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H I G H L I G H T S

Electric HVAC scheduling for cost reduc-
tion and load shift to off-peak hours.
Model predictive control with genetic
algorithm, particle swarm optimization
or neural network.
Warehouses, vacation homes and heat
drying of buildings under construction.
Confirmed by simulation and real-time,
full-scale experiment.

G R A P H I C A L A B S T R A C T

R T I C L E I N F O
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odel predictive control

A B S T R A C T

Considering recent developments in the energy sector, further reduction of electricity cost and flattening of the
electric power demand curve are needed. We have focused on an autonomous electric heater control system
that can easily be implemented in existing buildings without strict comfort requirements. Examples are winter
heating of warehouses and vacation homes, and heat drying of buildings under construction. We have set up
a system that typically reduces electricity cost by about 40% on the basis of automatic weather and real time
pricing forecasts. The system uses the building as an energy reservoir over periods with high electricity cost.
Using a model predictive control system, we compare use of a genetic algorithm, a particle swarm optimization,
and a neural network for heater control, all working in a closed loop to reduce the influence of modeling errors.
We have simulated the performance of the systems using realistic data and found that all three optimizers
give about the same performance, varying only a few percent in efficiency. However, the computational and
memory requirements of the neural network are much lower than for the other optimizers, so it is preferable
for use with inexpensive microcontrollers. We carried out a full-scale experiment at a residential house and
found agreement with simulation results.
. Introduction

In an electric power grid, the produced power must match the
onsumed power. In addition to adjusting the power injected into the
rid, in the future, sophisticated options will be available for con-
rolling power consumption on the demand side in combination with
arge-scale power storage facilities [1–3]. However, at the moment,
djusting real time electricity prices is the dominating demand response
ontrol tool [4], giving customers a strong incentive to shift power
onsumption to times with low electricity cost.

E-mail address: torben.andersen@astro.lu.se.

Due to the present shortage of electric power and the need to flatten
the power demand curve, we have focused on short-term solutions
that, in existing buildings, can readily be implemented with simple
hardware, such as small and inexpensive microcontrollers. We study the
situation, where electric heating can store energy in the form of heat
in a building at times, when electricity is in surplus and cost is low.
For conventional residential buildings, the saving potential with this
approach is limited to 5–10% [5], because overheating a building will
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be uncomfortable for its users. However, there is a group of buildings
for which a temporary overheating can be accepted:

• Industrial warehouses and workshops
• Second (vacation) homes.
• Air drying of buildings under construction

n Sweden alone, there are almost 600 000 vacation houses and well
ver half of these are assumed to be heated electrically during the win-
er to keep them dry, and to avoid freezing of water systems. The power
onsumption for these houses may be about 250 GWh for each of the
hree winter months. A saving of, say, 40%, with an average electricity
ost estimate of about 4 Swedish Crowns (SEK) per kWh, would lead
o a total saving of the order of 1.2 billion SEK for consumers, and
lso contribute to a much needed shift of the consumption profile for
he grid. We do not have data for the saving potential for industrial
arehouses and workshops, but it seems reasonable to assume that the

aving potential for those is of the same order of magnitude.
Such a system will be most attractive for buildings that are well-

nsulated. The electric heating appliances may be simple resistive heat-
ng elements, heat pumps, or air blast heaters, all of which take electric
ower from the grid as their main energy source, and are easy to
ontrol with existing hardware and technology. Hence, for electric
eating, Ventilation, and Air Conditioning (HVAC), we have studied
n autonomous Energy Management System (EMS), which is based on
eather forecasts and electricity real time pricing 24 h ahead.

