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Reduction methods for the dynamic analysis of
substructure models of lightweight building
structures
Ola Flodén, Kent Persson, Göran Sandberg
Lund University, Department of Construction Sciences, P.O. Box 118, SE-22100 Lund, Sweden

Abstract
In the present study, different model order reduction methods were compared in terms of their
effects on the dynamic characteristics of individual building components. A wide variety of
methods were employed in two numerical examples, both being models of wooden floor struc-
tures, in order to draw conclusions regarding their relative efficiency when applied to models of
such structures. It was observed that a comparison of the methods requires the reduced models
to be exposed to realistic boundary conditions, free-free eigenvalue analyses being insufficient
for evaluating the accuracy of the reduced models when employed in an assembly of substruc-
tures.

Keywords: Model order reduction; Finite element modeling; Substructure modeling; Vibra-
tion analysis; Lightweight building structures

1 Introduction
Lightweight buildings are often constructed using prefabricated planar or volume elements, of-
ten with use of low-stiffness panels mounted on high-stiffness beams. Accurately assessing
the dynamic behaviour of these elements when rather high vibration frequencies are involved
requires use of finite element (FE) models representing the geometry in considerable detail.
Assembling the individual elements of multi-storey lightweight buildings within the framework
of global FE models of entire buildings results in very large models, the number of degrees of
freedom (dofs) of which easily exceeds the limits of computer capacity, at least for computa-
tions to be performed within reasonable lengths of time. The question arises then of how such
FE models can be reduced in size while at the same time being able to represent the dynamic
characteristics of the building or buildings in question with sufficient accuracy. The method
of dividing a large model into components and creating a global model through coupling mod-
els of reduced size of each component is referred to as substructuring. In the present study,
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low-frequency vibrations in multi-storey lightweight buildings are modelled by adopting a sub-
structuring approach.

In recent decades, a number of methods for model order reduction of dynamic problems
have been developed within the area of structural mechanics, mode-based methods being the
methods most frequently used. Fairly recently, methods originating from control theory, des-
ignated here as modern reduction methods, have been employed within structural mechanics.
In contrast to mode-based methods which have an explicit physical interpretation, the modern
reduction methods are developed from a purely mathematical point of view. Some mode-based
methods are implemented in commercial FE software which enables them to be applied to large-
scale problems directly. In order to apply other methods to models created in commercial FE
software, the system matrices involved need to be exported from the software and be reduced
in another environment.

A number of comparative studies have been published in which the performance of different
reduction methods has been evaluated, in connection with mechanical engineering problems. In
[1] and [2], modern reduction methods were compared with mode-based methods. In [1], a rack
consisting of steel beams was used as a numerical example, the reduction methods involved be-
ing compared by studying the structural response within the time domain and the Frobenius
norm of the transfer function matrix for different load cases. It was concluded that the modern
reduction methods produce excellent reduction results and are more effective than mode-based
methods are. In [2], a crankshaft of a piston served as a numerical example, the Frobenius norm
of the transfer function matrix being used to compare the reduction methods in question. It was
concluded that substantial benefits can be achieved by use of the modern reduction methods. In
[3], a wide range of methods was compared by studying the eigenfrequencies and eigenmodes
of an elastic rod. The modern reduction methods were found to perform better for mechani-
cal problems than several of the classic methods. In [4], however, in which a clamped beam
structure served as a numerical example, it was concluded that mode-based methods are better
suited for the analysis of multibody systems than modern reduction methods are. The eigen-
frequencies and eigenmodes were analysed with different boundary conditions applied at the
interface of the reduced models. It was concluded that mode-based methods are less dependent
than the modern reduction methods are on variations in the boundary conditions, something
which would clearly be an important advantage in multibody dynamics.

In the comparative studies just referred to, conclusions were drawn on the basis of numerical
examples involving relatively simple structures. Lightweight floor and wall structures, however,
generally have a much more complex geometry, making it difficult to extrapolate the conclu-
sions in question. Also, in the comparative studies referred to, different types of analyses were
used for evaluating the performance of the reduction methods employed, this providing diverse
information that can be evaluated in a variety of ways. By applying analyses of multiple types
to a given numerical example it should be possible to obtain a broader understanding of the be-
haviour of different reduction methods than a single type of analysis would provide. Moreover,
analysing the reduced models with realistic boundary conditions is necessary since the bound-
ary conditions employed can have a strong influence on the performance of different reduction
methods, as demonstrated in [4].

The objective of the analyses carried out in the present investigation was to evaluate the
performance of a rather wide range of model order reduction methods by comparing their ac-
curacy and computational cost when applied to detailed FE models of floor and wall structures.
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The conclusions will be of value in the process of constructing efficient substructure models for
vibration analysis of multi-storey lightweight buildings. The reduced models employed are in
this paper evaluated in terms of eigenfrequencies and eigenmodes in a free-free state, as well
as in terms of vibration transmission behaviour when the structures in question are exposed to
realistic boundary conditions, obtained by connecting them with other building components.
New insight is offered regarding both the efficiency of the reduction methods when employed
in the analysis of complex structures and the effect of applying realistic boundary conditions to
the reduced models.

Commercial FE software of different kinds represent convenient tools for both pre- and
post-processing, such as in the coupling of substructures and in the visualisation of results.
Since some reduction methods reported on in the literature are incompatible with such soft-
ware, methods of this sort are either excluded from the analyses here or are used in a modified
fashion. A broad range of model order reduction methods presented in the literature will be
discussed and the theories behind them taken up. The performance of the reduction methods,
applied to lightweight building structures, was evaluated for frequencies of less than 100 Hz by
studying two numerical examples. The first example is a model of moderate size of a wooden
floor structure, a model created in the commercial FE software Abaqus, from which the system
matrices were exported to Matlab, in which various of the reduction methods described in Sec-
tion 2 were employed. The second example is a large and detailed model of an experimental
wooden floor structure, analysed with use of model order reduction methods implemented in
Abaqus as well as by use of an alternative approach employing structural elements. Although
the conclusions presented in this paper are based in principle on the results of the two numeri-
cal examples, many wooden floor and wall structures have geometries and materials similar to
those of the structures studied in the two examples. Accordingly, the main conclusions arrived
at would appear to be applicable to a wide variety of wooden floor and wall structures similar
in topology to these two floors.

