
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Programming for Reliability and Safety in Robotics: The Role of Domain-Specific
Languages
Domain Specific Programming for Safe and Reliable Robots
Rizwan, Momina

2024

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Rizwan, M. (2024). Programming for Reliability and Safety in Robotics: The Role of Domain-Specific Languages:
Domain Specific Programming for Safe and Reliable Robots. Department of Computer Science, Lund University.

Total number of authors:
1

Creative Commons License:
Unspecified

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/436ad77f-6cb5-4232-9f45-3b077d47f0d9

Programming for Reliability and
Safety in Robotics: The Role of

Domain-Specific Languages

Momina Rizwan

Licentiate Thesis, 2024

Department of Computer Science
Lund University

ii

ISBN 978-91-8039-935-7 (electronic version)
ISBN 978-91-8039-934-0 (print version)
ISSN: 1652-4691
Licentiate Thesis 1, 2024

Department of Computer Science
Lund University
Box 118
SE-221 00 Lund
Sweden

Email: momina.rizwan@cs.lth.se

Typeset using LATEX
Printed in Sweden by Tryckeriet i E-huset, Lund, 2023

© 2023 Momina Rizwan

momina.rizwan@cs.lth.se

ABSTRACT

Autonomous robots must operate reliably and predictably in uncertain environ-
ments. Throughout the robot software development cycle, robot operators and de-
velopers must be able to specify their safety and functional requirements reliably
and explicitly. To this end, we propose to use Domain-Specific Languages (DSLs)
to address their needs. To show the applicability and effectiveness of this approach,
we demonstrate two DSLs that are designed to enhance both the safety and relia-
bility of how robot programmers write their code. Firstly, we extend the Declara-
tive Robot Safety (DeROS) language to create ROSSMARie, which not only halts
robot operations upon safety rule violations (such as proximity to humans) but also
monitors and tries to recover from these violations autonomously. This extension
allows robots to adapt to system failures and resume operations without human
intervention, striking a balance between safety and task performance. We validate
ROSSMARie on the ROS-based industrial platform SkiROS2, demonstrating its
effectiveness in maintaining safety for two robot experiments: manipulation and
navigation. Secondly, we explore the use of embedded DSLs for early bug de-
tection in robot software development. Recognizing the challenges in predicting
the full context of general-purpose robot components, our approach focuses on
early error identification to avoid costly runtime failures and safety hazards. We
introduce DSL design patterns tailored for robotics, implemented in Python, and
apply these to SkiROS2. These patterns enable programmers to detect bugs early
in the high-level contracts between robot capabilities and their world model and
lower-level implementation code, such as behavior trees, performing consistency
checks during the deployment phase rather than at runtime. This proactive ap-
proach significantly enhances safety by identifying potential skill execution issues
before they affect robot behavior. An initial study with SkiROS2 developers con-
firms the utility of our DSL-based method in early bug detection and improving the
maintainability of robot code. We provide a comprehensive approach to domain-
specific robot programming, ensuring both the functional safety and operational
efficiency of autonomous robots. By integrating DSL strategies, we provide a
robust framework for developing reliable and safe robots capable of adapting to
dynamic environments and complex tasks.

2 Abstract

CONTRIBUTION STATEMENT

The following papers are included in this dissertation:

Paper I Momina Rizwan, Christoph Reichenbach, Volker Krueger. “ROSSMARie:
A Domain-Specific Language To Express Dynamic Safety Rules and Recov-
ery Strategies for Autonomous Robots”. In Second Workshop on Quality
and Reliability Assessment of Robotic Software Architectures and Compo-
nents, June, 2nd, 2023, ICRA 2023, London, UK. Conference website with
selected contributions: qrarsac2023.

Paper II Momina Rizwan, Christoph Reichenbach, Volker Krueger. “Enhancing
Robotic Autonomy: Strategies for Dynamic Safety and Immediate Recov-
ery”. Technical Report 114, Lund Tekniska Högskola, 2024. To be submit-
ted.

Paper III Momina Rizwan, Ricardo Caldas, Christoph Reichenbach, and Matthias
Mayr. "EzSkiROS: A Case Study on Embedded Robotics DSLs to Catch
Bugs Early." In 2023 IEEE/ACM 5th International Workshop on Robotics
Software Engineering (RoSE), pp. 61-68. IEEE, 2023.
DOI: 10.1109/RoSE59155.2023.00014.

