
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Many-photon effects in time-resolved second harmonic generation from systems in
optical cavities

Gopalakrishna, Megha

2024

Link to publication

Citation for published version (APA):
Gopalakrishna, M. (2024). Many-photon effects in time-resolved second harmonic generation from systems in
optical cavities. Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/7b8fd1e1-c38b-4124-bd3d-42ff1d77f50d


Many-photon effects in time-resolved 
second harmonic generation from 
systems in optical cavities
MEGHA GOPALAKRISHNA 

DEPARTMENT OF PHYSICS | FACULTY OF SCIENCE | LUND UNIVERSITY





Many-photon effects in time-resolved second harmonic
generation from systems in optical cavities.





Many-photon effects in time-resolved
second harmonic generation from

systems in optical cavities.

by Megha Gopalakrishna

Thesis for the degree of Doctor of Philosophy
Thesis advisor: Assoc. Prof. Claudio Verdozzi

Faculty opponent: Prof. Göran Johansson

To be presented, with the permission of the Faculty of Science of Lund University, for public 
criticism in the Rydebrg lecture hall at the Department of Physics on Friday, the 23rd of 

February 2024 at 13:15.



D
O
K
U
M
E
N
T
D
A
T
A
B
L
A
D

en
l
S
IS

61
41

21
Organization
LUND UNIVERSITY
Department of Physics
Box 118
SE–221 00 LUND
Sweden

Author(s)
Megha Gopalakrishna

Document name
DOCTORAL DISSERTATION
Date of disputation
2024-02-23
Sponsoring organization

Title and subtitle Many-photon effects in time-resolved second harmonic generation from systems
in optical cavities.

Abstract
Second harmonic generation is popular due to its numerous applications in different technolo-
gies dealing with multiple fields of science. The rapid technical advancement with the second
harmonic generation demands parallel development in the theoretical understanding. With
this view in mind, in our three papers, we theoretically investigated second harmonic genera-
tion from different systems in an optical cavity, and this thesis is based on these three papers.
Our studies are with the cavity, which will confine the photon mode. Also, we can address the
low photon regime with the cavity and observe the dominating quantum effects. We analyze
the second harmonic generation by observing the fluorescent spectra of the system with time-
resolved formalism. In our studies, we also propose a quantum-classical method inspired by
the physics of the Caldeira-Leggett model to depict cavity leakage.

In Paper I, we study fluorescent spectra from a Hubbard dimer. As a novelty in the study,
along with electron and photon degrees of freedom, we also consider quantum description for
nuclear degrees of freedom. With this new description of the Hubbard dimer, we demonstrated
a competition between photo-induced dimer dissociation and second harmonic generation.

In Paper II, we investigate the fluorescent spectra of cold boson atoms in an optical lattice
and also from a Bose-Einstein condensate. The study outlines the effects of increasing the
number of atoms, lattice sites, and the atom-atom interaction on second harmonic generation.

In Paper III, we explore the non-equilibrium Green function method as an alternative to
investigate second harmonic generation from a larger Dicke system. In the study, we observe
the effect of disorder and electron interaction on second harmonic generation.

Key words
cavity optics, second harmonic generation, Caldeira-Leggett model, cold atoms, optical lattice,
Dicke model, electron-photon interaction, exact diagonalization, GKBA

Classification system and/or index terms (if any)

Supplementary bibliographical information Language
English

ISSN and key title ISBN
978-91-8039-783-4(print)

978-91-8039-784-1(pdf)

Recipient’s notes Number of pages
123

Price

Security classification

I, the undersigned, being the copyright owner of the abstract of the above-mentioned disser-
tation, hereby grant to all reference sources the permission to publish and disseminate the
abstract of the above-mentioned dissertation.

Signature Date 2024-01-15



Many-photon effects in time-resolved
second harmonic generation from

systems in optical cavities.

by Megha Gopalakrishna

Thesis for the degree of Doctor of Philosophy
Thesis advisor: Assoc. Prof. Claudio Verdozzi

Faculty opponent: Göran Johansson

To be presented, with the permission of the Faculty of Science of Lund University, for public
criticism in the Rydebrg lecture hall at the Department of Physics on Friday, the 23rd of

February 2024 at 13:15.



A doctoral thesis at a university in Sweden takes either the form of a single,
cohesive research study (monograph) or a summary of research papers (compil-
ation thesis), which the doctoral student has written alone or together with one
or several other author(s).

In the latter case the thesis consists of two parts. An introductory text puts
the research work into context and summarizes the main points of the papers.
Then, the research publications themselves are reproduced, together with a de-
scription of the individual contributions of the authors. The research papers
may either have been already published or are manuscripts at various stages (in
press, submitted, or in draft).

Cover illustration front: Second harmonic generation spectrum (adapted from Pa-
per III)

Funding information: Financial support by The Swedish Research Council (VR).

© Megha Gopalakrishna 2024
Paper I © The authors under licence CC-BY 4.0
Paper II © The authors
Paper III © The authors

Faculty of Science, Department of Physics

isbn: 978-91-8039-783-4 (print)
isbn: 978-91-8039-784-1 (pdf)

Printed in Sweden by Media-Tryck, Lund University, Lund 2024



Dedicated to my Mother and Father





Contents

List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements v

Popular summary vii

1 Introduction 3

2 Theoretical and computational methods 7
2.1 Exact Diagonalization . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Lanczos algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Nonequilibrium Green function for electron-photon interacting

systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Second Harmonic Generation 19
3.1 Polarization and harmonic generation . . . . . . . . . . . . . . . 19
3.2 High harmonic generation . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Perturbation theory, Dressed states and Parity . . . . . . . . . . 21
3.4 Systems and photons in an optical cavity . . . . . . . . . . . . . 24

4 Dimer in the optical cavity 29
4.1 Resonance frequency of the Dimer . . . . . . . . . . . . . . . . . 29
4.2 Dimer interaction terms . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 On the choice between coherent and driven states for cavity photon

fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Optical lattices and cold atoms 37
5.1 Feshbach Resonances . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Optical lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Phase transitions in an optical lattice . . . . . . . . . . . . . . . 39
5.4 Model Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.5 A glance at Bose-Einstein condensates . . . . . . . . . . . . . . . 43

6 Conclusions and outlook 45

References 47

Scientific publications 55



Paper i: Photon pumping, photodissociation and dissipation at inter-
play for the fluorescence of a molecule in a cavity . . . . . . . . . 57

Paper ii: Second harmonic generation from ultracold bosons in an op-
tical cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Paper iii: Time resolved optical response of the Dicke’s model via
nonequilibrium Green’s function approach . . . . . . . . . . . . . 93

ii



List of publications

This thesis is based on the following publications, referred to by their Roman
numerals:

i Photon pumping, photodissociation and dissipation at interplay
for the fluorescence of a molecule in a cavity
M. Gopalakrishna, E. Viñas Boström, C. Verdozzi
SciPost Phys. 15, 138 (2023)

We introduced a model to demonstrate a competition between the photo-
induced dissociation and second harmonic generation from a Hubbard
dimer. Along with the dimer dissociation, we observed a decrease in the
intensity of the fluorescent spectra with electron interaction and quenching
of second harmonic generation from the slow driving of photons. We also
considered cavity leakage in the model and observed a reduction in the
intensity of fluorescent spectra.
contribution: I adapted an existing exact diagonalization (ED) code to
calculate steady-state second harmonic generations (SHG), and I extended
the approach in a time dependent code by implementing the effect of
cavity leakage on SHG. I further added all the other necessary extensions
to the code. I performed all the calculations, including all the benchmarks
necessary during the code development. I analyzed the results under the
co-authors’ guidance and I wrote the first draft (including the all the
figures) and participated actively in writing the final version of the paper.

ii Second harmonic generation from ultracold bosons in an optical
cavity
M. Gopalakrishna, E. Viñas Boström, C. Verdozzi
Submitted, arXiv:2401.05929

This paper studies the second harmonic generation from cold boson atoms.
We consider cold atoms in an optical lattice and atoms as a Bose-Einstein
condensate in the study. For the optical lattice, with the low atom-atom
interaction, increasing the number of atoms increased the intensity of
the spectra. However, with strong atom-atom interaction, we observed a
reduction in the emission intensity when there are more atoms than the
number of lattice sites. In the Bose-Einstein condensate, we observed a
trend of identical spectra with increased atoms for low cavity coupling,
but the spectrum deviated slightly with the stronger cavity coupling.

iii



contribution: Starting from the computational platform of the first pro-
ject, I implemented the Hamiltonian for boson ultracold lattices and to
discuss the situation of Bose-Einstein condensates. I further added all
the other necessary extensions to the code. I performed all the calcula-
tions, made all the figures, and provided a first analysis of the results. I
wrote the first draft of the paper, and I participated actively in writing
the final version of the paper.

iii Time resolved optical response of the Dicke’s model via
nonequilibrium Green’s function approach
M. Gopalakrishna, Y. Pavlyukh, C. Verdozzi
Submitted, arXiv:2312.13874

We investigated the second harmonic generation from the Dicke model
with NEGF formalism. The method was based on the time linear tech-
nique and was more efficient than the usual NEGF-GKBA formalism of
quadratic scaling. With the NEGF formalism, we could observe fluores-
cent spectra of SHG for the reasonably large system in the presence of
disorder and interaction, which is impossible with ED. We observed that
both disorder and electron interaction reduced the intensity of SHG.
contribution: I wrote all the codes necessary for the ED treatment in
the presence of interactions and disorder, and I did all the calculations
for both the ED and NEGF-GKBA approach. I fully analyzed the ED
results and, under the co-authors’ guidance, I analyzed the NEGF-GKBA
results. I wrote the first draft of the paper (including all the figures), and
participated actively in writing the final version of the paper.

All papers are reproduced with permission of their respective publishers.

iv



Acknowledgements

I appreciate the help that I got from every person during my PhD. With your
kindness, I’m approaching the end of this fascinating journey. I want to express
my gratitude to everyone, especially those mentioned here.

First of all, a big thanks to my supervisor, Claudio Verdozzi, for giving me an
opportunity to work with him. With very interesting topics, you introduced me
to a fascinating field of quantum optics. You always inspire me with your passion
and dedication to science. I have always admired your approach to finding more
than one way of doing things. You were kind to me in explaining things, always
clarified my doubts, and made me understand multiple concepts. I appreciate
that you allowed me to disturb you with small and big questions, even at odd
times. Also, I’m very thankful for the care and concern I got from you during
the COVID time. I enjoyed working with you and will miss your stories and
jokes.

I would like to thank Emil Viñas Boström for collaborating with me on the
fascinating projects. You allowed me to approach you many times with big
and small questions and helped me understand multiple concepts. In the same
breath, I would like to extend my gratitude to Yaroslav Pavlyukh. I enjoyed
working and also discussing with you. You were always kind to answer all my
questions. I am very grateful to you for the pedagogical Zoom sessions we had.