2 Model order reduction
An FE formulation of a structural dynamics problem results in a linear equation of motion of
the following form [5]:

Mü + Cu̇ + Ku = f, (1)

where M, C, K ∈ Rn×n are the mass, damping and stiffness matrices respectively, f = f (t) ∈
Rn×1 is the load vector and u = u (t) ∈ Rn×1 is the state vector which is sought. A dot denotes
differentiation with respect to time, t. The objective of model reduction here is to find a system
ofm dofs in whichm << n, one which preserves the dynamic characteristics of the full model.
The general approach is to approximate the state vector by use of the transformation u = TuR,
where T ∈ Rn×m is a transformation matrix and uR ∈ Rm×1 is a reduced state vector. Applying
the transformation in question to Eq. (1) results in

MRüR + CRu̇R + KRuR = fR, (2)

MR = TTMT, CR = TTCT, KR = TTKT, fR = TT f, (3)
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where MR,KR,CR ∈ Rm×m are the reduced mass, damping and stiffness matrices, respec-
tively, and fR ∈ Rm×1 is the reduced load vector. In recent decades, many different methods for
model order reduction, involving procedures of varying types for establishing the transforma-
tion matrix and the reduced state vector involved, have been proposed in the literature. The dofs
in the reduced state vector can be divided into two categories: physical dofs and generalised
coordinates. Physical dofs are the dofs of the full system that are retained in the reduction pro-
cess, whereas the generalised coordinates represent the amplitudes of various Ritz basis vectors
[6] that describe the deflection shapes that are allowed in the reduced system. The reduction
methods can be categorised according to the type of dofs generated in the reduction process,
where condensation methods involve only physical dofs, generalised coordinate methods are
based solely on generalised coordinates, and hybrid reduction methods employ a combination
of dofs of both types. A number of important methods within each category are listed below.

• Condensation methods

– Guyan reduction [7]
– Dynamic reduction [8]
– Improved reduction system (IRS) [9, 10]
– System equivalent expansion reduction process (SEREP) [11]

• Generalised coordinate methods

– Modal truncation [5, 12]
– Component mode synthesis by Craig–Chang [12, 13]
– Krylov subspace methods [14, 15]
– Balanced truncation [16, 17]

• Hybrid methods

– Component mode synthesis by Craig–Bampton [12, 18]
– Component mode synthesis by MacNeal [19]
– Component mode synthesis by Rubin [20]

The methods just referred to, except for the Krylov subspace methods and balanced trunca-
tion, which have their origin in control theory and are considered to be modern reduction meth-
ods, were developed specifically for structural mechanics. Modal truncation and component
mode synthesis by Craig–Chang, Craig–Bampton, Rubin or MacNeal are all mode-based meth-
ods, which means that structural eigenmodes of some sort are employed as Ritz basis vectors.
In commercial FE software, generalised coordinates are treated as internal dofs and the cou-
pling of substructures is usually realised at the physical dofs by use of Lagrange multipliers [5].
Consequently, if the global model involved is to be analysed and post-processed in commercial
FE software, any methods for model order reduction based solely on generalised coordinates
are excluded. However, such methods can be combined with condensation methods to obtain
hybrid versions of the methods. Component mode synthesis by Craig-Bampton, for example,
is modal truncation combined with Guyan reduction. Moreover, variants of component mode
synthesis in which Krylov subspace methods instead of modal truncation are combined with
Guyan reduction have been described in [21, 22]. Model order reduction methods that result in
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reduced models in which the physical dofs at the interfaces are preserved are often referred to
as structure-preserving methods.

In the present study, five of the above-listed reduction methods are investigated: Guyan
reduction, dynamic reduction, IRS and component mode synthesis, the latter both in the mode-
based Craig–Bampton form and in the Krylov subspace version. Out of the mode-based com-
ponent mode synthesis methods, the Craig–Bampton version, the most commonly employed
method among structural engineers, is selected. The Krylov subspace version is included in the
studies to investigate the potential improvement in efficiency offered by the increasingly popular
methods from control theory when employed for the type of problems studied here. Moreover,
modified versions of the component mode synthesis methods are investigated using IRS instead
of Guyan reduction as the condensation method, these being referred to as improved compo-
nent mode synthesis methods [21]. In addition, a set of alternative methods termed generalised
methods [23], obtained by deriving the above mentioned methods in a slightly different manner,
are investigated.

In the derivations of the reduction methods presented below, the case considered is an un-
damped one. Since the damping ratio of the structures analysed in the study is relatively low, it
has a negligible effect on the eigenfrequencies and the eigenmodes. Also, the damping matrix
employed provides only a rough approximation of all the damping phenomena occurring in the
structures as a whole. Accordingly, as an alternative to its being reduced in the same way as
the mass and stiffness matrices, the damping matrix can be constructed in the reduced system
directly.

2.1 Original methods
As mentioned above, the model order reduction methods can be derived in a slightly different
manner than in their original versions, this resulting in methods referred to as generalised meth-
ods, as presented in Section 2.2. Below, the original versions of the methods investigated here
are presented.

Guyan reduction
In the condensation methods, the dofs are separated into masters (m) and slaves (s), the slave
dofs being condensed in the reduction process, resulting in a reduced state vector containing
only the master dofs. Partitioning the state vector in terms of the master and slave categories
enables the system matrices in Eq. (1) to be partitioned into sub-blocks as follows:[

Mmm Mms

Msm Mss

] [
üm

üs

]
+

[
Kmm Kms

Ksm Kss

] [
um

us

]
=

[
fm
fs

]
. (4)

Solving the equation in the second row in Eq. (4) for us results in

us = −K−1
ss (Msmüm + Mssüs + Ksmum) , (5)

where it has been assumed that there are no loads acting on the slave dofs, so that fs = 0.
Neglecting the inertia terms in Eq. (5) results in the transformation of the state vector for Guyan
reduction [

um

us

]
=

[
I

−K−1
ss Ksm

]
um = TGuyanum, (6)
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where the transformation matrix TGuyan can be used in Eq. (3) to obtain the reduced system
matrices and the reduced load vector. Guyan reduction is often referred to as static condensa-
tion, since models reduced with Guyan reduction do not result in any errors in static analysis.
Due to its static nature, Guyan reduction can be expected to only produce acceptable results
for frequencies close to the lowest eigenfrequencies of the system. At higher frequencies, the
neglected inertia terms have a stronger influence, resulting in errors of larger size. The perfor-
mance of this method is highly dependent upon the approach for selecting master dofs. In the
numerical examples studied here, only the dofs needed to connect the substructures to the sur-
roundings serve as masters, although additional dofs can be employed as master dofs as well,
various methods for selecting such dofs having been proposed [24, 25].