Paper IV Momina Rizwan, Christoph Reichenbach, Ricardo Caldas, Matthias
Mayr, and Volker Krueger. “EzSkiROS: Enhancing Robot Skill Compo-
sition with Embedded DSL for Early Error Detection”. "Submitted for
publication" to the Special Issue “Robotics Software Engineering" as a
Journal in Frontiers in Robotics and AI, section Computational Intelligence
in Robotics.

The table below indicates the responsibilities Momina Rizwan had in writing
each paper:

https://sites.google.com/view/qrarsac2023
https://doi.org/10.1109/RoSE59155.2023.00014

4 Contribution Statement

Paper Writing Concepts Implementation Evaluation Artifact

I −−
II −−
III
IV −−

The dark portion of the circle represents the amount of work and responsibili-
ties assigned to Momina Rizwan for each individual step:

Momina Rizwan was a minor contributor to the work

Momina Rizwan was a contributor to the work

Momina Rizwan led and did a majority of the work

Momina Rizwan led and did almost all of the work

Sources: Artifact: https://github.com/lu-cs-sde/EzSkiROS,
and A replication of the survey: https://github.com/lu-cs-sde/EzS
kiROS.

https://github.com/lu-cs-sde/EzSkiROS
https://github.com/lu-cs-sde/EzSkiROS
https://github.com/lu-cs-sde/EzSkiROS

ACKNOWLEDGEMENTS

I want to thank my supervisor, Christoph Reichenbach, whose expertise, under-
standing, and patience, added considerably to my experience. Coming from robotics,
the software technology concepts were new to me. Your hard work and passion
for teaching, helped me fit into this interdisciplinary area. I couldn’t have asked
for a better mentor.

I thank my co-supervisor, Volker Krueger for his support and advice through-
out the process. His insights, feedback and, guidance played an important role in
shaping my research.

I want to thank everyone in the SDE group and RSS group at Lund University
for all the interesting talks we have had. I appreciate your willingness to share
and explore research in software development during our reading group sessions.
A special thanks to Görel Hedin, Elin Anna Topp, and Jacek Malec for all the
support and advice.

I am immensely thankful to my friends, who have been more supportive than
I could have ever hoped. I thank Idriss for all those fika breaks that helped me
relax and stay entertained. I thank Noric for being an amazing listener during my
rants and for those super helpful discussions on tackling tough situations. I thank
Anton Risberg Alaküla for throwing those wild questions my way that really made
me think hard about everything. And finally, huge thanks to Alexandru Dura,
Matthias, and Alexander Dürr for your kindness and support all the way through.

Lastly, I want to express my deepest gratitude to my parents, my husband
Faseeh and my daughter Rehana for their endless love and support throughout this
journey.

I would also like to thank the Alice and Knut Wallenberg Foundation for fund-
ing my research through the Wallenberg AI, Autonomous Systems and Software
Program (WASP).

To all of you, I am eternally grateful.

6 Acknowledgements

CONTENTS

I Abstract 1

II Contribution Statement 3

III Acknowledgements 5

IV Introduction 11
1 Motivation . 11

1.1 Research Questions . 13
1.2 Thesis Contribution . 14
1.3 Thesis Outline . 15

2 Background . 16
2.1 ROS . 16

"pre-launch time" and "post-launch time" activities in ROS 17
2.2 SkiROS2 . 18
2.3 Behavior Trees (BT) . 20
2.4 Runtime Monitoring . 21
2.5 DeROS . 22
2.6 Later in the thesis . 22

3 Related Work . 24
3.1 Gaps in robotics software development 24
3.2 Traditional ways to program robots 24
3.3 Other DSL-based approaches that address safety-critical

systems . 25
3.4 DSLs for Static Error Detection of Behavior Tree Con-

struction . 27
3.5 Evaluation methods for DSLs 27

4 Contribution Summary . 29

8 CONTENTS

4.1 ROSSMARie: A Domain-Specific Language To Express
Dynamic Safety Rules and Recovery Strategies for Au-
tonomous Robots . 29

4.2 Enhancing Robotic Autonomy: Strategies for Dynamic
Safety and Immediate Recovery 29

4.3 EzSkiROS: A Case Study on Embedded Robotics DSLs to
Catch Bugs Early . 30

4.4 EzSkiROS: Enhancing Robot Skill Composition with Em-
bedded DSL for Early Error Detection 31

5 Interaction between Domain Specific Languages for improved Re-
liability and Safety . 32
5.1 Unified Vision of DSLs 32
5.2 Opportunities: . 33