I want to thank my co-supervisors, Ferdi Aryasetiawan, Marcus Dahlström, and
Mathieu Gisselbrecht, for your help and kindness. Many thanks to my office
mates Jimmy Ljungberg, Drilon Zenelaj, Stefanos Carlström, Malte Schubert,
Mikael Nilsson Tengstrand, Josef Josefi, and Patrick Potts for always maintain-
ing the pleasant working atmosphere in the office. Zhen Zhao, Ayan Pal, and
Emil Östberg, I had a fun time with you during the conference, and also thank
you for all the scientific discussions. I also want to extend my gratitude to
Peter Samuelsson, Andreas Wacker, Andrea Idini, Erik van Loon, Gillis Carls-
son, Stephanie Reimann, Jakob Bengtsson, Tomas Brage, and Armin Tavakoli

v



for always being kind and introducing new and interesting science topics to me
through seminars and discussions.

A special thanks to Katarina Lindqvist for being reliable always with the ad-
ministrative work and taking care of my diet. Thanks to all the emeriti in the
division. Cecilia Jarlskog, I enjoyed discussing scientific and non-scientific topics
with you. Therese Stridh, thank you for all the help with the administration.
I’m sincerely grateful for each and every person at the Mathematical Physics di-
vision. I learned a lot from you and had fun during lunch, fika, and the division
day.

I want to extend my gratitude to Kartick Tarafder; you always inspire your stu-
dents to pursue science. I had lots of memorable times with Heena, Kumkum,
Om, Smitha, Nitin, Nitish, Rashi, Arvind, Carina, Shatabdi, Abhishek, Somnath,
and many more also thank you for the fun potlucks. Manuel, Pavan, and
Anchitha, I got lots of help from you during the early days, and I’m very grateful
for that. I also would like to thank my extended family and friends back home
for all the help and support.

Lastly, I’m grateful to my parents for their unconditional support and love. You
are the pillar of my life and education. Thank you for standing by my side in all
the decisions I make.

vi



Popular summary

Humans have always been interested in exploring light. The branch of science
that studies the nature of light is known as ‘optics’. In optics, light is expressed as
a ray or as a wave. The description of ‘rays’ helps explain the phenomena such as
reflection and refraction. However, processes such as diffraction and interference,
where one observes high and low-intensity patterns, require ‘wave’ description
of light. All these phenomena and descriptions support the wave nature of
light. But then processes like ‘Black body radiation’ and ‘photoelectric effect’
are explained by considering that light is made up of particles of discrete energy
called ‘photons’. Hence, light is considered to have a wave-particle duality since
it behaves both as a wave and a stream of particles. In this thesis, we consider
light confined in a cavity, and hence, we depend on the photon nature of light.

Light plays an essential role in everyday life. It is because of light that we
see the world around us. However, in today’s tech-driven world, applications
of light are far more numerous, communication has become faster, producing
energy has become environmental friendly with solar cells, and there are multiple
medical applications such as treating cancer. The basic phenomenon that all
these applications exploit is the interaction between light and matter.

Light interacting with the matter might interact weakly and cause no effect on
the material. However, the discovery of laser made possible to address high-
intensity phenomena. Light brings drastic changes to the system in the presence
of high intensity sources such as laser. In certain materials, such as ‘quartz’,
the high intensity fields can bring so-called ‘non-linear polarization’. The non-
linearity of the polarization allowed for multiple applications such as parametric
amplification, parametric oscillation, and the frequency conversion of the incid-
ent field. Frequency conversion helps achieve sum frequency conversion, differ-
ence frequency conversion, and ‘high-harmonic generation’. In this thesis, we
focus on ‘second harmonic generation’, in which the frequency of the incident
field is doubled.
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Theoretically, there are multiple methods that have been considered to invest-
igate second harmonic generation. In this thesis, we work with two of these
methods. Also, we investigate second harmonic generation in different systems,
and characterize some general trends in the time dependent and steady state
spectra.
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Part I

Background and Methods





Chapter 1

Introduction

Light falling on a material might or might not get absorbed. If a material absorbs
the light, then again, it might or might not emit the absorbed light. Light
emitted may or may not be the same as the incident light. Because of all these
possibilities, the interaction between light and matter lies at the heart of many
revolutionary technologies, such as spectroscopy, laser, microscopy, solar cells,
sensors, and many more. One such revolution is second harmonic generation
(SHG), where two incident photons on a material result in a single photon with
twice the incident frequency. SHG is a non-linear effect requiring an intense light
source for observation. Hence, it was first observed only after the discovery of
the laser.

Nowadays, SHG is used in a wide range of applications, such as microscopy,
biological sensing, short pulse measurement, and characterizing crystals. Even
though there has been vast growth in the applications of SHG some aspects in
the theoretical understanding of this process are still not fully understood. In
this regard, we studied SHG from different systems inside an optical cavity. For
the study, we consider the approach of theoretical models. With the models, one
may not be able to address the physics associated with a specific system, but it
helps gather general trends associated with the physical process.

We consider systems inside an optical cavity because the cavity will confine the
electromagnetic mode. When an atom interacts with a laser field in free space,
there are a large number of photons that will interact with the atom. However,
these photons will interact very weakly with the atom since they will engage
with the atom for a short time. But, within a cavity, the cavity photons will
have an increased interaction time due to confinement [1]. Also, with the cavity,
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one can address the low photon limit in which quantum effects will dominate.

One can study the generation of second harmonics by observing the emission
spectra. In our cases, we assume that the photon-induced transitions will con-
serve the spin. Hence, we refer to the emissions spectra as fluorescent spec-
tra and study time-resolved fluorescent spectra. SHG can be investigated by
observing steady-state fluorescent spectra. However, monitoring the emissions
spectra throughout time helps understand and analyze the inherent physical
processes.

The methods used in our studies are exact diagonalization and nonequilibrium
Green functions. Exact diagonalization refers to solving the Schrödinger equa-
tion exactly. As the system gets larger, obtaining the exact result could be com-
putationally demanding and impractical in most cases. However, for a reason-
ably “small” system, the solutions of exact diagonalization stand as a benchmark
and can also be used to verify other methods that involve assumption and/or
approximations. The nonequilibrium Green function method is well known in
studying time dynamics. It is also computationally expensive, but with the gen-
eralized Kadanoff-Baym ansatz, one can transform the quadratic time-evolving
framework to a single time scheme. Then, the computational time will be re-
duced drastically. Hence, though the exact diagonalization is an exact method,
the Green function gets an edge over it, and some studies that are impossible to
carry out with the exact diagonalization become viable with the Green function
approach.

To summarize the context of this thesis, In Paper I, we studied competition
between dimer dissociation and the generation of second harmonic. The elec-
tron’s degrees of freedom, dimer nuclear degrees of freedom, and photon fields are
all treated quantum mechanically. In this study, we also depicted photon leak-
age from the cavity via coupling baths of the classical oscillators to the photon
fields. In Paper II, we studied SHG from cold bosonic atoms in an optical lat-
tice and from a boson atom condensate. In this study, we explored the effects
of atom-atom interaction on the fluorescent spectra. Both of the studies were
carried out with exact diagonalization. As said earlier, the ED method becomes
impractical for larger systems. In Paper III, we investigated the generation of
second harmonics from the Dicke model using the nonequilibrium Green func-
tion method. Hence, we considered a reasonably larger Dicke system, and in the
study, we observed the effect of disorder and electron interaction on SHG.

Now, we will outline the structure of this thesis. In the second chapter, we briefly
describe the numerical methods used in the papers. The following three chapters
in Part I contain an overview of the paper’s contents. The sixth chapter includes
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a summary and an outlook for further research. We hope Part I will acquaint
the readers with the necessary materials to read papers in Part II.
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Chapter 2

Theoretical and computational
methods

2.1 Exact Diagonalization

In quantum mechanics, the wave function obtained by solving the Schrödinger
equation contains all the information about the system. By representing the
Hamiltonian of the system in a matrix form, solutions to the Schrödinger equa-
tion are obtained by diagonalizing the matrix. This method is known as exact
diagonalization (ED). Of course, when the system becomes larger, ED becomes
impractical. But sometimes, in theoretical studies, smaller systems can be used
to gather insight in to more complex system, and ED becomes a prominent tool
to explore such systems.

The dynamics of a quantum system is understood by observing the time evolu-
tion of the wave function of the system. The time-evolved state of the system
is obtained by acting with the time evolution operator on the system’s initial
state. When the Hamiltonian H is time-independent, the time evolution of the
initial state |ψ(0)〉 is given by,

|ψ(t)〉 = e−iHt|ψ(0)〉 (2.1)

In all the discussions we consider ~ = 1.

With the set of eigenfunctions λ of H, the time evolution will be re-represented
as,

|ψ(t)〉 =
∑

λ

e−iEλt|λ〉〈λ|ψ(0)〉 (2.2)
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This method of time evolution is not applicable when the Hamiltonian is time-
dependent. In that case, we consider time evolution in small-time steps ∆.
With eigenvalues Eλ corresponding to time t + ∆/2 the time evolution will be
as follows,

|ψ(t+ ∆)〉 ≈
∑

λ

e−iEλ∆|λ〉〈λ|ψ(t)〉 (2.3)

In the above equation ∆ is assumed small enough that
∫ t+∆
t H(t′)dt′ ≈ H(t+ ∆

2 )∆.
The method of ED solves the Hamiltonian exactly without any assumptions.
But, since the Hilbert space scales unfavourably with enlarging the physical sys-
tem, soon with the increased system size ED becomes practically impossible
[2, 3, 4]. Hence, ED is preferred for smaller systems and can be considered as a
benchmark for other methods used in more complicated studies.

2.2 Lanczos algorithm

The problem with a growing Hilbert space met by ED can be compensated
at some extent by performing the time evolution via the Lanczos algorithm
[5, 2, 3, 4, 6]. With the Lanczos algorithm, instead of diagonalizing the full
Hamiltonian H, a smaller tridiagonal Hamiltonian HL is constructed, which
comes from approximating the full e−iH(t+ ∆

2
)∆ in an optmized basis |Vk〉, with

k ≤ Nκ and Nκ small (as shown below, the vectors {Vk} are related to the
application of [e−iH(t+ ∆

2
)∆]k to |Ψ(t)〉. The time evolution Ψ(t) → Ψ(t + ∆)

is then obtained with a suitable modification of Eq. 2.3 projected in the {Vk}
space. Since Nκ ≡ Dim(HL) is chosen greatly smaller than Dim(H), the time
evolution is again possible, after making sure (via a proper choice of ∆ and Nκ)
that convergence is assured within the {Vk} space. For sparse Hamiltonians,
with a relatively small number of nonzero matrix elements, the (highly reduced)
number of operations to perform matrix-vector multiplications to produce the
basis {Vk} at each time step is also an important factor increasing the numerical
efficiency of the Lanczos algorithm. The latter is thus especially suitable for
large sparse Hamiltonians.

