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Popular Summary in English

For years, robots in factories have been like skilled but inflexible workers, highly
capable at their specific tasks but unable to adapt or learn new ones. They
have been programmed in complex, manufacturer-specific languages, making
them highly specialized but not very versatile. However, as we step into the
era of the fourth industrial revolution, the demands on these robotic workers
are changing. Now, they need to be more like Swiss Army knives: versatile,
adaptable, and ready for new challenges.

Here the concept of “robot skills” comes in - think of these as apps for robots.
Just like you download apps on your smartphone to give it new capabilities,
robot skills are programs that can be mixed and matched to teach robots new
tasks. These skills are not just one-trick ponies; they’re reusable and can be
tweaked to suit different needs, making robot programming much more flexible.

But how do these robots know what to do and where to do it? This is where
the “world model” comes in. It is like a map and a guidebook rolled into one,
containing information about the robot’s environment and capabilities. For
instance, if a robot is asked to fetch a cup of coffee, the world model helps
it understand where the kitchen is, where the coffee machine is, and how to
operate it. It is like giving the robot a basic understanding of its world and how
to navigate it.

Now, teaching a robot new skills is one thing, but how about teaching it to
learn on its own? This is where our research takes an exciting turn. We are
using reinforcement learning - a way for robots to learn through trial and error,
much like how humans learn. The robot tries different approaches, learns from
feedback, and gradually improves its strategy. It is like a baby learning to walk,
stumbling and getting better over time.

But here is the catch: teaching a robot to learn is not straightforward. Our
research is focused on making this learning process easier and more efficient,
even for those who are not robot experts. We are finding ways to speed up
this learning, like giving the robot ’hints’ or using simulations to practice before
trying things out in the real world. Plus, we are teaching robots to handle
variations of tasks without starting from scratch every time.

Our approach, which combines planning, robot skills, and learning, can be much
faster than traditional methods. We are testing it in simulated environments and
on real robots, focusing on tasks that involve a lot of contact, like manipulating
objects or wiping surfaces.
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In summary, we are not just teaching robots new tricks; we enable them to learn
and adapt, making them ready for the ever-changing demands of the modern
industrial world.
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Populärvetenskaplig Sammanfattning p̊a Svenska

I åratal har fabriksrobotar varit som skickliga men oflexibla arbetare - kapabla
att utföra sina specifika uppgifter men oförmögna att anpassa sig eller lära
sig n̊agot nytt. Ofta har de programmerats i komplexa tillverkarspecifika spr̊ak
vilket är bra specialisering men brister när det kommer till m̊angsidighet. Men
nu när vi tar tar steget in i den fjärde industriella revolutionenförändras kraven.
Nu behöver robotarbetarna vara mer som schweiziska arméknivar: m̊angsidiga,
anpassningsbara och redo för nya utmaningar.

Här kan vi införa begreppet “robotfärdigheter”. Tänk p̊a dem som appar för
robotar. Precis som de appar du laddar till din smartphone, är robotfärdigheter
program som kan kombineras för att lära robotar att lösa nya uppgifter. Dessa
färdigheter enkla, återanvändbara och kan anpassas för olika behov, vilket gör
robotprogrammeringen enklare och mer flexibel.

Men hur vet robotarna vad de ska göra och var de ska göra det? Det är här
“världsmodellen” kommer in i bilden. Den är som en karta och en guidebok i
ett, och inneh̊aller information om robotens miljö och förm̊agor. Om en robot
till exempel ombeds att hämta en kopp kaffe hjälper världsmodellen den att
först̊a var köket är, var kaffemaskinen finns och hur den ska användas. Det är
som att ge roboten en grundläggande först̊aelse för sin omvärld och hur den ska
navigera den.

Att lära en robot nya färdigheter är en sak, men vad sägs om att lära den att lära
sig p̊a egen hand? Här tar v̊ar forskning en spännande vändning. Vi använder
Reinforcement Learning - ett sätt för robotar att lära sig genom trial-and-error,
ungefär som människor lär sig. Roboten prövar olika tillvägag̊angssätt, lär sig
av feedback och förbättrar gradvis sin strategi. Det är som när en bebis lär sig
g̊a, snubblar och blir bättre med tiden.

Men här är haken: att lära en robot att lära sig är inte okomplicerat. V̊ar
forskning är inriktad p̊a att göra inlärningsprocessen enklare och mer effektiv -
även för dem som inte är robotexperter. Vi hittar sätt att p̊askynda inlärningen,
som att ge roboten “tips” eller använda simuleringar för att öva innan man testar
saker i den verkliga världen. Dessutom lär vi robotar att hantera variationer av
uppgifter utan att behöva börja om fr̊an början varje g̊ang.

V̊ar metod, som kombinerar planering, robotfärdigheter och inlärning, är ofta
betydligt snabbare än traditionella metoder. Vi visar detta i simulerade miljöer
och p̊a riktiga robotar, med fokus p̊a uppgifter som innebär mycket kontakt,
som att manipulera förem̊al eller torka av ytor. Sammanfattningsvis lär vi inte
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bara robotarna nya trick utan vi gör det möjligt för dem att lära sig och anpas-
sa sig, vilket gör dem redo för de ständigt föränderliga kraven i den moderna
industriella världen.
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Learning with Skill-based
Robot Systems
Combining Planning & Knowledge Repres-
entation with Reinforcement Learning

AI is the new electricity.
— Andrew Ng

1 Introduction

1.1 Motivation

In the past there have been three industrial revolutions that transformered how
we work and live. The first industrial revolution was the introduction of mech-
anical production facilities, powered by water and steam [Sch17, p.11]. The
second industrial revolution was the introduction of mass production with the
help of electrical energy and assembly lines. The third industrial revolution, the
digital revolution, was the introduction of electronics and information techno-
logy to further automate production [Sch17, p.11]. Now, we stand at the brink
of the fourth industrial revolution, or Industry 4.0, characterized by the fusion
of the physical and digital realms through cyber-physical systems [Sch17, p.12].
This era is not just about technological advancements; it represents a paradigm
shift towards agile robotics and flexible manufacturing systems, promising un-
precedented levels of customization and efficiency in production [Sch17, p.12].
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While the previous industrial revolutions democratized access to goods and ser-
vices, Industry 4.0 aims to revolutionize how these goods are produced, em-
phasizing customization, smaller batch sizes, and innovative products previously
deemed unfeasible [Sch17, p.12]. A key barrier in the past has been the rigidity
and high cost of reconfiguring production lines. However, the emerging flexible
and agile systems in Industry 4.0 promise to overcome these challenges, poten-
tially revitalizing production in advanced economies by reducing the reliance on
labor costs. With these advancements, the fourth industrial revolution also has
the potential to hold or even bring back production to advanced economies, as
labor costs play a less crucial role.

A cornerstone of this revolution can be the development of more sophisticated,
autonomous, and intelligent robotic systems with stronger vertical integration
[Kru+19]. These systems must not only be capable of understanding and inter-
acting with their environment but also be capable of learning from experiences
and adapting their behavior accordingly. The concept of ’robot skills’ — para-
metric procedures that alter the world’s state — can be seen as central to this
evolution [Bøg+12]. Yet, how these skills are optimally formulated and util-
ized to achieve the necessary flexibility remains an open and critical question
[Alb+23].

Moreover, the challenge extends to the realm of robot learning, particularly
in the context of contact-rich tasks. Traditional approaches often require ex-
tensive manual tuning and suffer from inefficiencies and opaque results, which
hinders their industrial applicability [SKK22]. In contrast, the wealth of en-
vironmental, component, and process knowledge available in industrial settings
presents a unique opportunity. This knowledge, if effectively integrated into the
learning process, can significantly enhance efficiency and lead to more desirable
outcomes. However, achieving this integration is far from trivial and remains
largely unexplored.

This thesis aims to address these gaps by exploring approaches to formulating
and implementing robot skills and learning processes. By leveraging the rich
knowledge inherent in industrial environments, we seek to develop more ad-
aptable, efficient, and transparent robotic systems, paving the way for the full
realization of Industry 4.0’s potential.

1.2 Problem Statement

The advent of Industry 4.0 demands robot systems that are not only flexible
and adaptive but also easily reconfigurable to accommodate frequently changing
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Figure 1: A dual-arm piston insertion task. The task is to pick up a piston and to insert it into
the engine block. The execution is partially adaptivelly parameterized. However, for
example the parameters for the insertion are manually tuned.

tasks and diverse environments [Ped+16]. However, the prevalent reliance on ro-
bot manufacturer-specific solutions presents a significant barrier. These systems
often lack the necessary flexibility and adaptability, impeding the realization of
truly reconfigurable robotic systems.

To overcome these limitations, scalable architectures for robot decision-making
and control are essential [Alb+23]. A deep integration with the proprietary
solutions of individual manufacturers hinders the development of such recon-
figurable systems. Instead, a shift towards robot-agnostic approaches, utilizing
robot skills in conjunction with knowledge representation, is an attractive op-
tion. This approach, encapsulating knowledge in a world model, enables systems
to self-configure and self-parameterize within the model’s framework, facilitating
the reuse and sharing of skills among operators.

However, this approach is not without its challenges. Semantic modeling of the
world is complex and initially resource intensive. Incomplete domain knowledge
can lead to errors and reduced flexibility, particularly in contact-rich tasks where
predicting interactions and resulting forces is difficult. This makes it challenging
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to design model-based reasoners that can be used to completely parameterize
such tasks. Previously, this problem was often solved by manually tuning the
parameters of skills, such as the wiggle motion of the piston insertion in Figure 1.
However, this is a time-consuming and expensive process that is not flexible and
requires expert knowledge.

Machine learning (ML), and specifically reinforcement learning (RL), offers a
potential solution to these challenges. RL allows for parameterization through
direct environmental interaction, bypassing the need for manual tuning or com-
plete model-based reasoning. However, formulating RL problems is inherently
complex [SB18, p.469]. Many RL algorithms are intricate and demand consid-
erable expertise. Designing effective reward functions and formulating problems
to meet operational and safety expectations while ensuring the interpretabil-
ity of the resulting policies is a formidable task. This lack of interpretability
poses risks in terms of safety, error mitigation, and production process assur-
ance, making many algorithms impractical for real-world, high-stakes industrial
environments [Elg+23].

RL algorithms are often too inefficient to be used on real systems. This is
especially true for contact-rich tasks that have complex interactions with the
environment. While simulation-based learning offers a partial solution, accur-
ately modeling contact-rich tasks for effective transfer to real systems remains
a significant hurdle [Elg+23].
Additionally, the use of RL in industrial settings often overlooks the integration
of existing knowledge, such as symbolic data, historical task traces, or expert in-
sights, which could potentially accelerate learning and improve policy outcomes.

The development of flexible, adaptive, and easily reconfigurable robotic systems
for Industry 4.0 faces multifaceted challenges. These include the complexity of
semantic world modeling, the limitations of current robot control architectures,
and the intricacies of implementing effective and interpretable RL strategies.
Addressing these issues is crucial to advance robotic capabilities in the rapidly
evolving landscape of industrial automation.

1.3 Research Objectives

The primary goal is to develop methodologies that enable robot systems to
self-configure and autonomously learn behaviors. Starting from model-driven
approaches, the focus is on exploring RL to learn how to perform tasks. The
focus is on tasks that involve contacts and interaction with the environment.
The aim is to apply these learned behaviors effectively on real robot systems.
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In this context we identify the following concrete research objectives:

Accessible Learning: A key objective is to simplify the formulation of RL-
based learning problems, making it accessible to individuals who are not experts
in RL. This involves creating an approach where operators can easily input
their experiences and insights into the learning process. The goal is to make the
formulation of learning problems straightforward and user-friendly.

Ensuring Transparency and Interpretability: While the learning pro-
cess might inherently involve complex computations (akin to a ’black box’), it
is crucial that the resulting policies are interpretable. This objective focuses on
developing methods that ensure that the outcomes of the learning process are
transparent, allowing for easy mitigation and adjustment. This interpretabil-
ity is vital for practical applications, especially in scenarios where safety and
reliability are paramount.

Integrating Knowledge into Learning Processes: This research aims to
integrate existing knowledge into the RL process. This includes leveraging sym-
bolic knowledge, historical data, and expert experience to improve the efficiency
of the learning process and improve the quality of the resulting policies. The
integration of this knowledge is expected to accelerate learning and lead to more
effective robotic behaviors.

Modular Learning: Learning of subtasks within their specific environments
should be possible. The goal is to provide mechanisms to encode typical con-
straints and consider safety rules, ensuring that the learning process and the
resulting behaviors adhere to operational constraints.

Thesis Structure

The first part of this thesis is the Kappa, the introduction to the research field
and the scope of the work presented in this thesis.

This introduction starts by providing the background on robot programming,
motion representations for manipulators and contact-rich tasks in Section 2.
Section 3 delves into knowledge representation and reasoning in robotics, setting
the stage for understanding its application in this research. In Section 4, the
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concept of robot skills is explored, along with the integration of knowledge into
these skills and the use of behavior trees (BTs) as a representation method.
The thesis then transitions to task-level planning for longer-horizon goals in
Section 5. Learning methods for robot skills, particularly reinforcement learning
(RL), are introduced in Section 6. The concrete approach taken in this research
is presented in Section 7. This section is followed by the final thoughts and
conclusions of the Kappa.

The second part of the thesis comprises the seven individual papers that form the
core of the research contributions. These papers are presented in full, providing
detailed insights into the methodologies, experiments, results and discussions
that are central to the research objectives established in the first part of the
thesis.
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2 Robot Programming and Motion Representations

Robot capabilities can be developed through three well-established approaches
[KCC13]:

1. Direct programming

2. Imitation learning (IL) or learning from demonstration (LfD)

3. Reinforcement learning (RL).

RL is introduced in Section 6 and LfD in Section 6.1.

This section provides the background on the state of robot programming in
industry. The second part introduces such motion representations for robot
arms, ranging from easier representations to dynamical systems. Finally, the
specific challenges posed by contact-rich tasks are highlighted.

2.1 Robot Programming

Traditionally, the most common way to program a robot is to use a program-
ming language that is specific to the robot manufacturer and that is commonly
proprietary [BM03; Bru+07]. Such a language is often on a quite low level,
has its own unique syntax and is not very intuitive [SK16, RAPID example on
p.1412]. To support existing customer solutions, the backward compatibility
of such a language is important and therefore the language is often not very
modern [BM03; Bru+07]. This makes these systems difficult to use and the
competences are often taught in week-long professional training programs. This
situation not only binds customers to specific hardware, but also locks them into
the programming ecosystem of that hardware, due to the significant investment
in developing programming competencies for a particular system [BM03].

Especially with the availability of colaborative robots, so-called cobots, manu-
facturers offer different methods to program their robot. For example, Univer-
sal Robots (UR) provides five different ways to create robot motions [Ryt23]:
1) visual programming with the teaching pendant. 2) The specific language
URScript. 3) Capability blocks known as URCaps. 4) External control from
another machine via an Ethernet connection and finally 5) an official robot op-
erating system (ROS)1 driver.

1ROS is a middleware and a set of libraries for robotics. It is especially popular in academia,
but also receives more adoption by industry.
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Figure 2: The teaching pendants of three different robot manufacturers. From left to right: ABB,
KUKA and Universal Robots (UR).

Other vendors offer similar, yet distinct, solutions for robot programming. The
manufacturer ABB, for instance, facilitates visual programming using a teach-
ing pendant and has developed its own language, RAPID, complemented by a
visual programming environment called RobotStudio. Additionally, ABB robots
can receive low-level commands through external guided motion (EGM).
KUKA, on the other hand, does not provide programming via a teaching pendant.
For their iiwa robots shown in Figure 1, programming is done in Java using a
computer and the Sunrise Workbench environment. They also support external
motion input through the fast robot interface (FRI). Notably, ROS drivers for
the iiwa robots are available, but they are developed and maintained by the
academic community.

Among these methods, the most accessible for beginners is typically visual pro-
gramming with a teaching pendant. Teaching pendants, as shown in Figure 2,
are devices attached to the robot that feature a display that allows users to
manually move the robot. The robot’s positions can often be recorded and the
movements can be replayed later. This method is intuitive to program basic
robot movements, but lacks flexibility. It requires the physical presence of an
operator and is limited to programming the robot in free space, without contact
with the environment. Consequently, tasks such as part insertion or surface
wiping, crucial in many industrial applications, cannot be easily programmed
using this method.

Figure 3 presents the programming environments of two different robot manu-
facturers, highlighting the differences in their approaches. For example KUKA
provides a simulation only as an additional product, while ABB includes it. Each
of these environments necessitates specific training, and transitioning between
different programming systems is not straightforward.
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Figure 3: Robot programming environments of ABB, RobotStudio on the left and Sunrise Work-
bench by KUKA on the right. UR does not provide a programming environment.

The primary advantages of conventional industrial robot programming solutions
lie in their established reliability and safety [BM03]. These systems are often
deployed in safety-critical applications where manufacturers can assure that the
robot will operate safely, especially in scenarios where it works in close proximity
to human operators. This reliability is a crucial factor in typical industrial
settings, where consistent and safe operation is paramount.

However, these traditional programming solutions also come with notable disad-
vantages. One significant drawback is their lack of flexibility. Additionally, they
tend to be costly, partly due to the absence of accessible simulation environ-
ments that can accurately simulate physical interactions for contact-rich tasks.
This limitation means that robot programs often cannot be written, tested,
and refined in a simulated environment. As a result, testing and development
must occur on the actual robot, leading to increased costs because the robot is
occupied for the duration of the testing.

In the realm of industrial robotics, the company ArtiMinds offers a constrasting
approach. They provide a robot-agnostic programming environment enabling
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users to program robots visually, with the added flexibility of executing these
programs on various robot models. This versatility is achieved by not writing
the robot program in a robot-specific language. Instead, robot-specific code is
generated as an output [Art19]. This approach represents a significant shift
from traditional methods, offering enhanced flexibility and potentially reducing
the costs associated with robot programming.

2.2 Motion Representations for Robotic Arms

A crucial aspect of actuated robot arms is the representation of their motion.
This involves determining how the motion and its goal are conceptualized and
executed. Typically, the goal is defined in Cartesian space, which means that it
is specified as a position and orientation of the end effector (EE). The motion
itself can be represented in two primary spaces: joint space or Cartesian space
[Sic09]. In joint space, the motion is typically represented as a trajectory of
the joint angles, while in Cartesian space, it is represented as a trajectory of
the end-effector pose. However, since robots are ultimately controlled in joint
space, any motion defined in Cartesian space must be converted using an inverse
kinematics solver or a controller.

It is also vital to distinguish between the trajectories and the control strategy.
The trajectory itself refers to the desired time-parameterized motion path of
the robot, whereas the control strategy is the method employed to follow this
trajectory [Sic09].

In the realm of industrial robotics, programming point-to-point motions, ex-
ecuted either as Cartesian linear motions or joint motions, is still prevalent.
This approach, while straightforward and easy to program, lacks flexibility and
is not well-suited for contact-rich tasks.

A popular formulation for motion primitives in robotics are dynamic movement
primitives (DMPs). These are implemented through stable non-linear dynamical
systems that are inspired by biological systems [Sch06a; Sch06b]. DMPs offer
an elegant formulation that guarantees convergence to a specified target. They
can react to external perturbations and generalize to different goals [Sav+23].
There is a vibrant community around DMPs and many extensions have been
proposed [Kar+17; KRJ17; KRJ18]. Most notably in this context are compliant
movement primitives [Pet+14; Den+16] that are suitable for contact-rich tasks.
DMPs can be efficiently learned from data and are often utilized in imitation
learning (IL). A comprehensive survey and a tutorial on DMPs are available
in [Sav+23].
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Another significant motion representation involves the use of Gaussian mixture
models (GMMs) with dynamical systems [KB11]. Like DMPs, these systems
ensure global asymptotic stability and can react to perturbations while general-
izing to different goals. The authors introduce a learning method called stable
estimator of dynamical systems to learn the parameters of the dynamical sys-
tems. The method is an optimization approach to statistically encode a motion
as a first-order nonlinear ordinary differential equation with the use of Gaussian
mixtures.

Both DMPs and dynamical systems with GMMs are robust methods that can
impliclity encode motions and are learned from demonstrations. While their
ability to be learned can often be a low entry barrier, it is not always possible
to provide such demonstrations. Especially in industrial environments with
frequently changing tasks, it can become cumbersome to provide demonstrations
for every new task and additional infrastructure for storing and re-using data is
necessary [BCD16].

An alternative approach to generate motions are constrained-based methods.
These methods are designed to produce motions that adhere to a set of pre-
defined constraints. There are two primary approaches: 1) constrained-based
task space control [ADS14] and 2) constrained sampling-based control. In the
former, a differentiable function is used to define a task space and constraints
are enforced on the derivative [ADS14]. A recent example application is the
combined online control of a mobile platform and a robot arm with compliant
motions [Cal+22]. A collection of sampling-based algorithms, the second cat-
egory, is implemented in the open motion planning library (OMPL). OMPL is
a widely used library for motion planning [SMK12] that is integrated in the Mo-
veIt! framework and therefore also in the ROS ecosystem. A recent development
in this area is Giskard [SBB22], which, like MoveIt, produces constrained and
smooth trajectories. However, both OMPL and Giskard are offline approaches
that produce trajectories that are executed by a controller which limits their re-
activity. Typically these controllers are also a stiff position controllers that are
not suitable for contact-rich tasks. In the task frame formalism (iTasC) formal-
ism [DS+07], the desired motion and sensor values are declaratively formulated
as constraints on the kinematic chain.

In [Rov+18], the combination of BTs with motion generators (MGs) is sug-
gested. This representation is not only suitable for contact-rich tasks without
requiring explicit teaching, but it also supports the integration of knowledge. A
more detailed introduction will be provided in Subsection 4.3.
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2.3 Contact-rich Tasks

While moving a robot arm in free space is a well-studied problem, many in-
dustrial tasks involve complex interactions with the environment. Examples
include assembly tasks that require the insertion of parts, pushing components
into fixtures, or wiping surfaces [SKK22]. In these scenarios, the robot arm must
engage in physical contact with its surroundings, presenting unique challenges.
Predicting the contact points and the resulting forces can be difficult, complicat-
ing the task of designing model-based reasoners capable of fully parameterizing
these tasks.

Traditionally, addressing these challenges involved manually tuning the behavior
parameters like in [RGK17]. However, this approach is not only time-consuming
and costly, but is also inflexible and reliant on expert knowledge.

Most standard robot programming solutions are not well suited for contact-rich
tasks, particularly those used in typical industrial settings. Solutions that offer
compliant control, such as impedance control or force control, are not always
available or applicable. Additionally, these conventional methods often lack
compatibility with ML techniques, which can be crucial for adapting to the
dynamic nature of contact-rich environments.

Simulating contact-rich tasks for the purpose of training robots is another area
fraught with difficulties. Accurately modeling physical interactions in a simula-
tion environment is a complex endeavor. Consequently, much of the research in
RL for contact-rich tasks falls short of transferring the learned policies to real-
world robots [Elg+23]. This gap between simulation and practical application
remains a significant hurdle in the field [Elg+23].
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3 Knowledge Representation and Reasoning

In the realm of artificial intelligence (AI), knowledge representation plays a
pivotal role in encoding information about the world in a format that is both
machine-interpretable and human-readable [CA22, p.428]. This dual nature
of knowledge representation is crucial, as it serves to bridge the gap between
human understanding and machine processing [Cel20]. By translating complex
real-world data into a structured format, it allows machines, such as robots, to
comprehend and interact with their environment more effectively [SK16, p.330].

Knowledge bases are central to this process, acting as repositories that collate
and interconnect information from diverse sources. These bases not only store
knowledge, but also define the relationships between different pieces of inform-
ation, enabling comprehensive reasoning about the world [SK16, p.338].

This section first introduces the concept of knowledge representation and onto-
logies. Then, reasoning is introduced as a way to use the knowledge to answer
questions about the world.
Together, this contributes to a world model that a robot system can use to put
its capabilities into a context to solve underdetermined tasks. In Subsection 4.4,
it will be shown how this knowledge can be integrated into robot skills.

3.1 Knowledge Representation

Knowledge representation in AI is a fundamental process for encoding inform-
ation about the world in a machine-interpretable format [CA22]. This process
is essential to store and manipulate complex structured data. Knowledge rep-
resentation formats are typically designed to be human-readable, facilitating
an effective interface between human operators, automated processes, and AI
systems.

Central to knowledge representation are facts or assertions about various entit-
ies within a system [CA22]. A critical aspect of formal knowledge representation
systems is the underlying assumption about the completeness of the knowledge.
Under the open-world assumption, the lack of evidence for a fact does not imply
its negation [RND10, p.417]. For example, if a robotic system lacks data indic-
ating the presence of a table in a room, it does not conclusively mean the table
is absent. In contrast, the closed-world assumption posits that if a fact is not
known to be true, it is considered false [RND10, p.417]. An example of this can
be seen in employee databases, where the absence of a person’s record implies
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that they are not an employee of the company. The partially open-world assump-
tion offers a nuanced approach, assuming general incompleteness of knowledge,
but considering it complete within specific domains or contexts [RSN16].

The representation of knowledge encompasses various methodologies, each of-
fering different levels of expressivity. However, there exists an inherent trade-off
between the expressivity of a knowledge representation system and its compu-
tational efficiency. More expressive systems, while capable of representing com-
plex relationships and abstractions, tend to be more challenging to use [Baa+07,
p.43].

First-order logic represents one of the most expressive forms of knowledge rep-
resentation, allowing for detailed and nuanced descriptions of relationships and
entities [Baa+07, p.6]. However, its complexity often results in slower pro-
cessing by reasoning systems. On the other end of the spectrum, propositional
logic offers a less complex and more computationally efficient alternative, albeit
at the cost of reduced expressivity, particularly in representing inter-entity re-
lationships. Description logics ([Baa+07]) strike a balance between these two
extremes, offering greater expressivity than propositional logic but with less
complexity than first-order logic, thereby enabling more efficient processing by
reasoning systems [Baa+07, p.43].

One fundamental approach to knowledge representation is the utilization of
graphs in which nodes represent entities and edges denote the relationships
between these entities. A prevalent format for such representation is the resource
description framework (RDF), a standard model widely adopted for data inter-
change on the web [HKR09].

In RDF, knowledge is structured as a directed graph composed of triple state-
ments:

subject predicate object

The subject and the object represent nodes in the graph and the predicate is an
edge. The predicates are also referred to as traits, properties or aspects. The
nodes within this framework can be either entities or literals [HKR09]. Entit-
ies represent tangible or conceptual elements in the world, such as processes,
robots, humans, or physical objects. Both entities and predicates are uniquely
identified using uniform resource identifiers (URIs) [HKR09, p.21]. Literals, on
the other hand, are basic data types such as strings or numbers [HKR09, p.22].
It is important to note that in RDF triples, the subject must always be an entity,
whereas the object can be either an entity or a literal [HKR09, p.24]. Addition-
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1 scalable:Ur5-2 a scalable:Ur5, owl:NamedIndividual ;
2 rdfs:label "scalable:ur5"ˆˆxsd:string ;
3 skiros:BaseFrameId "cora:Robot-1"ˆˆxsd:string ;
4 skiros:CartesianGoalAction

"/cartesian_trajectory/goal_action"ˆˆxsd:string ;
5 skiros:OverlayMotionService

"/cartesian_trajectory/overlay_motion"ˆˆxsd:string ;
6 skiros:CartesianStiffnessTopic

"/cartesian_param_filter/stiffness_goal"ˆˆxsd:string ;
7 skiros:CartesianWrenchTopic

"/cartesian_param_filter/force_goal"ˆˆxsd:string ;
8 skiros:CompliantController "compliance_controller"ˆˆxsd:string ;
9 skiros:JointConfigurationController

"scaled_pos_traj_controller"ˆˆxsd:string ;
10 skiros:DiscreteReasoner "AauSpatialReasoner"ˆˆxsd:string ;
11 skiros:FrameId "scalable:Ur5-2"ˆˆxsd:string ;
12 skiros:LinkedToFrameId "ur5e_base_link"ˆˆxsd:string ;
13 skiros:MoveItGroup "manipulator"ˆˆxsd:string ;
14 skiros:MoveItReferenceFrame "ur5e_base_link"ˆˆxsd:string ;
15 skiros:MoveItTCPLink "ur5e_tcp_link"ˆˆxsd:string ;
16 skiros:hasA scalable:WsgGripper-3 .

Listing 1: An excerpt from the semantic description of a UR 5e robot in the Turtle format. It
includes some of the necessary knowledge to parameterize motion skills and perform
spatial reasoning, such as the coordinate frames in lines 14-15. In line 16 the relation
to the WM entry of the gripper is defined. That entry has its own description, such as
communication ports or capabilities.

ally, the subject or object cannot be unconnected and the predicate cannot be
a literal.

When multiple triples are combined, they form a labeled, directed multigraph,
characterized by nodes with multiple incoming and outgoing edges. RDF data
can be serialized in various formats, with Turtle [HKR09, p.25] and RDF/XML
[HKR09, p.27] being the most common ones. An excerpt of the knowledge
representation of a robot system can be seen in Listing 1.

Knowledge in RDF is typically stored in knowledge bases, with each base usu-
ally dedicated to a specific domain. However, it is also feasible to construct
knowledge bases encompassing multiple domains. An illustrative example of
this is Wikidata [VK14], which aims to aggregate all data relevant to Wikipedia.
These knowledge bases can be interconnected to create a comprehensive know-
ledge graph, facilitating the reuse of knowledge and enabling complex queries
about the world [CA22].
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Figure 4: Two excerpts from the SkiROS2 ontology. Physical objects like “robot” and “container”
are formalized. Furthermore, abstract concepts like “skills” and “conditions” are defined.

3.2 Ontologies

In computer science, an ontology is a taxonomy of types, properties and rela-
tionships between entities within a specific domain.[Baa+07]. It represents a
formal and explicit specification of a set of concepts and the interconnections
between these concepts [Gru93].

Ontologies are broadly categorized into two categories: upper ontologies and
domain ontologies. Upper ontologies are general-purpose ontologies that are not
specific to a particular domain [SK16, p.333]. They describe general concepts
such as space, time or matter. An example for an upper ontology is the suggested
upper merged ontology (SUMO) [NP01] that defines terms such as “agent“.
Domain ontologies are ontologies that are specific to a field [SK16, p.333].

To represent ontologies, various standards are employed, including the resource
description framework schema (RDFS) and the Web Ontology Language (OWL).
RDFS is a an extension of RDF. It is a simple, yet powerful ontology language
that extends RDF by adding basic vocabulary to describe properties and classes.
OWL is a more expressive ontology language that is also based on RDF. In addi-
tion to the vocabulary of RDFS, it adds more vocabulary to describe properties
and classes. It also adds more vocabulary for describing relations between classes
and properties such as cardinality, equality, disjointness, etc. OWL is a World
Wide Web Consortium (W3C) recommendation.
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The design of ontologies is a complex task and generally an engineering process
that is never fully completed. There are different methodologies for designing
ontologies. One of the most common is the NeOn Methodology [SGF12]. It
is a methodology for building ontologies and ontology networks and suggests
procedures for ontology development.

In the field of robotics, several domain ontologies have been developed. The Core
Ontology for Robotics and Automation (CORA) [15i] serves as a foundational
ontology in systems such as SkiROS2 (Paper 1). Rosetta [MJ13] represents
another domain-specific ontology for industrial robotics. In the realm of service
robotics, the Socio-physical Model of Activities (SOMA) [BPB18], developed
as part of the KnowRob framework, adapts concepts from the OpenCyc onto-
logy [Len95] for common sense reasoning and is utilized for generating reactive
action plans in household tasks [Lei+19]. Cyc is particularly comprehensive.
It contains about 1.5 million general concepts and more than 25 million general
rules and assertions [CA22, p.424]. A comprehensive review of ontology-based
knowledge representation in robotic systems is provided in [Oli+19].

3.3 Reasoning

Reasoning is the process of utilizing existing knowledge to infer new information
or answer specific questions about the world [SK16, p.338]. It is the process of
deriving new knowledge from existing knowledge. This process involves the
application of logical techniques such as deduction and induction to derive new
knowledge from established facts.

Deductive reasoning involves inferring specific facts from general principles or
known truths [ICK16, p.22]. For instance, if it is known that a robot is located
in a room and that the room is within a building, one can deductively infer
that the robot is in the building. Deductive reasoning is characterized by its
precision and certainty in conclusions drawn from given premises.

Conversely, inductive reasoning entails formulating general rules or principles
based on specific observations or facts [ICK16, p.22]. Using the previous ex-
ample, observing that a robot is in a room within a building might lead to the
inductive generalization that robots are typically found in buildings. Inductive
reasoning is essential for hypothesis formation and theory development, though
it carries a degree of uncertainty compared to deduction.

Reasoning plays a crucial role in contextualizing actions within AI systems,
particularly in robotics. It enables the automatic deduction of necessary know-
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1 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
2 SELECT ?name
3 ?email
4 WHERE
5 {
6 ?person a foaf:Person .
7 ?person foaf:name ?name .
8 ?person foaf:mbox ?email .
9 }

Listing 2: An example of a SPARQL query that outputs the names and email addresses of all
persons.

ledge, allowing for the dynamic parameterization of actions based on their con-
text [CA22, p.413]. Together with reasoning, the abstract formulation of the
knowledge makes sure that the knowledge can be applied to situations that were
unknown when the knowledge was specified [CA22, p.416].

SPARQL protocol and rdf query language (SPARQL) is a powerful tool to query
RDF graphs and to reason about the information they contain [HKR09, p.262].
SPARQL queries, as demonstrated in Listing 2, are supported by systems such
as the SkiROS2 world model in Paper 1. Additionally, in SkiROS2 reasoning
capabilities can be manually coded into skills, and custom reasoners, such as
the AAU Spatial Reasoner, can be implemented for specialized applications.

Prolog, a logic programming language rooted in first-order logic, is frequently
employed for reasoning tasks [RND10, p.339]. It operates on a formal system of
rules to derive new facts and is characterized by its declarative nature, where the
control flow is not explicitly defined by the programmer. Prolog-based systems
typically adhere to the closed-world assumption, assuming that any statement
not known to be true is false [RND10, p.339].

An exemplary implementation of a knowledge-based architecture with integrated
reasoning capabilities is KnowRob (Knowledge processing for robots) [TB09].
KnowRob employs Prolog-based reasoning, primarily follows the closed-world
assumption [RND10, p.339], but can also accommodate the partially open-world
assumption through the use of ’computables’ [TB13]. Its second-generation
architecture features a logic interface to a hybrid reasoning kernel, illustrating
the advanced integration of reasoning in robotic systems [Bee+18].
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4 Robot Skills

Robot skills, in the context of robotics and artificial intelligence, are a type of
action that are typically defined as adaptable and re-parameterizable building
blocks for robot programs [Bøg+12]. These skills can be essential components
in the repertoire of a robotic system, enabling it to perform a variety of actions
and operations. The concept of robot skills has been described in the literature
as “predefined building blocks” [Bøg+12], “reusable robot programs” [Ste17], or
“recurring actions” [Rov17]. Central to the utility of robot skills is their ability to
translate abstract symbolic reasoning into physical actuation, interfacing high-
level decision-making processes with low-level control mechanisms [KB17].

This section introduces the notion and important aspects of robot skills. It will
also discuss procedure representations for sequencing and combining skills, the
use of behavior trees (BTs) as a mathematical model for skill representation,
and the integration of motion generators. Finally, knowledge integration into
robot skills is discussed.

4.1 Skill Aspects and Procedure Representation

In robotic systems, the execution of tasks fundamentally relies on the robot’s
ability to perform a sequence of actions through its actuators [Bøg+12]. When
these actions are defined as building blocks with specific semantics, they are
referred to as “robot skills” [Bøg+12]. This contrasts with the actions in RL,
which are often incremental and executed at a granular level.