Dynamic reduction
If a harmonic time-dependent load, f = f̂exp(iωt), is assumed, this results in a harmonic re-
sponse, u = ûexp(iωt), where i =

√
−1 is the imaginary unit, ω is the angular frequency

and f̂ and û are the complex load and displacement amplitudes, respectively. Introducing this
assumption into Eq. (4) results in the equation of motion applying to the frequency domain[

Dmm (ω) Dms (ω)
Dsm (ω) Dss (ω)

] [
ûm

ûs

]
=

[
f̂m
f̂s

]
, (7)

D (ω) = −ω2M + K. (8)

Solving the equation in the lower row in Eq. (7) for ûs, assuming f̂s = 0, results in

ûs = −D−1
ss (ω) Dsm (ω) ûm, (9)

and, consequently, the transformation of the state vector for dynamic reduction is given by[
ûm

ûs

]
=

[
I

−D−1
ss (ω) Dsm (ω)

]
ûm = TDynamicûm, (10)

where the transformation matrix TDynamic requires a selection of ω in order to be established.
The special case of dynamic reduction in which ω = 0 results in the transformation of Guyan
reduction shown in Eq (6). For harmonic load cases in which the excitation frequency has the
same value as ω, dynamic reduction provides exact results. This suggests dynamic reduction to
be an effective scheme for analysing a structure subjected to load cases having narrow frequency
content. For steady-state analyses, fully accurate reduced models can be obtained by reducing
the system matrices at each discrete frequency, yet this is a costly procedure that requires the
availability of large memory resources for storing the resulting matrices.

Improved reduction system (IRS)
The term improved in the name improved reduction system refers to a perturbation of the trans-
formation taking place in Guyan reduction, Eq. (6). The previously neglected inertia terms are
then included as pseudo-static forces. The occurrence of free undamped vibrations of a system
reduced by means of a Guyan reduction results in the following expression for the acceleration
of the master dofs:

üm = −M−1
GuyanKGuyanum, (11)
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where MGuyan and KGuyan are the reduced stiffness- and mass matrices obtained by employ-
ing Guyan reduction. Differentiating Eq. (6) and making use of the relationship expressed in
Eq. (11) results in the following expression for acceleration of the slave dofs:

üs = −K−1
ss Ksmüm = K−1

ss KsmM−1
GuyanKGuyanum. (12)

Inserting Eq. (11) and Eq. (12) into Eq. (5) results in the approximation of the slave dofs

us = K−1
ss

(
MsmM−1

GuyanKGuyan −MssK−1
ss KsmM−1

GuyanKGuyan −Ksm

)
um. (13)

This rather complicated expression can be written in more compact form so as to obtain the
transformation matrix for IRS

TIRS = TGuyan + SMTGuyanM−1
GuyanKGuyan, (14)

S =

[
0 0
0 K−1

ss

]
. (15)

In the IRS transformation, the reduced system matrices that Guyan reduction provides are
utilised so as to produce updated reduced matrices. As a further extension of this, the updated
matrices can be used to create an iterative scheme where the transformation for the ith iteration
is given by

TIRS,i = TGuyan + SMTIRS,i−1M−1
IRS,i−1KIRS,i−1, (16)

and the iterations are started by calculating TIRS,1 according to Eq. (14). KIRS,i−1 and MIRS,i−1

are the reduced stiffness- and mass matrices of iteration i − 1, obtained by using TIRS,i−1 in
Eq. (3). The iterative scheme converges to form the transformation matrix of SEREP [11],
creating a reduced system that reproduces exactly the lowest eigenfrequencies and eigenmodes
of the full system. The rate of convergence depends upon the selection of master dofs. In
contrast to Guyan reduction, however, IRS does not reproduce the static behaviour of the full
system exactly.
Component mode synthesis by Craig–Bampton (CMS)
Use of component mode synthesis by Craig–Bampton, here denoted CMS, compensates for the
neglected inertia terms in Guyan reduction through its including a set of generalised coordinates
ξ. These generalised coordinates represent the amplitudes of a set of eigenmodes for the slave
structure, calculated with the master dofs being fixed. Setting um = 0 and fs = 0 in Eq. (4) and
assuming a harmonic solution results in the following eigenvalue problem:

KssΦ = λMssΦ, (17)

which can be solved for the eigenvalues λ = ω2 and the eigenmodes Φ. A number of eigen-
modes obtained from Eq. (17), referred to as retained eigenmodes, are selected as additional
basis vectors to the approximation of the slave dofs in Eq. (6), resulting in

us = −K−1
ss Ksmum +

∑
Φiξi = Ψum + Φξ. (18)

This gives the following transformation of the state vector for CMS:
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[
um

us

]
=

[
I 0
Ψ Φ

] [
um

ξ

]
= TCMS

[
um

ξ

]
, (19)

which defines the transformation matrix TCMS. As for Guyan reduction, the accuracy of CMS
depends upon the selection of master dofs, this affecting both the static modes and the eigen-
modes of the slave structure. Also, the accuracy depends upon the selection of retained eigen-
modes, certain eigenmodes having a larger influence than others on the solution of a specific
problem. To obtain a reduced model with as great an accuracy for general load distributions as
possible, however, all the eigenmodes up to some given limit that is chosen should be included.