In more detail, the Lanczos algorithm involves span of the orthonormal vectors,
also known as Lanczos vectors. They can be obtained by the successive applica-
tion of H on the system’s state (such as ψ(0) for time-independent Hamiltonian).
Orthonormalization follows the principle of Gram-Schmidt orthonormalization.
The time evolution with the Lanczos algorithm is initialized by the seed state

8



|V0〉 = ψ(0), where ψ(0) is the initial state. Second Lanczos vector |V1〉 or-
thonormal to |V0〉 will be,

|ṽ1〉 = H|V0〉 − u0|V0〉,

u0 = 〈V0|H|V0〉, w1 =
√
〈ṽ1|ṽ1〉,

|V1〉 =
1

w1
|ṽ1〉. (2.4)

Further, the construction of mth Lanczos vectors is as follows,

|ṽm〉 = H|Vm−1〉 − um−1|Vm−1〉 − wm−1|Vm−2〉,

um−1 = 〈Vm−1|H|Vm−1〉, wm−1 =
√
〈ṽm−1|ṽm−1〉,

|Vm〉 =
1

wm
|ṽm〉. (2.5)

After observing that increasing the dimension of the Krylov space will not
change the results, time evolution is assumed to be converged. For the con-
vergence observed with a maximum Lanczos vector |Vκ〉, the Lanczos basis is
{|V0〉, |V1〉, |V2〉, ..., |Vκ〉}. As we can observe the Lanczos Hamiltonian HL is
tridiagonal and κ determines the size of HL.

HL =




u0 w1 0 0 0 · · ·
w1 u1 w2 0 0 · · ·
0 w2 u2 w3 0 · · ·
0 0 w3 u3 w4 · · ·
...

...
...

...
...

. . .




(2.6)

With the Lanczos vectors, time evolved state for the time-independent Hamilto-
nian will be,

|ψ(t)〉 =
∑

m,λ(L)

|Vm〉〈Vm|e−iE
(L)
λ t|λ(L)〉〈λ(L)|V0〉, (2.7)

where E(L)
λ corresponds to eigenvalues of Lanczos Hamiltonian HL and V0 =

ψ(0). The Lanczos algorithm will be helpful whenever κ is significantly smaller
than the size of the Hilbert space corresponding to actual Hamiltonian H. When
the Hamiltonian is time-dependent, time evolution will be considered in steps as
in Eq. 2.3. For the time evolved state ψ(t+ ∆), the seed state V0 will be ψ(t).
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2.3 Nonequilibrium Green function for electron-photon
interacting systems

As mentioned earlier, in Paper III we explore the scope of NEGF method for
studying light-matter coupled system. The correlation based NEGF method can
be used to extract the relevant observables as time dependent averages. Some
approximations will be adopted with the method to make it less expensive.

2.3.1 NEGF for fermions

This section gives a brief summary of the NEGF method for fermions (electrons).
More detailed presentations of the method can be found in [7, 8, 9, 10]

Consider an interacting system in the ground state |ψg〉 at an initial time t = 0.
The system is described by an Hamiltonian H(t) = H0 + V (t) + HI , where
H0, V (t) respectively denote the static and time dependent independent-particle
contribution (i.e. V (t) describes the external perturbation, which usually starts
to act for t > 0), and HI accounts for the electron-electron interaction. The
average of an operator O at time t > 0 is given by

〈O(t)〉 = 〈ψg|U(0, t)OU(t, 0)|ψg〉, (2.8)

where U(t′′, t′) is a time evolution operator from time t′ to t′′, and U(t, 0)† =
U(0, t) is a property of the time evolution operator. One formulation of the
NEGF approach expands on the viewpoint of Eq. 2.8, using as starting point
the fully interacting system at t = 0. Much work with NEGF has been and
is done along these lines. However, in several recent treatments and actual
numerical implementations, another prescription is followed in practice, which
rests i) on an artificial adiabatic switching approach of the interactions starting
from an noninteracting system in the remote past, and ii) the assumption that
in this way one reaches the ground state of the interacting system, to then start
the actual nonequilibrium dynamics of interest. Our brief introduction here
to NEGF will be based on the adiabatic approach (see e.g [7] for an extended
discussion). Accordingly, for the adiabatic switch-on Hamiltonian one considers

Hσ(t) = H0 + e−σ|t|HI , (2.9)

and, for the Gell-Mann-Low theorem, |φ(0)〉 ≡ Uσ(0,−∞)|φg〉, (where |φg〉 is
the non-interacting ground state in the remote past, i.e. of H0) is an eigenstate
of Hσ(0) ≡ H0 +HI . The adiabatic connection is then realized if |φ(0)〉 = |ψg〉.

10



Figure 2.1: The contour C introduced in Eq. 2.12. The time argument of H on the two branches of C is according
to Eq. 2.11. The specification of H at positive and negative times, is given in the main text. The figure
is adapted from [7]

Within the adiabatic approach, Eq. 2.8 is rewritten as

〈O(t)〉 = 〈φg|Uσ(−∞, 0)U(0, t)OU(t, 0)Uσ(0,−∞)|φg〉, (2.10)

This expression can be compacted by extending the definition ofH(t) at negative
times as H(t < 0) ≡ Hσ(t), and using the time ordering (T) and the anti-time
ordering (T̄) operators (specified below):

〈O(t)〉 = 〈φg|T̄(e−i
∫−∞
t dt̄′H(t̄′))O T(e−i

∫ t
−∞ dt̄H(t̄))|φg〉. (2.11)

Here, T and T̄ order operators within the brackets. Specifically, T orders oper-
ators with later time to left, whereas T̄ will order later time operators to the
right. The ordering of times guided by T and T̄ can be combined in an oriented
contour C shown in Fig. 2.1.

The notion of contour is a core element of NEGF theory; it was pioneered by
Schwinger [11], reconsidered by Keldysh [12] and also by Konstantinov and Perel’
[13] and Danielewicz [14]. It can be applied in different forms and to different
situations. Here we focus on the contour for the adiabatic approach as shown
in Fig. 2.1. Introducing an orientation on C, the average 〈O(t)〉 can finally be
expressed as

〈O(t)〉 = 〈φg|TC{e−i
∫
C dτ̄ H(τ̄)O(τ)}|φg〉, (2.12)

where τ represents the contour time used to specify the real time t placed on the
forward or the backward branch of the contour.
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Single particle Green function

The contour Green function is a fundamental part of NEGF, and the one particle
contour Green function is given by,

Gij(τ, τ
′) =

1

i
〈φg|TC{e−i

∫
C dz̄ H(z̄)di(τ)d†j(τ

′)}|φg〉, (2.13)

where di annihilates an electron at state i. Here i represents both the orbital and
spin labels. The fermionic operators di and dj follow standard anti-commutation
relations, hence the Green function will change sign if τ ′ is later than τ .

Even though t > t′, τ ′ could be later than τ depending on placement of τ and
τ ′ on the contour. If τ ′ is later than τ then,

G<ij(t, t
′) = −1

i
〈φg|U(−∞, t′) d†j U(t′, t) diU(t,−∞)|φg〉. (2.14)

When τ is later than τ ′,

G>ij(t, t
′) =

1

i
〈φg|U(−∞, t) diU(t, t′) d†j U(t′,−∞)|φg〉. (2.15)

The contour Green function can be rewritten with the lesser and greater Green
functions as

Gij(τ, τ
′) = Θ(τ, τ ′)G>ij(t, t

′) + Θ(τ ′, τ)G<ij(t, t
′), (2.16)

where Θ(τ, τ ′) is a step function which becomes 1 when τ is later than τ ′ and 0
when τ is earlier than τ ′.

The equal-time lesser Green function corresponds to the density matrix; that is,
G<ij(t, t) = iρ<ij(t) (the reason for using the superscript “<” in ρ will become clear
later on). Hence time dependent average of an observable can be evaluated as

〈O(t)〉 =
∑

ij

Oijρ
<
ji(t) = −i

∑

ij

OijG
<
ji(t, t). (2.17)

Dyson equation

In the presence of electron-electron interactions, the one particle Green function
G can be expressed in terms of the non-interacting Green function G0, and a
quantity Σ known as the self energy. The complex behavior of the system due
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to the interactions is thus incorporated in Σ. With the introduction of Σ, the
one particle Green function can be obtained from the Dyson equation

G(τ, τ ′) = G0(τ, τ ′) +

∫

C
dτ1dτ2G0(τ, τ1)Σ(τ1, τ2)G(τ2, τ

′). (2.18)

Here G0 represents the non-interacting Green function.

Generalized Kadanoff-Baym Ansatz

The integro-differential form of the Dyson equation is
(

i
d

dτ
− h(t)

)
G(τ, τ ′) = δ(τ, τ ′) +

∫

C
dτ1Σ(τ, τ1)G(τ1, τ

′). (2.19)

It describes the time evolution of the Green function and h(t) is a single particle
Hamiltonian. For t considered along the forward branch of the contour and t′

along the backward branch,
(

i
d

dt
− h(t)

)
G<(t, t′) =

∫ ∞

−∞
dt1

(
ΣR(t, t1)G<(t1, t

′) + Σ<(t, t1)GA(t1, t
′)
)
.

(2.20)
When t′ is along the forward branch and t along the backward branch,

G>(t, t′)

(
−i

←−
d

dt′
− h(t′)

)
=

∫ ∞

−∞
dt1

(
GR(t, t1)Σ>(t1, t

′) +G>(t, t1)ΣA(t1, t
′)
)
.

(2.21)

Equations 2.20 and 2.21 are known as the Kadanoff-Baym equations. In the
equations retarded and advanced component of a correlator function F (t, t̄) are
defined as

FR(t, t̄) = Θ(t− t̄)
[
F>(t, t̄)− F<(t, t̄)

]
,

FA(t, t̄) = −Θ(t̄− t)
[
F>(t, t̄)− F<(t, t̄)

]
.

Here θ(t− t̄) is the Heaviside step function which will assume value 1 when t > t̄
or else 0 for t < t̄.

The cubic scaling of the Kadanoff-Baym equations with time makes the method
numerically expensive. Hence Lipavsky et al. [15] introduced the so-called Gen-
eralized Kadanoff-Baym Ansatz (GKBA), which permits to have a time evolution
of NEGF that scales quadratically with time. In GKBA, G<(t, t̄) and G>(t, t̄)
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are expressed in terms of the one particle density matrix along with the retarded
and advanced propagator as

G≶(t, t̄) = −GR(t, t̄)ρ≶(t̄) + ρ≶(t)GA(t, t̄), (2.22)

where G<ij(t, t) = iρ<ij(t) and G>ij(t, t) = iρ>ij(t). The function ρ<ij(t) corresponds
to the electron density matrix ρij(t). The GKBA ansatz in Eq. 2.22 is valid for
non-interacting system or in the Hartree-Fock approximation [15, 7]; however,
more in general, it represents an approximation to facilitate NEGF calculations.