Recently, two types of electricity optimization approaches have
rawn interest for residential dwellings:

• Controllers based on a neural networks with reinforcement learning.
This approach uses a neural network to control HVACs. It is often
not straightforward to prepare training datasets for supervised
training of a neural network, because of lack of a ‘‘ground truth’’
for a heating schedule based upon the forecasts. Hence, several
teams have turned to reinforced learning, where the system trains
itself during operation [5–7]. Using an ‘‘agent’’ to ad-hoc train the
neural network, the system at the same time controls the HVAC
and fulfills the temperature requirements. It is an advantage that
the system does not need prior knowledge of the building and
heating system. It learns over time how to control the heaters and
how the occupants behave. Disadvantages are that it may take
some time before the system will have tuned itself, and it may not
handle abrupt changes in operating conditions or electricity cost
well. Also, it is sensitive to external heat sinks or heat sources, for
instance if an unknown heater is turned on by house residents.

• Model predictive control (MPC). Such a system controls the HVAC
on the basis of optimizations. It determines future system perfor-
mance by running a mathematical model of the real system [8].
Such a model can be precise but requires some prior knowledge
of model parameters.

We here focus on the second alternative. A control system of this
ype is easy to retrofit, using existing hardware and technology. Some
ork in the field has apparently been done by private actors and power

ompanies to assist consumers, but little has been published on the
ubject, because the information typically is proprietary. Hence, the
bjectives of this article are to present and compare three different
chemes for model predictive control of the buildings described, and,
n particular, to demonstrate that a very shallow neural network can
ulfill the optimization requirements.

We then study and compare the following three optimization
chemes for heating control, all using the building itself as a heat
eservoir during periods with low electricity cost:

• Genetic algorithm
• Particle swarm optimization
• Neural network
2

Fig. 1. Principle of the proposed energy management system.

The proposed system relies on retrieval of future weather and price
data through communication with external Application Programming
Interfaces (APIs). The system runs an optimization at regular intervals,
typically every hour.

Our EMS can be readily established on the consumer side in exist-
ing buildings with only little additional hard- or software, leading to
significant electricity cost savings. We here focus on heating systems,
since air conditioning is generally not needed in residential buildings in
Sweden, but the principles apply equally well to cooling. We document
the correct function of the system and the simulation model by a full-
scale experiment on a residential building using the genetic algorithm
for optimization.

2. Methodology

The principle of the proposed EMS is shown in Fig. 1. A control
system retrieves electricity real-time pricing and weather forecasts 24 h
ahead and determines the best heating strategy. Real-time pricing for
the next 24 h can typically be retrieved automatically from an API of
the local electric power company, and weather forecasts for 24 h (or
more) from a meteorological institute. The weather forecast is updated
every hour, and the real time pricing every 24 h. The optimization
is done every hour and the system operates in a closed loop mode,
because the present building temperature is fed back to the control
system to correct for any building temperature errors.

The task is, every hour, to estimate the ‘‘best’’ heater values for
each of the coming 24 h. The heater values are real numbers that are
constrained to an interval from zero to the max capacity of the heater.
For any choice of heater values, we apply an objective function to
rate the usefulness of the choice. Evaluation of the objective function
involves two parts:

• A simulation with a thermal model to predict a time history of
the building temperature.

• Evaluation of the result by finding the value of the objective
function.

As is common practice for MPC-systems, only the very first pre-
dicted heater value will be used at any particular moment, even though
all heater values for the next 24 h are predicted as a part of the
optimization.
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Fig. 2. Thermal model of building.

. Methods

With an optimizer, the task is then to determine optimal heater
alues for each of the next 24 h on the basis of the objective function.
n the following, we first present a thermal model and an objective
unction, which underlie all three optimization schemes mentioned
bove. Next, we present the individual optimizers.

.1. Thermal model

The building can be seen as a single-input-single-output system
ith heating as input and temperature as output. We use the thermal
odel shown in Fig. 2. A more accurate model could include several
eat reservoirs, i.e. have several time constants (real poles in the left
alf plane). However, because the thermal model is used in a closed
oop (see Fig. 1), it is here permissible to approximate the thermal
erformance of the building with that of a single heat reservoir. Minor
odeling errors will anyway be corrected by closed-loop control. The

ame is true for the influence of wind, which is not included in the
odel.

