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Abstract

A Brain-Computer Interface (BCI) is a system that, in real-time, translates the user’s
brain activity into commands that can be used to control applications, such as mov-
ing a cursor on the screen. The translation is made possible by machine learning
methods and other algorithms. The thesis focuses on EEG-based BCIs which are
the most common type of BCIs due to EEG measurements being non-invasive, hav-
ing good temporal resolution, and being suitable for many applications. As of to-
day, one of the biggest challenges for BCIs is the so-called calibration, which is
necessary for the BCI to translate the user’s brain activity correctly. The need for
calibration comes from the variability of the brain signals over time and between
users.

This thesis presents an extensive review of the state-of-the-art algorithms for
BCIs, focusing on the calibration problem. Amongst the presented algorithms are
methods for processing the EEG data, machine learning algorithms, and a brief
introduction to transfer learning and Riemannian geometry. A more in-depth ex-
ploration of the so-called multi-armed bandits and Markov decision processes as
possible methods to streamline the calibration procedure is presented, as well as
a real-time framework for gathering and testing algorithms. Such a framework is
crucial for testing new approaches for efficient calibration.
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1
Introduction

In a not-so-distant future, you are walking down the road with your hands full of
things to carry. You receive a text message. Instead of picking up your phone, you
ask your Brain-Computer Interface (BCI) system what the text says. But you don’t
ask out loud. You THINK, and your BCI understands. You answer the message by
dictating a message in your head and reply without lifting a finger.

Across the street, you see a paralyzed person cruising down the road. She is
controlling her wheelchair with her thoughts and seems to enjoy the freedom the
BCI system has brought to her. You feel a bit nostalgic because you get a flashback
to the day when your grandfather was able to communicate for the first time in
thirty years, all thanks to a BCI system. Your BCI system recognizes your feeling
and replays the memory for you. You remember your grandfather once telling you
that memories used to only exist in one’s head. Today, they are uploaded to the
cloud and can be accessed from anywhere.

When you get home, you use your passthought to open the door. You see your
crazy old neighbor a bit away. She is nice but refuses to use a BCI system. You
two have had plenty of discussions about it and never managed to agree. She is
convinced that the government can access everyone’s thoughts and will soon be able
to control you all. She says that “the first step towards destruction was when it was
possible to download knowledge, who knows what other things will be inserted into
your brains?”. You, on the other hand, are convinced that the BCIs aid more people
than they harm. Sure, there have been some accidents, especially in the beginning,
but now? No, your BCI system is your assistant, and you trust it completely.

1.1 Brain-Computer Interfaces

Returning to the present world and this thesis you are reading, it is time to introduce
Brain-Computer Interfaces (BCIs) a bit more. A BCI uses brain activity as input to
the system, unlike today, where we typically use buttons, touchscreens, or our voice
as input to a system. The ’system’ can be anything from a cell phone to a car.
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Chapter 1. Introduction

Brain activity is measured by some device from the head, often a so-called EEG
device in the case of BCIs. A machine learning algorithm then decodes these brain
signals. Every time before the BCI system is used, the machine learning algorithm
must be trained to recognize the brain activity of that specific user. This is called
calibration of the BCI system. Calibration usually takes a lot of time and is of-
ten very repetitive. My contributions in this thesis focus on methods to reduce the
calibration time for EEG-based BCI systems.

In contrast to the futuristic world presented in the previous section, the use of
BCI systems today is mainly medical and very limited, often aimed at improving
the lives of persons with disabilities. There are many ethical concerns and technical
hurdles to unravel before BCIs can become a part of our everyday lives.

1.2 Layout of thesis

The first chapters of this thesis give a wide-ranging background to BCIs. You will
learn what a BCI is, what type of brain signals are typically used in BCIs, and what
algorithms are used in BCIs. After that, I present my initial research on BCIs. I
have investigated Markov Decision Processes and Multi-Armed Bandits as possible
tools to improve the calibration of BCIs. Moreover, my colleagues and I developed
a framework for creating BCIs that can be used to evaluate different algorithms for
BCIs and study how the user behaves in a “closed-loop” system. The red thread
through my work is the so-called calibration of BCIs, but more on that later. If you
are already familiar with BCIs you can skip to chapter Chapter 6 where I start to
present my research on BCIs. The bullet list below gives a summary of each chapter.

• Chapter 2: Overview of BCIs – This chapter gives background on BCIs,
presents what types of BCIs exist, the history of BCI, and applications for
BCIs.

• Chapter 3: Background – Brain signals – This chapter provides basic infor-
mation about the brain, what brain signals are typically used for BCIs, and
how these signals are measured. I will focus on EEG-based BCIs throughout
this thesis since they are the most common.

• Chapter 4: Background – Algorithms for BCIs – This chapter presents
state-of-the-art methods for decoding brain signals. It includes preprocess-
ing of EEG data, methods for feature extraction, and machine learning al-
gorithms. It also gives an introduction to Riemannian Geometry and transfer
learning.

• Chapter 5: Ethics – This short chapter raises common ethical concerns related
to BCIs.
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1.2 Layout of thesis

• Chapter 6: Problem formulation – This chapter reviews the challenges with
the calibration of BCIs and motivates why the calibration of BCIs is an inter-
esting topic to study.

• Chapter 7: Contributions – This chapter lists my publications. I summarize
the paper and state my contributions to each paper.

• Chapter 8: Discussion – This chapter discusses my current work and my ideas
for future work.

• Chapter 9: Final words – Some final concluding words for the thesis.

References and Figure copyright
The background chapters include a lot of excellent references. Each section within
the chapters ends with a “Section summary and References” paragraph where you
find the references for that section. I recommend you look up the references for
further information if you want to know more. The reference list with the full refer-
ences is at page 76. The thesis includes a lot of figures, the source and copyright of
all figures are found in the chapter Figure credits (page 74).

Contributions
My contributions presented in this thesis are twofold – first, the wide-ranging back-
ground presented in Chapters 2 to 5 and secondly, my published papers presented at
the end of the thesis. The former contribution is meant to accommodate the need for
a comprehensive yet simple-to-grasp introduction to the field of BCIs for anyone
new to the field and interested in pursuing BCI-related research, particularly in the
domain of calibration of BCIs.
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2
Overview of BCIs

A Brain-Computer Interface (BCI) appears to be a bit like telekinesis in sci-fi
movies: the user can control an application merely with their thoughts. In reality,
BCIs use a lot of data processing and machine learning to decipher the meaning
of the brain activity. Many challenges with BCIs limit their use (and make them
far from being telekinesis). One of the significant obstacles is the so-called calibra-
tion of the BCI system, which I will introduce in this chapter. We will repeatedly
touch upon the calibration of BCIs in the thesis but will take a closer look at it in
Chapter 6.

In this chapter, I provide fundamental background on Brain-Computer Inter-
faces (BCIs). Section 2.1 introduces the procedure of a BCI, from collecting data to
using the system. The section also defines the differences between different types
of BCIs. Section 2.2 gives a short summary of the history of BCIs and shows the
state-of-the-art applications. Finally, Section 6.1 returns to the calibration problem
and gives a hint of my research.

2.1 What is a Brain-Computer Interface?

As introduced in Section 1.1, a Brain-Computer Interface (BCI) measures the brain
signals and uses these as input to a system. The system can be anything from moving
a cursor on a screen or a prosthetic arm to a communication system to workload
detection for surgeons. There are many ways to measure brain activity and I will
discuss these in Chapter 3. Throughout this thesis, I will focus on EEG-based BCIs.
The measured brain signals need to be processed and a machine learning algorithm
is typically needed to decipher the meaning of the signals (see Chapter 4 for details).
To better understand BCIs, it is now time to look at the overall flow of a BCI system.

Fundamentals of a BCI system
Running a BCI system has two main parts: calibration and usage (see Figure 2.1).
Calibration includes collecting data and training the machine learning model. Usage
means using the BCI to control the application.

12



2.1 What is a Brain-Computer Interface?

• Collect data
• Train machine learning algorithm

User BCI system
Feedback

Calibration Use BCI

Figure 2.1 Illustration of the two main parts of running a BCI system. 1) A BCI system
must be calibrated before it can be used. The calibration includes collecting data and training
a machine learning algorithm. 2) Using the BCI system means that the user controls an appli-
cation via the BCI system. The feedback to the user is what happened with the application,
e.g., did the cursor on the screen move to the right when the user intended to move to the
right? This is called human-in-the-loop.

In this section, the application of the BCI is moving the cursor on the screen.
When the user imagines moving their right hand, the cursor should move to the
right. Imagining left-hand movement moves the cursor to the left, imagining moving
the tongue moves the cursor up, and finally, imagining moving the feet moves the
cursor down.

Calibration. The calibration of a BCI system refers to the procedure of collecting
data and training the machine learning model (also called machine learning algo-
rithm). This might sound simple, but it is one of the biggest challenges with BCIs.

For a BCI system to interpret your intentions, the machine learning algorithm
needs to be trained on labeled data, i.e., finding patterns in ground truth data where
it is known what the user is thinking of. Hence, the first step of using a BCI system
is to collect data. This is usually done with a stimuli program.

The stimuli program shows a prompt on a screen in front of the user, e.g., “right
hand”, and the user imagines moving their right hand for a few seconds until the
next prompt is shown. The collected data then gets the label “right hand”. We call
each type of possible movement (right hand, left hand, tongue, feet) a class. The
machine learning model needs multiple samples from each class to find patterns
and classify the data correctly, thus understanding the brain activity. The process of
showing stimuli to the user and then collecting data is repeated several times for all
classes. Collecting data can take up to 20-30 minutes and is quite tiresome for the
user. This is a massive problem for BCIs and one of the reasons we have no BCI
applications in our everyday lives - the calibration takes too long time.

Once the labeled data is collected, the BCI system must learn how to decode
the brain activity. A machine learning model is typically used for this purpose. The
machine learning model needs to be adapted for this specific user which is called
training of the machine learning model. Many different machine learning models
exist (see Chapter 4 for details). Training a machine learning model takes time and
computing resources but is usually faster than the data collection.

Now ask yourself this: Would you use a computer that needs 20 minutes of

13



Chapter 2. Overview of BCIs

calibration to collect data and train the machine learning model before you can
move the cursor on the screen? Probably not, which is why I in my research look
into ways of reducing the calibration time for BCI systems (see Chapter 6).

Using a BCI. Once the BCI is calibrated, it is ready to use. In our example, the
user can now imagine moving their right hand and the cursor will move to the right
on the screen - which is pretty cool once it is up and running!

One can view this user-BCI interaction as a feedback loop. The user gives input
to the BCI system by imagining movement. The BCI interprets the input and acts
accordingly in other words, it decodes the brain activity and moves the cursor on
the screen. Finally, the user observes what happens with the system and gives new
input to the BCI. This feedback loop is closed by the human and is called human-
in-the-loop. Such BCIs require fast processing of the data and cloud computing will
likely be used to offload the heavy computations from mobile BCI devices in the
future.

Types of BCI systems
Now that we know the basic flow of a BCI system, calibration and usage, it is time
to distinguish between different types of BCIs.

BCI systems can be categorized based on four features: (i) the neuroimaging
method, (ii) the BCI paradigm, (iii) passive vs. reactive vs. active BCI, and (iv)
synchronous vs. asynchronous BCI. The categorization within these features is ex-
plained below.

(i) Neuroimaging method – Brain activity can be measured in different ways.
The most common is electroencephalography (EEG), which I will focus on
throughout this thesis. Some other possible measuring methods for BCIs are
magnetoencephalography (MEG) and electrocorticography (ECoG). See Sec-
tion 3.3 for more details and examples of measuring methods.

(ii) BCI paradigm – There are brain activity patterns that are typically used
for BCIs. These patterns are called BCI paradigms. For example, if you are
shown pictures of cats and dogs and are tasked to count the number of cats you
see, your brain will react in a special way when you see a cat. This is called
the P300 response and is one of the first used paradigms in BCIs. Another
common paradigm is the motor imagery (MI) paradigm where the user imag-
ines the movement of different body parts such as hands, feet, and tongue.
See Section 3.2 for more details and examples of BCI paradigms.

(iii) Passive vs. reactive vs. active BCI – In a passive BCI, the user’s thoughts
are monitored but not acted upon by the BCI. It could be a BCI system where
a surgeon’s workload is measured during surgery. When the workload is high,
the nurses should pay extra attention to aid the surgeon.

14



2.2 The History of BCI and Applications

The user reacts to stimuli in a reactive BCI. An example is a so-called P300-
speller, where letters are shown to the user, and when the letter the user wants
to print is shown, the brain reacts in a recognizable way. Thus, the BCI can
understand what letter the user wants to print.

In an active BCI, on the other hand, the user generates specific brain activity
to control the BCI. An example is the control of a cursor on a screen through
motor imagery movements. In such a system, the user imagines moving the
right hand to move the cursor to the right.

(iv) Synchronous vs. asynchronous BCI – The final feature for BCIs is whether
they are synchronous or asynchronous. In a synchronous BCI system, the user
reacts to a cue or some kind of stimuli. It could, for example, be images shown
on a screen. Thus, the brain and the stimuli are synchronized. The BCI still
has to decode the meaning of the brain activity, but at least it knows when to
look for it.

In an asynchronous BCI system, the user is free to give commands to the BCI
at any time, as opposed to the synchronous BCI where the user only can give
a command when the stimulus is given. An example of asynchronous BCI is
where a computer cursor is controlled by the user imagining moving different
body parts such as a hand. The BCI knows the paradigm but does not know
when to look for the signal. For example, the BCI knows that it searches for
imagined hand movements but not when the hands are imagined to move.
An asynchronous BCI is more challenging to implement successfully than a
synchronous BCI simply because it is not known when the interesting brain
activity occurs.

Section summary and References
Summary. In this section, we have learned the fundamentals of Brain-Computer
Interfaces (BCIs), highlighted the challenges with the calibration of BCIs, and dis-
tinguished between different types of BCIs. In the next section, we will briefly look
at the history of BCIs and explore some applications of BCIs.

References. Nam et al. (2018) gives an excellent introduction to BCI systems
while Nicolas-Alonso and Gomez-Gil (2012) gives a more in-depth explanation,
both covering similar topics. The difference between passive and active BCI sys-
tems is reviewed in Krol et al. (2018). The problems around the calibration of BCI
systems are discussed in Lotte (2015).

2.2 The History of BCI and Applications

We know how to calibrate and use a BCI from the previous section. In this section,
we briefly examine the history of BCIs before we look at medical and entertainment-
oriented applications of BCIs. Finally, we speculate about future BCI applications.

15



Chapter 2. Overview of BCIs

The applications mentioned here are not a complete list of applications but are some
of the most commonly mentioned in the literature. I refer the interested reader to the
references at the end of this section.

History
Hans Berger took the first steps toward Brain-Computer Interfaces in the 1930s
when he invented a simple electroencephalogram (EEG) device. His device mea-
sured the brain waves, which opened the door to understanding how the brain works.
In the 1980s, one of the first papers on BCIs was published. An early example of a
BCI system was a communication system where the user is looking at the letter in a
grid they want to print, a so-called P300-speller. Over the years, more ways of mea-
suring brain signals and different BCI paradigms were discovered, opening doors
for many BCI applications. Chapter 3 covers information about different measuring
methods and BCI paradigms.

Medical applications
Historically, BCI applications have focused on the medical sector, aimed toward
persons with disabilities, mainly because these persons would benefit the most from
the technology. There are BCI systems for communication for locked-in patients,
control of wheelchairs and prosthetic limbs, and rehabilitation. In a recurring com-
petition called Cybathlon, contestants compete by completing everyday tasks using
BCI systems. A task could be to plug in a light bulb with a prosthetic arm controlled
by a BCI. The competition has the slogan “For a world without barriers”.

The purpose of a medical application is typically to facilitate the user’s life. It
is generally acceptable with long calibration times as long as the final performance
is flawless. Much effort is put into optimizing the system for the specific user in
medical applications.