Using the above equations in the Kadanoff-Baym equations 2.20 and 2.21,
d

dt
ρ<(t) + i[hHF (t), ρ<(t)] = −Ie(t)− I†e(t), (2.23)

where hHF (t) is the Hartree-Fock Hamiltonian and Ie(t) is a collision integral
defined as

Ie(t) =

∫ ∞

−∞
dt1

(
Σ̃R(t, t1)G<(t1, t) + Σ̃<(t, t1)GA(t1, t)

)
. (2.24)

Using the GKBA expression of Eq. 2.22, the lesser and greater Green functions
now depend on the one particle density matrix. However, to close the equa-
tions, GR and GA are needed and usually Hartree-Fock propagators are used for
the retarded and advanced components. In the collision integral Ie(t), the self
energy Σ̃ excludes the Hartree-Fock self energy, Σ = Σ̃ + ΣHF . The Hartree-
Fock self energy is related to the Hartree-Fock potential through ΣHF (τ, τ ′) =
δ(τ, τ ′)V HF (t), and the Hartree-Fock potential depends on one particle density
matrix via V HF

ij (t) =
∑

pq(vipqj − vipjq)ρ<pq(t). Here vipqj and vipjq are compon-
ents of the Coulomb interaction tensor. Since the Hartree-Fock self energy is
a function of the one particle density matrix, it is usually incorporated in the
one particle Hamiltonian. Hence, the Hartree-Fock Hamiltonian is defined as
hHF (t) = h(t) + V HF (t).

2.3.2 GKBA for interacting electron-photon systems

In Paper III, we studied the fluorescent emission of a series of two-level sys-
tems (TLSs) interacting with a cavity field. The system in question is known
in the literature as the Dicke model [16], and it has been extensively used to
study different aspects of cavity quantum electrodynamics. Explicitly, the model
Hamiltonian used in our study is

HD =
L∑

i=1

wisi
z +ω0b

†
1b1 +ωb

†
2b2 +[gin(b†1 +b1)+gfle

−Γt(b†2 +b2)]

L∑

i=1

2sxi +
L∑

<i,j>

ue

2
ñei ñ

e
j ,

(2.25)
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In Eq. 2.25, sji = 1
2

∑
ττ ′ d

†
τ,iσ

j
ττ ′dτ ′,i are the spin operators, σj are the Pauli

spin matrices (j = x, y, z), τ = 1 ( τ = 2) labels the ground (excited) level, and
d†τ,i, dτ,i are the electron creation and annihilation operators in the ith two-level
system (TLS). Furthermore, L is the total number of TLSs, wi is the energy
difference between the levels in the ith TLS, ω0 (ω) is the frequency of the incid-
ent (fluorescent) field, b1 (b2) annihilates a photon of the incident (fluorescent)
field, gin (gfl) determines the coupling between the incident (fluorescent) field
and the electron, Γ represents the phenomenological damping, ue corresponds to
the interaction between the excited electrons in the neighbouring TLS and ñei is
the density of excited electrons in the ith TLS.

Often the Dicke model is studied using ED. However, with the usual limitation
met by ED for large systems, it is not possible to study Dicke systems with a
large number L of TLS. Hence in our paper, we used the GKBA method for
interacting electron-photon systems [17, 18]. As we observed before, GKBA
scales quadratically with time. However, recently, a time-linear scaling method
has been proposed for GKBA in the electronic case [19, 20]. Soon after that,
the linear scaling formulation has been extended to interacting electron-boson
systems [21, 22]. In what follows, we provide a brief survey of the method,
following closely the original presentation in [21].

The bosonic GKBA is formulated in terms of the displacement ϕµ,1 = 1√
2
(b†µ+bµ)

and the momentum ϕµ,2 = i√
2
(b†µ − bµ) of the boson mode µ. Similar to the

electronic Green function, the photon counterparts are

D<
µ̄ν̄(t, t′) = D>

ν̄µ̄(t′, t) = −i
〈
∆ϕν̄(t′)∆ϕµ̄(t)

〉
, (2.26)

where ∆ϕµ̄(t) = ϕµ̄(t)−〈ϕµ̄(t)〉, and µ̄ is a collective index µ̄ ≡ (µ, ξµ) with ξµ ∈
{1, 2}. With the displacement and momentum operator, the boson Hamiltonian
is Hbos =

∑
µ̄ν̄ Ω̃µ̄ν̄ ϕµ̄ ϕν̄ , where Ω̃µ̄ν̄ = 1

2δµν ωµ δξµξν . The time evolution of the
correlator D≶ has similar form as G≶ (Eq. 2.20 and Eq. 2.21) with the boson
self energy Σb:(

i
d

dt
− hb(t)

)
D<(t, t′) = A

∫ ∞

−∞
dt1

(
ΣR
b (t, t1)D<(t1, t

′)+Σ<
b (t, t1)DA(t1, t

′)
)
,

(2.27)

D>(t, t′)

(
−i

←−
d

dt′
− hb(t′)

)
=

∫ ∞

−∞
dt1

(
DR(t, t1)Σ>

b (t1, t
′)+D>(t, t1)ΣA

b (t1, t
′)
)
A,

(2.28)

where hb = A(Ω̃ + Ω̃T ) is the effective bosonic Hamiltonian, and due to the

commutation rules of bosons Aµ̄ν̄ = −δµν
(

0 −i
i 0

)

ξµξν

.
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To discuss the electron-boson coupling Hamiltonian Hel−bos, it is convenient to
introduce the generalized indices (g, j) → 2j − 1 and (e, j) → 2j. Accordingly,
Hel−bos =

∑
µ̄,ij gµ̄,ij(t)d

†
idjϕµ̄, where di destroys an electron at site i. Even in

the presence of electron-boson coupling, the structure of the electron equation
of motion will be the same as in Eq. 2.23, provided that we redefine the electron
Hamiltonian. To this end, we consider h̃HF (t) instead of hHF as

h̃HF (t) = h(t) + V HF (t) +
∑

µ̄

gµ̄,ij(t)
〈
ϕµ̄(t)

〉
. (2.29)

Similar to Eq. 2.23, with the boson density matrix γ≶µ̄ν̄(t) = iD≶
µ̄ν̄(t, t) and the

boson collision integral Ib, the boson equation of motion will be

d

dt
γ<(t) + i[hb(t),γ<(t)] = Ib(t) + I†b (t). (2.30)

The equation of motion is obtained using the boson GKBA (analogous to electron
GKBA in Eq. 2.22),

D≶(t, t′) = DR(t, t′)Aγ≶(t′)− γ≶(t)ADA(t, t′) (2.31)

GKBA for the Dicke model

As mentioned before, we have studied the fluorescent spectra of the Dicke model
(mentioned in Eq. 2.25) using the GKBA. In the study, we considered only the
Hartree-Fock approximation for the electron Green function. Hence the only
contribution to the electron collision integral Ie(t) is from the electron-photon
interaction , Ie,ij(t) = i

∑
µ̄,l gµ̄,il(t)G

b
µ̄,lj(t), where Gbµ̄,lj(t) =

〈
d†j(t)dl(t)ϕµ̄(t)

〉
c

[21], and the boson collision integral Ib,µ̄ν̄(t) = −i
∑

mn ḡµ̄,mn(t)Gbν̄,nm(t), where
ḡµ̄,mn =

∑
ν̄ Aµ̄ν̄ gν̄,mn.

The high-order Green function G(t) includes integration over time; hence the
GKBA method scales quadratically with time. As shown in [19, 20, 7] using
the HF-GKBA as discussed above permits to perform the time evolution of the
system in terms of time local coupled ordinary differential equations for G and
G. This is known as the ‘G1-G2’ scheme, where GKBA scales linearly with
time, and this is the scheme we used in our study to make the calculations more
efficient [21].

The coupled ordinary differential equations used in studying the Dicke model
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are

i
d

dt

〈
ϕµ̄(t)

〉
=
∑

ν̄

hbµ̄ν̄(t)
〈
ϕν̄(t)

〉
+
∑

ij

ḡµ̄,ij(t) ρ
<
ji(t), (2.32)

i
d

dt
ρ<lj(t) = [h̃HF (t), ρ<(t)]lj +

(∑

µ̄,i

gµ̄,li(t)G
b
µ̄,ij(t)− (l↔ j)∗

)
, (2.33)

i
d

dt
γ<µ̄ν̄(t) = [hb(t),γ<(t)]µ̄ν̄ +

(∑

mn

ḡµ̄,mn(t)Gbν̄,nm(t)− (µ̄↔ ν̄)∗
)
, (2.34)

i
d

dt
Gb(t) = −Φb(t) + hb(t)Gb(t)− Gb(t)h̃e(t), (2.35)

where he = h̃HF ⊗ I − I ⊗ (h̃HF )T , Φb(t) = γ>(t)g(t)ρ<(t) − γ<(t)g(t)ρ>(t)
with ρ< = ρ< ⊗ (ρ>)T and ρ> = ρ> ⊗ (ρ<)T .

For further details on the method, we refer the reader to the original presentation
in [21, 22].
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Chapter 3

Second Harmonic Generation

SHG is a nonlinear phenomenon, that was first observed in 1961 when passing
laser beams through quartz crystals [23]. The use of laser beams was in fact
necessary, since obtaining a well detectable signal from quartz required intense
light sources. Nowadays, SHG is well characterized from both the theoretical and
experimental point of view, and practically used in a wide range of applications.
In many cases, SHG is theoretically described using nonlinear response theory,
and often considering classical radiation fields. Nonetheless, there are aspects
of SHG that remain at a good extent unexplored, for example the regime in
which the average photon number is low and yet multi-photon fluctuations are
relevant, where it is more appropriate to proceed with an equal footing quantum
description of both matter and radiation. The aim of this chapter is to provide
some basic notions of SHG, starting from a initial characterization in terms of
the system’s polarization and nonlinear susceptibilities [24, 25, 26, 27], and then
motivate a description which is nonperturbative and fully quantum mechanical
description for the radiation field, in the spirit of what is usually done for simple
quantum models of nonlinear optics [28, 29, 30]. This last approach is the one
which is used for the systems discussed in Papers I-III.

3.1 Polarization and harmonic generation

The light falling on a material could excite an electron to higher energy levels or
lead to the separation of charges inducing polarization within the matter. The
possibility of either situation depends on the frequency of the incident photon.
In both cases, when matter undergoes relaxation, the absorbed energy will be
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re-emitted with the emission of one or more photons.

The response of matter to an external electromagnetic field is described by the
system’s polarization P (ω). If we expand P (ω) in powers of the incident field,
we have [24, 25, 26, 27]

P (ω) = P (1)(ω) + P (2)(ω) + P (3)(ω) + ...., (3.1)

where

P (1)(ω) = χ(1)(ω)E(ω) (3.2)

P (2)(ω) = χ(2)(ω : ω1, ω2)E(ω1)E(ω2) (3.3)

P (3)(ω) = χ(3)(ω : ω1, ω2, ω3)E(ω1)E(ω2)E(ω3) (3.4)

with ω = ω1 + ω2 + ...+ ωn and

χ(n)(ω : ω1, ω2, ..., ωn) =

∫
χ(n)(t1, t2, ..., tn)ei(ω1t1+ω2t2+...+ωntn)dt1dt2...dtn

(3.5)

In the equations, E(ωi) is the incident light field with the frequency ωi. For an
anisotropic system, the n-th order susceptibility χ(n) is a tensor of rank n+1. For
the two incident frequencies ωa and ωb, second order polarization could generate
a sum, ω = ωa + ωb or a difference ω = ωa − ωb frequency. The sum frequency
generated when ωa = ωb doubles the incident field frequency, and this is known as
second harmonic generation (SHG). Similarly, higher-order susceptibility terms
will result in higher harmonic generation.