Synergy of Both Languages can help make robots safer
and more reliable 33

Predicting safety hazards 33
Skill-aware safety rules 33
Generating recovery strategies as behavior trees 33

5.3 Technical Challenges . 34
6 Interaction between ROSSMARie and Reinforcement Learning . 35

6.1 Constraining and Guiding Reinforcement Learning With
Rule-Based Safety Monitoring 35

6.2 Motivation . 35
6.3 Formulating safety rules 37
6.4 Conclusion . 38

7 Conclusions and Future Work . 41
References . 42

Included Papers 47

I ROSSMARie: A Domain-Specific Language To Express Dynamic Safety
Rules and Recovery Strategies for Autonomous Robots 49
1 Abstract . 49
2 Introduction . 50
3 Background: DeROS . 51
4 ROSSMARie . 51

4.1 Integration with SkiROS2 51
5 Experiments . 52
6 Limitations and Future Work . 53
References . 53

CONTENTS 9

II Strategies for Dynamic Safety and Immediate Recovery 55
1 Introduction . 55
2 Background . 57
3 Enhancing Functional Safety with Continuous Monitoring in ROSS-

MARie . 58
3.1 Implementation of ROSSMARie 59
3.2 Integration with SkiROS2 60
3.3 Safety Filter Node . 61

4 Experiments . 62
4.1 Case Studies . 63
4.2 Discussion . 66

5 Related Work . 67
6 Conclusion . 68
7 Limitations and Future Work . 68
References . 69

III EzSkiROS: A Case Study on Embedded Robotics DSLs to Catch Bugs
Early 71
1 Abstract . 71
2 Introduction . 72
3 Related Work . 74
4 Embedding Robotics DSLs in Python 74

4.1 Python Language Features for DSLs 74
4.2 Robotics DSL Design Patterns 76
4.3 Alternative Techniques for Checking 81

5 Case Study: An open source software for skill-based robot execution 82
6 Concise and Verifiable Robot Skill Interface EzSkiROS 84

6.1 EzSkiROS implementation 85
6.2 Validation . 86

7 Evaluation . 86
8 Conclusion . 88
References . 88

IV EzSkiROS: Enhancing Robot Skill Composition with Embedded DSL
for Early Error Detection 91
1 Abstract . 91
2 Introduction . 92
3 Related Work . 94
4 Embedding Robotics DSLs in Python 96

4.1 Python Language Features for DSLs 96
4.2 Robotics DSL Design Patterns 98

Domain Language Mapping 98
Early Dynamic Checking 99

10 CONTENTS

Symbolic Tracing . 102
Source Provenance Tracking 104

4.3 Alternative Techniques for Checking 106
5 SkiROS2: An open source software for skill based robot execution 106
6 Case Study I: Concise and Verifiable Robot Skill Interface 112

6.1 Evaluation . 115
7 Case Study II: Verifiable construction of a behavior tree in Skill

Implementation . 117
8 Overall Evaluation of the Extended EzSkiROS 120
9 Conclusion . 122
References . 123

INTRODUCTION

1 Motivation

Robots are becoming a big part of our lives, from building things in factories to
helping out in our homes and hospitals. They are not just doing simple, repetitive
tasks anymore. They are becoming more like smart assistants that can make deci-
sions, understand their surroundings, and even learn from their experiences. This
is called autonomy, and it is making robots more helpful but also more complex.

As robots become more autonomous, they need to handle more complicated
tasks on their own, like navigating through a crowded room, or figuring out what
to do if something unexpected happens. Even in factories, where humans and
robots are usually kept separate, safety is still critically important. These indus-
trial robots, some capable of handling a load up to 500 kg, operate in environments
where even the slightest error can lead to significant damages to both the equip-
ment and the surroundings.

Despite the physical barriers separating robots from humans, the need for high
availability, reliability, and safety is paramount [Rob03]. In an industrial context,
like a car production line, the malfunction or unreliability of one robot can halt
the entire production process, leading to immense costs and productivity losses. A
single robot stopping could mean a whole day’s production is lost.

Moreover, as we push the boundaries of what robots can do, making them
more autonomous and capable, the complexity of testing and ensuring their safety
increases dramatically. When we extend these systems with new components or
functionalities, the challenge is not just ensuring each part works; it is ensur-
ing they all work together without causing unforeseen errors. What might seem
like a small issue in one component can lead to a domino effect, causing delays,
missed deadlines, and ultimately, failures in tasks that the robot was otherwise
well-equipped to handle.