Robot skills are characterized by their modularity and reusability, essential prop-
erties that enable the construction of complex procedures from simpler compon-
ents [Ped+16]. This modularity also facilitates the easy exchange and adapt-
ation of skills to different tasks and contexts [Bru+07]. The parameterization
of skills is another crucial aspect, allowing for their customization to meet the
specific requirements of a task and to align with the current operational context
[Bru+07]. The level of autonomy in skill execution varies; some skills function
as primitive building blocks, while others encompass more complex procedures
with perception, internal reasoning and error handling capabilities.

Pre- and post-conditions can be used as part of the skill model [Bøg+12] and
provide semantics. They define necessary prerequisites in order to perform a
skill and additionally also check after the execution whether the intended goal
is achieved. A concrete version of these checks is suggested in [PHK14] and used

19



Sk
ill 

Pa
ra

m
et

er
s

Pre- Hold- Post-conditions

Pr
ec

on
di

tio
n 

C
he

ck Holdcondition Check

Po
st

co
nd

iti
on

 C
he

ck

Pa
ra

m
et

er
Va

lu
es

Execution

Skill Flow Information Flow Input/Output

C
ur

re
nt

St
at

e St
at

e 
C

ha
ng

e

Figure 5: The SkiROS2 skill model with the pre-, hold- and post-conditions that guard the execu-
tion. ©2023 IEEE

in that line of research [Rov+17; RGK17; Rov+18]. The skill model is shown in
Figure 5. It is noteworthy that this definition of skill based on conditions allows
for a broad interpretation of what constitutes a skill. This openness facilitates
the integration of pre-existing procedures into the skill ecosystem, enhancing
adaptability and ease of adoption.

A comprehensive review of action representations across three domains — vision,
robotics, and AIs — is provided in [Krü+07], highlighting the varied interpreta-
tions of actions in these fields. A detailed taxonomy and systematic classification
of action representations in robotics are further explored in [Zec+19].

Robot skills can be categorized based on their level of granularity, typically
divided into lower-level skills, which are closely tied to hardware, and higher-
level skills, which are constructed from these foundational skills [Zec+19]. An
example of this differentiation is seen in the SkiROS2 skill model, that distin-
guishes between primitive and compound skills. Primitive skills are semantically
atomic and directly implementable, while compound skills enable the combin-
ation of multiple primitive or compound skills into more intricate procedures
using BTs.

Procedure Representation

In addition to the aspects of the skill model, the choice of procedure rep-
resentation has a huge impact on the modularity and efficiency. Among the

20



popular models for procedure representation are finite state machines (FSMs),
hierarchical finite state machines (HFSMs) and Petri nets. Traditionally, many
robot programming solutions have relied on FSMs [HMU01]. However, FSMs
are often found to be less suitable for complex tasks due to their lack of modu-
larity and scalability issues, as discussed in recent studies [BZS21; Iov+23b].

HFSMs [GLL99] extend the basic FSM framework by incorporating hierarchical
structures, thereby enhancing modularity and scalability. This structural im-
provement makes HFSMs more adaptable than traditional FSMs, though they
still encounter limitations when dealing with highly complex tasks. Petri nets
[Ros04], on the other hand, offer a more expressive model for procedure repres-
entation compared to HFSMs. The increased expressiveness of Petri nets allows
for a more nuanced representation of procedures, but this comes with a higher
level of complexity.

In recent developments, an increasing number of robot programming solutions
are adopting behavior trees (BTs) [CÖ17a]. BTs provide a flexible and scalable
approach, making them particularly effective for a wide range of tasks. Their
structure supports dynamic decision-making and adaptability, essential qualities
for robotic systems operating in unpredictable or variable environments.

4.2 Behavior Trees

I don’t think there is a reason to move away from the behavior-tree concept.
— Torsten Kroeger, CTO of Intrinsic.ai2

Behavior trees (BTs) are a mathematical model for procedure representation
that is based on graph theory. They surpass finite state machines (FSMs) in
expressiveness [BZS21] and offer greater modularity [BZS22], making them par-
ticularly suitable for complex robotic tasks. Initially described in the context of
computer games [CÖ14], BTs have since found successful applications in robot-
ics, as evidenced by recent surveys and analyses [Iov+22; Ghz+20].

A BT is defined as a directed acyclic graph G(V,E) that comprises |V | nodes and
|E| edges. It consists of control flow nodes or processors, and execution nodes.
The classical formulation defines four types of control flow nodes: 1) sequence,
2) selector, 3) parallel and 4) decorator [Mar+14]. Each BT has an initial node

2On the question on how the program flow can be dynamically adapted to changes in the
environment. https://www.youtube.com/watch?v=kr3AqXjK-pk&t=2594s
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without parents, defined as Root, and one or more nodes without children, called
leaves. An example of a BT is shown in Figure 6.

The execution of a BT involves periodically injecting a tick signal into the Root,
which then propagates through the tree according to the control flow nodes and
the return states of their child nodes. By convention, this signal propagates
from left to right, allowing for the prioritization of certain paths [CÖ17a].

The sequence node functions as a logical AND, succeeding only if all its children
succeed, and failing if any child fails. The selector node, also called fallback,
represents a logical OR. It fails only if all its children fail, ceasing to tick further
children upon the success of any child. The parallel node forwards ticks to all
its children, failing if any child fails. Decorator nodes are used to implement
custom functions such as altering return signals.

The leaves of the BT are the execution nodes that, when ticked, perform an
operation and output one of the three signals: success, failure or running. In
particular, execution nodes subdivide into 1) action and 2) condition nodes. An
action performs its operation iteratively at every tick, returning running while
it is not done, and success or fail otherwise. A condition never returns running:
it performs an instantaneous operation and returns always success or failure.

In [RGK17], the integration of condition nodes into action nodes within the
extended behavior tree (eBT) format is proposed. This integration not only
streamlines the tree, making it more compact and interpretable, but also facilit-
ates interfacing with hierarchical task network (HTN), as discussed in Section 5.
An example of an eBT is illustrated in Figure 6.

A key advantage of BTs is their modularity and high level of separation of con-
cerns [Der08]. Unlike finite state machines (FSMs) [HMU01] which follow a
one-way control transfer, BTs enable a two-way control transfer due to their re-
turn signal mechanism. This is akin to the difference between GOTO statements
versus function calls in programming, where function calls enhance readability
and reusability [CÖ14; BZS21; BZS22]. Furthermore, the periodic tick signal
allows reactive behaviors as shown in [Rov+18; Mar+14; May+21].

BT implementations typically utilize a blackboard for information exchange,
often implemented as a volatile key-value store, ensuring that the information
persists until the BT execution is halted.

For a comprehensive understanding of BT in robotics, readers are referred to
the BT book [CÖ17a] as well as a recent survey on BTs in robotics [Iov+22]. A
further analysis on the usage of BTs in robotics is given in [Ghz+20].
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Figure 6: A BT to check for a collision with a precondition of having a force above 10 N and a
postcondition of having a force below 1 N. As a mitigation a new motion is commanded
while waiting for 3 s. The left side shows a standard BT and the right side the more
compact eBT formalism.

4.3 Combining Behavior Trees with Motion Generators

In [Rov+18], a new way to model skills is suggested. Previous work typically
created skills as self-contained primitive blocks. In contrast to that, the authors
suggest a composable structure that allows for concurrent motion primitives
with interferences. To achieve this, it exploits the additive property of MGs. In
the suggested structure, a BT is used to dynamically activate motion primitives
when conditions trigger.

A key idea is to have small and composable building blocks to create force-
sensitive robot motions. The robot arm is controlled in the Cartesian end-
effector space. A motion generator (MG) is defined as a Cartesian impedance
controller that can 1) superimpose a varying Cartesian wrench over the mo-
tion and 2) follow safety requirements by limiting velocities, accelerations and
torques. These requirements are addressed by the Cartesian impedance control-
ler implementation in [MS22].

This concept is particularly effective in implementing recovery behaviors in scen-
arios with uncertainties. For example, in a piston insertion use case similar
to Figure 1, superimposed motion primitives are activated for error mitigation
upon detection of deviations in the insertion process. Furthermore, this formula-
tion proves beneficial in contact-rich tasks, offering a significant advantage over
DMPs by eliminating the need to teach specific motions. Moreover, the explicit
setting of motion parameters, as opposed to implicit formulations like neural
network (NN) or DMPs, facilitates a more seamless interface with reasoning
systems and knowledge integration.
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Another notable benefit of this approach is its high level of abstraction from
individual joint control, which accelerates the learning process for RL policies
[VGK19]. This abstraction also simplifies the transfer of learned behaviors from
simulation environments to real-world applications, as discussed in the survey
on simulation-to-reality transfer in robotics [Cha+19] and shown in Paper 2.

4.4 Knowledge Integration

The integration of knowledge into robot skills is a critical step in the development
of scalable and adaptable robotic systems [CA22, p.428]. With established skill
models and procedure representations in place, the focus of this section shifts
to how knowledge can be effectively incorporated into these skills.

Knowledge representation plays an essential role in decoupling knowledge from
the procedural code [CA22, p.424]. This separation is crucial for reusing skills
across different tasks and contextualizing them according to varying require-
ments [KB17]. It also facilitates the easy exchange of knowledge without neces-
sitating code modifications, a key factor for scalable skill-based systems. Given
the dynamic nature of knowledge, a robust skill model should support the re-
usability of skills even as the underlying knowledge evolves.

Despite its importance, many existing skill platforms and procedure represent-
ation implementations lack provisions for knowledge integration. In the realm
of FSMs, popular implementations such as SMACH [Ros], SMACC2 [Git], and
FlexBE [SKv16] do not inherently support knowledge integration. However, re-
search conducted at Lund University, particularly within the ROSETTA and
SMERobotics projects, has demonstrated viable approaches to achieve this in-
tegration [SM13; MJ13; Ste+15; SM15; Top+18].

In service robotics, the KnowRob framework exemplifies the successful integra-
tion of knowledge into robot skills [TB13; Bee+18]. The cognitive robot abstract
machine (CRAM) [BMT10; BKV23] within this framework generates action
plans based on the represented knowledge, showcasing the practical application
of knowledge integration in robotic systems.

While popular BT implementations like BehaviorTree.CPP3 and pytrees4, as
well as comprehensive robotic frameworks like CoSTAR [Pax+17], do not offer
direct knowledge integration, SkiROS2 stands out as a platform that effectively
incorporates structured knowledge integration within BTs. This capability dis-

3https://github.com/BehaviorTree/BehaviorTree.CPP
4https://github.com/splintered-reality/py_trees
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tinguishes SkiROS2 as a unique and advanced solution in the field of robotic
skill modeling.
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5 Task Planning

Task planning, also known as action planning, is a critical capability in robotics,
enabling robots to strategize their actions to achieve specific goals [GNT04].
This process involves the formulation of high-level plans that guide the robot’s
actions in pursuit of its objectives.

In 1971, the Stanford Research Institute Problem Solver (STRIPS) was intro-
duced [FN71] and with it, robot control has been among the first applications
for planning [SK08, p.217]. STRIPS marked a significant milestone in the ap-
plication of planning algorithms in robotics, as evidenced by its implementation
in the control of the robot SHAKEY [Nil84]. One of the seminal challenges
identified early in the development of planning systems was the need for a ro-
bot control architecture that could effectively bridge the gap between abstract
high-level plans and concrete low-level robot control [Sic09]. Additionally, this
architecture needed to account for the inherent uncertainties present in real-
world environments [Sic09].

To address a planning problem, it is essential to define a planning domain,
which encompasses the potential actions, their prerequisites, and their effects.
Ideally, solving a planning problem would require a comprehensive simulation
of the world. However, this approach is often impractical due to limitations in
available information and the prohibitive computational costs involved. Con-
sequently, a trade-off similar to that in knowledge representation and reasoning
(as discussed in Section 3) emerges between expressivity and efficiency. To
manage this trade-off, planning domains are frequently simplified to symbolic
states, reducing complexity while retaining essential information for decision
making [SK08, p.215].

5.1 PDDL and Hierarchical Task Networks

In the field of robotic planning, the planning domain definition language (PDDL)
has emerged as the de facto standard to describe planning domains [SK08,
p.216]. PDDL [Aer+98] has seen various extensions, such as Multi-Agent PDDL
[Kov12], to enhance its capabilities. PDDL is also used in ROSPlan [Cas+15]
and PlanSyS2 [Mar+21]. In SkiROS2, PDDL is utilized in combination with the
eBT format. SkiROS2 can automatically generate planning domain descriptions
from the pre- and post-conditions of skills [Cro+17; RGK17]. The knowledge
stored in the WM and the defined planning goal are used to create a problem
description, thereby obviating the need for users to specify anything in PDDL
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other than the goal.

Hierarchical task networks (HTN) are a method for automated planning and
decision making [GNT04, Chap.11]. A key feature is that they focus on de-
composing complex tasks into simpler subtasks. HTN are more focused on how
to perform a task and to decompose the actions rather than searching for a
goal state. In [RGK17], a combination of BTs and HTN is suggested that com-
bines the advantages of deliberate planning with the dynamic expansion and
the reactivity of BTs. This method is implemented in Paper 1 and utilized in
Papers 2, 4, 5, 6.

5.2 Backchaining of Behavior Trees

A different type of planning method is suggested in [CAÖ19].

This method leverages the capabilities of BTs in conjunction with backchaining
to develop a reactive sequence of actions that lead to a specified goal state. The
algorithm starts from the goal state and iteratively selects actions to achieve
this goal. When it encounters preconditions that are not yet satisfied, the BT
is expanded to include actions that can fulfill these preconditions.

A key advantage of this approach is the reactivity of the resulting BT without
explicit replanning. The robot can immediately adapt to changes in the en-
vironment, re-performing actions if necessary and skipping actions that are no
longer required. This reactivity makes BTs particularly suitable for collab-
orative tasks where the environment may change dynamically. Additionally,
unlike static planning methods, the BT in this approach is not fixed and can
be expanded during runtime to respond to new or changing conditions in the
environment.

This backchaining algorithm has been applied in various research works, includ-
ing [Sty+22; Gus+22; Iov+23a], and is also utilized in Paper 7. For a com-
prehensive review of planning with BTs, including the backchaining method,
readers are referred to Section 4.2 of [Iov+22], which provides an extensive
overview of this topic.
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6 Robot Learning

Learning is a general term that can be described as “as the ability to improve the
system’s own performance or knowledge based on its experience” [SK08, p.219].
This experience is typically garnered through data acquired from interactions
with the environment or a human operator.

Historically, learning in robotics was grounded in symbolic representations,
where new knowledge was generated through methods such as deduction, induc-
tion, or analogy [SK08, p.219]. However, the landscape of learning has shifted
significantly with the advent of ML, particularly statistical learning methods
used for tasks such as data classification. The breakthroughs in deep learning,
exemplified by DanNet [Cir+11] and AlexNet [KSH12] post-2012, coupled with
increased computational power, have made statistical ML methods popular.

This section delves into different facets of robot learning, beginning with LfD as
a method for imparting skills to robots. LfD is instrumental in teaching robots
by example, enabling them to replicate and adapt these behaviors for similar
tasks. Following this, the focus shifts to the learning with BTs. The section
then introduces RL as a technique for policy learning in robotics. RL involves a
trial-and-error approach in which robots learn optimal behaviors based on feed-
back, but it also presents challenges, such as dealing with complex real-world
environments and the need for efficient learning algorithms. Lastly, Bayesian
optimization (BO) is explored as a method for policy search, offering a sys-
tematic way to optimize policy parameters, especially in scenarios where policy
evaluation is resource-intensive.

6.1 Learning from Demonstration

Learning from demonstration (LfD) is a way to teach robots by showing them
how to perform a task. The goal is to learn a mapping between world states and
actions [Arg+09]. LfD methods are especially useful when the operator does not
have sufficient knowledge to program the robot. The term LfD is sometimes used
interchangeably with “imitation learning” [SK08, p.1995] or “programming by
demonstration” [SK08, p.1371][Arg+09]. However, some authors see program-
ming by demonstration as a rather limited direct creation of programs without
generalization.

In LfD there are three main methods [KP14]:
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1. Kinesthetic Teaching: Here, the robot is physically guided by an oper-
ator to perform tasks, allowing for direct and intuitive teaching.

2. Teleoperation: In this method, the robot is remotely controlled, for
example, via a joystick, enabling the operator to demonstrate tasks from
a distance.

3. Observational Learning: The robot observes a human operator per-
forming tasks. A key challenge in this method is the robot’s ability to
interpret human actions and solve the correspondence problem [Arg+09].

The research in LfD intersects with the one in the motion representations in
Subsection 2.2. Many of the motion representations like DMPs build upon
demonstrations, generalize them and execute them on robot systems.

Examples for observational learning are a line of research around Ramirez-
Amaro et al. [Alb+11; RBC14; RBC15; RBC17] where the behavior of a human
is observed, segmented and then imitated on a robot.

A programming by demonstration approach with kinesthetic teaching is intro-
duced by Stenmark et al. in [SHT17]. The explicit challenges of synchronized
dual-arm motions are covered in [Ste+17]. With this approach, the learned skills
can also be saved in a knowledge base and reused in other tasks.

Since many LfD methods like [SHT17] are online methods that require direct
access to the robot, they may be less suitable for industrial robots. The worker
does not only need to be physically present at the robot, but the system is also
taken out of production during the teaching. Advanced LfD approaches ne-
cessitate additional infrastructure for analyzing, storing, and generalizing from
demonstrations. Demonstrating contact-rich tasks is particularly challenging
and requires careful consideration.

A comprehensive survey on LfD methods and their categorization is provided
in [Arg+09]. Furthermore, the “Handbook of Robotics” has dedicated section
on learning from humans [SK16, Sec.74] and programming by demonstration
[SK08, Sec.59].

6.2 Learning with Behavior Trees

The primary methodologies for learning BTs encompass RL, evolutionary meth-
ods and LfD. These methods generally focus on either refining the structure of
the BTs or optimizing their parameterization.
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The structural learning of BTs has been explored in several studies, including
[LBC10; Per+11; CPO18]. A novel line of research employs genetic program-
ming to evolve the structure of BTs, as demonstrated in [Iov+21]. In [Sty+22],
the learning process is integrated with inputs from the backchaining planner dis-
cussed in Subsection 5.2. Furthermore, [Iov+23a] combines structural learning
with LfD.

The LfD approach used in [Iov+23a] itself is introduced in [Gus+22]. It eases
demonstration efforts by automatically deducing reference frames and precon-
ditions. Another approach is shown in [Fre+19; Wat+22] where they learn a
decision tree first and then convert it into a BT. In [Gug+23] a method is
presented that learns BTs from the execution traces of the robots.

A more comprehensive review of learning applications with BT is provided in
Section 4.1 of [Iov+22].

6.3 Reinforcement Learning (RL)

ML methods can be divided into three major categories [RND10, p.694]:

1. Supervised learning

2. Unsupervised learning

3. Reinforcement learning (RL)

Supervised learning methods utilize data that is labeled with the correct out-
come to learn a classifier [RND10, p.695]. A classical example is to distinguish
cats and dogs or to recognize written numbers in an image. Supervised learn-
ing is used in Paper 6 to learn the Performance and Feasibilty Model (PerF).
The second category of methods is unsupervised learning. These methods do
not rely on labeled data, but instead just use the data itself [RND10, p.695].
A classical example is an automatic categorization of data points into different
clusters. A special subcategory within unsupervised learning are self-supervised
learning methods [RND10, p.986]. Self-supervised methods use the data itself
to generate the labels. A classical example is to predict the next frame in a
video sequence. Here, the next frame can be used as a labeled data point for
the prediction based on the current frame.

The third category of methods are reinforcement learning (RL) methods. The
important distinction from the other two methods is that there is not a defined
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dataset [RND10, p.695]. Learning is performed via trial and error [SB18, pp.369].
In RL, data is generated through interaction with the environment, meaning the
robot’s decisions directly influence the data it encounters. The primary goal in
RL is to develop a policy, a strategy that maximizes a reward. This policy maps
states to actions, determining the action to be taken given the current state
of the system. The reward signal, typically a scalar value, is provided by the
environment and used to evaluate the actions of the policy. Unlike supervised
learning, the policy in RL must learn the optimal actions through a process of
trial-and-error [SB18, pp.369].

A unique challenge in RL, not present in supervised or unsupervised learning, is
the balance between exploration and exploitation [SB18, p.3]. The agent must
explore the environment to discover optimal actions while also exploiting its
existing knowledge to make effective decisions. This balance is crucial for the
success of an RL-based system as it navigates complex and often unpredictable
environments [SB18, p.26].

Markov Decision Processes

RL problems are commonly formulated as Markov decision process (MDP)
[SB18, p.47]. A MDP is a tuple 〈S,A,P,R〉 that consists of a state space S, an
action space A, a transition function P(s,a) and a reward function R(s,a, s′). A
fundamental characteristic of MDPs is their Markovian property, signifying that
the probability of transitioning to a future state depends solely on the current
state and action, and not on the sequence of past states. This property sim-
plifies the decision-making process by focusing only on the present state. The
transition function P defines the probability of transitioning from one state to
another state given an action. The reward function R(s,a, s′) defines the re-
ward that is obtained when transitioning from one state to another state given
an action. The goal is to find a policy π that maximizes the expected return J
[SB18, p.53].

The implementation of Papers 3, 4, 5, 6 strongly follow this definition. The
state space S is the joint configuration of the robot and the pose of objects. The
action space A is the reference pose of the controller, the stiffnesses and the
wrench applied with the EE. The reward functions R are the reward function
that is defined in the respective papers.

31



Classes of Reinforcement Learning Algorithms

One criterion for evaluating RL methods can be on a spectrum from value-based
methods to policy-search methods. Value-based methods learn a value function
that is used to select the best action. Policy-search methods directly search for
the optimal policy [RND10, p.848].

Value-based Methods: Value-based methods focus on learning a value func-
tion, which is then utilized to select the most advantageous action [RND10,
p.27]. This category includes two primary types of value functions: the state-
value function V (s) and the state-action-value function Q(s, a). The state-value
function V (s) represents the expected return when starting in state s and ad-
hering to a policy π. Conversely, the action-value function Q(s, a) denotes the
expected return when in state s, taking action a, and subsequently following
policy π. The policy π is derived from the value function by choosing the action
associated with the highest value [SB18, p.27]. Learning the value function can
be achieved through a model of the environment or direct interaction with the
environment.

However, even with function approximation ([SB18, p.198]) value-based methods
face challenges when scaling to high-dimensional state spaces, a phenomenon
known as the curse of dimensionality. This limitation becomes particularly
evident in complex tasks, such as those that involve contact-rich interactions.
For example, in the research presented in Papers 3, 4, 5, 6, the state space has
a dimensionality of 14, with an additional 7 dimensions for each object involved.
The action space itself has a dimensionality of 19, as detailed in the respective
papers.

Policy Search Instead of building a model of all the states, policy search
methods directly search for the optimal policy [RND10, p.848]. This class of
methods is “the real renaissance” [KCC13] of RL methods in robotics.

In order to optimize for policy parameters, they follow the policy search for-
mulation [DNP13; Cha+19; Cha+17]. A dynamical system is modelled in the
form:

st+1 = st +M(st,at) (1)

with continuous valued states s ∈ RE and continuous valued actions a ∈ RU .
The transition dynamics can generally be modeled by the simulation of the robot
or the real robot system: M(st,at).
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In a single-objective case, the goal is to find a policy π,a = π(s|θ) with policy
parameters θ such that a maximizes the expected long-term reward when ex-
ecuting the policy for T time steps:

J = E
[
T∑
t=1

U∑
u=1

ru(st,at, st+1)|θ
]
, (2)

with rs(st,at, st+1) being the immediate reward of reward function u for being
in state s and performing action a at time step t.

Policy search methods in RL can be categorized into model-based and model-free
approaches. Model-based methods involve learning a model of the environment,
which can then be used to simulate environmental dynamics and facilitate action
planning [PN17]. An illustrative example is the pendulum swing-up task, where
the dynamics of the pendulum can either be explicitly modeled using differential
equations or can be learned efficiently through interaction with the environment.

Model-free RL methods, on the other hand, do not rely on an environmental
model. Instead, they focus directly on learning an optimal policy. These meth-
ods are often lauded for their efficiency in finding effective policies without the
need for an explicit environmental model. A comprehensive survey on policy
search methods is provided in [DNP13], which discusses various classes of policy
search methods along with their respective advantages and disadvantages. A
more recent survey [Cha+19] focuses on efficient policy search methods, high-
lighting recent advancements in the field.

Despite their efficiency, policy-search methods are sometimes criticized for being
sample inefficient, particularly because they do not learn a model of the envir-
onment. However, in many robotics applications, developing an accurate model
of the environment can be prohibitively complex and costly. For example, in
contact-rich tasks as explored in Papers 3, 4, 5, 6, a comprehensive model
would need to encompass the dynamics of the robot, objects, friction, contact
forces, contact points, stiffnesses, dampings, and friction at the contact surfaces.
Chatzilygeroudis et al. [CM18] address this challenge by using a simulator as
a base model and augmenting it with a residual model that corrects the sim-
ulator’s predictions, thereby enhancing the accuracy and applicability of the
model in complex robotic tasks.

The dynamics are formulated as follows:

st+1 = st +M(st,at) + f(st,at), (3)

With f(st,at) being the residual model between simulation and reality. However,
with contact-rich tasks, we saw that such updates of the state were too difficult
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to learn to improve the policy search in simulation. Instead, we used a model-
free policy search method that directly searches for the optimal policy.

6.4 RL in Robotics

Robotics is both a challenging and promising field for RL. The field is challen-
ging due to the high-dimensional continuous state and action spaces, prolonged
training durations and significant safety concerns [KP14]. However, it is also
promising, as robots have the capability to directly manipulate the physical
world and address real-world problems.

RL is particularly useful for tasks that are difficult to teach in a way that robots
can replicate, such as certain contact-rich tasks [Elg+23]. In some scenarios,
even the instructor may not know the optimal solution. Additionally, RL offers
adaptability to new task variations or environmental changes.

However, robotic RL faces distinct challenges due to the nature of hardware in-
teraction. Actions, such as arm trajectories, need to be smooth and continuous.
The learned policy must ensure safety for the environment, the robot and hu-
mans, even when learning [SB18, p.477]. Moreover, learning should be sample
efficient, as data collection in robotics is often resource-intensive [Elg+23]. Many
tasks do not inherently reset the environment, necessitating manual intervention
by operators. The true state of the system may be unobservable or subject to
noise, and the policy must operate in real-time [KP14].

Incorporating prior information or biases into the learning process can be be-
neficial to address these challenges. However, this requires that the learning
method and the policy to be compatible with such integrations.

An efficient model-based RL approach is introduced in [Cha+17], which typic-
ally employs Gaussian process (GP) regression to learn a model. This approach
is further extended in [CM18] to learn a residual model that corrects the pre-
dictions of a simulator.

Deep RL has been successfully applied to learn reference points and stiffnesses
in compliant controllers [Yan+22], as well as for complex in-hand manipula-
tion tasks, such as cube manipulation [And+20]. In [NLZ22], which forms the
baseline in Paper 7, deep neural network (DNN) are used to select and para-
meterize behavior primitives.

While these approaches are targeted, there are instances where deep RL has been
effectively applied in an end-to-end manner [Lev+16]. Recent work also explores
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the integration of language into the learning process [Bro+23], expanding the
scope and capabilities of RL in robotics.

Sim2Real Transfer

All models are wrong, but some are useful.
— George Box

In the field of RL, the concept of Sim2Real transfer addresses the challenges
of training RL algorithms in real-world robotic systems. Due to efficiency con-
straints and safety considerations, particularly in industrial settings with fragile
and costly environments, it is often impractical or risky to train RL methods dir-
ectly on actual robot systems [Elg+23]. Consequently, the practice of training
in simulation and subsequently transferring the learned policies to real systems,
known as Sim2Real transfer, has become a vital approach.

The transfer from simulation to reality is not always straightforward. Discrep-
ancies between the simulated and real environments can hinder the effective
application of RL methods trained in simulation [SB18, p.476]. This issue is
particularly pronounced when the simulation lacks sufficient accuracy, leading
to policies that may not perform as expected in the real world.

One strategy to enhance the transferability of policies is through domain ran-
domization [JDJ17; Pen+18; Pau+20; Meh+20]. This technique involves ran-
domizing various aspects of the simulation to encompass a broader range of
potential states. By exposing the policy to diverse simulated conditions, it
becomes more robust and adaptable, increasing the likelihood of a successful
transfer to real-world scenarios. This approach has been utilized in Papers 3,
4, 5, 7.

The level of control inputs significantly impacts the transferability of policies.
Policies based on lower-level control states, such as joint torques, tend to trans-
fer less effectively than those using higher-level controls like Cartesian con-
trol [Cha+19]. Lower-level controls are more susceptible to minor environmental
variations, whereas higher-level controls, such as Cartesian impedance con-
trol [MS22], often include self-stabilizing elements that facilitate transfer [KP14].

In Papers 3, 4, 6, policies learned in simulation are transferred and evaluated
on real robot systems. Paper 5 leverages the most successful set of parameter
from simulation to expedite learning on real systems. Additionally, Paper 7
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assesses policies learned in the simulation within other unseen simulated envir-
onments, providing a validation mechanism for their effectiveness.

Advantages and Limitations of RL in Robotics

RL methods offer significant potential in robotics, enabling systems to adapt
and learn autonomously. This adaptability is a substantial advantage over tra-
ditional model-based designs, which require pre-specification of all parameters
and behaviors. RL can effectively bridge gaps that are not addressed by con-
ventional models.

RL has demonstrated remarkable success, achieving superhuman performance in
various domains. Notable examples include mastering complex board games like
Go [Sil+16], excelling in high-dimensional single-agent (e.g. the computer game
Starcraft [Vin+19]) and multi-agent computer games (e.g. Dota [Ope+19]).
RL shifts the focus from detailing problem solutions to the design of learning
problems, allowing the system to discover solutions autonomously [SB18, p.469].

Despite these achievements, RL faces significant challenges, particularly in the
industrial robotics sector [Elg+23]. Many RL algorithms require extensive data,
and surrogate models such as simulators, necessary for accurate and safe train-
ing, can be difficult and costly to develop. Robot downtime for learning in an
assembly line, for instance, incurs high costs [Elg+23].

The complexity of RL methods, their dependence on hyperparameters, and the
difficulty in applying them in real-world scenarios pose additional challenges. A
critical concern in industrial robotics is safety, which encompasses human safety,
environmental protection, and robot integrity. During the initial exploration
phases, RL algorithms may exhibit risky behaviors, which are unacceptable in
industrial settings. Surveys on safe RL in robotics, such as those by Garcia et
al. [GF15] and Brunke et al. [Bru+22], discuss these challenges and present
various approaches to ensure safety.

Furthermore, in case of misbehaviors of learned policies, problem analysis must
be possible and realistic mitigation strategies must exist. Both these require-
ments are difficult to achieve with DNN.

Incorporating existing processes, robot capabilities, and experiences as priors
into RL solutions is essential in industrial contexts. Additionally, the solutions
must adhere to specific requirements, such as maximum force constraints on
parts. The policy representation and the learning strategy must be capable of
integrating these elements.
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Recent research has explored the injection of priors into deep RL. In [Yan+22]
the authors demonstrated learning NN policies with demonstrations from a
FSM. The concept of learning new tasks from previously learned policies is
explored in [YSS22], and the transfer of policies between robot systems using
CycleGANs is presented in [YSS23].

The general limits and potentials of deep learning in robotics are comprehens-
ively discussed in [Sün+18],

6.5 Bayesian Optimization (BO)

A way to perform policy search is to use BO [Sha+16]. BO is a method to
optimize black-box functions that are expensive to evaluate. The goal is to
find the global optimum of the black-box function with as few evaluations as
possible. BO is a sequential optimization method and the steps are outlined in
Figure 7. A key feature of BO is that it uses a surrogate model to approximate
the black-box function [Sha+16]. Common representations for the surrogate
model are GPs [RW06] or random forests that are trained on the data points
that are evaluated. Both models are probabilistic models that can be used to
estimate the uncertainty of the model [Sha+16]. This uncertainty is used by the
acquisition function to select the next best point to evaluate. The acquisition
function is a heuristic that balances exploration and exploitation. A common
acquisition function is expected improvement (EI) that estimates the expected
improvement over the currently best point [Fra18].

BO is not ”model-based” in the definition given in Section 6.3 since it does not
use or learn a model of the dynamics of the environment. Instead, it learns
a surrogate model of the black-box function, hence the total rewards for an
episode. However, BO can be combined with model-based methods to learn a
model of the environment and then use BO to optimize the policy [Cha+17;
CM18].

One advantage of BO is that it can optimize mixed input design spaces where
variables can be continuous, discrete, ordinal, or categorical [NKO19]. This
makes it well-suited for robotics problems where the problem space can often
be mixed.

A plain implementation of BO is not well-suited for high-dimensional problems.
However, there are extensions that can handle high-dimensional problems such
as TuRBO [Eri+19] or BAxUS [PNP22]. Based on the assumption that there
is a smaller effective subspace, methods such as [PNP22; PNP23; Hel+23] can

37



Probabilistic
Surrogate ModelEvaluation

Priors

Design of 
Experiment

Priors

Acquisition Function

Figure 7: The learning loop of Bayesian optimization (BO). The parameter set x is evaluated
by running an episode. An internal probabilistic surrogate model is built and used by
the acquisition function to select the next parameter set to evaluate. Additionally, it is
marked where the prior information with πBO [Car+22] is injected.

effectively tackle problems with hundreds of dimensions.

The performance of BO can be improved if prior knowledge is available. While
some methods can utilize priors for the surrogate model such as the choice of
the GP kernel,injecting a prior for the location of the optimum is an emer-
ging topic. Such a prior can be easier to formulate for non-experts since it is
just necessary to formulate the expected location of the optimum in parameter
space. In [Sou+21] this prior in the parameter space is used to calculate a
pseudo-posterior that is used together with the EI acquisition function. More
recently in [Car+22], the prior injection method πBO is suggested that weights
the acquisition function. Its application in the learning problem is depicted in
Figure 7. πBO is compatible with a wide range of acquisition functions and can
be used with different surrogate models. This method is utilized in Papers 5,
7.
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7 Approach

There is substantial evidence that accomplishing manipulation tasks requires
robotic agents, as well as the human brain, to employ a combination of

learning, planning, and other reasoning methods.
— Michael Beetz5

Building upon the problem scope and research objectives outlined in Section 1,
and the insights into the current state of the art provided in Section 2, this
section delineates the approach adopted to achieve the research goals. This ap-
proach integrates the methods discussed in Section 3 through Section 6, aiming
to develop a comprehensive framework for learning with robot skills.

A key decision in this approach is not to focus on learning the structure of
the policy. Recent studies, such as [Iov+21], have indicated that learning the
structure of a BT with genetic programming is a relatively slow process, of-
ten requiring hundreds of thousands of episodes. Even with the integration of
imperfect solutions from planners as priors [Sty+22], the learning rate remains
impractical for real robot systems, particularly in industrial contexts. If such
an approach is combined with the complex task of searching for optimal skill
parameters, this appears to be beyond the scope for practical industrial applic-
ations.

This section begins with an introduction to the specific skill model employed,
followed by a short overview of the motion representation and execution meth-
ods. Subsequently, the learning pipeline for new tasks is described in detail. In
Section 7.4, the learning process and outcomes are elaborated upon, providing
insights into the effectiveness and applicability of the proposed methods.

A crucial aspect of this approach is the incorporation of prior knowledge and the
management of task variations. This involves integrating existing expertise and
process understanding into the learning framework, ensuring that the developed
solutions are not only effective but also aligned with the practical constraints
and requirements of industrial robotics.

5[CA22, p.416]
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7.1 Skills and SkiROS2

The utilization of skills as reusable building blocks has emerged as a promising
approach to manage the complexity of modern industrial robots. SkiROS2, as
detailed in Paper 1, exemplifies such a skill-based robot control platform. It
features a layered hybrid control system, integrating explicit knowledge repres-
entation and task-level planning.