Krylov subspace component mode synthesis (KCMS)
The Krylov subspace is defined as

Kq (A,b) = span
{

b,Ab, ...,Aq−1b
}
, (20)

where A ∈ Rn×n, b ∈ Rn×1 is called the starting vector and q is a positive integer. b can also
be a block of vectors, in which case each Krylov projection generates a new block of vectors.
Since methods originating from control theory are ones developed for systems of an input-
output form, the equation of motion is rewritten here as a system of this sort of the following
form:

Mü + Ku = Bx, (21)

y = NTu, (22)

where x = x (t) ∈ Rx×1 is the input vector, y = y (t) ∈ Ry×1 the output vector, B ∈ Rn×x a
matrix describing the spatial load distributions and N ∈ Rn×y a matrix relating the state vector
to the output vector. A Laplace transformation of the input-output system yields the transfer
function G(s):

G (s) = NT
(
s2M + K

)−1 B. (23)

Krylov subspace methods, which have their origin in the area of control theory, are based
on so-called moment matching. The moments involved are defined as the coefficients of a
Taylor series expansion of G(s) around s = 0. It can be shown that the first q moments of
the full system and of a reduced system match if the reduced basis is selected as the Krylov
subspace generated by A = K−1M and b = K−1B [15]. In the present study it is required that
the reduction methods employed are structure-preserving, i.e. retains the physical dofs at the
interfaces. Accordingly, the approach of using Krylov subspace vectors in a component mode
synthesis manner, as described in [21, 22], here denoted KCMS, is adopted. Inserting um = 0
and fs = Bsxs into Eq. (4) results in the following equation of motion for the slave structure:

Mssüs + Kssus = Bsxs. (24)

A Krylov subspace is generated for the slave structure by selecting A = K−1
ss Mss and b =

K−1
ss Bs:
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Kq

(
K−1

ss Mss,K−1
ss Bs

)
= span

K−1
ss Bs︸ ︷︷ ︸
V 1

k

,
(
K−1

ss Mss

)
K−1

ss Bs︸ ︷︷ ︸
V 2

k

, ...,
(
K−1

ss Mss

)q−1 K−1
ss Bs︸ ︷︷ ︸

V q
k

 , (25)

and the approximation of the slave dofs in KCMS is given by

us = −K−1
ss Ksmum +

∑
V i

k ξi = Ψum + Vkξ, (26)

one which is similar to that of component mode synthesis by Craig–Bampton shown in Eq. (18),
but with the eigenmodes of the slave structure exchanged for the Krylov subspace vectors as
defined in Eq. (25). This results in the transformation of the state vector for KCMS[

um

us

]
=

[
I 0
Ψ Vk

] [
um

ξ

]
= TKCMS

[
um

ξ

]
, (27)

defining the transformation matrix TKCMS. In order to avoid numerical issues, the Krylov sub-
space is generated by using the Arnoldi algorithm with modified Gram-Schmidt orthogonaliza-
tion [14], which creates a set of linearly independent vectors. Calculating the starting vector b
requires that Bs, which describes the spatial load distribution on the slave structure, be selected.
In the present study, a substructuring approach for the modelling of multi-storey buildings is
adopted. Smaller parts of such buildings are considered as being substructures of these, most of
these substructures having no loads that act upon the slave structure. Accordingly, a fictitious
load needs to be selected, in the present study a random distribution being used for this.

In contrast to CMS, which includes eigenmodes of the full model as Ritz basis vectors, no
eigenvalue extraction is required for creating reduced models by means of the KCMS method.
Consequently, it is less costly to create the reduced models employing KCMS and in application
where the computation time of this process is of importance, this gives KCMS an advantage over
CMS.

Improved component mode synthesis
The two component mode synthesis methods described above are obtained by complement-
ing Guyan reduction by a set of Ritz basis vectors for the slave structure, these being either
eigenmodes or Krylov subspace vectors. IRS can be seen as representing an improvement as
compared to Guyan reduction, an improvement that can also be applied to the component mode
synthesis methods employed here. The transformation matrices of the improved component
mode synthesis methods, improved CMS and improved KCMS (ICMS and IKCMS, respec-
tively), can be obtained by simply replacing the basis vectors of Guyan reduction by the basis
vectors of IRS:

TICMS =
[
TIRS Φ̂

]
; Φ̂ =

[
0
Φ

]
, (28)

TIKCMS =
[
TIRS V̂k

]
; V̂k =

[
0

Vk

]
, (29)
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where TIRS can be given either by the original form of IRS, Eq. (14), or its iterated version,
Eq. (16). The use of IRS instead of Guyan reduction can be expected to improve the dynamic
behaviour of the reduced models, at the expense of introducing errors in static analyses.

2.2 Generalised methods
The generalised versions of the reduction methods (denoted here by a “g-” in the method names)
are obtained by re-formulating the equation of motion. Instead of using the block-partitioning
of the system matrices in Eq. (4), the following partitioning is employed:

[
Mm Ms

] [üm

üs

]
+
[
Km Ks

] [um

us

]
=

[
fm
fs

]
, (30)

with the non-square submatrices Km,Mm ∈ Rn×m and Ks,Ms ∈ Rn×s. A drawback of the
generalised versions of the methods, in comparison to the original versions, is the increased
computational resources needed to construct the reduced models, since this requires the gener-
alised inverses of matrices that are very large.

Generalised Guyan reduction
In the same manner as in Eq. (5) and Eq. (6), the inertia terms in Eq. (30) are neglected when
solving for the slave dofs, resulting in the following transformation of the state vector for gen-
eralised Guyan (g-Guyan) reduction:[

um

us

]
=

[
I

−K+
s Km

]
um = Tg-Guyanum, (31)

where K+
s =

(
KT

s Ks

)−1 KT
s is the generalised left-inverse of Ks and Tg-Guyan is the transfor-

mation matrix. Note that in the approximation of the slave dofs it is assumed that there are no
loads that act on either the master dofs or the slave dofs, fm = 0 and fs = 0, respectively, in
contrast to the original Guyan reduction, in which only fs = 0 needs to be assumed.

Generalised dynamic reduction
Through use of an approach corresponding to the derivation of g-Guyan reduction, the transfor-
mation matrix of generalised dynamic (g-dynamic) reduction, Tg-Dynamic, can be defined as[

ûm

ûs

]
=

[
I

−D+
s (ω) Dm (ω)

]
ûm = Tg-Dynamicûm, (32)

where Ds (ω) = −ω2Ms + Ks and Dm (ω) = −ω2Mm + Km.

Generalised improved reduction system (g-IRS)
The transformation matrix of generalised IRS is obtained by including the inertia terms found
in Eq. (30) as pseudo-static forces, using approximations corresponding to those employed in
Eq. (11) and Eq. (12), resulting in

Tg-IRS = Tg-Guyan + ŜMTg-GuyanM−1
g-GuyanKg-Guyan, (33)

Ŝ =

[
0

K+
s

]
, (34)
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where MGuyan and KGuyan are the reduced stiffness- and mass matrices obtained by employing
g-Guyan reduction. g-IRS can also be extended to produce an iterative scheme in the same
manner as in the original IRS, where the transformation matrix for the ith iteration is given by

Tg-IRS,i+1 = Tg-Guyan + ŜMTg-IRS,iM−1
g-IRS,iKg-IRS,i, (35)

and the iterations are started by calculating Tg-IRS,1 according to Eq. (33).