I aim to address these challenges from a software perspective using practices
from software technology, in our case Domain-Specific Languages (DSLs). To

12 Introduction

solve these problems, first we need to express these problems explicitly. Lan-
guages, whether natural or programming, let us express ideas, share knowledge,
and solve problems. A DSL is a special kind of computer language made just
for a particular type of task or field, like making websites or controlling robots.
It uses terms and rules that are all about that specific area, making it easier for
people working in that field to use. For example, the tool I am using to write this
thesis LATEX is a DSL used for document preparation and typesetting, especially
for scientific documents. It uses specific commands and syntax to format text, cre-
ate complex mathematical formulas, manage citations, and much more, making
it particularly useful for people who need to create detailed and well-structured
documents like research papers or theses.

Why do we use a Domain-Specific Languages (DSLs)?
Domain-Specific Languages (DSLs) allow for the explicit expression of do-

main concepts, rules, and constraints in a way that general-purpose programming
languages often do not. According to the studies [Voe+19; Gra+08], DSLs can
help developers to create more readable, maintainable, and safer code [Rév+00],
especially in critical systems where safety is paramount.

In general-purpose languages like C++ or MATLAB, safety rules and con-
straints are often implemented implicitly through the code logic, as shown in the
code example below. This can lead to misunderstandings or errors because the
intent of the code or the constraints might not be clear, especially to someone who
wasn’t involved in writing the original code. Moreover, general-purpose languages
are designed to be flexible and powerful, which means they don’t inherently pre-
vent you from doing unsafe operations.

Consider a scenario in a robotic control system where the controller calculates
the speed of a motor. There’s a safety requirement that the motor’s speed should
not exceed 100 radians per second to prevent damage to the mechanical system.

1 do ub l e c a l c u l a t e M o t o r S p e e d (d ou b l e i n p u t) {
2 do ub l e speed = complex_compu ta t i on (i n p u t) ;
3 / / S a f e t y check
4 i f (speed > 100) {
5 speed = 100 ; / / c a p p i n g t h e speed
6 }
7 r e t u r n speed ;
8 }

In this example, the safety rule (speed should not exceed 100rad/sec) is em-
bedded in the code as a conditional statement. The first problem is that the safety
rule is not explicitly defined as a domain rule (in a separate file) but is instead a part
of the logic. A developer who wants to look at all the safety requirements cannot
extract that information because it is hidden in a huge mess of operational code.
The second drawback is that, if the safety rule changes, it needs to be updated
everywhere it is used, which is error-prone.

Now, let’s consider how a DSL might express the same safety rule. A DSL for
motor control might allow you to define constraints directly as part of the language.

1 Motivation 13

1 c o n t r o l l e r M o t o r C o n t r o l l e r {
2 max_speed = 100 r a d / s ; / / E x p l i c i t l y d e f i n i n g t h e s a f e t y c o n s t r a i n t
3 c o n t r o l _ s p e e d (i n p u t) {
4 speed = complex_compu ta t i on (i n p u t) ;
5 d e s c r i p t i o n : " Ensure t h e maximum speed does n o t exceed s a f e

o p e r a t i o n a l l i m i t s . "
6 e n f o r c e max_speed ; / / Apply ing t h e s a f e t y c o n s t r a i n t
7 }
8 }

This small DSL gives us the following benefits:

• the safety rule is an explicit part of the language syntax (max_speed =
100rad/s) including the measurement unit. One could explicitly see/auto-
matically detect errors like if we are adding rad/s to rad/min.

• the safety rule is defined once for a controller and enforced everywhere it’s
needed, making the system easier to maintain and less error-prone.

• the intent of the code is clear and any non-programmer safety expert reading
the DSL script can understand that there’s a maximum speed constraint on
the motor.

Using a domain-specific language, one can express their specific concerns with
precision and clarity. By focusing on creating more explicit, robust, and reliable
ways of expressing safety concerns, we can improve how these robots operate,
ensuring they do their jobs effectively without compromising safety. It is about
making smarter, safer robots that can be trusted to work alongside us, enhancing
productivity and safety in our industries.

To understand and explore the safety considerations in autonomous robots,
in my thesis, I plan to tackle two approaches to enhance safety through Domain
Specific Robot Programming. First, I will look at how we can make robots safer
during runtime. To do this, I will use a DSL which allows us to express and
enforce safety rules dynamically. We will also generate a ’runtime monitor’ – a
sort of a safety watchdog based on these rules. To save the world from yet another
DSL, we take inspiration from an already existing DSL by Adam et al. [Ada+16].
Second, I aim to catch and fix some programming errors that could lead to unsafe
robot behavior before the robots even start working. By spotting these errors early,
we can prevent safety issues from happening, rather than dealing with them when
they occur. This proactive approach complements the runtime safety measures,
offering a more comprehensive safety strategy. As future work, I will discuss how
these two DSLs could benefit from each other to increase their effectiveness.