The architecture is shown in Figure 8. Paper 1 describes the components in
detail, but a brief description of the components is provided here:

Skill manager (SM): Central to the operation of SkiROS2, the skill
manager oversees the loading and execution of skills. It encompasses the
BT execution engine, BT expansion mechanism, and automatic paramet-
erization of skills.

World model (WM): Serving as the central knowledge base, the WM
maintains the current state of the world, reading ontologies and the vocab-
ulary that is stored in scenes. It supports queries and custom reasoning,
facilitating its use by the SM, individual skills and the task manager. An
excerpt of a robot description is shown in Listing 1.

Task Manager: This component is responsible for generating task-level
plans. It processes planning goals in PDDL, formulating planning domains
and problem descriptions based on the WM’s knowledge. The task man-
ager then invokes a planner to create a plan, typically executed by the
SM.

The skill model in SkiROS2, depicted in Figure 9, consists of two main elements:

1. Skill description: It defines the skill semantically, specifying parameters
and pre-, hold-, and post-conditions.

2. Skill implementation: Implementations of skill descriptions.

The skill implementations themselves exist in two granularities:

• Primitive skills: Primitive skills are semantically atomic. The imple-
mentation is in Python and the primitive skill skeleton provides functions
such as onInit, onStart or execute. Primitive skills also have access to the
WM and can query and modify the knowledge.
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Figure 8: The architecture of SkiROS2. The world model (WM) stores the knowledge and the
relations. The skill manager (SM) executes the skills that ultimatelly interface with the
hardware.The task manager creates task-level plans. The graphical user interface (GUI)
provides a low entry hurdle to interact with the system.
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Figure 9: The skill model and the access to knowledge in the WM. The task manager creates a
plan based on the knowledge in the WM. The skill manager executes the skills and skills
can access the WM to query and modify the knowledge. Furthermore, the skill manager
automatically parameterizes the skills based on the knowledge in the WM and performs
the post-condtiion check.

• Compound skills: Compound skills are skills that are composed of other
compound skills or primitive skills. They are implemented as BTs.

SkiROS2’s versatility is demonstrated in Paper 2, where it was used to perform
contact-rich wiping tasks on various surfaces with different robots, showcasing
its robot-agnostic and task-agnostic capabilities in combination with planning.

In the context of learning with robot skills, it is assumed that a set of skills exists
that can address the task at hand. The pre- and post-conditions of these skills
are leveraged in conjunction with a planner to tackle new tasks, illustrating the
platform’s adaptability and potential in robotic learning.

7.2 Motion Representation and Execution

SkiROS2 is designed with flexibility in mind, making no specific assumptions
about the type of motion representation or the category of robot used. However,
this thesis concentrates on manipulators, considering their widespread applica-
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tion and relevance in complex tasks.

To effectively address a broad spectrum of challenging tasks, a motion repres-
entation that is both explicit and modular is essential. The key requirements
include the ability to apply controlled wrenches with the end effector (EE) and
to vary the stiffness of the compliant control. The chosen representation should
obviate the need for additional downtime associated with teaching and be suit-
able for contact-rich tasks. To meet these criteria, we adopt the formulation of
BTs with motion generators (MGs) as introduced in [Rov+18].

Trajectories can be generated using tools such as the Cartesian trajectory gen-
erator6, which facilitates the application of overlay motions. These overlay mo-
tions can be employed for various purposes, such as searching for a hole or
creating the wiping motion demonstrated in Paper 2.

For position-controlled arms, such as the UR arms, compliant control can be
achieved through forward dynamics control [SRD17]. In contrast, for torque-
controlled arms such as the KUKA iiwa, as shown in Figure 1, or the Franka
Emika Robot (Panda), Cartesian impedance control is a more natural and stable
choice. The Cartesian impedance controller implementation in [MS22]7 offers
the advantage of being applicable not only to real robots, but also seamlessly
integrable into simulations.

7.3 Learning Pipeline

The main learning pipeline is introduced in Paper 4 and shown in Figure 10.
It is also used in Papers 5, 6 and in a modified form also in Paper 7. It
consists of the following steps:

1. Task goal specification: The task is specified by the operator. The
operator can use a GUI to specify the goal in PDDL.

2. Task Planning: The skills that are required to solve the task are identi-
fied and the plan is created. The parameters that are not specified in the
plan are automatically identified and a learning scenario is created.

3. Learning Scenario completion: The learning scenario is complemented
by adding reward functions and specifying the parameters of the learning
process. Additionally, priors for the optimum can be injected or the learn-
ing can be constrained to a specific region of the parameter space.

6https://github.com/matthias-mayr/cartesian_trajectory_generator
7https://github.com/matthias-mayr/Cartesian-Impedance-Controller
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44



4. Learning: The learning is started in the respective domain, which is typ-
ically a simulation, but can also be a real system. The policy optimization
is performed with a black-box optimization approach such as BO.

5. Learning Outcome: Upon completion of the learning process, the out-
comes are presented to the operator.

6. Policy Selection: The operator selects the policy that is used for the
execution of the task on the real robot system.

7.4 Learning and Learning Outcome

After the PDDL goal of the task is specified, the structure of the BT policy is
provided by the planner. Together with the current state of the scene of the
WM, the plan is saved in order to perform the same learning episodes based on
the same knowledge. A learning scenario, as exemplified in Listing 3, is then
created by identifying the unspecified parameters in the skills. The types of
parameters and their possible values can be automatically read from the WM.
The learning scenario description is completed by adding the reward functions
and specifying the parameters of the learning process.

Robot tasks often require to balance multiple considerations, such as minimizing
force application, maintaining safe distances from objects, and preferring solu-
tions with lower velocities. These considerations frequently compete with the
primary task goal, posing a challenge in achieving an optimal trade-off. In tradi-
tional RL problems, secondary objectives are often overlooked, with the reward
functions focusing solely on the primary task goal. An alternative approach
involves combining reward functions using a weighted sum, which necessitates
careful tuning.

A more nuanced approach is to actively frame the problem as a multi-objective
one. Each reward function is assigned to a specific objectives. In case multiple
reward functions are necessary for a single objective, weights can be still be
assigned to reward functions that contribute to the same objective. In our
experience it is much easier to weight reward function within a single objective.
To facilitate this process, a library of reward functions is provided, offering
convenience and flexibility in defining the learning objectives.

The learning process, as depicted in step 5 of Figure 10, focuses on optimizing
the parameters of the skills. To enhance the robustness of the learned policy,
it can be evaluated multiple times with domain randomizations. While this
concept was initially introduced in Paper 4 with a fixed number of evaluations,

45



Figure 11: A depiction of learnable parameters of different tasks. a) An obstacle avoidance task
with the parametric goal points g1 and g2 and the adjustable thresholds p1 and p2 in
one possible motion configuration. b) The spiral of the search motion a of peg insertion
is defined by the pitch d, the maximal radius rmax and the path velocity vp. In addition,
a downward force that is applied by the EE is set. c) The learnable offsets for the start
and goal location of a push task. ©2022 IEEE
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1 "application_name": "push_task",
2 "max_fun_evals": 100,
3 "episode_length": 12,
4 "evals_per_param_config": 7,
5 "learning_platform": "sim",
6 "scene": "polyhedron",
7 "domain_randomization": true,
8 "optimizer": "hypermapper",
9 "optimizer_config":

10 {
11 "design_of_experiment": {
12 "doe_type": "random sampling",
13 "number_of_samples": 8
14 },
15 "input_parameters": {
16 "offset_x_start": {
17 "values": [
18 -0.3,
19 0.3
20 ],
21 "parameter_type": "real",
22 "prior" : "custom_gaussian",
23 "custom_gaussian_prior_means": [0.1],
24 "custom_gaussian_prior_stds": [0.1]
25 },
26 [...]
27 },
28 "models": {
29 "model": "gaussian_process"
30 },
31 },
32 "rewards": {
33 "EndEffectorReferencePosition": {
34 "objective": "force",
35 "type": "EndEffectorReferencePosition",
36 "link_name": "peg",
37 "weight": 1.0,
38 [...]
39 },
40 "robot": {
41 "setup_name": "bh_rss_polyhedron",
42 "tool": "peg_70mm_hr",
43 },
44 [...]

Listing 3: An excerpt from the underlying learning scenario definition. It contains the configuration
of the learning process, the configured reward functions (Lines 32-39) and the robot
system (Lines 40-43). The parameters that are to be learned are defined after line 15
and a prior is injected (Lines 21-24).

in Paper 7 it was developed to an adaptive approach based on the uncertainty
of the rewards, further refining the learning outcomes.
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In the research presented in Paper 3, the learning process employs the covariance
matrix adaptation evolution strategy (CMA-ES) [Han06], a black-box optimiza-
tion algorithm renowned for its efficacy in high-dimensional problems involving
real numbers. CMA-ES, a gradient-free algorithm, utilizes a covariance mat-
rix to adaptively modify the search distribution, making it particularly suitable
for complex optimization tasks in robotics. A key advantage of using CMA-ES
in this context is its ability to return the mean of the last distribution rather
than merely the best observed solution. This feature is crucial for providing
operators with a policy that demonstrates robustness to minor perturbations,
such as those encountered in Sim2Real transfer. This robustness is essential to
ensure that the learned policies are not only effective in simulation, but also
transferable and reliable in real-world applications.

Despite its strengths, CMA-ES has limitations, particularly in multi-objective
optimization scenarios and in handling diverse parameter types, such as cat-
egorical variables. These limitations led to the adoption of Bayesian optimiz-
ation (BO) [BCd10] in subsequent research, as detailed in Paper 4. BO has
since been employed in Papers 5, 6, 7, offering a more versatile and effective
approach for optimizing complex robotic tasks.

Learning Outcome

In a single-objective problem setting, the learning outcome is typically a single
policy that is returned to the operator. Additionally, it is also possible to return
some more policies in case the best one did not meet the expectations.

In contrast, a multi-objective problem setting yields a set of policies, each rep-
resenting an optimal trade-off between the various objectives. This collection of
policies forms what is known as the Pareto frontier, as illustrated in Figure 12.
Each point on this frontier, depicted as a blue dot in the figure, corresponds to a
policy with a unique parameter set. The ideal solutions for the task, character-
ized by high task performance and low safety penalty, would be located in the
upper left corner of that Pareto frontier. However, such ideal solutions are often
unattainable, necessitating a compromise between competing objectives. The
hypervolume indicator (HVI), defined as the area between the Pareto-optimal
points and a reference point, serves as a valuable metric for evaluating the extent
of learning and assessing convergence.

A critical aspect of the learning outcome is its interpretability and the potential
for mitigation. The outcome in this context is a BT policy utilizing well-crafted,
existing skills. The parameters of these skills are often semantically well-defined

48



1

Figure 12: A sketch of the Pareto frontier of a learning problem. The Pareto frontier is the set of
all non-dominated solutions marked in blue. The lower right red dot is the reference
point to calculate the hypervolume indicator (HVI). The area of the HVI is shown in
green.

and interpretable, enabling the operator to comprehend the policy and, if ne-
cessary, adjust the skill parameters to mitigate undesired behavior. This level
of interpretability and control stands in stark contrast to policies derived from
DNN, which are typically less interpretable and offer limited opportunities for
operator intervention to correct undesired behaviors.

7.5 Prior Knowledge

The high-dimensional and continuous nature of state and action spaces in robot-
ics presents significant challenges in doing the right thing at the right time. This
complexity is particularly pronounced in robot learning, where algorithms often
struggle to identify effective policies within a reasonable timeframe. However,
leveraging prior knowledge can significantly enhance the learning process.

Prior knowledge about the preconditions and effects of actions serves as a valu-
able resource in the learning process. This knowledge, typically used in planners,
is effectively employed in Papers 4, 5, 6, 7. During the learning phase, the
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search spaces for parameters can be constrained to values predetermined by skill
engineers, offering a more directed and efficient exploration of the action space.

The proposed learning strategy incorporates a feasibility metric alongside the
traditional reward calculation. This metric evaluates the practicality of each
policy, considering factors such as proximity to fragile obstacles. Such feasib-
ility assessments help identify invalid policies that might be overlooked due to
inaccuracies in reward formulations. This approach is exemplified in Paper 6
as part of the Performance and Feasibilty Model (PerF) model.
Furthermore, BO frameworks like [NKO19] allow to define constraints on com-
binations of parameters with rules such as x1 + x2 < 128 with x1 and x2 being
parameters.

In Paper 5, we assess how parameter priors for the optimum injected with
πBO [Car+22] can impact the learning of tasks. The results show that a single
prior given by an operator can drastically increase the learning speed. Fur-
thermore, it is shown that learning can also profit from a set of previous ex-
periences by utilizing multiple parameter sets to form a multivariate prior. A
transfer between tasks is also performed the cascaded version of our approach
in Paper 7. Since most tasks include the usage of multiple skills, the modular
structure of BTs can be exploited. In the cascaded version of BeBOP, the first
subtask is learned in isolation first and once the learning has converged, the
best-performing policy is used as a prior to learn the next bigger BT.

An interesting insight from Paper 5 is that well-formulated operator priors not
only expedite, but can also enhance safety. For instance, in a peg insertion task,
the average force applied during learning with operator priors was substantially
lower than without priors, while still learning much faster. Similarly, in an
obstacle avoidance task, the use of operator priors significantly reduced the
number of forceful collisions. Further safety assurances could be integrated using
approaches such as DeROS [Ada+16] or ROSSMarie [RRK23], which facilitate
the formulation of explicit safety rules.

7.6 Task Variations

In the context of Industry 4.0 and modern manufacturing, the capability to
adapt to new and unseen task variations is a critical attribute of any robotic
system. Ideally, a zero-shot transfer, where a new task is solved immediately
without additional training, is possible. However, when this is not feasible, a
rapid and efficient learning strategy becomes essential.
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The skill-based approach, coupled with knowledge representation in a WM as
exemplified by SkiROS2, facilitates the transfer of learning outcomes across
various tasks. For example, the peg insertion strategy detailed in Papers 3,
4, 5, 7 is defined in EE space relative to the hole’s coordinate frame. If the
WM reflects a new pose of the hole and it is kinematically reachable, the policy
is expected to transfer effectively. Similarly, in obstacle avoidance tasks, the
conditions in the BT and intermediate goal points can be linked to the object,
enabling the transfer of learned policies.

However, this transferability is not universal across all tasks. In some instances,
aligning policies with elements in the WM can be challenging. An example is the
pushing task in Papers 4, 5, where factors such as the start and goal locations,
as well as the object’s center of mass, must be considered.

In response to these challenges, Paper 6 introduces a model that learns to
adapt skill parameters to unseen task variations. This model (PerF), based on
supervised learning, does not require an understanding of the underlying task
structure. It is trained solely on the parameters, rewards, and feasibility metrics
from a set of training task variations.

In scenarios where such a model cannot be developed, the techniques for utilizing
priors, as discussed in the previous section, offer an efficient method for learning
new task variations. These techniques enable rapid adaptation to new scenarios,
ensuring that the robotic system remains versatile and effective in a dynamic
manufacturing environment.
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8 Conclusions

We believe that the evolution of robotic systems necessitates a paradigm shift to-
wards enhanced flexibility and adaptability, catering to the diverse and evolving
tasks and environments they will encounter. The research presented herein can
contribute to this transformation, leveraging robot skills and knowledge repres-
entation to meet the demands of next-generation robotic systems.

The utilized skill model underpins a modular and scalable system design, facil-
itating easy extension and adaptation to novel tasks and environments. This
model, combined with effective task planning, empowers the system to autonom-
ously select and integrate skills to accomplish specific tasks. The integration of
a knowledge model further enriches this process, enabling the contextualization
of robot behavior and the incorporation of prior knowledge. We have shown
how to utilize this in a wide range of scenarios, including contact-rich tasks that
are executed on different real robot systems.

A significant contribution of this research is the demonstration of how robotic
systems can learn and enhance their performance. The learning framework not
only aligns with the use of robot skills but also effectively constrains the learn-
ing space, ensuring adherence to desired behaviors. This aspect is particularly
crucial in industrial settings, where robots operate in delicate and costly envir-
onments.

The ability to formulate priors based on operator experience or historical data
enhances the learning process. Additionally, framing the learning challenge as a
multi-objective problem provides operators with a spectrum of solutions, facilit-
ating trade-offs between various objectives. The use of BTs in skill formulation
further enables modular learning, allowing skills to be independently learned,
reused, and recombined in different contexts.

The presented type of learning strategy is dramatically faster state-of-the-art RL
algorithms like HIRO and MAPLE while using the same behavior primitives.
By requiring only about 5 % of the training time, this also make learning on
real systems much more feasible. Moreover, the produced learning outcome is
an interpretable policy that allows for adaptation and mitigations.

While many industrial robot systems are still programmed traditionally, this re-
search demonstrates the feasibility of employing various AI techniques in unison
to address the challenges faced by robotic systems. It represents a step towards
realizing robots that can be easily reconfigured and learn from their experiences,
aligning with the vision of adaptable and intelligent robotic systems.
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Paper 1

SkiROS2: A skill-based Robot Control
Platform for ROS

Matthias Mayr Francesco Rovida Volker Krueger
Lund University RiACT ApS, Denmark Lund University

matthias.mayr@cs.lth.se f.rovida@riact.eu volker.krueger@cs.lth.se

Abstract

The need for autonomous robot systems in both the service and the industrial
domain is larger than ever. In the latter, the transition to small batches or even
“batch size 1” in production created a need for robot control system architectures
that can provide the required flexibility. Such architectures must not only have
a sufficient knowledge integration framework. It must also support autonomous
mission execution and allow for interchangeability and interoperability between
different tasks and robot systems. We introduce SkiROS2, a skill-based robot
control platform on top of ROS. SkiROS2 proposes a layered, hybrid control
structure for automated task planning, and reactive execution, supported by a
knowledge base for reasoning about the world state and entities. The scheduling
formulation builds on the extended behavior tree model that merges task-level
planning and execution. This allows for a high degree of modularity and a fast
reaction to changes in the environment. The skill formulation based on pre-,
hold- and post-conditions allows to organize robot programs and to compose
diverse skills reaching from perception to low-level control and the incorporation
of external tools. We relate SkiROS2 to the field and outline three example use
cases that cover task planning, reasoning, multisensory input, integration in a
manufacturing execution system and reinforcement learning.
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1 Introduction

Modern intelligent robots require an increasing system complexity in order to
perform the increasingly complex tasks demanded from them. Especially in
view of greater autonomy, this complexity needs to be matched by the system
architecture used to program and control the robots. With more and more
integrated systems that coordinate different partial solutions, there is a need for
interoperability and a common framework for communication, control and task
planning.

In the industrial robotics field this can be seen in the Industry 4.0 movement
that advocates such a transition, but several aspects of current practice present
barriers to it. Many robot control systems currently rely heavily on ”implicit”
knowledge representation. Typically this is implemented by using if-else state-
ments in the actual code. This often inhibits the growth of a control platform,
as well as the interchangeability and interoperability between different tasks or
robot systems, as this knowledge is hidden and often only known to the program-
mer herself/himself. Furthermore, vendor lock-in into the robot programming
platform of a specific manufacturer is widespread.

These barriers have also been identified in the past and early platforms such as
ClaraTy [Vol+01] or LAAS [Ben+09] provided first architectures. For know-
ledge integration frameworks, the system around the Rosetta ontology [MJ13;
SM15] and Knowrob [TB09; TB13] created a strong foundation. However, the
former is not publicly available and the latter targets the different needs of
service robotics.

In this context, we introduce SkiROS2, a skill-based robot control framework
for ROS. It utilizes knowledge representation in a resource description frame-
work (RDF) graph that supports an open and explicit formulation of knowledge.
The skill model is based on pre-conditions that are checked before a skill is ex-
ecuted, hold-conditions that also need to be satisfied while the skill is running,
and post-conditions that are checked after the skill execution. SkiROS2 sup-
ports reasoning to infer skill parameters, and it allows the implementation and
integration of custom reasoners, such as a spatial reasoner. Built-in task plan-
ning allows it to utilize robot capabilities to automatically construct a planning
domain and problem description without manual input from a domain expert.
Furthermore, it is capable of orchestrating multiple robot systems. SkiROS2 is
open source, written in Python and based on BTs. It is the successor platform
of SkiROS1 [Rov+17; RK15] that was written in C++ and did not use BTs.

In this paper, we discuss the requirements for our system architecture and assess
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Figure 1.1: SkiROS2 can be used with different ontologies, scene descriptions and skills to solve a
variety of tasks with different robot platforms. (a): Task-level planning with the mobile
manipulation of objects. (b): Precise and sensitive piston insertion. (c): Learning to
push by combining planning, reasoning and reinforcement learning.

the state-of-the-art in the field and we show how our solution SkiROS2 fulfills
these requirements. We introduce its individual modules such as the skill man-
ager, the task manager and the world model.

We think that this approach establishes a modern system architecture for intel-
ligent autonomous robot systems that allows to design and organize robot skills
for advanced tasks.

2 Background and Related Work

This section introduces related work on the axes of robot control strategies, cog-
nitive approaches as well as knowledge integration. Finally, a brief comparison
with other platforms is provided.
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2.1 Robot Control Strategies

Three control strategies dominate the research community: deliberative, react-
ive, and hybrid control [KSB16].

Deliberative Systems

This architecture follows the ”sense, plan, act” paradigm. An observation of
the world is translated into a symbolic representation [KSB16]. Reasoning is
then utilized to plan a sequence of actions. While the actions are executed, new
observations are not taken into account. This typically leads to slower reaction
times, since the sequence of sensing and planning can often be time-consuming.

Reactive Systems

Reactive systems utilize a concurrently running finite state machines (FSM).
These FSMs directly connect the input to the output. An important distinc-
tion is that they do not build up an internal representation. Their extension,
behavior-based systems, also allows to assign priorities to behaviors and there-
fore inhibit output of low-priority ones.

Layered Hybrid Systems

In order to utilize the advantages of both aforementioned systems, reactivity and
planning, layered hybrid systems were formulated. Typically, a higher planning
level determines a mid- or long-term strategy, and a lower level is able to react
directly to observations. Most often a synchronization layer is added to bridge
between high-level reasoning and low-level control. Most modern robot control
systems follow this approach.

2.2 Cognitive Systems

Besides having an architecture that allows tasks to be performed, another im-
portant question is what cognitive abilities are necessary and how these abilities
are structured. Cognition can be defined as the process of a system to perceive
the environment, act to pursue goals, anticipate the outcome of events, adapt
the actions to changing circumstances and learn from experiences.
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The cognitivist approach performs processing to obtain a symbolic knowledge
representation [KSB16; VHF11]. This abstracted symbolic representation of
the world allows to reason about it. The representation is typically designed
and interpreted by humans, which means that it can be understood and com-
plemented with knowledge from other sources.

In contrast to that, the emergent paradigm means an inductive organization
from observations [VHF11]. Machine learning techniques and the automatic
induction of ontologies are part of this field. It comes at the cost of being
dependent on experiences.

Hybrid approaches aim to combine both approaches, explicit knowledge repres-
entation and learning from experiences [VHF11].

For our work, the cognitivist approach is the most relevant. However, a recent
line of research extends it to a hybrid approach by incorporating learning from
experiences into the system [May+22a; May+22c; AMK23].

2.3 Knowledge Integration

An important aspect of autonomous systems is the type of knowledge integra-
tion. It decides on the support for reasoning and inference, the possibility of
integrating encyclopedic knowledge, and the expressiveness. The latter should
be weighted against the efficiency of the reasoning algorithms [KSB16].

The available formalisms in the field of robotics include model logic, temporal
logic, and predicate logic such as Prolog and Golog. Description logics are widely
used to define ontologies. In particular the Web Ontology Language (OWL)
that is based on the resource description framework (RDF) gained a lot of
attention. A recent review and comparison of ontology-based approaches is
presented in [Oli+19]. Projects such as Knowrob [TB09; TB13] created a strong
foundation in the field of service robotics, while, for example, Rosetta [MJ13] is
explicitly designed for the industrial domain.

2.4 Robot Control Platforms

We relate our work to other frameworks that are available as open-source soft-
ware or provide clear guidelines for their task planning, task execution, and
knowledge integration. Table 1.1 presents them along with criteria such as the
application area, knowledge modeling and task planning.
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Most of the related frameworks explicitly target the industrial domain [MJ13;
SM15; Pax+17; Huc14] and [Bal+13]. Others, such as Knowrob + CRAM [TB09;
TB13] or CAST [Wya+10] address the different needs of service robotics in-
stead. Task-level planning is implemented by most of the frameworks. COSTAR
[Pax+17] implements visual neural network-based planning [Pax+19] while
[SKv16] offers an interface that can be used by planners. For the scheduling we
see that only few implement reactive methods such as BTs. As a middleware,
most frameworks use the robot operating system (ROS), which is advantageous
for creating interoperability and using network effects. Many, but not all plat-
forms are available as open-source software for other researchers to study, use,
and improve. The comparison with existing frameworks shows that SkiROS2 has
a unique combination attributes that enables it to be a modern autonomous ro-
bot control platform.

2.5 Behavior Trees

A behavior tree (BT) is a formalism for the representation and execution of
procedures. BTs have emerged in the gaming industry, but are also becoming
widespread in robotics [Iov+22]. A BT is a directec acyclic and rooted graph
consisting of nodes and edges [CÖ17a]. The root node is used to periodically
inject an enabling signal called tick that traverses through the tree according
to the conditions, state of skills and their connectors called processors. These
processors allow to link child nodes in different procedural ways. Examples are
a sequence (logical AND) or a selector (logical OR). When the tick reaches a
leaf node, it executes one cycle of the action or condition. Actions can modify
the system configuration and return one of the three signals success, running or
failure. Condition checks are atomic and can only return success or failure. To
pass information between different nodes, a common approach is to use a set of
shared variables on a blackboard. For a full formalization of BTs in the context
of robotics, we refer to [CÖ17a].

The classical BT formulation is complemented by a formalism to define extended
behavior trees (eBTs) in [RGK17]. In eBTs, scripted and planned procedures
are merged into a unified representation, so that an eBT describes both the
execution and its effects on the world state. This is achieved by combining the
flexibility of BTs with hierarchical task network (HTN) planning. In contrast to
classical BT, the pre- and post-condition nodes are embedded into the eBT to use
them for task-level planning. To achieve real modularity, eBT allows procedural
abstraction by allowing different implementations for the same type of action.
Additional pre-conditions then allow to choose the right implementation to use
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at run-time. For example, select a different opening strategy depending if you
need to open a manual door or an automatic one that opens with a button.
Furthermore, the eBT formalism allows to optimize the execution of the planned
sequence [RGK17].

3 Design Considerations

On the basis of common applications in the field and our own experience, we
identified the relevant requirements and design considerations. This section
presents and discusses them in the context of robot control systems.

3.1 Control Strategy

Out of the main branches of robot control structures introduced in Section 2.1,
the layered hybrid approach is the most applicable to the target domain: longer-
term task goals require planning and reasoning while the execution should be
able to react quickly to observations from the real world. Therefore, SkiROS2 uses
a deliberate planning level and a lower-level implementation with BTs [CÖ17a].

3.2 Multi-Robot Orchestration

Challenging modern Industry 4.0 tasks are rarely content with a single robot.
In addition, because of the importance of collaboration with humans, a robot
control platform needs to be able to orchestrate several actuators simultaneously.
In a multi-robot setup it is important that all actuators maintain a coherent
world state to prevent failures and synchronization problems. SkiROS2 allows
to start an arbitrary number skill managers for different robot systems that can
share a single world model (WM), thus being able to simultaneously orchestrate
a fleet of robots that have a common understanding of the world.

3.3 Knowledge Representation

To avoid an implicit representation of knowledge, for example in the form of
”if, else” statements in code, it is important to have means to explicitly formu-
late and organize knowledge. Autonomous robot systems can also benefit from
knowledge integration for abstract reasoning and especially in the industrial ro-
botics domain, structured knowledge is often available. There are many logic
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formalisms and the choice needs to balance expressivity and efficiency. Further-
more, we find the usability and availability of ontologies, the set of concepts and
their relation in a target domain, to be important. Therefore, SkiROS2 uses the
OWL and a set of established ontologies such as the Core Ontology for Robotics
and Automation (CORA).

3.4 Manufacturing Execution Integration

A platform for industrial robot skill execution needs to be able to interact with
higher-level systems such as a manufacturing execution system (MES). Al-
though the manual or automated start of individual skills is important, the
concept of a skill-based platform really excels when higher-level goals can be
sent to robot control systems [Kru+16]. A robot control system then needs to
plan and execute autonomously. Furthermore, the execution state and modifica-
tion of a shared understanding of the world such as a WM or a digital twin (DT)
must be reported back [Kru+16].

3.5 Stakeholders

Robot control systems have different stakeholders that need to be addressed.
Besides special needs for a vertical integration described in the previous section,
users also have different expectations and needs. Most systems differentiate
between developers and end users. Developers are assumed to have an in-depth
understanding of the matter and need tools to support their processes. With a
robot control platform, it can be assumed that developers design and implement
skills. They can also understand and form ontologies. On the other hand, end
users need lower entry hurdles. In the robotics context, this usually means
addressing them with a graphical user interface (GUI) that abstracts away the
underlying processes.

3.6 Middleware

Finally, the middleware as a communication system and application program-
ming interface (API) are an important choice for every larger software project.
The robotics domain with its different actuators, sensors and software solutions
is particularly diverse and support for a wide variety of robotic systems can
easily surpass the capabilities of companies and research groups.
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Although there are other robotic middleware systems such as OROCOS [Bru01],
the robot operating system (ROS) [Qui+09] became a commonly used and
increasingly popular middleware solution for robotic systems and their pro-
grams. The ROS libraries are a good basis for integrated robot systems since
they provide a standard communication and programming interface. Therefore,
based on ROS, a control system such as SkiROS2 gets immediate access to a
wide range of tools, drivers and trained users.

4 Architecture of SkiROS2

This section outlines the architecture of the system shown in Fig. 1.2. The skill
manager and the world model (WM) form the core. One or more task managers
can be used to accept high-level goals. During the prototyping phase, a GUI
supports the users.

4.1 Skill Model

In this section we introduce the SkiROS2 skill model with its components and
types of skills. We define a skill as a parametric procedure that changes the
world from some initial state to some new state [Bøg+12]. This definition de-
liberately leaves room for a wide range of skills from deep learning-based object
localization to lower-level motor control. The skill execution flow is shown in
Fig. 1.3. In SkiROS2 skills can have different complexities: we refer here to
primitive (atomic) skills and compound skills. The latter consist of any amount
of primitive or compound skills.

Skill Description: The skill description defines the actions of a skill on a
semantic level. A skill description includes its zero or more parameters and zero
or more pre-, hold- and post-conditions. An example is shown in Lst. 1.1. Both
primitive and compound skills always implemented exactly one skill description.
However, an implementation is allowed to complement or further specify a skill
description. This paradigm is useful to have multiple skill implementations for
different hardware or specific scenarios. As an example for this, we can take a
gripper actuation skill. A simple general skill description can be universal and
have a boolean parameter ”OpeningState” as well as a ”Gripper” parameter that
refers to a concept in the WM such as Element("rparts:GripperEffector").
Different gripper hardware needs different implementations of this description.
To enable this, a skill implementation for a specific gripper can then modify
the skill description of the parameter ”Gripper” to handle only a single type of
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gripper that would be a subtype of the concept ”rparts:GripperEffector”, such
as ”scalable:RobotiqGripper”. When executing a compound skill that utilizes
this gripper actuation skill description, SkiROS2 will automatically select the
matching implementation.

Skill Parameters: The skill parameters define the input and output of a skill.
Furthermore, they can also be used for reasoning together with pre- and post-
conditions. Parameters come in three flavors: 1) required, 2) optional, and
3) inferred. In contrast to the optional parameters, the required parameters
must be set to execute a skill. The inferred parameters do not need to be set,
but can automatically be reasoned about with the pre- and post-conditions. As
an example, the pick skill in Lst. 1.1 has a required parameter Arm, could have
an optional parameter arm maximum velocity and has an inferred parameter
Gripper. If the parameter Arm is known, we can utilize the relations in the WM
to automatically know which gripper is attached to it. The optional parameter
for the maximum arm velocity can be used to overwrite a default value.

Skill parameters have either a fundamental data type such as string, int,
float, bool, list, dict or are WM element in the form Element("schema").
The schema refers to a concept that is defined in the ontologies, and during
execution it is grounded to a specific instance of that concept. This way its
associated attributes and relations can be utilized by the skills. In the pick
example above, the parameters Gripper and Arm would be WM element types
Element("rparts:GripperEffector") and Element("scalable:Arm").

92



Pre-, Hold- and Post-conditions: Preconditions describe the necessary
world state under which a skill is to be executed. Furthermore, they can be
used to infer parameters of a skill such as the parameters Container and Arm
in the example in Lst. 1.1. Preconditions are complemented by hold-conditions
that need to hold during the entire execution and are checked at every tick. Fi-
nally, the post-conditions specify the expected effects of a skill if the execution
succeeded. Therefore, they are checked after the execution of the nodes has
succeeded, and the skill will fail if the post-conditions do not hold.

All types of conditions have one of four types: 1) verification of relations in the
WM such as ”Arm has a Gripper”; 2) check the existence of an element property,
e.g. the gripper has an attribute that specifies the finger length; 3) compare the
value of a property, for example having gripper finger longer than 0.1 m; or
finally 4) check for abstract relations in the ontology to verify that two elements
are allowed to have a specified relation according to the ontology. In contrast
to SkiROS1 [Rov+17], primitives can also have pre-, post- and hold-conditions,
which increases robustness and allows to infer parameters.

Primitive Skills: Primitive skills, or short primitives, are the atomic actions
in the SkiROS2 skill model. They typically implement behaviors that actively
change the world, such as opening a gripper or moving a robot arm. Lst. 1.2
shows the primitive code skeleton that offers Python functions for the skill ini-
tialization, startup, execution, preemption and cleanup . Primitives always have
a skill description such as the one in Lst. 1.1 that defines them on a semantic
level and specifies the input and output parameters. When a skill is running, an
execute function of the skill is called whenever the primitive is ticked as part
of a BT and it must return one of the three signals success, running or failure.

Compound Skills: As an important extension to SkiROS1, this version for-
mulates compound skills. They allow one to connect arbitrary amounts of other
compound and primitive skills to define more complex behaviors. An example is
given in Lst. 1.3. Compound skills are modeled with BTs and their processors.
This enables developers to fully utilize the modularity and reactiveness of the
BTs by reusing existing skills and to formulate reactions to changes in the world.
SkiROS2 formulates the following processors:

• Serial: Sequential execution (logical AND)

• SerialStar : Sequential execution with memory

• Selector : Fallback (logical OR)

• SelectorStar : Fallback with memory
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1 class Pick(SkillDescription):
2 def createDescription(self):
3 # ======= Parameters =========
4 self.addParam("Container", Element("skiros:Location"),

ParamTypes.Inferred)
5 self.addParam("Gripper", Element("rparts:GripperEffector"),

ParamTypes.Inferred)
6 self.addParam("Object", Element("skiros:Product"),

ParamTypes.Required)
7 self.addParam("Arm", Element("rparts:ArmDevice"),

ParamTypes.Required)
8 # ======= PreConditions =========
9 self.addPreCondition(self.getPropCond("EmptyHanded",

"skiros:ContainerState", "Gripper", "=", "Empty", True))
10 self.addPreCondition(self.getRelationCond("ObjectInContainer",

"skiros:contain", "Container", "Object", True))
11 # ======= HoldConditions =========
12 self.addHoldCondition(self.getRelationCond("RobotAtLocation",

"skiros:at", "Robot", "Container", True))
13 # ======= PostConditions =========
14 self.addPostCondition(self.getPropCond("EmptyHanded",

"skiros:ContainerState", "Gripper", "=", "Empty", False))
15 self.addPostCondition(self.getRelationCond("Holding",

"skiros:contain", "Gripper", "Object", True))

Listing 1.1: The skill description of a pick skill. It defines the parameters, pre-, hold- and post-
conditions and can be automatically used for task-level planning.