Entertainment-oriented applications
The difference between medical BCI applications and entertainment-oriented BCI
applications lies in the purpose of the system. The purpose of medical BCI ap-
plications is to enhance or replace a function of the body, while the purpose of
entertainment-oriented applications is simply “for fun”. Examples of entertainment-
oriented applications are: playing video games, creating art, playing chess, enhanc-
ing VR, controlling a toy such as a quadcopter, and meditation aids.

For entertainment-oriented systems, it is acceptable if the performance is not
perfect and a fast calibration is often prioritized as opposed to in medical applica-
tions where performance is the highest priority. One of the reasons why we don’t
see BCIs in our everyday lives is the long calibration time, which removes the point
of using such a system. Another reason is that the quality of the collected signals
is usually bad. Common reasons for bad signal quality in an uncontrolled environ-
ment, such as your home, are the use of dry electrodes which are used for user con-
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2.2 The History of BCI and Applications

venience and are cheaper but have a worse connection than wet electrodes, and that
there is more noise in an at-home setting. In a controlled environment on the other
hand, such as a laboratory and medical application, the signal quality is good due
to the noise-free environment, excellent quality of the electrodes, and professional
supervision of the setup.

Futuristic applications
One can never know what the future brings, so we can only imagine. BCI is a
promising interface between humans and technology, and many big companies are
researching BCIs. One can imagine that we could use passthoughts rather than pass-
words to sign in to our accounts in the future. Another idea is that we could search
the web for information without lifting a finger or perhaps even download knowl-
edge in the future. It is possible that we could record dreams and replay them in
the morning or even upload memories to the cloud. Artificial vision might be an
alternative for blind persons and artificial hearing for people who are deaf or hard
of hearing. The possibilities are endless, and more applications will arise with more
research.

Section summary and References
Summary. In this section, we have looked into the past, current, and future of
BCIs. Today, most applications are medical, but more entertainment-oriented appli-
cations are arising. Predicting the future is impossible, but many exciting applica-
tions are possible. In the next section, we will review the problem with calibration
of BCIs.

References. Lotte et al. (2018b) gives an overview of the history of BCI. The pa-
per by Berger (1929) is the first paper on EEG. The term Brain-Computer Interface
was coined by Vidal (1973). Farwell and Donchin (1988) introduced the so called
”P300 speller”, one of the first BCI systems. See Lotte et al. (2018b) for more his-
torical references.

Nicolas-Alonso and Gomez-Gil (2012) and Nam et al. (2018) give good reviews
of applications for BCI systems. Nijboer and Broermann (2010) review the use of
BCI system for Locked-in patients. This Is CYBATHLON (2022) is a competition in
BCI systems. Muratore and Chichilnisky (2020) explore the possibility of artificial
restoration of vision.

Aubé (2019) and Gonfalonieri (2020) give interesting ideas for future use of
BCI systems in their blog posts. Ruiz-Blondet et al. (2016) write about using EEG
devices for passthoughts. Neuralink (2021), Google (2021), Microsoft (2021), and
Facebook (2021) are among other companies working with BCI research.

Chapter summary

In this chapter, we have learned the fundamentals of Brain-Computer Interfaces.
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Chapter 2. Overview of BCIs

In Section 2.1, we saw that the calibration of BCIs is tedious for the user, though
necessary for the BCI system to work. We talked about different types of BCIs
which could be categorized based on what neuroimaging method is used, the BCI
paradigm, whether it is active or passive, and if it is synchronous or asynchronous.

In Section 2.2, we briefly looked at the history of BCIs and explored different
applications for BCIs.

The next chapter will teach us about how the brain works, BCI paradigms, and
neuroimaging methods.
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3
Background – Brain signals

From previous chapters, we now understand how Brain-Computer Interfaces (BCIs)
work. Labeled data is collected and then used to train a machine learning algorithm
in the calibration phase of a BCI system. Once the machine learning algorithm has
found the patterns in the user’s brain signals, the BCI system is ready for use. The
next topic we will learn about is the brain and different types of brain activity.

Section 3.1 gives background on how the brain works, Section 3.2 explains dif-
ferent BCI paradigms, and Section 3.3 describes how different neuroimaging meth-
ods measure brain activity. Throughout the thesis, the main focus of neuroimaging
methods lies on EEG. If you are familiar with this chapter’s topics, you can skip to
Chapter 4 which covers data processing and machine learning methods for BCIs.

3.1 Brain fundamentals

A BCI aims to use measured brain signals to control an application such as a pros-
thetic arm. To get some intuition for where these brain signals come from, we will
first briefly examine the neurons in the brain and then different brain lobes.

Neurons
The brain and the nervous system control our bodies. The brain processes infor-
mation from the rest of the body and responds with signals to move the muscles.
Like the rest of the body, the brain is built of cells. The cells in the brain are called
neurons (see Figure 3.1).

There are billions of neurons and they communicate with each other through
electrical impulses. An impulse from one neuron to the next neuron is sent through
the axon to the synapse which is the connection between neurons. The electrical
impulse triggers the release of neurotransmitters in the synapse from the first neu-
ron, the neurotransmitters then trigger the electrical signal in the second neuron,
and thus, the signal has been transferred between the two neurons. Some substances
affect the neurotransmitters or act as neurotransmitters. When the neurotransmitters
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Figure 3.1 Schematics of neurons. The electrical impulse signal travels through the axon to
the next neuron. A synapse connection is magnified, showing the release of neurotransmitters.

are affected, the brain activity is affected, ultimately affecting us in one way or an-
other. One example of such a substance is caffeine in coffee which makes us more
alert.

How the brain works is a vast and exciting topic, but the knowledge that brain
activity originates from the neurons in the brain is enough for this thesis. I rec-
ommend the interested reader to dig into the references to find more information
(though I want to warn you it is a fascinating topic, and you might be stuck reading
about it for a long time).

Brain lobes
Billions of neurons form a complex network in the brain. It has been found that
different parts of the brain, called brain lobes, process different information and
thus have different functions, such as vision, motor control, and hearing. It is not
entirely accurate to say that one part only does one thing and that one thing only
happens in one part of the brain. But generally, the brain is said to be divided into
different lobes. The following list presents the brain lobes and their functionalities
as seen in Figure 3.2.

• Prefrontal cortex – The prefrontal cortex is located in the front of the head
and is prominent in humans. This area is generally connected to decision-
making, planning, and social skills.

• Motor cortex and Sensory cortex – At the top of the head, we find the motor
cortex which controls the movement of our limbs. The motor cortex collabo-
rates closely with the sensory cortex that processes bodily touch inputs. The
sensory and motor cortex control different body parts in different areas of the
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Figure 3.2 Schematics of the brain lobes. Each lobe generally processes a special type of
brain signal, e.g., visual input in the visual cortex. The brain in the figure is viewed from the
side, with the front of the brain to the right.

cortex (see Figure 3.3). Generally, the right half of the brain is connected to
the left half of the body, and vice versa.

• Visual cortex – The visual cortex is located at the back of the head. Here,
visual input is decoded. The information from the visual cortex propagates
through the brain for further processing.

• Auditory cortex – The auditory cortex is located at the side of the head close
to the ears. Here, sound is processed. Close by are also areas for speech un-
derstanding and speech production.

There are differences between the left and right hemispheres (halves of the
brain). The motor cortex’s right hemisphere controls the body’s left half and
vice versa. Generally, the left hemisphere handles language processing, problem-
solving, and math. While the right hemisphere takes care of music, art, and empa-
thy. However, it should be emphasized that one process is rarely isolated to one part
of the brain, and these generalizations are very rough and should be taken with a
grain of salt.

Section summary and References
Summary. In this section, we have learned the fundamentals of the brain’s func-
tionality. We have seen both how the neurons transfer information and where in the
brain different information generally is processed. In the next section, we will learn
about different BCI paradigms.
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Figure 3.3 Scematics of which body parts are controlled where in the sensory and motor
cortex. The left half of the brain is shown, viewed from the front.

References. See Purves et al. (2018) for a detailed description of the brain and its
functionality. National Institute of Neurological Disorders and Stroke (2023) gives
a general description of the brain’s structure. King and Wyart (2021) study how
multiple images are processed in the brain simultaneously.

3.2 BCI paradigms

Now that we have some intuition for how the brain works and where different kinds
of information are processed in the brain, it is not too farfetched to realize that
depending on what you are thinking, your brain activity will differ. For example,
your brain will behave differently if you imagine moving your hand compared to if
you look at images of cats and dogs.

There are specific types of brain activity that are often used in BCI systems.
These are called BCI paradigms. Some common BCI paradigms are event-related
potentials, motor imagery, steady-state evoked potentials, and mental workload.
They are all explained in further detail below.
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Figure 3.4 Plot of typical event-related potential components of a brain signal after stimuli
onset.

Event related potentials (ERP) and P300
A common BCI paradigm is the event-related potentials, particularly the P300
paradigm. It is based on the fact that our brains react in a predictive way to things
that happen around us, for example, if we see an image. A typical BCI setting for
this paradigm is that a user is given stimuli (e.g., shown a sequence of images) and
the brain activity in reaction to these stimuli is recorded. The moment the user is
exposed to the stimuli is called stimuli onset.

The brain activity approximately 100 ms after the stimuli onset correlates to
whether the stimuli were expected. This is called the N1 wave. The brain activity
around 300 ms after stimuli correlates to if the stimuli were something to pay at-
tention to, called the P300 response. Brain activity after 400-600 ms correlate to
language understanding (see Figure 3.4).

P300. The brain activity after 300 ms is called the P300 response and is one of the
most used BCI paradigms. One example is the P300-speller which is a communica-
tion system. All letters in the alphabet are arranged as a grid, and the user focuses on
the letter they want to print. The rows and columns of the grid are lit up, and when
the target letter is lightened, a P300 signal is detectable. The rows and columns are
lit up multiple times so that the P300 signal can be averaged from many trials. This
P300-speller was one of the first BCI setups in the early days of BCIs.

An advantage of the P300 paradigm is that the P300 signal is a spontaneous
reaction in the brain to stimuli. Hence, all users can use a P300-based BCI system.
Another advantage is that the P300 signal is easily identified from averaged data. A
drawback is that a lot of data is required to get the average, which means showing
the stimuli multiple times for the user. Another disadvantage is that the BCI system
is limited to the user reacting to stimuli rather than the user deciding when to give
an input.

Error Potentials (ErrP). Error-related potentials are another subcategory of
event-related potentials. Error potentials arise when something ’wrong’ happens,
e.g., the user tries to move the cursor on a screen to the right but the cursor moves
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to the left. Error potentials have been used to correct BCI systems’ actions.

Motor Imagery (MI)
A second common BCI paradigm is the Motor Imagery (MI) paradigm. In the mo-
tor imagery BCI paradigm, the user imagines moving their limbs. It is typically
hands, feet, or tongue. Different limbs are controlled in different areas of the brain
(as we saw in the previous section, Section 3.1), so depending on what area of the
brain is active the BCI system can decode what movement was imagined. In a mo-
tor imagery BCI system, the movement of different limbs is connected to different
commands such as “imagining lifting the left hand” means moving the cursor on
the screen to the left.

An advantage of the motor imagery paradigm is that the BCI system can be
designed so that the user decides when to give the command, unlike some other
BCI paradigms where the user can only react to given stimuli. One problem with
this paradigm is that not everyone can successfully imagine the movement of limbs
and these users can’t use a motor imagery-based system at all. For users who can
imagine movements, much calibration is needed for the BCI system to work.

Steady-state evoked Potentials (SSxEP)
A third common BCI paradigm is the steady-state evoked potentials. The steady-
state evoked potentials are generated by flickering stimuli, for example a flickering
light. The frequency of the brain activity synchronizes with the frequency of the
flickering stimuli. If the stimuli are visual, it is called Steady-State Visual Evoked
Potentials (SSVEP). There are also steady-state auditory evoked potentials (SSAEP)
and steady-state somatosensory evoked potentials (SSSEP).

In an SSVEP-based BCI, multiple sources of flickering lights are shown, each
connected to a command (e.g., the slow flickering light corresponds to the input
‘no’ and the fast flickering light corresponds to ‘yes’). The user then focuses on
the flickering light corresponding to the command they want to give. The BCI then
identifies the frequency in the brain activity and can thus find the command the user
aimed for.

As with P300, most persons can use BCI systems based on SSVEP and the
signals are relatively easy to identify. The biggest obstacle is that it is tiresome for
the user to concentrate on flickering stimuli for a longer period.

Mental workload
The mental workload is a final, slightly less common type of BCI paradigm. The
workload increases if there are many tasks to focus on simultaneously or if it is a
very hard task. The aim of a BCI system based on mental workload could be simply
to monitor the workload or aid the user in some way to decrease the workload.
An example would be to monitor the workload of a surgeon during surgery. If the
workload is high, the nurses need to aid the surgeon.

24



3.3 Neuroimaging methods

An advantage of workload-based BCIs is that all users can use them. A draw-
back is that the user can’t choose an action in the same sense as the other paradigms.
Thus, workload detection gives a more passive BCI system.

Section summary and References
Summary. This section explored four BCI paradigms: P300 (event-related poten-
tials), motor imagery, SSVEP, and workload. The workload paradigm is the least
used of these four. All paradigms have advantages and disadvantages and allow
for different kinds of BCI systems and applications. The need to calibrate the BCI
system before it can be used persists for all paradigms and remains as one of the
biggest challenges with BCIs. In the next section, we will learn about neuroimaging
techniques.

References. Abiri et al. (2019) give a thorough review of the different BCI
paradigms. Sur and Sinha (2009) give a short review of the typical ERP compo-
nents of brain signals. Pfurtscheller and Neuper (2010) give a more detailed review
on the MI paradigm, Riggins and Scott (2020) on the ERP paradigm, and Vialatte et
al. (2010) on the SSVEP paradigm. Finally, Krol et al. (2018) discuss BCI systems
based on mental state detection.

3.3 Neuroimaging methods

Now that we know what type of brain activity is interesting for BCIs, the next
question is how this brain activity is measured.

There are many neuroimaging techniques (ways to measure brain activity). In
this section, I describe some that can be used in BCI systems. The neuroimaging
methods can be categorized based on the features below. See Figure 3.5 for a graph-
ical comparison between the neuroimaging techniques.

• Temporal resolution – Temporal resolution means how precise in time the
measurements are like how long time between samples.

• Spatial resolution – Spatial resolution means how precise in space the mea-
surements are like the distance in mm or cm between sample locations.

• Invasive/Noninvasive – An invasive neuroimaging method requires surgery
or injection of some chemical compound or electronics into the body. A non-
invasive method measures brain activity from outside of the body.

• Direct/Indirect – As discussed in Section 3.1, the brain’s neurons transmit
information through electrical impulses. This is called electrophysiological
activity and is what a direct neuroimaging method measures.
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Figure 3.5 Comparision of different neuroimaging techniques: positron emission tomog-
raphy (PET), functional magnetic resonance imaging (fMRI), functional near-infrared spec-
troscopy (fNIRS), electrocorticography (ECoG), magnetoencephalography (MEG), and elec-
troencephalography (EEG). Five features of the neuroimaging methods are illustrated: tem-
poral resolution is shown at the y-axis, spatial resolution at the x-axis, invasive/noninvasive
is shown by the shape of the nodes, portable/nonportable by the color of the nodes, and di-
rect/indirect is shown by the grouped areas. (Figure inspired by Nam et al. (2018)).

When the brain is active, it consumes more energy and oxygen, which in-
creases blood flow to the active part of the brain. This is called the hemo-
dynamic response of the brain and is what an indirect neuroimaging method
measures.

• Portable/Nonportable – A portable neuroimaging device can be used while
moving. A nonportable device requires the user to be still. This is typically
a result of the size of the equipment. Nonportable neuroimaging devices are
often huge scanners in shielded rooms that cannot be moved, while portable
devices often are caps the user wears on the head.