Generalised component mode synthesis
The generalised versions of Guyan reduction and IRS can be used to obtain the transformation
matrices for the generalised versions of CMS, KCMS, ICMS and IKCMS (g-CMS, g-KCMS,
g-ICMS and g-IKCMS, respectively)

Tg-CMS =
[
Tg-Guyan Φ̂

]
, (36)

Tg-KCMS =
[
Tg-Guyan V̂k

]
, (37)

Tg-ICMS =
[
Tg-IRS Φ̂

]
, (38)

Tg-IKCMS =
[
Tg-IRS V̂k

]
, (39)

where Φ̂ and V̂k are defined in Eq. (28) and Eq. (29), respectively.

2.3 Summary of methods
Table 1 summarises the methods for model order reduction which are presented above and
investigated in the numerical examples.

3 Numerical examples
This section considers two numerical examples in which different model order reduction meth-
ods are applied to FE models of wooden floor structures. In the first example, a model of
moderate size created in Abaqus is studied. The system matrices were exported to Matlab,
where the reduction methods described in Section 2 were employed, the reduced models that
resulted being analysed. The second example concerns a large and detailed model that was both
created and analysed in Abaqus, using reduction methods implemented in the software together
with an alternative approach involving use of structural elements. In both examples, two types
of analyses were performed: eigenvalue analysis and steady-state analysis. The eigenvalue
analysis was performed in a free-free state, i.e. without any displacements of the physical dofs
being prescribed. The rigid body eigenmodes that occur in a free-free state are disregarded in
the results that are presented. A steady-state analysis was performed to investigate the vibra-
tion transmission found in the reduced floor models when realistic boundary conditions were
involved, these being accomplished by connecting the reduced models to the top of a pair of
wall panel models. The displacement spectrum for one of the wall panels was analysed when a
unit load was applied to the other panel.
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Condensation methods
Method name Abbrevation
Guyan reduction –

Dynamic reduction –

Improved reduction system IRS

Generalised Guyan reduction g-Guyan reduction

Generalised dynamic reduction g-dynamic reduction

Generalised IRS g-IRS

Hybrid methods
Method name Abbrevation
Component mode synthesis by Craig–Bampton CMS

Improved CMS ICMS

Krylov subspace component mode synthesis KCMS

Improved KCMS IKCMS

Generalised CMS g-CMS

Generalised ICMS g-ICMS

Generalised KCMS g-KCMS

Generalised IKCMS g-IKCMS

Table 1: The model order reduction methods presented in Section 2 and investigated in Sec-
tion 3.

3.1 Error quantities
Both the eigenfrequencies and the eigenmodes of the reduced models were studied in the eigen-
value analysis carried out. The eigenfrequencies were compared with those of the full (non-
reduced) model in terms of the normalised relative frequency difference (NRFD) and the eigen-
modes with those of the full model in terms of the modal assurance criterion (MAC). To obtain
a measure for the displacement spectrum of the whole receiver wall panel in the steady-state
analysis, a root mean square (RMS) value for the displacement magnitudes in all the nodes of
the panel was calculated for each of the frequency steps.

Normalised relative frequency difference (NRFD)
The NRFD of the ith eigenfrequency is defined as

NRFD =

∣∣∣f red
i − f full

i

∣∣∣
f full
i

· 100, (40)

where f full
i is the eigenfrequency of the full model and f red

i is the eigenfrequency of the reduced
model. This quotient is multiplied by 100 to obtain the NRFD value as a percentage.
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Modal assurance criterion (MAC)
The MAC value for the jth eigenmode of the reduced model, Φred

j , as compared with the ith
eigenmode of the full model, Φfull

i , is defined as

MAC =

∣∣∣(Φred
j )T (Φfull

i )
∣∣∣2

(Φred
j )T (Φred

j )(Φfull
i )T (Φfull

i )
. (41)

The eigenmodes of a reduced model often appear in shifted order as compared with the full
model. Accordingly, each of the eigenmodes of a reduced model is compared with each of
eigenmodes of the full model, within the frequency range which is specified.

Root mean square (RMS)
For any given excitation frequency f in the steady-state analysis, the RMS value is defined here
as

URMS(f) =

√√√√ 1

ndof

ndof∑
i=1

Ui(f)2, (42)

where Ui(f) is the magnitude of the complex amplitude for the ith displacement dof and ndof

is the number of displacement dofs of the receiver wall panel. A normalised error of the RMS
value for a reduced model, U red

RMS , as compared with the RMS value for the full model, U full
RMS ,

can be calculated as

U error
RMS(f) =

∣∣∣U red
RMS(f)− U full

RMS(f)
∣∣∣

U full
RMS(f)

· 100. (43)

Calculating the error for each excitation frequency enables an error spectrum to be obtained.
Since the error spectra typically fluctuate to a marked degree, the result plots used for comparing
the different reduction methods make use of averaged error spectra. The errors are averaged by
sweeping a 20 Hz wide window over the frequency range and calculating the mean value of the
spectrum inside the window for each frequency. Accordingly, the frequency range of the plots
is one of 10-90 Hz.

3.2 Numerical example 1: A moderate-sized floor structure

In the first numerical example, a model of a 2445×4090 mm2 large floor structure was studied.
The structure consisted primarily of five load-bearing wooden beams, using a centre-to-centre
distance of the successive beams from one another of 600 mm, supporting a particle board
surface. At the two shorter sides of the floor, wooden beams were placed perpendicular to the
five beams just referred to, creating a box-like structure. Each of these wood beams had a cross-
section of 45×220 mm2 and was modelled using an orthotropic material model possessing the
properties shown in Table 2. The particle board had a thickness of 22 mm and was modelled
using an isotropic material model having the properties shown in Table 3. The structure was
meshed using 20-node brick elements with quadratic interpolation, resulting in 30,807 dofs.
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Figure 1: The mesh of the floor structure in numerical example 1.

E1 E2 E3 G12 G13 G23 ν12 ν13 ν23 ρ

8500 350 350 700 700 50 0.2 0.2 0.3 432

Table 2: The material parameters used for the wooden beams [26], the stiffness parameters
being given in terms of MPa and the density in kg/m3.

E ν ρ

3000 0.3 767

Table 3: The material parameters used for the particle board [26], the modulus of elasticity
being given in terms of MPa and the density in kg/m3.

