5]:
The opinion value ηt(0) at any given time t > 0 can be written as a weighted
average of the initial opinions, where the weights are given by the (random)
SAD-profile which is dual to the dynamics in the Deffuant model in the sense
that the order of updates has to be reversed.

Combining this link with the concept of ε-flatness makes it possible to de-
rive the following crucial auxiliary results (which are obvious generalizations of
intermediate results, established in the proofs of Prop. 5.1, as well as of Lemma
6.3 in [5]):

Lemma 4.3
Consider the Deffuant model on Z with initial configuration be given by an i.i.d.
sequence of random variables having the common distribution L(η0).

(i) If vertex v is ε-flat to the right with respect to the initial configuration and
does not interact with vertex v− 1, its opinion stays inside Bε

(
E η0

)
. The

same holds for ε-flatness to the left and v + 1 in place of v − 1.

(ii) If vertex v is two-sidedly ε-flat with respect to the initial configuration, its
opinion value will stay inside B6ε

(
E η0

)
, irrespectively of the dynamics.
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Without much further work, these findings can be used to analyze the behavior
of the model featuring unrestricted symmetric triangular distributions, as we
will see in the following section.

5 Overly determined agents prevent consensus
As the expectation of the initial distribution played a central role in the model
featuring real- or vector-valued opinions, we first have to get our hands on its
counterpart in the context of random measures, the intensity, before we can set
about proving Theorem 3.1.

Lemma 5.1
Consider the absolutely continuous random measure η to be given by the density

fU (x) = 2
|y−z| ·

(
1− 2

|y−z| ·
∣∣x− y+z

2

∣∣)+, x ∈ [0, 1], (7)

where U = (y, z) is taken uniformly from the unit square [0, 1]2, as introduced in
(3). Then its intensity measure (commonly denoted E η) is given by the density

ϕ(x) =

{
−8
[
(1− x) ln(1− x) + x

(
1− ln(2)

)]
, x ∈ [0, 12 ]

−8
[
x ln(x) + (1− x)

(
1− ln(2)

)]
, x ∈ [ 12 , 1]

.

ϕ(x)

x
0.5 10

y

0.5

1

1.5

Figure 2: Density of the intensity measure corresponding to random
symmetric triangular distributions on [0, 1].

Proof: Fix x ∈ (0, 1). First of all, by symmetry, we can take U to be uniform on
the set A := {(y, z) ∈ R2, 0 ≤ z ≤ y ≤ 1}. To further simplify the calculations,
let us consider the simple linear transform T ((y, z)) = 1

2 (y+ z, y− z), depicted
in Figure 3 below. From the change of variable formula we know that T (U) is
uniform on the set B := {(u, v), v ∈ [0, 12 ], u ∈ [v, 1− v]}.

Given the random density fU as in (7), we can write

fT (U)(x) = 1
v ·
(
1− 1

v ·
∣∣x− u

∣∣)+, x ∈ [0, 1]
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z

1

A

u
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v

0.5

1

B

T

((
y
z

))
= 1

2

(
y + z
y − z

)

T−1

((
u
v

))
=

(
u+ v
u− v

)

Figure 3: Using transform T to consider the arithmetic mean and half the
distance of two independent unif([0, 1]) random variables instead.

and conclude that f(u,v)(x) is non-zero for (u, v) in Bx = B1 ∪B2 ∪B3, where

B1 :={(u, v), v ∈ [0, x2 ], u ∈ [x− v, x+ v]}
B2 :={(u, v), v ∈ [x2 ,

1−x
2 ], u ∈ [v, x+ v]}

B3 :={(u, v), v ∈ [ 1−x2 , 12 ], u ∈ [v, 1− v]}.

Hence, for x ∈ [0, 12 ], tedious but elementary calculations lead to

ϕ(x) := E [fU (x)] = 4 ·
∫∫

Bx

1

v
− |x− u|

v2
dudv

= −8 (1− x) · ln(1− x)− 8x
(
1− ln(2)

)

By symmetry around x = 1
2 , the claim follows. �

Proof of Theorem 3.1: As usual, let ηt(v) denote the opinion of individual
v ∈ Z at time t > 0 and further let f (v)t be the density corresponding to this
random measure. For any fixed δ > 0, let us define the random variables

F
(v)
t (δ) := ηt(v)([0, δ]) =

∫ δ

0

f
(v)
t (x) dx, for all t > 0, v ∈ Z.

Their values lie in the interval [0, 1], which actually coincides with the support
of their distributions. Furthermore, we know that {F (v)

0 (δ), v ∈ Z} are i.i.d.
random variables and Fubini’s theorem gives

E
[
F

(v)
0 (δ)

]
=

∫ δ

0

ϕ(x) dx. (8)

We can disregard the case θ = 0, since there won’t be any dynamics and hence
a.s. disagreement. Given θ ∈ (0, 1), define ε := 1

2 (1 − θ) > 0 and choose δ > 0

such that
∫ δ
0
ϕ(x) dx < ε.
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As mentioned above, the support of the distribution of F (v)
0 (δ) is [0, 1] (with-

out gaps), hence we can conclude as in Lemma 4.2 in [5] that any vertex
is (one-sidedly) ε-flat with positive probability, with respect to the sequence
{F (v)

0 (δ), v ∈ Z}. Due to P(F
(v)
0 (δ) = 1) = δ2 > 0 and independence, the

coincidence of the following two events occurs with positive probability for any
v ∈ Z:

(a) Vertex v − 1 is ε-flat to the left and vertex v + 1 ε-flat to the right w.r.t.
{F (v)

0 (δ), v ∈ Z}.

(b) F (v)
0 (δ) = 1

Using part (i) of Lemma 4.3 and the same line of reasoning as in the proof of
Prop. 5.1 in [5], we can conclude that the edge 〈v−1, v〉 – and similarly 〈v, v+1〉
– will be blocked forever, as

‖ηt(v)− ηt(v − 1)‖TV ≥
∣∣F (v)
t (δ)− F (v−1)

t (δ)
∣∣

= F
(v)
0 (δ)− F (v−1)

t (δ)

≥ 1− (E F
(v−1)
0 (δ) + ε)

> 1− 2ε = θ.

From the fact that approaching disagreement is shift-invariant, hence a 0-1-
event, we can conclude that for θ ∈ [0, 1) there will a.s. be disagreement. �

Remark
The trivial case θ = 1 in Theorem 3.1 will surely not lead to blocked edges,
so disagreement can be ruled out. However, this does not necessarily imply a
consensus formation. The standard energy argument (as we will also use it in
Lemma 6.4) fails, since the random symmetric triangular distribution does not
have a finite second moment, i.e. E (fU (x))2 =∞ for all x ∈ (0, 1).

Using the results for univariate opinions once more, we can however conclude
consensus for θ = 1 if we change to a different distance measure: the so-called
Lévy-distance. Consider two probability distributions µ and ν on [0, 1]. Their
Lévy-distance ρ(µ, ν) is defined as the infimum of the set

{ε > 0 s.t. µ([0, x− ε])− ε ≤ ν([0, x]) ≤ µ([0, x+ ε]) + ε for all x ∈ [0, 1]}.
To settle the case with θ = 1 and ρ as distance measure, let us consider the

univariate case, where {F (v)
t (δ) = ηt(v)([0, δ]), t > 0, v ∈ Z} are the opinions

assigned to the agents: As there is no bounded confidence restriction, any en-
counter leads to an update and the update rule (1) applies to both {ηt(v)}v∈Z
and {F (v)

t (δ)}v∈Z.
Hence, for any fixed δ ∈ [0, 1], from Theorem 4.1 and (8) we know that

F
(v)
t (δ) converges to Φ(δ) :=

∫ δ
0
ϕ(x) dx almost surely. Consequently, with

probability 1, it holds

lim
t→∞

F
(v)
t (δ) = Φ(δ) for all v ∈ Z, δ ∈ [0, 1] ∩Q.

12



Since all F (v)
t and Φ are continuous and increasing, this implies almost sure

pointwise (in fact even uniform) convergence. In other words, for any v ∈ Z
the opinion measure ηt(v) converges with probability 1 vaguely to the intensity
measure E η, having density ϕ. As vague convergence of measures on a compact
interval is metrized by the corresponding Lévy-metric (cf. for example Lemma
2 in [4]), this implies limt→∞ ρ(ηt(v),E η) = 0 almost surely for all v ∈ Z.

Note that a.s. consensus for θ = 1 and the Lévy-metric does not immediately
imply a result for the total variation case, as ρ(µ, ν) ≤ ‖µ − ν‖TV for two
probability measures µ and ν.

6 Agents with bounded determination
In order to get a non-trivial phase transition in the parameter θ, let us now
consider a situation in which all the agents feature at least a certain minimum
of open-mindedness. This will be incorporated in our model by disallowing the
initial random measure to be concentrated on a subinterval of length less than
γ, for a fixed constant γ ∈ (0, 1). We will refer to these as random restricted
triangular distributions.

Before we can show the main result, Theorem 6.7, which states that there is
a phase transition and the precise threshold value for the parameter θ, we need
to study the altered intensity measure and verify a few auxiliary results, needed
to guarantee the existence of ε-flat vertices (cf. Lemma 6.6).

Lemma 6.1
For fixed γ ∈ (0, 1), consider the absolutely continuous random measure ηγ to
be given by the density

fU (x) = 2
|y−z| ·

(
1− 2

|y−z| ·
∣∣x− y+z

2

∣∣)+, x ∈ [0, 1], (9)

where U = (y, z) is taken uniformly from the set {y, z ∈ [0, 1], |y − z| ≥ γ} and
note that this corresponds to the expression in (3), conditional on the support
being an interval of length at least γ. Then the density of its intensity measure
E ηγ is given by the following expressions (assuming 0 ≤ x ≤ 1

2):

1) for x ≥ γ
ϕγ(x) = − 8

(1− γ)2

[
(1− x) ln(1− x) + x (1− ln(2)) +

γ

4

]
,

2) for x ≥ 1− γ

ϕγ(x) =




− 8

(1−γ)2
[
(1− x) ln γ + x+ 1−2x

2γ −
γ
2

]
, x ≤ γ

2

− 8
(1−γ)2

[
− x ln(2x) + ln γ + x+ (1−x)2+x2

2γ − 3
4γ
]
, x ≥ γ

2

,
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3) for x ≤ γ, x ≤ 1− γ

ϕγ(x) =




− 8

(1−γ)2
[
(1− x) ln(1− x) + x− x2

2γ

]
, x ≤ γ

2

− 8
(1−γ)2

[
(1− x) ln(1− x)− x ln

(
2x
γ

)
+ x+ x2

2γ −
γ
4

]
, x ≥ γ

2

.

The corresponding expressions for x ∈ [ 12 , 1] are obtained by replacing x by 1−x.
Proof: As in the proof of Lemma 5.1, we can take U to be uniform on the set
Aγ := {(y, z) ∈ R2, γ ≤ y ≤ 1, 0 ≤ z ≤ y − γ} and consider the very same
linear transform T , see Figure 4 below.

y
10 γ

z
1

Aγ

u
0.5 10

v

0.5

1

γ
2

Bγ

T

T−1

Figure 4: The restricted set Aγ forces a minimum amount of open-mindedness.

Then, T (U) is uniform on the set Bγ := {(u, v), v ∈ [γ2 ,
1
2 ], u ∈ [v, 1 − v]}

and the corresponding random density is still

fT (U)(x) = 1
v ·
(
1− 1

v ·
∣∣x− u

∣∣)+, x ∈ [0, 1].

Depending on the values of x ∈ [0, 12 ] and γ ∈ (0, 1) – see Figure 5 for an
illustration – quite cumbersome but nevertheless elementary calculations in the
same vein as in the proof of Lemma 5.1 (which we will leave to the reader to
perform) lead to the formulas stated above.

1 2

3

γ
1
2

10

x

1
3

1
2

Figure 5: Different regimes for the form of ϕγ(x).

The last claim follows again by the symmetry in x. �
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Lemma 6.2
Consider E ηγ as in the previous lemma. Irrespectively of the value of γ ∈ (0, 1),
the density function ϕγ(x), x ∈ [0, 1], corresponding to the intensity measure,
is (strictly) increasing on [0, 12 ] and (strictly) decreasing on [ 12 , 1].

Proof: In principle, one could simply check the expressions for ϕγ given in
Lemma 6.1. However, this simple fact can also be seen directly from the con-
struction: Let us consider the random density in (9) to be generated by a vector
T = (U, V ) that is chosen uniformly from Bγ , as described in the proof of
Lemma 6.1. After having picked V ∼ unif([γ2 ,

1
2 ]), we take U to be uniform on

[V, 1− V ].
Consider x1, x2 ∈ [0, 12 ], such that x1 < x2, and V = v to be already fixed.

First note that fT (x1) < fT (x2) for U > x1+x2

2 ∈ (0, 12 ). If v ≤ x1+x2

2 , symmetry
around x1+x2

2 shows that f(U,v)(x1) and f(U,v)(x2) have the same distribution
for U conditioned on [v, x1 + x2 − v]. In conclusion, we found fT (x1) ≺ fT (x2)
and especially

ϕγ(x1) = E fT (x1) < E fT (x2) = ϕγ(x2).

Symmetry of ϕγ around x = 1
2 implies the second part of the claim. �

Note that ϕγ can not be arbitrarily well approximated by the density of a
restricted triangular distribution. Consequently, for ε > 0 sufficiently small,
there can’t be any ε-flat vertices with respect to the initial configuration as all
triangular distributions have a positive distance to the intensity measure E ηγ
bounded away from 0. For this reason, we have to go the same detour as in the
proof of part (ii) of Thm. 2.2 in [6].