The most used neuroimaging method for BCI systems, which I focus on
throughout this thesis, is electroencephalography (EEG) since it has a good tem-
poral resolution, is relatively cheap, and is relatively user-friendly. Some other
ways to measure the brain signals are magnetoencephalography (MEG), electro-
corticography (ECoG), functional magnetic resonance imaging (fMRI), functional
near-infrared spectroscopy (fNIRS), and positron emission tomography (PET). All
these methods are described below, but my main focus is on EEG.
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Table 3.1 Features of EEG.

Electroencephalography (EEG)

Feature Description

Temporal resolution Milliseconds
Spatial resolution Centimeters
Invasiveness Noninvasive – electrodes on scalp
Measurement strategy Direct – potential difference between electrodes
Portability Portable

Electroencephalography (EEG)
The first neuroimaging method I will describe is electroencephalography (EEG)
which is the most common for BCI systems. Table 3.1 gives an overview of the
features of EEG and are explained in more detail in the following text.

EEG measures brain activity through the potential difference between electrodes
resulting from the neurons’ activity. Hence, EEG is an example of a direct neu-
roimaging method. The EEG electrodes are placed on the user’s scalp, often at-
tached to a cap to keep them in place (see Figure 3.6). Since the electrodes are
placed on the outside of the head, it is a noninvasive neuroimaging method. The
temporal resolution is in the range of milliseconds, which is good and comes from
EEG being a direct neuroimaging method. It is preferable if the user is stationary
during measurement to reduce artifacts from movement, but the user could also
be free to move. Thus, EEG is considered a portable neuroimaging method. The
equipment required to measure EEG signals is relatively simple, making EEG one
of the cheapest neuroimaging alternatives. One drawback of EEG is the low spa-
tial resolution, which lies in the range of centimeters. Since the EEG electrodes are
placed on the user’s scalp, it is mainly the brain activity close to the brain’s surface
that can be measured. Despite the low spatial resolution, EEG is the most popular
neuroimaging method, probably due to being a relatively user-friendly method.

Since I focus on EEG-based BCIs, we will discuss EEG in more detail compared
to the other neuroimaging methods. First, I will discuss how the EEG electrodes are
placed on the scalp in the so-called 10-20 system, then some typical features of EEG
signals, and finally, different types of EEG electrodes.

10-20 system. The EEG electrodes are arranged on the user’s scalp in a standard-
ized way called the “10-20 system” (see Figure 3.7). A minimum of three electrodes
are required for EEG measurements: a ground electrode, a reference electrode, and
a measuring electrode. Usually, more electrodes are used and are arranged accord-
ing to the 10-20 system. Nowadays, it is common with 24, 32, 64, or 128 electrodes,
but other variants exist.

The letters in the 10-20 system refer to the cortex lobe above which the electrode
is placed (Fp - prefrontal, F - frontal, C - central, P - parietal, T - temporal, and O
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Figure 3.6 EEG recording device. The electrodes are placed on a cap that the user wears
on the head.

Figure 3.7 10-20 system. The left half of the figure shows the EEG electrode placement on
the head seen from above. The nose is at the top and the ears are at both sides. The electrodes
and the brain’s colors show where the electrodes are placed. The head in the bottom right
corner shows the nose, neck, and ear points used when placing the EEG electrodes on the
head.

- occipital) and the numbers refer to the hemisphere (half of the brain). Electrodes
with odd numbers are located on the left hemisphere, and even numbers above the
right hemisphere. There is also a “z” which means that the electrode is placed be-
tween the hemispheres. The name “10-20 system” refers to the 10% or 20% distance
between the electrodes compared to the “nose-to-neck” and “ear-to-ear” distance.
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Figure 3.8 EEG signals for ten channels over seven seconds.

EEG signals. Each electrode measures the brain activity in the spatial vicinity of
the electrode compared to the reference. It is nearly impossible to know exactly
where in the brain the signal originated from as the spatial resolution is low. There
is ongoing research on methods that aim to trace the origin of brain activity seen
in EEG data to its source in the brain, so-called source reconstruction. Currently,
source reconstruction is not a standard tool for BCIs, but it might be in the future. It
is often enough for BCI systems to find patterns in the EEG data, but BCIs would
arguably benefit from more detailed brain activity data.

Viewing EEG signals, the data from one electrode corresponds to one “line”.
The electrodes are often called channels and are vertically stacked to create a joint
plot of the EEG signals (see Figure 3.8). The signals are often sampled at a fre-
quency of 100-500 Hz, which gives a good temporal resolution of what is happening
inside the brain.

Typical oscillating waves (brainwaves) can be seen in EEG signals. The brain-
waves are divided into frequency bands: delta, theta, alpha, beta, and gamma (see
Figure 3.9). The distinguishing characteristics between these bands are their fre-
quency and amplitude. Frequency is how fast the signal oscillates and is measured
in waves per second (Hz). It is possible to measure frequencies up to half of the
sampling frequency which means that EEG sampled at 100 Hz can measure fre-
quencies in the range 0-50 Hz. Amplitude is how big the signal is and is measured
in microvolt (µV) and typically lies in the range 10-20 µV.

The different frequency bands arise depending on the current activity in the
brain (see Table 3.2 for a summary). The delta (1-4 Hz) and theta waves (4-8 Hz)
are typically observed in sleeping persons. Alpha waves (8-13 Hz) are seen when
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Figure 3.9 Oscillating delta, theta, alpha, beta, and gamma waves that are typically ob-
served with EEG.

Table 3.2 Overview of frequency bands in EEG.

Power band Frequency band (Hz) Occurance

Delta 1-4 Sleep
Theta 4-8 Sleep
Alpha 8-13 Relaxation
Beta 13-30 Thinking
SMR 13-15 Muscular movement
Gamma 30-100 Problem solving

a person is relaxed, such as during meditation. Beta waves (13-30 Hz) occur when
a person is thinking and keeping focus. There is a subband in the beta band, the
sensimotor rythm (SMR) band (13-15 Hz), which is related to muscular movement.
Finally, gamma waves (30-100 Hz) are observed when a person is solving a prob-
lem.

As with everything related to the brain, the reality is not black and white. These
bands and during what activity they occur is a very generalized view. Nevertheless,
this view of specific frequency bands is used when analyzing brain activity from
EEG data.
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Table 3.3 Features of MEG.

Magnetoencephalography (MEG)

Feature Description

Temporal resolution Milliseconds
Spatial resolution Millimeters - Centimeters
Invasiveness Noninvasive – measurement outside of head
Measurement strategy Direct – magnetic field around head
Portability Nonportable

Wet vs dry electrodes. The EEG electrodes need to be in contact with the skin
for them to measure brain activity. Electrodes are considered wet if they require a
conductive gel to get the connection with the skin and dry if they have direct contact
with the skin. The signal quality is generally better for wet electrodes than for dry
ones since the wet electrodes have better contact with the skin.

Applying the gel takes some time and the gel needs to be washed away after-
ward, making the wet electrodes a bit more cumbersome than the dry electrodes to
use. The dry electrodes are easy to apply but are designed as spikes to get through
the hair, which can be uncomfortable for the user after a while. Some dry electrodes
are flat but can (for most users) only be used on the forehead where there is no hair.

Whether wet or dry electrodes are best depends on the use case. Do you need
an easy-to-apply EEG device with poor signal quality or a harder-to-apply device
with better signal quality? Many new dry electrodes are developed aiming to be
comfortable and give good signal quality, all to make BCI systems as user-friendly
as possible.

Magnetoencephalography (MEG)
Even though EEG is the big star of the different neuroimaging techniques for BCIs,
we will still discuss other methods. Next up is magnetoencephalography (MEG),
whose features are summarized in Table 3.3.

MEG measures the magnetic field around the brain that arises from brain ac-
tivity. It is a noninvasive and direct neuroimaging technique but requires advanced
and expensive hardware that is nonportable (see Figure 3.10). MEG can measure
brain activity in the range of milliseconds which is the same as EEG, but MEG has
a spatial resolution in the range of millimeters to centimeters which is more precise
than EEG. Despite the good spatial resolution, MEG is rarely used in BCI systems
due to the expensive and nonportable equipment.

Electrocorticography (ECoG)
The next neuroimaging method is electrocorticography (ECoG) whose features are
summarized in Table 3.4.
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Figure 3.10 MEG recording device.

Table 3.4 Features of ECoG.

Electrocorticography (ECoG)

Feature Description

Temporal resolution Milliseconds
Spatial resolution Millimeters
Invasiveness Invasive – surgery required to place electrodes
Measurement strategy Direct – potential difference between electrodes
Portability Portable

ECoG is a direct neuroimaging technique based on the same principles as EEG.
The difference is that the ECoG electrodes are placed directly on the brain rather
than on the scalp, as with EEG. Surgery is required to place the ECoG electrodes
on the brain. Hence, it is an invasive neuroimaging method. Compared to EEG sig-
nals, the signals from ECoG measurements have a better spatial resolution, a wider
frequency range, less sensitivity to noise and artifacts, and a higher amplitude. The
temporal resolution of ECoG is in the range of ms, slightly better than EEG. Over-
all, the signal quality from ECoG is better than for EEG, which mainly results from
the ECoG electrodes being placed directly on the brain while the EEG electrodes
are placed on the scalp. As EEG, ECoG is a portable neuroimaging method. The
main reason why ECoG is not widely used in BCIs is the need for surgery to place
and remove the electrodes.

Functional magnetic resonance imaging (fMRI)
The next neuroimaging technique is functional magnetic resonance imaging (fMRI)
whose features are summarized in Table 3.5.

fMRI is based on the indirect measurements of the hemodynamic response in
the brain, i.e., the effects of changes in blood flow due to brain activity. When one
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Table 3.5 Features of fMRI.

Functional magnetic resonance imaging (fMRI)

Feature Description

Temporal resolution Seconds
Spatial resolution Millimeters
Invasiveness Noninvasive – big scanner outside head
Measurement strategy Indirect – magnetic properties of blood
Portability Nonportable

Figure 3.11 Image from fMRI scan. Shows a cross-section of the brain with the front of
the head at the top of the image. The colored area shows the active regions in the brain.

part of the brain is active, more oxygenated blood flows to that part of the brain.
The magnetic properties between blood with a lot of oxygen and little oxygen are
different, which is what fMRI measures in a noninvasive way using a big scanner
outside the head. The spatial resolution is in the millimeter range, similar to EEG
(see Figure 3.11). On the other hand, the temporal resolution is slower than EEG,
in the range of seconds. This is a result of the speed of the hemodynamic response.
Blood can’t flow infinitely fast, and the blood flow is always delayed compared to
the brain activity. Heavy computations are required to analyze a scan, and before fast
computers, it took hours or days to get the result from the fMRI scan. The equipment
for fMRI is expensive and nonportable, making fMRI unsuitable for BCI systems.

Functional near-infrared spectroscopy (fNIRS)
The next neuroimaging method is functional near-infrared spectroscopy (fNIRS)
whose features are summarized in Table 3.6.

fNIRS is, as fMRI, based on the indirect measurements of the hemodynamic re-
sponse in the brain. fNIRS utilizes the different light-absorbing properties of blood
with varying oxygen levels instead of the magnetic properties that fMRI uses. The
fNRIS electrodes are noninvasive and placed outside the scalp (see Figure 3.12).
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Table 3.6 Features of fNIRS.

Functional near-infrared spectroscopy (fNIRS)

Feature Description

Temporal resolution Seconds
Spatial resolution Millimeters to centimeters
Invasiveness Noninvasive – cap outside head
Measurement strategy Indirect – light absorbing properties in blood
Portability Portable

Figure 3.12 fNIRS cap and recording device.

The electrodes emit infrared light, and the blood’s light absorption is measured.
The oxygen level in the blood can be determined from the measured light absorp-
tion, and thereby, the brain’s activity since active brain regions consume more oxy-
gen. The light penetrates only a few centimeters into the brain but has a good spatial
resolution for that area. The hemodynamic response limits the temporal resolution
and is in the range of seconds.

Even though fNIRS measurements are sensitive to movement artifacts, it is con-
sidered a portable measurement method. It has potential for home applications in
BCIs since it is inexpensive and relatively user-friendly.

Positron emission tomography (PET)
The last neuroimaging technique I will describe is positron emission tomography
(PET) whose features are summarized in Table 3.6.

PET is based on positron emission from a tracer molecule introduced into the
user’s bloodstream. For example, the tracer molecule could be a glucose molecule
variant, which is accumulated in brain regions with high activity. PET measurement
relies on the hemodynamic response and is an indirect neuroimaging method. Since
the method requires injecting the tracer molecule into the bloodstream, it is consid-
ered an invasive method. Other sources might argue that PET should be considered
a noninvasive method since no surgery is needed. A big scanner is needed to mea-
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Table 3.7 Features of PET.

Positron Emission Tomography (PET)

Feature Description

Temporal resolution Seconds
Spatial resolution Millimeters
Invasiveness Invasive – injection of tracer molecule
Measurement strategy Indirect – accumulation of tracer molecule
Portability Nonportable

Figure 3.13 PET scanner.

sure the positron emission. Hence, the PET is nonportable (see Figure 3.13). The
spatial resolution is in the range of mm, and the temporal resolution is in the range
of seconds. PET is rarely used in BCIs due to advanced and expensive equipment
and the low temporal resolution.

Section summary and References
Summary. In this section, we have learned about different neuroimaging methods.
The main focus was on EEG, but MEG, ECoG, fMRI, fNIRS, and PET were also
covered. The following section is a summary of this whole chapter.

References. Both Nicolas-Alonso and Gomez-Gil (2012) and Nam et al. (2018)
include reviews of the methods for measuring brain activity. Marzbani et al. (2016)
gives a good review on oscillating EEG signals. Müller-Putz (2020) briefly com-
pares wet and dry electrodes.

Chapter summary

In this chapter, we have learned about the brain.
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In Section 3.1, we learned that the brain is built out of neurons that communi-
cate with electrical impulses and neurotransmitters. Then, we learned that the brain
generally processes different types of brain signals in different parts of the brain.

In Section 3.2, we learned about the different BCI paradigms used in BCIs. The
most common are the P300, motor imagery, and SSVEP paradigms.

In Section 3.3, we learned about different neuroimaging methods, particularly
EEG. We learned how the EEG electrodes are arranged in the 10-20 system, the
typical frequency bands observed in EEG data, and the difference between wet and
dry electrodes.

In the next chapter, we will learn how to decode the meaning of the measured
brain signals.

36



4
Background – Algorithms
for BCIs

From Chapter 1 and Chapter 2 we know what a Brain-Computer Interface (BCI)
is and that it needs to be calibrated to work. Calibration of a BCI means running a
stimuli program to collect labeled data and then training a machine learning algo-
rithm with the collected data. We remember that one of the biggest challenges for
BCIs is that the calibration is tedious and that I therefore focus on improving the
calibration in my research. From Chapter 3, we know that EEG is the main neu-
roimaging method for BCIs and we are familiar with the different BCI paradigms
such as motor imagery and P300.

A BCI system uses a predetermined neuroimaging method (EEG in our case)
and BCI paradigm. The BCI paradigm decides the classes the brain activity can be-
long to. For example, if the motor imagery paradigm is used, some possible classes
are left hand, right hand, tongue, and feet. The user controls the BCI by imagining
moving a body part. The classes in a P300 experiment are attended and not attended.
The user controls the BCI by counting the number of times the object they are at-
tending to is shown, e.g., a letter they want to print. See Section 3.2 for details on
the different BCI paradigms.

Labeled data is collected during calibration (see Section 2.1 for details on how).
Labeled data means knowing what the user was thinking about - the data has a
label. For example, in a motor imagery-based BCI, the label specifies what body
part the user imagined moving, e.g., the right hand. The labeled data is used during
calibration for training the machine learning algorithm and is called training data.
After calibration, when the BCI system is used, the new data has no label and the
purpose of the BCI is to predict the class of the data. The predicted class is then
used to control the application in some way, e.g., move the cursor on the screen to
the right.