The mesh, viewed from below, is shown in Figure 1. The structural components shared mesh
nodes at the intersections, the connections thus being modelled as fully interactive.

All the dofs along the centre line on the underside of the outermost beams were selected
as master dofs, resulting in there being 576 master dofs altogether, this representing the mini-
mum number of dofs in the reduced models. Reduced models of the full floor-structure model
were created by employing the 14 methods for model order reduction listed in Table 1. The
dynamic reduction involved a frequency shift of 53.1 Hz, this being the eigenfrequency of the
full model closest to 50 Hz, located at the centre of the frequency range. IRS and the improved
CMS methods were employed in their iterated versions, using three iterations. A total of 50
generalised coordinates were made use of in the hybrid reduction methods employed. Accord-
ingly, 50 eigenmodes were included in the mode-based methods and 50 Krylov vectors in the
Krylov-based methods, resulting in reduced models having 626 dofs.
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The reduced models established by employing all of the reduction methods listed in Table 1
resulted in very similar computation times, the condensation methods resulting in marginally
shorter times compared to the component mode synthesis methods. The similarity can be ex-
plained by the size of the reduced models being similar and the band width of the matrices
being very large for all methods. The computation time for the eigenvalue analysis of each of
the reduced models was approximately 3 % of the computation time for the full model.

3.2.1 Eigenvalue analysis

The NRFD values for the original methods are shown in Figure 2, 19 eigenfrequencies being
included there, this being the number of eigenfrequencies of less than 100 Hz contained in the
full model. The red, yellow and green dashed lines in the figure represent the error levels 10 %,
1 % and 0.1 %, respectively. Guyan reduction provides an acceptable accuracy only for the
first eigenfrequency of the full model, whereas dynamic reduction yields high NRFD values for
each of the eigenfrequencies. CMS and KCMS provide relatively good and very similar results,
the improved variants of both methods increasing the performance appreciably due to the high
degree of accuracy of iterated IRS, quite to be expected since the eigenfrequencies iterated IRS
provides converge in such a way as to reproduce the eigenfrequencies of the full model exactly.

The NRFD values for the generalised methods are shown in Figure 3. As is evident there,
the generalised versions of Guyan reduction and dynamic reduction improve the accuracy as
compared with the original versions. The accuracy of IRS decreases for the lower frequencies
when its generalised version is employed and, consequently, the accuracy of ICMS and IKCMS
decreases as well. The results obtained when employing CMS and KCMS are slightly improved,
however, when use is made of the generalised versions of the two.

In Figure 4, the MAC values for the seven original methods and for the generalised versions
of Guyan reduction, dynamic reduction, CMS and KCMS are shown. A plot comparing the
full model with itself is included in order to demonstrate the orthogonality properties of the
eigenmodes. Since the eigenmodes are non-orthogonal in the dot product, the off-diagonal
terms are not generally zero in value, although this is the case in the example given here (within
the discretization of the MAC plots, the off-diagonal terms being less than 0.1). In agreement
with the NRFD results, the MAC values for the original versions of the Guyan reduction and
the dynamic reduction correlate poorly with the full model, whereas the generalised versions
show a relatively high degree of accuracy. All of the other original reduction methods, except
for CMS, show a high degree of correlation with the full model for each of the eigenmodes.

3.2.2 Steady-state analysis

The setup for the steady-state analysis is shown in Figure 5. The floor models were connected
to the top of two wall panels, the one a source panel and the other a receiver panel, support-
ing each end of the load-bearing beams. The wall panels were modelled as shells provided
with beam stiffeners at successive spacings from one another of 600 mm each, representing a
2500 mm high wood-framed wall having a plaster board surface. The floor models were tied to
the displacement dofs of the wall panels by use of Lagrange multipliers, the bottom edge of the
wall panels being fixed. A unit point load in all three directions, shown by the yellow arrows in
the figure, was applied to the source panel. The displacements of the receiver wall panel were
evaluated in accordance with Eq. (42) for excitation frequencies of up to 100 Hz.
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Figure 2: NRFD values for the original model order reduction methods applied to numerical
example 1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

10
−6

10
−4

10
−2

10
0

10
2

Eigenfrequency number

N
R

F
D

 [%
]

 

 

g−Guyan
g−Dynamic
g−IRS
g−CMS
g−ICMS
g−KCMS
g−IKCMS

Figure 3: NRFD values for the generalised model order reduction methods applied to numerical
example 1.
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Figure 4: MAC values for the different model order reduction methods applied to numerical
example 1.
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Figure 5: The setup for the steady-state analysis in numerical example 1.

The averaged error of the RMS values obtained using the original methods and the gener-
alised methods is shown in Figure 6 and Figure 7, respectively. The dashed black line in both
figures indicates the 10 % error level. In studying Figure 6, one can note that the frequency shift
in dynamic reduction strongly affect the performance. Whereas Guyan reduction (correspond-
ing to a 0 Hz shift) generates lower errors when the frequencies involved are lower, dynamic
reduction results in the degree of errors being lowest at around 50 Hz, close to the frequency
shift selected. CMS and KCMS can be seen to behave very similarly at the higher frequencies,
whereas at the lower frequencies the latter is more accurate. In contrast to the results of the
eigenvalue analysis, ICMS and IKCMS lower the level of performance for most frequencies as
compared with conventional CMS and KCMS. In Figure 7, one can note that the accuracy of
Guyan reduction and of dynamic reduction is appreciably greater with use of the generalised
versions of these. The accuracy of KCMS decreases markedly at lower frequencies and in-
creases at the higher frequencies when the generalised version of it is employed. As can be seen
by comparing the results in Figure 6 and Figure 7, there is, generally speaking, a lesser degree
of spread among the results for the different reduction methods when their generalised versions
are employed.