Referring to Fig. 2, the corresponding differential equation simply
ecomes
𝑑𝑇𝑏
𝑑𝑡

= 1
𝐶

(

ℎ𝑤𝑎𝑙𝑙
(

𝑇𝑎 − 𝑇𝑏
)

+ ℎ𝑟𝑎𝑑
(8 −𝛷)

8
𝛾 + 𝑄̇ℎ

)

, (1)

where ℎ𝑤𝑎𝑙𝑙 is a proportionality factor defining the effect of convection
and conduction through the building walls, ℎ𝑟𝑎𝑑 is a proportionality
factor defining heating from solar influx through windows, 𝛷 is the
dimensionless meteorological cloud cover value scaled from 0 to 8, 𝛾
is a daylight factor, 𝐶 is the heat capacity of the inner building, 𝑡 is
time, and the other symbols are defined in Fig. 2. On Laplace form, the
transfer function then is that of a regular time constant:
{𝑇𝑏}
{𝑄̇𝑒𝑥𝑡}

=
1∕ℎ𝑤𝑎𝑙𝑙
1 + 𝜏𝑠

, (2)

with

𝑄̇𝑒𝑥𝑡 = ℎ𝑤𝑎𝑙𝑙𝑇𝑎 + ℎ𝑟𝑎𝑑
(8 −𝛷)

8
𝛾 + 𝑄̇ℎ (3)

and where 𝑠 is the Laplace operator, 
{

𝑇𝑏
}

and 
{

𝑄̇𝑒𝑥𝑡
}

are the
aplace transforms of 𝑇𝑏 and 𝑄̇𝑒𝑥𝑡, and the time constant is 𝜏 = 𝐶∕ℎ𝑤𝑎𝑙𝑙.

As already mentioned, selection of the values for the various param-
ters is not critical. The parameter 𝜏 is the most important parameter
or the cost optimization. A first estimate of 𝜏 can be taken from step
esponses and typically has a value of 1–2 days. Hourly values of 𝛾
epend on the time of the year and could be taken as 1 from one hour
fter Sunrise until 1 h before Sunset (depending on window locations),
nd then otherwise 0. The value of ℎ𝑤𝑎𝑙𝑙 can be estimated rather well
rom the assumption that the heating system is capable of keeping an
ndoor comfort temperature with an external temperature down to, say,
25 ◦C.
3

3.2. Objective function

The objective function provides a figure of merit for a certain choice
of heating values over a given period. Whenever real time pricing is
available for the electricity, we use a period of 24 h, but during the
beginning of a day, 24-h real-time pricing may not yet be available,
and we then work with a somewhat shorter look-ahead.

The objective of our heat regulator is to keep the building tem-
perature close to a specific value, however allowing the temperature
occasionally to rise higher to provide energy storage. With a simulated
building temperature time history arranged as a time series of length
𝑛, the temperature objective function, 𝑃𝑡, is computed as

𝑃𝑡 =
1
𝑛

𝑛
∑

𝑖=1
𝑝𝑖, where (4)

𝑝𝑖 =

{

(

𝑇𝑠 − 𝑇𝑏,𝑖
)𝜆 if 𝑇𝑏,𝑖 ≤ 𝑇𝑠

0 otherwise.
(5)

Here 𝑇𝑏,𝑖 is the building temperature with time index 𝑖, and 𝑇𝑠 the
setpoint defining the desired building temperature. For our work, we
have set the exponent 𝛾 to the value 3, which provides a significant
penalty, when building temperatures are low. This is important for
many applications to avoid that the building temperature gets below
the freezing point, thereby damaging installations.

The cost objective function is simply the total cost of electricity over
24 h:

𝑃𝑐 =
𝑛
∑

𝑖=1
𝑐𝑖𝑄̇ℎ,𝑖𝛥𝑡, (6)

where 𝑐𝑖 is the cost per electric energy (i.e. per kWh) and 𝑄̇ℎ,𝑖 is the
electric heating power, both with time index 𝑖, and 𝛥𝑡 the time series
sampling interval (1 h). We then set the total objective function, 𝑃 , to

𝑃 = 𝛼𝑃𝑡 + 𝛽𝑃𝑐 (7)

where 𝛼 and 𝛽 are user selected weights defining the relative impor-
tance of temperature control and cost. For all work described in this
article, we used the values 𝛼 = 1SEK∕◦C3 and 𝛽 = 1. For a good choice
of heating values, our objective function is small, so the optimizer then
attempts to minimize the objective function.