We need to verify that the density of the intensity measure actually can
appear at a later time, more precisely be arbitrarily well approximated by the
opinions that form when agents have interacted. This happens in fact for all
positive values of the model parameter θ:

Lemma 6.3
Consider the Deffuant model on Z with arbitrary parameter θ ∈ (0, 1] in which
the initial opinions are i.i.d. absolutely continuous measures given by the random
densities described in (9). Then, at any time t > 0 and for any ε > 0, a
(sufficiently long) fixed finite section of the infinite path will hold opinions that
are less than ε away from E ηγ in total variation distance (and be bounded by
edges on which no Poisson events occurred up to time t) with positive probability.

Proof: Fix θ ∈ (0, 1], ε > 0 and t > 0. The idea is to show that a set of agents
with suitably assigned initial opinions can interact in such a way that at time t
opinions close to E ηγ are formed.

Let us consider an i.i.d. sequence (Un)n∈N of random variables uniformly
distributed on Aγ = {(y, z) ∈ R2, γ ≤ y ≤ 1, 0 ≤ z ≤ y − γ}, see Figure 4.
Then we get the density corresponding to the initial opinion for agent v ∈ N by

f
(v)
0 = fUv

(10)
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where fUv
is taken to be as in (9) and f (v)t denotes the random density corre-

sponding to the opinion of agent v at time t.
From Theorem 2.1 we know that with probability 1

lim
n→∞

1

n

n∑

v=1

f
(v)
0 (x) = ϕγ(x) (11)

uniformly in x ∈ [0, 1].
It is not hard to check that max{|y1 − y2|, |z1 − z2|} ≤ δ entails

1

2

∫ 1

0

∣∣f(y1,z1)(x)− f(y2,z2)(x)
∣∣ dx ≤ 2δ

γ
, (12)

in other words: If the coordinates of two vectors, (y1, z1) and (y2, z2), shaping
restricted triangular distributions in the sense of (9) do not differ by more than
δ, the total variation distance between the corresponding measures is at most
2δ
γ .

Fix m ≥ 16
γθ and subdivide [0, 1]2 into m2 squares. The standard SLLN

implies that the fraction of (Un)n∈N landing in a square completely contained
in Aγ a.s. tends to 2

m2(1−γ)2 > 0 as n → ∞. We can therefore choose N ∈ N
large enough such that, with positive probability, every square that is a subset
of Aγ contains at least one of (Un)Nn=1 and

∥∥∥ 1

N

N∑

v=1

f
(v)
0 − ϕγ

∥∥∥
∞
≤ ε (13)

Note that by symmetry under permutations, there is at least a chance of
1
N ! that the agents {1, . . . , N} are assigned these values from Aγ in such a way
that those of neighboring agents do not differ much in both coordinates; more
precisely, matching the values in a serpentine fashion as depicted in Figure 6 will
keep discrepancies in the y-coordinate below 4

m and in the z-coordinate below
3
m .

Putting things together, we found that for large enough N with non-zero
probability the agents 1 through N have an initial configuration with a mean at
total variation distance at most ε

2 to E ηγ and distance at most 8
γm ≤ θ

2 between
neighbors.

Assume that there are no updates on the edges 〈0, 1〉 and 〈N,N + 1〉 up
to time t. It is easy to check (by induction) that in this case, updates on the
considered section in sweeps from left to right, i.e. first on 〈1, 2〉, then 〈2, 3〉 etc.
until 〈N − 1, N〉 repetitively, will keep the total variation distance of neighbors
inside the section always below θ.

The following lemma finally verifies that a sufficiently large number of such
sweeps will eventually bring the considered opinions within total variation dis-
tance ε

2 of their mean, due to the fact that the mean is preserved given that
there are no updates on neither 〈0, 1〉 nor 〈N,N + 1〉.
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Figure 6: Finding suitable values for the initial opinions that can generate
opinions close to the intensity measure E ηγ on a finite section.

Since the Poisson clocks and the initial configuration are independent, these
two events coincide with positive probability and the claim is verified. �

Lemma 6.4
If there are infinitely many (performed) updates along an edge, the total varia-
tion distance of the corresponding neighbors’ opinions a.s. converges to 0.

Proof: This statement follows immediately using the energy idea used in the
proofs of Thm. 2.3 and 5.3 in [5]: Consider

Wt(v) :=

∫ 1

0

[
f
(v)
t (x)

]2
dx

to be the energy of vertex v at time t. When an update along the edge 〈u, v〉
is actually performed, i.e. the opinion values

(
ηt−(u), ηt−(v)

)
get replaced by(

ηt(u), ηt(v)
)

=
(
(1−µ) · ηt−(u) +µ · ηt−(v), (1−µ) · ηt−(v) +µ · ηt−(u)

)
energy

is lost to the amount of

2µ(1− µ)

∫ 1

0

[
f
(u)
t− (x)− f (v)t− (x)

]2
dx ≥ 2µ(1− µ)

(∫ 1

0

∣∣f (u)t− (x)− f (v)t− (x)
∣∣ dx

)2

= 8µ (1− µ)
∥∥ηt−(u)− ηt−(v)

∥∥ 2

TV
.

As in Lemma 6.2 in [5], define the total energy W tot
t (v) at v to be Wt(v) plus

the energy lost on 〈v, v + 1〉 until time t. If we let X(v) denote the random
variable consisting of η0(v) and the Poisson process associated with the edge
〈v, v+1〉, {X(v), v ∈ Z} is an i.i.d. sequence. W tot

t (0) is a measurable function of

17



{X(v), v ∈ Z} and {W tot
t (v), v ∈ Z} its corresponding shifted equivalents. The

well-known Pointwise Ergodic Theorem due to Birkhoff-Khinchin thus implies

E [W tot
t (0)] = lim

y→−∞
z→∞

1

z − y + 1

z∑

u=y

W tot
t (u) a.s.

Note that there are a.s. infinitely many edges on which no Poisson event has
occured up to time t and that on a section between two such edges, the sum of
total energies is preserved until t. Putting things together, we find

E [W tot
t (v)] = lim

y→−∞
z→∞

1

z − y + 1

z∑

u=y

W tot
t (u) a.s.

= lim
y→−∞
z→∞

1

z − y + 1

z∑

u=y

W tot
0 (u) a.s.

= E [W tot
0 (v)] = E [W0(v)] = − 8

3 (1− γ)

(
1 +

ln(γ)

1− γ
)
.

If we assume for contradiction that with positive probability for some δ > 0 the
total variation distance ‖ηt(v)− ηt(v+ 1)‖TV lies in [δ, θ] for arbitrarily large t,
the conditional Borel-Cantelli lemma (see e.g. Cor. 6.20 in [9]) forces infinitely
many performed updates with the total variation distance being at least δ. As
the total energy is always non-negative, this implies limt→∞ E [W tot

t (v)] = ∞,
a contradiction. �

Before we can use Lemma 6.3 to guarantee the existence of flat vertices at
time t > 0, we need to check that (11) also holds for time t > 0.

Lemma 6.5
Given the Deffuant model as described in Lemma 6.3, for all t ≥ 0, it holds that

lim
n→∞

1

n

n∑

v=1

f
(v)
t = ϕγ

almost surely with respect to the supremum norm on [0, 1].

Proof: Fix t > 0. From Theorem 2.1 we know that

lim
n→∞

1

n

n∑

v=1

f
(v)
0 = ϕγ a.s.

with respect to the supremum norm. Using the fact that the densities are
uniformly bounded by 2

γ we can conclude that this convergence holds even for
t > 0, by the same token as in [6]:

To the right of site 1, a.s. there is an infinite increasing sequence of nodes
(vk)k∈N, such that there was no Poisson event up to time t on the collection of
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edges {〈vk, vk + 1〉, k ∈ N}. We denote the random lengths of the intervals in
between by Lk := vk+1 − vk, for k ∈ N. In addition, let L0 := v1 − v0 be the
length of the interval including agent 1, where 〈v0, v0 + 1〉 is the first edge to
the left of site 1 without Poisson event. Independence of the involved Poisson
processes entails that (Lk)k∈N0

is an i.i.d. sequence of random variables having
geometric distribution on N with parameter e−t.

Fix δ > 0. Using the Borel-Cantelli lemma we find that the event

Eδ := {L0 =∞} ∪ lim sup
k→∞

{
Lk ≥ k · δγ2

}

has probability 0.
The Deffuant model is mass-preserving in the sense that the sum of opinions

of two interacting agents is always preserved. Therefore it holds for all k ∈ N:
vk∑

u=v0+1

f
(v)
0 =

vk∑

u=v0+1

f
(u)
t .

Furthermore, for some v ∈ {vk + 1, . . . , vk+1}, the event

∥∥∥ 1

v − v0

v∑

u=v0+1

f
(u)
0 − 1

v − v0

v∑

u=v0+1

f
(u)
t

∥∥∥
∞
≥ δ

forces Lk ≥ k · δγ2 , since vk ≥ k and the density f
(u)
s is non-negative and

uniformly bounded by 2
γ for all u ∈ Z and times s ≥ 0.

In conclusion, given E c
δ , it holds that

lim
n→∞

1

n

n∑

v=1

f
(v)
t (x) = lim

n→∞
1

n

n∑

v=v0+1

f
(v)
t (x) ≤ lim

n→∞
1

n

n∑

v=v0+1

f
(v)
0 (x) + δ

= lim
n→∞

1

n

n∑

v=1

f
(v)
0 (x) + δ = ϕγ(x) + δ

uniformly in x ∈ [0, 1]. In the same way we get ϕγ(x)− δ as a lower bound and
letting δ go to 0 finally verifies

lim
n→∞

1

n

n∑

v=1

f
(v)
t = ϕγ a.s. (14)

w.r.t. the supremum norm. �

Lemma 6.6
Given the Deffuant model as described in Lemma 6.3 and ε > 0, the following
holds for all t > 0:

(i) With non-zero probability, there has been no Poisson event on the edge
〈0, 1〉 until time t and site 1 is ε-flat to the right with respect to the con-
figuration {ηt(v)}v∈Z and distance measure ‖ . ‖TV.
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(ii) With non-zero probability, site 0 is two-sidedly ε-flat with respect to the
configuration {ηt(v)}v∈Z and distance measure ‖ . ‖TV.

Proof: In order to verify these claims, we only have to put together the ingre-
dients established in Lemmas 6.3 and 6.5. As in the proof of Thm. 2.2 in [6], we
will do this by using a conditional variant of the coupling technique introduced
in [12], that became known as local modification in percolation theory.

Fix ε > 0. Recall that for absolutely continuous measures µ and ν on [0, 1],
with densities f and g respectively, we get ‖µ− ν‖TV ≤ 1

2 · ‖f − g‖∞ and let B
denote the following event:

{∥∥∥ 1

n

n∑

v=1

ηt(v)−E ηγ
∥∥∥
TV
≤ ε

3
and

∥∥∥ 1

n

−1∑

v=−n
ηt(v)−E ηγ

∥∥∥
TV
≤ ε

3
, for all n ≥ N

}
.

From Lemmas 6.3 and 6.5, we know that N ∈ N can be chosen sufficiently
large such that P(B) > 1− e−2t and P(C ∩D) > 0, where C denotes the event
of no Poisson events on the two edges 〈0, 1〉 and 〈N,N + 1〉 up to time t,

D :=
{
‖ηt(v)− E ηγ‖TV ≤ ε

3 for all 1 ≤ v ≤ N
}
.

Additionally, since P(C) = e−2t, we must have P(B ∩ C) > 0.
Now let ηt := {ηt(v)}v∈Z and η′t := {η′t(v)}v∈Z be the configurations at time

t originated from two independent copies of the considered model. There is a
strictly positive probability that B ∩ C happens for ηt as well as that C ∩ D
happens for η′t. Given C, the hybrid process η̃t defined by

η̃t(v) =

{
ηt(v) if v /∈ {1, . . . , N}
η′t(v) if v ∈ {1, . . . , N}

is a perfectly fine copy of the model as well, showing that the event B ∩D has
non-zero probability. It is an easy exercise to check that B ∩D actually implies
the ε-flatness to the right of site 1.

In fact, the same argument applies to the second setting. Here, however, we
choose C to be the event that there were no Poisson events on 〈−N − 1,−N〉
and 〈N,N + 1〉 as well as D :=

{
‖ηt(v)− E ηγ‖TV ≤ ε

3 for all −N ≤ v ≤ N
}
.

Then the two-sidedly ε-flatness of site 0 follows from B ∩D. �

Let us now use Lemmas 6.4 and 6.6 to prove the main statement about the
model featuring restricted random triangular distributions.

Theorem 6.7
Consider the Deffuant model on Z, in which the total variation distance is used
to measure the difference between two opinions and in which the initial opinions
are given by independently assigned random restricted triangular distributions
with fixed γ ∈ (0, 1) as described in (9). Then there is a sharp phase transition
in the following sense: for θ ∈ [0, θc), the system almost surely approaches dis-
agreement in the long run; for θ ∈ (θc, 1], it almost surely approaches consensus.
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The threshold θc is given by

θc =
1

2

∫ 1

0

∣∣∣f(γ,0)(x)− ϕγ(x)
∣∣∣ dx

=
1

2

∫ 1

0

∣∣∣ 2γ ·
(
1− 2

γ ·
∣∣x− γ

2

∣∣)+ − ϕγ(x)
∣∣∣ dx.

(15)

Proof: As mentioned in Section 4, we will closely follow the ideas in [5] to
establish this result, just now the opinions are given by (random) absolutely
continuous measures, or rather their density functions. In fact, most of the
work has already been done by showing Lemma 6.6. Let us define

θc :=
1

2

∫ 1

0

∣∣∣f(γ,0)(x)− ϕγ(x)
∣∣∣ dx

and ε := 1
7 · |θc − θ|. In the sequel, we will consider the two regimes: the

subcritical one (θ < θc) and the supercritical one (θ > θc).