In Table 4, the maximum and the mean errors for the frequency range as a whole (without
averaging) are shown for both the original and the generalised methods. As is evident, using
the generalised versions only has a strong positive effect in the case of Guyan reduction and of
dynamic reduction. For most of the hybrid methods, use of the generalised versions leads to
a reduction in performance. Of all the reduction methods, it is KCMS that provides the most
accurate results in terms both of average and of maximum error levels.
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Figure 6: Averaged errors of the RMS values for numerical example 1, as determined with use
of the original model order reduction methods.
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Figure 7: Averaged errors of the RMS values for numerical example 1, as determined with use
of the generalised model order reduction methods.
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Model Mean error [%] Maximum error [%]

Guyan reduction 37.7 276
g-Guyan reduction 8.26 35.0
Dynamic reduction 106 1120
g-dynamic reduction 7.49 54.6
IRS 6.52 39.4
g-IRS 5.70 37.5
CMS 3.26 20.9
g-CMS 3.35 27.0
ICMS 4.81 63.4
g-ICMS 4.18 33.9
KCMS 2.92 20.2
g-KCMS 3.21 27.8
IKCMS 4.96 42.6
g-IKCMS 7.67 98.1

Table 4: Average and maximum error levels of the RMS values obtained for the reduction
methods applied to numerical example 1.

3.3 Numerical example 2: A large two-span floor structure
In the second numerical example, a model of an experimental floor structure that was compared
with measurements in [26] was studied. The 3645×9045 mm2 large floor structure consists
of seven load-bearing wooden beams, at a centre-to-centre distance of the successive beams
from one another of 600 mm, supporting a particle board surface, secondary spaced boarding
being attached to the underside of the beams. In the FE model, the wooden beams were placed
perpendicular to the load-bearing beams at the two short sides of the floor, creating a box-
like structure, in contrast to the experimental structure in which the ends of the beams were
free. Each of the wooden beams had a cross-section of 45×220 mm2 and was modelled using
an orthotropic material model having the properties shown in Table 2. The secondary spaced
boarding had a cross-section of 28×70 mm2 and was modelled as having the same material
properties as the wooden beams. The particle board had a thickness of 22 mm and was modelled
using an isotropic material model possessing the properties shown in Table 3. The structure was
meshed using 20-node brick elements with quadratic interpolation, resulting in 632,820 dofs.
The mesh, as viewed from below, is shown in Figure 8. The structural components shared mesh
nodes at the intersections, the connections thus being modelled as fully interactive.

For reasons of efficiency, it is desirable to connect the floor structure to other structures at
discrete points so as to minimise the number of physical dofs retained in the reduced models.
Discrete point connections require that rotational dofs fulfil conditions of compatibility. To
create rotational coupling in the case of the solid elements, 173 additional nodes, indicated by
the yellow crosses in Figure 8, having both displacement dofs and rotational dofs, were created.
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Figure 8: The mesh of the floor structure model in numerical example 2.

These nodes were connected to the neighbouring mesh nodes under conditions of rigid beam
constraints, the rotational dofs thus being connected to the rotations of the structure as a whole.
The experimental structure has both a mid-span support and end supports. To provide for a
modelling of all of the supports, the model has additional nodes possessing rotational dofs both
along the underside of the outermost beams and at the middle of the load-bearing beams. The
dofs at the 173 additional nodes served as master dofs in the model order reduction, resulting
in 1038 master dofs. The model was reduced by use of the two model order reduction methods
implemented in Abaqus: Guyan reduction and CMS. The number of eigenmodes retained in the
CMS reduction was varied so as to study the convergence of errors.

When employing the model order reduction methods, computationally effective models are
obtained by reducing the size of the large system matrices obtained by use of detailed FE mod-
els. As an alternative, smaller systems can be constructed directly by use of structural finite
elements, beam or shell elements, for example, assumptions being made regarding the kine-
matic relations and the equilibrium equations involved. These assumptions can turn out to have
no more than a negligible effect in static analysis if one or two dimensions of the structure are
significantly smaller than the other or others. In dynamic analysis, however, the constraints im-
plied by beam and shell theory can have a strong effect on the structural behaviour in the case
of higher frequencies. A structural FE model of the floor structure was created by modelling the
panels and the wooden beams in terms of Reissner-Mindlin shell elements, and the secondary
spaced boarding in terms of Timoshenko beam elements. The two theories involved allow for
shear deformation of the normal to the shell plane and of the beam axis, respectively. Further
discussion of the beam and the shell theory can be found in e.g. [5, 27]. The structural-element
model was meshed with 720 beam elements and 3,312 shell elements, resulting in 24,762 dofs.

Table 5 shows the size (number of dofs) of the reduced models as well as the computation
times obtained for a Lanczos eigenvalue analysis of the 55 first eigenmodes and a steady-state
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Model Size Time [s] Time [s]
(number of dofs) (eigenvalue anal.) (steady-state anal.)

Full model 632820 590 220000
Structural elements 24762 7.6 1200
Guyan reduction 1038 3.1 410
CMS, 10 re* 1048 3.2 410
CMS, 20 re* 1058 3.2 410
CMS, 50 re* 1088 3.7 420
CMS, 100 re* 1138 5.5 440
CMS, 200 re* 1238 5.7 480
CMS, 500 re* 1538 8.5 620
CMS, 1000 re* 2038 15 970

Table 5: The size and computation times, both for eigenvalue analyses and steady-state anal-
yses, of the reduced models analysed in connection with numerical example 2, the analyses
running on one core of an Intel Xeon W3530 CPU of 2.80 GHz, having 10 GB of RAM mem-
ory available. *retained eigenmodes

analysis involving 200 steps. The analyses were carried out employing Abaqus/Standard. It can
be observed that the computation times are affected by increasing the number of eigenmodes
retained in the CMS reduction, the retaining of 1000 eigenmodes (a duplication of the num-
ber of dofs compared to Guyan reduction) resulting in the computation times being increased
significantly. The number of eigenmodes retained is, of course, a trade-off between accuracy
and computational cost, the gain in accuracy being illustrated in the analysis results presented
below. It is, however, not possible to estimate the number of eigenmodes required for obtain-
ing a certain accuracy without analysing the full model. Moreover, it can be observed that the
computation times for both types of analyses of the structural elements model is similar to those
for a model reduced with CMS where 500-1000 eigenmodes are retained, in spite of the former
model being over 10 times larger. This is a consequence of the transformation of the system
matrices involved in model order reduction, destroying the narrow bandwidth of matrices con-
structed with the FE method.

3.3.1 Eigenvalue analysis

Figure 9 shows the NRFD values for the reduced models, including CMS when 10, 100 and
1000 eigenmodes are retained. The red, yellow and green dashed lines in the figure show the
error levels of 10 %, 1 % and 0.1 %, respectively. The results included 55 eigenfrequencies,
which is the number of eigenfrequencies of the full model up to 100 Hz. Guyan reduction as-
sesses only the lowest eigenfrequencies of the full model with an acceptable level of accuracy.
Use of CMS in which 10 eigenmodes are retained improves the accuracy obtained for the first
20 eigenmodes, but is inaccurate for the remaining eigenmodes. When 100 eigenmodes are re-
tained, relatively accurate results can be obtained for all of the eigenfrequencies, the retaining of
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Figure 9: NRFD values for the different reduction methods applied to numerical example 2.