3.3. Genetic algorithm

We use a genetic algorithm as shown in Fig. 3[9,10]. We first select
a random population of sets of 24 heater values for 24 h. An individual
of the population is then a vector of 24 real numbers. Using the thermal
model described above, for each individual, we perform a simulation in
the time domain of the thermal performance of the building, taking the
forecast for ambient temperature and insolation through windows into
account. The simulation gives an estimate of the building temperature
over the next 24 h, corresponding to the individual selected. Then the
objective function is used to generate a figure of merit for the suitability
of a population individual at hand. This is repeated for all individuals
of the population.

Again referring to Fig. 3, we next select the most promising indi-
viduals for parenting and we perform a crossover operation to generate
children. We use a probability of 50% for an offspring to inherit genes
from each of the parents. In addition to the gene-sharing, we add a
mutation, in which each gene has a certain probability of mutating.
Not shown in Fig. 3 is the use of an elitism ratio specifying that a
small percentage of the parents are transferred directly to the children
(parthenogenesis). The purpose is to prevent loss of genes that already
were found to be good. Finally, the best children are used as new par-
ents to form yet another offspring generation and the process continues
until a stop criterion is fulfilled.

We have made numerous tests with different choices of the meta-
parameters of the genetic algorithm for our application. It was found
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Fig. 3. Principle of genetic algorithm used for optimization.

Table 1
Genetic algorithm metaparameters.

Parameter Value

Number of iterations 1000
Population size 5
Probability of mutation 10%
Crossover probability 50%
Parenting percentage 30%
Elitism ratio 1%

beneficial in our case to use a small parenting population and a large
number of generations. The values in Table 1 gave reliable conver-
gence.

Use of a genetic algorithm has shown to give robust and sensible
results for our application. We will present some results in Sections 5.1
and 5.2. It is not guaranteed that the solution is the best possible, in
fact it probably never is. The genetic algorithm [11] is coded in Python
3 and is executed once every hour.

3.4. Particle swarm optimization

Particle swarm optimization [12,13] is a metaheuristic method that
so far has found only limited use for energy control [14,15]. Again,
the task is, every hour, to estimate the ‘‘best’’ heater values for each
of the coming 24 h, when future electricity cost and a weather forecast
are available. The purpose is then to estimate an n-dimensional heating
vector, where n = 24. The principle of swarm optimization is to launch
P ‘‘birds’’ (called ‘‘particles’’) in n-dimensional space with random start
locations and with random velocities, both within boundary values. At
each subsequent time step, the particles change their velocity vector,
based jointly on the previous velocity, the direction to the best location
found by the entire swarm, and the best location seen by the particle
itself. Randomness is added to avoid local minima. A figure of merit for
each location is found by running the thermal model using the heating
vector as input and then using the objective function already described.
In contrast to what is the case for the genetic algorithm, the individual
4

particles live during the entire optimization process. T
Table 2
Particle swarm optimization metaparameters.

Parameter Value

Swarm size 500
Max number of iterations 60
Cognitive coefficient 0.5
Social coefficient 0.5

The algorithm is simple. Assume that a particle with index 𝑖 at time
has a location defined by the n-dimensional vector 𝐱𝑖𝑡 and a velocity
ector ν𝑖𝑡. The new velocity at time step 𝑡 + 𝛥𝑡 then is