In the subcritical regime, fix t > 0 and let B denote the event that there
are no Poisson events neither on 〈−1, 0〉 nor on 〈0, 1〉 during [0, t] and site −1
is ε-flat to the left, site 1 is ε-flat to the right with respect to the configuration
{ηt(v)}v∈Z. By Lemma 6.6 part (i), the obvious symmetry and conditional
independence, we know that B occurs with positive probability. Let the initial
opinion of agent 0 be given by fU0

in the sense of (10) and C be the event that
the first coordinate of U0 is less than γ + εγ

2 , which by the shape of Aγ (see
Figure 4) and (12) entails

∥∥η0(0)− E ηγ
∥∥
TV
≥ θc − ε.

Given that there are no Poisson events on edges incident to site 0, we can (again
by local modification) conclude thatB∩C has positive probability. From Lemma
4.3, we know that the total variation distance between ηs(1) and the intensity
measure E ηγ will not exceed ε for s ≥ t due to its one-sided ε-flatness if there is
no interaction with site 0 (same for ηs(−1)). However, given B∩C the opinions
ηt(1) and ηt(0) = η0(0) are at distance larger than θc − 2ε > θ and hence they
never will be close enough to interact, since the same holds for ηt(−1), which
leaves the opinion at site 0 unchanged for all time. In other words, with non-zero
probability the edge 〈0, 1〉 will be finally blocked (same for 〈−1, 0〉).

To conclude the claimed almost sure behavior, we apply the ergodicity ar-
gument used in the proof of Lemma 6.4 once again: Whether the configuration
approaches disagreement or not can be checked given the initial configuration
plus all Poisson processes associated to the edges. The sequence {X(v), v ∈ Z}
(as defined in the proof of Lemma 6.4) is i.i.d., hence ergodic with respect to
shifts. Thus the translation-invariant event “disagreement” necessarily has to be
trivial, i.e. must have probability either 0 or 1. Since we already showed that its
probability is non-zero, the event has to be an almost sure one in the subcritical
regime.
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In the supercritical case, we know that at time t > 0 any fixed site is two-
sidedly ε-flat with positive probability (part (ii) of Lemma 6.6). Lemma 6.2
implies that the largest total variation distance of a restricted triangular dis-
tribution as defined in (9) to the intensity measure E ηγ is given by what we
defined as θc. Since all opinions at a later time are convex combinations of the
initial ones, this distance can not be exceeded. If site 0 is two-sidedly ε-flat
with respect to the configuration {ηt(v)}v∈Z, the opinion ηs(0) will be at total
variation distance at most 6ε to E ηγ , for all s ≥ t (part (ii) of Lemma 4.3). This
implies that its neighboring opinions differ by not more than θc + 6ε < θ, hence
Lemma 6.4 forces the differences to converge to 0. By induction, this is actually
true for any pair of neighbors. Again, ergodicity ensures that this consensus
behavior occurs with probability 1.

It further implies the almost sure existence of two-sidedly ε-flat vertices for
any strictly positive value of ε. For this reason, the measure, the opinions
converge to, must be the intensity measure, which concludes the proof. �

Example 6.8
Let us consider the Deffuant model on Z with opinions being absolutely contin-
uous probability distributions and the initial ones given by random restricted
triangular distributions with parameter γ = 1

3 . From Lemma 6.1 we know that
the corresponding intensity measure has the somewhat cumbersome density

ϕ 1
3

(x) =





−18
[
(1− x) ln(1− x)− 3

2 x
2 + x

]
, 0 ≤ x ≤ 1

6

−18
[
(1− x) ln(1− x)− x ln(6x) + x+ 3

2 x
2 − 1

12

]
, 1

6 ≤ x ≤ 1
3

−18
[
(1− x) ln(1− x) + x (1− ln(2)) + 1

12

]
, 1

3 ≤ x ≤ 1
2

−18
[
x ln(x) + (1− x) (1− ln(2)) + 1

12

]
, 1

2 ≤ x ≤ 2
3

−18
[
x ln(x)− (1− x) ln(6− 6x) + 3

2 x
2 − 4x+ 29

12

]
, 2

3 ≤ x ≤ 5
6

−18
[
x ln(x)− 3

2 x
2 + 2x− 1

2

]
, 5

6 ≤ x ≤ 1.

ϕ 1
3
(x)

x
0.5 10

y

0.5

1

1.5

2

Figure 7: The intensity measure is concentrated more towards the center if the
random triangular distributions are restricted to a minimum width.
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If the total variation distance is used to measure the disparity of two opinions,
we can conclude from Theorem 6.7 that the threshold θc for this model takes
on the value

θc =
1

2

∫ 1

0

∣∣∣f(
0,

1
3

)(x)− ϕ 1
3

(x)
∣∣∣ dx ≈ 0.83172.

7 Alternative choices (concerning initial config-
uration and distance measure) and inhomoge-
neous open-mindedness

No doubt that the extension of the Deffuant model on Z to measure-valued
opinions leaves a wide range of possible laws for the initial configuration to be
examined. We saw trivial behavior for triangular distributions and a non-trivial
phase transition for restricted triangular distributions.

If we want to stick to absolutely continuous measures on a compact support
S and ‖ . ‖TV as distance measure, the line of argument from Section 6 will in
principle carry over on condition that

E
∫

S

[fω(x)]2 dx <∞,

where fω, ω ∈ Ω, denotes the random initial density shaped by a probability
space (Ω,P), and that the total variation distance of an initial opinion to the
intensity measure is a.s. bounded away from 1. The first condition is needed
to prove Lemma 6.4, the latter will in fact give the threshold θc, as essential
supremum of the total variation distance of initial opinions to the intensity
measure. There is however one issue, that must not be overlooked: In order to
establish Lemma 6.3, we needed that there are no major gaps in the support
of the initial opinions – just as in the case of finite-dimensional opinions. To
examine this problem more closely, elaborate geometric considerations as in [7]
seem to be necessary and we will thus leave this for future studies.

If one wants to include point processes as opinions, in many situations the
total variation distance will not work as a meaningful measure for the discrep-
ancy of two opinions, at least if the support of two such processes is disjoint
with positive probability. Using the Lévy-distance instead could however lead
to interesting models in such a setting. In fact, even in the case of triangular
distributions, it seems to be unrealistic that two determined agents are at max-
imal distance, whether the intervals, on which their opinions are concentrated,
are in close proximity or at different ends of the spectrum. From this point of
view, albeit more difficult to handle, the Lévy-distance appears to be a more
suitable choice.

Finally, it might be interesting to point out the new feature of the model
(compared to finite-dimensional opinions) that was mentioned in the beginning
of Section 5 once more and put it into a broader context: In the Deffuant model
with triangular distributions, besides the common tolerance parameter θ and
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willingness to compromise µ, we have a diversified scale of open-mindedness of
the agents shaped by the random support of their initial opinion.

There have been attempts, e.g. by Deffuant et al. in [14], to simulate the
long-term behavior of a variant of the model in which the agents have different
θ-values. On the analytical side, this is quite a crucial change since it brings
along situations in which the opinion of only one of two interacting neighbors
is updated. Then the sum of opinions is no longer preserved, which renders
void many of our central arguments. Another advance in the same direction is
the so-called relative agreement model, introduced in [2]. There, the bounded
confidence rule is dropped and replaced by a continuous counterpart: Agents
feature both a real-valued opinion and a separate value corresponding to their
individual uncertainty, which taken together shape a dispersed opinion in the
form of a symmetric interval of length two times the uncertainty around the
opinion value. If an agent gets influenced by another, the impact depends on
the overlap of the two opinion intervals relative to the length of the interval
corresponding to the influenced agent. Again, the asymmetric way of updating
opinion values makes the relative agreement model, although based on the same
principles and ideas, qualitatively quite different.

On the modelling side, the way inhomogeneous open-mindedness or uncer-
tainty is incorporated in our extension of the model does not only avoid this
issue, but also lead to the realistic property that agents themselves become more
open-minded by interacting with open-minded neighbors.
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Abstract
If the nodes of a graph are considered to be identical barrels – featuring

different water levels – and the edges to be (locked) water-filled pipes in
between the barrels, one might consider the optimization problem of how
much the water level in a fixed barrel can be raised with no pumps avail-
able, i.e. by opening and closing the locks in an elaborate succession. This
problem originated from the analysis of an opinion formation process and
proved to be not only sufficiently intricate in order to be of independent
interest, but also algorithmically complex, namely NP-hard. We deal with
both finite and infinite graphs as well as deterministic and random initial
water levels and find that an infinite path, due to its leanness, behaves
much more like a finite graph in this respect.

Keywords: Water transport, graph algorithms, optimization, complexity, infi-
nite path.

1 Introduction
Imagine a plane on which rainwater is collected in identical rain barrels, some
of which are connected through pipes (that are already water-filled). All the
pipes feature locks that are normally closed. If a lock is opened, the contents
of the two barrels which are connected via this pipe start to level, see Figure 1.
If one waits long enough, the water levels in the two barrels will be exactly the
same, namely lie at the average a+b

2 of the two water levels (a and b) before the
pipe was unlocked.

After a rainy night in which all of the barrels accumulated a certain amount
of precipitation we might be interested in maximizing the water level in one
fixed barrel by opening and closing some of the locks in carefully chosen order.

In order to mathematically model the setting, consider an undirected graph
G = (V,E), which is either finite or infinite with bounded maximum degree.
∗Research supported by grants from the Swedish Research Council and from the Knut and

Alice Wallenberg Foundation
†Research supported by grants from the Swedish Research Council and the Royal Swedish

Academy of Sciences
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a

b

lock

Figure 1: Levelling water stages after just having opened a lock.

Furthermore, we can assume without loss of generality that G is connected
and simple, that means having neither loops nor multiple edges. Every vertex is
understood to represent one of the barrels and the pipes correspond to the edges
in the graph. The barrels themselves are considered to be identical, having a
fixed capacity C > 0.

Given some initial profile {η0(u)}u∈V ∈ [0, C]V , the system is considered to
evolve in discrete time and in each round we can open one of the locked pipes and
transport water from the fuller barrel into the emptier one. If we stop early, the
two levels might not have completely balanced out giving rise to the following
update rule for the water profile: If in round k the pipe e = 〈x, y〉 connecting
the two barrels at sites x and y, with levels ηk−1(x) = a and ηk−1(y) = b
respectively, is opened and closed after a certain period of time, we get

ηk(x) = a+ µk (b− a)
ηk(y) = b+ µk (a− b) (1)

for some µk ∈ [0, 12 ], which we assume can be chosen freely by appropriate
choice of how long the pipe is left open. All other levels stay unchanged, i.e.
ηk(w) = ηk−1(w) for all w ∈ V \ {x, y}.

The quantity of interest is then defined as follows:

Definition 1
For a graph G = (V,E), an initial water profile {η0(u)}u∈V and a fixed vertex
v ∈ V (the target vertex), let a move sequence be given by a list of edges and
time spans that determines which pipes are opened (in chronological order) and
for how long. Let then κ(v) be defined as the supremum over all water levels
that are achievable at v with move sequences consisting of finitely many rounds,
i.e.

κ(v) := sup{r ∈ R, there exists T ∈ N0 and a move sequence s.t. ηT (v) = r}.

Readers familiar with mathematical models for social interaction processes
might note that (1) basically looks like the update rule in the opinion formation
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process given by the so-called Deffuant model for consensus formation in social
networks (as described in the introduction of [5]), only µ can change from update
to update and the bounded confidence restriction is omitted. This however is no
coincidence: The situation described in the context above arises naturally in the
analysis of the Deffuant model where the question is how extreme an opinion can
a fixed agent possibly get given an initial opinion profile on a specified network
graph, if the interactions take place appropriately.

In order to tackle this question, Häggström [4] invented a non-random pair-
wise averaging procedure, which he proposed to call Sharing a drink (SAD).
This procedure – which is the main focus of the second section – was originally
considered on the (two-sidedly) infinite path only, i.e. the graph G = (V,E)
with V = Z and E = {〈v, v+ 1〉, v ∈ Z}, but can immediately be generalized to
any graph (see Definition 2) and is dual to the water transport described above
in a sense to be made precise in Lemma 2.1.

In Section 3, we will deal with the water transport problem on finite graphs.
After formally introducing the idea of optimal move sequences, we investigate
both their essential building blocks and the effect of simultaneously opened
pipes. In subsection 3.3, being a collection of examples, we will in fact deal
with both situations – the one in which we consider the initial water levels to be
deterministic and the other in which they are random. In the latter case κ(v)
obviously becomes a random variable as well since it strongly depends on the
initial profile. On non-transitive graphs (see Definition 8) its distribution can
moreover depend on the chosen vertex v – even for i.i.d. initial water levels, see
Example 3.2.

In the fourth section, we extend the complexity consideration touched upon
in some of the examples from Section 3. We show that it is an NP-hard problem
to determine κ(v) for a given finite graph, target vertex v and initial water profile
in general, something that might be considered as a valid excuse for the fact
that we are unable to give a neat general solution when it comes to optimal
move sequences in the water transport problem on finite graphs, as dealt with
in Section 3.

As opposed to the two precedent sections, Section 5 is devoted to infinite
graphs. We consider i.i.d. initial water levels (with a non-degenerate marginal
distribution) and detect a remarkable change of behavior: On an infinite path,
the highest achievable water level at a fixed vertex depends on the initial profile
in the sense that it has a non-degenerate distribution, just like on any finite
graph. If the infinite graph contains a neighbor-rich half-line (see Definition 7),
however, this dependence becomes degenerate: For any vertex v ∈ V , the value
κ(v) almost surely equals the essential supremum of the marginal distribution.
This fact makes the two-sidedly infinite path quite unique: It constitutes the
only exception among all infinite quasi-transitive graphs, to the effect that κ(v)
is a non-degenerate random variable – an observation which is captured in the
last theorem: the nonetheless central Theorem 5.3.
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2 Connection to the SAD-procedure
Let us first repeat the formal definition of the SAD-procedure:

Definition 2
For a graph G = (V,E) and some fixed vertex v ∈ V , define {ξ0(u)}u∈V by
setting

ξ0(u) = δv(u) :=

{
1 for u = v

0 for u 6= v.