1.1 Research Questions
In the rest of the thesis we will focus on the following research questions and their
sub-research questions:

14 Introduction

(I) What usually goes wrong with autonomous robots, and which of these issues
can we address using Domain-Specific Languages (DSLs)?

(II) What stages in the robot’s work cycle can DSLs be effectively utilized to
enhance safety and reliability?

(a) For each identified intervention point, what are the available data and
possible actions that a DSL can take to make robots safe and more
reliable?

(III) How effective are the DSLs in improving safety and reliability of autonomous
robots?

(a) How good are the DSLs at spotting these issues compared to regular
programming languages when it comes to robots?

(b) How DSLs improve the process and experience of creating and up-
dating robot software, including how easy they are to learn, how they
affect building time, mistake frequency, and keeping the software up-
to-date?

1.2 Thesis Contribution
In order to answer the proposed research questions, in this thesis we will present
the progress we made in making robots safer and more reliable through our design
and implementation of Domain-Specific Languages (DSLs). Our contributions
address the enumerated research questions as follows:

I In Papers I and II, we address environmental factors, including dynamic
obstacles, uneven terrains, and interactions of humans and other robots, that
could lead to unexpected safety hazards for autonomous robots. In Papers
III and IV, we address the issue of incorrect representations within software
components that do not match other components, leading to programming
bugs or integration errors.

II To handle safety issues caused by environmental factors, Papers I and II
describe an external DSL that generates a runtime monitor to intervene at
runtime. Conversely, to deal with programming bugs, Papers III and IV
present general DSL design patterns and two case studies using an internal
DSL to detect these bugs at pre-launch time.

II (a) In Paper I and II, we use available sensor data to detect any unexpected en-
vironment changes and react to them by invoking alternative strategies or
initiating fail-safe procedures. In Paper III and IV, we employ DSL design
patterns to help developers catch these errors as soon as we have some con-
text of other components (at pre-launch time) and reporting those errors to
the developer before starting the robot.

1 Motivation 15

III (a) In Papers I and II, the DSL can detect environmental hazards that can be
sensed through sensor information provided by the software (ROS topics in
our case). While in Papers III and IV, we can detect software bugs in the
high-level contracts between the robot’s capabilities and the robot’s under-
standing of the world. We can also detect bugs in the lower-level imple-
mentation code, such as constructing behavior trees to control the robot’s
behavior based on its capabilities. We not only outperform general-purpose
programming languages in identifying errors early, but also provide more
explicit error messages.

III (b) In Papers III and IV, we perform initial user studies to gather feedback. The
developer review of the DSL indicates a positive impact on code quality,
notably enhancing correctness, readability, and clarity of skill dependencies
in robot programming. The DSL streamlines the creation and debugging of
behavior trees, leading to more concise and less error-prone code. Addition-
ally, it improves error reporting, contributing to a better understanding of
issues and overall code quality.

1.3 Thesis Outline
This thesis consists of six chapters, including this one. In Chapter II, we will
introduce the essential tools and scientific concepts that underpin our research,
providing a detailed background on Domain Specific Languages, Robot Operating
System, and other related technologies. Chapter III maps the existing landscape of
robotic programming and the role of DSLs, identifying the current advancements
and the gaps our research addresses. Chapter IV synthesizes insights from the in-
cluded papers, offering an integrated narrative of our findings and contributions.
Chapter V details the contributions of each paper, emphasizing the advancements
and innovations made in robot safety and reliability through DSLs. Finally, Chap-
ter VI concludes the thesis, summarizing our work and discussing future directions
for DSLs in robotics, highlighting potential interactions and benefits for safety and
reliability in the field. Each chapter builds upon the last, guiding the reader through
a comprehensive journey from foundational concepts to the implications and fu-
ture of DSLs in robotics.

16 Introduction

2 Background

To understand the contributions of this thesis, it is necessary to introduce tool and
application domain that we used in our research. In this chapter, we delve into the
foundational concepts and tools that form the base of our thesis, where we develop
and explore two Domain-Specific Languages (DSLs) and their interactions. These
DSLs are designed to enhance the safety and reliability of robots at crucial stages –
runtime and ROS (Robot Operating System) pre-launch time. Our exploration
is not just theoretical; we demonstrate the practical application of these DSLs by
integrating them with a skill-based control platform, SkiROS2, showcasing their
functionality in real-world scenarios.