The relative magnitude of the susceptibilities of different orders can be estimated
resorting to the Lorentz model of the atom, by considering the displacement of
the electron cloud in response to the external electric field [31, 32], and the
induced restoring force on the electron cloud. A restoring force that has a linear
dependence on the displacement of the electron cloud is associated with a linear
susceptibility behavior, whereas a nonlinear response/susceptibility corresponds
to a restoring force which contains anharmonic contributions as well. Pursuing
this line of argument, susceptibilities of consecutive order can be shown [31, 32,
26, 27] to be related as

|χ(n)(ω)|
|χ(n−1)(ω)| ≈

1

E
, (3.6)

where E is the modulus of average electric field strength inside an atom. With
E = |E|, the modulus of the incident light field, the polarization ratio is given
by
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P (n)(ω)

P (n−1)(ω)
≈ E

E
. (3.7)

For normal light, E/E is very small, and it is hard to observe nonlinear effects.
However, with the intense light source with high E, nonlinear effects become
more appreciable. Hence, the pioneering experimental observation of second
harmonic generation happened [23] after the discovery of laser.

3.2 High harmonic generation

Producing high harmonic generation (HHG) with highly intense laser sources is
of great [33, 34, 35] conceptual and practical significance, as also recognized in the
motivations for the Nobel Prize awarded in 2023. For example, some important
applications of HHG are the generation of attosecond pulses [36, 37, 38] and
producing coherent extreme-ultraviolet or X-ray pulses [39, 40]. Theoretically, a
popular and very often employed model to explain HHG in gases is the so-called
three-step model [41, 42]. In this model, the electron is initially excited, then
it accelerates in the presence of laser light, and finally recombines with the ion.
The corresponding emitted radiation, related on the ionization potential and the
kinetic energies of the accelerated electron, contributes to the HHG signal. For
solids an analogous theoretical model can be adopted, in which electron motion
in bands (intraband) [43] or electron transition between the bands (inter-band)
[44, 45] is responsible for HHG. However, there are also alternative treatments
available (for a review, see e.g. [25]).

3.3 Perturbation theory, Dressed states and Parity

As anticipated at the beginning of the chapter, in Papers I-III we consider situ-
ations where the average photon number is small but multi-photon fluctuations
are relevant, using a nonperturbative and fully quantum mechanical treatment
for the radiation field. The use of this level of description can be made plaus-
ible by considering two classical examples, namely the Mollow triplet and the
Autler-Townes doublet.

To proceed, let us consider a one-electron, two-level atom, with |g〉 being the
ground state and |e〉 being the excited state, in the presence of an incident field.
The field has a frequency equal to the atom resonant frequency. Transitions are
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possible between |g, n〉 and |e, n− 1〉, which correspond to the excitation of the
atom with the absorption of a photon and the de-excitation of the atom with the
emission of a photon. This latter process will re-emit the absorbed photon with
the same frequency as the incident photon. At resonance, the emission spectrum
consists of three-peaks, and is known as ‘Mollow spectrum’ [46, 47]. In general,
it is not possible to explain the Mollow triplet within a perturbative treatment.
Perturbation theory can also be inadequate to describe another important effect,
namely the Autler-Townes splitting [48, 49]. The latter is observed in a three-
level atom when one of the transition levels is coupled to a third level via a
strong auxiliary laser field.

A way to properly characterize the Mollow triplet and/or the Autler-Townes
doublet is via the dressed atom approach, that we now briefly illustrate using
a very popular model of quantum optics: the Jaynes-Cummings (JC) model
[50]. The latter describes a model one-electron atom with two electronic levels
(labeled |g〉 and |e〉, and with energies εg and εe, respectively) interacting with
a single radiation mode. With the atom-photon coupling strength denoted by
ζ, the JC Hamiltonian can be written as H = H0 +Hint, where the interaction
part (without rotating wave approximation, see below) is

Hint = ζ(|g〉〈e|+ |e〉〈g|)(a+ a†), (3.8)

and for the uncoupled Hamiltonian H0 we have

H0 = εg|g〉〈g|+ εe|e〉〈e|+ ωaa
†a. (3.9)

In Eqs. 3.8 and 3.9, a† creates a photon of the cavity mode, the term |g〉〈e|a
corresponds to the annihilation of a photon together with the atom de-excitation,
and |e〉〈g|a† represents the creation of a photon during the atom excitation.
When the photon frequency is close to the atom’s resonance frequency, i.e.,
ωa ≈ εe− εg, these terms in the Hamiltonian are usually neglected, according to
what is known as rotating wave approximation (RWA) [50]. With the RWA, the
Hamiltonian connects |g, n〉 only with |e, n− 1〉. Hence the Hamiltonian will be
block-diagonal, with the submatrix corresponding to |e, n − 1〉 and |g, n〉 given
by

Hn =

[
εe + (n− 1)ωa ζ

√
n

ζ
√
n εg + nωa

]
. (3.10)

The eigenvalues of Hn are [52]

E±,n =
(2n− 1)ωa + εe + εg

2
± 1

2

√
(εe − εg − ωa)2 + 4ζ2n, (3.11)
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Figure 3.1: Energy spectrum of a two-level atom coupled to a photon field. In the figure the photon frequency is
slightly larger than the resonance frequency of the atom, and hence the detuning δ = ωa − (εe − εg).
The figure is adapted from [51].

with the corresponding (dressed) states given by

|+, n〉 = cos θn|g, n〉+ sin θn|e, n− 1〉 (3.12)
|−, n〉 = −sin θn|g, n〉+ cos θn|e, n− 1〉, (3.13)

and
tan(2θn) =

2ζ
√
n

ωa − (εe − εg)
.

At resonance, the dressed states E+,n and E−,n are separated by 2ζ
√
n. In a

coherent state, for large 〈n〉 we have that √n ≈
√
〈n〉 [51, 52, 53]. Hence among

the four transitions between E±,n and E±,n−1 (shown in Fig. 3.1), there are two
degenerate transitions, and they are resonance transitions. The remaining two
transitions form the side peaks of the Mollow spectrum.

The Autler-Townes doublet can also be explained within the dressed atom ap-
proach. A strong auxiliary laser field will lead to the dressing of the two atomic
states. Hence a weak probe field will involve a transition between the third
atomic level and the dressed states. Due to the transition between the atomic
level and two close-dressed states, the doublet is observed in the emission spectra
[54].

Photon-dressing effect can also have relevance for SHG. For example, in atoms,
SHG is often described in terms of a three-level system model[53, 55]. Since
SHG involves transitions among all the three states, for levels of definite parity,
and in the perturbation regime, SHG will be forbidden. However, away from
the perturbative regime, SHG can in fact even occur in a two level system,
as a result of multi-photon dressing effects. We illustrate this by considering
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again a photon field interacting with a two-level system. The total parity of
the combined photon-field+TLS is a product of electron parity and photon field
parity [56, 57, 53]:

Π = (ng − ne)eiπna , (3.14)

where ng and ne represent the density operator for an electron in the ground
and the excited level respectively, and na is the photon density operator. The
electron-photon Hamiltonian commutes with the total parity, [H0 +Hint,Π] = 0.
Even though the eigenstates of the full system will have a definite parity, the
individual electron or photon subsystems will have indefinite parity. Thus, due
to the dressing of the levels, conservation of electronic parity is not any more a
constraint, and SHG is now allowed.

The situations briefly discussed here point to the importance of a non perturbat-
ive treatment of some matter-photon interaction phenomena and, specifically for
our case, of SHG. Furthermore, aiming to investigate SHG in systems in optical
cavities and at very weak fields (as done in Papers I-III, and where quantum
fluctuations are important), a non perturbative and fully quantum treatment is
in order.

3.4 Systems and photons in an optical cavity

The systems investigated in this thesis are assumed to be placed in a quantum
optical cavity, and we here provide some general notions and definitions pertain-
ing to this type of setup.

3.4.1 The SHG spectrum

Our general definition of the SHG spectrum, that we use in a full quantum
description of the system and the photon fields, is

P (t, ω) =
∑

in

∑

m>0

|〈inm|T
[
e−i

∫ t
0 H(t′)dt′]|ψ(0)〉|2, (3.15)

where |i〉 represents the electron state, |n〉 represents the incident field number
state, |m〉 represents the fluorescent field number state, |ψ(0)〉 is the initial state
of the system, and H is the system Hamiltonian. It is worth emphasizing that
H describes the material system, the quantized photon fields, and their mutual
interaction, with many photon effects included in principle at all orders. Each
of the papers I-III deals with different material systems. At same time, in all
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cases, for the radiation part of H we consider two modes, respectively describing
the cavity/incident and the fluorescent/SHG field.

3.4.2 Driving photons into the cavity

Our studies explored two ways of introducing photons into the cavity. One of
the methods is driving photons into the cavity by the external laser field, and
the other is by considering an initial coherent photon state.

In the first case, photons are introduced in the cavity by coupling the cavity
photon mode to the external laser field. The initial state of the system is the
ground state of the electron-photon coupled system (represented as |ψ′′0〉). The
Hamiltonian representing the coupling between the external laser field and the
cavity mode is

Vdrive = gd(b
† + b)[f(t) sin(ω0t)], (3.16)

where b annihilates an incident photon, gd determines the laser field and the
cavity mode coupling strength, ω0 is the frequency of the laser field (same as the
incident field frequency), and f(t) provides an envelope to the external laser field.
With the envelope function, it is possible to tune the time interval during which
photons will be introduced into the cavity. In some cases, we used f(t) = θ(ts−t),
a step function vanishing after time ts. However, in most cases we considered
a rectangular envelope, f(t) = [1 − F1(t)]F2(t) with the two Fermi functions
Fi(t) = [exp((t− ti)/τ) + 1]−1.

3.4.3 A coherent initial photon state

A coherent state is an eigenstate of the annihilation operator [58, 52], b|η〉 = η|η〉.
In terms of the photon number states, the coherent state follows the Poisson
distribution,

|η〉 = e−
|η|2

2

∞∑

k=0

ηk√
k!
|k〉. (3.17)

In our studies, we assumed in some cases that the initial state of the system is
a product state of the material system and the photon fields. Specifically, the
initial state is taken as |ψ(0)〉 = |ψ′0〉 = |Elc〉|η〉|0〉, where |Elc〉 represents the
initial state of the bare electron system and |0〉 corresponds to the vacuum state
of the fluorescent field. This choice will be further discussed and motivated in
section 4.3.