In each time step, an edge 〈x, y〉 is chosen and the profile {ξ0(u)}u∈V updated
according to the rule (1) with {ξk(u)}u∈V in place of {ηk(u)}u∈V . One can
interpret this procedure as a full glass of water initially placed at vertex v (all
other glasses being empty), which is then repeatedly shared among neighboring
vertices by each time step choosing a pair of neighbors and pouring a µk-fraction
of the difference from the glass containing more water into the one containing
less. Let us refer to this interaction process as Sharing a drink (SAD).

Just as in [4], the SAD-procedure can be used to describe the composition
of the contents in the water barrels after finitely many rounds of opening and
closing pipe locks. The following lemma corresponds to Lemma 3.1 in [4], but
since the two dual processes (water transport and SAD) evolve in discrete time
in our setting, the proof simplifies somewhat.

Lemma 2.1
Consider an initial profile of water levels {η0(u)}u∈V on a graph G = (V,E)
and fix a vertex v ∈ V . For T ∈ N0 define the SAD-procedure that starts with
ξ0(u) = δv(u) (see Definition 2) and is dual to the chosen move sequence in the
water transport problem in the following sense: If in round k ∈ {1, . . . , T} the
water profile is updated according to (1), the update in the SAD-profile at time
T −k ∈ {0, . . . , T −1} takes place along the same edge and with the same choice
of µk. Then we get

ηT (v) =
∑

u∈V
ξT (u) η0(u). (2)

Proof: We prove the statement by induction on T . For T = 0, the statement
is trivial and there is nothing to show. For the induction step fix T ∈ N and
assume the first pipe opened to be e = 〈x, y〉. According to (1) we get

η1(u) =





η0(u) if u /∈ {x, y}
(1− µ1) η0(x) + µ1 η0(y) if u = x

(1− µ1) η0(y) + µ1 η0(x) if u = y.
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Let us consider {η1(u)}u∈V as some initial profile {η′0(u)}u∈V . By induction
hypothesis we get

η′T−1(v) =
∑

u∈V
ξ′T−1(u) η′0(u)

=
∑

u∈V \{x,y}
ξ′T−1(u) η0(u) +

(
(1− µ1) ξ′T−1(x) + µ1 ξ

′
T−1(y)

)
η0(x)

+
(

(1− µ1) ξ′T−1(y) + µ1 ξ
′
T−1(x)

)
η0(y),

where η′T−1(v) = ηT (v) and {ξ′k(u)}u∈V , 0 ≤ t ≤ T − 1, is the SAD-procedure
corresponding to the move sequence after round 1. As by definition the SAD-
procedure ξ arises from ξ′ by adding an update at time T − 1 along edge e with
parameter µ1, we find ξk(u) = ξ′k(u) for all k ∈ {0, . . . , T −1} and u ∈ V as well
as

ξT (u) =





ξT−1(u) = ξ′T−1(u) if u /∈ {x, y}
(1− µ1) ξT−1(x) + µ1 ξT−1(y) if u = x

(1− µ1) ξT−1(y) + µ1 ξT−1(x) if u = y,

which establishes the claim. �

In the following sections, we want to consider not only deterministic but also
random initial profiles of water levels. Having this mindset already, it might be
useful to halt for a moment and realize that the statement of Lemma 2.1 deals
with a deterministic duality that does not involve any randomness (once the
initial profile and the move sequence are fixed).

Before we turn to the task of rising water levels, let us prepare two more
auxiliary results. The first one follows directly from the energy argument that
was used in the proof of Thm. 2.3 in [4]:

Lemma 2.2
Given an initial profile of water levels {η0(u)}u∈V on a graph G = (V,E), fix
a finite set A ⊆ V and a set EA ⊆ E of edges inside A that connects A. If
we open the pipes in EA – and no others – in repetitive sweeps for times long
enough such that µk ≥ ε for some fixed ε > 0 in each round (cf. (1)), then
the water levels inside the set A approach a balanced average, i.e. converge to
the value 1

|A|
∑
v∈A η0(v). The corresponding dual SAD-profiles started with

ξ0(u) = δv(u), u ∈ V, converge uniformly to 1
|A| δA for all v ∈ A.

Proof: Let us define the energy after round k inside A by

Wk(A) =
∑

v∈A

(
ηk(v)

)2
.

A short calculation reveals that an update of the form (1) reduces the energy
by 2µ 2

k (b − a)2, where the updated water levels were a and b respectively. If
µk is bounded away from 0, the fact that Wk(A) ≥ 0 for all k entails that the
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difference in water levels |b− a| before a pipe is opened can be larger than any
fixed positive value only finitely many times. In effect, since any pipe in EA is
opened repetitively we must have |ηk(u) − ηk(v)| → 0 as k → ∞ for all edges
〈u, v〉 ∈ EA. As the updates are average preserving, the first part of the claim
follows from the fact that EA connects A.

The second part of the lemma follows by applying the same argument to the
dual SAD-procedure. �

The following lemma constitutes an extremely narrowed variant of Thm. 2.3
in [4] which applies to graphs more complex than paths as well and will come
in useful in Example 3.3:

Lemma 2.3
Fix a (connected) graph G = (V,E) and a vertex v ∈ V . For any w ∈ V \ {v},
the supremum of ξk(w) taken over all times k and SAD-procedures started with
ξ0(u) = δv(u), u ∈ V , is less than or equal to 1

2 .

Proof: If the SAD-procedure is started with a full glass of water at v 6= w,
the assumption that the amount at w can rise above 1

2 leads to the following
contradiction: Assume k to be the first time s.t. ξk(w) > 1

2 . Then in round k
node w necessarily pooled the water with some neighbor u, that had more water
than w. But since this relation is preserved by an update, it implies

ξk(w) + ξk(u) ≥ 2 ξk(w) > 1,

which is impossible as the amount of water shared always sums to 1. �

To round off these preliminary considerations, let us collect some results
about SAD-profiles from [4] – partly already mentioned – into a single lemma
for convenience.

Lemma 2.4
Consider the SAD-procedure on a path, started in vertex v, i.e. with ξ0(u) =
δv(u), u ∈ V .

(a) The SAD-profiles achievable on paths are all unimodal.

(b) If the vertex v only shares the water to one side, it will remain a mode of
the SAD-profile.

(c) The supremum over all achievable SAD-profiles started with δv at another
vertex w equals 1

d+1 , where d is the graph distance between v and w.

The results in [4] actually all deal with the two-sidedly infinite path, but it
is evident how the arguments used immediately transfer to finite paths. Part
(a) hereby corresponds to Lemma 2.2 in [4], part (b) to Lemma 2.1 and part (c)
to Thm. 2.3. The argument Häggström [4] used to prove the statement in (c)
for the two-sidedly infinite path can in fact be generalized to prove the result
for trees without much effort, as was done by Shang (see Prop. 6 in [7]).
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In fact, we believe that not only the cut back statement from Lemma 2.3 but
also the natural generalization of Thm. 2.3 in [4] holds true for general graphs.
Our attempts to prove the generalization to non-tree graphs have, however,
turned out unsuccessful.

3 Water transport on finite graphs
In this section, we consider the underlying network to be finite, i.e. |V | = n ∈ N.
In order to increase the water level at our fixed site v one could in principle start
by greedily trying to connect the barrels with the highest water levels to the one
at v. However, optimizing this idea is far from being trivial. Let us first define
optimal move sequences and then reveal some properties and building blocks
that they share.

Definition 3
For fixed v ∈ V and a given initial water profile {η0(u)}u∈V let ϕ ∈ (E×[0, 12 ])T ,
where ϕk = (ek, µk), be called a finite move sequence if T ∈ N0. ϕ is a finite
optimal move sequence if opening the pipes e1, . . . , eT in chronological order,
each for the period of time that corresponds to µk in (1), will lead to the final
value ηT (v) = κ(v).

For any move sequence ϕ ∈ (E × [0, 12 ])T , we will denote by {ξT (u)}u∈V the
SAD-profile that corresponds to ϕ via the duality laid down in Lemma 2.1.

If no finite optimal move sequence exists, let us call Φ = {ϕ(m), m ∈ N} an
optimal meta-sequence of moves, provided that ϕ(m) ∈ (E × [0, 12 ])Tm is a finite
move sequence for each m ∈ N, achieving ηTm

(v) > κ(v) − 1
m and the SAD-

profiles {ξTm(u)}u∈V dual to ϕ(m) converge pointwise to a limit {ξ(u)}u∈V as
m→∞.

It is tempting to assume that in the case where no finite optimal move
sequence exists, we could get away with an infinite move sequence instead of a
sequence of finite move sequences Φ as described above. However this is not the
case, see Example 3.6.

Lemma 3.1
Take the network G = (V,E) to be finite, and fix the target vertex v as well as
the initial water profile. Then the existence of an optimal move (meta-)sequence
is guaranteed and the following simplification will not change its performance:
In an optimal move (meta-)sequence, without loss of generality we can assume
µk = 1

2 for all k.

Proof: By the very definition of κ(v), the existence of an optimal finite or meta-
sequence of moves is guaranteed: Let A ⊆ [0, 1]V denote the set of achievable
SAD-profiles. Its closure A in ([0, 1]V , ‖ . ‖2) is bounded and therefore compact.
Given the initial water profile {η0(u)}u∈V , the function

f :=





[0, 1]V → [0, C]

{ξ(u)}u∈V 7→
∑
u∈V

ξ(u) η0(u)
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is continuous. Hence there exists a closed subset F of A on which f achieves its
maximum κ(v) over A. The SAD-profiles dual to finite optimal move sequences
are given by F ∩ A. If F ∩ A = ∅ and Φ = {ϕ(m), m ∈ N} is a collection of
finite move sequences s.t. ϕ(m) ∈ (E × [0, 12 ])Tm and ηTm

(v) > κ(v)− 1
m for all

m ∈ N, we can assume without loss of generality that the corresponding SAD-
profiles {ξTm

(u)}u∈V have a limit {ξ(u)}u∈V (by passing on to a subsequence
if necessary) as A is compact. This turns Φ into an optimal meta-sequence of
moves and the limit of its dual SAD-profiles necessarily lies in F .

Assume now that the first move in a finite sequence ϕ ∈ (E × [0, 12 ])T is to
open the lock on pipe e1 = 〈x, y〉 for a time corresponding to µ1 ∈ [0, 12 ] in (1).

Without loss of generality we can assume η0(x) ≥ η0(y) (which in turn im-
plies η1(x) ≥ η1(y)). If we look at the SAD-profile {ξ′T−1(u)}u∈V corresponding
to ϕ′ := (ϕ2, . . . , ϕT ) ∈ (E × [0, 12 ])T−1 – in effect we look at the outcome
of the move sequence after the first step applied to the new initial water pro-
file {η1(u)}u∈V – we can distinguish two cases: either ξ′T−1(x) ≥ ξ′T−1(y) or
ξ′T−1(x) < ξ′T−1(y). In the first case changing µ1 to 0, i.e. erasing the first move
will not decrease the water level finally achieved at v, see (2). In the second
case the same holds for changing µ1 to 1

2 . Since we can consider any step in
the move sequence to be the first one applied to the intermediate water profile
achieved so far, this establishes the claim for finite optimal move sequences.

As any finite move sequence can be simplified in this way without worsening
its outcome, the argument applies to the elements of a sequence Φ = {ϕ(m), m ∈
N} of finite move sequences and thus to an optimal meta-sequence as well. �

3.1 Macro moves
When it comes to the opening and closing of pipes, it is not self-evident how far
things change if we allow pipes to be opened simultaneously. First of all one has
to properly extend the model laid down in (1) by specifying how the water levels
behave when more than two barrels are connected at the same time. In order
to keep things simple, let us assume that the pipes are all short enough and of
sufficient diameter such that we can neglect all kinds of flow effects. Moreover,
let us take the dynamics to be as crude as can be by assuming that the water
levels of the involved barrels approach their common average in a linear and
proportional fashion, which is made more precise in the following definition.

Definition 4
Given a graph G = (V,E), let A ⊆ V be a set of at least 3 nodes and EA ⊆ E a
set of edges inside A that connects A. A macro move on EA (or simply A) will
denote the action of opening all pipes that correspond to edges in EA in some
round k simultaneously and will – analogously to (1) – change the water levels
for all vertices u ∈ A to

ηk(u) = (1− 2µk) ηk−1(u) + 2µk ηk−1(A), where ηk−1(A) =
1

|A|
∑

w∈A
ηk−1(w)

is the average over the set A after round k − 1 and µk ∈ [0, 12 ].
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First of all, Lemma 2.1 transfers immediately and almost verbatim to move
sequences including macro moves: In a move sequence with a macro move on
the set A in the first round, we get the water levels

η1(u) =

{
η0(u) if u /∈ A
(1− 2µ1) η0(u) + 2µ1 η0(A) if u ∈ A.

If {ξT−1(u), u ∈ V } and {ξT (u), u ∈ V } are such that

ηT (v) =
∑

u∈V
ξT (u) η0(u) =

∑

u∈V
ξT−1(u) η1(u),

we find by comparing the coefficient of η0(u)

ξT (u) =

{
ξT−1(u) if u /∈ A
(1− 2µ1) ξT−1(u) +

∑
w∈A 2µ1

ξT−1(w)
|A| if u ∈ A,

which is the SAD-profile originating from the very same macro move applied to
{ξT−1(u), u ∈ V }. With this tool in hand, we can prove the following extension
of Lemma 3.1:

Lemma 3.2
Take the network G = (V,E) to be finite, and fix the target vertex v as well as
the initial water profile.