• Parallel First Stop: Process children in parallel until one succeeds or fails

• Parallel First Fail: Parallel run children until all succeed

Furthermore, there are decorators such as NoSuccess or NoFail that modify the
return signals.

When including other skills in a compound skill, it is possible to explicitly set
the parameters of the included skill if they are of any of the fundamental types.
It is also possible to remap the parameters that are WM elements. For example,
the ”pick” skill in Lst. 1.1 has the parameter ”Container”. In the example in
Lst. 1.3, the primitive to update the world model (”wm move object”) expects
an input parameter ”StartLocation”. It is possible to map the references for
these parameters, so they can be used in both skills. This can also be used to
resolve naming conflicts.
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1 class my_primitive(PrimitiveBase):
2 def createDescription(self):
3 self.setDescription(MyPrimitive(), self.__class__.__name__)
4 def onInit(self):
5 """ Called once when loading skills - it is not loaded on

False """
6 return True
7 def onPreempt(self):
8 """ Called when skill is requested to stop. """
9 return self.success("Preempted")

10 def onStart(self):
11 """ Called just before 1st execute """
12 return True
13 def execute(self):
14 """ Main execution function. Returns: self.fail, self.step or

self.success """
15 return self.success("Executed")
16 def onEnd(self):
17 """ Called just after last execute OR preemption """
18 return True

Listing 1.2: The code skeleton for a primitive skill. The functions allow to define the initialization,
execution and reaction to a preemption. In line 3 it is stated which skill description
(such as the one in Lst. 1.1) the primitive implements.

1 class pick_fake(SkillBase):
2 def createDescription(self):
3 self.setDescription(Pick(), self.__class__.__name__)
4
5 def expand(self, skill):
6 """ In this function the BT is defined """
7 skill.setProcessor(SerialStar())
8 skill(
9 self.skill("Wait", "wait", specify={"Duration": 1.0}),

10 self.skill("WmMoveObject", "wm_move_object",
11 remap={"StartLocation": "Container", "TargetLocation":

"Gripper"}),
12 )

Listing 1.3: An example for a mockup pick skill that implements the example description in Lst 1.1.
In line 7 the processor of the BT is set. In line 9 the parameter ”Duration” of the skill
”wait” is set to a concrete value and in line 10 parameter remappings are done.
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4.2 Skill Manager

Every robot has its own skill manager. The skill manager loads a set of specified
skills from the skill libraries. It initializes them and complements the WM with
semantic information such as the representation of the skill parameters and the
skill conditions. After the initialization phase, the skill manager offers services
to start, stop and debug skills, as well as monitor their execution. Since the
skill manager is also executing the skills and accepts skill plans from the task
manager, it is a core component of the platform. Whenever a skill or skill
sequence is started, the skill manager creates a new task with a unique ID.
Within a task, the parameters of the executed skills are shared on a blackboard.
This allows to exchange information such as calculated poses or even camera
images between the skills.

4.3 World Model

The world model server stores the ontologies and the instances. As such, it
loads the relevant ontologies that specify the known concepts (schemas) at the
start. Furthermore, it can load a specific scene that contains the instances, also
called vocabulary of the concepts that are specified in the ontologies. A typical
scene includes the semantic description of the specific robot system, objects in
the environment or known locations. The scene is complemented by the skill
manager with information about the available skills.

The information in the WM can be utilized for reasoning and for the paramet-
erization of skills. It also exposes an API that is used inside of the skills to read
from and write to the WM. Furthermore, custom reasoners can be plugged in.
As an example for such reasoners, skiros2 std lib implements a spatial reasoner
that can transform coordinates and calculate Allen intervals algebra [Rov+18].

4.4 Task Manager

In Section 3 we outlined the importance of the vertical integration into sys-
tems that provide tasks such as MES. SkiROS2 addresses this by providing
a sophisticated task planning integration that builds on the planning domain
definition language (PDDL) [Aer+98]. It utilizes the temporal fast downward
planner1 [EMR12] to guarantee the finding of an optimal skill sequence. In
contrast to other solution, SkiROS2 has a fully automated generation of the

1http://gki.informatik.uni-freiburg.de/tools/tfd/
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problem and planning domain based on the current state of the WM. This
includes the vocabulary of the scenes like the available robot as well as all the
skills with their pre- and post-conditions. This generation drastically simplifies
usability, as it is not necessary to maintain a separate planning domain.

The resulting plan can be sent to the skill manager and can become an executed
task. It is then automatically converted into an executable eBT [RGK17] and
the skill manager will expand the branches of the eBT automatically.

4.5 ROS Integration and User Interface

SkiROS2 is well integrated into robot operating system (ROS) [Qui+09]. While
SkiROS2 utilizes ROS as a middleware itself, it also features many convenient
integrations that ease the use and implementation of skills. The WM and its
elements are fully integrated with the ROS transformation system tf. As such,
WM elements can be linked to frames that exist outside SkiROS2 and elements
can be published as coordinate frames. On the skill level the skiros2 std lib
provides a skill primitive that can easily turn any ROS action into a skill.

The SkiROS2 graphical user interface (GUI) offers a drastically lowered entry
hurdle for non-experts. Like many other ROS GUIs, it is written with ROS’ rqt
and can be used alongside them. In the different tabs, users get an overview
of the loaded skills. Skill parameters can be changed and skills can be started
and stopped. Additionally, the WM view in the GUI provides full access to the
content of the WM. The vocabulary including all the properties and relations
can be inspected as well as fully modified. New relations and properties can be
added through easy-to-use dialogues. An integration with the visualization tool
RViz allows to modify the pose of a WM element.

5 Use-Cases

In this section, we discuss a selection of different use cases in which SkiROS2 is
used as a robot control system for partially-structured tasks.

5.1 Pick-place with a Mobile Robot

In the pick-and-place scenario, a mobile robot (e.g. heron in Fig. 1.1a) is tasked
to place an item at a new location that can either be at the same or at another
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workstation. In this scenario it is required that the robot can drive between
workstations, actuate the arm as well as the gripper, and use the camera to
compute the exact pose of the object. The skills can switch the control mode
of the arm between compliant control for contact-rich tasks and position con-
trol for planned trajectories. The used skills have full integration with plan-
ning and it is sufficient to specify a goal in PDDL such as skiros:contain
skiros:locationB skiros:objectA. As described in Section 4.4, trigger-
ing the planning automatically generates the domain description and problem
instance. A simplified example skill sequence is:

drive(workstationA)
pick(objectA)
drive(workstationB)
place(locationB)

Lst. 1.1 shows a simplified description of a pick skill. The specified precondi-
tions can be used to infer parameters at planning time, but also at run-time.
If this example skill is called manually with SkiROS2 GUI, it is sufficient to
specify the object to pick and the arm to use, and the rest of the parameters
are automatically inferred using the WM.

5.2 Dual-arm Piston Insertion

The task in this use case is to perform a tight insertion of a piston into a
real engine block. This insertion requires dual-arm manipulation as well as
specialized tools since an assistive ring must be held for insertion. The skills used
in this task heavily utilize the WM, but are at the same time able to learn parts
of the procedure, such as lifting poses, from kinesthetic teaching. Additionally,
the pose of objects, such as the engine block, can be estimated using the camera
mounted on the robot arm [GRK19]. The motion skills implement a combination
of a motion generator with BTs [Rov+18] and have extensive checks on the robot
state such as applied forces and torques. The extensive use of those conditions
allows aborting the execution if they are exceeded.

While the skills for this use-case do not have the necessary pre- and post-
conditions to use them for task planning, the concept of these conditions is
used to regularly check if the system is in the desired state. Furthermore, these
skills are written so that they are preemptable [Wut+21]. As an example for
a preemption procedure we can consider a state in which an object is in the
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gripper. Aborting the current action and switching to a different task requires
to place the object at an appropriate location first.

5.3 Reinforcement Learning of Industrial Robot Tasks

In a third use-case, SkiROS2 is used to learn industrial tasks with reinforce-
ment learning (RL) [May+22a; May+22c; May+22b; Ahm+22; AMK23]. Such
tasks include pushing an object on a table (shown in Fig. 1.1c) or learning a
peg-insertion strategy. The skills used in these scenarios are written by domain
experts and can be utilized by the task planner. However, there is no automated
reasoning module for some of the skills that can be utilized to fully parameterize
them for the task at hand. In this learning approach, the skill parameters in a
skill sequence that cannot be parameterized are automatically identified. Then
additional information about these learnable parameters, such as their type and
upper and lower limits, is obtained from the WM and used to automatically
create a learning scenario description. In the next step, the learning procedure
starts either on a real robot system or in simulation, and the RL framework cal-
culates the rewards depending on the performance. When leveraging on learning
in simulation, up to thousands of executions can be run to identify a robust and
well-performing set of parameters. Finally, the best configurations are presen-
ted to the operator and a final set can be selected for production [May+22a;
May+22c]. If the operator has an educated guess for good parameter values
or experiences from similar tasks, this learning approach can also incorporate
this information as priors to accelerate learning and increase safety [May+22b].
With [AMK23], an extension of [May+22a; May+22c] is proposed to learn be-
haviors for a variety of task variations and allow zero-shot execution even for
unseen task configurations.

6 Conclusions

Modern autonomous robotic systems require solutions for the fundamental re-
quirements: knowledge organization, control structuring, multi-robot orchestra-
tion and integration with external systems. We outlined the requirements and
introduced the skill-based robot control platform SkiROS2 and its core com-
ponents. Its unique combination of features makes it suitable for intelligent
autonomous robot control. To show this, we outlined three example use cases
that cover a wide variety of relevant challenges in robotics: Integration of diverse
robotic systems, task-level planning and integration of vision and learning from
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users. As part of these SkiROS2 has also been shown to allow the combination
of deductive methods such as reasoning with inductive methods such as learning
to improve the performance of executions by interacting with the environment.

The SkiROS2 platform is fully open source and comes with documentation,
tutorials and examples. Currently it integrates with ROS 1, but a ROS 2 version
and extensions such as EzSkiROS [Riz+23] are in development. The code is
available at: https://github.com/RVMI/skiros2
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Abstract

The transition to agile manufacturing, Industry 4.0, and high-mix-low-volume
tasks require robot programming solutions that are flexible. However, most
deployed robot solutions are still statically programmed and use stiff position
control, which limit their usefulness.
In this paper, we show how a single robot skill that utilizes knowledge repres-
entation, task planning, and automatic selection of skill implementations based
on the input parameters can be executed in different contexts. We demonstrate
how the skill-based control platform enables this with contact-rich wiping tasks
on different robot systems. To achieve that in this case study, our approach
needs to address different kinematics, gripper types, vendors, and fundament-
ally different control interfaces. We conducted the experiments with a mobile
platform that has a Universal Robots UR5e 6 degree-of-freedom robot arm with
position control and a 7 degree-of-freedom KUKA iiwa with torque control.
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1 Introduction

The need for flexible and skill-based robot control systems in industrial robot
applications is becoming increasingly important. With the rise of automation
and the growing complexity of tasks, robots must be able to adapt to chan-
ging environments and perform a variety of tasks without lengthy configuration
times. This requires a control system that can respond quickly and accurately to
changes in the environment and the task at hand. However, most of the deployed
systems are statically programmed and perform repetitive tasks. This introduces
the need for a flexible and skill-based robot control system in industrial robot
applications that provides flexibility and supports agile manufacturing.

First platforms for skill-based systems such as ClaraTy [Vol+01] or LAAS
[Ben+09], paved the way. In the area of knowledge integration frameworks, the
system built around the Rosetta ontology [MJ13; SM15] and Knowrob [TB09;
TB13] created a solid foundation. The latter addresses the service domain, while
the former is placed in the context of industrial robotics. To transfer skills from
one robot to another is nontrivial if robots of different types and vendors are
involved. For instance, [Top+18] demonstrated skill transfer for contact-free
motions within a single family of robots that share the same vendor-supplied
high-level interface ABB RAPID. In that paper, the simulated experiments were
conducted with high-gain position control. This is, of course, still a standard
practice within many tasks that have little variation and high certainty. How-
ever, the increasing number of contact-rich tasks that manipulators should be
able to solve [Wut+21] indicates a clear need for flexible and compliant systems.
Achieving compliant behaviors heavily depends on the hardware and vendor,
and there are no standard interfaces available for this purpose. In this paper,
we explore the question of how skills can be transferred between collaborative
robots, such as the Universal Robot robots and the KUKA iiwa or the Franka
Emika Robot (Panda). To do this, we develop a suitable representation of the
available robot hardware, a knowledge infrastructure to maintain this hardware
knowledge, and a suitable compliant controller that works across different types
of robot arms. To validate and verify our claims, we test our architecture on a
whiteboard wiping task, as shown in Fig. 2.1, using a UR5e and a KUKA iiwa.
The whiteboard wiping task is an example of a typical contact-rich task that
requires a compliant controller. For this, the UR5e has a force-torque sensor on
the wrist, while robots such as the iiwa and the Panda have torque sensors in
their joints.
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Figure 2.1: With the proposed abstractions and knowledge representation, several different robot
systems can execute the same skills while still using their respective hardware such as
grippers and controllers.

In summary, our paper makes the following contributions:

1. We present a complete architecture that represents, plans, and executes
skills such that they can be transfered between robots.

2. We demonstrate these ideas based on a whiteboard wiping task using a
UR5e and a KUKA iiwa robot.

3. All essential building blocks, including the impedance controller imple-
mentations are available as open-source software.

4. The code is written in a robot-agnostic way, making the results and in-
sights scalable to diverse collaborative robotic hardware and tasks.
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2 Related Work

2.1 Robot Skill Systems

We can classify skill-based architectures based on their target domain. Pro-
jects like CAST [Wya+10] and KnowRob [TB09; TB13] are for service robotics
and general platforms are ClaraTy [Vol+01], LAAS [Ben+09] and SmartM-
DSD [Sta+16]. However, platforms that address the specific needs of industrial
robotics are the most relevant for this work. CoStar [Pax+17] has shown to
integrate multiple robot systems and provides a GUI for the design and the
monitoring of skills. However, it lacks explicit knowledge representation and
the possibility to perform task planning. The use of ontologies to describe skills
in robotic applications has been explored in various areas, including medical
and surgical robotics [Bru+19; Gib+18], perception ontologies [ABR18] for ro-
bots, and more [Man+21]. Among these, [MJ13; SM15; Top+18] present a
knowledge-based approach for programming synchronized motions between ro-
botic systems and human-robot interactions that is particularly relevant for our
work.

In [Top+18], the authors demonstrate the effectiveness of their approach through
experiments that involve transformations of dual arm programs and the transfer
of skills between robot systems with different kinematics. Their approach uses
finite state machines to implement skill behavior and generates ABB RAPID
code that is specific to ABB robot controllers. Our work differs in that we use
behavior trees for skill behavior implementation and our implementation is not
limited to a particular robot controller. In addition, [Top+18] was validated
only in simulation, and the tasks were not contact-rich.

2.2 Robot Motions

In the literature, Movement Primitives (MPs) have been a reliable tool for gen-
erating robot motions. Dynamic Movement Primitives (DMPs) [INS01; INS02]
and Probabilistic Movement Primitives (ProMPs) [Par+13] have been success-
fully used to generate arm motions. Both DMPs and a motion representation
based on behavior trees and motion generators (BTMG) that will be introduced
in Section 4.1 use attractor landscapes to reach a target location. DMPs are
non-linear dynamical systems that allow trajectory control, and, like our BT-
MGs, they have a non-linear forcing term that enables the modification of the
original trajectory. However, in contrast to DMPs, the parameters of BTMGs
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can be specified explicitly, giving us a better understanding of the robot motion
and allowing for a better intregration with knowledge representation.

Wiping Applications: In [Lei+15; Lei+16; Lei+19] the authors discuss re-
search on robotic manipulation of wiping tasks using artificial intelligence reas-
oning methods. [Lei+15] proposes a classification of compliant manipulation
tasks based on symbolic effects, subcategorizes wiping tasks, and demonstrates
how to concretize actions based on the example of shards sweeping with a
broom. [Lei+16] investigates the reasoning and action execution problems in-
volved in the execution of wiping tasks and proposes a high-level abstraction
representation of wiping tasks to develop generalized action execution mechan-
isms. [Lei+19] combines reasoning methods and compliant robotic manipulation
to solve wiping tasks by introducing a qualitative particle distribution model,
an approach to generate whole-body wiping motions based on effect-oriented
policies, an approach to assess wiping motion quality, and the semantic inter-
pretation of contact situations. Rather than achieving the best wiping skill,
the focus of our paper is on presenting a complete architecture that represents,
plans, and executes skills, and then using wiping as a challenging example to
demonstrate these ideas.

3 Transferable Robot Skills

In this section we introduce the prerequisites that enable to transfer skills
between different robot systems. In addition to the skill platform SkiROS2
and its skill model, the necessary aspects of knowledge presentation and task
planning are introduced. The control implementations and motion generation
are introduced in Section 4.

3.1 SkiROS2

We utilize the skill-based robot control platform SkiROS2 [RGK17] to imple-
ment transferable robot skills. It is used in several research projects for motion
generation [Rov+18], robot coordination [Wut+21] and task-level planning with
RL [May+22a; May+22c; May+22b; AMK23]. The architecture is shown in
Fig. 2.2 and the main components are the skill manager and the world model.
The WM contains the knowledge about the world and represents it in a RDF
database. Ontologies such as the Suggested Upper Merged Ontology (SUMO)
describe the available concepts such as objects or skills and their relations to
each other. In addition to that, a scene contains the concrete instances of the
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the relations, environment and the skills. The skill manager loads and executes the
skills. Dashed lines show control flows and solid lines show information flows. Shaded
blocks indicate possible multiple instances.
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concepts that are defined in the ontologies. Such instances can be the present
robot systems, workstations or objects that are currently known.

The skill manager is responsible for loading a set of specified skills from the skill
libraries. Each skill that is successfully loaded gets a semantic description in
the WM. This includes the parameters and pre-, hold- and post-conditions. In
addition to that, the skill manager provides services to start, pause and stop
skills and to manage their execution.

The task manager accepts the planning goals in PDDL [Aer+98; RGK17]. Such
goals can come from a user or an external entity such as a MES. An example
of such a goal is to place an object at a specific location: (skiros:contain
skiros:Location-1 skiros:Product-1). The task manager automat-
ically creates a PDDL planning domain from the knowledge in the WM. The
currently available skills are added with their preconditions and effects, and the
relevant instances in the scene are automatically added to a planning problem.
Then a PDDL planner is called to find a sequence of skills that is guaranteed to
be optimal [EMR12]. Finally, the plan is converted back into a BT, automat-
ically expanded with the relevant skill implementations and grounded with the
instances in the WM [RGK17].

3.2 Skill Model

We define a skill as a parametric procedure that changes the world from some
initial state to some new state [Bøg+12]. It is shown in Fig. 2.3. A skill consists
of two main components: a skill description and the skill implementation. A skill
description contains the skill parameters and the necessary pre-, hold- and post-
conditions. These define what prerequisites need to exist to execute a skill and
state the expected effects of running it. In the task manager, these conditions
can be used for automatic task planning. Furthermore, the parameters state
the input and output of a skill. There are three different types of parameters:
1) required, 2) optional and 3) inferred. An example of a required parameter of
a ”pick” skill is to specify the robot arm, while an optional parameter could be
to slow down the execution for testing. The inferred parameters are reasoned
about when starting the skill. An example is a ”gripper” parameter for a pick
skill that already has the arm as a required parameter. With a precondition we
can define a relation between both of them and we can use the knowledge in the
WM to specify the inferred parameter automatically [RGK17].

In addition to the skill description that describes the semantic actions of a skill,
the skill implementation is a concrete version for the execution. Each skill im-

113



Sk
ill 

Pa
ra

m
et

er
s

Pre- Hold- Post-conditions

Pr
ec

on
di

tio
n 

C
he

ck Holdcondition Check

Po
st

co
nd

iti
on

 C
he

ck

Pa
ra

m
et

er
Va

lu
es

Execution

Skill Flow Information Flow Input/Output

C
ur

re
nt

St
at

e St
at

e 
C

ha
ng

e

Figure 2.3: The conceptual model of a skill in SkiROS2. Pre-, and hold-conditions ensure that the
skill is only executed in the correct world state. Post-conditions check if the desired
changes have been achieved.

plementation implements exactly one description with its parameters and pre-,
hold- and post-conditions. There are two complexities of skills: Primitive skills
that are semantically atomic and compound skills. Primitive skills provide a
Python interface for the initialization, start, execution and stop of a skill. In
contrast to that, compound skills allow to connect an arbitrary number of prim-
itive skills and compound skills in a BT [CÖ17a; RGK17]. A skill implement-
ation is also allowed to change the skill description, such as adding addition
conditions or modifying existing conditions. This is important to support mul-
tiple, specific skill implementations. Examples of this are gripper actuation
skills. A basic skill description can have a parameter ”gripper” of the WM type
Element("rparts:GripperEffector") and a Boolean parameter ”open-
ing state”. The implementation of such a skill depends on the actual gripper
model and a specific implementation can set the parameter to a specific subtype
of rparts:GripperEffector, such as scalable:RobotiqGripper.

3.3 Knowledge Representation and Task Planning

An important aspect is the separation of skills and tasks. Skills are written in
a parametric way to be used in various applications and different tasks. This
separation is achieved by explicitly storing knowledge in the WM. Since the
conditions and task-specific knowledge is not implicitly represented in the skills,
this allows for a modular and extensible design that easily allows to add scen-
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1 scalable:Ur5-2 a scalable:Ur5, owl:NamedIndividual ;
2 rdfs:label "scalable:ur5"ˆˆxsd:string ;
3 skiros:BaseFrameId "cora:Robot-1"ˆˆxsd:string ;
4 skiros:CartesianGoalAction

"/cartesian_trajectory_generator/goal_action"ˆˆxsd:string ;
5 skiros:OverlayMotionService

"/cartesian_trajectory_generator/overlay_motion"ˆˆxsd:string
;

6 skiros:CartesianStiffnessTopic
"/cartesian_param_filter/stiffness_goal"ˆˆxsd:string ;

7 skiros:CartesianWrenchTopic
"/cartesian_param_filter/force_goal"ˆˆxsd:string ;

8 skiros:CompliantController
"cartesian_compliance_controller"ˆˆxsd:string ;

9 skiros:JointConfigurationController
"scaled_pos_traj_controller"ˆˆxsd:string ;

10 skiros:DiscreteReasoner "AauSpatialReasoner"ˆˆxsd:string ;
11 skiros:FrameId "scalable:Ur5-2"ˆˆxsd:string ;
12 skiros:LinkedToFrameId "ur5e_base_link"ˆˆxsd:string ;
13 skiros:MotionExe

"/scaled_pos_traj_controller/follow_joint_trajectory"
ˆˆxsd:string ;

14 skiros:MoveItGroup "manipulator"ˆˆxsd:string ;
15 skiros:MoveItReferenceFrame "ur5e_base_link"ˆˆxsd:string ;
16 skiros:MoveItTCPLink "ur5e_tcp_link"ˆˆxsd:string ;
17 skiros:hasA scalable:WsgGripper-3 .

Listing 2.1: An excerpt from the semantic description of one of the robots used in the case study.
It includes the necessary knowledge to parameterize motion skills and perform spatial
reasoning.

arios or robot systems at a later point. The WM stores this knowledge in a
semantic RDF database that utilizes the OWL. SkiROS2 introduces its own
ontology, which contains the necessary concepts and relations for skill modeling
and reasoning. It is based on the Core Ontology for Robotics and Automation
(CORA) that is in the IEEE Standard Ontologies for Robotics and Automation
(IEEE Std 1872™-2015).

An example for a part of the semantic description of a robot arm is in Listing 2.1.
The listing contains the relevant knowledge for the trajectory generation and
motion execution. This includes, but is not limited to properties such as ROS
interfaces of a robot and the relevant aspects of a motion planning configuration.
In addition there are elements needed for reasoning about relations such as the
attached gripper.
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Tasks are executed by the skill manager and there are two ways to start them:
1) Select and parameterize a skill manually. For example in the GUI or from
an API or 2) by providing a planning goal to the task manager and executing
the skill sequence. Tasks are concrete skill (sequence) instances with a specific
goal. Within a task, the skills can utilize a blackboard to exchange information
with their parameters.

4 Control and Motion Generation

4.1 Behavior Trees and Motion Generators

Behavior Trees (BT) are mathematical models used for plan representation and
execution. They have been shown to perform reliably in games [CÖ14], artificial
intelligence and robotics [Iov+22]. A BT is an acyclic graph defined with nodes
and edges defined in a typical parent-child relationship. The nodes are of two
types: 1) control flow and 2) execution. The control flow nodes are responsible
for directing the flow of the tree and are traditionally classified on the basis of
their operation as: 1) sequence, 2) selector, 3) parallel and 4) decorator [CÖ17a;
Mar+14]. In essence, a BT works by means of sending a tick signal from the Root
node. The signal then moves through the nodes controlled by the control flow
nodes. The return statements from the execution nodes are running, success or
failure. In order to combine BTs with task-level planning, [RGK17] proposes
extended BTs.

A motion generator (MG) [Rov+18] generates an arm motion using impedance
controllers to control the end effector (EE) in Cartesian space. A MG follows
a simple attractor landscape that uses a virtual spring to attract the EE to the
desired location, whereas virtual dampers allow safe motion by slowing down
the overall motion. In addition, it also allows for a deviation by superimposing
a motion on top of the original trajectory. For example, in [May+22c] we used
a Cartesian linear trajectory superimposed by an Archimedes spiral to solve the
peg-in-hole task.

A Behavior Tree and Movement Generator (BTMG) combines the strengths
of both BT and MG to model robotic skills. A BTMG is a parameterized
representation that allows us to specify not only the structure of BT but also
the properties of the MG. In essence, the BTMG representation not only covers
the aspects of plan representation and execution, but also determines the arm
motions for the execution strategies [Ahm+22].

116



4.2 Trajectory Generation

The concept of the MG has been introduced in [Rov+18], which consists of both
a trajectory generation method and a corresponding controller to execute the
generated trajectory on the manipulator. In the following section, we provide a
description of the trajectory generation process adopted for this project.

In many industrial settings, operations are performed in a Cartesian task space
rather than in the joint space of the robot. Therefore, we argue that motion
references are best generated and provided in the Cartesian end-effector space.
In this work, we adopt Cartesian linear paths1 to generate the corresponding
trajectories. This is achieved by selecting appropriate acceleration profiles and
setting the maximum Cartesian translational and rotational velocities. Further-
more, we offer the option to synchronize motions that have both translational
and rotational components. Specifically, the trajectory generator takes the new
goal pose as input and outputs end-effector pose references, which are then sent
to the corresponding controller.

Aside from specifying a new goal pose, it is also possible to overlay additional
motions on top of the reference pose. This capability has been utilized in various
studies such as [May+21; May+22a; May+22c], where an Archimedes spiral is
used to find a hole in an insertion procedure. In this work, we apply a sine
motion to improve the wiping performance of the robot.

4.3 Compliant Control

Manipulation tasks that have uncertainties need compliant control solutions to
provide the necessary flexibility. Such uncertainties can come from either the
task itself or inaccurate knowledge about the placement of objects. Another
source could be the placement of the robot, which becomes relevant when work-
ing with a mobile robot. The robot systems used in the case study provide
different interfaces for control commands and therefore also have different solu-
tions for compliant control.

Cartesian Impedance Control

Robot systems such as the KUKA iiwa or the Franka Emika Robot offer an
interface to send commanded torques for each of the joints. This can be used

1https://github.com/matthias-mayr/cartesian trajectory generator

117



to perform Cartesian impedance control [MS22] which allows compliant control
of the end effector in task space.

Torque-controlled robots are typically gravity compensated. The rigid-body
dynamics of such a system in the joint space is described as q ∈ Rn:

M(q)q̈ + C(q, q̇)q̇ = τc + τ ext (2.1)

where M(q) ∈ Rn×n is the generalized inertia matrix, C(q, q̇) ∈ Rn×n cap-
tures the effects of Coriolis and centripetal forces, τc ∈ Rn represents the input
torques, and τ ext ∈ Rn represents the external torques, with n being the number
of joints of the robot.

Moreover, the torque signal commanded by this controller to the robot, τc in
Equation (2.1), is composed of the superposition of three joint-torque signals:

τc = τ ca
c + τns

c + τ ext
c (2.2)

where

τ ca
c is the torque commanded to achieve a Cartesian impedance behavior with

respect to a Cartesian pose reference in the m-dimensional task space, ξD ∈ Rm,
in the frame of the end effector of the robot:

τ ca
c = JT(q) [−Kca∆ξ −DcaJ(q)q̇] (2.3)

with J(q) ∈ Rm×n being the Jacobian relative to the end-effector (task) frame
of the robot, and Kca ∈ Rm×m and Dca ∈ Rm×m being the virtual Cartesian
stiffness and damping matrices, respectively.

τns
c is the torque commanded to achieve a joint impedance behavior with respect

to a desired configuration and projected in the null-space of the robot’s Jacobian,
to not affect the Cartesian motion of the robot’s end effector.

τ ext
c is the torque commanded to achieve the desired external force command in

the frame of the end effector of the robot, F ext
c :

τ ext
c = JT(q)F ext

c (2.4)

In this work we utilize τ ext
c and τ ca

c in combination with changing stiffnesses by
passing configurations through skill primitives.

Cartesian Compliance Control

In contrast to the KUKA iiwa, the Universal Robots UR5e like many other in-
dustrial manipulators does not support direct torque control. This means that
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a compliant control solution is needed that can work with joint position or joint
velocity commands. Recently, such a method was introduced through forward
dynamics compliance control [SRD17]. It combines admittance, impedance and
force control into one control strategy. The control loop is closed only through
a force-torque sensor, which makes it system independent. Internally it utilizes
a forward dynamics simulation of a virtual model of the robot system to map
Cartesian inputs to joint commands. For further details, we refer the interested
reader to [SRD17] and [SRD19]. Like the impedance controller that was intro-
duced in the previous section, this controller solution also allows for the runtime
modification of applied external forces, reference poses and stiffness changes. We
utilize these capabilities when modeling behaviors with BTs.

5 Case Study: Wiping Task

We demonstrate the usage of skills in different tasks and on different robot
system with the example of a wiping task.

5.1 Challenges

The task at hand and the robot systems selected for this study present a range of
intriguing challenges. Firstly, the task instances involve surfaces with different
properties, namely a smooth whiteboard and a rough industrial table. The
whiteboard is mounted to a wall, whereas the table surface is parallel to the floor.
Moreover, we assume that the precise distance between the robot and the surface
may not be known in advance. The robot systems are equipped with different
grippers, each of which has its own communication interface. Finally, the robots
have distinct kinematics, vendor-supplied programming solutions, and control
interfaces. In this context, we demonstrate how a skill that utilizes knowledge
representation, planning and the automatic skill implementation selection can
be executed in different context on different robot systems.

5.2 Implementation

The implementation of such a skill incorporates several key aspects that are
discussed in [Rov+18]. Specifically, we utilize a motion generator (MG) that
comprises of both trajectory generation (Sec.4.2) and a controller (Sec.4.3).
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Figure 2.4: The iiwa wiping task on a table. The different hardware needs a different controller
setup and gripper skills.

As inputs for the skill, only the robot arm and a surface to clean need to
be selected among the available instances in the WM. All other necessary
data, such as robot-specific properties (e.g., the controller to use) and the sur-
face properties (e.g. the dimensions, force to apply) are automatically fetched
from the WM as part of the knowledge integration. Apart from the paramet-
ers, this skill also contains the necessary pre- and postconditions for planning.
The integrated plannerin SkiROS can receive a goal such as (skiros:clean
scalable:Workstation-1186 scalable:Cell-12). For instance, one
precondition of the skill is that the tool must already be held in the gripper.
This is leveraged in task-level planning, where the robot is required to pick up
the tool first. In case of a mobile system, this may entail driving to a different
location. The postcondition of the task is that the surface is cleaned.

To begin the wiping process, the end effector is moved to the corner of the

120



Figure 2.5: The resulting reference positions and actual positions of the end effectors in a) the
whiteboard wiping task and with the UR5e b) the table wiping task with the iiwa. The
shaded green shows the surface area that has been covered by the eraser that is used
for cleaning.
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surface to be cleaned. Once there, it disables the stiffness of the compliant
controller along the normal of the surface and applies a predetermined force. In
our experiments, 8 N are specified for surfaces that are easier to clean, such as the
whiteboard, and 18 N for the table. The robot then applies an overlay motion, in
this case a circular motion, while performing the wiping action. From there the
skill executes laps by moving the robot’s end-effector to the right, then down,
and finally left until the entire surface is covered. Finally, upon completion of
the task, the robot stops the force application, increases the stiffness along the
surface normal, and moves the end-effector away from the surface.

5.3 Experiments and Discussion

We conducted the experiments using two different robot systems. The first
system is a mobile platform that has a UR5e 6 degree-of-freedom robot arm
with a Schunk two finger gripper. The second system is a 7 degree-of-freedom
KUKA iiwa with a Robotiq 3-finger gripper. We selected two different surfaces
for the cleaning task, each with different orientations and surface properties.

The resulting reference path and the actual path for the UR5e are shown in
Fig. 2.5a). The implementation spends more time in the left and right extremes
since the sub-trajectory ends there and it switches to new lane. This can be
adressed by blending between trajectories. During the execution we also noticed
subtle vibrations, especially when the arm was stretched out.

In our second experiment we used the KUKA iiwa robot system to wipe the
surface of a table. As in the previous experiment, the important attributes
were represented in the WM, and the skill could be started by simply selecting
the surface and the robot arm. The reference path and the actual path for
the robot end effector during the task is shown in Figure 2.5b). The controller
is very stable and there are no vibrations. We observed that the eraser was
occasionally lifted slightly during the wiping process. This could potentially be
addressed by increasing the rotational stiffness or applying more pressure to the
surface.

In both tasks, the respective robot systems were able to completely clean the
surface with the proposed implementation. In principle, the surface can also
be cleaned using only the Cartesian linear motion. However, as intuitively
expected, the addition of an additional overlay motion improves the cleaning
performance in practice.
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6 Conclusions and Future Work

The transition towards Industry 4.0 brings challenges such as small batch sizes,
constantly changing tasks and environments. Together with the transition to-
wards human-robot colaboration and handling contact-rich tasks, it creates the
need for platforms that can address these challenges.

In this paper we presented a complete architecture that allows to transfer skills
between different robot systems. We explain the necessary prerequisites and
knowledge representation. We demonstrated this by successfully performing
contact-rich wiping tasks with a KUKA iiwa and a Universal Robots UR5e. All
essential building blocks including the skill-based system and the controllers are
available as open-source software and the results are expected to scale to other
hardware and tasks as well.

While the wiping performance was sufficient in our tasks, it can potentially be
increased by learning a good combination of path velocities and applied force. A
visual inspection with a camera is a next inuitive step. We are also looking into
an evaluation with other platforms such as the Franka Emika Robot (Panda).
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Abstract

Reinforcement Learning (RL) is a powerful mathematical framework that allows
robots to learn complex skills by trial-and-error. Despite numerous successes in
many applications, RL algorithms still require thousands of trials to converge
to high-performing policies, can produce dangerous behaviors while learning,
and the optimized policies (usually modeled as neural networks) give almost
zero explanation when they fail to perform the task. For these reasons, the
adoption of RL in industrial settings is not common. Behavior Trees (BTs), on
the other hand, can provide a policy representation that a) supports modular
and composable skills, b) allows for easy interpretation of the robot actions, and
c) provides an advantageous low-dimensional parameter space. In this paper,
we present a novel algorithm that can learn the parameters of a BT policy
in simulation and then generalize to the physical robot without any additional
training. We leverage a physical simulator with a digital twin of our workstation,
and optimize the relevant parameters with a black-box optimizer. We showcase
the efficacy of our method with a 7-DOF KUKA-iiwa manipulator in a task that
includes obstacle avoidance and a contact-rich insertion (peg-in-hole), in which
our method outperforms the baselines.