1000 eigenmodes resulting in very small errors. Use of structural elements results in relatively
large errors, although the errors are less frequency-dependent than when any of the model order
reduction methods are employed.

Figure 4 shows the MAC values obtained with use of the reduced models, including CMS
when 10, 50, 100, 500 and 1000 eigenmodes are retained, as well as the full model being com-
pared with itself. For practical reasons, only the master dofs of the reduced models were used
for evaluating the eigenmodes. In comparing the plots, it could be noted that the MAC values
of the higher eigenmodes were improved with use of CMS when the number of eigenmodes
retained was increasing. Whereas Guyan reduction (no eigenmodes retained) only succeeds in
modelling a few of the eigenmodes in the full model accurately, the MAC plot for CMS when
1000 eigenmodes are retained is identical to the MAC plot for the full model. The structural
element model only models a few of the eigenmodes of the full model with a high degree of
accuracy. The correlation there with results of the full model is better for the higher frequencies,
however, than is the case of Guyan reduction or CMS when only a few eigenmodes are retained.

3.3.2 Steady-state analysis

The transmission of vibrations was studied using the same approach as in the first numerical
example, shown in Figure 5, where the floor models were connected to the top of two wall
panels, the one a source panel and the other a receiver panel, supporting each end of the load-
bearing beams. The floor models were, in the second numerical example, connected to a third
wall panel located at the centre of the floor models through the nodes in the middle of the load-
bearing beams. Both the displacement dofs and rotational dofs of the wall panels were linked to
the floor models by use of Lagrange multipliers, except in the case of the mid-span wall panel,
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Figure 10: MAC values for the reduction methods employed in connection with numerical
example 2.

at which only the displacement dofs were connected. A unit point load in all three directions
was applied to the source panel, the displacements at the receiver panel being evaluated for
excitation frequencies of up to 100 Hz by use of Eq. (42).

The averaged error of the RMS values for the reduced models, including CMS when 10, 100
and 1000 eigenmodes are retained, is shown in Figure 11. The dashed black line indicates the
10 % error level. Guyan reduction was found to produce large errors for most of the frequencies.
Use of CMS in which 10 eigenmodes were retained was found to produce large errors as well,
whereas CMS in which 100 eigenmodes were retained was found to be relatively accurate for
most of the frequencies. A reduced model in which close to 1000 eigenmodes were retained
was needed, however, to obtain satisfactory results for higher frequencies. As in the eigenvalue
analysis, the structural element model was found to produce relatively large errors, but with a
lesser frequency dependence than for the other methods.

The maximum and the mean error values obtained for the frequency range as a whole (with-
out averaging) are shown in Table 6. As can be seen, the levels of error converge when the
number of retained eigenmodes employed in the CMS reduction is increased. When as many
as 50 eigenmodes are included, there is a large reduction in the error as compared with Guyan
reduction, in spite of the CMS model being only 5 % larger. The convergence is slower when
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Figure 11: Averaged errors of RMS values obtained for the model order reduction methods used
in connection with numerical example 2.

a greater number of eigenmodes are retained, but as shown in Figure 11, at higher frequencies
a greater number of eigenmodes are required in order to obtain accurate results. It could also
be observed that including a greater number of retained eigenmodes can result in an increase
in the maximum error. Consequently, for a given frequency, increasing the number of retained
eigenmodes does not necessarily result in a decrease in the level of error involved.

4 Conclusions
The objective of the analyses carried out in the present investigation was to evaluate the perfor-
mance of a wide range of methods for model order reduction by comparing their accuracy and
computational cost when applied to detailed FE models of floor and wall structures. In the first
numerical example, it was evident that an eigenvalue analysis of the structure in a free-free state
is insufficient for analysing the performance of the different reduction methods. A sensitivity
of certain of the reduction methods to boundary conditions was demonstrated, differing obser-
vations being made regarding the accuracy of the methods in question in the two analyses: the
eigenvalue analysis and the steady-state analysis. This shows the need for the reduced models
to be analysed with use of realistic boundary conditions, such as in the case of the steady-state
analyses that were considered here.

As was expected, Guyan reduction delivered acceptable results only at frequencies close to
the lowest eigenfrequencies of the system, due to the method’s static nature. Dynamic reduction
was only found to be accurate close to the frequency shift selected and provided inaccurate
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Model Mean error [%] Maximum error [%]

Structural elements 34.9 61.4

Guyan reduction 113 349

CMS, 10 retained eigenmodes 33.1 114

CMS, 20 retained eigenmodes 11.5 38.4

CMS, 50 retained eigenmodes 7.75 16.3

CMS, 100 retained eigenmodes 6.88 21.4

CMS, 500 retained eigenmodes 3.86 8.92

CMS, 1000 retained eigenmodes 3.38 7.61

Table 6: Average and maximum errors of the RMS values obtained in connection with numeri-
cal example 2.

results at frequencies differing to any appreciable extent from this. Iterated improved reduction
system (IRS) provided considerably better results than the other condensation methods.

In both numerical examples, component mode synthesis by Craig-Bampton (CMS) proved
to be an effective method. The Krylov subspace component mode synthesis (KCMS) method
used in the present study was found to be a good alternative as compared with CMS, the two
methods offering comparable accuracy. Using IRS to create the improved variants of CMS and
KCMS (ICMS and IKCMS, respectively) enabled the accuracy in terms of eigenfrequencies and
eigenmodes to be improved appreciably, although at the same time the errors in the steady-state
analysis were found to increase, indicating the improved variants to possibly be more sensitive
to the boundary conditions introduced in the analysis.

The performance of Guyan reduction and of dynamic reduction was found to clearly be
improved by use of the generalised versions of these methods. For the remaining methods, the
accuracy was only marginally affected by use of the generalised versions and, for most of the
methods, it was decreased at lower frequencies.

The alternative approach of using structural finite elements was found to result in relatively
large errors, the computation time, however, being significantly shorter considering the size of
the model. The structural element model can, however, be optimised further regarding such
matters as the selection of structural element types and the connections involved.
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