(a) Even if we allow macro moves, the statement of Lemma 3.1 still holds true,
i.e. reducing the range of µk from [0, 12 ] to {0, 12} in each round k does not
worsen the outcome of optimal move (meta-)sequences.

(b) The sharp upper bounds on achievable water levels are not changed if we
allow for pipes to be opened simultaneously. In other words, the supremum
κ(v) of water levels achievable at a vertex v, as characterized in Definition
1, stays unchanged if we allow move sequences to include macro moves.

Proof:

(a) Just as in Lemma 3.1, we consider a move sequence consisting of finitely
many (macro) moves – say again T ∈ N – and especially the SAD-profile
dual to the moves after round 1, denoted by {ξT−1(u), u ∈ V }. If the first
action is a macro move on the set A, let us divide its nodes into two subsets
according to whether their initial water level is above or below the initial
average across A:

Aa := {u ∈ A, η0(u) ≥ η0(A)} and Ab := {u ∈ A, η0(u) < η0(A)}.

If
∑
u∈Aa

ξT−1(u) ≤∑u∈Ab
ξT−1(u), changing µ1 to 1

2 will not decrease the
final water level achieved at v. If instead

∑
u∈Aa

ξT−1(u) ≥∑u∈Ab
ξT−1(u),

the same holds for erasing the first move (i.e. setting µ1 = 0).
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(b) Obviously, allowing for pipes to be opened simultaneously can if anything
increase the maximal water level achievable at v. However, any such macro
move can be at least approximated by opening pipes one after another.
Levelling out the water profile on a set of more than 2 vertices completely
will correspond to the limit of infinitely many single pipe moves on the edges
between them (in a sensible order).

Let us consider a finite move sequence ϕ including macro moves on the
sets A1 . . . , Al (in chronological order). From part (a) we know that with
regard to the final water level achievable at v we can assume w.l.o.g. that
all moves are complete averages (i.e. µk = 1

2 for all k). Fix ε > 0 and let us
define a finite move sequence ϕ including no macro moves in the following
way: We keep all the rounds in ϕ in which pipes are opened individually.
For the macro move on Ai, i ∈ {1, . . . , l}, we insert a finite number of
rounds in which the pipes of an edge set EAi

connecting Ai are opened in
repetitive sweeps such that the water level at each vertex u ∈ Ai is less than
ε
2i away from the average across Ai after these rounds. Note that Lemma
2.2 guarantees that this is possible.

As opening pipes leads to new water levels being convex combinations of the
ones before, the differences of individual water levels caused by replacing the
macro moves add up to

∑l
i=1

ε
2i < ε in the worst case. Consequently, the

final water level achieved at v by ϕ is at most ε less than the one achieved
by ϕ. Since ε > 0 was arbitrary, this proves the claim.

Note however that the option of macro moves can make a difference when
it comes to the attainability of κ(v), see Example 3.6. �

Remark
Lemma 3.2 (a) states that even for macro moves, there is nothing to be gained
by closing the pipes before the water levels have balanced out completely. A
macro move on the edge set EA with µk = 1

2 can be seen as the limit of infinitely
many single edge moves on EA in the sense of Lemma 2.2 – a connection that
does not exist for macro moves with µk ∈ (0, 12 ). In fact, it is not hard to
come up with an initial waterprofile on a path consisting of three nodes, where
an incomplete macro move, i.e. with µk ∈ (0, 12 ), can not be achieved or even
approximated by single edge moves.

But then again, we believe that there always exists a finite optimal move
sequence if macro moves are allowed. We state this as an open problem.

Due to Lemmas 3.1 and 3.2 we can assume w.l.o.g. that the parameters µk
in optimal move (meta-)sequences are always equal to 1

2 in each round, hence
omit them and consider a move sequence to be a list of pipes (i.e. ϕ ∈ ET ) only.
We can incorporate a move sequence in which more than one pipe is opened
at a time into Definition 3 by either allowing ϕk, for k ∈ {0, . . . , T}, to be a
subset of E with more than one element on which the levelling takes place or
by viewing ϕ as a limiting case of move sequences {ϕ(m), m ∈ N}, in which
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pipes are opened separately, that form a meta-sequence of moves Φ – as just
described in the proof of the lemma.

In the sequel however – if not otherwise stated – we will stick to the initial
regime where pipes are opened one at a time.

3.2 Optimizing move sequences
Closely related to the water transport idea is the concept of greedy lattice animals
as introduced by Cox, Gandolfi, Griffin and Kesten [2]. The vertices of a given
graph G are associated with an i.i.d. sequence of non-negative random variables
and a greedy lattice animal of size n is then defined to be a connected subset
of n vertices containing the target vertex v and maximizing the sum over the
associated n random variables. Since we do not care about the size of the lattice
animal, let us slightly change this definition:

Definition 5
For a fixed graph G = (V,E), target vertex v and water levels {η(u)}u∈V , let
us call C ⊆ V a lattice animal (LA) for v if C is connected and contains v. C is
a greedy lattice animal (GLA) for v if it maximizes the average of water levels
over such sets. This average will be considered as its value

GLA(v) :=
1

|C|
∑

u∈C
η(u).

By Lemma 2.2, it is clear that GLA(v) ≤ κ(v). In fact, for the majority of
settings – consisting of a graph G, a target vertex v and an initial water profile
{η0(u)}u∈V – strict inequality holds and we can do better than just pooling the
amount of water collected in an appropriately chosen connected set of barrels
including the one at v.

Furthermore we know from Lemma 3.2 (a) that w.l.o.g. the last move of any
finite optimal move sequence will be to pool the amount of water allocated in
a connected set of vertices including v. This greedy lattice animal for v in
the intermediate water profile created up to that point in time can be more
advantageous than the one in the initial water profile if we apply the following
improving steps first:

1) Improving bottlenecks
Let us call a vertex u a bottleneck of the GLA C for v if u ∈ C \ {v} and
η(u) < GLA(v). Clearly, each bottleneck u has to be a cut vertex for C
(otherwise we could just remove it to improve the GLA). If there exists
a connected subset of vertices Cu including u which has a higher average
water level than Cu ∩ C, the value of the GLA for v is improved if the
water collected in Cu is pooled first (see Figure 2). Note that Cu might
involve more vertices from C than just u, see Example 3.5.

2) Enlargement
The second option to raise the value of the GLA C for v is to apply the
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idea above to a vertex u in the vertex boundary of C in order for the
original GLA to be enlarged to a set of vertices in which u is a bottleneck.
For this to be beneficial, there has to exist a connected set of vertices Cu
in V \C including u with the following property: The average water level
in Cu is smaller than GLA(v) – otherwise it would be part of C – but is
raised above this value after improving the potential bottleneck u using
water located in V \ C (see Figure 2 below).

0.5

0.5

0.3 1.0

A

D

B C

0.6

0.8

0.0 0.9

A

D

B C

Figure 2: If A is the target vertex, the GLA on the left is {A,B,C} (having value 0.6)
and the bottleneck B can be improved by first opening the pipe 〈B,D〉.
The GLA for A with respect to the water profile on the right is {A}, but
can be enlarged to {A,B,C} if the potential bottleneck B is improved by
opening the pipe 〈B,D〉 first.

3) Choose optimal chronological order
When applying the improving techniques just described, it is essential to
choose the optimal chronological order of doing things. Besides the fact
that improving bottlenecks and enlarging the GLA has to be done before
the final averaging, situations can arise in which different sets of vertices
can improve the same bottleneck or the other way round that more than
one bottleneck can be improved using non-disjoint sets of vertices, see the
set-ups in Figure 3.
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Figure 3: If A is the target vertex, the GLA on the left is {A,B,C} (having value 0.5).
Improving the bottleneck B can be done using D or E and is most effective
if the pipe 〈B,D〉 is opened first, then 〈B,E〉.
The GLA for A with respect to the graph on the right is {A,B,C,D,E}.
The water from F can be used to improve both bottlenecks B and D. It is
optimal to open pipe 〈D,F 〉 first and then 〈B,F 〉.

Finally, it is worth noticing that lattice animals with lower average than GLA(v)
in the initial water profile sometimes can be improved by the techniques just
described to finally outperform the initial GLA and its possible improvements
and enlargements (see Example 3.5 and especially Figure 5).

3.3 Examples
Example 3.1
The minimal graph which is non-trivial with respect to water transport is a
single edge, in other words the complete graph on two vertices:

G = K2 = ({1, 2}, {〈1, 2〉}).

By the considerations in the previous subsection, we get

κ(1) =

{
η0(1) if η0(1) ≥ η0(2)
η0(1)+η0(2)

2 if η0(1) < η0(2).
(3)

Let the initial water levels be given by the two random variables U1 and U2.
From (3) it immediately follows that

U1 ≤ κ(1) ≤ max{U1, U2}.

If we assume U1 and U2 to be independent and uniformly distributed on
[0, 1], a short calculation reveals the distribution function

Fκ(1)(x) =

{
3
2x

2 for 0 ≤ x ≤ 1
2

x− 1
2 (1− x)2 for 1

2 ≤ x ≤ 1,
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which indeed lies in between FU1(x) = x and Fmax{U1,U2}(x) = x2, see Figure 4.

u1

u2

0 1

1

x
x

y

0 1

1

1
2

Fκ(1)

x2

x

Figure 4: On the left a visualization of P(κ(1) ≤ x), on the right the distribution
function of κ(1).

By symmetry, the exact same considerations hold for κ(2).

Example 3.2
The simplest non-transitive graph (i.e. having
vertices of different kind, see Definition 8) is
the path on three vertices:

1 2 3

G = ({1, 2, 3}, {〈1, 2〉, 〈2, 3〉}).
Again by the above considerations, we find the supremum of achievable water
levels at vertex 1 to be

κ(1) = max
{
η0(1), η0(1)+η0(2)2 , η0(1)+η0(2)+η0(3)3

}
,

which is obviously achieved by a properly chosen greedy lattice animal.
Consider the case in which the initial water levels satisfy

η0(3) ≥ η0(2) ≥ η0(1) and η0(3) > η0(1) (4)

Then κ(1) = η0(1)+η0(2)+η0(3)
3 and there exists no finite optimal move sequence.

This can be seen from the fact that any single move will preserve the inequalities
in (4) and thus we have ηT (1) < κ(1) < ηT (3) for all finite move sequences
ϕ ∈ ET .

If we consider the initial water levels to be independent and identically
distributed, the (random) supremum of achievable water levels at vertex 2 is
stochastically larger than the one at vertex 1: As η0(1) and η0(2) have the same
distribution so do

κ(1) and max
{
η0(2), η0(1)+η0(2)2 , η0(1)+η0(2)+η0(3)3

}
.
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The latter is less than or equal to κ(2). The maximal value achievable by greedy
lattice animals at vertex 2 is

GLA(2) = max
{
η0(2), η0(1)+η0(2)2 , η0(2)+η0(3)2 , η0(1)+η0(2)+η0(3)3

}
.

The fact that we can average across one pipe at a time and choose the order of
updates allows us to improve over this and gives

κ(2) = max
{
GLA(2), 12

(
η0(1) + η0(2)+η0(3)

2

)
, 12
(
η0(3) + η0(1)+η0(2)

2

)}
. (5)

To see this, we can take a closer look on the SAD-profiles that can be created
by updates along the two edges 〈1, 2〉 and 〈2, 3〉 starting from the initial profile
ξ0 = (0, 1, 0): After one update – depending on the chosen edge – the profile is
given by ξ1 = ( 1

2 ,
1
2 , 0) or (0, 12 ,

1
2 ). After the second step we end up with either

ξ2 = ( 1
2 ,

1
4 ,

1
4 ) or ( 1

4 ,
1
4 ,

1
2 ). All of the corresponding convex combinations appear

in the right hand side of (5). By Lemma 2.2, we know that continuing like this
will finally result in the limiting profile ( 1

3 ,
1
3 ,

1
3 ). It is not hard to check that

any sequence of two or more updates will lead to an SAD-profile of type either
(x, 1−x2 , 1−x2 ) or ( 1−x

2 , 1−x2 , x), with x ∈ [ 14 ,
1
2 ]. Hence, it can be written as a

convex combination of either ( 1
2 ,

1
4 ,

1
4 ) and (0, 12 ,

1
2 ) or ( 1

4 ,
1
4 ,

1
2 ) and ( 1

2 ,
1
2 , 0).

Consequently, it cannot correspond to a final water level at vertex 2 exceeding
the value in (5).

In fact, when maximizing the water level for the middle vertex we can neglect
the option of levelling out the profile completely, since for any initial water profile
there is a finite optimal move sequence ϕ ∈ ET achieving

ηT (2) ≥ 1
3

(
η0(1) + η0(2) + η0(3)

)
,

as the next example will show.

Example 3.3
Given an initial water profile {η0(u)}u∈V and the complete graph Kn as under-
lying network, we get for any v ∈ V :

κ(v) = 2−l+1 η0(v) +

l−1∑

i=1

2−i η0(vi),

where V is ordered such that η0(v1) ≥ η0(v2) ≥ · · · ≥ η0(vn) with v = vl.
Furthermore, this optimal value can be achieved by a finite move sequence.

To see this is not hard having Lemmas 2.1 and 2.3 in mind. If v = v1, the
highest water level is already in v and the best strategy is to stay away from
the pipes. For v 6= v1, the contribution of vertex v1 – i.e. the share ξT (v1) in
the convex combination of {η0(u)}u∈V optimizing ηT (v), see (2) – can not be
more than 1

2 by Lemma 2.3. However, this can be achieved by opening the
pipe 〈v, v1〉. According to the duality between water transport and SAD, this
is what we do last. The argument just used can be iterated for the remaining
share of 1

2 giving that v2 can contibute at most 1
4 (given that v1 contributes
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most possible) and so on. Obviously, involving vertices holding water levels
below η0(v) can not be beneficial, as all vertices are directly connected, so we
do not have intermediate vertices being potential bottlenecks.