This chapter presents the procedure for decoding EEG data and the algorithms
that are used for this. The first step to decode EEG data is to preprocess the raw
continuous EEG data (Section 4.1). The second step is to find features in the pre-
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Figure 4.1 Flowchart of the steps to decode brain signals. The decoding starts with raw
continuous EEG data that is divided into epochs in the preprocessing step. In the feature
extraction step features for the epochs are derived and stored in feature vectors. The feature
vectors are used for classification and the final output is the predicted class for the brain
activity for each epoch.

processed data (Section 4.2). The final step is to classify the data with a machine
learning algorithm (Section 4.3). Section 4.4 gives an introduction to Riemannian
geometry and Section 4.5 presents some transfer learning methods for BCIs. Finally,
Section 4.6 lists some useful Python tools for EEG-based BCIs.

There are a lot of terms that are used when talking about data related to BCIs. Ta-
ble 4.1 defines some of these terms. Figure 4.1 illustrates the three steps to classify
EEG data: preprocessing, feature extraction, and classification. There is no clear cut
between what counts as preprocessing and what counts as feature extraction. In this
thesis, I have made the distinction that preprocessing is what is done with the data
until the data is split into epochs. Feature extraction is what is done with the data
after epoching but before it is put into the machine learning algorithm, and classifi-
cation is the classification of data with a machine learning algorithm. However, as
you will discover, some preprocessing methods can be used for feature extraction
and vice versa. I will do my best to clarify this confusion for the relevant methods
described below but bear in mind that we are operating in a gray area.

4.1 Preprocessing

The first step to decode brain signals is to preprocess the data. Preprocessing is
needed regardless of the used neuroimaging method. In this section, I present pre-
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Table 4.1 Table defining some terms related to BCI data.

Term Description

Continuous
raw data

The continuous raw data is all EEG data from an experiment. The
EEG data is annotated with markers, e.g., for stimuli onset.

Stimuli on-
set

Stimuli onset is the moment a stimulus is presented to the user. The
stimuli can, e.g., be pictures for the user to react to or prompts (e.g.,
right hand) for motor imagery.

Marker A marker is a timestamp in the EEG data. It often marks stimuli
onset, but there can be markers for other events, such as the start or
pause of the experiment.

Epoch An epoch is a chunk of EEG data containing interesting brain ac-
tivity.

Trial One trial refers to one stimulus shown. While the term epoch gener-
ally refers to the actual EEG data, the trial refers to the experiment.
For example, if it is a P300 experiment and the user is shown pic-
tures and is tasked to count the number of cats, a trial is when the
user is shown a picture and reacts to it. The corresponding epoch
contains the EEG data from that trial.

Session One session contains many trials that are done one after the other.
Using the P300 picture experiment again, one session is the full
sequence of trials where the user is shown picture after picture and
reacts to them all. Multiple sessions with the same user can be per-
formed in one day or on different days. EEG data from one session
often refers to the collection of epochs from the session but could
also refer to the continuous raw data from the session.

Subject/user Subject refers to the person performing the experiment, i.e., the
user. I choose to use the term user in this thesis instead of subject
since the term subject can be interpreted as a bit dehumanizing.

Dataset A dataset contains data from multiple sessions and users acquired
using the exact same experimental setup. An excellent place to find
public EEG datasets is MOABB [Jayaram and Barachant, 2018].
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Figure 4.2 EEG data with artifacts. 1. Eye movements, e.g., blinking. Mainly visible in
frontal electrodes. 2. Bad contact between one electrode and skin. 3. Artifact from swallow-
ing. 4. Bad contact between the reference electrode and skin affects all channels.

processing methods for EEG data. Other preprocessing methods are needed if other
neuroimaging methods are used.

The purpose of the preprocessing step is to clean the EEG data from artifacts
and isolate the parts of the EEG data that contain the interesting brain activity.

Artifact removal
The first preprocess action is to remove disturbances in the EEG data. The distur-
bances are called artifacts and affect the EEG data but do not originate from brain
activity (see Figure 4.2). Artifacts in EEG data can be grouped into two categories:
physiological artifacts (1 and 3 in Figure 4.2) and technical artifacts (2 and 4 in
Figure 4.2). Physiological artifacts originate from the user’s body, such as mus-
cular activity, eyeblinks, or heartbeats. Technical artifacts originate from all other
sources than the user. One example is the power grid that injects 50 Hz noise into
the recordings (60 Hz in e.g. the USA). Another technical artifact is electrodes with
a bad contact to the skin.

Artifacts can be removed manually while examining the data. However, manu-
ally removing artifacts in a BCI system is impossible and they need to be removed
automatically. One method to identify physiological artifacts is by adding extra sen-
sors that keep track of the source, e.g., an electrode close to the eye to record eye-
blinks or close to the heart to record heartbeats. For example, the technical artifact
from the power grid can be removed with a notch filter. Careful electrode placement
can prevent a bad connection between skin and electrodes.

One approach is to discard the EEG data containing artifacts altogether. The
other approach is to separate the artifact from the interesting EEG data and only re-
move the artifact. Linear filtering, independent component analysis, or other meth-
ods can be used to remove the artifact while keeping the EEG data.
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Independent Component Analysis - ICA. One algorithm to identify and remove
artifacts while keeping the EEG data is the Independent Component Analysis (ICA).
Other algorithms exist but I present ICA as one representative example. ICA is not
specific to EEG signals and can be applied to other types of signals, e.g., sound.

The idea behind Independent Component Analysis is that the vector of data x(t)
is a mixture of the vector of independent sources s(t) and noise n(t) as

x(t) = f (s(t))+n(t). (4.1)

The mixing function f can be assumed to be either linear or nonlinear. ICA uses an
algorithm (e.g., Infomax or FastICA) to find the mixing function. Then, the sources
s(t) are extracted and can be used for further data analysis.

In the BCI setting, x(t) is the measured EEG signals, s(t) is the independent
sources of brain activity or other sources, and n(t) is random noise. Artifacts in-
dependent of the brain activity can be removed with ICA since they end up as in-
dividual source s(t). ICA could also be used as a feature extraction method to get
independent sources of brain activity within the brain. As I warned before, what
counts as a preprocessing and feature extraction method is a gray area, and ICA is
an example of this.

ICA is limited to removing artifacts independent of the EEG signal, e.g., arti-
facts from eye movement. The assumption on the mixing function f (nonlinear or
linear mixing function) is accompanied by limitations such as high complexity and
hard-to-solve problems for the nonlinear case and sometimes a too simple model in
the linear case.

Bandpass filter
Leaving artifact removal and continuing with the next preprocessing method, we
are now at bandpass filtering.

Recalling Section 3.3, we remember that EEG signals oscillate at different fre-
quencies depending on the ongoing brain activity. Bandpass filtering keeps only the
components of EEG data with frequencies within the filtering range. This means
that information outside the filtering range is attenuated. This requires knowledge
about in what frequency range the interesting brain activity is found, i.e., what fre-
quencies to keep. Through bandpass filtering, noise and uninteresting brain activity
are removed.

Bandpass filtering is almost always included as a preprocessing step but could
also be used as a feature extraction method in, for example, a mental workload-
based BCI. A mental workload-based BCI aims to detect “how hard the brain is
working”. As we know from Section 3.3, the different frequency bands (alpha, delta,
theta, and gamma) roughly correspond to different workloads. Thus, the interesting
features of a mental workload-based BCI are the powers for all frequency bands,
i.e., how much of each frequency band there is in the EEG data.

As for ICA, we see that bandpass filtering is an example of a preprocessing
method that can be used both for preprocessing and feature extraction.
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Re-referencing
The next thing to consider in the preprocessing step is the referencing of the EEG
data. From Section 3.3 we know that EEG measures the potential difference be-
tween each electrode and the reference electrode. The reference electrode is prefer-
ably placed in an inactive zone, such as the earlobe or the base of the neck. However,
brain activity could still spill over to the reference electrode, affecting the recorded
data in all of the electrodes. One way to handle this is to re-reference the EEG data.
Other reasons to re-reference the EEG data are to improve the signal quality and the
signal-to-noise ratio (SNR). Noteworthy is that re-referencing is not a preprocessing
method that is always done, in contrast to e.g., bandpass filtering which is a method
that is often used.

Several methods exist to re-reference the EEG signals, such as Bipolar refer-
ence, Surface Laplacian Reference, and Common Average Reference (CAR). Here,
I only mention these methods and refer the interested reader to the references for this
section for more details. The general approach in all these methods is to combine
other electrodes into a reference value to which the electrode at hand is compared.

Epoching
The final important part of the preprocessing step is to cut the data into epochs.
An epoch is a chunk of data (often a few seconds) that is known to contain brain
activity that is to be decoded. For example, in a P300 experiment, the user is shown
a picture and we want to decode the user’s reaction to the picture. An epoch would
be the EEG data collected from when the picture was shown until a few seconds
after. The stimuli onset (when the image is shown) is marked with a marker in the
EEG data. The first part of Figure 4.1 shows a graphical illustration of epoching
continuous raw EEG data.

Baseline correction is often applied to ensure that all epochs are comparable.

Baseline correction. Before the stimuli onset, there are usually a few seconds
where the user is supposed to be in a blank state, meaning that they should not
think about anything. The EEG data from the blank state can be used for baseline
correction, which means adjusting the EEG data so all of this ’blank’ data is at the
same level. When the baseline for all epochs is at the same level, the epochs can be
compared fairly.

Baseline correction is sometimes such an obvious part of epoching that it is not
mentioned. However, baseline correction is not always done, so one has to pay close
attention when reading papers or using public datasets.

Section summary and References
Summary. In this section, we have taken a closer look at the preprocessing step
which is the first step to decode EEG data. Important parts of the preprocessing step
are artifact removal, bandpass filtering, and epoching. In the next section, we will
look at the second step to decode brain signals: feature extraction.
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References. Artifact removal is discussed in Nicolas-Alonso and Gomez-Gil
(2012) and Nam et al. (2018). Nicolas-Alonso and Gomez-Gil (2012) also describes
the ICA method. Referencing methods are presented in Nam et al. (2018). Blankertz
(2018) presents the full pipeline from continuous EEG data to classified output, in-
cluding bandpass filtering and epoching.

4.2 Feature extraction

The second step to decode brain activity is feature extraction. The features are ex-
tracted from the cleaned epochs from the preprocessing step (see Section 4.1). The
features are then used for classification, the third and final step to decode the brain
activity (see Section 4.3). This section will look at some feature extraction methods
for EEG data.

The purpose of feature extraction is to facilitate classification. The machine
learning algorithm finds patterns in the data and uses these patterns to classify the
brain activity. The challenge is that data from brain activity, such as EEG data, is
complex and the patterns are difficult to extract. Thus, feature extraction is needed
to highlight important data characteristics and reduce the data’s dimension.

The choice of feature extraction depends on the BCI paradigm and machine
learning method. Generally, for the P300 paradigm, the average of the EEG data
from multiple trials is the prominent feature. For SSVEP, the frequency information
in the EEG data is the most important feature, and for motor imagery, the difference
in spatial activity of the EEG data is important. However, each BCI setup is differ-
ent, and you must carefully consider what type of feature extraction is best for your
case.

In this section, I present some common feature extraction methods, such as prin-
cipal component analysis, common spatial patterns, and covariance matrices. It is
not a complete list of all possible choices, but it should be enough to guide you
through most papers. One should also remember that the feature extraction method
should work well with the machine learning method.

Averaging the EEG data
The first feature extraction method we will look at is the simple averaging of EEG
signals. From Section 3.2, we know that in the P300 paradigm, it is possible to see
if the user attended the given stimuli or not by looking at the response in the EEG
data around 300 ms after stimuli onset. The EEG data is averaged over multiple
trials for each class to get signals with less noise, which, in the end, results in a slow
classification rate since it takes time to run multiple trials. For the P300 paradigm,
averaging the EEG signals is often enough, but that is not the case for the other
paradigms.
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Figure 4.3 Power Spectral Density from Motor imagery EEG data. The x-axis shows the
frequencies, and the y-axis shows the power. One power spectra per EEG channel. 60 Hz
power grid artifact is visible in all channels.

Power Spectral Density (PSD)
The second feature extraction method is the Power Spectral Density (PSD), which
shows the frequency components of the EEG signal. The frequency components
(power of the frequency) tell “how much” of each frequency there is in the data.
Usually, the PSD is calculated for each channel (electrode) individually and plotted
in a diagram with frequency on the x-axis and power on the y-axis (see Figure 4.3).
Some variant of the Fourier transform is usually used to transform the EEG signal
to PSD.

A high peak can be seen in the PSD at 50 Hz (or 60 Hz in, e.g., the USA) before
the power grid artifacts are removed. Sometimes, there are differences in the PSD
between electrodes, such as peak power (how high the peaks are) or peak frequency
(where along the x-axis the peak is located). In those cases, the PSD could be a
good feature to use for further classification.

Time-frequency
Instead of looking at the power spectra for the full signal, as in PSD, one can look at
the power spectra over time in time-frequency plots. Looking at the power spectra
over time gives more information about when the brain activity was happening. The
time-frequency plots have time on the x-axis, frequencies on the y-axis, and the
color shows the power. A time-frequency plot is basically multiple PSD plots for
small time-chunks stacked horizontally (see Figure 4.4).

There are different methods to generate time-frequency data, and each method
has parameters to tune how the time-frequency analysis is done. The short-term
Fourier Transform (STFT) was one of the early suggestions. STFT splits the signal
into successive windows and performs the Fourier Transform on those to generate
power spectra over time. Another method is the wavelet transform (WT), which
is a type of template matching. Wavelets catching different frequencies are gener-
ated from the mother wavelet and convoluted with the brain signal to generate the
time-frequency data. The mother wavelet can be designed in multiple ways to catch
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Figure 4.4 Time-Frequency plot from Motor imagery EEG data from Cz electrode. The
x-axis shows the time, the y-axis the frequency, and the color the power.

different features of brain activity.
By comparing different electrodes and patterns in the time-frequency domain,

one can find features suitable for classifying brain activity.

Covariance matrices
Moving on from frequency-based features, the following feature extraction method
we will investigate represents the EEG data as covariance matrices. The covariance
matrix of data captures the data’s correlation and “spread”. For EEG data, a covari-
ance matrix tells how correlated the EEG signals in different electrodes are. If there
is a lot of activity in electrode i, the covariance matrix tells if there will also be a lot
of similar activity in electrode j.

The EEG data for an epoch is x ∈ Rm×n, where m is the number of channels
(electrodes) and n is the number of time samples. Thus, xi ∈ Rm is the EEG data
for all electrodes in a single time sample. The covariance matrix S ∈ Rm×m for an
epoch is calculated as

S =
1
n

n

∑
i=1

(xi − x)(xi − x)⊤, (4.2)

where x is the mean calculated as

x =
1
n

n

∑
i=1

xi. (4.3)

Covariance matrices are symmetric, positive semidefinite matrices, which give them
a lot of useful properties.

The covariance matrix is an intermediate step in many methods, such as PCA
and CSP. But the epochs’ covariance matrices can in themselves be used as features
for classification, especially for Riemannian-based classifiers (see Section 4.3 for
more details on Riemannian-based classifiers).
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Figure 4.5 Illustration of PCA on two-dimensional data.

Principal component analysis (PCA)
The next feature extraction method is the principal component analysis (PCA),
which is an old dimension reduction technique with two applications in the BCI
area: dimension reduction and artifact removal.

The idea behind PCA is that high dimensional data have some directions with
much information and others with little information. The directions without much
information can be removed altogether, and thus, the dimension of the data has been
reduced.

Looking at illustrative data in two dimensions (see Figure 4.5a), we can see
that the data is most distinguishable in the direction pointing to the top right corner
(PCA1). In simple words, if you were to describe a data point you would say how
far away in the direction of PCA1 it was placed. The direction PCA1 is called the
first principal component of the data and corresponds to the direction in the data
with the highest variance. In PCA, it is assumed that PCA1 is the direction with the
most important features of the data, PCA2 is the direction with the second most im-
portant features, and so on until PCAn where n is the dimension of the original data.
Thus, we can reduce the dimension of the data by removing principal components
with little information. Little information means, in this case, small variance. In the
illustrative two-dimensional example, there are only two principal components, and
the data’s dimension can be reduced by removing PCA2 (projecting the data onto
PCA1) (see Figure 4.5b).