131



1 Introduction

Even in well-structured environments, like the ones in industrial settings, a
desired feature of a robotic setup is to be able to improve over time and eas-
ily adapt to novel situations. Reinforcement Learning (RL) [Cha+19; DNP13]
provides the theoretical framework that can allow robots to learn complex skills
by trial-and-error. State-of-the-art RL methods, however, require at least a few
hundred hours of interaction time to find an effective policy. Moreover, in the
early stages of learning, those methods can produce unstable behaviors that
can damage the robot or the environment (including human operators). Addi-
tionally, the optimized controllers, usually modeled as neural networks, cannot
easily be interpreted, and when the robot fails at a task it is difficult to de-
vise mitigation plans. In other words, operators have difficulties understanding
when a robot is doing what and why and what kind of reliability can be expec-
ted. All things considered, controllers learned via pure RL do not satisfy the
requirements for safety and production quality.

There exist three main axes for improving the data-efficiency of RL algorithms
[Cha+19]: 1) inserting prior knowledge in the policy structure or parameters,
2) learning models of the objective function, and 3) learning or using models
of dynamics. Using prior knowledge in the policy can be beneficial as it can a)
create an easy to optimize optimization landscape, b) reduce the dimensionality
of the search space, or c) provide a strong initial configuration that is close to
the optimal value. Learning models using the gathered experience data or using
dynamics models (e.g. simulators) allows the agents to perform interactions
with the models, and thus reduce the interaction time needed on the physical
system [DNP13; Cha+19].

Many types of policy structures have been proposed in the robot learning literat-
ure [Cha+19]. Among them, trajectory-based policy structures [KB11; Ude+10;
SS13; Ijs+12] have received the most attention. One approach to encode traject-
ories is to define the policy as a sequence of way-points, while the most widely
used approach is using policies based on dynamical systems. The latter type of
policies has been used more extensively as they combine the generality of func-
tion approximators with the advantages of dynamical systems, such as robust-
ness toward perturbations and stability guarantees [KB11; Krü+12; Ude+10;
SS13], which are desirable properties of a robotic system. Parametric movement
skills (MS) or motion generators [Rov+18] are another type of trajectory-based
policy structure that explicitly operates in the end-effector space and allows for
easy external modulation of their parameters. The advantage of this type of
policy representation is that it is modular and easily interpretable. To the best
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Figure 3.1: The robot setup used for the experiments for engine assembly at PSA: two KUKA-iiwa
arms mounted on a torso to emulate a configuration similar to a human upper body.
Policies are based on BTs and parametric movement skills.

of our knowledge, no prior work is available that combines them with learning.

In this paper, we propose a novel pipeline that is able to learn interpretable
policies with no interaction on the physical robot when a digital twin (DT) of
the workspace is available. In particular, we propose to use a parametric policy
representation that is combining behavior trees (BT) [CÖ14; CÖ17a] with para-
metric movement skills (MS) [Rov+18], and to learn the parameters of the BT
and the MS through reinforcement learning. We call this BT/MS policy rep-
resentation approach BTMS. Since this BTMS policy representation is not dif-
ferentiable, we solve the policy search using black-box optimization [Cha+17;
Cha+19]. Black-box optimizers are able to optimize based solely on the input
and the output and they do not make any assumptions on how the policy is
modeled. In addition, we utilize domain randomization techniques [Tob+17;
Meh+20] in order to generalize the behaviors from the DT to the physical sys-
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tem.

Our formulation has several advantages over prior work, namely:

• It can be easily interpreted, and it allows not only to better predict the
final robot behavior, but also to efficiently define priors for both structure
and parameters for a given task [RGK17];

• It allows to decouple a desired policy into sub-policies that can be optim-
ized separately;

• It provides a low-dimensional search space, and thus learning on the phys-
ical system (either from scratch or fine-tuning) is feasible;

• We do not require the physical setup to align perfectly with its digital
twin.

To validate our proposed pipeline, we create the following scenario: a KUKA-
iiwa 7-degree-of-freedom (DOF) industrial manipulator needs to insert a piston
inside an engine while avoiding the obstacles in the workspace (Fig. 3.1). We
emulate this scenario by requiring the manipulator to avoid a big obstacle (the
engine block in Fig. 3.1) in the middle of the workspace, and to insert a peg into
a hole with a 5mm clearance (i.e., difference between the hole size and the peg
size) (Fig. 3.3).

Our results showcase that the proposed method can learn policies completely in
simulation using the DT, and transfer successfully to the physical setup. The
results also show that our BTMS policy representation leads to faster learning
and better convergence than black-box policies (e.g., neural networks). Finally,
using the proposed method we can split the overall policy into sub-policies, learn
them separately, and easily combine them to perform the whole task; we show
that we can even combine sub-policies where one of them is learned in simulation
and the other one on the physical setup.

2 Related Work

2.1 Policy Search and Representation

Model-free policy search approaches have been used in many successful applic-
ations in robotics [DNP13]. They can easily be applied to RL problems with
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high-dimensional continuous state spaces. However, they are not as sample-
efficient and often need hundreds or thousands of episodes [Cha+19; PN17;
DNP13].

Model-based methods utilize an internal model of the transition dynamics that
allow to optimize a policy without interaction with the physical system. This is
generally more efficient [DNP13; PN17], which is an important criterion since
many scenarios in robotics need supervision by a human operator.

The commonly used policy representations include radial basis function net-
works [DNP13], dynamical movement primitives [Ijs+12; Ude+10] and feed-
forward neural networks [DNP13; Cha+17]. In recent years deep neural nets
seem to become a popular policy. All of them have in common that their final
representation can be difficult to interpret. Even if a policy sets a target pose
for the robot to reach, it can be problematic to know how it reacts in all parts
of the state space.

2.2 Behavior Trees in Manipulation

Behavior trees are a policy representation that can be used for both plan-
ning and execution. They have been first described in computer games [CÖ14;
Iov+22] and have successful applications in robotics [RGK17; Rov+18; Mar+14;
Pax+17; Iov+22].

They are often chosen in skill-based systems [RGK17] because they are modular,
interpretable and reactive. However, both their structure and parameters are
often hard-coded for a specific task [Rov+18; Mar+14; CÖ14; Pax+17; Iov+22].
Frameworks like extended BTs [RGK17] allow to find both through planning.
But this is limited to the capabilities of the reasoning system and can be chal-
lenging for contact-rich tasks. Furthermore, there is no mechanism to improve
the task performance [RGK17].

Learning BTs is mostly exercised in game AI. A recent survey of BTs in ro-
botics and AI [Iov+22] provides a detailed overview of the BT learning meth-
ods. In short, existing approaches mostly focus on evolving the structure of a
tree [LBC10; Per+11; CPO18] or learning the behavior of control flow nodes
[FQY16]. However in this work we are assuming that the structure is given a
priori, e.g., through a framework like [RGK17], to assure better predictability,
and learn the parameters of the BT through trial-and-error.

To the best of our knowledge, there is no previous work of applying reinforcement
learning with BT policies in the context of manipulation [Iov+22].
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Algorithm 1 BT Learning Process
1: procedure BTMS Policy Learning
2: Define policy π : x× θ → u
3: for i ≤ itmax do . arg maxθ E

[
J(θ)

]
4: θi ∼ N(mk, σ

2
kCk) . CMA-ES

5: Ri = ∅
6: for e ≤ evals do parallel . Episodes
7: Set random initial robot state x0
8: Set random initial simulation state
9: Di,e = ∅

10: for j = 0→ T − 1 do
11: uj = π(xj |θi)
12: xj+1 = execute on robot(uj)
13: Di,e = Di,e ∪ {(xj ,uj)}
14: end for
15: Ri = Ri ∪ reward(Di,e) . Sec. 4.1
16: end for
17: ri = mean(Ri)
18: end for
19: θ∗ = get mean of last population()
20: end procedure

3 Approach

Overall, we propose to combine BTs with parametric MS to form a novel policy
representation to be learned via reinforcement learning. Most of the learning
happens in simulation, and we use domain randomization techniques so that the
learned controllers generalize to the physical setup.

In the following subsections, we lay out our choices and approach. In Sec. 3.1
we present the Cartesian controller of the end-effector of our manipulator. In
Sec. 3.2 we describe the parametric MS formulation used in our method that
computes commands for the low-level Cartesian controller (Sec. 3.1). In Sec. 3.3
we describe the behavior tree formulation and how we use it in our setup to
incorporate the parametric MS. Finally, in Sections 3.4, and 3.5 we describe the
policy search formulation, and the domain randomization techniques used for
our approach. The whole procedure is shown in Algorithm 1.
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3.1 Robot Control

For our arm motions, we are controlling the end effector in Cartesian space. The
desired behavior is defined in task coordinates xee. A given joint configuration
of the robot q can be converted into a Cartesian pose using forward kinematics
xee = ffk(q). This allows to calculate the pose error x̃ between xee and a time-
varying virtual equilibrium or attractor point xd.

With inspiration from Cartesian impedance control, we formulate the joint com-
mands given joint positions q and joint velocities q̇ according to

q̇c = J(q)T (Kdx̃ + DdJ(q)q̇) , (3.1)
with J(q) being the Jacobian for the end effector in the absolute inertial co-
ordinate frame, Kd the stiffness matrix and Dd the damping matrix.

Furthermore, we require the real robot to adhere to safety requirements for
safe collaboration with humans at the workstation. This includes an adjustable
maximum joint velocity and limiting the torques that can be exerted by the
robot arm. To achieve that, we use a joint impedance controller on the real
robot. This also means that robot motions can not be executed as accurately
as with non-collaborative position-controlled robots. Due to the lack of a joint
velocity interface, we integrate the joint velocity commands q̇c to obtain joint
position commands qc.

In order to have an accurate representation in simulation, the robot model has
strict limits on the joint torques.

3.2 Parametric Movement Skills

The reactive adaptation of movement skills in combination with BTs can be
used to allow more robust assembly task automation [Rov+18]. Rovida et al.
advocate to control the end effector in Cartesian space.

A Cartesian goal point xg can be set and a path between the current end effector
position xee and the goal position xg is calculated. The attractor point xd is
moved along this path with a path velocity vp. Furthermore, the pose xd can
be overlayed with additional motions that can be configured by the BT. We
use an Archimedes spiral, which is a common method in peg-in-hole assembly
tasks. The formulation follows [Par+17] and defines a spiral trajectory in polar
coordinates {

δα = vs
ri

ri+1 = ri + δα c
2π ,

(3.2)
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with a path velocity vs and a pitch, i.e. the distance between lines in the spiral,
c.

One major advantage of this approach is that the movements can be defined in
the task frame [Rov+18]. This allows to easily relocate a task frame through
planning or sensing and still have a valid motion configuration. Furthermore,
it offers an easier transfer of skills to other robots [Top+18]. We use mo-
tion generators as the movement skills in our policy representation, please refer
to [Rov+18] for details.

3.3 Behavior Trees

A Behavior Tree (BT) [CÖ17a] is a plan representation and execution tool.
A BT can be defined as a directed acyclic graph G(V,E) with |V | nodes and
|E| edges. It consists of control flow nodes or processors, and execution nodes.
The classical formulation defines four types of control flow nodes: 1) sequence,
2) selector, 3) parallel and 4) decorator [Mar+14]. A BT has always an initial
node with no parents, defined as Root, and one or more nodes with no children,
called leaves.

The execution of a BT is done by periodically injecting a tick signal into the
Root. The signal is routed according to the control flow nodes and the return
statements of the children. By convention, the signal propagation goes from left
to right. This can be exploited to set priorities.

A sequence node can be seen as a logical AND: it succeeds if all children succeed,
and fails if one child fails. The selector, also called fallback node, represents a
logical OR: It fails only if all children fail. If one child succeeds, the remaining
ones will not be ticked. The parallel control flow node forwards ticks to all chil-
dren and fails if one fails. A decorator allows to define custom functions. Leaves
of the BT are the execution nodes that, when ticked, perform an operation and
output one of the three signals: success, failure or running. In particular, execu-
tion nodes subdivide into 1) action and 2) condition nodes. An action performs
its operation iteratively at every tick, returning running while it is not done,
and success or failure otherwise. A condition never returns running: it performs
an instantaneous operation and returns always success or failure.

In this paper, to assure predictability of the robot behaviors, we assume that a
structure is given a-priori, only the parameters of the BT and the motion skills
need to be determined. We utilize nodes and conditions in the BT to set the
configuration of the motion generator in a reactive and easy to understand way.
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Fig 3.2 shows the BT that we are using.

3.4 Policy Optimization

In order to optimize for policy parameters, we adopt the policy search for-
mulation [DNP13; Cha+19; Cha+17]. In general, we model the system as a
dynamical system of the form:

xt+1 = xt +M(xt,ut) + f(xt,ut), (3.3)

with continuous valued states x ∈ RE and continuous valued actions u ∈ RU .
The transition dynamics can generally be modeled as a combination of a simu-
lation of the robot M(xt,ut) and f(xt,ut) which models the residual between
simulation and reality. Here, we do not model the function f . Instead, we use
domain randomization for finding a policy that is robust enough such that we
can ignore f .

The goal is to find a policy π,u = π(x|θ) with policy parameters θ such that u
maximizes the expected long-term reward when executing the policy for T time
steps:

J = E
[
T∑
t=1

r(xt)|θ
]
, (3.4)

with r(xt) being the immediate reward for being in state x at time step t.

In our approach the movement skills in our policy π define the movements of
the manipulator in Cartesian space in terms of goal points. A BT is used to
ensure the configuration depending on the state of the robot [RGK17; Mar+14].

Since our policy representation is not differentiable, we frame the optimization
of Eq. (3.4) as a black-box optimization, and seek the maximization of a reward
function J(θ) by only using measurements of the function. Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [Han06] is a stochastic, derivative-
free method for numerical optimization of non-linear or non-convex continuous
optimization problems. It models a population of points as a multivariate normal
distribution. CMA-ES performs three steps at each generation k, we defer
to [Han06] for details:

1. Reproduction: sample λ new offspring according to a multi-variate Gaus-
sian distribution of mean mk and covariance σ2

kCk, that is,
θi ∼ N(mk, σ

2
kCk) for i ∈ 1, ..., λ;
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2. Truncation selection: rank the λ sampled candidates based on their per-
formance J(θi) and select the fittest µ individuals with µ ≤ λ;

3. Gaussian update: to reflect the distribution of the µ best candidates,
compute mk+1 by averaging the µ individuals: mk+1 = 1

µ

∑µ
i=1 θi, and

σ2
k+1Ck+1.

In our experiments, we use BIPOP-CMA-ES with restarts [Han09; Cul+18]1,
which is a refinement over canonical CMA-ES. At convergence, it restarts the
optimization process with a bigger population λ to increase exploration. In our
implementation, we sample a new parameter configuration θi at the beginning of
an iteration in line 4 of Algorithm 1. When all λ offspring of a population have
been evaluated, the algorithm performs the truncation selection and Gaussian
update.

Examples of parameters to optimize for are location of goal points in Cartesian
space or thresholds in conditions in the BT.

3.5 Domain Randomization

Domain randomization is used to bridge the reality gap between the digital
twin and the physical robot. The idea of domain randomization is to introduce
enough variability into the simulation such that the real physical robot may ap-
pear as just another variation of the simulation [Tob+17; Ngu+18; Che+18]. It
can also avoid overfitting to a specific solution that might perform very well in
simulation, but would fail on the real robot [KMD13]. Furthermore, we are also
interested to learn robust policies that can address uncertainties in the environ-
ment. In our scenarios, a given policy is evaluated in multiple simulations. See
line 6 in Algorithm 1. At the beginning of each evaluation, a varying starting
position for the robot arm (line 7) and a random displacement of objects in the
workplace (line 8) is applied. We calculate the mean reward of all simulations in
line 17 and assign it as the value of the objective function. Furthermore, at the
end of a learning procedure in line 19, we get the mean of the last population
of CMA-ES rather than the best performing offspring. The reasoning is that it
should be a more robust configuration and the chances that it succeeds on the
physical system are higher. This allows for our policy to generalize to inevitable
differences between the physical setup and its DT.

1We use the open source CMA-ES integration in the Limbo package [Cul+18].
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"Motion 3" <?>

Peg Insertion
?

"Motion 2" <→> "Motion 1" <→>

ConfigMotion ConfigMotion

Ø

ConfigMotion

"Search" <?>

ConfigMotionSuccess

?

ConfigMotion

"Insertion" <||>

Figure 3.2: The behavior tree used for the combined task in the extended BT format [RGK17].
Each node has conditions shown in the upper half and effects shown in the lower half.
The two explicit control flow nodes are selectors indicated by a question mark. They
forward a tick to their children from the left to the right until one returns running or
success. Hence ”Motion 1” is only executed if the conditions of the other children do
not hold. The top right part of the tree handles the obstacle avoidance. The bottom
left part of the tree handles the peg-in-hole task.

4 Experimental Results

We evaluate our approach with a KUKA-iiwa 7-DOF manipulator (see Fig. 3.1).
The robot is controlled by our own re-implementation of the motion generator
described in Sec. 3.2. We utilize the DART simulator [Lee+18].

For our experiments we use a mock-up of our workstation shown in Fig. 3.3.
The goal is to reach a target position (g3) on the other side of an obstacle (e.g.,
the engine block in Fig. 3.1) and perform a peg insertion on that side. In order
for the task to succeed, two parameters in the BT and several movement skill
parameters need to be learned.

The BT is shown in Fig. 3.2. It consists of the bottom left part that models the
peg insertion marked in green and the top right part that is parameterized to
avoid the obstacle. Learning the whole task with a real robot arm would include
many undesired collisions with the environment. Instead, we use the property of
BTs that a node in the tree can be replaced with any number of nodes [CÖ14].
When learning the obstacle avoidance task, the bottom-left BT for the peg
insertion is replaced with a condition that reports success when the end effector
is close to the hole. This way, we can separate the two tasks. Therefore, we
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can learn the obstacle avoidance task in simulation and minimize the usage of
the real system and avoid the risk of damages. We then learn the peg insertion
in simulation as well as with the real robot and compare the results. Here,
learning the peg insertion does not pose a danger for the environment or the
robot. Finally, we re-combine the two separately learned policies two evaluate
the whole task.

4.1 Rewards

For our tasks, we use the following intuitive rewards:

1. Finish the task;

2. Closeness to the goal;

3. Negative reward close to obstacles;

4. Closeness to the hole of the workpiece.

In principle, these rewards can be provided by the DT. The DT already provides
the information about the goal and if an object is to be avoided.
1. Finish the task: As explained in Section 3.3, a BT can succeed, run or
fail. This feedback can be used to easily determine if the task was successfully
finished. For that purpose we use a task-dependent fixed reward.
2. Goal position: We use the Euclidean distance between the position of
the end effector and the target. We utilize the same function used in [DR11a]
and [Cha+17], an exponential function:

rg(x) = exp
(
− 1

2σ2
c

(‖ppeg,x − p∗‖+ dg)
)
, (3.5)

where σc = 0.4, ppeg,x corresponds to the position of the peg in state x and p∗
is the goal position. We add a minimum distance dg = 0.25 to obtain a steeper
slope next to the goal.
3. Collisions: Keeping a safe distance to a certain object in the environment
like the table and the engine in Fig. 3.1 is often a basic requirement when
parameterizing a policy. This can be easily achieved without additional sensing
using the simulation. The objects are known in the DT, and a negative reward
close to them can easily be defined:

ra(x) = − 1
(d(ppeg,x,pobj) + da)2 , (3.6)
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with da = 0.03 to avoid a division by zero and calculating the shortest distance
d(ppeg,x,pobj). Furthermore, the same negative reward can be utilized to avoid
areas that might be dangerous for the robot or an operator.
4. Closeness to the hole: This quite localized reward acts as an additional
attractor towards the desired assembly goal location. We use

rh(x) = 1
2 (d(ppeg,x,ph) + dh) , (3.7)

with dh = 0.006 and the shortest distance function d(ppeg,x,ph). ph is a hyper-
rectangle in the center of a hole with two sides of 2 mm and stretching from the
bottom to 1 mm below the surface.

4.2 Movements with Avoidance of a Static Obstacle

Intuitively, the shape of the desired trajectory suggests to use two intermediate
goal points and two conditions for nodes in the BT. The pre-defined structure
of the BT can be seen in Fig. 3.2, top-right, and an interpretation is shown in
Fig. 3.3. In the configuration shown in Fig. 3.3, the end effector follows the
configuration ”Motion 1” towards goal (g1) until the condition posp,z > p1 of
the branch ”Motion 2” is fulfilled. This branch is ticked before and executes if
the condition is fulfilled.

The parameters that need to be determined include both conditions of nodes p1
and p2 as well as the position of the goal points g1 and g2 along two axis. The
structure of the BT has redundancies since the thresholds and the positions of
the goal points interplay with each other.

We learned 10 policies with 5000 iterations each. All policies that successfully
executed in simulation also successfully executed on the real system and there
were no collisions with the environment.

We compare our approach to a feed-forward neural net that has one hidden layer
with ten neurons. The function of the ith layer is yi = φi (Wiyi−1 + bi) , with
Wi and bi being the weight matrix and bias vector. yi−1 and yi are the input
and output vectors and φi is the activation function. We use the hyperbolic
tangent as the activation function for all the layers. The output layer sets the
target position of the end effector.

The development of the reward in Fig. 3.4 shows that BTMS policies learned
significantly faster than neural nets. Neural nets could eventually outperform
the given structure of the movement skills. However, even though they control
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Figure 3.3: The setup of the experiment in simulation in one possible motion configuration. Two
thresholds that are set by the parameters p1 and p2 are visualized, as well as the
parametric goal points (g1, g2). The trajectory between the start point s and the
target g3 is outlined.

the end effector goal position, the motions can be much harder to predict. In
fact, it is also not clear how this neural net-based policy will handle perturba-
tions. In case of the BTMS policy, the underlying BT of the policy will simply
evaluate the end-effector pose making thus the reaction predictable.

4.3 Peg-in-Hole Task

The peg-in-hole task is a common assembly task, e.g., it resembles the piston
insertion from [Rov+18]. The setup for the experiment is shown in Fig. 3.3.
We know the position of the box within the frame of the workstation with a
precision error of less than 10 mm. Based on the idea from [Rov+18] we allow
the robot to make a search movement close to the surface of the box in order to
find the hole. Intuitively, this is similar to the movement humans would do as
well.

Tasks that involve contact forces are much harder to learn than free-space move-
ments. We learn both the z-coordinate of the goal point g3 that influences the
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Figure 3.4: The development of the best reward when learning the obstacle task in simulation.
The lines are the median values and the shaded region the 25th and 75th percentile
(10 replicates). BT policies converge faster and with less variance.

Figure 3.5: The success rates of the peg-in-hole experiment (15 trials per policy). The box plots
show the median (red line) and interquartile range (25th and 75th percentile); the
whiskers extend to the most extreme data points not considered outliers, and outliers
are plotted individually. The learned search parameters clearly improve the insertion
rate. Parameters learned on the physical robot have less negative outliers.
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pressure that is applied on the surface and the search path velocity vs. The peg
can get stuck or can jump over the hole if there is too little pressure for a given
path velocity vs. The radius of the peg is 2.5 mm smaller than the hole, and an
insertion is called successful if the peg is more than 10 mm inside the hole.

In our particular setup, the robot is configured in a low stiffness mode to ensure
safety guarantees in human-robot collaborative workspaces. This also means
that there can be deviations from the path and that it can be perturbed by a
human operator. Therefore, we learn the task with five different start positions
and expect to learn a policy that generalizes to other configurations.

We learn policies with 5000 iterations in simulation. The episode length is set
to 15 s and each episode starts from one of the five random start positions and a
random displacement of the hole. Again, learning in simulation allows to highly
parallelize the procedure and does not block or damage expensive hardware.

The learned policies are evaluated on the physical setup with the five start
positions used for training and ten previously unknown positions (15 in total).
All start positions are 40 cm above the hole and have deviations in x and y
direction between 2 cm and 5 cm. One position is exactly above the hole. We
allow an episode length of 25 s.

The results are presented in Fig. 3.5. As a baseline we use a peg insertion without
a search (Fig. 3.5, left) and randomly sampled search parameters (Fig. 3.5,
second from left). The results show that without a search motion a success
rate of only 20 % was achieved. Randomly sampled parameters had a median
insertion rate of only 53 %. The parameters learned in simulation (Fig. 3.5,
third from left) performed with a median success rate of 100 % generally well,
but had negative outliers. However, these are easy to detect using the success
criterion of the BT since they also perform significantly worse in simulation.

We acknowledge that an accurate enough simulation of a contact-rich task might
not always be available. Therefore, we also learned six policies with 200 itera-
tions on the real robot. With the episode length of 15 s and approximately 6 s
to reset, the training took about 75 min per policy. The learning is safe in the
sense that the robot can not collide with other objects in the workplace. The
parameters learned with the real system showed the most consistent perform-
ance with a median success rate of 100 % and only one outlier that still achieved
53 %.
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4.4 Combining the Tasks

The modular nature of the BTs allows us to combine the policies of the two tasks
into one or split a large policy into sub-policies. In this experiment we want to
explore 1) if two policies that are learned in simulation and reality, respectively,
can be combined, 2) how well the combined policies perform and 3) to which
extend it can accomplish the task if the hole is displaced.

We combine the obstacle task policies learned in simulation with the peg inser-
tion policies learned with the real system one-to-one and evaluated them on the
BT shown in Fig. 3.2. We assessed if they 1) can be executed on the robot,
2) collide with the environment and 3) successfully insert the peg. In addition
to the hole being in the specified location, we also evaluated with deviations of
±5 mm and ±10 mm in both horizontal directions x and y. We allow an episode
length of 30 s.

None of the policies collide with the environment. In case of a perfect positioning
of the hole an insertion rate of 100 % was achieved. A misalignment of ±5 mm
led to a success rate of 91.66 %, while a displacement of 10 mm still allowed an
insertion rate of 83.3 %. These results showcase the modularity and efficacy of
our BTMS method.

5 Conclusions and Future Work

Motivated by [Rov+18] we introduced a pipeline to learn tasks with the BTMS
policy representation that uses BTs and parametric movement skills. It is an
interpretable, robust and modular policy for robot manipulators that learns
faster than black-box policies, e.g., neural nets. We use a black-box optimizer
to learn the paramters of the BTMS policy in simulation. Domain randomization
assured that policies are robust enough to cope with differences between the DT
and the real robot.

We demonstrated the BTMS policy learning with a free-space movement and
a peg-in-hole task. We also showed how these two can be easily combined into
a single, more complex policy. Furthermore, we demonstrate that sub-policies
learned in simulation can be combined with counterparts learned with the real
manipulator. For many tasks this policy representations offers a low dimensional
search space that even allows to learn with physical robots.

To the best of our knowledge this is the first application of RL to the para-
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meterization of behavior trees with manipulators. This opens up a new way
to use and parameterize BTs. Furthermore, this representation allows to easily
combine learning with reasoning by providing prior knowledge in terms of the
structure or the parameters of the BT. An obvious limitation is that learning
cannot be successful if the policy is not flexible enough to allow solutions for a
particular task.

We plan to align the simulation more with reality using parameterized prior
models [CM18] to further improve the performance for more challenging as-
sembly tasks. We are also planning to look into learning tasks that require
dual-arm coordination. Finally, the approach is not limited to movement skills,
and we plan to use it with other parameterizable skills such as grasping policies.

APPENDIX

The source code and the submitted video are available at
https://github.com/matthias-mayr/behavior-tree-policy-learning
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Abstract
In modern industrial settings with small batch sizes it should be easy to set
up a robot system for a new task. Strategies exist, e.g. the use of skills, but
when it comes to handling forces and torques, these systems often fall short.
We introduce an approach that provides a combination of task-level planning
with targeted learning of scenario-specific parameters for skill-based systems.
We propose the following pipeline: the user provides a task goal in the plan-
ning language PDDL, then a plan (i.e., a sequence of skills) is generated and
the learnable parameters of the skills are automatically identified, and, finally,
an operator chooses reward functions and parameters for the learning process.
Two aspects of our methodology are critical: (a) learning is tightly integrated
with a knowledge framework to support symbolic planning and to provide priors
for learning, (b) using multi-objective optimization. This can help to balance
key performance indicators (KPIs) such as safety and task performance since
they can often affect each other. We adopt a multi-objective Bayesian optim-
ization approach and learn entirely in simulation. We demonstrate the efficacy
and versatility of our approach by learning skill parameters for two different
contact-rich tasks. We show their successful execution on a real 7-DOF KUKA-
iiwa manipulator and outperform the manual parameterization by human robot
operators.
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1 Introduction

Industrial environments with expensive and fragile equipment, safety regulations
and frequently changing tasks often have special requirements for the behaviour
policies that control a robot: First, the trend in industrial manufacturing is to
move to smaller batch sizes and higher flexibility of work stations. Reconfig-
uration needs to be fast, easy and should minimize downtime. Second, it is
important to be able to guarantee the performance as well as safety for material
and workers. Therefore, it is crucial to be able to understand what action is per-
formed when and why. Finally, in industrial environments digital twins provide
a lot of task-relevant information such as material properties and approximate
part locations that the robot behavior policies have to consider.

One way to fulfill these criteria is to use systems based on parameterized skills
[Kru+19; Kru+16; Bøg+12]. These encapsulated abilities realize semantically
defined actions such as moving the robot arm, opening a gripper or localizing
an object with vision. State-of-the-art skill-based software architectures can not
only utilize knowledge, but also automatically generate plans (skill-sequences)
for a given task [Cro+17; Rov+16]. The skill-based approach is powerful when
knowledge can be modeled and formalized explicitly [Kru+19; Kru+16]. But it
is often limited when it comes to skill parameters of contact-rich tasks that are
difficult to reason about. One example are the parameters of a peg insertion
search strategy where material properties (e.g. friction) and the robot controller
performance need to be considered. While it is possible to create a reasoner that
follows a set of rules to determine such skill parameters, it is often challenging
to implement and to maintain.

Another way to handle this is to have operators manually specify and try val-
ues for these skill parameters. However, this is a manual process and can be
cumbersome.

Finally, it is possible to allow the system to learn by interacting with the envir-
onment. However, many policy formulations that allow learning (e.g. artificial
neural networks) have deficiencies which make their application in an industrial
domain with the abovementioned requirements challenging. Primarily during
the learning phase, dangerous behaviors can be produced and even state-of-the-
art RL methods need hundreds of hours of interaction time [Cha+19]. Learning
in simulation can help to reduce downtime and dangers for the real system. But
many policy formulations are black boxes for operators and it can be hard to
predict their behavior, which could hinder the trust to the system [Edm+19]
Moreover, the simulation-to-reality gap [KMD13; MC17] is bigger in lower-level
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Figure 4.1: The robot setup used for the experiments. Wooden boards indicate the start location
for the push task. The goal is the corner between the fixture and the box with the
hole for the peg task.

control states (i.e. torques), and policies working directly on raw control states
struggle to transfer learned behaviors to the real systems [Cha+19]. Our policy
formulation consisting of behavior trees (BT) with a motion generator [Rov+18]
has shown to be able to learn interpretable and robust behaviors [May+21].

The formulation of a learning problem for a given task is often not easy and
becomes more challenging if factors such as safety or impact on the workstation
environment need to be considered. Multi-objective optimization techniques
allow to specify multiple objectives and optimize for them concurrently. This
allows operators to select from solutions that are optimal for a certain trade-off
between the objectives (usually represented as a set of Pareto-optimal solutions).
In order to learn sample-efficient and to support the large variety of skill imple-
mentations as well as scenarios, we use gradient-free Bayesian optimization as
an optimization method.

In this paper we make the following contributions:
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1. We introduce a new method which seamlessly integrates symbolic planning
and reinforcement learning for skill-based systems to learn interpretable
policies for a given task.

2. A Bayesian multi-objective treatment of the task learning problem, which
includes the operator through easy specification of problem constraints and
task objectives (KPIs); the set of Pareto-optimal solutions is presented
to the operator and their behavior can be inspected in simulation and
executed on the real system.

3. We demonstrate our approach on two contact-rich tasks, a pushing task
and a peg-in-hole task. We compare it to the outcome of the planner
without reasoning, randomly sampled parameter sets from the search space
and the manual real-world parameterization process of robot operators. In
both tasks our approach delivered solutions that even outperform the ones
found by the manual search of human robot operators.

2 Related Work

2.1 Skill-based Systems

Skill-based systems are one way to support a quick setup of a robot system for a
new task and to allow re-use of capabilities. There are multiple definitions of the
term skills in the literature. Some define it as a pure motion skills [HST91] or
”hybrid motions or tool operations” [Tho+03]. Other work has a broader skill
definition [Kru+19; Kru+16; Bøg+12; Cro+17; Rov+16; Rov+17; Tho+13].
In this formulation, skills can be arbitrary capabilities that change the state of
the world and have pre- and postconditions. Their implementation can include
motion skills, but also proficiencies such as vision-based localization of objects.
In [Ste+15] skills are ”high-level reusable robot capabilities, with the goal to
reduce the complexity and time consumption of robot programming”. However,
compared to [Bøg+12] and [Rov+17] they do not use pre- and postconditions.
In [Pax+17], an integrated system for manual creation of task plans is presented
and shares the usage of BTs with our approach.

Task planners are used in [Kru+19; Kru+16; Cro+17; Rov+16; Rov+17; RGK17;
Ste+15; Tho+03] while [Pax+17] lacks such a capability.

In [Ste+15] it is suggested that ”Machine learning can be performed on the
motion level, in terms of adaptation, or can take the form of structured learning
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on a task/error specification level”. However, none of the reviewed work offers
a combination task-level planning with learning.

2.2 Policy Representation and Learning

An important decision to make when working with manipulators is the type
of policy representation and on which level it interfaces with the robot. The
latter can strongly influence the learning speed and the quality of the obtained
solutions [VGK19; Mar+19]. These choices also influence the form of priors that
can be defined and how they are defined [Cha+19]. Not many policies combine
the aforementioned properties of being a) interpretable, b) parameterizable for
the task at hand and c) allow learning or improvement.

The commonly used policy representations for learning systems include ra-
dial basis function networks [DNP13], dynamic movement primitives [Ijs+12;
Ude+10] and feed-forward neural networks [DNP13; Cha+17]. In recent years
deep artificial neural networks (ANN) seem to become a popular policy. All of
them have in common that their final representation can be difficult to inter-
pret. Even if a policy only sets a target pose for the robot to reach, it can be
problematic to know how it reacts in all parts of the state space. In contrast
to that, [May+21] suggests to learn interpretable policies based on behavior
trees [Rov+18]. They work explicitly in end-effector space and allow for an easy
formulation of parameter priors to accelerate learning [May+22b].

2.3 Planning and Learning

Symbolic planning is combined with learning in [GK08; GFF19; Yan+18; Sar+21].
In [GK08], the PLANQ-Learning algorithm uses a symbolic planner to shape the
reward function based on the conditions defined which are then used by the Q-
learner to get an optimal policy with good results on the grid domain. [GFF19]
uses the combined symbolic planner with reinforcement learning (RL) in a hier-
archical framework to solve complex visual interactive question answering tasks.
PEORL [Yan+18] integrates symbolic planning and hierarchical reinforcement
learning (HRL) to improve performance by achieving rapid policy search and ro-
bust symbolic planning in the taxi domain and grid world. SPOTTER [Sar+21]
uses RL to allow the planning agent to discover the new operators required to
complete tasks in Grid World. In contrast to all these approaches, our approach
aims towards real-life robotic tasks in an Industry 4.0 setting where a digital
twin is available.
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In [Sty+22], the authors combine symbolic planning with behavior trees (BT) to
solve blocks world tasks with a robot manipulator. They use modified Genetic
Programming (GP) [KK92] to learn the structure of the BT. In our approach,
we focus on learning the parameters of the skills in the BT and utilize a symbolic
planner to obtain the structure of the BT.