The optimal finite move sequence ϕ ∈ ET , where T = l− 1, is then given by

ϕk = 〈v, vl−k〉, k = 1, . . . , l − 1

leading to

ηk(v) = 2−k η0(v) +

k∑

i=1

2−k+i−1 η0(vl−i)

and consequently ηT (v) = ηl−1(v) = κ(v). Note that the option to open several
pipes simultaneously is useless on the complete graph. Furthermore, the above
move sequence only includes edges to which v is incident, so the very same
reasoning holds for the center v of a star graph on n vertices as well.

To determine the optimal achievable value at v we have to sort the n initial
water levels first. This can be done using the deterministic sorting algorithm
‘heapsort’ which makes O(n log(n))) comparisons in the worst case. The cal-
culation of κ(v) given the sorted list of initial water levels needs at most n− 1
additions and n− 1 divisions by 2.

Example 3.4
Expanding Example 3.2, let us reconsider a finite path – this time not on three
but n vertices. Let the vertices be labelled 1 through n and let vertex 1 (sitting
at one end of the path) be the target vertex. Given an initial water profile
{η0(i)}ni=1, κ(1) can be determined by 2n − 2 arithmetic operations (n − 1
additions, n− 1 divisions) as it turns out to be

κ(1) = max
1≤l≤n

1

l

l∑

i=1

η0(i). (6)

In other words, κ(1) equals GLA(1), with respect to the initial water profile (see
Definition 5).

This easily follows from Lemma 2.4, as any achievable SAD-profile {ξ(u)}nu=1

will be non-increasing in u. Hence the water level at 1 will always be a convex
combination of averages over its n lattice animals and thus bounded from above
by the right hand side of (6). This value in turn can be at least approximated
by averaging over a greedy lattice animal for vertex 1 in the sense of Lemma
2.2.

If we allowed macro moves (opening several pipes simultaneously), the first
(and only) move would be to open the pipes 〈1, 2〉, . . . , 〈L − 1, L〉, where L ∈
{1, . . . , n} is chosen such that {1, . . . , L} is a GLA for vertex 1.

Example 3.5
Finally, let us consider the path on n vertices, with the target vertex v not
sitting at one end.
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Given the initial water levels {η0(u), 1 ≤ u ≤ n}, let us consider the final
SAD-profile {ξ(u)}1≤u≤n corresponding to an optimal move (meta-)sequence
(for a meta-sequence, it is the limit of its dual SAD-profiles we are talking
about, cf. Lemmas 2.1 and 3.1).

First of all, from Lemma 2.4 (a) we know that any achievable SAD-profile on
a path is unimodal (which therefore holds for a pointwise limit of SAD-profiles
as well). Let us denote the leftmost maximizer of {ξ(u)}1≤u≤n by q and set

l := min{1 ≤ u ≤ n, ξ(u) > 0} and r := max{1 ≤ u ≤ n, ξ(u) > 0}.

By symmetry, we can assume without loss of generality l ≤ v ≤ q ≤ r – if
q < v, the set-up is merely mirrored. Furthermore, let us pick the optimal move
(meta-)sequence such that {ξ(u)}1≤u≤n minimizes the distance q − v.

The contribution from the nodes {q, q + 1, . . . , n} can be seen as a scaled-
down version of the problem treated in the previous example: This time the
drink to be shared does not amount to 1 but to

∑
q≤u≤r ξ(u) instead. From

Example 3.4 we can therefore conclude that a flat SAD-profile i.e.

ξ(q) = ξ(q + 1) = . . . = ξ(r) (7)

is optimal. The same holds for the contribution coming from {1, 2, . . . , v − 1},
i.e.

ξ(l) = ξ(l + 1) = . . . = ξ(v − 1). (8)

In addition to that, from Lemma 2.4 (c) we know ξ(r) ≤ 1
r−v+1 .

If l = v, part (b) of Lemma 2.4 in turn implies v = q. The SAD-profile then
features only one non-zero value (namely 1

r−v+1 ) and corresponds to the greedy
lattice animal for v consisting of the vertices v, v + 1, . . . , r. If instead l < v –
compared to the balanced average across {v, v + 1, . . . , r} just described – the
contribution to the final water level at v (cf. (2)) given by

v−1∑

u=l

ξ(u) η0(u) replaced the contribution
r∑

u=v

(
1

r−v+1 − ξ(u)
)
η0(u), (9)

where necessarily
∑v−1
u=l ξ(u) =

∑r
u=v

(
1

r−v+1 −ξ(u)
)

=: M . As q is a mode and
due to (7) we have

1
r−v+1 − ξ(v) ≥ . . . ≥ 1

r−v+1 − ξ(q) = . . . = 1
r−v+1 − ξ(r). (10)

The aforementioned replacement is most beneficial if the weighted average to
the right in (9) is made as small as possible, keeping M fixed. In view of (10)
we can conclude, applying again the ideas from the foregoing example – this
time think of the initial profile C − η0(u) considered for v ≤ u ≤ r only – that
this is achieved once more by a balanced average. Hence l < v implies v < q
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and the just mentioned balanced average has to stretch to the right as far as
q − 1, i.e. ξ(v) = . . . = ξ(q − 1) < 1

r−v+1 = ξ(q), since otherwise q would
not be the leftmost mode. From this and (8) we find M = (v − l) · ξ(l) =
(q − v) ·

(
1

r−v+1 − ξ(v)
)
.

The assumption that q − v was minimized when picking the optimal move
(meta-)sequence considered, forces

v−1∑

u=l

ξ(u) η0(u) >

q−1∑

u=v

(
1

r−v+1 − ξ(u)
)
η0(u),

since otherwise the balanced average across {v, v + 1, . . . , r} would have been
at least as good. Connecting v to barrels to the left consequently yields an
improvement of the final water level at v (in comparison to 1

r−v+1

∑r
u=v η0(u))

to the amount of

v−1∑

u=l

ξ(u) η0(u)−
q−1∑

u=v

(
1

r−v+1 − ξ(u)
)
η0(u) = M ·

(
1
v−l

v−1∑

u=l

η0(u)− 1
q−v

q−1∑

u=v

η0(u)
)
.

As a consequence, for an optimal move (meta-)sequence M must be as large
as possible, which means ξ(l) = ξ(q − 1) and makes {ξ(u)}1≤u≤n a piecewise
constant profile taking on two non-zero values, ξ(l) and ξ(r), as depicted below.

{ξ(u)}1≤u≤n

l v q r

Note that the value ξ(r) = 1
r−v+1 (and so even ξ(l)) is already determined

by the choice of l, q and r. In Figure 5 below, a set of initial water levels on the
path comprising 15 nodes is shown, for which the SAD-profile corresponding to
an optimal move meta-sequence is the one shown above. Furthermore, it can
be seen from this instance that the GLA with respect to the initial water profile
and its possible enhancements can be outperformed by improving another lattice
animal as mentioned at the end of Subsection 3.2.

0 0

l

0.5 0.5 0.5 0.5

v

0 0

q

1 1 1 1

r

0.7 0 0

GLA

Figure 5: Even for a graph as simple as a finite path, the initial GLA sometimes has
little to do with the optimal move (meta-)sequence.

When it comes to the complexity of finding κ(v), we can greedily test all
choices for l, q, r – of which there are less than n3. For each choice at most n+3
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additions/subtractions and four multiplications/divisions have to be made to
calculate either

q−v
(q−l) (r−v+1)

q−1∑
u=l

η0(u) + 1
r−v+1

r∑
u=q

η0(u) or

1
v−l+1

q̂∑
u=l

η0(u) + v−q̂
(r−q̂) (v−l+1)

r∑
u=q̂+1

η0(u),

(11)

depending on whether v ≤ q or q̂ ≤ v, where q̂ is the rightmost mode of
{ξ(u)}1≤u≤n. Even if there might exist SAD-profiles with q < v < q̂ corre-
sponding to optimal move (meta-)sequences, by the above we know that there
has to be one with either v ≤ q or q̂ ≤ v as well. The maximal value among
those calculated in (11) equals κ(v), so the complexity is O(n4). In fact, if we
calculate and store all

(
n
2

)
sums over intervals of the array of initial water levels

{η0(u)}1≤u≤n, this running time can be reduced to O(n3).

Example 3.6
The preceding example can serve to give a concrete instance in which even
an infinite sequence of single edge moves can not achieve the supremum as
mentioned after Definition 3.
Consider the path on four vertices, the target vertex
not to be one of the end vertices and initial water levels
as depicted to the right.

0.3 0.3

v

0

q

1
e1 e2

From Example 3.5 we know that the optimal SAD-profile will allocate 1
6 of

the shared glass of water to each of the vertices to the left of v and v itself,
the maximal amount of 1

2 to the rightmost vertex q – showing that κ(v) = 0.6:
First, recall that any SAD-profile on a path is unimodal. If q is not the (only)
mode, the contribution of v and q has an average of at most 0.5 and thus the
SAD-profile in question yields a water level at v of at most 0.5 – see (2). If q
is the mode, the SAD-profile is non-decreasing from left to right and thus a flat
profile on the vertices other than q uniquely optimal. Finally, to achieve the
optimum, the contribution of q has to be maximal, i.e. 1

2 (see Lemma 2.3).
From the considerations in Thm. 2.3 in [4] it is clear that this SAD-profile,

more precisely the value 1
2 at q, can only be established if the first move is

v sharing the drink with q (which corresponds to the last move in the water
transport – see Lemma 2.1). Once v starts to share the drink to the left, any
other interaction with q will decrease the contribution of the latter and thus put
a water level of 0.6 at v out of reach.

To get a flat profile on three vertices, we need however infinitely many single-
edge moves (here on e1 and e2). An optimal meta-sequence of moves is for
example given by

Φ = {ϕ(m), m ∈ N}, where ϕ(m) ∈ ETm , Tm = 2m+ 1 and
ϕ(m) = (e1, e2, e1, e2, . . . ,︸ ︷︷ ︸

m pairs

〈v, q〉),

achieving
lim
m→∞

ηTm(v) = 0.6 = κ(v),
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a value that can not be approached by any stand-alone (finite or) infinite se-
quence of moves.

If we allow macro moves, however, there is a two-step move sequence achiev-
ing the water level 0.6 at v: First we open the pipes e1 and e2 simultaneously
to pool the water of the vertices other than q and in the second round, we open
the pipe 〈v, q〉.

4 Complexity of the problem
In this section, we want to build on the complexity considerations for the water
transport on finite graphs from the examples in Section 3. In fact, we want
to show that the task of determining whether κ(v) is larger or smaller than a
given constant – for a generic set-up, consisting of a graph, target vertex and
initial water profile – is an NP-hard problem. This is done by establishing the
following theorem:

Theorem 4.1
The NP-complete problem 3-SAT can be polynomially reduced to the decision
problem of whether κ(v) > c or not, for an appropriately chosen water transport
instance and constant c.

Before we deal with the design of an appropriate water transport instance in
order to embed the satisfiability problem 3-SAT, let us provide the definition of
Boolean satisfiability problems as well as known facts about their complexity.

Definition 6
Let X = {x1, x2, . . . , xk} denote a set of Boolean variables, i.e. taking on logic
truth values ‘TRUE’ (T) and ‘FALSE’ (F). If x is a variable in X, x and x are
called literals over X. A truth assignment for X is a function t : X → {T, F},
where t(x) = T means that the variable x is set to ‘TRUE’ and t(x) = F means
that x is set to ‘FALSE’. The literal x is true under t if and only if t(x) = T , x
is true under t if and only if t(x) = F .

A clause C over X is a disjunction of literals and satisfied by t if at least one
of its literals is true under t. A logic formula F is in conjunctive normal form
(CNF) if it is the conjunction of (finitely many) clauses. It is called satisfiable
if there exists a truth assignment t such that all its clauses are satisfied under t.

The standard Boolean satisfiability problem (often denoted by SAT) is to
decide whether a given formula in CNF is satisfiable or not. If we restrict to the
case where all the clauses in the formula consist of at most 3 literals it is called
3-SAT .

3-SAT was among the first computational problems shown to be NP-com-
plete, a result published in a pioneering article by Cook in 1971, see Thm. 2 in
[1].

Let us now turn to the task of embedding 3-SAT into an appropriately
designed water transport problem that is in size polynomial in n, the number
of clauses of the given 3-SAT problem:
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Given the logic formula F = C1∧C2∧. . .∧Cn in which each of the clauses Ci
consists of at most 3 distinct literals, let us define the comb-like graph depicted
in Figure 6. All the white nodes, plus the target vertex v, represent empty
barrels. The other ones that are shaded in blue contain water to the amount
specified.
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x1 x1
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xk xk
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vC1 C2 Cn

240n4 − 1

nodes

4n− 1

nodes
120n2 − 1

nodes

link

nodes

connecting

paths

reservoir

Figure 6: A polynomial reduction of 3-SAT to the water transport problem.

The comb has k teeth, where k is the number of variables appearing in F .
Each individual tooth is formed by a path on 240n4 − 1 vertices with water
level 1 each. The lower endvertex of the ith tooth is connected to two vertices
representing the literals xi and xi, having water level 2 respectively. In between
the teeth there are k−1 link nodes, each of which features itself a water level of 2
and is connected to the four nodes representing literals of consecutive variables
– more precisely, the link node in between tooth i and i + 1 is connected to
the vertices xi, xi, xi+1, xi+1, for i ∈ {1, . . . , k − 1}. The vertices representing
xk, xk are connected to the rightmost link node as well as to an additional vertex
featuring a water reservoir of level 7

2 . Left of the first tooth, there is another
link node (with water level 2 as well) connected to x1 and x1 as well as by a
path to the shaft of the comb, which is described next.