The first step in PCA is to find the directions (principal components) of the data
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with the highest variance, and the second step is to project all data onto these princi-
pal components. The covariance matrix S of the data x ∈ Rd describes the variance
in the data. The principal components are found as the k eigenvectors (k < d) with
the highest eigenvalues from the covariance matrix. The data is linearly transformed
into the principal components. Thus, the dimension of the data is reduced.

A limitation of PCA is that it assumes that the interesting information is found
in the directions with high variance, which is not guaranteed. Even so, PCA has
proven to be an effective dimension-reduction method for BCIs. PCA has, in BCIs,
also been used for artifact removal. Artifact removal is possible when the artifact is
uncorrelated with the brain signals because then the artifacts end up in a principal
component of their own that can be removed altogether.

Common Spatial Patterns (CSP)
The final feature extraction method I will describe in this thesis is the Common
Spatial Patterns (CSP). The idea behind CSP is to transform the EEG data from the
original sensor space x(t) to the “CSP space” xcsp(t) via the transformation matrix
W as

xcsp(t) =W⊤x(t). (4.4)

The “CSP space” xcsp(t) is designed to have features that make the classes easy
to separate and classify. The CSP algorithm finds the transformation matrix W by
looking at the classes’ mean covariance matrices and finding directions where the
classes are the most separable. In CSP, it is assumed that a direction where one
class has much variance and the other class has little variance is a direction where
the classes can be separated from each other. CSP was originally designed for data
with two classes but has been extended for more classes.

Looking at illustrative data in two dimensions, we see that the new features (x1
and x2 in Figure 4.6b) make classification easier (see Figure 4.6). Four to six CSP
features are often chosen to describe the data in a BCI setting. Thus, CSP also works
as a dimension-reduction method.

The transformation matrix W mixes the EEG data from different channels to
generate the new CSP data xcsp(t). Because of this, CSP is a spatial filtering method.
Spatial filters can be viewed as topographic maps, which are heatmaps over the
electrodes showing where the brain activity in the CSP features originate from.
Figure 4.7 shows the topo maps for the first four CSP features from some motor
imagery data. We note that CSP0 and CSP2 capture activity in the left- respectively
right half of the brain and could be used to classify left- vs. right-hand movement.

Section summary and References
Summary. In this section, we have taken a closer look at the feature extraction
step, which is the second step to decode EEG data. Some commonly used feature
extraction methods are covariance matrices, PCA, and CSP. In the next section, we
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Figure 4.6 Illustration of CSP transformation on two-dimensional data belonging to two
classes: Blue (o) and, orange (+). The ellipsoid overlays show the data distributions.
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Figure 4.7 Spatial patterns used for CSP transformation of EEG data from a Motor Imagery
experiment. The topo maps show the spatial filters CSP uses to extract the CSP features. We
see that CSP0 and CSP2 catch left, respectively, right brain half activity.
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will look at the third and final step to decode brain signals, namely classification
with machine learning.

References. The paper by Nicolas-Alonso and Gomez-Gil (2012) thoroughly ex-
plains different feature extraction methods. Blankertz (2018) shows how averaging
can be used as a feature extraction method. Faisal et al. (2020b) explains the math-
ematical details of covariance matrices. Faisal et al. (2020a) gives an in-depth ex-
planation of PCA. Blankertz et al. (2008) provides a thorough explanation of CSP.

4.3 Machine Learning

The final step to decode brain activity is to classify the data with a machine learning
algorithm. In this section, I present some common machine learning algorithms for
BCIs. It is by no means a complete list of all existing machine learning algorithms,
nor all possible machine learning algorithms for BCIs, but I present some of the
most commonly used algorithms for BCIs.

A machine learning algorithm can be used to solve many types of problems,
for example, classification and regression problems. In a classification problem,
the aim is to predict the class of new data into predefined classes. In a regression
problem, the aim is to predict a numerical value, e.g., a person’s age. BCIs are
usually a classification problem, e.g., what hand was the user imagining to move.
BCIs with regression problems also exist, e.g., what coordinates on the computer
screen is the user trying to move the cursor to, or the user’s alertness level. Since
the classification problem is the most common for BCIs, I will hereafter assume that
the machine learning algorithm is used for classification.

Data with known labels is used to train the machine learning algorithm. The
labels state which class the data belongs to (or the correct numerical value in the
regression problem). One issue is that a machine learning algorithm can be over-
fitted, which means that it can perfectly predict the label of the training data but
cannot generalize to new data. The goal is often for a machine learning model to
generalize to unseen data. Usually, when training a machine learning algorithm, one
uses some training data for validation. The validation data is only used to see how
well the model generalizes and to select between different models or hyperparam-
eters (parameters for the machine learning model) and not for training the machine
learning algorithm. Test data is used for the final testing of a model and not at all
used during the training.

When training a machine learning algorithm with training data, the algorithm
compares the predicted label with the true label for the data. Then, the algorithm
tweaks its parameters to improve the prediction. It uses a cost function (also called
loss function) to compare the predicted label and the true label. When evaluating
the classification performance, we often use the accuracy, which states the ratio of
correct classifications.
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This section presents some commonly used machine learning algorithms in
BCIs. I also introduce Riemannian geometry-based classifiers, which are state-of-
the-art for many BCI applications, and present transfer learning for BCIs. The term
classifier means a machine learning algorithm used for classification.

k-nearest neighbors classifier (k-NNC) and
Minimum distance to mean (MDM)
We will start by looking at two simple classification methods: k-nearest neighbors
classifier (k-NNC) and minimum distance to mean (MDM).

The nearest neighbor classification method classifies a new data point to the
same class as the k closest neighbors. It is as simple as looking at the class for the
k closest neighbors, and if they belong to different classes, the class to which most
neighbors belong is the class for the new data point.

The MDM calculates the mean for all classes and classifies a new data point to
the same class as the closest mean. In a two-dimensional example with two classes,
one can view this as drawing a line, a so-called hyperplane, between the means and
classifying the data depending on what side of the line it is (see Figure 4.8a).

Both these two classifiers are simple but have proven powerful for BCIs when
used with Riemannian geometry, especially MDM. See Section 4.4 for more details
on Riemannian Geometry.

Linear Discriminant Analysis (LDA)
Depending on the data distribution, the simple approach of MDM might not be
enough. This is illustrated in Figure 4.8b where we can see that the MDM approach
misclassifies many samples from both classes due to the data distribution. Linear
discriminant analysis (LDA) uses the covariance matrix of the data to take the data
distribution into account when finding a separating hyperplane between the classes
(see Figure 4.8c).

A drawback is that LDA assumes that all classes have the same distribution.
Some LDA variants, e.g., Quadratic Discriminant Analysis, can handle data with
different distributions. Another drawback is that LDA requires a lot of data for cor-
rectly estimating the covariance matrices (estimating the distributions). Suppose the
estimation of the covariance matrices (the distributions of the data) is bad. In that
case, assuming a distribution based on prior knowledge is often better than using the
estimation. A covariance shrinkage method estimates covariance matrices by mix-
ing covariance matrices based on prior knowledge and covariance matrices from
the current data. Covariance shrinkage has proven very powerful in BCI applica-
tions where the amount of data is limited, which, without covariance shrinkage,
results in bad covariance estimations.
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Figure 4.8 Classification of two-dimensional data belonging to the two classes blue (o) and
orange (+). The drawn line represents the classification boundary, and the shaded background
represents the predicted class. The ellipses show the distribution of the data.
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Logistic regression
The next machine learning algorithm is the Logistic regression, which, despite the
name, is used for classification. It outputs the probability p that a data point belongs
to a specific class as

p = σ(x⊤θ), (4.5)

where x is the data, θ is the parameters for the algorithm, and σ(·) is the logistic
(sigmoid function), which outputs a number between 0 and 1. If the probability p for
a data point is above 0.5 (50%), the predicted class is 1 otherwise the predicted class
is 0. The parameters θ are tweaked during training so that the returned probability
for the training samples moves towards 0 and 1 (depending on the label). In other
words, the parameters are tweaked so that the classifier gets more sure about the
prediction of training data.

Equation (4.5) is for the two-class case, but logistic regression also works for
multiple classes and is then called Softmax regression. The principle for softmax
regression is the same as logistic regression but adapted for more classes.

Even though logistic regression is more advanced than the simple MDM, it is
still a relatively simple classification algorithm.

Support Vector Machine (SVM)
The next machine learning algorithm, Support Vector Machine (SVM), is slightly
more advanced than the previous ones.

The intuition behind SVMs is to find a separating hyperplane with as much
margin to the data as possible. In other words, SVM tries to fit an as wide as possible
road between the data (see Figure 4.9). Due to this margin, the SVM often performs
well and is less prone to overfitting. The data in Figure 4.9 is separable with a
hyperplane with margins. On the other hand, the SVM method can accept so-called
margin violations if the data were to be a bit more mixed in the middle. A parameter
in SVM can be used to tune its sensitivity to margin violations.

SVM is a popular machine learning algorithm in general but has also been used
in BCIs. SVM is, by default, a linear classification method but can tackle nonlinear
problems with the so-called “kernel trick”. The kernel trick transforms the data in
a nonlinear way but can then, under the hood, do linear classification. There are
many different kernels, e.g., the polynomial kernel, which generates polynomial
features. The kernel generally used in BCIs is the Gaussian radial basis function
(RBF), which is a ‘similarity’ kernel that generates features indicating how similar
the data is.

Artificial Neural Networks (ANN)
The next machine learning algorithm, Artificial Neural Networks (ANNs), is even
more advanced than Support Vector Machines. The field of ANNs which includes
Deep Neural Networks (DNNs) and Convolutional Neural Networks (CNNs) is
huge. I recommend part two in the book Géron (2019) for the interested reader.
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Figure 4.9 Classification of two-dimensional data belonging to the two classes blue (o)
and orange (+) using SVM. Full line (-) is the decision boundary and dotted lines (:) are the
margins in SVM. The shaded background shows the predicted class.

I want to emphasize that I here give a brief overview of the basic concepts but there
is a vast amount more to explore.

The smallest unit in an ANN is the perceptron, also called neurons, units, or
nodes. It takes inputs that it weighs together and uses an activation function to
calculate its output. A neural network is built of perceptrons in multiple layers. A
neural network always has an input layer, an output layer, and often one or more
hidden layers in between (see Figure 4.10). The number of hidden layers and the
structure is what differentiates DNNs and CNNs from simple ANNs. The magic
behind ANNs is the backpropagation algorithm, which calculates how to improve
all weights in all perceptrons.

There are many different activation functions, and their task is to do a nonlin-
ear transformation of the perceptron’s inputs. Some common examples are ReLU,
SELU, ELU, sigmoid, and softmax. When using a neural network for classification,
you commonly put a logistic regression or softmax function on the output layer (lo-
gistic for multilabel binary classification, softmax for multiclass classification). The
functions transform the output to the range of 0 to 1, which can be interpreted as
class probabilities.

Convolutional Neural Networks (CNNs) are a popular variant of neural net-
works. CNNs were primarily used for images but have also been used for EEG
data. The idea behind CNNs is to have lower layers with units that look for a spe-
cific pattern in a small part of the data, e.g., a corner or a straight line in image
recognition. At the higher levels of the CNN, these patterns are combined into big-
ger features, e.g., an eye or a house. CNNs generally require fewer parameters to
recognize an image than a fully connected neural network. However, they still have
a lot of parameters and require a lot of data to be trained.
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Figure 4.10 Schematics of a neural network with four nodes in the input layer, two hidden
layers with six respectively five nodes, and one output layer with three nodes.

How to choose a classifier?
Now that we have seen many different classifiers, the next obvious question is “How
to choose a classifier?”.

Unfortunately, there is no golden advice to give about choosing classifiers. It all
boils down to what BCI paradigm was used, what preprocessing was done, what
features were extracted, what performance requirements exist, the data quality, how
much data is available, and a hundred other factors. My best recommendation is to
look at the two papers by Lotte [Lotte et al., 2007] and [Lotte et al., 2018a], which
compare different machine learning algorithms that have been used on BCI data.

Section summary and References
Summary. In this section, we have learned about the third and final step to decode
brain activity, namely the classification step. We have looked at different machine
learning algorithms for classifying BCI data, such as Minimum Distance to Mean,
Logistic Regression, and Support Vector Machines. In the next section, I introduce
Riemannian geometry-based classifiers, which are state-of-the-art for BCIs.

References. The two papers by Lotte [Lotte et al., 2007] and [Lotte et al., 2018a]
thoroughly review the classification methods and transfer learning for EEG-based
BCIs. Nearest neighbour is explained in Nicolas-Alonso and Gomez-Gil (2012) and
LDA is explained in detail in Blankertz (2018). The excellent book by Géron (2019)
contains both math explanations and hands-on examples of different machine learn-
ing methods, e.g., logistic regression, SVM, and neural networks. Most machine
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learning algorithms are implemented, e.g., sci-kit learn for Python [scikit-learn de-
velopers, 2023], accompanied by detailed documentation of the methods.

4.4 Riemannian Geometry

You are probably familiar with the so-called flat Euclidian space taught in most
basic math courses. In a flat space, properties such as angle and length behave as
“expected” and are defined by the inner product of the space. In a so-called curved
space, on the other hand, these properties behave differently and are defined by the
metric tensor. Euclidian geometry describes flat spaces, and Riemannian geometry
can describe most curved spaces.

An example of a flat space is the surface of a table and an example of a curved
space is the surface of a sphere, the Earth for example. Figure 4.11 compares flat
(middle) and curved (left and right) spaces and illustrates the following properties
of the spaces:

• Lines – In all spaces, a line is the segment between two points that follows
the structure of the space.

• Circumference of circle – Given a circle with the diameter d = 1 (along the
surface). In a flat space, the circle’s circumference is C = dπ = π , while in a
curved space, the circumference is generally C ̸= π .

• Parallel lines – Parallel lines never intersect in a flat space. A line perpen-
dicular to the parallel lines crosses them at a 90◦ angle. In a curved space, on
the other hand, two lines that are seemingly parallel at one point will cross or
diverge at another point (depending on the curvature of the space).

• Sum of angles of triangles – The sum of angles of triangles is 180◦ in a flat
space. however, in a curved space, the sum could be more or less than 180◦

(depending on the curvature of the space).

Since objects in a curved space don’t behave as expected a metric tensor is
needed to specify how these measures are defined. A so-called Riemannian mani-
fold, or Riemannian space, is a curved space that can, at every point of the space, be
locally approximated with a Euclidian tangent space. The local approximation is ac-
companied by a metric tensor specifying how, e.g., lengths and angles are defined.
Another important concept of a Riemannian manifold is parallel transport which
defines how a vector in the tangent space at one point of the manifold is transported
to the tangent space of another point on the manifold. The Levi-Civita connection
defines how to do torsion-free parallel transport (the result of parallel transporting a
vector v⃗ along u⃗ is the same as transporting u⃗ along v⃗) and keeping the inner product
of two transported vectors the same. There are a lot of mathematical details related
to Riemannian geometry that I skip here, my goal is to give a basic intuition for the
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Figure 4.11 Comparision of different geometries and how these affect the concept of lines,
the circumference, parallel lines, and the sum of angles of triangles.

concepts. I highly recommend the video series by Eigenchris on Tensor Calculus
for the interested reader (see the references for this section).

There are subcategories of the Riemannian manifold, and each comes with its
own way of measuring distances, angles, and so on. The covariance matrices from
BCI data with a given metric tensor belong to a particular Riemannian manifold of
symmetric positive definite matrices.

Data on a Riemannian manifold can either be classified on the Riemannian man-
ifold or the data can be projected to a Euclidian tangent space of the manifold before
classification. On the Riemannian manifold, e.g., minimum distance to mean can be
used for classification, with the distance between data points defined by the met-
ric tensor. In the tangent space, any ‘normal’ Euclidian classification method can
be used, such as logistic regression, SVM, or LDA. Riemannian geometry-based
classifiers are state-of-the-art for many BCI applications.