𝑖
𝑡+𝛥𝑡 = 𝛺ν𝑖𝑡 + 𝜑𝑐𝜉(𝐫𝐢𝐭 − 𝐱𝑖𝑡) + 𝜑𝑠𝜉(𝐬𝑡 − 𝐱𝑖𝑡) (8)

here 𝐫𝑖𝑡 is the best location that the particle has ever seen itself, and
𝑡 the best that the entire flock of particles has seen at time 𝑡. The
ser-selected weighting factor 𝜑𝑐 is the cognitive coefficient, and 𝜑𝑠 is
he social coefficient. The symbol 𝜉 represents a random real number
rawn from the interval [0,1] at every instance to add randomness to
he search process. The factor 𝛺 is selected by the user and must be
ess than or equal to 1 to preserve convergence. As suggested in [16],
e use the value 1 at the first iteration and then decrease it linearly to
.4 at the last iteration. The new position at time step 𝑡 + 𝛥𝑡 is
𝑖
𝑡+𝛥𝑡 = 𝐱𝑖𝑡 + ν

𝑖
𝑡+𝛥𝑡 (9)

n addition, we have introduced a limit to the maximum velocity any
article may have as described in [17]. Also, whenever a particle
eaches a boundary, we set its velocity to zero [16]. Both features are
nown to improve convergence, and that was also the case for our
pplication.

We selected the metaparameters on the basis of suggestions in the
iterature and by experimenting. The values are shown in Table 2. We
sed an existing library [18] that we modified to take into account the
dditions mentioned above.

.5. Neural network

In addition to the genetic algorithm, a neural network [19] may also
rovide an estimate of optimal heating values. Our main incentive for
tudying the neural network solution has been to reduce computation
ime and computer memory footprint as compared to use of the other
ptimization methods. The input to the neural network is the real time
ricing, external temperature forecast and the sky coverage forecast
or the next 24 h, and the output is a dataset with hourly heating
alues. It may be desirable to adjust the setpoint, 𝑇𝑠, during operation,
nd the neural network must work in closed-loop mode to avoid drift
rom estimation errors. Hence, in addition to the weather and pricing
orecasts, we also include the temperature setpoint and the initial
uilding temperature as inputs to the neural network. As for the other
ptimizers, the neural network is run every hour.

For supervised learning, a number of training cases with known
nputs and targets are needed. As input values for our training cases, we
sed 24-h sequences of real time pricing, outdoor temperature and sky
overage forecasts randomly sampled from records taken over about
hree months by the end of 2022 at a location in southern Sweden.

e selected setpoints and initial building temperatures randomly in
he interval [6, 12] ◦C. As targets for the training, we used ‘‘optimal’’
eating values determined by simulation using the genetic algorithm
nd the particle swarm optimization method, alternately. All inputs
ere normalized to have a zero mean and a standard deviation of 1.
he outputs were normalized to the interval [0,1].

Our neural network must be suitable for microcontrollers, for in-
tance running Tensorflow Lite for microcontrollers. Hence, the size of
he neural network must be as small as possible. The neural network
inally selected for our study is shown in Fig. 4. It is indeed shallow.

he network has two input branches, one for temperature setpoint and
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Fig. 4. Neural network for estimation of 14 hourly heating values.

Table 3
Neural network metaparameters.

Parameter Value

Number of training datasets 6552
Number of validation datasets 1640
Batch size 256
Number of epochs 1000
Number of trainable parameters 16 360
Optimizer Adam
Loss function Mean squared error

temperature feedback, and one for hourly values. In the normal case,
when the forecasts have a length of 24 h, we only need one output value
(the first heating value over a 24 h period). However, at specific times
of the day, depending on the power company, there may not be 24 h
of forecasts available, so we chose to let the neural network estimate
all heating values for the first 14 h. By including input values from the
past, it is then possible to use the same neural network also when the
forecast does not include all 24 h values.

We also considered using a Long Short Term Memory (LSTM)
network but it was abandoned. The strength of an LSTM lies in its ca-
pability to carry over previous time series information (such as trends),
which is not an issue for our application. Weather and electricity
pricing both vary rather erratically due to external factors not included
in the time series.

For the neural network we used Python 3 and Keras with Tensor-
flow. Metaparameters are shown in Table 3.

4. Implementation

The proposed system was evaluated both by simulation and ex-
perimentally. Using a simulation model, we compared the optimiza-
tion approaches, and with the experimental setup, we verified system
5

performance using the genetic algorithm.
Table 4
Simulation parameters.