3 Approach

Our approach consists of two main components that interact in different stages
of the learning pipeline: First, SkiROS [Rov+17], a skill-based framework for
ROS, which represents the implemented skills with BTs, hosts the world model
(digital twin), and interacts with the planner. SkiROS is also used to execute
BTs while learning and to perform tasks on the real system. Second, the learning
framework that provides the simulation, the integration with the policy optim-
izer as well as the reward function definition and calculation. The architecture
of the system and the workflow is shown in Figure 4.2: (1) an operator enters
the task goal into a GUI; (2) a plan with the respective learning scenario config-
uration is generated; (3) an operator complements the scenario with objectives
and reward functions; (4) learning is conducted in simulation using the skills
and information from the world model; (5) in the multi-objective optimization
case, a set of Pareto-optimal solutions is generated and presented to the oper-
ator; finally, (6) the operator can select a good solution from this set given the
desired trade-off between KPIs and execute it on the real system.

3.1 Behavior Trees

A Behavior Tree (BT) [CÖ17a]is a formalism for plan representation and execu-
tion. Like [RGK17; Mar+14], we define it as a directed acyclic graph G(V,W )
with |V | nodes and |W | edges. It consists of control flow nodes (processors),
and execution nodes. The four basic types of control flow nodes are 1) sequence,
2) selector, 3) parallel and 4) decorator [Mar+14]. A BT always has one initial
node with no parents, defined as Root, and one or more nodes with no children,
called leaves. When executing a BT, the Root node periodically injects a tick
signal into the tree. The signal is routed through the branches according to
the implementation of the control flow nodes and the return statements of their
children. By convention, the signal propagation goes from left to right.

The sequence node corresponds to a logical AND: it succeeds if all children suc-
ceed and fails if one child fails. The selector, also called fallback node, represents
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Figure 4.2: The architecture of the system that depicts the pipeline: (1) The operator enters the
goal state; (2) a learning scenario for the plan is created; (3) rewards and hyperpara-
meters are specified; (4) learning is conducted using the skills and the information in
the world model; (5) after policy learning, the operator can choose which policies to
execute on the real system (6).
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Figure 4.3: The BT of the generated plan for the peg insertion task in eBT format [RGK17]. Each
node has conditions or pre-conditions shown in the upper half and effects or post-
conditions shown in the lower half. The serial start control flow node (→∗) executes
in a sequence and remembers the successes. The skills have a parallel-first-success
processor (< ||FS >).

a logical OR: If one child succeeds, the remaining ones will not be ticked. It
fails only if all children fail. The parallel control flow node forwards ticks to all
children and fails if one fails. A decorator allows to define custom functions.
Implementations like extended Behavior Trees (eBT) in SkiROS [RGK17] add
custom processors such as parallel-first-success that succeeds if one of the par-
allel running children succeeds. Leaves of the BT are the execution nodes that,
when ticked, execute one cycle and output one of the three signals: success,
failure or running. In particular, execution nodes subdivide into 1) action and
2) condition nodes. An action performs its operation iteratively at every tick,
returning running while it is not done, and success or failure otherwise. A
condition performs an instantaneous operation and returns always success or
failure and never running. An example of the BT for the peg insertion task is
in Fig. 4.3.
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3.2 Planning and Knowledge Integration

The Planning Domain Definition Language (PDDL) [FL03; Cro+17] is used to
formulate the planning problem. We use the SkiROS [Rov+17] framework that
automatically translates a task into a PDDL planning problem by generating
domain description and problem instance using the world model. We then use
the semantic world model (WM) from SkiROS [Rov+17] as the knowledge
integration framework.

Actions and fluents are obtained by utilizing the predicates that have pre- or
post-conditions in the world model. For the problem instance, the objects (ro-
bots, arms, grippers, boxes, poses, etc.) in the scene and their initial states (as
far as they are known) are used. After getting the necessary domain description
and the problem instance, SkiROS calls the planner. The goal of the planner is
to return a sequence of skills that can achieve the goal conditions of the task.
The individual skills are partially parameterized with explicit data from the
WM. The WM is aware of the skill parameters that need to be learned for the
task at hand and they are automatically identified in the skill sequence.

3.3 Policy Optimization

In order to optimize for policy parameters, we adopt the policy search formu-
lation [DNP13; Cha+19; Cha+17]. We formulate a dynamical system in the
form:

xt+1 = xt +M(xt,ut,φR), (4.1)

with continuous-valued states x ∈ RE and actions u ∈ RU . The transition dy-
namics are modeled by a simulation of the robot and the environmentM(xt,ut,φR).
They are influenced by the domain randomization parameters φR.

The goal is to find a policy π,u = π(x|θ) with policy parameters θ such that we
maximize the expected long-term reward when executing the policy for T time
steps:

J(θ) = E
[
T∑
t=1

r(xt,ut)|θ
]
, (4.2)

where r(xt,ut) is the immediate reward for being in state x and executing action
u at time step t. The discrete switching of branches in the BT and most skills
are not differentiable. Therefore, we frame the optimization in Eq. (4.2) as
a black-box optimization and pursue the maximization of the reward function
J(θ) only by using measurements of the function. The optimal reward function
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to solve the task is generally unknown, and a combination of reward functions is
usually used. In the RL literature, this is usually done with a weighted average,
that is, r(xt,ut) = ∑

iwiri(xt,ut). In this paper, we chose not to use a weighted
average of reward functions that represent different objectives (as the optimal
combination of weights cannot always be found [KCM18]), but optimize for all
objectives concurrently (Sec. 3.5) using Bayesian Optimization.

3.4 Bayesian Optimization

We consider the problem of finding a global minimizer (or maximizer) of an
unknown (black-box) objective function f : s∗ ∈ arg mins∈S f(s), where S is
some input design space of interest in D dimensions. The problem addressed in
this paper is the optimization of a (possibly noisy) function f : S→ R with lower
and upper bounds on the problem variables. The variables defining S can be
real (continuous), integer, ordinal, and categorical as in [NKO19]. We assume
that the function f is in general expensive to evaluate and that the derivatives
of f are in general not available. The function f is called black box because we
cannot access other information than the output y given an input value s.

This problem can be tackled using Bayesian Optimization (BO) [Fra18]. BO
approximates s∗ with a sequence of evaluations, y1, y2, . . . , yt at s1, s2, . . . , st ∈ S,
which maximizes an utility metric, with each new st+1 depending on the previous
function values. BO achieves this by building a probabilistic surrogate model
on f based on the set of evaluated points {(si, yi)}ti=1. At each iteration, a
new point is selected and evaluated based on the surrogate model which is then
updated to include the new point (st+1, yt+1).

BO defines an utility metric called the acquisition function, which gives a score
to each s ∈ S by balancing the predicted value and the uncertainty of the predic-
tion for s. The maximization of the acquisition function guides the sequential
decision making process and the exploration versus exploitation trade-off: the
highest score identifies the next point st+1 to evaluate.

BO is a statistically efficient black-box optimization approach when considering
the number of necessary function evaluations [BCd10]. It is, thus, especially
well-suited to solve problems where we can only perform a limited number of
function evaluations, such as the ones found in robotics.

We use the implementation of BO found in HyperMapper [NKO19; Nar+17;
Bod+16; Sou+21]. Our implementation selects the Expected Improvement (EI)
acquisition function [MTZ78] and we use uniform random samples as a warm-up
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strategy before starting the optimization.

3.5 Multi-objective Optimization

Let us consider a multiple objectives minimization (or maximization) over S
in D dimensions. We define f : S → Rp as our vector of objective functions
f = (f1, . . . , fp), taking s as input, and evaluating y = f(s) + ε, where ε is a
Gaussian noise term. Our goal is to identify the Pareto frontier of f , that is,
the set Γ ⊆ S of points which are not dominated by any other point, i.e., the
maximally desirable s which cannot be optimized further for any single objective
without making a trade-off. Formally, we consider the partial order in Rp:
y ≺ y′ iff ∀i ∈ [p], yi 6 y′i and ∃j, yj < y′j , and define the induced order on S:
s ≺ s′ iff f(s) ≺ f(s′). The set of minimal points in this order is the Pareto-
optimal set Γ = {s ∈ S : @s′ such that s′ ≺ s}. We aim to identify Γ with
the fewest possible function evaluations using BO. For this purpose we use the
HyperMapper multi-objective Bayesian optimization which is based on random
scalarizations [PKP20].

3.6 Motion Generator and Robot Control

The arm motions are controlled in end-effector space by a Cartesian impedance
controller. The time varying reference or attractor point of the end effector xd
is governed by a motion generator (MG). Given the joint configuration q, we
can calculate the end-effector pose xee using forward kinematics and obtain an
error term xe = xee − xd. Together with the joint velocities q̇, the Jacobian
J(q), the configurable stiffness and damping matrices Kd and Dd, the task
control is formulated as τc = JT (q) (−Kdxe −DdJ(q)q̇) . Additionally, the task
control can be overlayed with commanded generalized forces and torques Fext =
(fx fy fz τx τy τz): τext = JT (q)Fext. We utilize the integration introduced
in [Rov+18] and used in [May+21], which proposes to parameterize the MG
with movement skills from the BT. The reference pose is shaped by 1) a linear
trajectory to a goal point and 2) overlay motions that can be added to the
reference pose as discussed in [Rov+18; May+21]. E.g. an Archimedes spiral
for search.

To make it compliant with the dynamical system in Eq. (4.1), a new reference
configuration of the controller is only generated at every time step t. It includes
the reference pose, stiffnesses, applied wrench and forms the action u with a
dimension of U = 19. The stiffness and applied force are changed gradually at
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every time step t to ensure a smooth motion. The state space consists of joint
positions and joint velocities and is E = 14 dimensional. Direct control of the
torques of a robot arm requires high update rates and we control the robot arm
at 500 Hz based on the current action u, but continuously updated values for q
and q̇. Therefore, from the perspective of Eq. (4.1), the controller is to be seen
as part of the model M(xt,ut).

We assume a human-robot collaborative workspace with fragile objects. There-
fore, the stiffnesses and applied forces are to be kept to a minimum and less
accuracy than e.g. high-gain position-controlled solutions is to be expected.

4 Experiments

In our experiments we use a set of pre-defined skills that are part of a skill
library. In order to solve a task, the planner determines a sequence that can
achieve the goal condition of the task. This skill sequence is also automatically
parameterized to the extend possible, e.g. the goal pose of a movement. We
evaluate our system in two contact-rich scenarios that are shown in Fig. 4.1:
A) pushing an object with uneven weight distribution to a goal pose and B)
inserting a peg in a hole with a 1.5 mm larger radius. Pure planning-based
solutions for both these tasks have a poor performance in reality (Fig. 4.5).

As a baseline we invited six robot operators to manually parameterize the skills
for the tasks. Their main objective is to find a parameter set that robustly solves
the task. As an additional objective they were asked to minimize the impact of
the robot arm and its tool on the environment as long as it does not affect the
first objective.

The robot arm used for the physical evaluation is a 7-degree-of-freedom (DOF)
KUKA iiwa arm controlled by a Cartesian impedance controller (Sec. 3.6).

4.1 Reward Functions

For each task, we utilize a set of reward functions parameterized for the learning
scenario configuration. Each configured reward has an assigned objective and
can be weighted against other rewards. Each experiment uses a subset of the
following reward functions:
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Task completion

A fixed reward is assigned when the BT returns success upon task completion.

End-effector distance to a box

We use a localized reward to attract the end effector towards the goal location
rh(x) = (2 (d(pee,x,ph) + do))−1 , where do is the distance offset and d(pee,x,ph)
is the shortest distance function between the end effector and the box.

Applied wrench

This reward calculates the cumulative forces applied by the end effector on the
environment.

Reward functions 4-6 share a common operation of computing an exponential
function of the calculated metric to obtain the reward as used in ([DR11b;
Cha+17]) r(dm) = exp

(
− 1

2σ2
w

(dm + do)
)
, where σw is a configurable width, do

is a distance offset and dm is the input metric.

End-effector distance to a goal

This reward uses distance between the end effectors current pose and goal pose
to calculate the input metric dee,g = ‖pee,x − pg‖

End-effector-reference-position distance

This reward uses the distance between the end effectors reference pose (Sec. 3.6)
and its current pose to calculate the input metric dee,d = ‖pee,x − xd‖

Object-pose divergence

This reward uses the translational and angular distance between the object’s
goal pose and its current pose.
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4.2 Push Task

The push task starts by specifying the goal in the SkiROS Graphical User Inter-
face (GUI) as: (skiros:at skiros:ObjectToBePushed-1 skiros:Object-

GoalPose-1). SkiROS calls the planner to generate a plan given all the avail-
able skills. The plan consists of two skills: 1) GoToLinear skill and 2) Push
skill. The first skill moves the end effector from its current location to the ap-
proach pose of the object. This approach pose is defined in the WM and needs
to be reached before interacting with the object.

The push skill then moves the end effector to the object’s geometric centre with
an optional offset in the horizontal (x) and (y) directions. Once the end effector
reaches it, the motion generator executes a straight line to the (modified) target
location.

The push task is formulated as a multi-objective task. It also has two objectives,
1) success and 2) applied force. The first objective has three associated rewards:
1) object position difference from goal position, 2) object orientation difference
from goal orientation, and 3) end-effector distance to the goal location. The
second objective accumulates the Cartesian distance between the end-effector
reference pose and the actual end-effector pose as a measure of the force applied
by the controller. The learnable parameters in this task are offsets in the ho-
rizontal (x) and (y) direction of both the push skill’s start and goal locations.
An offset of the start location allows the robot to push from a particular point
from the side of the object. Together with the offsets on the goal position, these
learnable parameters collectively define the trajectory of the push.

The object to be pushed has a height of 0.07 m and is an orthogonal triangle in
the horizontal dimensions (x) and (y). It has a length of 0.15 m and 0.3 m and it
weights 2.5 kg. For this task we use a square-shaped peg for pushing with a side
length of 0.07 m and a height of 0.05 m. Start and goal locations are ≈0.43 m
apart and are rotated by 26 deg. We define success if the translational and
rotational difference of the object w.r.t the goal is less than 0.01 m and 5 deg,
respectively.

We learn for 400 iterations and repeat the experiment ten times. In order to
obtain solutions that are robust enough to translate to the real system, we
apply domain randomization. Each parameter set is evaluated in seven worlds.
Each execution uniformly samples one out of the four start positions for the
robot arm. Furthermore, we vary the location of the object and the goal in the
horizontal (x) and (y) directions by sampling from a Gaussian distribution with
a standard deviation of 7 mm.
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Figure 4.4: Pareto front of the push task. Each experiment has a different color and each point
represents a Pareto-optimal solution. It shows that higher rewards for pushing require
higher interaction forces with the environment.

We compare the learned solutions with (a) the outcome of a direct planner solu-
tion without any offset on the start and goal pose while pushing, (b) ten sets
of random parameters from the search space and (c) the policies that are para-
meterized by the robot operators. We evaluated on the four start configurations
used for learning as well as on two additional unknown ones. The results are
shown in Fig. 4.5a.

The results of a multi-objective optimization are parameters found along a
Pareto front (Sec. 3.5, see Fig. 4.4). It contained 8.3 points on average, of
which some minimize the impact on the environment to an extent that the push
is not successful. An operator can choose a solution that is a good compromise
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between the success of the task on the real system and the force applied on
the environment. The performance of one of the solutions that existed on the
Pareto front is shown in Fig. 4.5.

Furthermore, we asked six robot operators to find values for the learnable para-
meters of the skill sequences. They were given the same start positions used
for learning and were given a script to reset the arm to a start position of their
choice. They could experiment with the system until they decided that their
parameter set fulfills the criteria. Their final parameter set that was also evalu-
ated on the known and unknown start configurations. On average the operators
spent (16.3± 6.4) min and executed 11.1± 3.0 trials on the system to configure
this task. Four out of the six operators found solutions that achieved the task
from every start state. However, two of the operators’ final parameters only
achieved success rates of 50 % and 16.66 %.

4.3 Peg-in-Hole Task

The PDDL goal of the peg insertion task is (skiros:at skiros:Peg-1
skiros:BoxWithHole-1). The BT that is generated by the planner is shown
in Fig. 4.3 and consists of two skills: 1) GoToLinear skill and 2) PegInsertion
skill. The first skill moves the end effector from its current location to the
approach pose of the hole. Once it is reached, the peg insertion procedure
starts.

The PegInsertion skill starts when the end effector reaches the approach pose
of the box. It uses four separate SkiROS primitive skills to 1) set the stiffness
of the end effector to zero in (z) direction, 2) apply a downward force in (z)
direction, 3) configure the center of the box as a goal and 4) additionally apply
an overlaying circular search motion on top of the reference pose of the end
effector as described in [May+21]. The BT returns success only if the peg is
inserted into the box hole by more than 0.01 m.

We model the peg insertion as a multi-objective and multi-reward task. There
are two objectives of the task, 1) successful insertion and 2) applied force. To
assess the efficacy of the first objective, we use three rewards, 1) success of
the BT, 2) peg distance to the hole, and 3) peg distance to the box. For the
second objective, we use a single reward that measures the total force applied by
the peg. There are three learnable parameters in this task, 1) downward force
applied by the robot arm, 2) radius of the overlay search motion and 3) path
velocity of the overlay search motion.
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We learn for 400 iterations in the simulation and repeat this experiment ten
times. To increase the robustness of the solutions we use domain randomization
and evaluate each parameter configuration in seven worlds. We vary the location
of the box by sampling from a Gaussian distribution with a standard deviation
of 7 mm and uniformly sample one out of five start configurations of the robot
arm. We compare the performance of the learned policies with (1) the outcome
of the planner without a parameterized search motion, (2) randomly chosen
parameter configurations from the parameter search space used for learning and
(3) policies that are parameterized by human operators (see Fig. 4.5b).

The learned Pareto-optimal configurations consist of 6.1 points on average. We
evaluated the insertion success using the 5 known and additional 10 unknown
start configurations of the robot (Fig. 4.5b).

To find policies for this task, the human operators took (31.8± 10.9) min and
executed 39± 14 trials on the system. However, compared to the randomly
sampled policies the average insertion rate only increased from 41 % to 52.2 %.
This is much lower than the average insertion rate of 96 % of the best learned
policies as shown in box four, Fig. 4.5b. Furthermore, the average force that
was chosen by the operators compared to the learned policies was 16.6 % higher.
Finally, the successful insertions by the learned policies were also 18.1 % faster.
Therefore, the learned policies outperformed the human operators in both ob-
jectives while also producing more reliable results.

5 Conclusion

In this paper we proposed a method for effectively combining task-level planning
with learning to solve industrial contact-rich tasks. Our method leverages prior
information and planning to acquire explicit knowledge about the task, whereas
it utilizes learning to capture the tacit knowledge, i.e., the knowledge that is
hard to formalize and which can only be captured through actual interaction.We
utilize behavior trees as an interpretable policy representation that is suitable
for learning and leverage domain randomization for learning in simulation. Fi-
nally, we formulate a multi-objective optimization scheme so that (1) we handle
conflicting rewards adequately, and (2) an operator can choose a policy from
the Pareto front and thus actively participate in the learning process.

We evaluated our method on two scenarios using a real KUKA 7-DOF ma-
nipulator: (a) a pushing task, and (b) a peg insertion task. Both tasks are
contact-rich and näıve planning fails to solve them. The approach was able
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Figure 4.5: The success rates of both experiments. The box plots show the median (black line) and
interquartile range (25th and 75th percentile); the lines extend to the most extreme
data points not considered outliers, and outliers are plotted individually. The number
of stars indicates that the p-value of the Mann-Whitney U test is less than 0.1, 0.05,
0.01 and 0.001 respectively.
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Figure 4.6: Pareto front of the peg task. Each experiment has a different color. The goal is to
maximize insertion reward while minimizing the interaction forces.

to outperform the baselines including the manual parameterization by robot
operators.

For future work we are looking into multi-fidelity learning that can leverage a
small amount of executions on the real system to complement the learning in
simulation. Furthermore, the use of parameter priors for the optimum seems a
promising direction to guide the policy search and make it more efficient.

Appendix

The implementation and the supplemental video are available at:
https://sites.google.com/ulund.org/SkiREIL

https://github.com/matthias-mayr/SkiREIL
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Abstract
Robot skills systems are meant to reduce robot setup time for new manufactur-
ing tasks. Yet, for dexterous, contact-rich tasks, it is often difficult to find the
right skill parameters. One strategy is to learn these parameters by allowing
the robot system to learn directly on the task. For a learning problem, a robot
operator can typically specify the type and range of values of the parameters.
Nevertheless, given their prior experience, robot operators should be able to
help the learning process further by providing educated guesses about where in
the parameter space potential optimal solutions could be found. Interestingly,
such prior knowledge is not exploited in current robot learning frameworks. We
introduce an approach that combines user priors and Bayesian optimization to
allow fast optimization of robot industrial tasks at robot deployment time. We
evaluate our method on three tasks that are learned in simulation as well as
on two tasks that are learned directly on a real robot system. Additionally,
we transfer knowledge from the corresponding simulation tasks by automat-
ically constructing priors from well-performing configurations for learning on
the real system. To handle potentially contradicting task objectives, the tasks
are modeled as multi-objective problems. Our results show that operator pri-
ors, both user-specified and transferred, vastly accelerate the discovery of rich
Pareto fronts, and typically produce final performance far superior to proposed
baselines.
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1 Introduction

In modern manufacturing settings, the setup of a robot system for a new task
should be fast and easy. At the same time, to assure safety of equipment and
workers it is important that robot behavior is always predictable and explain-
able.

One way to combine all these requirements is a system based on modular and
explainable robot skills [Kru+16]. Robot skills (or just skills) are semantically
defined parametric actions where parameters have to be chosen based on the
task at hand through planning, sensing and knowledge integration. For contact-
rich tasks, however, it can still be very challenging to find well-functioning skill
parameter values, as even human operators may encounter difficulties identi-
fying a successful and robust parameter set [May+22c]. One solution is to
allow a robot system to find these parameters through reinforcement learning
(RL) directly on the task. A recent approach [May+21] to RL in the industrial
context suggests to model explainable policies with behavior trees (BTs) and a
motion generator (MG) [Rov+18], and to optimize these through efficient policy
learning and domain randomization within a digital twin. However, beyond the
straight learning problem, there are two important aspects to consider:

(1) Learning often needs to balance various key performance indicators (KPIs)
such as robot speed, safety or the need to minimize interaction forces with
manufacturing parts. While [May+21] is able to handle only single-objective
learning, we argue that many tasks are best described as multi-objective learn-
ing problems where the outcome is a variety of policies for different trade-offs
between the objectives [May+22c]. An operator can then choose a solution with
the desired properties.

(2) The learning problem can be reduced by constraining the parameter space
within which the RL approach is searching for suitable skill parameters. Given
some prior experience, a robot operator can typically not only help to constrain
the search space, but further accelerate the learning process by providing guesses
on where in the parameter space optimal solutions may be found, and have these
regions be emphasized throughout the learning process. These guesses could be
based on the operator’s intuition or experience, or be generated from previously
utilized policies on similar tasks through transfer learning. Fig. 5.1 visualizes
how guesses regarding good configurations can be represented through a prob-
ability density over optimal parameter settings. In fact, by utilizing knowledge
in the form of a probability density over the optimum, the search can focus
on promising areas of the search space without explicitly restricting the search
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Figure 5.1: The visualization of two dimensions of a multimodal prior formed by results from
learning in simulation that can be used as a prior for learning on the real robot.
Well-performing configurations in simulation (red diamonds) are used to construct a
probability density over optimal parameter settings, enabling accelerated learning on
the real task through Bayesian optimization.

space to these regions.

With this paper we make the following contributions:

1. We introduce an approach to incorporate parameter priors in the form
of probability densities for the optimal configuration, in conjunction with
multi-objective Bayesian optimization, into the learning process of indus-
trial robot tasks.

2. We assess the performance of our method and evaluate the influence of
well-placed and misleading priors on various tasks.

3. We show priors learned in simulation can enable accelerated optimization
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on the real system, without the requirement of explicit operator knowledge.

2 Related Work

2.1 Reinforcement Learning with Robot Systems

Reinforcement Learning (RL) [SB18], and especially Direct Policy Search (PS)
methods [Cha+19; DNP13], have been successful in robotics applications as
they can be applied in high-dimensional continuous state-action problems. In
order to apply PS methods successfully in robotics applications, one must do
one (or a combination) of the following: (a) provide prior structure in the policy,
(b) learn models of the dynamics or the expected return, and/or (c) use prior
information about the search space [Cha+19].

The type of the policy structure plays an important role for the effectiveness of
learning in practical robotics applications. However, there is always a tradeoff
between having a representation that is expressive enough (e.g. large neural
networks), and one that provides a space that is efficiently searchable [Cha+19].
Another important property is choosing the level on which the policy inter-
acts with the robot (e.g. task-space vs joint-space); it has been shown that
it can strongly influence the learning speed and the quality of the obtained
solutions [VGK19; Mar+19].

Traditionally, the robotic controllers (or policies) are hand-designed; either via
an analytic model-based approach (e.g. inverse dynamics controllers) [PS08] or
as more general finite state machines (FSMs) [Cal+16]. These hand-designed
policies usually come with a small amount of parameters (thus efficiently search-
able), but might need to be re-designed when changing task or robot. In prin-
ciple, most of the hand-designed policies are easily intepretable and we can infer
why the robot is choosing a specific action.

The most popular way of defining a policy in the RL literature is as a func-
tion approximator (e.g. a neural network) [SS13; Cha+19; DNP13]. In this
case, policies can be very expressive and task-agnostic, which means that the
same policies can be re-used on different tasks or robots without substantial
changes. The commonly used policy representations for learning systems include
radial basis function networks [DNP13], dynamical movement primitives [Ijs+12;
Ude+10] and feed-forward neural networks [DNP13; Cha+17]. In recent years,
in RL settings, deep artificial neural networks (ANNs) have become the default
policy type [Aru+17; Cha+19]. ANN policies enable us to easily increase the
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expressiveness and generality of the policy, but can make optimization difficult
due of the large number of parameters. In contrast to the previous policy types,
this type of policy is harder to interpret, and it is generally a difficult task to
know why the robot is choosing a specific reaction to an environmental change.
Therefore, [May+21] and [May+22c] suggest to learn interpretable policies based
on BTs and a MG [Rov+18] that are well suited for the requirements of an in-
dustrial environment.

2.2 Meta-learning for Bayesian Optimization

For the optimization of black-box functions, Bayesian Optimization (BO) consti-
tutes a sample-efficient [Fra18] choice across multiple fields, including machine
learning [SLA12], robotics [Cal+14], and hardware design [NKO19]. In BO,
there are several means of injecting prior knowledge, the most common of which
is through the choice of the Gaussian Process kernel. However, several ap-
proaches have been proposed to explicitly bias or direct the optimization, based
on accumulated data or knowledge from previous tasks.

Transfer learning approaches make use of data obtained from previous exper-
iments to guide current ones. Feurer et. al. [Feu+22] propose to combine
surrogate models from previous experiments, and use the combined surrogate
when performing a new task. Perrone et. al. [Per+18], restrict the search space
of the new task to some convex region based on optima found on previous tasks,
excluding suboptimal regions in the outer edges of previous search spaces.

Injecting explicit prior distributions over the location of an optimum is an emer-
ging topic in BO. In these cases, the user explicitly defines a prior probability
distribution π(x) that encodes their belief on where the optimum is likely to
be located. Souza et. al. propose BOPrO [Sou+21], which combines π(x)
with a data-driven model into a pseudo-posterior. From the pseudo-posterior,
configurations are selected using the Expected Improvement (EI) acquisition
function. Hvarfner et. al. [Car+22] propose πBO, which weights the acquisi-
tion function by π(x), and decays the prior’s influence over time. Consequently,
it retains conventional convergence rates [Bul11] for any choice of π(x) when
used in conjunction with EI.

187



3 Approach

In order to learn robot tasks, we utilize two main components: 1) SkiROS2
[Rov+17; Kru+16] is a skill-based system for ROS. It provides a world model
(digital twin) and a skill representation based on behavior trees (BT), and has
an integrated task planner. 2) An RL framework that integrates optimizers and
provides a simulation as well as reward calculation [May+21; May+22c].

When setting up the system for a new task, the operator typically specifies a
high-level goal using the Planning Domain Definition Language (PDDL). Once
the planner finds a valid sequence of skills, the learnable parameters in the skills
are automatically identified. The operator can state lower and upper bounds
for the parameters to be learned. A more detailed description can be found
in [May+22c]. In this work, we additionally allow for specification of a unimodal
or multimodal prior for the optimum. Therefore, expert knowledge and previous
experiences can be actively integrated into the learning process.

3.1 Skill Representation

We adopt the skill definition from [Kru+16; Rov+17] that defines a skill as an
ability to change the world state. To support task planning, a skill has a set of
pre-conditions that must be satisfied before the execution is started and post-
conditions that state and verify the effects. Skills usually model instructions
from standard operation procedures (SOPs), such as pick¡object¿, insert¡object¿,
press¡object¿, etc.

Our parametric skills can utilize the world model to retrieve knowledge and are
implemented with BTs. A BT [CÖ17a], is a plan representation and execution
tool that is used in many areas including computer games and robotics [CÖ17a;
Iov+22]. As in [RGK17; Mar+14], we define it as a directed acyclic graph with
nodes and edges. It consists of control flow nodes or processors that link execu-
tion nodes. Three common types of control flow nodes are 1) sequence (logical
AND), 2) selector (logical OR) and 3) parallel. A BT always has one initial node
with no parents, called Root node. During the execution of a BT, a periodic tick
signal is injected into the Root node. The signal is routed according to the con-
trol flow nodes and the return statements of the children. The leaves of the BT
are the execution nodes that execute one cycle and output one of the three sig-
nals when being ticked: success, failure or running. Execution nodes subdivide
into 1) action and 2) condition nodes. An action node performs its operation
iteratively at every tick and returns running while it is not done, and success or
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failure otherwise. A condition node performs an atomic operation and can only
return success or failure, but never running. One significant difference between
BTs and FSMs is that BTs implement a two-way control flow like function calls
in programming languages. In contrast, classical FSMs implement a one-way
control flow similar to GOTO statements, which often becomes challenging to
scale and maintain.

For modeling parametric movements, our movement skills use a MG in com-
binations with BTs [Rov+18]. This formulation is a type of trajectory-based
policy structure that explicitly operates in end-effector space. The advantages
of such movement skills are that they are modular, interpretable and allow
for an easy adaption to environmental changes, e.g. if objects are relocated.
In line with [Rov+18], we require a compliant robot controller that operates
in end-effector space and utilize the same Cartesian impedance controller as
in [May+22c].

3.2 Policy Optimization

In order to optimize for policy parameters, we adopt the policy search formu-
lation in [DNP13; Cha+19; Cha+17]. We formulate a dynamical system of the
form:

xt+1 = xt +M(xt,ut,φR), (5.1)
with continuous-valued states x ∈ RE and actions u ∈ RU . The transition dy-
namics are modeled by a simulation of the robot and the environmentM(xt,ut,φR).
They are influenced by the domain randomization parameters φR.

The goal is to find a policy π,u = π(x|θ) with policy parameters θ such that we
maximize the expected long-term reward when executing the policy for T time
steps:

J(θ) = E
[
T∑
t=1

r(xt,ut)|θ
]
, (5.2)

where r(xt,ut) is the immediate reward for being in state x and executing action
u at time step t. The discrete switching of branches in the BT and most skills are
not differentiable. Therefore, we frame the optimization in Eq. (5.2) as a black-
box function and pursue the maximization of the reward function J(θ) only by
using measurements of the function. The optimal reward function to solve the
task is generally unknown, and a combination of reward functions is usually
used. In the RL literature, this is usually done with a weighted average, that
is, r(xt,ut) = ∑

iwiri(xt,ut). In this paper, we choose not to use a weighted
average of reward functions that represent different objectives (as the optimal
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combination of weights cannot always be found [KCM18]), but optimize for all
objectives concurrently (Sec. 3.4) using Bayesian Optimization.

3.3 Bayesian Optimization

As mentioned in Section 3.2. we view the of optimization of our policy as an
unknown black-box optimization problem. In this setting, information about
the objective function f can only be extracted through the potentially noisy
output y yielded by an given input x. We wish to find x∗ ∈ arg maxx∈X f(x)
for some bounded, D-dimensional input space X. As the function f is typically
expensive in some resource of interest, one wishes to optimize f with a low total
number of evaluations.

To solve the aforementioned black-box optimization problem, we employ BO.
It aims to find x∗ by sequentially selecting new design points {xi}Ni=1 through
some measure of utility, then receiving their corresponding output {yi}Ni=1, for
some maximal number of iterations N . This is achieved through the use of
a probabilistic surrogate model p(f |Dn), which uses all available observations
Dn = {xi, yi}ni=1 at a given iteration n to emulate the objective f . After obtain-
ing an initial number of observations through some space-filling design (Design
of Experiments, DoE). BO uses the aforementioned utility measure, commonly
called an acquisition function, to decide on subsequent queries. A query is selec-
ted xn+1 by considering a trade-off between uncertain regions (exploration) and
regions of high predicted value (exploitation) under p(f). After evaluation, the
observation yn+1 is obtained, and the surrogate model is updated. The most
commonly used acquisition function is Expected Improvement (EI) [JSW98;
Bul11], which is defined as

xn+1 ∈ arg max
x∈X

Ey
[
[(y∗n − y(x)]+

]
(5.3)

where y∗n is the best obtained (noisy) output at iteration n. EI is simple to
implement, and can be computed closed-form.

For tasks with a substantial level of noise, such as robot learning, the consid-
eration of noise in the objective f is of particular importance [Cal+16]. EI can
potentially struggle in such noisy settings [Vaz+08; Let+19; GL10] due to its
consideration of the improvement of a noisy observation. As such, we utilize a
noisy-robust version, called Noisy EI (NEI) [Let+19], defined as

xn+1 ∈ arg max
x∈X

Ef
[
[(f∗n − f(x)]+

]
(5.4)
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which, despite similarities to EI, requires approximation through Monte Carlo
by sampling latent function values at each prior observed location. Through
its consideration of the noiseless optimum f∗ as opposed to y∗, NEI, yields
desired robustness to noise and converges to EI in a noiseless setting. For our
experiments, we use the HyperMapper [NKO19; Nar+17] framework, and the
NEI acquisition function introduced in Eq.(5.4), modified for a multi-objective
setting. The modification is covered exhaustively in Section 3.4.

3.4 Multi-objective Optimization

In the multi-objective optimization setting, we consider a set of K objectives
f = (f1, . . . , fK), all defined over the same D-dimensional input space X and
observed through a noisy output y = y1, . . . , yK . Our goal is to find the set of
points that are not dominated by any other point in X. For a pair of inputs x and
x′ with corresponding multi-objetive outputs y and y′, x′ is said to dominate
x if y′k ≥ yk,∀k ∈ {1, . . .K}, i.e. y′ is superior in every objective. The set
of non-dominated points, known as the Pareto frontier, is in turn expressed
as Γ = {x ∈ X : @x′ s.t. x′ ≺ x}, where ≺ is the domination relation. Γ
thus contains the set of maximally desired points, with various trade-offs in the
objectives.

For our experiments, we use the random scalarizations approach proposed by
Paria et. al. [PKP20], which computes the acquisition function across objectives
as

α(x,λ) =
K∑
k=1

λkαk(x),
K∑
k=1

λk = 1 (5.5)

on the K objective-wise acquisition functions {αk}Kk=1 and the scalarization λ,
sampled from a Dirichlet distribution. To quantify the quality of the obtained
Pareto front, we use the Hypervolume Indicator (HV) [CSR15] metric. HV
computes the volume spanned by the Pareto-optimal observations {yp}|Γ|p=1 from
some reference point r as HV(Γ, r) = λK (∪p[yp, r]) where [yp, r] denotes the
hyperrectangle bounded by vertices yp and r, and λK is the K-dimensional
Lebesgue measure.