Section summary and References
Summary. In this section, we have introduced Riemannian geometry-based clas-
sifiers, which are state-of-the-art for BCIs. In the next section, we will talk about
transfer learning.

References. The excellent videos by “Eigenchris” [eigenchris, 2020; eigenchris,
2017] describe tensor calculus in detail. Barachant et al. (2012) introduced Rieman-
nian Geometry to BCIs.

4.5 Transfer learning

Transfer learning is not a machine learning algorithm but a tool for machine learning
when we don’t have access to enough training data.
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When training a machine learning algorithm, it is assumed that the training and
test data come from the same distributions. In the BCI case, training data is what
we collect in the calibration phase to train the machine learning algorithm, and test
data is what we use when the BCI system is in operation. When we say that the
training and test data come from the same distribution, it means that the BCI system
is calibrated right before it is used, i.e., the training data and test data come from
the same session. Since the calibration phase takes a relatively long time, it would
be preferable to use data from a previous session for calibration so that the user can
immediately use the system instead of starting with calibrating the system. This is
where transfer learning comes into play.

The idea with transfer learning (framed in the BCI application) is to use data
from the user’s previous sessions or other persons’ previous sessions to train the
BCI system for a new session. In the language of transfer learning, the previous data
is the source domain, and the new data is the target domain. There is a myriad of
different approaches to performing transfer learning. Here I present some common
approaches for BCIs:

• Select data where source and target domain coincide – A simple approach
for transfer learning is to use only data from the source domain that coincides
with the data in the target domain. Assuming that there is a pool of source
data to use, e.g., data from different users, it would be possible that some,
but not all, of this source data coincide with the target data. If only data that
coincide is used, no data transformation is needed. The challenge with this
approach is identifying the data in the source domain that coincides with the
data in the target domain.

• Find common features in all domains and then train a classifier on these
features – Another transfer learning approach is identifying features that co-
incide in all domains. It means that no data transformation is needed, but
it might also mean that important features are ignored simply because they
don’t coincide. In the best of worlds, the common features represent the true
brain activity and would be the best features to use.

• Transform data in source domain to target domain – A third approach for
transfer learning is to transform the data in the source domain to fit the data
in the target domain. One way to do this is to move the covariance matrices
representing the data on the Riemannian manifold. The source domain data is
moved so that the source domain data’s mean is moved to the target domain
data’s mean.

• Adapt models from the source domain to the target domain – A final
approach to transfer learning is using a machine learning algorithm in the
target domain with statistically likely parameters based on source domain
training. Put the other way around, a specific machine learning algorithm
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(e.g., logistic regression) is trained for each dataset in the source domain.
Then, the distribution for each parameter in the machine learning algorithm
can be found, and the statistically most likely value for each parameter (e.g.,
the mean, mode, or median) can be used for the model used on data in the
target domain. Thus, a classifier based on the parameters in the source domain
can be used to classify data in the target domain.

Section summary and References
Summary. In this section, we have learned about Transfer learning as a tool for
classification. In the next section, I list some useful Python packages when working
with BCIs.

References. Transfer learning for BCIs is well explained in Jayaram et al. (2018)
and Lotte (2015).

4.6 Python tools for working with EEG-based BCIs

This section is a list with links to good tools to use when working with EEG data.
They are Python packages since I have chosen to use Python so far. Many packages
are available, but those I present here are the ones I have used. I omit basic packages
such as Numpy, Pandas, Matplotlib, etc.

• MNE1 – MNE is a Python package for analyzing and visualizing EEG data.
It includes preprocessing tools and some feature extraction tools.

• MOABB2 – Mother of all BCI Benchmarks is a Python package that in-
cludes a lot of public available datasets and some tools for comparing the
performance of a classifier across different datasets. It is a package under de-
velopment, and new features are added frequently. I have mainly used it to
access public available datasets.

• Scikit-learn3 – Scikit-learn is one of the most significant Python packages
for machine learning. It includes algorithms related to machine learning.

• PyRiemann4 – PyRiemann is a package for Riemannian geometry.

• Timeflux5 – Timeflux is a Python package for real-time processing of biosig-
nals. Typically useful to build a BCI.

1 https://mne.tools/stable/index.html
2 http://moabb.neurotechx.com/docs/index.html
3 https://scikit-learn.org/stable/
4 https://pyriemann.readthedocs.io/en/latest/
5 https://timeflux.io/
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• PsychoPy6 – PsychoPy is a Python package for creating experiments. I have
used it to create stimuli programs.

• BCI-HIL7 – BCI-HIL is the framework for designing BCIs presented in Pa-
per II, see Chapter 7 and Paper II for details.

Section summary and References
Summary. This short section lists Python packages I used for EEG data. The next
session is an outlook into the future of algorithms for BCIs.

References. The links to each package are found in the footnotes at the bottom of
the page.

4.7 Comparision of the development of BCIs and
computer vision

We have now seen some machine learning algorithms that are used today in BCIs.
To get a glimpse of what methods could be available in the future, I will compare
the development of classifying BCI data to the development of classifying images,
which is a fundamental part of computer vision.

In simple terms, BCIs’ goal is to classify brain activity, and computer vision’s
goal is to classify an image’s content. Classification of BCI data requires extensive
preprocessing and feature extraction. Few off-the-shelf pipelines can be used, so
much expertise is required to classify the BCI data. For image classification, on the
other hand, there exist several off-the-shelf machine learning algorithms that do it
for you. You input your image and get the classification as output. The difference in
effort between BCI classification and image classification is striking. The interesting
thing to note here is that image classification in its early days also required a lot of
expertise and manual feature extraction.

To classify an image, one needs to identify the features of the image, e.g., where
the lines in the image are, how these lines are connected, what structures these con-
nected lines create together, and so on, until you eventually can say that this image
shows a house. In the early days of computer vision, these features were manually
extracted. When I say manually extracted, I mean that algorithms are applied to the
image, e.g., to identify lines, in a similar way as we apply algorithms to preprocess
and do feature extraction on EEG data today. In computer vision today, all these
features are extracted as part of the machine learning algorithm. What happened
between the early days of computer vision and today was that the Convolutional
Neural Network (CNN) was developed. It is a machine learning algorithm that aims
to find smaller features of an image, which are then combined into higher-level

6 https://www.psychopy.org/
7 https://www.bci.lu.se/bci-hil
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features that eventually can be used for classification – all done by the CNN. An-
other thing that happened to the development of computer vision was that massive
datasets of images were produced, which made it possible to train advanced ma-
chine learning algorithms such as CNNs.

Looking at the tremendous improvement of computer vision, it is not too radi-
cal to guess that something similar will happen to BCI in the future. More and more
BCI data will become available, which allows the development of machine learn-
ing algorithms tailored for BCIs. Once we have these powerful machine learning
algorithms for BCIs, we can reduce or even remove the calibration of BCIs alto-
gether. Until then, we will have to keep working with handcrafted features, transfer
learning, and other clever tools to reduce the calibration time for BCIs.

Section summary and References
Summary. In this section, we compared BCI classification’s development to com-
puter vision’s development. The following section is a summary of the whole chap-
ter.

References. The paper, [Bhatt et al., 2021], discusses the history of computer vi-
sion and the development of CNNs.

Chapter summary

In this chapter, we have learned how to decode brain signals.
Section 4.1 explains the first step to preprocess the EEG data, which includes

artifact removal, bandpass filtering, and epoching.
Section 4.2 explores the second step, which is to extract features from the

epochs. Feature extraction highlights important aspects of the data and reduces the
data dimension. Common methods for feature extraction are PCA, CSP, and covari-
ance matrices.

Section 4.3 describes the final step to decode brain signals, which is to classify
the data with a machine learning algorithm. For BCIs, the state-of-the-art methods
are Riemannian geometry-based classifiers (Section 4.4), but other common classi-
fiers are LDA, SVM, and neural networks.

Section 4.4 introduces Riemannian geometry which many of the state-of-the-art
machine learning methods are based on.

Section 4.5 describes transfer learning and highlights some commonly used ap-
proaches for BCIs.

Section 4.6, lists some useful Python tools when working with BCIs.
Finally, Section 4.7 gives an outlook for future machine learning algorithms for

BCIs by comparing the development of BCIs to that of computer vision.
In the next chapter, I will highlight some ethical concerns related to BCIs.
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In the previous chapters, we have learned the details of how Brain-Computer In-
terfaces work. The research on BCIs enables many interesting future uses of BCIs.
However, there are a lot of ethical concerns to consider before we are there.

This chapter presents some commonly raised ethical concerns related to BCIs.
I do not offer any solutions since these concerns are still being investigated by the
research community. I focus on the technical aspects but recommend that interested
readers consult the provided references for other ethical aspects.

• Privacy and Data Security – The first ethical concern that usually surfaces
is privacy and data security. How can a user be guaranteed that their data does
not end up in the hands of a sinister government, company, or person? And
how can the user be guaranteed that only information used for the BCI, and
not other personal information, is extracted? Another concern is what could
happen if the BCI systems are hacked while in use.

• Data bias – A second ethical concern regards data bias. As always, when
working with data and models trained on data, there will be a bias toward the
training data. Data similar to the training data will perform better with the
model than dissimilar data. As an example of data bias, we can take the case
of voice recognition. If a model for voice recognition is only trained on male
voices, it will probably have a hard time recognizing female voices. Data bias
in the context of BCIs could be related to features of the users, such as age,
gender, IQ, size/anatomy of the head, or other unknown factors.

• Responsibility – Another ethical concern is related to the responsibility of the
BCI systems. When we use BCI systems in our everyday lives, the question
arises: "Who is responsible for the outcome of the system?". The user or the
one designing the system? This is a comparable ethical dilemma to the one for
self-driving cars. Is the driver or the one who created the vehicle responsible
for the accidents?
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• Superhumans – A lot of BCI research is focused on improving the lives of
disabled persons, such as communication for locked-in patients or prosthetic
limbs for persons who are missing a limb. With this focus, there is the under-
lying assumption that the life of a disabled person is less than a “normal” life
and thus needs to be fixed. As you see, this whole formulation is problematic.
There is also the question of whether using BCIs (e.g., for prosthetics) can
create superhumans with abilities that surpass the normal.

• Availablility – As with all new technology, the question arises of who can
afford and use the technology. New technology tends to cost a lot of money.
Thus, only the rich can afford it.

This list of ethical considerations does not cover all ethical concerns related to
BCIs but showcases some of the commonly raised concerns for BCIs.

Section summary and References

Summary. This short chapter presented some ethical concerns related to the devel-
opment of BCIs. The next chapter reviews the calibration challenge and motivates
the problems I study in my research.

References. The paper Burwell et al. (2017) thoroughly examines the ethical as-
pects of BCIs and how these are discussed in the literature. The paper Saha et al.
(2021) presents some challenges and opportunities in BCIs and raises ethical con-
cerns relating to these topics.
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The core of my research is to improve the calibration of Brain-Computer Interfaces
(BCIs). Until now, in the thesis, you have gotten a lot of background to BCIs and
an introduction to state-of-the-art methods. Chapter 2 introduced BCIs, Chapter 3
explained how the brain works and how brain signals can be measured (focusing on
EEG), Chapter 4 described state-of-the-art methods to preprocess, extract features,
and classify the EEG data, and finally Chapter 5 highlighted some ethical concerns
related to BCIs.

Throughout the thesis, I have emphasized the challenges with the calibration of
BCIs and how these limit the applications of BCIs. In this chapter, I will review
the calibration challenges and look at current methods to improve the calibration of
BCIs.

6.1 Reviewing the problem with calibration

As you might have noticed, the challenges and limitations of calibration appear
repeatedly when talking about BCIs. I want to clarify that there are other challenges
and limitations with BCIs than the calibration. I choose to highlight those related to
the calibration of BCIs since this is where my research focus lies.

From the previous chapters, we know that the brain activity and EEG data are
slightly different for every session due to different mental states, EEG electrode
placements, and other ongoing brain activity. Thus, the BCI must be (re-)calibrated
every time before it can be used. We have seen that calibration includes collect-
ing labeled data from the user and training a machine learning algorithm. Data is
collected while a stimuli program instructs the user on what to think about (e.g.,
imagine moving the right hand). Calibration of BCIs is often tiresome for the user
due to the long time it takes to collect data, but we know that calibration is necessary
for the BCI system to work - the machine learning algorithm in the BCI needs to
learn the patterns in the user’s brain activity. Generally, the classification gets better
the more data is available. So, there is a tradeoff between collecting a lot of data
and tiring the user. Collecting a sufficient amount of data to train a machine learn-
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ing algorithm can take up to 20 minutes. We have also seen in previous chapters
that accepting long calibration times and performance requirements depends on the
application. The long and tedious calibration of BCIs is one of the reasons why we
don’t see any BCI applications in our everyday lives. It simply takes too long to
calibrate the system to be worth using it. There are, of course, other reasons why
we don’t use BCIs in our everyday lives.

To summarize, the purpose of calibrating a BCI system is to adjust the BCI for
a new session, and it is often a long and tedious process for the user.

6.2 Tackling calibration challenges

The takeaway from the calibration challenges is that little data from a session is
available for training a classifier. Preferably, even less data should be collected dur-
ing the BCI calibration to ease the user experience. Thus, the problem is to train
a classifier with little data even though a lot of data is needed. There is a lot of
research on how to solve this problem. Below is a list of some approaches:

• Regularization – One approach is to use regularization on the algorithms. Or-
dinary regularization methods of machine learning algorithms (such as lasso
regularization, ridge regularization, or elastic net regularization) are used to
avoid overfitting the data. Another type of regularization is to impose parame-
ters for the algorithm that are known to perform well. Covariance shrinkage is
an example of this that we discussed in the part about LDA (see Section 4.3).

• Adaptive learning, Unsupervised learning, or Semisupervised learning –
A second approach would be to update the machine learning algorithm while
the BCI is in use. A challenge is that the data we get while the BCI is in use is
unlabeled. Even so, the data could still be used to update the machine learning
algorithm. Depending on the specifics of how this is done, we call it adaptive
learning, unsupervised learning, or semisupervised learning.

• Transfer learning – Another approach is to use previously collected data and
do transfer learning as we discussed in Section 4.5. Then, more data would
be available for training the machine learning algorithm without the need to
collect more data during the calibration of the BCI. With transfer learning, it
could even be possible to create a BCI system that only uses old data and does
not need to be calibrated at all. However, more tools for transfer learning are
available if some calibration data is collected, compared to when no data is
collected at all.

• Features – A final solution would be to find features that better highlight
the brain activity. It is impossible to predict what these features would be,
but one possibility is that the signal reconstruction of brain activity is im-
proved so that the features are the true brain activity. Another possibility is
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that machine learning algorithms tailormade for BCIs are developed. These
BCI machine learning algorithms could find the interesting features them-
selves and maybe even do the preprocessing of the EEG data. This futuristic
view of BCI-machine learning algorithms is comparable to the development
of computer vision, which I expanded on in Section 4.7.

Even though there are many approaches to overcoming the calibration challenge
of BCIs, the calibration problem remains as one of the biggest obstacles for BCIs.

Section summary and References
Summary. In this section, we reviewed the challenges of calibrating BCIs and
looked at a few approaches to address these challenges. In the next chapter, I will
present my research on BCIs.

References. Lotte discusses in his paper Lotte (2015) different approaches to min-
imize or suppress calibration time for BCIs.
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Contributions

As stated in the introduction, the contributions of this thesis are twofold – firstly,
a wide-ranging background in the first chapters, and secondly, the research I have
done, which I present in this and the following chapter. The first section of this
chapter briefly introduces the published papers that are included in the thesis, and
the second section the papers that are not included. You find the included papers at
the end of the thesis.

7.1 Included Papers

The included papers showcase my research on BCIs and are all to some extent
related to the calibration of EEG-based BCI systems.

Paper I presents the theory of Multi-Armed Bandits and how Multi-Armed
Bandits are and can be used in BCIs. In particular, the theory from Multi-
Armed Bandits can be used during calibration to optimize data selection for
transfer learning.

