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A CONVERGENCE ANALYSIS OF THE PEACEMAN–RACHFORD
SCHEME FOR SEMILINEAR EVOLUTION EQUATIONS

ESKIL HANSEN∗ AND ERIK HENNINGSSON†

Abstract. The Peaceman–Rachford scheme is a commonly used splitting method for discretizing
semilinear evolution equations, where the vector fields are given by the sum of one linear and one
nonlinear dissipative operator. Typical examples of such equations are reaction-diffusion systems
and the damped wave equation. In this paper we conduct a convergence analysis for the Peaceman–
Rachford scheme in the setting of dissipative evolution equations on Hilbert spaces. We do not
assume Lipschitz continuity of the nonlinearity, as previously done in the literature. First or second
order convergence is derived, depending on the regularity of the solution, and a shortened proof
for o(1)-convergence is given when only a mild solution exits. The analysis is also extended to the
Lie scheme in a Banach space framework. The convergence results are illustrated by numerical
experiments for Caginalp’s solidification model and the Gray–Scott pattern formation problem.

Key words. Peaceman–Rachford scheme, convergence order, semilinear evolution equations,
reaction-diffusion systems, dissipative operators

AMS subject classifications. 65J08, 65M12, 47H06

1. Introduction. Semilinear evolution equations, i.e.,

u̇ = (A+ F )u, u(0) = η, (1.1)

are frequently encountered in biology, chemistry and physics, as they describe reaction-
diffusion systems, as well as the damped wave equation. The operator A is assumed
to be linear, typically describing the diffusion process, and the operator F can be non-
linear, e.g., arising from chemical reactions governed by the rate law. Both operators
are assumed to be dissipative and may therefore give rise to stiff ODE systems when
discretized in space. A common choice of temporal discretization is the (potentially)
second order Peaceman–Rachford scheme. The solution at time t = nh > 0 is then
approximated as u(nh) ≈ Snη, where a single time step is given by the nonlinear
operator

S = (I − h

2
F )−1(I +

h

2
A)(I − h

2
A)−1(I +

h

2
F ). (1.2)

As for any splitting method, the Peaceman–Rachford scheme has the advantage that
the actions of the operators A and F are separated. This may reduce the computa-
tional cost dramatically. For example, in the context of a reaction-diffusion system
the action of the linear resolvent (I − h/2A)−1 can be approximated by a standard
fast elliptic equation solver and the action of the nonlinear resolvent (I − h/2F )−1

can often be expressed in a closed form. Further beneficial features of the scheme are
that it, contrary to exponential schemes, does not require the exact flows related to
A and F , and the computational cost of evaluating the action of the operator S is
similar to that of the first order Lie scheme, where a time step is given by the operator

(I − hF )−1(I − hA)−1.
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2 E. HANSEN AND E. HENNINGSSON

The Peaceman–Rachford scheme was originally introduced in [15], with the mo-
tivation to conduct dimension splitting for the heat equation, i.e.,

A+ F = ∂xx + ∂yy

in two dimensions, and their approach of splitting has become a very active field of
research. For an introductional reading on splitting schemes and their applications
we refer to [10, Chapter IV]. Second order convergence of the scheme has been proven
in [5], when applied to reaction-diffusion systems given on the whole Rd and with
Lipschitz continuous nonlinearities F . Second order convergence has also been es-
tablished in [7] under the assumption that the operator F is linear and unbounded,
i.e., applicable to dimension splitting of linear parabolic equations. Convergence, but
without any order, is proven for the fully nonlinear problem in [11]. See also [9, 17]
for further numerical considerations. In the setting of exponential splitting schemes,
second order convergence for the Strang splitting has been established for semilinear
problems in [6, 8]. Further results for exponential schemes are, e.g., surveyed in [12,
Section III.3] and [13].