The comb’s shaft is made up of a path on 2n + 2 vertices, with the target
vertex v to the very right. To the left of v there is a vertex representing a
barrel with water level 3 followed by n (empty) barrels that stand for the clauses
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C1, . . . , Cn and are seperated by a vertex with water level 3 respectively. The left
endvertex (connected to C1) features a water level of 3 as well and is connected
to the leftmost link node as mentioned before, namely via a path consisting of
4n− 1 nodes with water level 2 each.

Finally, the teeth are connected to the shaft through (disjoint) connecting
paths from nodes representing literals to nodes representing clauses, where for
example x2 is linked to C2 by a path if it appears in this clause. Each of
these paths consists of 120n2−1 vertices representing empty barrels. Note that
each clause-node is linked to at most 3 connecting paths, whereas the number
of connecting paths originating from a vertex representing a literal can vary
between 0 and n.

In connection with the water transport problem originating from a 3-SAT
formula F as depicted in Figure 6, we claim the following:

Proposition 4.2
Consider the water transport problem based on the logical formula F , given by
the graph, target vertex and initial water profile as depicted in Figure 6.

(a) If F is satisfiable, then the water level at v can be raised to a value strictly
larger than 2, i.e. κ(v) > 2.

(b) If F is not satisfiable, then this is impossible, i.e. κ(v) ≤ 2.

Before we deal with the proof of the proposition, note how it implies the
statement of Theorem 4.1: First of all, if F is a 3-SAT formula consisting of n
clauses, k cannot exceed 3n. Given this, it is not hard to check that the graph in
Figure 6 has no more than 720n5 +360n3 +9n+2 vertices and maximal degree
at most n+ 3 (or 5 if n = 1). As the initial water levels are all in {0, 1, 2, 3, 72},
the size of this water transport instance is clearly polynomial in n. Due to the
fact that the value of κ(v) can be used to decide whether the given formula F
is satisfiable or not – as claimed by Proposition 4.2 – Theorem 4.1 follows.

Proof of Proposition 4.2 (a): To prove the first part of the proposition, let
us assume that F is satisfiable. Then there exists a truth assignment t with the
property that all clauses C1, . . . , Cn contain at least one of the k literals that
are set true by t. Those can be used to let the water trickle down from the teeth
to the path at the bottom in an effective way: We assign each clause to one of
the true literals under t which it contains. Then, we average the water over k
(disjoint) star-shaped trees. Each such tree has a literal x ∈ {x1, x1, . . . , xk, xk}
that is true under t as its center and the top node of the tooth above x as well
as the nodes representing the clauses assigned to x as leaves (where the clause-
nodes are connected to x in the tree via the corresponding connecting paths).
If m clauses chose x, there are 240n4 + m · 120n2 vertices in the tree and the
water accumulated amounts to 240n4 + 1.

By pooling the water along those trees, all the nodes corresponding to clauses
can simultaneously be pushed to a water level as close to the average of the
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corresponding trees as we like (see Lemma 2.2). As m ≤ n, we can bound these
averages from below by

240n4 + 1

240n4 + 120mn2
≥ 240n4 + 1

240n4 + 120n3
> 1− 1

2n .

So after this procedure, each clause-node will have a water level strictly larger
than 1− 1

2n . Note that only one of each pair {xi, xi} was used as a water passage,
so there is still a path – let us call it linking path – consisting of vertices with
water level 2 exclusively, from the leftmost link node to the vertex with initial
water level 7

2 through all link nodes and the untouched literals (the ones that
are false under t).

By another complete averaging – this time over the path that consists of
the shaft (i.e. the path at the bottom in Figure 6), the path to the very left
connecting the leftmost link node to the shaft, the linking path just described,
as well as the reservoir with level 7

2 at the other end – will push the water level
at v beyond

1
6n+2k+2

(
7
2 + (2 k+ 4n− 1) · 2 + (n+ 1) · 3 + n (1− 1

2n )
)

=
12n+ 4 k + 4

6n+ 2 k + 2
= 2.

Consequently, for the case of satisfiable F we verified for the graph depicted in
Figure 6: κ(v) > 2. �

In the proof of the second part of the proposition, we need a rough estimate
of how much the water level in a vertex representing a clause can be raised, if
only accessed via connecting paths. This is done in the following lemma.

Lemma 4.3
In the comb-like graph depicted in Figure 6, it is impossible to push the water
level in a clause-vertex above the value of 1 + 1

2n without opening the pipes to
its left or right neighbor.

Proof: The proof of this claim is a simple comparison with a tree similar to
the structure above the node corresponding to some clause Cl. Originating from
Cl, there are at most 3 connecting paths that lead to three nodes representing
literals. Initially, the node corresponding to Cl and the ones on the connecting
paths are empty. Their water level can be raised to almost 1 using water from
the teeth of the comb and further using nodes with initial water level higher
than 1. The fact that opening pipes always produces convex combinations of
the involved water levels (see (2)) guarantees that the total amount of water
above a fixed level – cumulated over all barrels – is non-increasing when pipes
are opened. Initially, the cumulated amount of water above level 1 in the whole
graph is

( 7
2 − 1) + 3 k · (2− 1) + (4n− 1) · (2− 1) + (n+ 1) · (3− 1) ≤ 15n+ 7

2 . (12)

For n ∈ N, this is clearly less than 20n− 1.
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We can mimick any attempt raising the water level at Cl in the comb-graph
via its connecting paths in the tree depicted to the right in Figure 7 in such a
way, that the water levels at Cl and on its connecting paths are at any point in
time at most as high as the ones in the corresponding part of the comparison
tree: If water is routed into the connecting paths above Cl but water levels do

2xi

Cl

2xj xk 2

1

1

1

1

20n

1

xi

1

Cl

1

1

1

1

20n

1

xj xk

1

1

1

1

20n

1

120n2 − 1
nodes

Figure 7: Comparison of the structure above the node representing a clause Cl in the
comb-graph with an appropriately tailored tree.

not exceed 1 (e.g. when routing water down from the teeth) we do nothing in
the comparison tree. If water from the vertices with initial water level above
1 is introduced into the connecting paths, we introduce the same amount to
the corresponding connecting paths in the tree (note that this is possible, as
the total amount of water above level 1 in the comb-graph is available in all
three leaves of the tree). Every move involving only nodes from the connecting
paths depicted and Cl is copied in the tree. This retains the property that the
water levels in the tree are not less than the ones in corresponding nodes of the
comb-graph and shows that the highest water level achievable at Cl in the tree
is an upper bound on the level achievable in the comb-graph. If there are less
than 3 connecting paths above Cl in the comb-graph we can either modify the
comparison tree accordingly or just not use the extra branches.

By the generalization of Thm. 2.3 in [4] to trees, see the comment after
Lemma 2.4, we know that the contribution to the convex combination at Cl
from the leaves in the tree is at most 1 divided by the graph distance plus one,
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i.e. 1
120n2+1 . The water level at Cl in the tree can therefore not exceed

1 + 3 · 20n

120n2 + 1
≤ 1 +

1

2n
,

which induces the claim. �

Note that the same argument with only water to the amount of 5n−1 above
level 1 available in the leaves would give the upper bound of 1+ 15n

120n2 = 1+ 1
8n ,

which will be used in the proof of Proposition 4.2 (b) as well.

Proof of Proposition 4.2 (b): To check that in case F is not satisfiable
we get κ(v) ≤ 2 is a bit more involved than the first part: Let us assume the
contrary. Then there exists a finite move sequence (involving macro moves say)
that achieves a final water level ηT (v) > 2. By the idea in part (a) of Lemma 3.2
we can assume the last move to be the complete average over a connected vertex
set A including v. The only barrels with initial water level larger than 2 are the
ones left of each clause-node and of v plus the reservoir. Including any node
apart from these into the set A, when trying to achieve ηT (v) > 2, can therefore
only be beneficial if it is a bottleneck (see the discussion after Definition 5).

Structurally speaking, there are three potential candidates for such a set A:

• a set containing some vertex from a connecting path
• a set containing only vertices from the bottom path or
• a set containing the reservoir vertex but no connecting path.

Note that the set we used in the case of satisfiable F was of the third type. We
will see in a moment that this is in fact the only relevant candidate for the set A
in the sense that the other two do not allow to raise the water level at v above
the value of 2, even for a satisfiable formula F .

The first candidate listed is ruled out rather easily: If A contains a vertex
from a connecting path, the bottleneck argument forces A to contain the whole
corresponding connecting path (recall: a bottleneck has to be a cut vertex
between barrels with water levels above average and the target vertex). Then
A is of size at least 120n2 and the amount of water above the water level of
1 is just not sufficient to fill up so many vertices to a level of two: From (12)
we know that the water available above level 1 in the whole graph is at most
15n + 7

2 initially and non-increasing. The amount in a whole connecting path
with water level 2 would be 120n2−1, so this can definitively not be achieved.

Next, let us assume that A is a subset of the vertices of the bottom path –
including vertex v and m clauses. Again by the bottleneck argument, we can
assume that the leftmost node in A is not a clause-node, i.e. has initial water
level 3 (see Figure 8).
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Figure 8: Vertices of the set A considered in the second case.

With the intention to increase the total amount of water inside A before the
final averaging, one can try to fill up the clause-nodes. However, from Lemma
4.3 we know that the water level at the clause-nodes (being bottlenecks) in A
cannot be pushed much above the level of 1, if accessed via connecting paths
only. Further, this makes accessing vertex v through a connecting path and
Cn unfavorable. Note that opening the pipes in the bottom path in order to
connect barrels representing clauses inside A to the ones with water level 2 or
3 outside A might increase the amount of water in A as well, but will raise
the water level at the involved clause-nodes to a level that can not be further
improved by using links via connecting paths, so it is most beneficial to fill up
the clause-nodes with water routed through connecting paths first.

Let us assume that after this first phase, we managed to achieve a water
level of 1 + 1

2n at Cn−m+1, . . . , Cn. This might be technically impossible, but
surely dominates the water levels achievable using the connecting paths only
and simplifies our further considerations. Staying away from the connecting
paths, water can only be routed into A via Cn−m. If we average over all nodes
in A once while doing so, the final averaging is meaningless (because then the
effect of any move between this and the last move will be increased if again
all pipes inside A are opened). However, since the last move has to involve v
we can assume that any move before leaves the pipe on the edge incident to v
closed – and thus w.l.o.g. the pipe from Cn towards v as well.

This in turn requires that the connected subset of nodes outside A (incident
to the leftmost node in A) that pools its water with a connected subset inside A,
including Cn−m+1 but not v, has an average of at least 2+ 1

4n , as the amount of
water inside A would decrease otherwise. In view of Lemma 4.3, the only useful
move is therefore to open the pipes along the shaft and through the nodes with
initial water level 2 (which they actually might have lost during the first phase)
in order to connect the vertex with water reservoir 7

2 to A. No matter which of
the nodes representing literals we include, the water levels in the path connecting
the leftmost link node to the shaft and the shaft itself will be dominated by the
ones obtained if we pretend that the water above level 2 from the reservoir can
be transferred to the leftmost link node without any losses.

Starting with a water level of 7
2 in the leftmost link node instead, we might

increase the amount of water inside A by at most another 3
2 · 2m

2m+4n ≤ 1
2 (as the

path has to involve at least 4n nodes outside A, the subset inside A is of size
at most 2m ≤ 2n and already has an average of at least 2). Along a path, the
contribution of the water level from an endvertex to the ones formed as convex
combinations along the path is decreasing with the graph distance (see Lemma
2.4 (b)).
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Despite our greatest efforts, the total amount of water in A will consequently
not exceed the value 3 (m+ 1) +m (1 + 1

2n ) + 1
2 ≤ 4 (m+ 1). Since A consists

of 2m+ 2 vertices, leveling out across this set will possibly raise the amount of
water in the barrel at v to the level of 2, but not beyond.

Finally, consider A to contain all of the shaft as well as the vertex with water
reservoir 7

2 , but no vertex from a connecting path. Then A, being connected,
has to contain the path that consists of 4n− 1 vertices, connecting the shaft to
the leftmost link node, as well as a linking path through link nodes and vertices
representing literals as described above. However, this time – with F being not
satisfiable – it is impossible to fill up all the clause-nodes to a level of about
1, leaving at least one path between the reservoir and the leftmost link node
unaffected: In order to reach all clause-nodes, we have to use both xi and xi as
water passage for at least one i ∈ {1, . . . , k}.