3.5 Priors for the Optimum

For our experiments, we use the HyperMapper implementation of πBO [Car+22],
combined with the NEI acquisition function. Moreover, we utilize the prior for
sampling during DoE. Critically, π(x) is defined on the input space X. As such,
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the user defines one prior jointly over all objectives, so that the prior emphasizes
regions that are believed to contribute to the Pareto front, with no emphasis
towards any particular objective.

The tasks use two types of priors over the optimum:
Simulation: We consider Gaussian densities for each parameter. These are set
once, prior to conducting the experiments by an expert operator. The priors
are left untouched for the whole duration of the experiments to avoid bias.
Real system: In addition to the operator priors, we use πBO in a transfer
learning setting, as we form the prior based on previous data. The Pareto front
designs obtained from simulation are used to form a Gaussian kernel density
estimator (KDE) [Par62]. KDE places a Gaussian density on each point on Γ,
which enables the automatic construction of multimodal distributions, exempli-
fied by Figure 5.1. The obtained Pareto front from simulation then serves as a
starting point for learning in the real system, without involving the operator.

4 Experiments

We evaluate the influence of priors for the optimum on the learning process for
three different tasks. Their setup on the workstation is shown in Fig. 5.2; Fig. 5.3
shows the learnable parameters. One of the tasks is a contact-free movement
from one side of an object (e.g., the engine block in Fig. 5.2) to the other side.
The other two tasks are contact-rich manipulations where a peg needs to be
inserted into a hole and an object with an uneven weight distribution needs
to be pushed to another location, respectively. All tasks have in common that
they are solved with existing skills that use BTs and a MG to actuate the robot
and where some skill parameters need to be found via learning. For each task, a
learning scenario configuration file describes attributes such as the robot system
to use, the configured reward functions and the learnable skill parameters with
their bounds and optionally their priors.

All learning problems are defined as multi-objective problems where one object-
ive assesses the performance and speed of solving the task and the other one is
either a safety metric, defined by distance between the robot and a fragile item
when passing it, or an impact metric, which considers the interactions forces of
the robot and the work pieces. None of the tasks have a single best policy, and
since they balance trade-offs between the competing objectives (KPIs), it is up
to an operator to decide which one to use as a final policy. We utilize the HV
defined by the Pareto-optimal points to measure how much of the solution space
is covered. We locate the reference point r for the HV calculation based on the
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Figure 5.2: The experimental setup for the tasks. The orange block is used for the peg insertion.
The engine is the obstacle that must be avoided with the use of movement skills when
transitioning from one side to the other. The push task requires the blue object to be
pushed from its current pose to the corner between the box and the fixture when the
engine is not at the workstation.

worst value of the respective objective that is typically seen on a Pareto front
for that task.

We evaluate the influence of priors that are defined by a domain expert and
represent a typically chosen trade-off between task performance and safety or
impact. Furthermore, we evaluate the impact of misleading priors, which are
purposely designed to not adequately solve the task. In practice, the operator
prior puts high density on regions of the search space that are believed to yield
Pareto-optimal policies, whereas the misleading prior puts very high density on
an outer edge of the search space - a choice a reasonable operator would likely
not make.
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Figure 5.3: A depiction of the learnable parameters of the different tasks. a) The setup of the
obstacle avoidance task with the parametric goal points g1 and g2 and the adjustable
thresholds p1 and p2 in one possible motion configuration. b) The spiral of the search
motion for the peg insertion is defined by the pitch d, the maximal rmax and the path
velocity vp. In addition, a downward force is set. c) The learnable offsets for the start
and goal location of the push task are shown.
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4.1 Learning in Simulation

As suggested in [May+21] and [May+22c], we learn the tasks in simulation based
on a digital twin of the experimental setup. To have a performance reference, we
compute two performance baselines for each of the three tasks where we learn
the skill parameters through (1) random search and (2) BO with no priors. We
repeat every experiment configuration 20 times to account for noise.

Peg Insertion Task

The goal of the peg insertion task is to insert a peg into a hole with a 1.5 mm
larger radius. The setup imitates a piston insertion into the engine shown in
Fig. 5.2. The configuration of such an insertion does not allow to tilt the piston.
Therefore, the insertion strategy is to hold the object upright and to perform
an Archimedes spiral as a search motion. The realization of a spiral is defined
by the path velocity of the reference point, the pitch (i.e. the distance between
lines in the spiral) and the maximal radius. Furthermore, the insertion skill sets
a downward force that is applied by the arm while searching.

As in [May+22c], this task has two objectives: 1) the performance of the in-
sertion which is assessed with the distance of the peg to the hole as well as a
success reward if the peg is inserted by more than 0.01 m and 2) an integral over
the commanded force while searching.

In order to learn a robust solution, each candidate parameter set is evaluated 7
times: (1) each execution randomly selects one out of the five start positions for
the robot arm, (2) in simulation the hole is translated horizontally by a Gaussian
offset with a standard deviation of 7 mm. See [May+22c] for more details about
the experiment.

Object Pushing Task

This task requires to push an object with an uneven weight distribution from
a start location (shown in Fig. 5.2) to the corner between the block and the
metal fixture. The pushing is done with a square peg that is 0.07 m wide.
The parametric push skill first moves the end effector to a location above the
object, before it lowers it and performs a Cartesian linear motion towards the
goal. The start and goal location of the push movement can be altered in both
horizontal directions. This allows for learning of a push motion that starts from
a location at the side of the object, and which implicitly takes the center of
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mass into consideration. Every parameter set is evaluated 7 times where (1) the
start position is randomly selected from a set of 4 initial positions and (2) the
position of the object and the target are slightly perturbed by Gaussian offsets
to avoid overfitting.

The performance of the task is assessed by the distance of the end effector to the
target pose and by the position and orientation error of the object with respect
to the target pose. The other objective assesses the total amount of force that
the robot arm applies on the environment by integrating over the error between
the actual pose of the end effector and the reference pose. See [May+22c] for a
more detailed description.

Obstacle Avoidance Task

The goal of the task is to find a policy that uses parametric movement skills
to avoid a static obstacle in the workspace. The structure of the skill is pre-
defined and set up so that an obstacle can be passed from above. As shown
in Fig. 5.3, the end effector starts at the point s and moves towards the goal
(g1) until it is above the parametric threshold p1 in z-direction. When above
p1, the reference point will move towards the goal (g2) until the threshold p2
in y-direction is reached. Then, the motion towards the point g3 is started.
The learnable parameters include the thresholds p1 and p2 as well as the y and
z coordinates of the parametric goal points (g1) and (g2). See [May+21] for
additional details.

This task uses a positive reward that evaluates the distance between the end ef-
fector and the goal position. Furthermore, there is a fixed reward when reaching
the goal. The safety objective evaluates the distance between the end effector
and the object and the table.

Results

The experimental results are summarized in Fig. 5.4. In the peg insertion task
BO without priors (blue) performed equally well than with the operator priors
(green). This task also allowed for a quick recovery from misleading priors (red),
indicating that it is easier to learn than the other tasks. In the other two tasks
operator priors (green) greatly improved the learning speed and learning results.
Operator priors vastly outperformed the baselines, as it yielded an increase in
final HV of about 40% over BO with no priors. At the same time, less than 40%
of the iterations were needed to achieve the final performance of the baselines.
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The tasks also showed that the usage of deliberately misleading priors can gen-
erally hamper the learning performance. To provide an additional indication of
the performance of the operator priors for a specific task, we performed random
sampling in the space that is defined by these priors (brown). While priors
sampling performs equally well in the peg insertion task it shows significantly
worse performance in the other two tasks.

4.2 Learning with the Real system

While learning in simulation has several advantages, it also has limitations:
Especially contact-rich tasks require an accurate model of the robot system and
the workstation to allow the learning policies to transfer to the real system.
This can be difficult to achieve and to maintain. Therefore, we learn the peg
insertion task and the obstacle avoidance task directly on the real system.

We learn using the same operator priors as in simulation. As a baseline we
use BO without priors. In addition, we also use the Pareto-optimal points that
were obtained by learning in simulation as a multimodal prior when learning on
the real system as an application of transfer learning. This can be particularly
interesting, because it does not necessarily require operators to be able to specify
priors. Moreover, the approach allows further refinement on the real system in
case the task was not accurately modeled in simulation.

For each of the tasks, we do four repetitions of each configuration to reduce
measurement noise. When using the Pareto-optimal points from simulation
for a learning process on the real system, we use the points of a single run in
simulation that applied BO without priors. This means that the operator never
needed to explicitly state any priors.

Peg Insertion Task

When learning this task on the real system, we utilize the same five start pos-
itions as above when learning in simulation. Every parameter set is evaluated
three times, randomly selecting one of the start positions for each run.

Obstacle Avoidance Task

Since learning this task on the real robot system can result in collisions with
the object, the engine in Fig. 5.2 is replaced by an object that avoids damages
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Figure 5.4: The learning progress of the peg insertion, the object pushing and the obstacle avoid-
ance tasks in simulation. The dashed line denotes the end of the DoE phase and the
shaded regions are the standard error of the mean. BO with operator priors improves
substantially on both BO without priors and prior sampling for two tasks. For the less
difficult peg insertion tasks, all approaches but random sampling achieve comparable
performance.
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Figure 5.5: The learning progress of the peg insertion task on the real robot system. The dashed
line denotes the end of the DoE phase and the shaded regions are the standard error
of the mean. Both operator priors and simulation priors yield substantial performance
gains over BO without priors.

to the robot. Furthermore, since successful policies do not interact with the
environment in this task, every parameter set is evaluated only once.

Results

The experimental results are summarized in Fig. 5.5 and 5.6. They demonstrate
again that well-placed operator priors could accelerate the learning and yielded
to better learning results. In both tasks the priors derived from simulation
results perform equally well initially, but can eventually be outperformed by the
operator priors. However, since the simulation priors do not need to be defined
explicitly, they are particularly interesting for new tasks or less experienced
operators. In both tasks it takes less than 30% of the iterations to achieve the
same performance as BO without priors. When learning the peg insertion task,
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Figure 5.6: The learning progress of the obstacle avoidance task on the real robot system. The
dashed line denotes the end of the DoE phase and the shaded regions are the stand-
ard error of the mean. Both operator priors and simulation priors yield substantial
performance gains over BO without priors.

the average force applied by the robot was 32 % lower when using priors from
simulation and 47 % lower with operator priors compared to a policy search
without priors. In the obstacle avoidance task, the average amount of required
interferences by robot operators due to forceful collisions with the object was
much lower when learning with operator (10.75± 4.43) and simulation priors
(4.5± 0.8) than with BO without priors (24.25± 4.43). This indicates that
even the safety of a policy search can be increased by incorporating well-chosen
priors.
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5 Conclusions

We evaluated the influence of prior beliefs about the location of good candidate
solutions when learning several industrial robot tasks. Since the parameters of
interpretable robot skills often have a concrete meaning, they offer a natural
opportunity for robot operators to incorporate their knowledge and experiences
into the learning process. We have shown that expert operator priors can sub-
stantially speed up the search and yield higher performing policies, and seldom
harm the performance. We have also demonstrated how using results from learn-
ing in simulation as priors can automate the prior design, and how this choice
accelerates the learning of the same task on the real robot system. Lastly, we
have highlighted the risk and potential performance loss associated with spe-
cifying a drastically incorrect prior.

We believe that the usage of priors for robot tasks learning in a combination with
skills and the knowledge integration is a promising direction to achieve intelligent
robot systems that can quickly learn to adapt. Moreover, the usage of priors
can ease the adaption of RL in industrial robot tasks by providing operators
an intuitive tool to guide a learning process. We are planning to look more
into the transfer of knowledge between different tasks and robot configurations.
Furthermore, multi-fidelity learning could combine a small amount of executions
on the real system with learning in simulation to allow for a quicker and safer
adjustment to new tasks.

Appendix

The implementation as well as additional information are available at: https:
//github.com/matthias-mayr/SkiREIL
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Robotics and AI: An Introduction. Chapman \& Hall/CRC Press,
Aug. 2017.

[DNP13] Marc Peter Deisenroth, Gerhard Neumann and Jan Peters. “A
Survey on Policy Search for Robotics”. In: Foundations and
Trends® in Robotics 2.1–2 (Aug. 2013), pp. 1–142.

202



[Feu+22] Matthias Feurer et al. Practical Transfer Learning for Bayesian
Optimization. Oct. 2022. arXiv: 1802.02219 [cs, stat].

[Fra18] Peter I. Frazier. A Tutorial on Bayesian Optimization. July 2018.
arXiv: 1807.02811 [cs, math, stat].

[GL10] Robert Gramacy and Herbert Lee. “Optimization under
Unknown Constraints”. In: Bayesian Statistics 9 (Apr. 2010).

[Ijs+12] Auke Jan Ijspeert et al. “Dynamical Movement Primitives:
Learning Attractor Models for Motor Behaviors”. In: Neural
Computation 25.2 (Nov. 2012), pp. 328–373.

[Iov+22] Matteo Iovino et al. “A Survey of Behavior Trees in Robotics and
AI”. In: Robotics and Autonomous Systems 154 (Aug. 2022),
p. 104096.

[JSW98] Donald R. Jones, Matthias Schonlau and William J. Welch.
“Efficient Global Optimization of Expensive Black-Box
Functions”. In: Journal of Global Optimization 13.4 (Dec. 1998),
pp. 455–492.

[KCM18] Rituraj Kaushik, Konstantinos Chatzilygeroudis and
Jean-Baptiste Mouret. “Multi-Objective Model-based Policy
Search for Data-efficient Learning with Sparse Rewards”. In:
Proceedings of The 2nd Conference on Robot Learning. PMLR,
Oct. 2018, pp. 839–855.

[Kru+16] V. Krueger et al. “A Vertical and Cyber–Physical Integration of
Cognitive Robots in Manufacturing”. In: Proceedings of the IEEE
104.5 (May 2016), pp. 1114–1127.

[Let+19] Benjamin Letham et al. “Constrained Bayesian Optimization
with Noisy Experiments”. In: Bayesian Analysis 14.2 (June
2019), pp. 495–519.

[Mar+19] Roberto Mart́ın-Mart́ın et al. “Variable Impedance Control in
End-Effector Space: An Action Space for Reinforcement Learning
in Contact-Rich Tasks”. In: 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). Nov. 2019,
pp. 1010–1017.

[Mar+14] A. Marzinotto et al. “Towards a Unified Behavior Trees
Framework for Robot Control”. In: 2014 IEEE International
Conference on Robotics and Automation (ICRA). May 2014,
pp. 5420–5427.

203

http://arxiv.org/abs/1802.02219
http://arxiv.org/abs/1807.02811


[May+21] Matthias Mayr et al. “Learning of Parameters in Behavior Trees
for Movement Skills”. In: 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems. 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems.
IEEE, 2021, pp. 7572–7579.

[May+22c] Matthias Mayr et al. “Skill-Based Multi-Objective Reinforcement
Learning of Industrial Robot Tasks with Planning and Knowledge
Integration”. In: 2022 IEEE International Conference on
Robotics and Biomimetics (ROBIO). IEEE, 2022, pp. 1995–2002.

[NKO19] Luigi Nardi, David Koeplinger and Kunle Olukotun. “Practical
Design Space Exploration”. In: 2019 IEEE 27th International
Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS). Oct. 2019,
pp. 347–358.

[Nar+17] Luigi Nardi et al. “Algorithmic Performance-Accuracy Trade-off
in 3D Vision Applications Using HyperMapper”. In: 2017 IEEE
International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). May 2017, pp. 1434–1443.

[PKP20] Biswajit Paria, Kirthevasan Kandasamy and Barnabás Póczos.
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Abstract

The ability to learn new tasks and quickly adapt to different variations or di-
mensions is an important attribute in agile robotics. In our previous work,
we have explored Behavior Trees and Motion Generators (BTMGs) as a robot
arm policy representation to facilitate the learning and execution of assembly
tasks. The current implementation of the BTMGs for a specific task may not
be robust to the changes in the environment and may not generalize well to
different variations of tasks. We propose to extend the BTMG policy represent-
ation with a module that predicts BTMG parameters for a new task variation.
To achieve this, we propose a model that combines a Gaussian process and a
weighted support vector machine classifier. This model predicts the performance
measure and the feasibility of the predicted policy with BTMG parameters and
task variations as inputs. Using the outputs of the model, we then construct a
surrogate reward function that is utilized within an optimizer to maximize the
performance of a task over BTMG parameters for a fixed task variation. To
demonstrate the effectiveness of our proposed approach, we conducted experi-
mental evaluations on push and obstacle avoidance tasks in simulation and with
a real KUKA iiwa robot. Furthermore, we compared the performance of our
approach with four baseline methods.
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1 Introduction

Robots have been utilized effectively for many years in repetitive and automated
industrial processes. However, despite the shift towards smaller batch sizes and
increased demand for customization, many robot systems still require a lengthy
and expensive reconfiguration process. To keep up with the demands of soci-
ety and modern industrial production, robots should have the ability to adapt
quickly to different situations. In these situations, the task formulations should
be robust to failures, interpretable, and possibly reactive to failures. Addition-
ally, the task formulations should also be adaptable to different variations or
dimensions of the same task, such as pushing an object to different locations,
picking an object from any location in the space, and avoiding an obstacle with
different shapes and positions.

To overcome the challenges, Rovida F. et al. [Rov+18] have suggested a repres-
entation that combines behavior trees (BT) [CÖ14; CÖ17a] and motion gener-
ators (MG), (BTMG). In our previous work, we used BTMGs to model skills
for contact-rich tasks such as inserting a peg into the hole to mimic engine as-
sembly [Rov+18; May+21] and pushing an object to a target location [May+22a;
May+22c].

A BTMG is a parameterized policy representation that combines the strengths
of both behavior trees and motion generators. Behavior trees provide a clear
and intuitive way to describe the high-level logic of the robot’s behavior, while
motion generators generate the low-level motion commands by controlling the
end-effector in Cartesian space. For a more concrete definition of motion gen-
erators, refer to [Rov+18]. The parameters of a BTMG can be used to specify
the structure of the behavior tree as well as values such as controller stiffness.

BTMGs are easy to interpret and can be designed to be robust to faults and
failures that can occur during execution [Rov+18]. Furthermore, they have
the ability to be reactive [CÖ14], allowing the robot to adapt and respond to
current circumstances. Simple BTs can also be systematically combined with
more complex ones to solve complex tasks [Rov+18; May+21; RGK17].

BTMGs are a promising technique for motion modeling because of their expli-
citness, robustness, and reactiveness. There are mainly three ways to set the
parameters of BTMGs. One way is to specify them manually or fine-tune them
by experts [Rov+18]. Another way is to determine those parameters through
reasoning. However this requires the existence of such a reasoner for the task
at hand, which can not always be assumed. Finally, BTMG parameters can be
learned through reinforcement learning (RL) [May+22a; May+22c; May+22b].
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Figure 6.1: The experimental setup. It shows the object with the skewed weight distribution that
is pushed with a 45 mm wide peg. On the table the different start and goal positions
for the object can be seen in different colours. On the sides, some example sizes for
obstacles are shown.

However, learned BTMG parameters are in many cases scenario-specific and
changes in the setup may require relearning them.

Setting BTMG parameters using these methods can limit the usage of BTMGs
in scenarios that require quick adaptability. For example, tasks such as pushing
an object to different locations, picking an object from various locations, or even
picking objects with various shapes would require updating the parameters of
the respective BTMGs. This problem is also present in the original formalization
of dynamic motion primitives (DMPs) [INS01; INS02] and was later addressed
in [Ijs+12].

In this paper, we propose an extension to the BTMG formulation that enables
quick adaptation to different task variations by incorporating a model that com-
bines a Gaussian process (GP) and a weighted support vector machine (SVM)
classifier. Our model uses a GP to learn a function that predicts the perform-
ance measure of a policy using task variations and BTMG parameters as inputs.
Furthermore, the model also trains a weighted SVM classifier that predicts the
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feasibility of a policy. For example, in a push task, the performance measure of
a policy can be given by its overall reward, which depends on the error between
the actual and target position of the pushed object. In this task, a policy can
be feasible when this error is below a user-defined threshold. Once the model is
trained, we optimize the BTMG parameters over the resulting surrogate reward
function for a given new task variation.

The following are our main contributions:

• We extend BTMG policy representation that enables it to quickly adapt
to task variations.

• We propose a model that combines a GP and a weighted SVM classifier
to predict the performance measure and feasibility of a BTMG policy for
a new task variation, and subsequently optimize the output of the model
to obtain resulting BTMG parameters.

• We evaluate the performance of the proposed method in simulation and
on a real KUKA iiwa robot for two tasks and compare its performance
with four baselines.

2 Related Work

Movement primitives, based on motor primitives theory [Mus99; FH05], are
mathematical formulations of dynamic systems that generate motions. Two
well-known movement primitives used in robotics are Dynamic Movement Prim-
itives (DMPs) [INS01; INS02] and Probabilistic Movement Primitives (ProMPs)
[Par+13]. Movement primitives can be generalized and have proven successful
in various robotics applications, such as dynamic motion primitives [INS01;
INS02]. Similar to our BTMGs, DMPs intially lacked the capacity to generalize
to different task parameters. This was resolved later by introducing a small
change in the transformation system [Ijs+12].

While both DMPs and BTMGs are capable of generating motions through at-
tractor landscapes, the parameters for DMPs are learned implicitly from a set
of demonstrations, whereas parameters for BTMGs can be explicitly specified
manually, inferred through a reasoner, or learned using RL. Nevertheless, a com-
prehensive comparison of the two approaches would require further investigation
and is outside the scope of this paper.
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DMPs have been extended with intermediate via points [Nin+11; Nin+12;
WA18; ZGA19], and can generalize to new goals by interpolating weights of
neighboring DMPs [Wei+13] or by using Gaussian Process Regression (GPR)
to generate new parameters [FUG11]. Furthermore, GPs [RW06] have been
used to generalize DMPs to external task variations, arbitrary movements, and
adapting trajectories to new situations online in [AMB16; FUH16; FUG11], re-
spectively. In [Lee+18], Gaussian mixture models are used to learn the mapping
of task parameters and the forcing term of DMPs.

The mixture of movement primitives (MoMP) algorithm introduced in [MKP10;
Mül+13], can also be used to generalize the basis movements stored in the
library. The MoMP algorithm captures the robot’s position and velocity as
parameters for the expected hitting position and velocity. A new motion is gen-
erated by a weighted sum of DMPs, assigning a probability to a DMP based
on the sensed state. MoMPs and ProMPs have been applied successfully in
various applications, including learning striking movements for table tennis ro-
bots [MKP10; Gom+16] and solving Human-Robot collaborative tasks [Mae+17]
using ProMPs.

We draw inspiration from prior work on DMPs to extend BTMG’s formulation
by incorporating generalization to different task variations using GP, as seen
in [FUG11; AMB16; FUH16]. These studies employed GPs to directly map
task variations to DMP parameters, which we refer to as the direct model in
this paper. However, our approach differs significantly in how we use GPs.
Instead of using the direct model, we propose a model that combines GP with a
weighted SVM classifier to predict the performance of tasks and the feasibility
of a policy, using task variations and BTMG parameters as inputs. Since our
model predicts both performance measure and feasibility, we refer to it as the
PerF model, short for performance and feasibility.

3 BTMG and Task Variations

We define BTMG as a parametric policy representation, BTMG(θ) where θ ∈
RN . The parameters θ can range from determining the structure of the behavior
tree (BT) to specifying the controller stiffness values of the motion generator
(MG). These parameters are further subdivided into intrinsic parameters θi
and extrinsic parameters θe [Ahm+22].

Intrinsic parameters θi determine the structure of the behavior tree, the number
of control nodes, the type of motion generator, etc. For example, consider a
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policy Tp for a push task, which has intrinsic parameters θi. These parameters
are fixed and independent of the task instance, meaning that Tp uses the same
θi values regardless of the starting position, or the target position of the object.
In other words, θi is situation-invariant. Within the scope of this paper, these
parameters are assumed to be known a priori.

Extrinsic parameters θe are situation dependent e.g. to determine the applied
force, offsets, and the velocity of the end effector. Again, θe can be spe-
cified manually [Rov+18; Rov+16], inferred through a reasoning framework,
or learned using RL. We have already demonstrated how RL can be used to
obtain BTMG parameters [May+21] and used it in simulation and on a real
robot to solve multi-objective tasks [May+22c; May+22b].

In addition to θ, we also consider task variations v ∈ RM . Task variations refer
to different possible alterations of a given task, such as different start and goal
positions of an object. For example, a task variation v in the case of a push task
would be a 4D vector consisting of the values of the start and goal positions of
the object along the horizontal and vertical axes.

Note that the task variation parameters are different from the extrinsic BTMG
parameters (Figure 6.2). We take two task variations v1 = (vsx , vsy , vg1x , vg1y)
and v2 = (vsx , vsy , vg2x , vg2y) that define the start and goal positions of the
object.
For variations v1 and v2, we have corresponding θe1 = (θe1sx

, θe1sy
, θe1gx

, θe1gy
)

and θe2 = (θe2sx
, θe2sy

, θe2gx
, θe2gy

) that collectively define the start and the goal
locations for the pushing action.

As θi has no impact on adapting BTMGs to different variations, our objective
in this paper is to establish a relationship between θe and v that would enable
the adaptation of BTMGs to new variations.

4 Approach

In this section, we explain how we adapt BTMG parameters for a new task
variation by using the PerF model. Figure 6.3 shows how the PerF model works
in comparison with a direct model. The overall approach is divided into the
training (Sec. 4.1) and query phase (Sec. 4.2). In the training phase, we pass each
task variation vk ∈ Vtrain, into an extended RL pipeline similar to [May+22c].
For each learning process for different task variations, we utilize three sets of
outputs from the RL pipeline to train the direct and the PerF models:
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Figure 6.2: An illustration of two simplified task variations v1 and v2 in the pushing task that only
vary the goal location. The orange and blue vectors are set by the respective learned
extrinsic parameters θe1 and θe2, so that they define the resulting green and red push
vectors that should successfully push the object.

1. Best policies: For every task variation we get the best performing policy:
T = {(vk,θ∗e,vk

)|k = 1, . . . , n}

2. All evaluated configurations and their rewards:
K = {(vk,θei,vk

, rθei,vk
)|k = 1, . . . , n and i = 1, . . . , t ≤ tmax}

3. All evaluated configurations and their feasibility:
E = {(vk,θei,vk

, fθei,vk
)|k = 1, . . . , n and i = 1, . . . , t ≤ tmax}

The direct model M is trained with the set T and, as a result, learns to predict
θ̂e given v. On the other hand, the PerF model is trained with the sets K and
E and as a result it learns to predict the reward r̂ and feasibility f̂ of a policy
with parameters θe. The model further uses r̂ and f̂ to generate a surrogate
reward function that obtains θ̂e given v. For more details on how we obtain set
T, we direct the reader to [May+22c]. To obtain sets K and E, we follow the
same procedure as in [May+22c], retaining all configurations along with their
respective rewards and feasibilities for a given task variation.
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The intuition behind using the PerF model together with an optimizer is to
guide the combination of GP and weighted SVM towards predicting policy para-
meters θe that prioritize performance measure and feasibility. In contrast, the
direct model does not take into account the performance measure and feasibility.
In the following subsections, we explain our approach in more depth.

4.1 Training Phase

We frame the mapping of the task variations v to the extrinsic BTMG para-
meters θe as a supervised learning problem. The training phase aims to learn
two functions: Ĵ that predicts the reward achieved by a policy and F̂ that pre-
dicts if a policy is feasible, see Figure 6.3. We propose to use GP and weighted
SVM to learn Ĵ : (θe,v) 7→ r̂ ∈ R and F̂ : (θe,v) 7→ f̂ ∈ {0, 1}. Ĵ and F̂ are
trained by data points in sets K and E, provided by the RL pipeline introduced
in [May+21].

For each task variation, vk ∈ Vtrain, similar to [May+21; May+22c], we define
Jvk

(θe) as the expected sum of individual rewards over time, given a sequence
of extrinsic parameters θe1,θe2, . . . ,θet ∈ θe.

In [May+21; May+22c], we use Bayesian optimization (BO) as a black-box
optimization method to obtain the optimal policy parameters θ∗e and the best
reward Jvk

(θ∗e). In this paper, however, we use BO to obtain Jvk
(θe) by com-

puting Jvk
(θe1), Jvk

(θe2), . . . , Jvk
(θet) over the sequence θe1,θe2, . . . ,θet. This

allows us to not only have the optimal policy parameters θ∗e and the corres-
ponding best reward Jvk

(θ∗e) but it also provides us with intermediate θet and
Jvk

(θet). Overall, this provides us with large amount of data to train the Ĵ
function and allows us to capture the overall reward landscape better.

In addition to learning the reward function Ĵ , we also learn the feasibility func-
tion F̂ . The motivation behind learning F̂ is twofolds: First, it provides a user-
defined metric to evaluate the feasibility of a policy and second, it complements
the reward formulation of a task by addressing the potential shortcomings of in-
accurate reward formulations. In principle, we do not need to optimize feasibility
if the reward formulation covers all aspects of the task. However, in practice,
reward formulation is challenging, so feasibility addresses these shortcomings ef-
fectively. It ensures learned policies align with the task’s requirements, despite
imperfect reward formulations.

For a given task variation vk, we define the feasibility function Fvk
(θe) as a

binary function that maps to 1 or 0 depending on whether the policy achieves
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a user-defined metric of feasibility or not. Similar to Jvk
(θe), we obtain Fvk

(θe)
by computing Fvk

(θe1), Fvk
(θe2), . . . , Fvk

(θet) for the sequence of evaluations
θe1,θe2, . . . ,θet. For more details about the pipeline, we refer the reader to the
policy optimization section in [May+21; May+22c].

To model Ĵ and F̂ , we obtain a sequence of BTMG parameter vectors, θe1,θe2,
. . . ,θet, along with their corresponding reward values Jvk

(θe1), Jvk
(θe2), . . . ,

Jvk
(θet) and feasibility values Fvk

(θe1), Fvk
(θe2), . . . , Fvk

(θet) for task variations.
We then use these data points to train a GP and a weighted SVM classifier. This
enables us to effectively model the underlying J and F .

4.2 Query Phase

The goal of this phase is to query the trained model with a new task variation
vp ∈ Vtest and obtain a θ̂e by optimizing Ĵ(θet|vp) under the feasibility con-
straint F̂ (θet|vp) (Figure 6.3). For this purpose, we use the Ĵ and F̂ obtained
in the training phase. We solve this as an optimization problem over a sequence
of θe for a new vp.

We begin the optimization process by specifying the optimizer type, the bounds
for θe, and the maximum number of iterations tmax. In our experiments, we used
the Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) [Byr+95;
Zhu+97] algorithm, which refines an initial estimate of θe1 to iteratively obtain
improved evaluation points θet, where t ≤ tmax, using the derivative as the
driving function. For each new task variation vk, we run the optimizer to obtain
a sequence of evaluation points θet.

Using Ĵ and F̂ , we define a surrogate reward rvp = r̂θet,vp − (1− f̂θet,vp)) ∗ µ.
Here, the first term corresponds to the output reward value computed by Ĵ ,
while the second term penalizes the reward if f̂θet,vp maps to 0. We penalize
the reward r̂θei,vp by a small factor µ. We query the surrogate reward rvp for
defined number of iterations or until the optimizer converges.

After the optimization phase, we select the θet that maximizes both Ĵ(θet|vp)
and is feasible F̂ (θet|vp).

5 Experiments

We evaluated the efficacy of our approach in simulation and also by transferring
of the simulation results to a real KUKA iiwa manipulator for two tasks: an
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Figure 6.3: The pipeline of our approach and the direct model baseline. For every task variation
v, an RL problem is solved and the respective results are provided to the GP models.
When querying for a new task variation vp both models are queried for a set of extrinsic
parameters θ̂e.
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obstacle avoidance task and a pushing task, each having its own challenges.
For simulation, we utilized the DART simulation toolkit [Lee+18] and in both
simulation and reality, the robot arm was controlled using a Cartesian impedance
controller [MS22], which helps reduce the disparities between simulation and
reality. Additionally, for the push task, we further reduce the sim-to-real gap by
adjusting the friction coefficient appropriately. For more detailed information
on bridging the sim-to-real gap, please refer to [May+21].

To train our model, we considered 20 task variations that are learned for the
same amount of iterations each. Using the method detailed in Sec. 4.1, we train
the GP and the weighted SVM classifier with the resulting BTMG parameters,
the feasibility, and the reward values. The weights of the SVM classifier are
adjusted automatically to adjust bias induced by an unequal number of feasible
and non-feasible policies. We then tested our approach on 20 unknown task
variations. This experiment is repeated five times for both tasks to show the
robustness of the approach.

We compare the performance of our approach with four baselines:

1. Learned: This baseline uses the RL pipeline described in [May+22c] to
learn the BTMG parameters directly for the test variations. It shows which
performance could be achieved if a new variation is learned from scratch
instead of querying the model. Notably, our training data is generated in
this way.

2. Direct: This model takes the best parameters for the training variations
(T) and learns a direct mapping from task variations to BTMG parameters
without explicitly learning the reward.

3. Nearest Neighbor : For each test variation, we select the closest task vari-
ation in the training set and choose the corresponding BTMG parameters.

4. Single Policy: The learned BTMG parameters of a single training variation
are used for all test variations. This baseline shows how well and how often
the learned parameters for one task variation can be utilized in a different
one without any changes.

Although our baselines may seem simplistic, they are deliberately selected to
provide insights into the functionality and performance of our approach. Each
of these baselines serves a specific purpose in understanding the capabilities and
limitations of our approach.
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Figure 6.4: The obstacle task with some of the variations of the object location, width, and height.
For each object configuration, valid example trajectories are shown in the same color.
For the red trajectory, the intermediate goal points (g1 and g2) and two motion
switching thresholds (p1 and p2) are shown.

We consider task-specific reward functions for both tasks. The rewards and feas-
ibility measures for the tasks are defined separately in their respective sections.

5.1 Obstacle Avoidance Task

The objective of the obstacle avoidance task is to move the robot’s end effector
from the start to the goal location while avoiding an obstacle in the workspace.
As shown in Fig. 6.4, the obstacle can vary in size and position. The goal is to
find policies that navigate the robot around the obstacle while completing the
task as quickly as possible, without violating the safety constraints that require
the end effector to maintain a safe distance from the obstacle.

We consider three task variations: 1) obstacle height, 2) obstacle width, and 3)
obstacle position in a horizontal direction (left-right in Fig. 6.4). The obstacle
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varies in height from 0.049 m to 0.331 m and in width from 0.09 m to 0.331 m.
The horizontal position ranges from 0.274 m to 0.311 m with respect to the ori-
gin. We use Latin hypercube sampling to ensure a more even sample distribution
and obtain 20 task variations from the specified ranges. We learn each variation
for 120 iterations.

This learning problem formulation has three rewards: 1) a fixed success reward,
2) a goal distance reward, and 3) an obstacle avoidance reward. The fixed
success reward assigns a fixed reward if the BT finishes successfully. The posit-
ive goal distance reward increases, the closer the end effector gets to the goal.
The obstacle avoidance reward is a negative function that penalizes end-effector
states that are close to the obstacle. These reward functions are combined to
encourage fast execution while discouraging getting too close to the obstacle.
A policy is considered feasible if it satisfies two conditions: First, the end ef-
fector does not come closer to the obstacle than 40 mm. Second, the policy must
successfully complete the BT by bringing the end effector to the goal position.

The policy for this task has six learnable parameters consisting of two coordin-
ates of the intermediate goal points and two thresholds to transition between
goal points. A more detailed description of the task is provided in [May+21;
May+22c]. Notably, the structure of this policy with its thresholds allows for
different movement strategies. For example, for flat obstacles, the goal can be
reached with only a single intermediate point, while larger obstacles require both
intermediate points, as shown in Fig. 6.4.