However, to the best of our knowledge, there is still no convergence (order) anal-
ysis of the Peaceman–Rachford scheme applied to equation (1.1), which does not
assume that the dissipative operator F is either linear or Lipschitz continuous. Note
that the latter assumption is rather restrictive. A concrete reaction-diffusion problem
that does not fulfill the assumption is the Allen–Cahn equation, where

(A+ F )u = ∆u+ (u− u3),

equipped with suitable boundary conditions and interpreted as an evolution equation
on L2(Ω). The aim of this paper is therefore to conduct a convergence analysis for the
scheme at hand without assuming linearity or Lipschitz continuity of the operator F .

2. Problem setting. Let H be a real Hilbert space with the inner product and
the norm denoted as (·, ·) and ‖·‖, respectively. For every operatorG : D(G) ⊆ H → H
we define its Lipschitz constant L[G] as the smallest possible constant L ∈ [0,∞] such
that

‖Gu−Gv‖ ≤ L‖u− v‖ for all u, v in D(G).

Furthermore, an operator G : D(G) ⊆ H → H is maximal (shift) dissipative if and
only if there is a constant M [G] ≥ 0 for which the operator G satisfies the range
condition

R(I − hG) = H for all h > 0 such that hM [G] < 1, (2.1)

and the dissipativity condition

(Gu−Gv, u− v) ≤M [G]‖u− v‖2 for all u, v in D(G). (2.2)

A direct consequence of an operator G being maximal dissipative is that the related
resolvent (I − hG)−1 : H → D(G) ⊆ H is well defined and

L[(I − hG)−1] ≤ 1/(1− hM [G])

for all h > 0 such that hM [G] < 1. With this in place, we can characterize our
problem class as follows:
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Assumption 1. The operators A : D(A) ⊆ H → H, F : D(F ) ⊆ H → H and
A+ F : D(A) ∩ D(F ) ⊆ H → H are all maximal dissipative on H.

If Assumption 1 is valid, then there exists a unique mild solution u to the semi-
linear evolution equation (1.1) for every η in the closure of D(A)∩D(F ). The related
solution operator is given by a nonlinear semigroup {et(A+F )}t≥0, where

u(t) = et(A+F )η.

The nonlinear operator et(A+F ) maps the closure of D(A) ∩ D(F ) into itself and can
be characterized by the limit

et(A+F )η = lim
n→∞

(
I − t

n
(A+ F )

)−n
η.

A contemporary survey of maximal dissipative operators and nonlinear semigroups
can be found in the monograph [1, Sections 3.1 and 4.1].

3. Preliminaries. In order to shorten the notation slightly, we introduce the
abbreviations

a =
1

2
hA, α = (I − a)−1, f =

1

2
hF and ϕ = (I − f)−1.

We will also make frequent use of the identities

I = α− αa = α− aα and I = ϕ(I − f) = ϕ− fϕ,

without further references. The time stepping operator of the Peaceman–Rachford
scheme (1.2) then reads as

S = ϕ(I + a)α(I + f). (3.1)

Due to the presence of the term I + f in (3.1), the time stepping operator S is,
in general, not Lipschitz continuous. Hence, one needs to modify the scheme in order
to establish stability and convergence. To this end, we consider the auxiliary time
stepping operator

R = (I + a)α(I + f)ϕ, (3.2)

which relates to S via the equality

Sjϕ = ϕRj

for all j ≥ 0.
Lemma 1. If Assumption 1 is valid and hmax{M [A],M [F ]} ≤ 1, then

L[Rj ] ≤ e3/2 jh(M [A]+M [F ])

for every j ≥ 0.
Proof. Let u, v be two arbitrary elements of D(F ). A twofold usage of the

dissipativity then gives the inequality

‖(I + f)u− (I + f)v‖2 = ‖u− v‖2 + 2(fu− fv, u− v) + ‖fu− fv‖2

≤ (1 + hM [F ])‖u− v‖2 + ‖fu− fv‖2

≤ (1 + 2hM [F ])‖u− v‖2 − 2(fu− fv, u− v) + ‖fu− fv‖2

= 2hM [F ]‖u− v‖2 + ‖(I − f)u− (I − f)v‖2.
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Replacing u, v by ϕz, ϕw, then yields that

‖(I + f)ϕz − (I + f)ϕw‖ ≤ (2hM [F ]L[ϕ]2 + 1)1/2‖z − w‖
≤ (1 + h/2M [F ])/(1− h/2M [F ])‖z − w‖.