In comparison to the case of satisfiable F , we will lose an amount of at least
1− 1

2n for each clause-node that is not reached before the final averaging – but
likewise an amount of at least 1 in the linking path for each pair {xi, xi} in which
both nodes were used as water passage – since their water level of 2 reduces to
something less than 1 when water from the tooth above is routed through the
node all the way down to a clause-node. By the same token as in Lemma 4.3, the
clause-nodes can be filled up to a level of at most 1+ 1

8n through the connecting
paths, as the water available outside A above level 1 is k (from the literals not
part of the linking path) plus 1 from a vertex representing a literal on the linking
path if we need to route through such (and k+ 1 < 5n− 1). Note that moving
water from inside A through a connecting path to a clause will in fact reduce
the amount of water in A. Consequently, the set A (which is the same as the
one chosen for satisfiable F ) still contains 6n+ 2k+ 2 vertices, but the amount
of water we can allocate in A is at most

7
2 + (2 k + 4n− 1) · 2 + (n+ 1) · 3 + n (1 + 1

8n )− (1− 1
2n )

= 12n+ 4 k + 29
8 + 1

2n

< 12n+ 4 k + 4,

for n ≥ 2. Thus, even in this manner we can not raise the water level at vertex
v to a level of 2 or above if F is not satisfiable which contradicts the above
assumption and in consequence verifies κ(v) ≤ 2 for this case. �

As already mentioned, this shows that solving the decision problem “κ(v) > 2
or κ(v) ≤ 2” for the comb-like graph depicted in Figure 6 solves the correspond-
ing 3-SAT problem as well. Since 3-SAT is an NP-complete problem, we hereby
established that any problem in NP can be polynomially reduced to a decision
problem minor to the computation of κ(v) in a suitable water transport instance
– showing that computing κ(v) in general is indeed an NP-hard problem.
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5 On infinite graphs
This last section is devoted to the water transport problem on infinite graphs.
We consider an infinite, connected, simple graph G = (V,E) with bounded
maximal degree. The initial water levels {η0(u)}u∈V are considered to be i.i.d.
with a (non-degenerate) common marginal distribution concentrated on [0, C],
for some C > 0. The supremum κ(v) of achievable water levels at a fixed target
vertex v ∈ V depends on the initial water levels of course, which makes it a
random variable as well.

When the vertices of an infinite graph are assigned individual values, the
most natural definition of a global average across the graph is to look at a
fixed sequence of nested subsets of the vertex set, with the property that every
vertex is included eventually, and then consider the limit of averages across
those subsets (if it exists).

Given i.i.d. initial water levels, the strong law of large numbers tells us that
the randomness of the global average – which is non-degenerate on finite graphs
– becomes degenerate if we consider infinite graphs, where it will a.s. equal
the expectation of the marginal distribution. κ(v) however shows a slightly
different behavior: In order to determine whether the supremum of achievable
water levels at a given vertex v is a.s. constant or not, we have to investigate
the global structure of the infinite graph a bit more closely.

If the graph contains a half-line with sufficiently many extra vertices attached
to it, the distribution of κ(v) becomes degenerate for all v ∈ V – as stated in
Theorem 5.1 and the final remark: One can in fact, with probability 1, push the
water level at v to the essential supremum of the marginal distribution. The
two-sidedly infinite path, however, is too lean to feature such a substructure
and behaves therefore much more like a finite graph, in the sense that the
distribution of κ(v) is non-degenerate – see Theorem 5.3. In order to develop
these two main results of this section, let us first properly define what we mean
by “sufficiently many extra vertices”.

Definition 7
Let G = (V,E) be an infinite connected simple graph. It is said to contain a
neighbor-rich half-line, if there exists a subgraph of G consisting of a half-line

H =
(
{vk, k ∈ N}, {〈vk, vk+1〉, k ∈ N}

)

and distinct vertices {uk, k ∈ N} from V \ {vk, k ∈ N} such that there is an
injective function f : N→ N with the following two properties (cf. Figure 9):

(i) For all k ∈ N: 〈uk, vf(k)〉 ∈ E, i.e. the vertices uk and vf(k) are neighbors
in G.

(ii) The function f is growing slowly enough in the sense that
∑∞
k=1

1
f(k) di-

verges.
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v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13

u1 u2 u3 u4 u5

Figure 9: The beginning part of a neighbor-rich half-line.

Note that – by a renumbering of {uk, k ∈ N} – we can always assume
the function f to be (strictly) increasing. Furthermore, if G is connected and
contains a neighbor-rich half-line, we can choose any vertex v ∈ V to be its
beginning vertex: If vl is the vertex with highest index at shortest distance to
v in H, replace (v1, . . . , vl) by a shortest path from v to vl in H. The altered
half-line will still be neighbor-rich, since for all M,N ∈ N and f as above:

∞∑

k=1

1

f(k)
=∞ ⇐⇒

∞∑

k=M

1

f(k) +N
=∞.

With this notion in hand, we can state and prove the following result:

Theorem 5.1
Consider an infinite (connected) graph G = (V,E) and the initial water levels
to be i.i.d. unif([0, 1]). Let v ∈ V be a fixed vertex of the graph. If G contains a
neighbor-rich half-line, then κ(v) = 1 almost surely.

Before embarking on the proof of this theorem, we are going to show a
standard auxiliary result which will be needed in the proof:

Lemma 5.2
For ε > 0, let (Yk)k∈N be an i.i.d. sequence having Bernoulli distribution with
parameter ε. If the function f : N → N is strictly increasing and such that∑∞
k=1

1
f(k) diverges, then

∞∑

k=1

Yk
f(k)

=∞ almost surely.

Proof: Let us define

Xn =

n∑

k=1

Yk − ε
f(k)

for all n ∈ N.

As the increments are independent and centered, this defines a martingale with
respect to the natural filtration. Furthermore,

E (X2
n) =

n∑

k=1

E (Yk − ε)2
f(k)2

= (ε− ε2) ·
n∑

k=1

1

f(k)2
≤ ε π

2

6
.
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By the Lp-convergence theorem (see for instance Thm. 5.4.5 in [3]) there exists
a random variable X such that Xn converges to X almost surely and in L2.
Having finite variance, X must be a.s. real-valued and due to

n∑

k=1

Yk
f(k)

−Xn = ε ·
n∑

k=1

1

f(k)
,

the divergence of
∑∞
k=1

1
f(k) forces

∑∞
k=1

Yk

f(k) =∞ almost surely. �

Proof of Theorem 5.1: Given a graph G with the properties stated and a
vertex v, we can choose a neighbor-rich half-line H with v = v1 and the set
of extra neighbors {un}n∈N as described in and after Definition 7. The initial
water levels at {un}n∈N are i.i.d. unif([0, 1]), of course.

Depending on the random initial profile, let us define the following SAD-
procedure starting at v: Fix ε, δ > 0 and let {Nl}l∈N be the increasing (random)
sequence of indices chosen such that the initial water level at uNl

is at least 1−ε
for all l. Then define the SAD-procedure – starting with ξ0(v) = 1, ξ0(u) = 0 for
all u ∈ V \{v} – such that first all vertices along the path (v1, v2, . . . , vf(N1), uN1)
exchange liquids sufficiently often to get

ξk1(uN1) ≥ 1

f(N1) + 2
for some k1 > 0,

and never touch uN1 again. Note that by Lemma 2.2, ξk(uN1) can be pushed as
close to 1

f(N1)+1 as desired in this way. At time k1, the joint amount of water in
the glasses at v1, v2, . . . , vf(N1) equals 1− ξk1(uN1

) and we will repeat the same
procedure along (v1, v2, . . . , vf(N2), uN2

) to get

ξk2(uN2
) ≥ 1

f(N2) + 2
·
(
1− ξk1(uN1

)
)

for some k2 > k1

and iterate this.
Afterm iterations of this kind, the joint amount of water localized at vertices

of the half-line H equals 1 −∑m
l=1 ξkl(uNl

), which using 1 − x ≤ e−x can be
bounded from above as follows:

1−
m∑

l=1

ξkl(uNl
) ≤

m∏

l=1

(
1− 1

f(Nl) + 2

)

≤ exp

(
−

m∑

l=1

1

f(Nl) + 2

)
.

(13)

Defining Yk := 1{η0(uk)≥1−ε} for all k ∈ N we get (Yk)k∈N i.i.d. Ber(ε) and can
rewrite the limit of the sum in the exponent as follows:

∞∑

l=1

1

f(Nl) + 2
=

∞∑

k=1

Yk
f(k) + 2

.

30



This allows us to conclude from Lemma 5.2 that the exponent in (13) tends a.s.
to −∞ as m → ∞. Consequently, m,T ∈ N can be chosen large enough such
that with probability 1− δ it holds that

m∑

l=1

ξkl(uNl
) ≥ 1− ε and km ≤ T.

Given this event, the move sequence corresponding to the SAD-procedure
just described – adding no further updates after time km, i.e. µk = 0 for k > km,
if km < T – then ensures (see Lemma 2.1) that

ηT (v) ≥
m∑

l=1

ξT (uNl
) η0(uNl

) ≥ (1− ε)2,

forcing κ(v) ≥ (1−ε)2 with probability at least 1−δ. Since δ > 0 was arbitrary,
this implies κ(v) ≥ (1− ε)2 a.s. and letting ε go to 0 then establishes the claim.

�

Let us now take a look at how this result can be used to crystallize the
outstanding leanness of the two-sidedly infinite path among all infinite quasi-
transitive graphs. To this end, let us first recall the definition of quasi-transitivity.
Definition 8
Let G = (V,E) be a simple graph. A bijection f : V → V with the property
that 〈f(u), f(v)〉 ∈ E if and only if 〈u, v〉 ∈ E is called a graph automorphism.
G is said to be (vertex-) transitive if for any two vertices u, v ∈ V there exists
a graph automorphism f that maps u on v, i.e. f(u) = v.

If the vertex set V can be partitioned into finitely many classes such that
for any two vertices u, v belonging to the same class there exists a graph auto-
morphism that maps u on v, the graph G is called quasi-transitive.

Note that the notion of quasi-transitivity becomes meaningful only for infi-
nite graphs as all finite graphs are quasi-transitive by definition.
Theorem 5.3
Consider an infinite (connected) quasi-transitive graph G = (V,E) and the ini-
tial water levels to be i.i.d. unif([0, 1]). Let v ∈ V be a fixed vertex of the graph.
If G is the two-sidedly infinite path, that is V = Z and E = {〈u, u+ 1〉, u ∈ Z},
then κ(v) depends on the initial profile. If G is not the two-sidedly infinite path,
then κ(v) = 1 almost surely.

Proof: Given i.i.d. unif([0, 1]) initial water levels, we can immediately conclude
two things: If G is an infinite (connected) graph, the strong law of large numbers
guarantees κ(v) ≥ 1

2 almost surely.
If G is the two-sidedly infinite path, there is a positive probability that the

vertex v is what Häggström [4] calls two-sidedly ε-flat with respect to the initial
profile (see Lemma 4.3 in [4]), i.e.

1

m+ n+ 1

v+n∑

u=v−m
η0(u) ∈

[
1
2 − ε, 12 + ε

]
for all m,n ∈ N0. (14)
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Lemma 6.3 in [4] states that in this situation, the water level at v is bound
to stay within the interval [ 12 − 6ε, 12 + 6ε] irrespectively of future updates.
Together with the simple observation κ(v) ≥ η0(v), it implies that κ(v) is a
random variable with non-degenerate distribution on [ 12 , 1].

In view of Theorem 5.1, to prove the second part, we only have to verify, that
an infinite, connected, quasi-transitive graph that is not the two-sidedly infinite
path contains a neighbor-rich half-line. Since G is infinite (and by our general
assumptions both connected and having finite maximal degree) a compactness
argument guarantees the existence of a half-line H on the vertices {vk, k ∈ N}
such that v1 = v and the graph distance from vk to v is k − 1 for all k.

Let us consider the function d : V → N0, where d(u) is the graph distance
from the node u to a vertex of degree at least 3 being closest to it. Since G is
quasi-transitive, connected and not the two-sidedly infinite path, d is finite and
can take on only finitely many values, which is why it has to be bounded, by
a constant c ∈ N say. Consequently, G can not contain stretches of more than
2c linked vertices of degree 2. For this reason, there must be a vertex among
v3, . . . , v2c+3, say vf(1), having a neighbor u1 outside of H. In the same way, we
can find a vertex u2 outside H having a neighbor vf(2) among v2c+6, . . . , v4c+6

and in general some uk not part of H but linked to a vertex vf(k) ∈ {vk, k ∈ N}
with

(k − 1) (2c+ 3) + 3 ≤ f(k) ≤ k (2c+ 3) for all k ∈ N.

This choice makes sure that vf(j) and vf(k) are at graph distance at least 3 for
j 6= k, which forces the set {uk, k ∈ N} to consist of distinct vertices. Due to

∞∑

k=1

1

f(k)
≥ 1

2c+ 3

∞∑

k=1

1

k
=∞,

H is a neighbor-rich half-line in the sense of Definition 7 as desired, which
concludes the proof. �
Remark
(a) Note that the essential property of the initial water levels, needed in the

proof of Theorem 5.1, was independence. The argument can immediately be
generalized to the situation where the initial water levels are independently
(but not necessarily identically) distributed on [0, C] and we have some weak
form of uniformity, namely:

For every δ > 0, there exists some ε > 0 such that for all v ∈ V :

P
(
η0(v) > C − δ

)
≥ ε.

The sequence Yk := 1{η0(uk)≥C−δ}, k ∈ N, similar to the one defined in
the proof of Theorem 5.1 will no longer be i.i.d. Ber(ε), but an appropriate
coupling will ensure that

∞∑

k=1

Yk
k
≥
∞∑

k=1

Zk
k
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almost surely, where (Zk)k∈N is an i.i.d. sequence of Ber(ε) random variables.
Accordingly, we get κ(v) = C a.s. even in this generalized setting.

(b) As alluded to in the introduction, the statement of Theorem 5.3 can be
interpreted in the following way: When it comes to the qualitative behavior
of κ(v) for a fixed vertex v in the graph, the radical change does not happen
between finite and infinite graphs but rather between the two-sidedly infinite
path Z and all other quasi-transitive infinite graphs, which is why the results
for the Deffuant model on Z can not immediately be transferred to higher-
dimensional grids – as discussed in the introduction of Sect. 3 in [5].

(c) Finally, it is worth emphasizing that Theorem 5.3 does not capture the full
statement of Theorem 5.1: If we take the two-sidedly infinite path Z and
add an extra neighbor to every node that corresponds to a prime number,
the only quasi-transitive subgraph contained is the two-sidedly infinite path
itself. However, since it contains a neighbor-rich half-line, Theorem 5.1
states that κ(v) = 1 for i.i.d. unif([0, 1]) initial water levels and any target
vertex v.
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