The first of these DSLs, ROSSMARie, is designed to tackle unexpected safety
hazards that might arise during a robot’s operation. This DSL draws inspiration
from an existing DSL, DeROS [Ada+16], and similarly generates a ROS node
that functions as a Runtime Safety Monitor. Runtime Monitoring plays a critical
role in actively managing potential risks during the robot’s operation, ensuring
immediate response to any emerging safety concerns.

In contrast, our second DSL, EzSkiROS, is oriented towards the early detec-
tion of programming errors. Operating at the skill composition level and within
Behavior Trees, this DSL is instrumental in identifying and rectifying program-
ming errors before the robot is even launched. This proactive approach aims to
streamline operations, enhance safety, and reduce the debugging loop for develop-
ers.

2.1 ROS

Figure 1: An image showing ROS communication layer. (source: [Ach+17])

The Robot Operating System (ROS) is an open-source framework for robotics
software development. It provides a structured communications layer above the

2 Background 17

host operating systems of a mixed compute cluster. ROS’s architecture is modu-
lar, allowing for a distributed system of processes (nodes) that can communicate
over a peer-to-peer network (Figure 1. It provides standard operating system ser-
vices such as hardware abstraction, low-level device control, and commonly used
functionality.

ROS has become a standard in robotics research and industry due to its flexi-
bility, large user community, and extensive set of tools and libraries. It allows for
rapid prototyping and testing, which is crucial in both academic research and in-
dustrial applications. Its modular architecture enables developers to build complex
robotic systems by integrating various hardware and software components.

"pre-launch time" and "post-launch time" activities in ROS

In the context of robotics, particularly when discussing systems like the Robot
Operating System (ROS), "pre-launch time" and "post-launch time" refer to the
periods before and after the robot’s software components or nodes are initiated.

1. Pre-launch time refers to the period before the robot’s software or system
has been initiated or activated. This is the phase where the system is not yet
running, and no processes related to the robot’s operation are active.

• Activities
– Configuration: Setting up parameters, configurations, and envi-

ronment variables that will be used by the system.
– Setup: Installing necessary software, loading drivers, and ensur-

ing all hardware components are properly connected and func-
tioning.

– Testing: Running diagnostics or simulations to ensure that all
components will work as expected once launched.

– Planning: Defining goals, routes, or behaviors that the robot will
execute once operational.

2. Post-launch time refers to the period after the robot’s software or system
has been initiated. This is when the robot is active, and its processes are
running.

3. Activities

• Execution: Running the actual tasks, processes, or behaviors that the
robot is designed to perform. This includes movement, data process-
ing, sensing the environment, and interacting with it.

• Monitoring: Observing the robot’s performance, checking for errors
or unexpected behaviors, and ensuring it’s operating within safe pa-
rameters.

18 Introduction

• Adaptation: Adjusting the robot’s behavior based on sensory input or
changing conditions in the environment.

• Communication: Exchanging messages and data between different
parts of the robot system or with external systems, often using ROS
topics, services, and actions.

In ROS (Robot Operating System), these terms might not be formally defined,
but they are conceptually used to describe the stages of a robot’s operation cycle.
ROS itself is a flexible framework for writing robot software and is a collection of
tools, libraries, and conventions that aim to simplify the task of creating complex
and robust robot behavior across a wide variety of robotic platforms. Understand-
ing the distinction between pre-launch and post-launch is crucial for effectively
developing, testing, and deploying robotic applications.

2.2 SkiROS2

SkiROS2 (Skill-based Robot Control Platform) [MRK23] is an advanced robot
control system designed to enhance the development and execution of robot skills
within the Robot Operating System (ROS) environment. Its primary purpose is
to provide a structured and scalable way to define, manage, and execute complex
robotic behaviors using a skill-based approach. Figure 2 shows the overall soft-
ware architecture of SkiROS2. SkiROS2 focuses on modular skill definitions, al-
lowing for the composition of high-level tasks from smaller, reusable skills. These
skills are defined with preconditions, postconditions, and parameters, making them
adaptable and capable of handling various scenarios.

In the context of ROS, SkiROS2 acts as a middleware layer that interfaces
with different ROS components, such as sensors and actuators, to perform tasks.
It allows developers to abstract away from low-level hardware interactions and fo-
cus on defining higher-level behaviors and skills. SkiROS2 is used in various ap-
plications, including industrial automation, service robotics, and research, where
flexibility, reusability, and efficiency in robot programming are crucial [May+23;
AMK23; May+22a].