As the above inequality is valid for any z, w ∈ H, we obtain the bound

L[(I + f)ϕ] ≤ (1 + h/2M [F ])/(1− h/2M [F ]).

The same type of Lipschitz continuity holds for the operator (I + a)α, hence,

L[Rj ] ≤ L[(I + a)α]jL[(I + f)ϕ]j ≤ e3/2 jh(M [A]+M [F ]),

where the last inequality follows as (1 + x)/(1− x) ≤ ex+2x for all x ∈ [0, 1/2].

4. Convergence of the Peaceman–Rachford scheme. The scheme is often
employed for problems with rather smooth solutions, e.g., in the context of reaction-
diffusion equations, and we therefore start to derive a global error bound valid for
sufficiently regular solutions.

Assumption 2. The evolution equation (1.1) has a classical solution u, i.e., the
function u ∈ C1([0, T ];H) satisfies u̇(t) = (A + F )u(t) for every time t ∈ [0, T ].
Furthermore, the solution satisfies one of the following statements:

(i) u ∈W 2,1(0, T ;H) and Au̇ ∈ L1(0, T ;H);
(ii) u ∈W 3,1(0, T ;H), Aü ∈ L1(0, T ;H), and A2u̇ ∈ L1(0, T ;H).

With such regularity present the Peaceman–Rachford scheme is either first or
second order convergent.

Theorem 2. Consider the Peaceman–Rachford discretization (1.2) of the semi-
linear evolution equation (1.1). If Assumption 1 is valid and hmax{M [A],M [F ]} ≤ 1,
then the global error of the Peaceman–Rachford approximation can be bounded as

‖u(nh)− Snη‖ ≤ 5

2
hp e3/2T (M [A]+M [F ])

p∑
`=0

‖Ap−`u(`+1)‖L1(0,T ;H), nh ≤ T,

where p = 1 under Assumption 2.i and p = 2 under Assumption 2.ii.
Proof. First, we expand the global error as the telescopic sum

u(nh)− Snη =

n∑
j=1

Sn−ju(tj)− Sn−j+1u(tj−1)

=

n∑
j=1

ϕRn−j(I − f)u(tj)− ϕRn−j(I − f)Su(tj−1),

where tj = jh. This expansion together with Lemma 1 yields that

‖u(nh)− Snη‖ ≤
n∑

j=1

L[ϕ]L[Rn−j ]‖(I − f)u(tj)− (I − f)Su(tj−1)‖

≤ etnM
n∑

j=1

‖(I − f)u(tj)− (I − f)Su(tj−1)‖,
(4.1)

where M = 3/2 (M [A] + M [F ]). Next, we seek a suitable representation of the
difference

dj = (I − f)u(tj)− (I − f)Su(tj−1).
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The second term can be written as

(I − f)Su(tj−1) = α
(
I + (a+ f)

)
u(tj−1) + aαfu(tj−1).

In order to match the first term (I − f)u(tj) with the above expression we expand
the identity in terms of a and α, and obtain that

(I − f)u(tj) = (α− αa− f)u(tj)

= α
(
I − (a+ f)

)
u(tj) + (α− I)fu(tj)

= α
(
I − (a+ f)

)
u(tj) + aαfu(tj).

(4.2)

This gives us the representation dj = αqj + sj , where

qj = u(tj)− u(tj−1)− (a+ f)u(tj)− (a+ f)u(tj−1) and

sj = aα
(
fu(tj)− fu(tj−1)

)
.

By Assumption 2, the solution u is an element in W `,1(0, T ;H), with ` = 2 or 3, and
the qj term can therefore be written as

qj =

∫ tj

tj−1

u̇(t) dt− 1

2
h
(
u̇(tj) + u̇(tj−1)

)
= h

∫ tj

tj−1

(
1

2
− t− tj−1

h
)ü(t) dt

= h2

∫ tj

tj−1

1

2

t− tj−1

h

t− tj
h

u(3)(t) dt.