Parameter Symbol Value Unit

Thermal time constant 𝜏 24 h
Wall heat transfer coefficient ℎ𝑤𝑎𝑙𝑙 17.8 W/◦C
Heat capacity 𝐶 1.54 × 106 J/◦C
Solar influx constant ℎ𝑟𝑎𝑑 250 W
ODE solver integration interval 5 min
Heater wattage 800a W
Setpoint 9 ◦C
Initial condition 9 ◦C

a Value for primary room being controlled. Total heater wattage was 1800 W.

4.1. Simulation model

We performed simulations to test and compare the regulator prin-
ciples, and we also compared their performance to that of a regular
thermostat. We simulated heating of a residential building using true
real-time data for two days in December 2022 in southern Sweden. The
hourly pricing was taken from the NordPool power market, including
value added tax. Instead of a temperature forecast, we used actual,
recorded outdoor temperature measured over the two days at the res-
idential dwelling that we also used later for experimental verification.
The insolation was taken from weather forecasts for the same period.

Fig. 5 shows the simulation model used. The ‘‘regulator’’ in the
figure then includes one of the optimizers described in Section 3, or
a regular thermostat with a specified setpoint and deadband for com-
parison. The simulation was coded in Python 3 running under Windows
11 on an Intel i7-11850H CPU. We used the system parameters shown
in Table 4. Most of the values are identical to those of the system used
for the experimental verification to be described later. We controlled
one part of the house with an 800 W heater. Another part had a 1000
W heater working as a slave unit.

Solving the ordinary differential equation (1) analytically is straight-
forward, but for coding reasons it was easier to solve the equation
numerically to find a temperature time history. The only dynamics
involved in the thermal model is a large time constant. We used an
explicit Runge–Kutta fourth order solver, which is readily available in
the Scipy library.

4.2. Experimental setup

To verify that the controller principle works well in practice, we
installed a real-time system in an existing residential building. The
system continuously retrieved hourly updated weather forecasts from
the API of the Swedish Meteorological and Hydrological Institute,
and daily electricity real time pricing from the NordPool API. The
algorithms of our control systems gave the required average heating for
every hour. The heaters were controlled ON/OFF using a contactor by
pulse width modulation with a time step of 1 h. For instance, a heater
value of, say, 33%, then corresponds to the heater being switched on
for 20 min and off for 40 min. We also recorded external and internal
building temperatures. The parameters were the same as those given
in Table 4. All software for the experiment was written in Python 3.
The controller ran on an i7-4790S CPU at 3.20 GHz using Windows 10,
and the average CPU load from the controller was low. The system has
been tested for a few months and no major problems were seen with
the controllers described above.

5. Results

5.1. Simulation results

To illustrate performance under different conditions, we chose a
time series having a large electricity price dip during the first night
and a more flat price profile during the second night. The hourly real
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Fig. 5. Simulation model architecture.
Table 5
Electricity usage and cost for the simulation period of 48 h.

Method Consumption Cost
kWh SEK (Swedish

Crowns)

Genetic algorithm 16.1 67.5
Genetic algorithm, 𝜏 underestimated by 50% 16.1 70.9
Genetic algorithm, 𝜏 overestimated by 100% 15.8 65.4
Particle swarm optimization 16.2 66.4
Neural network 16.1 66.2
Thermostat 21.4 92.6

Table 6
Optimizer comparison when running under Windows 11 on an i7-11850H/2.50 GHz
processor.

Method Peak memory allocation Typical CPU time
kB s

Genetic algorithm 407 32
Particle swarm optimization 911 105
Neural network 24a 0.064b

a Size of network file for Tensorflow Lite for microcontrollers.
b Without GPU.

time pricing is shown in the uppermost plot of Fig. 6, and the heating
plans found by the genetic algorithm, the particle swarm optimization,
and the neural network in the three plots below. The necessary heating
using a thermostat can be seen in the fifth plot of the figure, and the
estimated insolation through windows in the plot below. For the days
chosen, the Sun was shining only during two short periods. Finally, the
building temperatures obtained from the simulation are presented in
the lower plot together with the outdoor temperature, which was used
by the optimizers. The first night had a substantial kWh price dip, so all
three optimizers increased the building temperature during that period
to store energy. On the second day, the kWh price was rather flat with
little saving potential, and the optimizers all spread out heating over
time.