25



3.4.4 Cavity leakage with the classical bath

Photons inside the cavity will escape the cavity after some time. We account this
cavity leakage in the spirit of the Caldeira-Leggett model (CLM) of dissipation
[59], by coupling the photon mode to a bath of classical harmonic oscillators.
The oscillators will remove the photons inside the cavity. The standard CLM is

HCLM =
p2

2m
+ V (x) +

∑

k

[
pk

2

2mk
+

1

2
mkω

2
k

(
xk −

ck
mkω

2
k

x

)2
]
, (3.18)

where p, m, x, and V (x) represent the momentum, mass, position, and potential
of the system (particle). Similarly, pk, mk, xk, and ωk corresponds to the bath
oscillators. Note that p, x, pk, xk are in principle quantum mechanical operators.
To describe leakage, we adapt Eq. 3.18 in order to couple the quantized cavity
and/or fluorescent photon modes to the classical harmonic baths. For one photon
mode of frequency ω̃, described in second quantization, and treating pk, xk as
classical variables, we arrive at:

H̃CLM =

(
ω̃ +

∑

k

C2
k

mkω
2
k

)
b̃†b̃+

∑

k

(
pk

2

2mk
+

1

2
mkω

2
kx

2
k

)
−
∑

k

Ckxk(b̃
† + b̃)

+
∑

k

C2
k

mkω
2
k

[
(b̃†)2 + b̃2

2

]
,

(3.19)

where b̃ destroys a photon of frequency ω̃, and Ck = ck/
√

2mω̃. In Eq. 3.19 we
ignored the zero point energy.

We observed that with the Bogoliubov transformation
(
b̃

b̃†

)
=

(
u v
v u

)(
b

b†

)
,

it is possible to write Eq. 3.19 in a more compact form. After the Bogoliubov
transformation, the redefined photon field is

Ωbb
†b =

(
ω̃ +

∑

k

C2
k

mkω
2
k

)
b̃†b̃+

∑

k

C2
k

mkω
2
k

[
(b̃†)2 + b̃2

2

]
, (3.20)

where Ωb =
√
ω̃2 + 2mω̃

∑
k

Ck
2

mkωk2 .

In both b̃ and b representation, the field position and momentum will remain
the same. Hence x = 1√

2mω̃
(b̃† + b̃) = 1√

2mΩb
(b† + b) and p = i

√
mω̃
2 (b̃† + b̃) =
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i
√

mΩb

2 (b†+ b). Using these equations we can find that u = (
√

ω̃
Ωb

+
√

Ωb

ω̃ )/2 and

v = (
√

ω̃
Ωb
−
√

Ωb

ω̃ )/2.

With the Bogoliubov transformation, Eq. 3.19 becomes

H̃CLM = Ωbb
†b +

∑

k

(
pk

2

2mk
+

1

2
mkω

2
kx

2
k

)
−
√

ω̃

Ωb

∑

k

Ckxk(b
† + b). (3.21)

We used Eq. 3.19 to represent cavity leakage in papers I and II. However, in
Paper III, we represent the cavity leakage with the transformed equation 3.21
for simplicity.
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Chapter 4

Dimer in the optical cavity

As a first situation to study SHG in a cavity, we consider a model diatomic
molecule (in the following referred to as ‘dimer’ for simplicity). This is rather
a simple system for study, but it is interesting as it incorporates a great deal
of physics and provides insight to more complicated system. We studied the
resonance and SHG spectra of this system in Paper I. In our model, the dimer
interacts with the two-photon fields, namely the cavity field and the emitted
fluorescent field. The main intention of our study was to observe competition
between the SHG and the molecule dissociation as shown in Fig. 4.1. The fol-
lowing section specifies the characteristics of the dimer model and its interaction
with the cavity.

Figure 4.1: Schematic representation showing the competition between the SHG and the dimer dissociation.

4.1 Resonance frequency of the Dimer

Our model dimer in Paper I consists of atoms with one orbital, and two electrons
of opposite spins. The electrons will interact when both the electrons are present
on the same orbital/atom. As a novelty, along with the electrons, we consider
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a quantum description also for the nuclear degrees of freedom. We observed in
the study that, for the model dimer, the resonance frequency depends on the
inter-nuclear distance, which is explained in detail in the following.

Considering for the moment the nuclei as classical, and assuming they are at rest
at given positions (so that the nuclear momenta are zero), the dimer Hamilto-
nian, in the absence of the photon fields, reads

Hmol =
C

r4
0

+
∑

σ

(εLnLσ+εRnRσ)+
∑

σ

V e−ξr0(c†LσcRσ+c†RσcLσ)+U
∑

i=L,R

ni↑ni↓,

(4.1)
where cLσ/cRσ annihilates an electron of spin σ at site L/R (left/right), niσ =

c†iσciσ is a number operator, r0 is the dimer inter-nuclear distance, εi is the onsite
electron energy at site i, C determines the strength of inter-atomic repulsion, the
effective hopping is V e−ξr0 with V representing the strength of hopping and ξ
gives the dependence of the hopping on the inter-atomic distance. The repulsive
and the attractive potentials together depicts a Morse-like potential.

The molecular electron energy levels determine the resonance frequency. The
2-particle site basis is |L↑, L↓〉, |L↑, R↓〉, |R↑, L↓〉 and |R↑, R↓〉, where |L↑, L↓〉 =

c†L↑c
†
L↓|vacuum〉. With the onsite energy εL = εR = 0, and the effective hopping

V e−ξr0 = V ′, the Hamiltonian corresponding to the electron system is

He =




U V ′ V ′ 0
V ′ 0 0 V ′

V ′ 0 0 V ′

0 V ′ V ′ U


 (4.2)

As next step, the symmetry-adapted 2-particle basis is constructed with the
bonding (B) and the anti-bonding (A) states:

|B〉 =
1√
2

(|L〉+ |R〉), |A〉 =
1√
2

(|L〉 − |R〉). (4.3)

Hence the symmetry-adapted 2-particle basis is |B↑, B↓〉, |A↑, A↓〉, |A↑, B↓〉 and
|B↑, A↓〉. Among the four basis vectors, |B↑, B↓〉 and |A↑, A↓〉 are even (E),
|A↑, B↓〉 and |B↑, A↓〉 are odd (O) states. The Hamiltonian He with symmetry-
adapted 2-particle basis is block diagonal,

He =




HE
11 HE

12 0 0
HE

21 HE
22 0 0

0 0 HO
11 HO

12

0 0 HO
21 HO

22


 (4.4)
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The matrix elements HE
11 = 2V ′ + U

2 , H
E
22 = −2V ′ + U

2 and other non-zero
elements are HO

11 = HO
22 = HE

12 = HE
21 = HO

12 = HO
21 = U

2 . The four eigenvalues
of He are then

E± =
U ±

√
16V ′2 + U2

2
,

O+ = U, O− = 0. (4.5)

Here E± (O±) represents the eigenvalues corresponding to even (odd) block.

The electron-photon interaction Hamiltonian is

Hint =
∑

σ

g(c†AσcBσ + c†BσcAσ)(a† + a). (4.6)

Here g represents the electron-photon coupling strength, and a is a photon anni-
hilation operator. Then the transition between E states or O states is forbidden
because of parity. The dimer is considered to be in its ground state initially. We
can observe that the ground state is an even state with the obtained eigenvalues.
Hence parity allowed transitions are E− ↔ O− and E− ↔ O+.

In our studies we observe fluorescence spectra. The fluorescent spectrum is ob-
tained with the spin-preserving electron transitions. Hence involved eigenstates
in the transitions must conserve the electron spin.

There are two electrons in the dimer; hence the total spin operator for the dimer
is S = s1 + s2. The dot product S2 = S · S is also expressed as

S2 = S+S− + S2
z − Sz, (4.7)

where S± = Sx ± iSy. In the one particle basis Sz = 1
2

∑
i(ni↑ − ni↓), S+ =∑

i c
†
i↑ci↓ and S− =

∑
i c
†
i↓ci↑. Since the dimer electrons are of opposite spins,

Sz = 0, and hence S2 = S+S−. In the 2-particle site basis

S2 =




0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0


 (4.8)

With the help of the above matrix, we can determine that both the even eigen-
states are singlet states, the odd state 1

2(|B↑, A↓〉 + |A↑, B↓〉) is also a singlet
state, but the other odd state 1

2(|B↑, A↓〉 − |A↑, B↓〉) is a triplet state.

For the fluorescence spectra, the transition is only possible between the singlet
even state and the singlet odd state. The singlet odd state 1

2(|B↑, A↓〉+ |A↑, B↓〉)
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corresponds to the eigenvalue O+ = U . Since we assume the dimer to be in its
ground state (with eigenvalue E−), the resonance frequency will be

ΩR =
U

2
+

√
4V ′2 +

(
U

2

)2

. (4.9)

As we can observe in the expression, via V ′ the resonance frequency of the dimer
is determined by the inter-nuclear distance. However, in our calculations, we
consider a coupled electron-photon system. Coupling to the photon states will
renormalize the bare electron states, leading to the dressed states as explained
in section 3.3. The dressed states will mix the parity and allow transitions that
are otherwise forbidden in the perturbation theory. Furthermore, restoring the
quantum character of the nuclear degrees of freedom will have the result that
quantum fluctuations will be associated with the average inter-nuclear distance.

4.2 Dimer interaction terms

In general, the Hamiltonian representing the Coulomb interaction between the
electrons is

HI =
1

2

∑

ijkl

∑

σσ′
vijklc

†
iσc
†
jσ′clσ′ckσ (4.10)

where
vijkl =

∫
dxdyφ∗i (x)φ∗j (y)v(x, y)φk(x)φl(y). (4.11)

Starting from Eq. 4.10 and Eq. 4.11, we wish to specialize the treatment to
a diatomic system, and show how to arrive to the Hubbard type interaction
used in our model molecule. To streamline the algebra, it is expedient to define
an auxiliary problem, where there is an interaction vijkl = FijGkl. Further,

we define the operators fσσ′ij =
c†iσc

†
jσ′Fij√

2
, and gσσ

′
lk =

clσ′ckσGkl√
2

. Hence the
interaction Hamiltonian

HI =
∑

σσ′

∑

ij

fσσ
′

ij

∑

kl

gσσ
′

lk . (4.12)

When the above Hamiltonian is reconsidered for the dimer, then all the site
indices i, j, k and l will be restricted to the two dimer sites L and R. Then we
can group the interaction Hamiltonian as follows,

HI = H1
I +H2

I +H3
I +H4

I (4.13)
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with

H1
I =

∑

σ

(fσσ̄LL + fσσ̄RR)(gσσ̄LL + gσσ̄RR) (4.14)

H2
I =

∑

σ

(fσσ̄LL + fσσ̄RR)(gσσ̄LR + gσσ̄RL) (4.15)

H3
I =

∑

σ

(fσσ̄LR + fσσ̄RL)(gσσ̄LL + gσσ̄RR) (4.16)

H4
I =

∑

σσ′
(fσσ

′
LR + fσσ

′
RL )(gσσ

′
LR + gσσ

′
RL ). (4.17)

Here σ̄ represents the opposite spin of σ, i.e. if σ =↑ then σ̄ =↓ and vice versa.

Now we use the definitions of the operators f and g,

H1
I =

1

2

∑

σ

(vLLLLc
†
Lσc
†
Lσ̄cLσ̄cLσ + vLLRRc

†
Lσc
†
Lσ̄cRσ̄cRσ

+ vRRLLc
†
Rσc
†
Rσ̄cLσ̄cLσ + vRRRRc

†
Rσc
†
Rσ̄cRσ̄cRσ). (4.18)

We can observe that, under the assumption φL(x) = φR(x), vLLRR = vRRLL
and vLLLL = vRRRR from Eq. 4.11. Hence,

H1
I =

1

2

∑

σ

vLLLL(nLσnLσ̄ + nRσnRσ̄) +
1

2

∑

σ

vLLRR(c†Lσc
†
Lσ̄cRσ̄cRσ +H.c.).