Hence, the term qj is simply the local error of the trapezoidal rule and can either be
expressed as a first or a second order term in h, depending on the regularity of the
solution u. Furthermore, the splitting error sj can also be interpreted as a first or a
second order term in h. This follows as

sj = aα
(1

2
h[u̇(tj)− u̇(tj−1)]− a[u(tj)− u(tj−1)]

)
=

1

2
haα

(∫ tj

tj−1

ü(t) dt−A
∫ tj

tj−1

u̇(t) dt
)

=
1

4
h2α

(
A

∫ tj

tj−1

ü(t) dt−A2

∫ tj

tj−1

u̇(t) dt
)
.

Note that the operators A` can be interchanged with the integrations, as A is closed
(via Assumption 1) and the integrated functions are assumed to be sufficiently regular
(Assumption 2).

Finally, the above representations of the terms qj and sj together with the obser-
vations that L[α] ≤ 1/(1−1/2hM [A]) ≤ 2 and L[aα] = L[α−I] ≤ 3 when hM [A] ≤ 1
give us the bound

‖dj‖ ≤
5

2
hp
∫ tj

tj−1

p∑
`=0

‖Ap−`u(`+1)(t)‖dt,

with p = 1 or 2. Combining (4.1) with the above inequality yields the sought after
error bound.
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If the regularity prescribed in Assumption 2 is not present one can still obtain con-
vergence of the Peaceman–Rachford approximation to the mild solution. This follows
by a Lax-type theorem due to Brézis and Pazy [2]. Note that the o(1)-convergence
of the scheme is given in [11, Theorem 2], when M [A] and M [F ] are equal to zero.
However, in the current notation we are able to give a significantly shorter proof.

Theorem 3. Consider the mild solution u of the semilinear evolution equa-
tion (1.1) and its approximation Snη by the Peaceman–Rachford scheme (1.2). If
Assumption 1 is valid and D(A) ∩ D(F ) is dense in H, then

lim
n→∞

Snη = u(t),

for every η ∈ D(F ) and t ≥ 0.
Proof. The operator F is assumed to be maximal dissipative and densely defined,

as D(A) ∩ D(F ) ⊆ D(F ), which implies the limits

lim
h→0

Fϕv = Fv and lim
h→0

ϕw = w,

for every v ∈ D(F ) and w ∈ H; see, e.g., the proof of [4, Proposition 11.3]. The same
type of limits obviously also hold for the operator A. Next, consider the auxiliary
scheme (3.2), which can be reformulated as

R = (I + 2aα)(I + 2fϕ) = I + 2aα+ 2fϕ+ 4(α− I)(fϕ− f) + 4(α− I)f

on D(F ). Hence, the auxiliary scheme is consistent, i.e.,

lim
h→0

1

h
(R− I)v = (A+ F )v,

for every v ∈ D(A) ∩ D(F ). Moreover, Lemma 1 yields stability in the sense that
L[R] ≤ 1 + Ch+ o(h), and the auxiliary approximation Rnη is therefore convergent,
for every η ∈ H, by [2, Corollary 4.3].

The sought after convergence of the Peaceman–Rachford approximation is then
obtained for all η ∈ D(F ) via the error bound

‖u(t)− Snη‖ ≤ ‖(I − ϕ)u(t)‖+ L[ϕ]‖u(t)−Rnη‖+ L[ϕ]L[Rn]‖η − (I − f)η‖.

5. Convergence of the Lie scheme. With the machinery of the previous sec-
tions in place, we can also derive a global error bound for the Lie scheme, where a
single time step is given by the operator

S = (I − hF )−1(I − hA)−1. (5.1)

For this analysis we replace Assumption 2 by the one stated below.
Assumption 3. The evolution equation (1.1) has a classical solution u such that

u ∈W 2,1(0, T ;H) and Au̇(t), A2u(t) ∈ H for every time t ∈ [0, T ].
In this context, we obtain first order convergence for the Lie approximation:
Theorem 4. Consider the Lie discretization (5.1) of the semilinear evolution

equation (1.1). If Assumptions 1 and 3 hold and hmax{M [A],M [F ]} ≤ 1/2, then the
global error of the Lie approximation can be bounded as

‖u(nh)− Snη‖ ≤ 2h e2T (M [A]+M [F ])
(
‖ü‖L1(0,T ;H) + T‖Au̇−A2u‖L∞(0,T ;H)

)
,

where nh ≤ T .
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Proof. In order to mimic the earlier convergence proof, we introduce the abbre-
viations

a = hA, α = (I − a)−1, f = hF and ϕ = (I − f)−1.