SkiROS2 implements behavior trees as a core component of its skill execution
framework. Behavior trees are a graphical modeling language used to control
the flow of execution of tasks, typically in game development and increasingly in
robotics. In SkiROS2, behavior trees organize the execution of skills into a tree
structure, with each node representing a skill or a decision-making process.

The advantages of using behavior trees in SkiROS2 include:

• Modularity: Behavior trees allow for the creation of modular and reusable
skills that can be easily composed and reconfigured for different tasks or
robots.

2 Background 19

Figure 2: An outline of the SkiROS2 architecture. The world model stores the
knowledge about the relations, environment, and the skills. The skill manager
loads and executes the skills written as behavior trees. Dashed lines show control
flows and solid lines information flows. Shaded blocks indicate possible multiple
instances. (Source: [MRK23])

20 Introduction

• Flexibility: They provide a flexible structure to handle dynamic changes
and exceptions in the robot’s environment, making it possible to adapt the
execution flow on the fly.

• Scalability: As tasks become more complex, behavior trees in SkiROS2 can
scale to manage these complexities without becoming unmanageable or overly
complex themselves.

• Intuitiveness: The graphical nature and hierarchical structure of behavior
trees make them relatively easy to understand and design, even for complex
behaviors.

• Debuggability: The discrete and hierarchical nature of behavior trees al-
lows for easier debugging and error handling compared to other control
structures like finite state machines or sequential function charts.

In SkiROS2, behavior trees interact with the world model, skill descriptions,
and the ROS ecosystem to perform tasks. Each node in the tree can represent a
skill, condition, or control flow element (e.g., sequence, selector), allowing de-
velopers to define how and when each skill should be executed. This results in
a powerful and intuitive way to manage robot behavior, ensuring that robots can
perform a wide range of tasks reliably and efficiently.

2.3 Behavior Trees (BT)

Figure 3: Behavior tree modelling a ball pick-place task. (source [CÖ18]

Behavior Trees can be seen as a graphical modeling language used for the spec-
ification of task execution in autonomous agents, particularly in robotics [CMÖ17]
[CAÖ19]. A behavior tree is graphically represented as a directed tree (as shown

2 Background 21

in Figure 3) in which the nodes are classified as root, control flow nodes, or exe-
cution nodes (tasks). For each pair of connected nodes the outgoing node is called
parent and the incoming node is called child. The root has no parents and exactly
one child, the control flow nodes have one parent and at least one child, and the
execution nodes have one parent and no children. Graphically, the children of a
control flow node are placed below it, ordered from left to right. They structure
the control flow of a robotic application by organizing the tasks in a tree hierar-
chy, allowing for more modular, flexible, and reusable designs [CÖ18]. Behavior
Trees offer several advantages in robotics, including clarity in representing com-
plex behaviors, modularity for reusing and composing behaviors, and reactivity
to changes in the environment. They facilitate the design and understanding of
complex behaviors, making the development process more efficient and less error-
prone.

2.4 Runtime Monitoring
Runtime monitoring is a system safety and reliability technique used to observe
the behavior of a software system during its execution, ensuring that it operates
correctly and safely. Here are key aspects of runtime monitoring:

• Observation: Runtime monitoring involves observing the states and outputs
of a system as it operates. This is often done through sensors or probes that
collect data about various aspects of the system’s performance and behavior.

• Specification of Correct Behavior: It requires a predefined set of rules
or specifications that describe the expected behavior of the system under
various conditions. These specifications are usually derived from the sys-
tem’s requirements and can be expressed in various forms, including tem-
poral logic, assertions, or contracts.

• Detection of Deviations: The core purpose of runtime monitoring is to de-
tect deviations from the specified behavior. When the observed behavior
differs from what is expected, the monitoring system can flag an error or
anomaly. This detection is crucial for safety-critical systems where unex-
pected behavior could lead to severe consequences.

• Response: Upon detecting a deviation, the system can be designed to re-
spond in various ways, depending on the severity and nature of the anomaly.
Responses may include logging the error, alerting an operator, triggering a
fail-safe mechanism, or attempting to correct the behavior automatically.

• Dynamic and Continuous: Unlike static analysis techniques that analyze
the code without executing it, runtime monitoring is dynamic and occurs
during the system’s operation. It provides continuous oversight throughout
the lifecycle of the system, offering protection against unexpected behaviors
that might not have been anticipated during the design and testing phases.