(4.19)
Further we assume that the dimer orbitals are real. Again from Eq. 4.11

vLLRL = vLLLR = vRRRL = vRRLR = vLRLL = vLRRR = vRLLL = vRLRR.

Thus the two interaction groups H2
I and H3

I becomes,

H2
I +H3

I = vLLLR
∑

σ

(nLσ + nRσ)(c†Rσ̄cLσ̄ +H.c.). (4.20)

Since the dimer contains two electrons of opposite spins, nLσ + nRσ = 1,

H2
I +H3

I = vLLLR
∑

σ

(c†RσcLσ +H.c.). (4.21)

The remaining interaction group becomes,

H4
I = −vRLLR(S+

RS
−
L + S−RS

+
L ) + vLRLR nLnR − vRLLR

∑

σ

nLσnRσ. (4.22)
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Here the spin ladder operators, S+
i = c†i↑ci↓, S

−
i = c†i↓ci↑ and the number operator

ni = ni↑ + ni↓. The last term in the above equation can be re-expressed as

∑

σ

nLσnRσ = 2SzL S
z
R +

1

2
nLnR, (4.23)

where Szi = 1
2(ni↑ − ni↓). Using Eq. 4.23 in Eq. 4.22

H4
I = −vRLLR(S+

RS
−
L + S−RS

+
L ) + vLRLR nLnR − 2vRLLRS

z
L S

z
R −

1

2
vRLLR nLnR

= −2vRLLR SL · SR + (vLRLR −
1

2
vRLLR)nLnR (4.24)

Combining all the groups, the complete interaction Hamiltonian for the dimer
is,

HI =vLLLL(nL↑nL↓ + nR↑nR↓) + vLLRR(c†L↑c
†
L↓cR↓cR↑ +H.c.)

+ vLLLR
∑

σ

(c†RσcLσ +H.c.) + (vLRLR −
1

2
vRLLR)nLnR

− 2vRLLR SL · SR (4.25)

We consider that the dimer orbitals are highly localized on the dimer sites L
and R. Hence the overlap between the orbitals localized at L and R is very
small. Thus the interaction integrals vLLLR, vLLRR and vRLLR are negligible in
comparison to vLLLL and vLRLR [60, 61].

Operators associated with vLRLR are re-expressed as,

nLnR = nL↑nR↑ + nL↑nR↓ + nL↓nR↑ + nL↓nR↓ (4.26)

Since we consider 2-particle site basis, |L↑, L↓〉, |L↑, R↓〉, |R↑, L↓〉 and |R↑, R↓〉,
the first and the last terms of Eq. 4.26 are effectively 0. By using nLσ+nRσ = 1,

nLnR = 1− nL↑nL↓ − nR↑nR↓ (4.27)

Neglecting the constant term,

HI = (vLLLL − vLRLR)(nL↑nL↓ + nR↑nR↓)

= U(nL↑nL↓ + nR↑nR↓) (4.28)

represents the standard Hubbard interaction and we use this interaction in Paper
I.
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Figure 4.2: (a)(a)(a) Resonant spectra with ω0 = ΩR and (b)(b)(b) SHG spectra for ω0 = ΩR/2, where ΩR is the resonance
frequency of the rigid molecule (in the calculations, ΩR = 2.56). Empty curves correspond to the coherent
calculations using the initial state |ψ′

0〉 (η2 = 9) and the filled curves represent the photon driving with
the external laser field (with the initial state |ψ′′

0 〉 ). The drive is kept on until 〈b†b〉 ≈ 9, t1 = 6π
ω0

,
t2 = 31π

ω0
and τ = 2.0, with gd = 0.229 and 0.0996 in (a)(a)(a) and (b)(b)(b) respectively. Plots are scaled for

visual clarity and the scaling factors are indicated in color. The Figure also appears in Paper I.

4.3 On the choice between coherent and driven states
for cavity photon fields

We refer the reader to the actual papers for the results and the corresponding
discussions. However, we mention here a general trend, namely how fluorescence
is affected by the specific features of the incident field. This was first observed
in Paper I, but the same behavior occurs for the systems of Paper II and III.
Thus, we find it appropriate to discuss this point here using Paper I, since the
trend in question motivates our choice of the incident field in all the papers.

In Paper I, introducing photons into the cavity by an initial coherent state, or via
an external driving field, has a significant effect on the spectra. To illustrate this,
in Fig. 4.2, we show the fluorescent spectra obtained with a coherent state and
with a driving field for the steady state dimer. For the coherent state, we observe
a Mollow like spectrum in the resonance case (Fig. 4.2 (a)(a)(a), empty curves), whilst
in the SHG case there is a generation of SHG signal (Fig. 4.2 (b)(b)(b), empty curves).
However, when we consider an external driving field, in the resonance case the
intensity of the Mollow side peak gets reduced (Fig. 4.2 (a)(a)(a), filled curves), and,
in the case of second harmonics, the SHG peak gets quenched (Fig. 4.2 (a)(a)(a),
filled curves). In Paper I, we also considered a more detailed analysis with a
two-level atom, and observed that one gets closer to the initial coherent state
by increasing the speed of the driving (attained with an increased drive field
coupling gd, and a narrow envelope function f(t)).

Motivated by these considerations,in the papers we use a driving field at reson-
ance and an initial coherent state for SHG.
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Chapter 5

Optical lattices and cold atoms

Today ultracold atom physics represents a powerful and versatile platform to
investigate many phenomena of condensed matter (and not only), offering an
attractive alternative/complement to solid state systems because of the high
flexibility that ultracold atom setups offer in e. g. tailoring the strength and
shape of the one particle potential and particle-particle interactions. In this
way, it is possible to address a great variety of different phenomena such as
super-fluidity, super-solidity, Mott transitions, artificial gauge fields, to name
a few [62, 63, 64]. This flexibility is to be traced back to the possibility of
tuning Feshbach resonances to alter the interaction between ultracold atoms, and
of accurately controlling counter propagating laser beams to provide a tunable
periodic potential for the ultra-cold atoms [65, 66, 67, 68, 69].

5.1 Feshbach Resonances

Feshbach resonances, originally discussed by Feshbach in the context of nuclear
reactions, have a key role in ultracold atom physics, since they permit to accur-
ately tune the effective interaction among atoms [70, 62, 64]. This tunability is
related to the manipulation of the hyperfine levels in an atom (due to the coupling
between the electron and nuclear spin) and to the action/control of an external
magnetic field. Feshbach resonances find application in both trapped-atom and
optical-lattice setups (for example, they can be used to realize/stabilize (molecu-
lar) Bose-Einstein condensates). To qualitatively illustrate how the “resonance”
aspect comes into play, one can consider a two-atom colliding system consisting
of an open channel (associated with a low energy unbound state) and a closed
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channel (associated with a bound molecular state). With an applied magnetic
field one can vary the energy separation and the relative energetic ordering of
the two channels and thus tune the interaction between the atoms. On a more
formal ground, the possibility of tuning the interaction in a Feshbach resonance
via applied magnetic field can be understood within the framework of scattering
theory, where it is shown that, usually, in the dilute limit, the relevant/dominant
scattering event occurs in the scattering s-channel, with the strength and sign of
the interaction determined by the s-wave scattering length as. Providing a tech-
nical derivation of this statement is outside the scope of this thesis (also because,
in Paper II, the focus is not on how the interactions among atoms are tuned),
and we refer to the original literature (see e.g. [70]) for a thorough presentation
of the subject.

Here we simply mention that, in the dilute limit, and in the presence of a mag-
netic field, as assumes the form

as → as(B) = aop

(
1− ∆

B −B0

)
, (5.1)

where aop is the background scattering length associated with the open channel,
B is the applied magnetic field, B0 is the critical magnetic field which brings
degeneracy between the open, entrance channel energy and the closed, bound
state channel energy, and ∆ is the width of the resonance. Thus, by varying B
one can tune the strength and the sign (via the channel-crossing at B0) of as(B)
and control atom-atom interactions.

5.2 Optical lattice

Far from the resonance, the incident field will induce a dipole moment in the
atom, D ∝ E. And the atoms will feel potential energy V (r) ∝ E2(r) in the
presence of photon field [63]. Depending on whether the laser field is red detuned
or blue detuned, atoms will be attracted or repelled respectively from the high-
intensity region [64]. With two laser beams traveling in opposite directions, it is
possible to form a periodic potential.

The optical lattice involves a periodic potential, a property associated with a
crystal. Compared with the real crystals in the case of an atomic lattice, it is
easy to tune the lattice parameters. The two waves traveling in the opposite
direction form the standing wave pattern. The distance between the two optical
lattice sites is hence half of the photon wavelength. But by combining laser lights
with different angles and frequencies, it is possible to obtain optical lattices with
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different patterns of periodic potentials [71, 72, 73] and thus vary the inter-atomic
distances. Furthermore, by varying the intensity of the trapping laser field, it is
possible to tune the tunneling of the atoms.

5.3 Phase transitions in an optical lattice

Since an optical lattice involves a periodic potential, there is a deep synergy
between the two perspectives of i) using optical lattice to understand the Hub-
bard model and ii) using the Hubbard model to describe the properties of the
atoms in an optical lattice. The bosonic or fermionic Hubbard model can be
considered depending on whether the loaded atoms are fermions or bosons. In
the following, as done in Paper II we only focus on boson case.

Mott insulator phase

Increasing the intensity of the laser field forming the optical lattice will decrease
the hopping rate of the atom between the sites. The atoms are mostly trapped
in the lattice sites with reduced hopping. With low hopping, the interaction
between the atoms will be a dominant factor. The atoms in this situation will
distribute themselves homogeneously among Lo lattice sites. At half filling this
is a Mott insulator (MI) state represented by [74, 75]

|Ψ〉MI ∝
Lo∏

i

(
α†i
)na |0〉, (5.2)

where αi destroys an atom at site i and we assume na as number of atoms in
each site.

Superfluid phase

When the interaction between the atoms is low, with the increased hopping,
atoms are free to move around the entire lattice. Hence an atom will have its
probability distributed over the entire lattice, and for bosons the superfluid state
is well described by,

|Ψ〉SF ∝
(

L0∑

i

α†i

)Na
|0〉, (5.3)
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which is a linear combination of different atomic occupations, and Na is the
total number of atoms loaded on the entire optical lattice. The phase diagram
between these two regimes exhibits a complex pattern due to a co-existence line
that divides the super fluid region from Mott insulator ones for different local
occupancies. The phase diagram is usually displayed in U − µ plane (with U
representing the interaction between the atoms and µ is the chemical potential).
Many studies have analyzed the phase transition among MI and SF, and some
recent studies include [76, 77, 78].

5.4 Model Hamiltonian

Figure 5.1: Schematic representation of the cold atoms in an optical lattice. The figure also appears in Paper II.