The Lie scheme then reads as S = ϕα, and its stability follows by

L[Sj ] ≤ L[ϕ]jL[α]j ≤ e2jh(M [A]+M [F ]).

We again expand the global error in a telescopic sum and obtain the bound

‖u(nh)− Snη‖ ≤
n∑

j=1

‖Sn−ju(tj)− Sn−j+1u(tj−1)‖

≤
n∑

j=1

L[Sn−j ]L[ϕ]‖(I − f)u(tj)− (I − f)Su(tj−1)‖

≤ e2tn(M [A]+M [F ])
n∑

j=1

‖(I − f)u(tj)− αu(tj−1)‖,

(5.2)

where tj = jh. With the expansion (4.2) of the term (I − f)u(tj), we can once more
express the difference

dj = (I − f)u(tj)− αu(tj−1) = αqj + sj

in terms of a quadrature error qj and a splitting error sj , where

qj =

∫ tj

tj−1

u̇(t) dt− hu̇(tj) = h

∫ tj

tj−1

tj−1 − t
h

ü(t) dt and

sj = aαfu(tj) = h2αA
(
u̇(tj)−Au(tj)

)
.

The sought after error bound then follows as

‖dj‖ ≤ 2h
(∫ tj

tj−1

‖ü(t)‖ dt+ h‖Au̇(tj)−A2u(tj)‖
)
.

A somewhat surprising result is that the Peaceman–Rachford scheme requires
less regularity than the Lie scheme in order to obtain first order convergence, as no
requirement is made regarding the term A2u(t); compare Assumptions 2.i and 3.

Even though the Lie scheme may have a less beneficial error structure, it has
a significant advantage over most schemes, namely, it is stable even if H is merely
a Banach space and the derived global error bound is still valid in a Banach space
framework. The necessary modification is to generalize the dissipativity property (2.2)
as follows: Let X be a real Banach space. A nonlinear operator G : D(G) ⊆ X → X
is said to be dissipative if and only if

[Gu−Gv, u− v] ≤M [G]‖u− v‖2

for every u, v ∈ D(G). Here, [·, ·] : X × X → R denotes the (left) semi-inner product
[4, p. 96] defined as

[u, v] = ‖v‖ lim
ε→0−

1

ε
(‖v + εu‖ − ‖v‖).
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With this extended definition of dissipativity, we still have that the resolvent of a
maximal dissipative operator G exists and L[(I − hG)−1] ≤ 1/(1 − hM [G]). Hence,
the Lie scheme (5.1) is well defined and Theorem 4 holds by the very same proof.

Note that the Peaceman–Rachford results of §4 can not be extended to this Ba-
nach spaces framework, as the needed generalization of Lemma 1 is not true. The
reason for this is that the terms L[(I+f)ϕ] and L[(I+a)α] are, in general, not of the
form 1 +O(h) when the Hilbert structure is lost. A concrete example of a maximal
dissipative operator A on a Banach space with M [A] = 0 and L[(I + a)α] ≥ 1.2, for
all h > 0, can be found in [16, Appendix 2].

6. Applications. We conclude with two examples of reaction-diffusion systems
which fit into the framework of maximal dissipative operators and for which the
Peaceman–Rachford scheme becomes an efficient temporal discretization.

Example 5. Consider the equation system{
θ̇ + `φ̇ = ∆θ,

φ̇ = ∆φ+ φ− φ3 + θ,
(6.1)

where ` is a positive constant. The equations are given on Ω× [0, T ] ⊂ Rd×R+, with
d = 2, 3, and equipped with suitable boundary and initial conditions. Equation sys-
tems of this form have been proposed, e.g., when modeling solidification processes [3].
In the solidification model, θ represents the temperature and the continuously vary-
ing order parameter φ describes the transition of the material from the liquid phase
(φ ≈ 1) to the solid phase (φ ≈ −1).