The total power consumption and electricity cost for the period is
shown in Table 5. The cost savings obtainable by heat scheduling as
compared to the use of simple thermostat depends on the variation of
the real time pricing over time. In most cases studied, based on real
weather and cost data from the end of 2022 in southern Sweden, we
found cost savings over 40%, but in this example, the saving potential
was smaller due to the partially flat kWh price profile, so the cost saving
was only about 28%.

We also made simulation runs for which we deliberately underesti-
mated the building time constant by 50%, or overestimated it by 100%
in the objective function with respect to that of the simulation model
(24 h). The results are also shown in Table 5. The consequences of using
a wrong time constant for the optimizer are marginal, as long as the
time constant is considerably longer than the sampling time

Table 6 shows the peak runtime memory for the control program
with different optimizers. Obviously, the values depend on the specific
coding of the algorithms. Hence, the values are very approximate, but
they are still a good basis for evaluating the complexity of the different
optimizers. For the neural network, the memory allocation given is the
6

actual size of the neural network file, when exporting it to a microcon-
troller running Tensorflow lite. This cannot be compared directly to the
other memory values but does give an order of magnitude. Tensorflow
Lite for microcontrollers itself takes only about 16 kB. All execution
times given in this table were taken from runs on an Intel i7-11850H
running Windows 11 at 2.50 GHz, here without use of GPU.

5.2. Experimental verification

We ran a full-scale experiment over a couple of months at a house
in Southern Sweden using a genetic algorithm. For illustration, we
here again show a period having both significant dips with a low
electricity price and a more flat region without major dips. The results
are shown in Fig. 7. The thermal time constant, 𝜏, of the model used for
optimization was set to 24 h. The genetic algorithm works well when
it comes to exploiting the low electricity cost at locations A, C and
D. In the B region, the price curve is flatter, so the algorithm spreads
out heating more over time to prevent the building temperature from
dropping too much. The setpoint was here also 9 ◦C.

For the period covered by this experiment, the total power con-
sumption was 13.4 kWh and the energy cost 27.0 SEK. For comparison,
we ran a simulation for the system with a thermostat using the same
weather data and real time prices and found the corresponding values
to be 14.8 kWh and 66.6 SEK. The cost saving using the genetic
algorithm was then 59% for this period

We finally compared the experimental result to that of a simulation
with a genetic algorithm using our thermal model. From the experi-
mental data, the simulation took the electricity rates and the weather
data as input, and we then ran a complete simulation with the thermal
model and the genetic algorithm. The resulting house temperature from
the simulation is shown in the blue curve of Fig. 6. By comparing
the simulation temperature curve to the curve from the experiment,
it seems that the value of the thermal time constant (24 h) used in the
model may be a little underestimated. However, the control system still
gives reasonable results and closed loop operation also removes drift.

6. Discussion

With a simulation model, we have compared optimizers for ‘‘smart’’
controllers that can easily be used for existing buildings with no strict
comfort requirements. We have compared a genetic algorithm, a par-
ticle swarm optimization, a neural network and a regular thermostat
controller.

With our EMS, the simulation example in Section 5.1 using a genetic
algorithm showed a cost saving of 28% compared to using a thermostat
regulator, whereas the experiment period presented in Section 5.2 had
a saving of 59%. Since practically useful datasets for ‘‘benchmarking’’
of EMS’s do not exist, it is difficult to state exactly how useful a given
controller is. The cost benefit of any EMS depends very much on the
variability of the real time pricing of electricity. However, during a
continuous run with our control system for about two months by the
end of 2022, we saw in most cases cost savings over 40% as compared
to use of a regular thermostat.