Paper II presents a framework for developing BCIs that, for example, can be
used to test different algorithms for BCIs, such as calibration methods.

Paper III is an abstract for a poster session at a BCI conference that presents
the idea of using Markov Decision Processes for an adaptive BCI that decides
when to recalibrate the BCI for better performance and when to use the BCI
system as it is. This idea evolved into the idea of using Multi-Armed Bandits
for BCIs (Paper I).

Paper I
F. Heskebeck, C. Bergeling, and B. Bernhardsson (2022). “Multi-
Armed Bandits in Brain-Computer Interfaces”. Frontiers in Human
Neuroscience 16. ISSN: 1662-5161. DOI: 10.3389/fnhum.2022.931085
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Summary. This paper presents the theory of multi-armed bandits. The basic con-
cept for a multi-armed bandit problem is the following. If you are presented with
multiple choices, also called actions, where each action gives you an unknown re-
ward, the challenge is to choose the best action. Once you have taken an action, you
get the reward, and you can then, based on your previously given rewards, guess
what reward an action will give you. Then, the question is if you should exploit the
action you think is best or explore other actions to see if they are any better. Multi-
armed bandits are one of the basic Reinforcement Learning algorithms to tackle this
exploration versus exploitation tradeoff.

After presenting the theory of multi-armed bandits, the paper shows some exam-
ples where multi-armed bandits are used in BCIs today and provides some examples
of future uses.

Contribution. The conceptualization of the paper was done collectively by all au-
thors. F. Heskebeck did the literature research and wrote the manuscript with input
and revisions from all co-authors.

Paper II
M. Gemborn Nilsson, P. Tufvesson, F. Heskebeck, and M. Johansson
(2023). “An open-source human-in-the-loop BCI research framework:
method and design”. Frontiers in Human Neuroscience 17. ISSN: 1662-
5161. DOI: 10.3389/fnhum.2023.1129362

Summary. This paper presents a framework for developing real-time BCIs. It
also lists current tools for BCIs and elaborates on technical details for developing
BCI frameworks. It showcases two applications, one based on the motor imagery
paradigm and one on the P300 paradigm.

I was involved in developing the real-time processing and classification of EEG
data with timeflux (called “Calculate program” in the paper).

Contribution. F. Heskebeck and M. Gemborn Nilsson initially developed the soft-
ware for this paper. During F. Heskebeck’s parental leave, M. Gemborn Nilsson and
P. Tufvesson continued working on the project and wrote the paper. All authors
helped with the final revision of the paper.

Paper III
F. Heskebeck and C. Bergeling (2021). “An Adaptive Approach for
Task-Driven BCI Calibration”. In: BCI Meeting 2021. BCI Meeting
2021. URL: http:// lup.lub.lu.se/record/de71d9e1- 3dfb- 46d2- b54f-
61abe48a8d2d

Summary. Over time, the EEG signals change, and the BCI system needs to be
recalibrated. This paper is an abstract that presents the idea of using Markov Deci-
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sion Processes to decide if the BCI should be used as it is or recalibrated for better
performance.

Contribution. The conceptualization of the paper was done collectively by both
authors. F. Heskebeck wrote the manuscript with input and revisions from the co-
author.

7.2 Additional papers

I have also contributed to the following peer-reviewed paper. It is unrelated to BCIs
and, therefore, not included in the thesis.

M. Bauer and F. Heskebeck (Jan. 2022). “A Workplace Equality Work-
shop for the Control Engineering Classroom”. IFAC-PapersOnLine.
13th IFAC Symposium on Advances in Control Education ACE 2022
55:17, pp. 97–102. ISSN: 2405-8963. DOI: 10.1016/j.ifacol.2022.09.
231
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Discussion

In the previous chapters, I have given you a broad background on BCIs, ranging
from algorithms to ethics, and an overview of my contributions in the subfield of
calibration of BCIs. In this chapter, I discuss my contributions in-depth and suggest
future work.

The overall title for the research project I’m part of is “Realtime Individualiza-
tion of BCIs – Optimizing the Next Generation BCIs using Cloud Computing”. We
have limited ourselves to EEG-based Brain-Computer Interfaces (BCIs) since they
are the most commonly used. It lies in the project’s scope to examine and develop
state-of-the-art methods. My research started with generally learning about Brain-
Computer Interfaces (BCIs), and I gained interest in the calibration part of the BCIs.
I liked the calibration problem’s data-driven nature while still focusing on the math
behind the algorithms.

8.1 Insights

In this section, I discuss my insights from the papers. I start with paper III since it
is my first paper in chronological order. Then, continue with paper I, which builds
upon the ideas from paper III. Finally, I discuss paper II, which is separate from the
other two.

Paper III
The problem formulation for Paper III was an adaptive BCI system that should
decide if it should be used as it is or recalibrated for better performance. We for-
mulated the decision-making as a Markov decision process [Littman, 2001]. In a
Markov decision process, the system can be in different states and transition after
an action to another (or the same) state with a given probability. We formulated a
simple situation for our BCI case and derived theoretical results that told us the con-
ditions for when to use the BCI as it is and when to recalibrate. The problem with
our formulation was that it is hard to implement in practice. The state and transition
probabilities were more or less impossible to identify in a real-world setting, so we
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concluded that while the idea with an adaptive BCI was good, we needed another
approach than the Markov decision process formulation.

Paper I
With an adaptive decision-making BCI in mind, we considered multi-armed bandits
for modeling the decision-making. Inspired by Fruitet et al. (2012), we wanted to
use multi-armed bandits for data selection during calibration. When working with
BCIs the classification is rarely perfect and can often be improved by providing
more data to the underlying machine learning algorithm – remember, the aim dur-
ing calibration of BCIs is to train a machine learning algorithm. Instead of sampling
data from all possible classes, the challenge is identifying which data category will
improve classification the most. We framed this challenge as a multi-armed bandit
problem. One challenge with this formulation was how rewards should be given
after an action is taken – should it be the classification accuracy, a binary reward
for if the classification was improved, or something else entirely? Another chal-
lenge was the nonstationarity of the problem, which made it hard to study – adding
more data to the training set will change how all classes are classified, not only
the classification of the new data’s class. To get more insight into how to handle
these challenges, I did an extensive literature review on Multi-armed bandits, which
ended up as a review paper (Paper I).

While writing the review paper, I got new inspiration for how to use multi-
armed bandits in BCIs, this time from Gutiérrez et al. (2017). The new idea was
to use multi-armed bandits for data selection for transfer learning. The idea was
for the BCI to choose data samples from different sources (other users or previous
sessions) to be used for transfer learning for this session. We formulated this as a
multi-armed bandit problem where picking data from a source was an action, and
the classification accuracy when using that data for transfer learning was the corre-
sponding reward. Preliminary results from this showed that the best approach often
was to pick data samples from the same source all the time rather than exploring
other sources. I still believe that this is a promising approach, but while studying
this, I observed that even though transfer learning is used, using data from some
subjects results in better performance than using data for other persons. It made me
curious, and I gained interest in Riemann geometry-based transfer learning meth-
ods, which brings us to my plans for future work (see Section 8.2).

Paper II
My main insight from working on Paper II was that designing a BCI is hard. There
are so many things that need to sync for it to work at all, and even when everything
is in sync, you still need to have a good experiment and use the EEG hardware
correctly for the signals to be of sufficient quality. This motivates me to use publicly
available EEG data for future research since that data is “correctly” measured and
collected.
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A second insight from working on Paper II was all the different algorithms that
exist for BCIs. In this thesis, I have presented the algorithms I most frequently
encountered in the literature, but there are more.

Yet another insight is that I realized how BCIs connect many different research
fields. You need to have an understanding of how the brain works to be able to de-
sign meaningful experiments, you need to be a hardcore programmer to implement
anything that is not a standard BCI, and you need to be a mathematician to under-
stand how the used algorithms work. To reach the next level of BCIs, experts in all
these areas need to work together.

8.2 Future work

There is a lot of exciting research that can be done on BCIs. Here, I present some
ideas I will study hereafter, and some research areas I think will improve BCIs
significantly.

For me
As stated above, the research project I’m part of aims to explore and develop
state-of-the-art methods for BCIs. I have recently gained interest in Riemannian
geometry-based classifiers and transfer learning, which are state-of-the-art meth-
ods. The paper by Rodrigues et al. (2019) sparked my interest, which describes a
transfer learning method based on Riemannian geometry. Following this inspiration,
I plan to investigate the following two topics:

• Data for transfer learning – When we do transfer learning, we use source
data from a previous session, another user, or a similar task to train the ma-
chine learning algorithm for a new session (target data). My preliminary re-
sults show that when using data from some persons, the BCI performance is
better than if data from other persons is used, even though transfer learning is
done. I’m interested in exploring if there are any features of the data that can
predict what source data is suitable to use with the target data.

• Recalibration of BCI systems – I still believe in the idea of an automated
BCI system that can detect when recalibration is needed (same idea as in
Paper III). I’m interested in creating such as automatic BCI using algorithms
based on Riemannian geometry.

For everyone
In my thesis, I have focused on the calibration challenge of BCIs. But many other
challenges with BCIs must be solved before we see BCIs in our everyday lives.
Here are three research areas that I believe will improve BCIs significantly.
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• Fundamental research on the brain – With more knowledge of how the
brain works, it would be easier to decipher the meaning of the measured brain
signals. A lot of cool research is done in this area, but even more is needed.

• Hardware – Development of hardware that is easier and faster to use and
gives better signal quality is needed.

• New algorithms – Generally, new algorithms and methods to process and
analyze EEG data are needed.

Summary
This chapter discussed my insights from my papers and my plans for future work.
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Final words

To summarize this thesis, we can conclude that Brain-Computer Interfaces are a
technology of the future, and more research is needed before we reach that future.

In the thesis, we have learned what a BCI is and that the calibration of BCIs
is one of the biggest challenges with BCIs. We have also learned about the brain
and what brain signals are used in BCIs. We looked at many algorithms used in
BCIs and saw that machine learning is at the heart of BCIs. In my research, I have
investigated Markov decision processes and Multi-armed bandits as algorithms for
automatic BCIs, as well as developed a framework for BCI design.

My contributions in this thesis are twofold: the first chapters give a wide-ranging
background to Brain-Computer Interfaces, and the later chapters present my initial
research on Brain-Computer Interfaces. In the future, I plan to delve into the realm
of Riemannian geometry to improve the calibration of Brain-Computer Interfaces.

Thank you for reading my thesis!

FRIDA HESKEBECK
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Figure credits

This chapter provides copyright information about all figures in the thesis (not in-
cluding figures in the papers).

Figure 2.1 Running a BCI © 2022 by Frida Heskebeck is licensed under CC
BY-SA 4.0.

Figure 3.1 Neuron © 2022 by Frida Heskebeck is licensed under CC BY-SA
4.0. Derived from Neuron © 2019 by Dhp1080 (CC BY-SA 3.0).

Figure 3.2 Medical gallery of Blausen Medical 2014 © 2014 by Blausen.com
staff (CC BY 3.0).

Figure 3.3 Sensory Homunculus © 2013 by OpenStax College (CC BY 3.0).

Figure 3.4 Components of ERP © 2008 by Choms (original) and Mononomic
(vectorized) (CC BY-SA 3.0).

Figure 3.5 Neuroimaging comparision © 2022 by Frida Heskebeck is licensed
under CC BY-SA 4.0. Inspired by Nam et al. (2018).

Figure 3.6 © 2019 by Kennet Ruona (free use within Lund University).

Figure 3.7 EEG 10-10 system with additional information (CC0 1.0).

Figure 3.8 Human EEG with prominent alpha-rhythm © 2015 by Andrii
Cherninskyi (CC BY-SA 4.0).

Figure 3.9 EEG brainwaves (CC0 1.0).

Figure 3.10 NIMH MEG (public domain).

Figure 3.11 1206 FMRI © 2016 by OpenStax (CC BY 4.0).

Figure 3.12 Blonde fNIRS lady © 2019 by Elisenicolegray (CC BY-SA 4.0).

Figure 3.13 ECAT-Exact-HR–PET-Scanner (public domain).
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Figure 4.1 Decoding flowchart © 2023 by Frida Heskebeck is licensed under
CC BY-SA 4.0.

Figure 4.2 Human EEG artefacts © 2015 by Andrii Cherninskyi (CC BY-SA
4.0).

Figure 4.3 Power Spectral Density, generated with the MNE toolbox in
Python. Same data as in this demo (https://mne.tools/stable/
auto_examples/decoding/decoding_csp_eeg.html) and using the
Raw.compute_psd function.

Figure 4.4 Time-Frequency plot, generated with the MNE toolbox in
Python. Same data as in this demo (https://mne.tools/stable/
auto_examples/decoding/decoding_csp_eeg.html) and using the
time_frequency.tfr_morlet function.

Figure 4.5 Illustrative PCA plots © 2023 by Frida Heskebeck is licensed under
CC BY-SA 4.0.

Figure 4.6 Illustrative CSP plots © 2023 by Frida Heskebeck is licensed under
CC BY-SA 4.0.

Figure 4.7 CSP topo-maps, generated with the MNE toolbox in Python.
Demo from MNE: https://mne.tools/stable/auto_examples/
decoding/decoding_csp_eeg.html.

Figure 4.8 Illustrative MDM and LDA plots © 2023 by Frida Heskebeck is
licensed under CC BY-SA 4.0.

Figure 4.9 Illustrative SVM plots © 2023 by Frida Heskebeck is licensed un-
der CC BY-SA 4.0.

Figure 4.10 Illustration of neural network structure © 2023 by Frida Heskebeck
is licensed under CC BY-SA 4.0.

Figure 4.11 Comparison of elliptic, Euclidean and hyperbolic geometries in
two dimensions © 2020 by CMG Lee (CC BY-SA 4.0).

75



Bibliography

Abiri, R., S. Borhani, E. W. Sellers, Y. Jiang, and X. Zhao (2019). “A comprehensive
review of EEG-based brain-computer interface paradigms”. Journal of Neural
Engineering 16:1, p. 011001. ISSN: 1741-2552. DOI: 10 . 1088 / 1741 - 2552 /
aaf12e. pmid: 30523919.

Aubé, T. (20, 2019). The Most Important Tech No One Is Talking About. Hacker-
Noon.com. URL: https://medium.com/hackernoon/the-most- important- tech-
no-one-is-talking-about-c171c438e1a (visited on 2021-09-08).

Barachant, A., S. Bonnet, M. Congedo, and C. Jutten (2012). “Multiclass
Brain–Computer Interface Classification by Riemannian Geometry”. IEEE
Transactions on Biomedical Engineering 59:4, pp. 920–928. ISSN: 1558-2531.
DOI: 10.1109/TBME.2011.2172210.

Bauer, M. and F. Heskebeck (2022). “A Workplace Equality Workshop for the Con-
trol Engineering Classroom”. IFAC-PapersOnLine. 13th IFAC Symposium on
Advances in Control Education ACE 2022 55:17, pp. 97–102. ISSN: 2405-8963.
DOI: 10.1016/j.ifacol.2022.09.231.

Berger, H. (1929). “Uber das elektroenkephalogramm des menschen”. Archiv für
psychiatrie und nervenkrankheiten 87, pp. 527–570.

Bhatt, D., C. Patel, H. Talsania, J. Patel, R. Vaghela, S. Pandya, K. Modi, and H.
Ghayvat (2021). “CNN Variants for Computer Vision: History, Architecture,
Application, Challenges and Future Scope”. Electronics 10:20, p. 2470. ISSN:
2079-9292. DOI: 10.3390/electronics10202470. (Visited on 2023-07-10).

Blankertz, B. (26, 2018). “Gentle Introduction to Signal Processing and Clas-
sification for Single-Trial EEG Analysis”. In: Nam, C. S. et al. (Eds.).
Brain–Computer Interfaces Handbook: Technological and Theoretical Ad-
vances. CRC Press, New York, pp. 343–370. ISBN: 978-1-351-23195-4. DOI:
10.1201/9781351231954.