By the variable change ψ = θ + `φ, the system (6.1) can be reformulated as a
semilinear evolution equation (1.1), where u = [ψ, φ]T,

A =

(
1 −`
0 1

)
∆ and Fu =

[
0

(1− `)φ− φ3 + ψ

]
.

Evaluating a time step of the Peaceman–Rachford scheme (1.2) then consists of twice
employing a standard solver for elliptic problems of the form (I − h/2 ∆)v = w, in
order to evaluate the actions of the linear resolvent (I − h/2A)−1, and the nonlinear
resolvent (I−h/2F )−1 can be computed analytically. Global errors and the presence
of second order convergence are exemplified in Figure 6.1.

In order to interpret A and F as maximal dissipative operators, we choose to
work in the Hilbert space H = [L2(Ω)]2 equipped with the inner product

(u1, u2) = (ψ1, ψ2)L2(Ω) + `2(φ1, φ2)L2(Ω). (6.2)

Assume that the domain Ω has a sufficiently regular boundary and the system is
equipped with, e.g., periodic boundary conditions or homogeneous Dirichlet or Neu-
mann boundary conditions. The Laplacian ∆ : D(∆) ⊆ L2(Ω)→ L2(Ω) is then a max-
imal dissipative operator, with M [∆] = 0; compare with [18, Section II.2]. Here, the
domain D(∆) can be identified as H2

per(Ω), H2(Ω)∩H1
0 (Ω) or {u ∈ H2(Ω) : γ1u = 0},

when periodic, Dirichlet or Neumann conditions are imposed, respectively.
Let D(A) = [D(∆)]2, then the operator A : D(A) ⊆ H → H is maximal dissipa-

tive, with M [A] = 0. The range condition (2.1) trivially holds, as R(I−h∆) = L2(Ω),
and the dissipativity (2.2) follows by the inequality

(Au, u) ≤ −1

2

(
‖∇ψ‖2L2(Ω) + `2‖∇φ‖2L2(Ω)

)
.
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Fig. 6.1. To show convergence for the Peaceman–Rachford scheme, it is applied to the two-
dimensional solidification problem (6.1) and the Gray–Scott pattern formation problem (6.4). In
Figures 6.1(a) and 6.1(b) the global errors, at times nh = 1 and 1500, measured in the norms
induced by the inner products (6.2) and (6.3), respectively, are plotted against the inverse of the
number of time steps 1/n. Second order convergence of the scheme is observed. Both equations
are equipped with periodic boundary conditions and given on the domain Ω = (−π, π)2 with an
equidistantly spaced grid with 29 nodes in each dimension. The reference solution is found by the
same scheme but on a finer grid, 210 nodes in each space dimension and 219 time steps. Parameters
used are l = 1/2, d1 = 8 · 10−4, d2 = 4 · 10−4, l1 = 0.024 and l2 = 0.084. Initial values used for the
solidification problem are θ0(x) = 1 and φ0(x) = exp (−20(x21 + x22/6)) + exp (−20(x21/6 + x22))− 1.
For the Gray–Scott problem we define (u2)0 as a sum of four translated “humps” with midpoints
y = (±π/10,±π/10) and radius ε = π/10. The sum is scaled by a factor exp (1)/4 and the “hump”
is defined by gy,ε(x) = exp (−ε2/(ε2 − |x− y|2)) if |x − y| < ε, 0 otherwise. See Figure 6.2 for a
contour plot. The first component is defined by (u1)0(x) = 1 − 2(u2)0(x). For both problems the
actions of (I − h/2A)−1 are efficiently evaluated with the help of an fft-algorithm. The actions
of the nonlinear resolvents (I − h/2F )−1 can also be efficiently evaluated as they give rise to cubic
equations which can be solved analytically.