Results and Discussion

For the evaluation, we randomly sample 20 new task variations (Vtest) that are
not included in the training set, and compare the performance of our proposed
model and the baseline methods. Specifically, we assess the execution time and
the reward achieved by each parameter configuration in the new task variation.
The reward value is chosen as a performance metric as it reflects how well
a policy balances between the goal-reaching and obstacle-avoidance objectives
expressed in the reward functions.

The simulation results are shown in Fig. 6.5a) and b) and Table 6.1. They
show that the policies obtained by optimizing the output of our PerF model
performs similarly to the policies that are explicitly learned. Our model achieves
a success percentage of 87 % compared to the 89 % of the learned ones and a
total reward in a similar range. In contrast to that, the nearest neighbor baseline
succeeds only in 71 % of the variations. The direct model also only achieves a
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Figure 6.5: The total reward (a, c) and the execution time (b, d) of the obstacle task in simulation
(a, b) and on the real system (c, d). The box plots show the median (black line) and
interquartile range (25th and 75th percentile); the lines extend to the most extreme
data points not considered outliers, and outliers are plotted individually. The success
percentages are shown below the method names.
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success percentage of 67 % and has significantly more outliers in the reward.
Further investigation indicates that the reason for the low performance is that
an interpolation between policies is often not valid. This is especially the case
between motion configurations that use a single or both intermediate points.

Based on these results from simulation we also evaluated the learned policies,
our model outputs and the nearest neighbor policies on the real robot system.
Although this includes a transfer from simulation to the real system, the results
shown in Fig. 6.5c) and d) have only minor variations from the simulation results.
This also demonstrates the robustness of this policy formulation as a whole.

5.2 Push task

The goal of this task is to push an object from a varying start location to a
varying goal location. The object is shown in Fig. 6.1 and has a skewed weight
distribution with respect to its bounds.

We consider two types of task variations: 1) the starting position of the object
in both horizontal directions and 2) the goal position of the object in both
horizontal directions. For the starting position, we consider samples from a
circle with a diameter of 0.16 m around a center point. For the goal position, a
triangular-shaped region is used. Fig. 6.1 shows the start and goal positions for
a single repetition.

The learning formulation has two rewards: 1) the object position reward, which
is a function of the difference between the actual and desired goal position, and
2) the object orientation reward, which is based on the difference between the
actual and desired goal orientation. For our experiment, we prioritize the object
position reward, which is weighted 10 times more heavily than the orientation
reward.

Similarly to previous work [May+22a; May+22c], the push task has four BTMG
parameters that are learned. They are depicted in Fig. 6.2. These parameters
control additional start and goal offsets in the horizontal directions (x, y), de-
termining the shape of the push vector that is indicated in Fig. 6.2. The start
and goal orientation of the object for this task are fixed.

The object being pushed is an right-angled triangular object with dimensions
0.3 m x 0.15 m x 0.07 m, and a weight of 2.5 kg. The tool on the end effector
is a cubic peg with side lengths of 45 mm and therefore covers less than 15 %
of the side length of the object. In this task, the error between the desired
goal position and orientation and the achieved one serves as direct performance
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Table 6.1: The median performance values and the 25th and 75th percentiles for both tasks. A
”-” indicates that configuration was not evaluated.

Task Obstacle
Performance Measure Total Reward Finish Time [sec]

Environment Simulation Reality Simulation Reality

Learned Mean 5050 4963 5.7 5.8
Percentiles (4467, 5531) (4357, 5414) (5.3, 7.3) (5.4, 7.4)

PerF (ours) Mean 5013 4966 5.9 6.1
Percentiles (4290, 5462) (4238, 5426) (5.3, 7.5) (5.4, 7.8)

Nearest
Neighbour

Mean 4834 4782 6.1 6.1
Percentiles (3607, 5357) (3625, 5327) (5.4, 12) (5.5, 12)

Direct Mean 4594 – 7 –
Percentiles (2635, 5143) – (5.9, 12) –

Single Policy Mean 4496 – 7.6 –
Percentiles (-200, 5184) – (5.7, 12) –

Task Push
Performance Measure Position Error [m] Orientation Error [deg]

Environment Simulation Reality Simulation Reality

Learned Mean 0.002 0.01 0.15 1.51
Percentiles (0.002, 0.003) (0.007, 0.014) (0.07, 0.33) (0.98, 2.76)

PerF (ours) Mean 0.006 0.009 0.16 1.42
Percentiles (0.004, 0.009) (0.007, 0.012) (0.07, 0.34) (0.94, 2.74)

Nearest
Neighbour

Mean 0.011 0.016 0.18 2.58
Percentiles (0.007, 0.083) (0.01, 0.028) (0.08, 29.48) (1.18, 6.23)

Direct Mean 0.007 – 0.11 –
Percentiles (0.005, 0.014) – (0.06, 0.26) –

Single Policy Mean 0.016 – 0.29 –
Percentiles (0.007, 0.123) – (0.1, 45.76) –

measures for the policy.

Results and Discussion

The results for the simulation are shown in Figure 6.6a) and b). We consider a
policy feasible if the position error between the goal location of the object and
the desired goal location is less than 11 mm and the orientation error is less than
30 deg. The high success percentage of 97 % for the learned policies shows that
it is generally possible to

solve this task. Our proposed model solves 86 % of the configuration and out-
performs all baselines that do not require explicit learning. The gap to the direct
model, which achieved a success rate of 65 %, is significant. The nearest neigh-
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Figure 6.6: The final position error (a, c) and orientation error (b, d) of the push task in simulation
(a, b) and on the real system (c, d). The box plots show the median (black line) and
interquartile range (25th and 75th percentile); the lines extend to the most extreme
data points not considered outliers, and outliers are plotted individually. The success
percentages are shown below the method names.
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bor and the single policy approach only achieved 52 % and 38 %, which shows
not only the difficulty of the task but also excludes them as practical solutions.

Similar to the obstacle task, we also executed the learned policies on the real
robot system. To account for the differences of such a contact-rich task to the
simulation, we increase the allowed final position error by 4 mm but keep the
same angular maximum.

The results for the evaluation on the real system are in Fig. 6.6c) and d) as
well as in Table 6.1. As intuitively expected, the success percentages generally
drop as not all policies transfer to the real system. Similar to the evaluation
in simulation, the nearest neighbor baseline performs poorly. However, it is
notable that our model now outperforms the explicitly learned policies in both
the success rate and the final error. A possible explanation for this is that
our model needed to generalize, whereas an explicitly learned policy is able to
exploit the simulation to the maximum extent possible. During the experiments,
we also observed that policies from our model generally kept a larger distance
from the object when approaching it and also had fewer collisions with it.

To determine the time efficiency of our approach, we compute time required to
compute BTMG parameters for 60 new task variations. This analysis compares
learning BTMG parameters from scratch using the RL-pipeline and obtaining
BTMG parameters using our approach. Starting from scratch with the RL-
pipeline, median completion times were 770.315 seconds for the obstacle task
and 1232.625 seconds for the push task. In contrast, the optimization phase of
our approach achieved median completion times of 1.27 seconds for the obstacle
task and 5.189 seconds for the push task. Additionally, obtaining a trained
PERF model took an average of 66.628 seconds for the obstacle task and 317.025
seconds for the push task. During optimization, we observed some outliers, likely
stemming from the stochastic nature of the process. The analysis was performed
on a laptop equipped with an Intel(R) Core(TM) i7-10870H CPU running at
2.20GHz with 8 physical cores and hyper-threading, along with 64GB of RAM.

6 Conclusion and Future Work

Agile robotics requires that a system adapts quickly to changing conditions.
In this work, we introduced an extension to BTMGs, a motion representation
based on behavior trees and motion generators, which addresses this challenge.
Our approach enables the use of learned policies in previously unseen variations
of a task, allowing for fast adaption of robot behavior to changes in the task or

226



environment.

The experimental evaluation demonstrates that our approach effectively learns
a model capable of adapting to new task variations. Our method exhibits com-
parable performance to explicitly trained policies and consistently outperforms
all other baseline models. Furthermore, experiments conducted on the real ro-
botic system demonstrate the successful transferability of our approach from
simulation to reality, even in a contact-rich task. Notably, our proposed method
can even outperform explicitly learned policies in the same contact-rich task,
indicating superior generalization capabilities.

In future work, it is worth exploring whether the uncertainty modeled by the
GP can be leveraged to make more accurate predictions about successful ex-
ecution. This uncertainty measure could also be used for out-of-distribution
detection. Another promising direction is to use the learned model to return
policy parameters for task parameters, such as friction, for which the values are
not known a priori. In this case, we could jointly optimize over both policy and
task parameters to identify a compatible set of learned parameters.
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[FUG11] Denis Forte, Aleš Ude and Andrej Gams. “Real-Time
Generalization and Integration of Different Movement
Primitives”. In: 2011 11th IEEE-RAS International Conference
on Humanoid Robots. Oct. 2011, pp. 590–595.

[Gom+16] Sebastian Gomez-Gonzalez et al. “Using Probabilistic Movement
Primitives for Striking Movements”. In: 2016 IEEE-RAS 16th
International Conference on Humanoid Robots (Humanoids).
Nov. 2016, pp. 502–508.

[INS01] A. J. Ijspeert, J. Nakanishi and S. Schaal. “Trajectory Formation
for Imitation with Nonlinear Dynamical Systems”. In:
Proceedings 2001 IEEE/RSJ International Conference on
Intelligent Robots and Systems. Expanding the Societal Role of
Robotics in the the Next Millennium (Cat. No.01CH37180).
Vol. 2. Oct. 2001, 752–757 vol.2.

[INS02] Auke Jan Ijspeert, Jun Nakanishi and Stefan Schaal. “Learning
Rhythmic Movements by Demonstration Using Nonlinear
Oscillators”. In: Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS2002).
CONF. 2002, pp. 958–963.

[Ijs+12] Auke Jan Ijspeert et al. “Dynamical Movement Primitives:
Learning Attractor Models for Motor Behaviors”. In: Neural
Computation 25.2 (Nov. 2012), pp. 328–373.

[Lee+18] Jeongseok Lee et al. “DART: Dynamic Animation and Robotics
Toolkit”. In: Journal of Open Source Software 3.22 (Feb. 2018),
p. 500.

228



[Mae+17] Guilherme J. Maeda et al. “Probabilistic Movement Primitives
for Coordination of Multiple Human–Robot Collaborative
Tasks”. In: Autonomous Robots 41.3 (Mar. 2017), pp. 593–612.

[MS22] Matthias Mayr and Julian M Salt-Ducaju. “A C++
Implementation of a Cartesian Impedance Controller for Robotic
Manipulators”. In: arXiv preprint arXiv:2212.11215 (2022).
arXiv: 2212.11215.

[May+21] Matthias Mayr et al. “Learning of Parameters in Behavior Trees
for Movement Skills”. In: 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems. 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems.
IEEE, 2021, pp. 7572–7579.

[May+22a] Matthias Mayr et al. “Combining Planning, Reasoning and
Reinforcement Learning to Solve Industrial Robot Tasks”. In:
IROS 2022 Workshop on Workshop on Trends and Advances in
Machine Learning and Automated Reasoning for Intelligent
Robots and Systems (2022).

[May+22b] Matthias Mayr et al. “Learning Skill-Based Industrial Robot
Tasks with User Priors”. In: 2022 IEEE 18th International
Conference on Automation Science and Engineering (CASE).
IEEE, 2022, pp. 1485–1492.

[May+22c] Matthias Mayr et al. “Skill-Based Multi-Objective Reinforcement
Learning of Industrial Robot Tasks with Planning and Knowledge
Integration”. In: 2022 IEEE International Conference on
Robotics and Biomimetics (ROBIO). IEEE, 2022, pp. 1995–2002.

[MKP10] Katharina Muelling, Jens Kober and Jan Peters. “Learning Table
Tennis with a Mixture of Motor Primitives”. In: 2010 10th
IEEE-RAS International Conference on Humanoid Robots. Dec.
2010, pp. 411–416.
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Abstract

Robotic systems for manipulation tasks are increasingly expected to be easy to
configure for new tasks. While in the past, robot programs were often written
statically and tuned manually, the current, faster transition times call for robust,
modular and interpretable solutions that also allow a robotic system to learn
how to perform a task. We propose the method Behavior-based Bayesian Op-
timization and Planning (BeBOP) that combines two approaches for generating
behavior trees: we build the structure using a reactive planner and learn specific
parameters with Bayesian optimization. The method is evaluated on a set of
robotic manipulation benchmarks and is shown to outperform state-of-the-art
reinforcement learning algorithms by being up to 46 times faster while simultan-
eously being less dependent on reward shaping. We also propose a modification
to the uncertainty estimate for the random forest surrogate models that drastic-
ally improves the results.
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1 Introduction

Modern robots are capable of solving complex tasks in controlled environments
with high reliability and precision. However, recent trends are pointing towards
smaller product batches and more frequent updates of robot programs. At the
same time, the market share of collaborative robots is growing steadily, while
workspaces shared with humans makes for more unpredictable environments.
As a result, it is becoming increasingly important to create new robot policies
or programs quickly without the need for advanced programming skills and for
those programs to be reactive to changes in the environment. There are two
main groups of methods to generate policies automatically, both with their own
advantages and drawbacks. Firstly, automated planners [GNT16] can be very
efficient, but require that the planning domain is modelled sufficiently well. As
an example, a planner can only avoid obstacles that are represented in the do-
main. Planners also tend not to scale well to higher task complexity. The
second group, colloquially known as Machine Learning (ML), typically builds a
model by interacting with the environment and is thus not limited by preexisting
knowledge. There are also cases where ML methods scale better than planners,
as they can use a probabilistic approach instead of an exhaustive approach.
However, the learning is often not very efficient and for smaller tasks, an auto-
mated planner can be many orders of magnitude faster. This hampers the use
of ML-based methods as even state-of-the-art methods can take hours to days of
interaction time to learn a new task. As an example, the MAPLE runs for the
benchmarks in these paper takes several days on a normal workstation to learn.
Another considerable drawback is that many of the ML algorithms, often in the
Reinforcement Learning (RL) subgroup, are designed to use neural networks
that are known to lack the transparency and modularity of other architectures.

An increasingly popular alternative in robotics is to instead represent the policy
with Behavior Trees (BTs) [Iov+22; CÖ17a]. The main advantages are that BTs
have explicit support for task hierarchy, action sequencing, reactivity and they
are inherently modular. They are also transparent and readable, which enables
manual and automated analysis and validation [CÖ17b] as well as manual edit-
ing. Those are strong advantages when compared to neural networks, especially
in an industrial setting.

In this work we present Behavior-based Bayesian Optimization and Planning
(BeBOP) that generates BTs by building a reactive tree structure using a plan-
ner and then subsequently learns the BT parameters with Bayesian Optimiz-
ation (BO). With the tree structure as a prior, BO can then focus on tuning
parameters that are difficult to plan and reason about. The method is evaluated
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Figure 7.1: The eight simulation environments with the Franka Emika Robot (Panda). They range
from easy tasks like a lifting a cube to sequential multi-step tasks like picking up a
peg and inserting it into a hole.
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in a simulation environment with eight different manipulation tasks.

It drastically outperforms the award-winning state-of-the-art RL algorithm
MAPLE [NLZ22] in terms of the number of simulation steps needed to learn to
solve the tasks while using exactly the same behavior primitives. By induction
this also means that BeBOP is much more efficient than popular algorithms
like HIRO [Nac+18] and DAC [ZW19]. The speedup could even enable training
on real robot systems instead of just simulation as a lot fewer evaluations are
needed. Furthermore, it is also shown that our method is less dependent on
reward shaping in the form of affordances compared to the benchmark method.

Lastly, another advantage of the modular tree structure is that it also allows the
task to be divided into subtasks and learned in sequence for even faster progress.

The main contributions of this paper are:

• A novel method, BeBOP, that combines reactive planning with efficient
parameter tuning to yield state-of-the-art learning performance, while
leading to an interpretable and robust policy.

• A new method to calculate the uncertainty of a random forest surrogate
model within BO that outperforms the standard method on several tasks.

• A set of experiments verifying and validating our approach in compar-
ison to the state-of-the-art RL method MAPLE [NLZ22], showing that
BeBOP learns to solve the given tasks up to 46 times faster.

2 Background and Related Work

In this section we provide the relevant background on behavior trees and Bayesian
optimization and discuss the related work.

2.1 Behavior Trees

Behavior Trees (BTs) were first used in the computer game industry, but have
recently seen increased use in robotics [CÖ17a; Iov+22]. A BT is a directed
tree where a tick signal propagates from the root node down to the leaves. The
nodes are executed only when they receive the tick signal and return one of
the states Success, Failure and Running. The non-leaf nodes are called control
flow nodes. The flow nodes most commonly used are Sequence, which ticks
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Grasp handle!

(a) Subtree for n = 1

Fallback

Handle down? Sequence

Grasp handle! Rotate handle!

(b) Subtree n = 2

Fallback

Door open? Sequence

Fallback Open door!

Handle down? Sequence

Grasp handle! Rotate handle!

(c) Full tree

Figure 7.2: Different subtrees for a door opening scenario. In a cascaded learning setup, the
method starts by learning how to grasp the handle (a) before the tree gets extended
by the handle rotation (b) and finally the full tree is constructed (c).

children sequentially from left to right, returning once all succeed or one fails,
and Fallback (or Selector) which also runs sequentially but returns when one
succeeds or all fail. Leaves are called execution nodes or behaviors and are
usually separated into the types Action(”!”) and Condition(”?”). Conditions
encode status checks and sensory readings, only returning Success or Failure
while actions encode robot skills that can take more than one tick to complete
and therefore can also return Running. Figure 7.2 shows three example BTs for
a door opening scenario.

The main advantages of BTs are that they are readable and have inherent sup-
port for task hierarchy, action sequencing and reactivity. They are also inher-
ently modular [CÖ17a], in fact even optimally modular [BZS22]. The Running
return state grants the reactivity property because a running action can be
preempted by higher priority ones. BTs have been shown to improve on other
representations, such as finite state machines, especially in terms of modularity
and reactivity [Iov+23b; CÖ17b; BZS22].

2.2 Bayesian Optimization

In many practical optimization problems, there is no closed form expression
available for the function to optimize. Instead, the user can only interact with
the system by first selecting a configuration to evaluate and subsequently ob-
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serving its performance. Often this black-box function is also expensive to
evaluate; in the particular setting used in this paper, it amounts to running
a simulation of a robot performing the specified task.

Bayesian optimization (BO) is a paradigm developed to efficiently optimize such
problems, while limiting the number evaluations. It has recently shown great
performance in a variety of applications, such as robotics [Cal+16; May+22c;
Rai+18], hyperparameter tuning [Kle+17; Kan+18; Ru+20], and material design
[FW16; Pac+17; Hug+21].

We consider the problem of finding a global maximum of an unknown black-
box objective function f : s∗ ∈ arg maxs∈S f(s), over some pre-specified domain
S in D dimensions. The variables defining S can be real, integer, ordinal and
categorical [NKO19]. We further assume that the evaluations of f are disturbed
by observation noise and do not provide information on the function gradients.

BO is a sequential approach that iteratively selects new configurations to eval-
uate, trading off exploration and exploitation. It uses a surrogate model of the
objective function and effectively learns the function as it gathers more data.
The most common models are Gaussian Processes (GPs) [RW06] for their nat-
ural ability to quantify uncertainty on top of yielding accurate predictions and
Random Forests (RFs) [Lin+22; Sha+16] for their versatility and scalability to
a higher number of samples. Which configuration to select next is chosen by
maximizing an acquisition function that quantifies the exploration-exploitation
trade-off. Common examples are the expected improvement or upper confidence
bound. For a more thorough introduction to BO, see [Fra18].

2.3 Related work

Various combinations of planning and RL have previously been proposed for
other domains in [GK08; Fau+18; Fra+19; Moe+23]. In particular, [Sty+22]
uses BTs as the underlying structure, and [Koz92; SG20] combine a planner
with genetic programming. Using genetic programming to learn BTs has been
done primarily for computer games [CPO18], but there are also examples for
robotic manipulation applications [Iov+21; Sty+22; Iov+23a]. A more extensive
analysis is given in [Iov+22]. The combination of a sequential planner and
learning with BTs was also proposed in [May+22a; May+22c] for a peg-insertion
and a pushing task. In [May+22b] it is shown how priors defined by operators
or based on experience can accelerate learning and increase the safety during
learning. As an extension, [AMK23] learns a GP model to generalize to task
variations.
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Regarding automated planners, we use an adaptation of the Planning Domain
Definition Language (PDDL)-style planner from [CAÖ19] that creates BTs by
leveraging backchaining. We build on the later adaptations of the same planner
from [Sty+22; Gus+22; Iov+23a]. The main advantage of this planner is its
simplicity, but there are other more advanced planners for BTs as well. Some
examples are Linear Temporal Logic (LTL) [Tum+14; CMÖ17] and Hierarchical-
Task-Network (HTN) planning [HG15; RGK17]. There are also other PDDL-
style planners and we refer to Section 4.2 in [Iov+22] for a more exhaustive
list.

We compare our method against RL with parameterized actions [MRK16; DPS21]
- specifically with MAPLE [NLZ22]. Although these are completely different al-
gorithms from ours, the types of problems they solve are essentially the same.

3 Approach

The key assumption in this work is that if there exists a set of parameterized
actions that a robot can execute, these actions were likely designed with an
intended use and effect on the robots environment. It is then possible to create
a plan by using the actions under the assumption that for some values of the
action’s parameters, the actions will succeed and work in the intended way.
Utilizing this, our proposed method consists of using a planner to obtain the
structure of the BT and then employing a BO algorithm in an RL framework to
tune the parameters of the nodes of the BT. The complete code of the planner
and all other algorithms are available online1.

3.1 Planner

In this paper we use a PDDL planner adapted from [CAÖ19] that was later
extended in [Sty+22; Gus+22; Iov+23a]. As input to the planner, all behaviors
have a set of preconditions that must be fulfilled in order to execute the behavior
successfully and a set of postconditions that can be expected to be fulfilled when
the behavior is done. A set of goal conditions defines the robot’s task. Starting
with goal conditions and proceeding backwards, the actions that complete the
task or fulfill the necessary conditions for other actions are found iteratively
and expanded until all conditions have been met. In this work, we improve the
planner from [Gus+22] with some additions. Mainly, we trim the resulting tree

1https://github.com/jstyrud/BeBOP
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by a) removing any control nodes with only a single child and by b) removing any
post-condition nodes that are placed directly to before the corresponding action.
The latter step assumes that all behaviors check for post-conditions internally
before executing. We further introduce the concept of composite subtrees where,
after planning, certain leaves can either be expanded into subtrees with multiple
nodes or they can be replaced by some other parameterized behavior. This
allows us to exploit the fact that, e.g., the behaviors Reach and Open together
comprise a Place skill and that a Reach can generalize different behaviors at
planning time such as opening a door or moving a grasped object.

3.2 Optimization

In order to optimize a policy, we follow the policy-search formulation [DNP13;
Cha+19; Cha+17]. The goal is to find a policy π,u = π(x|θ) with policy
parameters θ such that we maximize the expected long-term reward when ex-
ecuting the policy for T time steps. Here, we use BO to tune the parameters.
A given (planned) BT has a set of action nodes, such that each node can have
zero or more parameters that can be learned for a given task. To construct a
learning problem, we automatically examine a BT to obtain these adjustable
parameters, their domains and dependencies.

We use a customized version of the BO implementation in hypermapper [NKO19]
as it supports a wide range of variable types and user priors for the optimum
[Car+22].

To provide a robust reward measure for the surrogate model and to prevent BO
from overfitting to the training data, we evaluate each set of parameters in up to
20 episodes using robotsuite’s domain randomization of the tasks with different
seeds. We initially run each set of parameters for three episodes in different
randomizations of the task simulation. After that, we estimate the variance
after each episode and calculate the probability that this policy will outperform
the current best policy. We then continue with more episodes as long as the
probability is above 5 percent or until we have reached 20 episodes. We evaluate
the parameter sets on the same random seeds for the training episodes to increase
consistency of the evaluation results when training the surrogate model.

3.3 Improved Random Forest Surrogate

While GPs are the most common choice of surrogate models in BO, they assume
a certain level of smoothness of the objective function, that is often not satisfied
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GP RF Extra-RF BeBOP

Figure 7.3: The predicted mean and standard deviation on a toy example for 4 different models:
Gaussian Processes (GP), Random Forests (RFs), Extremely randomized RFs and our
proposed uncertainty measure with an additional linear standard deviation term.

in the robotics tasks we consider. For example when inserting a peg into a hole,
a millimeter change in offset in a movement primitive can result in a drastic
difference in reward. Because of this, we instead use random forests which are
more amenable to non-smooth objective functions. However, in contrast to GPs,
RFs do not innately provide a variance estimate for its predictions, which is an
essential building block in the BO selection process. Hutter et al. proposed the
use of the empirical prediction variance across trees [HHL11], but this suffers
from that the uncertainty does not inherently grow further away from previously
observed data. This, in turn, hampers exploration.

To improve the performance of the optimization, we propose two adjustments
to the RF model. First, we use extremely randomized trees which randomize
among all optimal splits in each tree [GEW06]. This makes the prediction
surface much smoother, which makes for a richer predicted function surface.
This was previously used by, for example, [NKO19] and [Wu+22]. Secondly, we
propose a new uncertainty metric, that extends the standard deviation estimate
proposed by Hutter et al. by a term proportional to the distance to the closest
previous observation. This incentivizes the optimization to continue exploring.
To the best of our knowledge, this is the first paper to suggest such a modification
in a BO setting. In Fig. 7.3, we show the impact of the modifications. As we
will see in Section 5, this significantly improves the results.

3.4 Combining Planning and Bayesian Optimization

To combine the planner with the BO algorithm, we first run the planner on
each task to obtain the BT structure. The planner, however, leaves a number
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of parameters unsolved for each behavior, and during planning it assumes that
there exists some set of parameters for which the behaviors will succeed. These
parameters are then given as input to BO. For each parameter, the behaviors
also specify an upper and lower bound and these limits should be grounded in
the actual application.

Cascaded Learning: We also note that because of the hierarchical nature
of the BTs that are output from the planner, the BTs can be divided into a
number of subtrees that can be run sequentially with gradually larger subtrees,
representing subtasks. For example, grasping would be a sub-task of moving
an object. In this way, we can learn the smaller subtask first, using parameters
from the solution as priors for the optimum to the next, larger subtree. This
way we can potentially speed up the optimization as the learning time typically
scales super-linearly with the number of parameters. We call this version of our
method cascaded BeBOP. Starting with n = 1, to find subtree n we start with
the first action node and traverse the tree left to right, depth first, counting the
action nodes. Continue up to but not including the action node n + 1. The
last node before the action node n + 1 will be the last node in the subtree.
Action nodes without free parameters are omitted, as they do not increase the
complexity of our optimization problem. All subtrees for smaller n will also be
included in subtree n. Fig. 7.2 shows examples of the resulting subtrees for a
door opening scenario. Note that the subtree for n = 1 consists of only one node
and that the behaviors in the figure are only aliases during planning of more
generic behaviors, as listed in Section 4.1. For every n-th subtree, we run the
BO in batches of 50 iterations until no improvement is seen since the last batch.
We then use the best solution found as priors and run BO on the subtree n+ 1.
Splitting learning tasks into subtrees has also been proposed in [May+21], but a)
without an automated procedure to do this and b) while keeping the previously
learned parameters fixed when combining trees. The advantage we get by not
fixing the parameters of previous subtrees is that the optimal values might be
different in the context of the complete tree.

4 Experimental Setup

We benchmark our algorithm using robosuite [Zhu+22] in the eight simulated ro-
bot manipulation scenarios shown in Fig. 7.1 that are used in MAPLE [NLZ22],
the method that we compare against. One feature of robosuite is that it sup-
ports slight domain randomizations of the task environments to allow for the
evaluation of the robustness of policies. In the Door scenario in the original
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benchmark the robot was incapable of grasping the door handle in all instances
of domain randomization. Therefore we made a small change by allowing the
gripper to rotate in the same way as in the other tasks. This change had no
noticeable impact on the performance of MAPLE on the task.

In this paper, we refrained from performing additional validation of the res-
ulting policies learned in simulation on real robot systems. It has been shown
previously, including in the referred MAPLE paper which uses the same behavi-
ors [NLZ22], that policies acting at this abstraction level are easily transferable
from simulation [Sty+22; May+21; May+22a; May+22c; May+22b; AMK23].

4.1 Behaviors

We use the same action primitives as MAPLE and only communicate with
the simulation using the same action and observation vectors as the neural
networks in the original benchmarks. We wrap the input and output vectors
of the simulation with behaviors that can be used by a behavior tree. The
five behaviors correspond to the five primitives used by MAPLE and call the
corresponding parameterized behavior primitives when executing:

• Reach: The robot moves to some position relative to an object or the
origin of the coordinate frame. The offset (x, y, z) is specified by the
behavior parameters.

• Grasp: The robot moves to some position relative to a graspable object
and closes the gripper. The offset (x, y, z) and yaw angle are the behavior
parameters.

• Push: The robot attempts to push an object towards an x, y position by
moving to the opposing side of the object and pushing toward the goal
position. The behavior parameters are the coordinates x and y.

• Open: The robot opens the gripper. No parameters.

• Atomic: The robot applies an atomic action for one step, moving a delta
calculated from the relative distance between some object position and
some (x, y, z) and yaw angle as specified by the behavior parameters.

In addition to behaviors, the BT also needs conditions that process the informa-
tion in the observation vector. In the experiments, we make use of three different
condition nodes.
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• At: Returns Success if the object is at a given position. This is exclusively
used for goal conditions and the parameters are therefore fixed.

• Angle >: Checks if the angle of some object is larger than a value para-
meter.

• Aligned: Checks the observation vector to see if the object is aligned.
No parameters except the object identifier. Used only in the peg-insertion
task.

We use pre- and post-conditions of the behaviors for planning and because
the behaviors work with relative coordinates, we claim that in most real robot
applications and frameworks, such as [MRK23], this knowledge will be readily
available. The BTs are implemented using the PyTrees framework2.

4.2 Reward

The reward for the episodes is the same dense rewards with affordances as the
original benchmark [NLZ22]. However, since BTs have a natural stop condition
when the tree returns Success or Failure, we can also handle that. We want to
avoid solutions where the tree returns Failure, so we add a negative reward of
−500.0 for any such episode. If the BT stops before the maximum number of
steps in the environment, we assume that the same reward that was given for the
last step would be given for the rest of the episode and extrapolate it until the
maximum number of steps. As in [NLZ22] we evaluate the policy in 20 validation
episodes with different random seeds than during training. We only validate the
currently best BT found, based on the reward of the training episodes. The
affordances and failure penalty are not used for the validation. The affordance
penalty as described in [NLZ22] is a form of reward shaping where a penalty
is given for an action that is performed outside a manually specified region.
In [NLZ22] it is shown that MAPLE is unable to make progress even on the
simple Pick and Place task without the affordances.

2https://github.com/splintered-reality/py_trees, version 2.2.2. Specifically,
we use a forked version with slightly changed visuals: https://github.com/jstyrud/py_
trees
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5 Results

Figure 7.4 shows learning curves for all eight tasks as the mean of five separate
repetitions (same as in [NLZ22]) for each method with shaded areas denoting the
standard deviation. We run the experiments until the task is solved, but max-
imally 106 time steps. The figure shows that our method outperforms MAPLE
in 7 of the 8 benchmarks. The number of steps needed to solve a task is often an
order of magnitude less than for MAPLE. By outperforming MAPLE [NLZ22]
we consequently also outperform other RL algorithms like HIRO [Nac+18] and
DAC [ZW19] which are not shown here but are discussed in detail in [NLZ22].
We also note that our new uncertainty measure as described in Section 3.2 per-
forms equally or better than the standard RF uncertainty measure (green) for
all benchmark tasks except Stack. We believe that this is simply because Stack
is easy enough to solve without it. However, BO with the standard measure
fails to solve the more difficult tasks even with more iterations.

The cascaded version of BeBOP (orange) performs even better on several bench-
marks, especially those that can be logically divided into a sequence of subtasks.

For the Wipe task none of the methods, including MAPLE, are able to solve
the task. It is likely that the allowed time is in fact insufficient to perform
the task reliably. The markers to wipe are randomly placed, and it is possible
that MAPLE can statistically learn their positions, giving it a slight edge in
this benchmark. However, with the only observation of the markers being their
average position, not enough information is given to make an efficient wiping
pattern.
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Figure 7.5: The reward of the best policy on the validation data for the Pick and Place task. It
shows that our evaluation strategy (blue) does not only learn the fastest and most
robust, but our method can also learn without the special affordances (purple).

We also studied how the evaluation procedure impacts BeBOP’s performance.
In Fig. 7.5 we see that solving the Pick and Place task without affordances
(purple) has no significant impact on the learning rate, while MAPLE [NLZ22]
was reported to make no progress at all without affordances. In the same figure,
we show learning curves for different variants of choosing the training episodes
per parameter set. Fixing the number of episodes to 1 (orange) quickly finds
a good solution on the training data, but fails to generalize to the validation
episodes. Fixing it to always run 20 (green) will generalize to the validation
episodes but wastes a lot of steps on poor solutions which results in slow learning.
Choosing 20 random environments for evaluations can mean that a policy gets
a set of easy or hard environments to evaluate in, which makes a comparison
difficult. Such inconsistencies also makes it harder to fit the BO surrogate
model. The red line in Fig. 7.5 shows how this negatively affects the learning
performance. Finally, our proposed iterative evaluation shown in blue learns
fast and achieves robust results.

In Fig. 7.6 we show the actual speedup factor to reach the specified task suc-
cess rates for BeBOP and Cascaded BeBOP compared to MAPLE for the 7
tasks that were solved. The plot compares the point where the mean success
rate of the five repetitions has reached 95% for the first time. In our experi-
ments MAPLE failed to solve Peg Insertion task in one of the repetitions, so
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Figure 7.6: The speedup factor when compared to MAPLE on the 7 tasks that are solved. The
factor is computed at reaching a mean 95% success rate in the validation data.

we only use the other four. As shown in the figure, even the smallest speedup
of BeBOP compared to MAPLE in the Door task is still 1.4. For many tasks,
BeBOP learns more than 15 times faster and reaches a speedup of up to 46
times. This not only saves a lot of compute time when learning in simulation,
but also makes learning on a real robotic system much more realistic.

6 Conclusions

We present BeBOP, a method for combining reactive task planning and Bayesian
optimization to create behavior-tree policies. We show that our method for
learning these policies outperforms state-of-the-art RL algorithms such as
MAPLE, HICO and DAC by a large margin. While using exactly the same
behavior primitives, our method solves the robotic manipulation benchmarks
using on average only about 5% of the steps needed by MAPLE. Those results
are further improved by utilizing the structure of the behaviour trees to divide
the task into a sequence of sub-tasks, which makes BeBOP solve many of the
benchmarks even faster. An ablation analysis indicates that BeBOP is also less
dependent on reward shaping in the form of special affordances compared to the
benchmark method. Our newly introduced uncertainty measure for the random
forest surrogate model accelerates and robustifies the learning with Bayesian
optimization in robotics tasks significantly.

At the same time, the obtained BT policies are deterministic as well as inter-
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pretable and modifyable by humans. This makes them much more attractive
for sensitive environments such as in industrial manufacturing or private house-
holds.

7 Future work

One natural direction for future work is to use a more advanced planner and to
combine it with platforms that support reasoning such as [MRK23; May+23],
as both leave less for the optimization algorithm to learn. In addition, it would
be interesting to study the possibility of re-planning the BT structure in case
of changes in the environment without having to re-learn all parameters from
scratch.

We believe that our method can generalize to many other types of task, perhaps
also outside the robotic domain and confirming that would be an intuitive next
step.

Certain tasks are well suited for neural networks, such as when decisions need to
factor in many different variables. In those cases, it could be a good approach
to to include a network as part of a BT policy. That way, the advantages of a
transparent and modular BT are kept for the majority of the policy, while still
enjoying the strength of the neural network [SÖ22].
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