76



Bibliography

Blankertz, B., R. Tomioka, S. Lemm, M. Kawanabe, and K.-r. Muller (2008). “Opti-
mizing Spatial filters for Robust EEG Single-Trial Analysis”. IEEE Signal Pro-
cessing Magazine 25:1, pp. 41–56. ISSN: 1558-0792. DOI: 10.1109/MSP.2008.
4408441.

Burwell, S., M. Sample, and E. Racine (9, 2017). “Ethical aspects of brain computer
interfaces: a scoping review”. BMC Medical Ethics 18:1, p. 60. ISSN: 1472-
6939. DOI: 10.1186/s12910-017-0220-y. URL: https://doi.org/10.1186/s12910-
017-0220-y (visited on 2022-02-04).

eigenchris (2017). Tensors For Beginners. [Video]. URL: https : / / www. youtube .
com / playlist ? list = PLJHszsWbB6hrkmmq57lX8BV- o - YIOFsiG (visited on
2023-08-22).

eigenchris (2020). Tensor Calculus. [Video]. URL: https : / / www. youtube . com /
playlist?list=PLJHszsWbB6hpk5h8lSfBkVrpjsqvUGTCx (visited on 2023-08-
22).

Facebook (14, 2021). BCI milestone: New research from UCSF with support from
Facebook shows the potential of brain-computer interfaces for restoring speech
communication. Facebook Technology. URL: https://tech.fb.com/bci-milestone-
new-research- from-ucsf-with-support- from-facebook-shows- the-potential-
of-brain-computer-interfaces-for-restoring-speech-communication/ (visited on
2021-09-08).

Faisal, A. A., M. P. Deisenroth, and C. S. Ong (2020a). “Dimensionality Reduction
with Principal Component Analysis”. In: Mathematics for Machine Learning.
Cambridge University Press, pp. 317–347. URL: https://mml-book.com/ (visited
on 2021-06-15).

Faisal, A. A., M. P. Deisenroth, and C. S. Ong (2020b). “Probability and Distri-
butions”. In: Mathematics for Machine Learning. Cambridge University Press,
pp. 172–224. URL: https://mml-book.com/ (visited on 2021-06-15).

Farwell, L. A. and E. Donchin (1, 1988). “Talking off the top of your head: toward
a mental prosthesis utilizing event-related brain potentials”. Electroencephalog-
raphy and Clinical Neurophysiology 70:6, pp. 510–523. ISSN: 0013-4694. DOI:
10.1016/0013-4694(88)90149-6. URL: https://www.sciencedirect.com/science/
article/pii/0013469488901496 (visited on 2021-09-11).

Fruitet, J., A. Carpentier, R. Munos, and M. Clerc (2012). “Bandit Algorithms boost
Brain Computer Interfaces for motor-task selection of a brain-controlled but-
ton”. In: Bartlett, P. et al. (Eds.). Advances in Neural Information Processing
Systems. Vol. 25. Neural Information Processing Systems (NIPS) Foundation,
Lake Tahoe, Nevada, United States, pp. 458–466. URL: https : / /hal .archives-
ouvertes.fr/hal-00771495 (visited on 2021-10-29).

Gemborn Nilsson, M., P. Tufvesson, F. Heskebeck, and M. Johansson (2023). “An
open-source human-in-the-loop BCI research framework: method and design”.

77



Bibliography

Frontiers in Human Neuroscience 17. ISSN: 1662-5161. DOI: 10.3389/fnhum.
2023.1129362.

Géron, A. (5, 2019). Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems.
"O’Reilly Media, Inc.". 851 pp. ISBN: 978-1-4920-3261-8. Google Books:
HHetDwAAQBAJ.

Gonfalonieri, A. (6, 2020). “What Brain-Computer Interfaces Could Mean for the
Future of Work”. Harvard Business Review. ISSN: 0017-8012. URL: https://hbr.
org/2020/10/what-brain-computer-interfaces-could-mean-for-the-future-of-
work (visited on 2021-09-11).

Google (2021). Google Brain Team. URL: https : / / research . google / teams /brain/
(visited on 2021-09-08).

Gutiérrez, B., L. Peter, T. Klein, and C. Wachinger (2017). “A Multi-armed Bandit
to Smartly Select a Training Set from Big Medical Data”. In: Descoteaux, M.
et al. (Eds.). Medical Image Computing and Computer Assisted Intervention
- MICCAI 2017. Lecture Notes in Computer Science. Springer International
Publishing, Cham, pp. 38–45. ISBN: 978-3-319-66179-7. DOI: 10.1007/978-3-
319-66179-7_5.

Heskebeck, F. and C. Bergeling (2021). “An Adaptive Approach for Task-Driven
BCI Calibration”. In: BCI Meeting 2021. BCI Meeting 2021. URL: http://lup.
lub.lu.se/record/de71d9e1-3dfb-46d2-b54f-61abe48a8d2d.

Heskebeck, F., C. Bergeling, and B. Bernhardsson (2022). “Multi-Armed Bandits in
Brain-Computer Interfaces”. Frontiers in Human Neuroscience 16. ISSN: 1662-
5161. DOI: 10.3389/fnhum.2022.931085.

Jayaram, V. and A. Barachant (2018). “MOABB: trustworthy algorithm benchmark-
ing for BCIs”. Journal of Neural Engineering 15:6, p. 066011. ISSN: 1741-
2552. DOI: 10.1088/1741-2552/aadea0. URL: https://doi.org/10.1088/1741-
2552/aadea0 (visited on 2021-09-02).

Jayaram, V., K.-H. Fiebig, J. Peters, and M. Grosse-Wentrup (26, 2018). “Transfer
Learning for BCIs”. In: Nam, C. S. et al. (Eds.). Brain–Computer Interfaces
Handbook: Technological and Theoretical Advances. CRC Press, New York,
pp. 425–441. ISBN: 978-1-351-23195-4. DOI: 10.1201/9781351231954.

King, J.-R. and V. Wyart (2, 2021). “The Human Brain Encodes a Chronicle of
Visual Events at each Instant of Time thanks to the Multiplexing of Traveling
Waves”. Journal of Neuroscience. ISSN: 0270-6474, 1529-2401. DOI: 10.1523/
JNEUROSCI.2098-20.2021. pmid: 33811150. URL: https://www.jneurosci.org/
content/early/2021/04/01/JNEUROSCI.2098-20.2021 (visited on 2021-08-13).

Krol, L. R., L. M. Andreesen, and T. O. Zander (26, 2018). “Passive Brain-
Computer Interfaces: A Perspective on Increased Interactivity”. In: Nam, C. S.
et al. (Eds.). Brain–Computer Interfaces Handbook: Technological and Theo-

78



Bibliography

retical Advances. CRC Press, New York, pp. 70–86. ISBN: 978-1-351-23195-4.
DOI: 10.1201/9781351231954.

Littman, M. L. (2001). “Markov Decision Processes”. In: Smelser, N. J. et al. (Eds.).
International Encyclopedia of the Social & Behavioral Sciences. Pergamon, Ox-
ford, pp. 9240–9242. ISBN: 978-0-08-043076-8. DOI: 10.1016/B0-08-043076-
7/00614-8. (Visited on 2023-08-29).

Lotte, F., L. Bougrain, A. Cichocki, M. Clerc, M. Congedo, A. Rakotomamonjy,
and F. Yger (2018a). “A review of classification algorithms for EEG-based
brain-computer interfaces: a 10 year update”. Journal of Neural Engineering
15:3, p. 031005. ISSN: 1741-2552. DOI: 10 .1088 /1741 - 2552 / aab2f2. pmid:
29488902.

Lotte, F., M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi (2007). “A review
of classification algorithms for EEG-based brain-computer interfaces”. Journal
of Neural Engineering 4:2, R1–R13. ISSN: 1741-2560. DOI: 10 . 1088 / 1741 -
2560/4/2/R01. pmid: 17409472.

Lotte, F. (2015). “Signal Processing Approaches to Minimize or Suppress Calibra-
tion Time in Oscillatory Activity-Based Brain–Computer Interfaces”. Proceed-
ings of the IEEE 103:6, pp. 871–890. ISSN: 1558-2256. DOI: 10.1109/JPROC.
2015.2404941.

Lotte, F., C. S. Nam, and A. Nijholt (26, 2018b). “Introduction: Evolution of
Brain–Computer Interfaces”. In: Nam, C. S. et al. (Eds.). Brain–Computer In-
terfaces Handbook: Technological and Theoretical Advances. CRC Press, New
York, pp. 1–8. ISBN: 978-1-351-23195-4. DOI: 10.1201/9781351231954.

Marzbani, H., H. R. Marateb, and M. Mansourian (2016). “Neurofeedback: A Com-
prehensive Review on System Design, Methodology and Clinical Applications”.
Basic and Clinical Neuroscience 7:2, pp. 143–158. ISSN: 2008-126X. DOI: 10.
15412/J.BCN.03070208. pmid: 27303609.

Microsoft (2021). Brain-Computer Interfaces. Microsoft Research. URL: https : / /
www.microsoft.com/en-us/research/project/brain-computer-interfaces/ (visited
on 2021-09-08).

Müller-Putz, G. R. (1, 2020). “Chapter 18 - Electroencephalography”. In: Ram-
sey, N. F. et al. (Eds.). Handbook of Clinical Neurology. Vol. 168. Brain-
Computer Interfaces. Elsevier, pp. 249–262. DOI: 10 . 1016 / B978 - 0 - 444 -
63934- 9.00018- 4. URL: https://www.sciencedirect.com/science/article/pii/
B9780444639349000184 (visited on 2022-01-20).

Muratore, D. G. and E. J. Chichilnisky (2020). “Artificial Retina: A Future Cellular-
Resolution Brain-Machine Interface”. In: Murmann, B. et al. (Eds.). NANO-
CHIPS 2030: On-Chip AI for an Efficient Data-Driven World. The Frontiers
Collection. Springer International Publishing, Cham, pp. 443–465. ISBN: 978-
3-030-18338-7. DOI: 10.1007/978-3-030-18338-7_24. URL: https://doi.org/10.
1007/978-3-030-18338-7_24 (visited on 2021-09-08).

79



Bibliography

Nam, C. S., I. Choi, A. Wadeson, and M. Whang (26, 2018). “Brain–Computer
Interface: An Emerging Interaction Technology”. In: Nam, C. S. et al. (Eds.).
Brain–Computer Interfaces Handbook: Technological and Theoretical Ad-
vances. CRC Press, New York, pp. 12–52. ISBN: 978-1-351-23195-4. DOI: 10.
1201/9781351231954.

National Institute of Neurological Disorders and Stroke (2023). Brain Ba-
sics: Know Your Brain. https://www.ninds.nih.gov/health-information/public-
education/brain-basics/brain-basics-know-your-brain. (Visited on 2023-09-14).

Neuralink (2021). Neuralink. Neuralink. URL: https: / /neuralink.com/ (visited on
2021-09-08).

Nicolas-Alonso, L. F. and J. Gomez-Gil (31, 2012). “Brain Computer Interfaces, a
Review”. Sensors (Basel, Switzerland) 12:2, pp. 1211–1279. ISSN: 1424-8220.
DOI: 10.3390/s120201211. pmid: 22438708. URL: https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC3304110/ (visited on 2021-08-13).

Nijboer, F. and U. Broermann (2010). “Brain–Computer Interfaces for Communi-
cation and Control in Locked-in Patients”. In: Graimann, B. et al. (Eds.). Brain-
Computer Interfaces: Revolutionizing Human-Computer Interaction. The Fron-
tiers Collection. Springer, Berlin, Heidelberg, pp. 185–201. ISBN: 978-3-642-
02091-9. DOI: 10.1007/978-3-642-02091-9_11. URL: https://doi.org/10.1007/
978-3-642-02091-9_11 (visited on 2022-01-19).

Pfurtscheller, G. and C. Neuper (2010). “Dynamics of Sensorimotor Oscillations in
a Motor Task”. In: Graimann, B. et al. (Eds.). Brain-Computer Interfaces: Rev-
olutionizing Human-Computer Interaction. The Frontiers Collection. Springer,
Berlin, Heidelberg, pp. 47–64. ISBN: 978-3-642-02091-9. DOI: 10.1007/978-3-
642-02091-9_3. URL: https://doi.org/10.1007/978-3-642-02091-9_3 (visited
on 2022-01-19).

Purves, D., G. J. Augustine, D. Fitzpatrick, W. C. Hall, A.-S. LaMantia, R. D.
Mooney, M. L. Platt, and L. E. White, (Eds.) (2018). Neuroscience. 6th edition.
Oxford University Press, New York. 960 pp. ISBN: 978-1-60535-380-7.

Riggins, T. and L. S. Scott (2020). “P300 development from infancy to adoles-
cence”. Psychophysiology 57:7, e13346. ISSN: 1469-8986. DOI: 10.1111/psyp.
13346. URL: https : / /onlinelibrary.wiley.com/doi / abs /10 .1111 /psyp .13346
(visited on 2022-02-08).

Rodrigues, P. L. C., C. Jutten, and M. Congedo (2019). “Riemannian Procrustes
Analysis: Transfer Learning for Brain–Computer Interfaces”. IEEE Transac-
tions on Biomedical Engineering 66:8, pp. 2390–2401. ISSN: 1558-2531. DOI:
10.1109/TBME.2018.2889705.

Ruiz-Blondet, M. V., Z. Jin, and S. Laszlo (2016). “CEREBRE: A Novel Method for
Very High Accuracy Event-Related Potential Biometric Identification”. IEEE
Transactions on Information Forensics and Security 11:7, pp. 1618–1629. ISSN:
1556-6021. DOI: 10.1109/TIFS.2016.2543524.

80



Bibliography

Saha, S., K. A. Mamun, K. Ahmed, R. Mostafa, G. R. Naik, S. Darvishi, A. H.
Khandoker, and M. Baumert (2021). “Progress in Brain Computer Interface:
Challenges and Opportunities”. Frontiers in Systems Neuroscience 15, p. 4.
ISSN: 1662-5137. DOI: 10 . 3389 / fnsys . 2021 . 578875. URL: https : / / www.
frontiersin.org/article/10.3389/fnsys.2021.578875 (visited on 2021-09-11).

scikit-learn developers (2023). Scikit-learn: User guide. https://scikit-
learn/stable/user_guide.html. (Visited on 2023-04-25).

Sur, S. and V. K. Sinha (2009). “Event-related potential: An overview”. Industrial
Psychiatry Journal 18:1, pp. 70–73. ISSN: 0972-6748. DOI: 10 . 4103 / 0972 -
6748 . 57865. pmid: 21234168. URL: https : / / www. ncbi . nlm . nih . gov / pmc /
articles/PMC3016705/ (visited on 2022-01-17).

This Is CYBATHLON (2022). URL: https://cybathlon.ethz.ch/en/cybathlon (visited
on 2022-01-14).

Vialatte, F.-B., M. Maurice, J. Dauwels, and A. Cichocki (1, 2010). “Steady-state
visually evoked potentials: Focus on essential paradigms and future perspec-
tives”. Progress in Neurobiology 90:4, pp. 418–438. ISSN: 0301-0082. DOI:
10 . 1016 / j . pneurobio . 2009 . 11 . 005. URL: https : / / www. sciencedirect . com /
science/article/pii/S0301008209001853 (visited on 2022-02-22).

Vidal, J. J. (1973). “Toward Direct Brain-Computer Communication”. Annual Re-
view of Biophysics and Bioengineering 2:1, pp. 157–180. ISSN: 0084-6589,
0084-6589. DOI: 10.1146/annurev.bb.02.060173.001105. URL: http://www.
annualreviews.org/doi/abs/10.1146/annurev.bb.02.060173.001105 (visited on
2021-09-11).

81







Department of Automatic Control
P.O. Box 118, 221 00 Lund, Sweden

www.control.lth.se

ISRN LUTFD2/TFRT-3281
ISSN 0280–5316

N
O

RD
IC

 S
W

A
N

 E
C

O
LA

BE
L 

30
41

 0
90

3
Pr

in
te

d 
by

 M
ed

ia
-T

ry
ck

, L
un

d 
20

23


	Tom sida