The operator F : D(F ) ⊆ H → H fulfills the range condition whenever its second
component, which we denote by F2, satisfies it on L2(Ω) for a fixed ψ ∈ L2(Ω). This
can be proven by, e.g., observing that the operator I − hF̂2 : L4(Ω) → L4(Ω)∗ is
surjective when h(1− `) ≤ 1, where

F̂2 : φ 7→
∫

Ω

(
(1− `)φ− φ3 + ψ

)
(·) dx.

The surjectivity follows as I−hF̂2 fulfills the hypotheses of the Browder–Minty theo-
rem [19, Theorem 26.A]. The operator F2(ψ, ·) can then be identified as the restriction
of F̂2 to the set

{φ ∈ L4(Ω) : F̂2φ ∈ L2(Ω)∗} = L6(Ω),

i.e., D(F ) = L2(Ω) × L6(Ω), and the range condition then holds for F on H by
construction. Finally, F is also dissipative, as

(Fu1−Fu2, u1−u2) ≤ (
3

2
−`)`2‖φ1−φ2‖2L2(Ω)+

1

2
`2‖ψ1−ψ2‖2L2(Ω)−

1

4
`2‖φ1−φ2‖4L4(Ω).

Hence, the operator F is maximal dissipative, with M [F ] ≤ max{3/2− `, `2/2}.
The maximal dissipativity of A+F follows by employing a standard perturbation

result, as done in the proof of [1, Theorem 5.5]. Existence of a classical solution
to (6.1) and further regularity results can be found [3, Section 3], in the context of
Dirichlet boundary conditions.
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Example 6. In the previous example the polynomial nonlinearity could be inter-
preted as a dissipative operator, due to the presence of the term −φ3. However, even
if this dissipative structure is not present one can still fit polynomial nonlinearities
into the framework of maximal dissipative operators, by requiring further regularity
and boundary condition compatibility.

Assume that the operator A : D(A) ⊆ H → H is maximal dissipative, and
therefore also closed. The idea is to replace the Hilbert space H by the domain D(A)
which is again a Hilbert space, when equipped with the graph inner product

(u, v)A = (Au,Av) + (u, v). (6.3)

The operator A : D(A2) ⊆ D(A) → D(A) is still maximal dissipative, with the
same constant M [A]. If the domain D(A) is a Banach algebra, then any polynomial
nonlinearity F , with F (0) = 0 if D(A) lacks an identity element, maps D(A) into
itself and is locally Lipschitz continuous on D(A), i.e., for every r > 0 there exists an
Lr[F ] ∈ [0,∞) such that

‖Fu− Fv‖A ≤ Lr[F ]‖u− v‖A for all u, v ∈ Br = {u ∈ D(A) : ‖u‖A ≤ r}.

One can then introduce the truncation

Fru =

{
Fu if u ∈ Br,

F
(
r/‖u‖A u

)
if u ∈ D(A)\Br,

and the new operator Fr : D(A) → D(A) is (globally) Lipschitz continuous. Hence,
both Fr and A + Fr : D(A2) ⊆ D(A) → D(A) are maximal dissipative, and the
convergence results of §4 and §5 are valid for all time intervals [0, T (η)] for which the
exact solution remains in Br.

As an example, consider the evolution equation (1.1), with

A =

d1

. . .

ds

∆ and Fu =

 p1(u1, . . . , us)
...

ps(u1, . . . , us)

 ,
where di are positive constants and pi are polynomials with s-arguments. For periodic
boundary conditions and H = [L2(Ω)]s the operator A : D(A) ⊆ H → H is maximal
dissipative when defined on the Banach algebra D(A) = [H2

per(Ω)]s. For the Gray–
Scott pattern formation model [10, p. 21], where

p1(u1, u2) = −u1u
2
2 + `1(1− u1) and p2(u1, u2) = u1u

2
2 − `2u2, (6.4)

we can again give a closed expression for the nonlinear resolvent (I − h/2F )−1 [14,
p. 133]. Second order convergence for the related Peaceman–Rachford discretization is
exemplified in Figure 6.1, and the actual pattern formation is illustrated in Figure 6.2.
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