As can be seen from Table 5 and Fig. 6, the genetic algorithm
and the particle swarm optimization give rather similar results and
are about equal in performance. However, as shown in Table 6, the
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Fig. 6. Simulation results. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
emory and the computation time requirements for the particle swarm
ptimization are larger, so for our application, the genetic algorithm is
referable. A more general comparison of the two optimizers can be
ound in [20].

The neural network is very shallow. It has been trained with super-
ised learning on simulation data from a blend of data from the genetic
lgorithm and the particle swarm optimization. Obviously, it cannot
e expected to perform better than those two optimizers. However,
he neural network is very small and has only little execution time,
o it is well suited for low-cost microcontrollers, for instance running
ensorflow Lite for microcontrollers.

As mentioned in Section 1, neural networks based on reinforcement
earning are also possible [5–7], but they are more complex, and it
s still unclear, whether they are preferable over genetic algorithms
r particle swarm optimizations for our applications, and whether
hey can handle a variety of different existing buildings well. This
lso highlights the need for generally accepted practical benchmarking
atasets for our type of application that can be used for comparison of
ifferent energy management systems.

We are here using a model-based approach. It is a disadvantage of
he method, that estimates of model parameters are needed beforehand.
7

owever, the few parameters are rather easy to estimate, and the
influence of wrong parameter choices will be reduced, because our
system operates in closed loop. As already described, the global heat
transfer coefficient for all walls together, ℎ𝑤𝑎𝑙𝑙, is straightforward to
estimate. Selection of the correct value for the time constant plays a
role for cost optimization but as shown in Table 5, a correct choice of
the time constant is not critical.

The electricity pricing and the weather forecasts are available every
hour, so we chose to use the same resolution for our optimizers. It
would be possible to work with a higher resolution for the optimization
but considering that the time constant of the buildings typically are
1–2 days, it was felt that a higher resolution would not increase
the efficiency of the optimizer significantly. Obviously, the thermal
model works with a much smaller integration interval (generally a few
minutes).

In addition to what is already described, we have also set up and
tested a Kálmán filter and an adaptive controller to continuously adjust
the value of the time constant of the model, but we did not find it
useful. Use of the adaptive controller will lead to some cost savings,
but it is a disadvantage that it will not work well, if there are external
heat sources or sinks not accounted for, because they will ‘‘confuse’’
the adaptive controller. An adaptive controller is therefore mainly of

interest for applications, where there are no heat sources and sinks that
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Fig. 7. Results from residential house experimental verification. The small peak at ‘‘a’’
s due to a contactor malfunction and can be disregarded.

re unknown to our control system, or when it is difficult to estimate
he thermal time constant. However, that is normally not the case.

It could be a drawback of the simulation model presented in Sec-
ion 4.1, that the same mathematical model is used both for the
lgorithms and for the simulation. Discrepancies in building modeling
ould be masked by use of the same model for both purposes. How-
ver, the experimental validation of Section 5.2 largely confirmed the
imulation results.

The proposed system uses the building itself for energy storage
y increasing temperature during periods with low electricity price.
his is beneficial both from the point of view of cost and power grid

oading. However, a higher building temperature leads to a larger heat
oss through the walls and therefore increases total power consump-
ion. Thus, our proposed system is most attractive for well-insulated
uildings.

We have primarily focused on the applications outlined in Section 1,
ut it would be rather easy to change the objective function of the
ptimizers to accommodate specific needs for the occupants to have
cceptable temperatures to match their daily routines. However, the
enefit of the system would then diminish.

. Conclusion

In summary, we have studied and tested an EMS with either of three
ifferent optimizers for temperature control of buildings with little
r no comfort requirements. Simulation and a full-scale experiment
how that the proposed system works well with savings of up to 59%,
lthough our experience has shown that energy cost savings generally
ere about 40% during the winter months for a house in southern
8

Sweden. The proposed system is useful for a significant electric power
consumer sector: Warehouses, vacation homes and air-drying of build-
ings under construction. Use of the system is simple and it is easy
to implement with microcontrollers in existing buildings. And it will
provide a demand response that contributes to leveling of electric
power consumption over time, and thereby to reducing price volatility
and pollution.
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