As shown in Fig. 5.1, we consider bosonic cold atoms in a one dimensional
optical lattice interacting with a cavity and an emitted photon field. The cold
atoms have two levels, ground level |g〉 and an excited level |e〉. The Hamiltonian
for a two-level atom moving in such optical lattice is [75],

H(1)
a =

p̂2

2m
+ Ve(x) |e〉 〈e|+ Vg(x) |g〉 〈g|+ ωeg |e〉 〈e| , (5.4)

where Vg/e(x) represents the potential experienced by an atom in the ground/excited
level in the optical lattice and ωeg is the atomic excitation energy.

Along the same lines, the interaction Hamiltonian between the atom and the
two photon fields is [75]

H
(1)
a−p = [Gc(b1 + b†1) + Gf (b2 + b†2)](|e〉 〈g|+ |g〉 〈e|). (5.5)

Here b1 destroys an incident photon and b2 destroys a fluorescent photon. The
coupling strength of the cavity field and the fluorescent field with the atomic
levels are determined by Gc and Gf respectively.

The bare photon fields are represented by the Hamiltonian

Hp = ω0b
†
1b1 + ωb†2b2, (5.6)
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an expression that is used also for the many-atom case. Next, we reconsider the
above Hamiltonian terms in the many-atom case, using the second quantization
formalism.

5.4.1 Atomic Hamiltonian

Considering the second quantization formalism, the independent particle part of
the atomic Hamiltonian reads

Ha =

∫
dxΨ†g(x)

[−∇2

2m
+ Vg(x)

]
Ψg(x)+

∫
dxΨ†e(x)

[−∇2

2m
+ Ve(x) + ωeg

]
Ψe(x),

(5.7)
where Ψi(x) is the atomic field operator representing the annihilation of an atom
at position x. Delocalized Bloch states in a crystal can be expressed in terms of
localized Wannier functions [79]. The same approach is adopted for the optical
lattice, by expressing the field operators in terms Wannier functions. The latter
are centered on the minimum potential points of the optical lattice[80, 81]. Since
the ultra-cold atoms are kept at a temperature very close to absolute zero, the
energy will not be sufficient to cause excitation to higher Wannier levels. Hence
field operators will be represented only with the ground Wannier level.

Ψg(x) =
∑

i

αiΩg(x− xi), Ψe(x) =
∑

i

βiΩe(x− xi) (5.8)

where αi(βi) destroys an atom at ground(excited) state in site i.

In the Wannier basis, the atomic Hamiltonian in Eq. 5.7 will be rewritten as

Ha =
∑

ij

α†iαj

∫
dxΩ∗g(x− xi)

[−∇2

2m
+ Vg(x)

]
Ωg(x− xj)

+
∑

ij

β†i βj

∫
dxΩ†e(x− xi)

[−∇2

2m
+ Ve(x) + ωeg

]
Ωe(x− xj)

(5.9)

Furthermore, as in tight binding treatments [82] for crystals, we make the as-
sumption that the greatest contribution comes from the Wannier functions be-
longing to same site and the next nearest sites. Considering a homogeneous
optical lattice with the same potential in each lattice site,

Ha =
∑

i

εgα
†
iαi +

∑

i

εeβ
†
i βi +

∑

〈ij〉
tgα
†
iαj +

∑

〈ij〉
teβ
†
i βj (5.10)
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where εg/e and tg/e represents the onsite energy and the hopping of an atom in
the ground/excited state. The energy εe− εg, which is now the resonance energy
of the atom trapped in an optical lattice, it is different from the bare atomic
transition ωeg. The trapped atom resonance energy also includes the dressing of
the cold atoms by the trapping photon field as in section 3.3.

5.4.2 Cold atoms and photon-atom interaction Hamiltonian

For highly localized Wannier functions, it is the case that
∫
dxΩ∗g(x− xi)Ωe(x− xi) >>

∫

i 6=j
dxΩ∗g(x− xi)Ωe(x− xj). (5.11)

Hence, the contribution from inter-site atomic excitations will be considerably
smaller than the intrasite ones. With this assumption, the many-atom counter-
part of Eq. 5.5 becomes

Ha−p =
∑

i

Gcα
†
iβi

∫
dxΩ∗g(x− xi)Ωe(x− xi)(b†1 + b1) + h.c.

+
∑

i

Gfα
†
iβi

∫
dxΩ∗g(x− xi)Ωe(x− xi)(b†2 + b2) + h.c.

(5.12)

After performing the integrals and reabsorbing their value in the coupling con-
stants,

Ha−p = gc(b
†
1 + b1)

∑

i

(α†iβi + h.c.) + gf (b†2 + b2)
∑

i

(α†iβi + h.c.) (5.13)

5.4.3 Interaction term and final form of the total Hamiltonian

Expressing again the field operators in terms of Wannier functions, and using
the same arguments given in the previous sections, one can argue that inter-site
interaction terms will give a smaller contribution in comparison to onsite inter-
action terms. Hence, keeping only onsite interactions, the atom-atom interaction
Hamiltonian can be written as

Ha−a =
Ug
2

∑

i

α†iα
†
iαiαi +

Ue
2

∑

i

β†i β
†
i βiβi + Ueg

∑

i

β†iα
†
iαiβi (5.14)
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where Ug(Ue) represents interactions among the atoms in the ground (excited)
state, and Ueg describes the interaction between one atom in the ground state
and the other in the excited state. We can rearrange Ha−a as follows:

Ha−a =
Ug
2

∑

i

ngi (n
g
i − 1) +

Ue
2

∑

i

nei (n
e
i − 1) + Ueg

∑

i

ngin
e
i , (5.15)

where ngi corresponds to the ground state atomic density at site i and similarly
nei corresponds to the excited atomic density. Finally, considering all the terms,
the complete Hamiltonian for the cold boson atoms is

H = Ha +Ha−a +Ha−p +Hp, (5.16)

or, more explicitly,

H =
∑

i

εgα
†
iαi +

∑

i

εeβ
†
i βi +

∑

〈ij〉
tgα
†
iαj +

∑

〈ij〉
teβ
†
i βj + ω0b

†
1b1 + ωb†2b2

+
[
gc(b

†
1 + b1) + gf (b†2 + b2)

]∑

i

(α†iβi + h.c.) + Ug
∑

i

ngi (n
g
i − 1)

+ Ue
∑

i

nei (n
e
i − 1) + Ueg

∑

i

ngin
e
i . (5.17)

A similar Hamiltonian, but with only one photon field and within the RWA, can
be found in [83].

5.5 A glance at Bose-Einstein condensates

When trapped boson atoms are brought to a very low temperature (close to
absolute zero), all the atoms will occupy their ground state, and there will be
a phase transition to a Bose-Einstein condensate (BEC) [84]. In Paper II, we
also performed a preliminary study of SHG from a two-component BEC (2BEC)
[85].

A fairly detailed derivation of the Hamiltonian for the 2BEC is provided in Paper
II and not repeated here, also because it formally presents some similarities to
the one discussed above for the two-level Bose Hubbard model [85]. As point
worth mentioning, in the 2BEC case, the ground and the excited atom field
operators Ψg(x) and Ψe(x) represent condensate modes [86], with the other
higher excitations neglected. Specifically, Ψg(x) = α̃φg(x) and Ψe(x) = β̃φe(x),
where α̃ annihilates an atom in the lowest condensate component and β̃ destroys
an atom in the excited condensate component.
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In Paper II, the 2BEC was considered to be inside an optical cavity, and interact-
ing with both the cavity field and the fluorescent field. In terms of the condensate
mode operators, the complete 2BEC+photon fields model Hamiltonian is

HBEC =εgα̃
†α̃+ εeβ̃

†β̃ +
Ug

2Na
α̃†α̃†α̃α̃+

Ue
2Na

β̃†β̃†β̃β̃ +
Ueg
Na

β̃†α̃†α̃β̃

+ ω0b
†
i bi + ωb†fbf +

[ gi√
Na

(b†i + bi) +
gfe
−Γt

√
Na

(b†f + bf )
]
(α̃†β̃ + h.c.). (5.18)

In Eq. 5.18, the couplings and interactions are scaled with the number of atoms√
Na. The scaling is considered [87, 88] to contrast results for different number

of particles and, in our case, to characterize in a consistent way the effect of
cavity coupling and atom-atom interactions on the fluorescent spectra from the
2BEC.
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Chapter 6

Conclusions and outlook

In this thesis, we broadly explained the process of SHG, described the numerical
methods we used, and discussed the different systems examined in the papers.
We hope this will provide the required background before reading the papers.
This chapter is a brief summary of the papers and an outlook possible courses
for future research.

As in the thesis title, our studies considered different systems inside an optical
cavity, and we investigated the corresponding SHG spectra, to detect and char-
acterize possible general trends. To this end we used rather simple theoretical
models which, while offering a simplified perspective, are in many cases still
effective in exhibiting qualitative trends.

In Paper I, we studied SHG from a dimer within an optical cavity. In this work,
we mainly aimed to observe a competition between SHG and dimer dissociation.
The resonance frequency in the system corresponds to the energy difference
between the dimer’s bonding and anti-bonding levels. Simultaneous absorption
of two photons will excite the dimer to an anti-bonding state, promoting dimer
dissociation. In our study, we observed that due to the slow nuclear motion
of a heavy dimer, the dissociation will not occur; instead, a second harmonic
signal will be generated. At the same time we observed the quenching of SHG in
the case of a light dimer because dimer dissociation takes place. Also, photons
will leave quickly in a bad cavity compared to a good cavity. In our paper, we
demonstrated the role of cavity leakage by coupling the photon fields to a bath
of (classical) oscillators. As expected, the cavity leakage reduced the spectrum
intensity.

Paper II analyzed SHG from cold boson atoms in an optical lattice and from a
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Bose-Einstein condensate. This study revealed a number of trends, specifically
how the fluorescence varies when increasing the number of atoms, lattice sites
and the strength of the atom-atom interaction. Also in this case, when including
cavity leakage a decrease of the SHG response was observed.

For both Paper I and II, the methodology used was ED. However, ED becomes
expensive or mostly impractical for larger systems. Hence, Paper III was de-
voted to exploring NEGF as an alternative approach to study SHG. As a test
bed system we considered a very popular model of quantum optics namely the
‘Dicke’ model. Compared to the standard formulation we introduced disorder
and the interaction in the model, to access less explored physics and make the
model more interesting. In the study, we observed that disorder, interactions
and cavity leakage lead to a decrease in SHG. In the range of parameters ex-
plored NEGF compared very favourably to ED benchmarks. Another aspect
considered in Paper III, was the characterization of some scenarios with third
harmonic generation. Similarly, one can extend the method to investigate the
generation of higher harmonics.

As possible avenues for future work, it would be interesting to address multi-
photon effects in a quantum description of SHG for more realistic systems. For
example, one could consider more realistic molecules,or ultracold atoms with a
space-dependent atom-cavity coupling. Alternatively, it would be of interest to
consider model setups where one or more simple molecules are adsorbed on a
surface. In a rather different direction, it could be interesting to address chaotic
signatures in the fluorescent response, or the effect of photon entanglement on
the generation of second and higher harmonics. Many of these possibilities,do
escape the possibility of being treated within ED. However, as shown in this
work, the great advantage of using NEGF is that one can tackle much larger and
complex systems and situations than with ED, and thus hopefully many of the
possible topics suggested here.
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