22 Introduction

• Versatility: Runtime monitoring can be used across various domains and
types of systems, from simple software applications to complex, distributed,
and embedded systems. It’s particularly important in systems that operate in
unpredictable environments or have high reliability and safety requirements.

In essence, runtime monitoring is an important technique to ensure that sys-
tems behave as expected during their operation, providing an additional layer of
safety and reliability by detecting and responding to anomalies in real time.

2.5 DeROS
Declarative Robot Safety (DeRoS) is a domain-specific language (DSL) aimed at
addressing safety concerns in robotics, particularly for mobile robots operating in
unpredictable environments [Ada+16]. The language offers a simple and declar-
ative syntax, making it easier for robotics experts with less software engineering
knowledge to implement safety-related requirements. By separating the safety
layer from the main functionality, DeRoS allows for the isolated specification of
safety rules and facilitates the safety certification process.

One of the key advantages of DeRoS is its ability to drive the automatic gener-
ation of all safety-related code, reducing the risk of errors. This feature allows for
implementation-independent reuse of the safety-related parts of a robot controller
across different releases and products. As the DeRoS declaration does not need to
change when the underlying software changes, it provides flexibility and scalabil-
ity in developing safe robotic systems. The infrastructure can be reused across a
range of products, while customization for safety is mainly achieved at a higher
level using the DeRoS language.

The implementation of the low-level hardware interfacing and the code genera-
tion part of DeRoS is typically the responsibility of a skilled software development
team. This division of roles results from the need for a more structured approach
to robotics software development. To enhance the robustness of the safety layer,
development of the code generator and execution supporting platform could be
done by separate teams targeting different programming languages, depending on
the specific robotics platform in use. The DeROS language supports C++ for ROS-
based robots, considering it appropriate for safety-related functionality.

2.6 Later in the thesis
The next chapters will unpack the literature review of robotics software develop-
ment and the crucial role played by DSLs and their interactions with other software
components. We will illustrate how tools like SkiROS2can be significantly en-
hanced through these integrations, leading to safer robotic systems. Additionally,
we will present case studies that not only demonstrate the practical applications
of these DSLs to Reinforcement Learning module but also highlight our commit-
ment to advancing the safety, reliability, and availability of robotic systems. These

2 Background 23

discussions will set the stage for addressing the research questions raised in our
study, underscoring the practical benefits and real-world implications of our work
in the realm of robotics.

24 Introduction

3 Related Work

In this Chapter, we set a map of the territory looking at the literature and position-
ing our research in that map.

3.1 Gaps in robotics software development

Robotics software is complex because it combines many parts like sensors, actu-
ators, and decision-making programs. It is important that these robot components
are safe, reliable, and always ready to work, especially because they are used in
places where they need to be very precise and robust, like factories or faraway
exploration areas. Unlike typical software, robotic software lacks standardized
methods and processes that would make its development more systematic and eas-
ier [MNK22].

According to the study [Boz+19], the current state of robotics software devel-
opment lacks a systematic development process. It relies on engineering crafts-
manship instead of established engineering practices [Boz+19]. This situation
poses challenges for reusability and reproducibility of available solutions. The
study refers to a need for systematic approaches, methods, and tools to configure
robots easily, specify robotic tasks in a user-friendly way, and enable robots to
autonomously manage unpredictable situations. The study also identifies several
challenges for the future of safety in mobile robotic systems.

Autonomous robots are increasingly being used in daily life tasks, often in un-
known or partially unknown environments that might be shared with humans or
other robots. This demands higher context awareness and adaptiveness capabil-
ities. A significant number of current approaches lack support for adaptiveness
and dealing with open systems where new actors can join dynamically [Boz+19;
Boz+16]. It suggests that future research should focus more on adaptiveness and
handling open systems. The study by [Boz+19] confirms that existing solutions
aiming at managing safety for mobile robotic systems are not yet ready for ev-
eryday use. It highlights the need for turn-key solutions ready to address all chal-
lenges, indicating the complexity and criticality of safety and reliability in robotics
software development.

In conclusion, developing reliable and safe robotics software presents numer-
ous challenges. The need for adaptability is paramount, as robots must perform
in dynamic, sometimes unpredictable environments [Par94] [Amb+16]. Robust
error handling is crucial to ensure that robots can recover gracefully from unex-
pected situations [Ban+19].

3.2 Traditional ways to program robots

In this section, we’re going to explore the usual methods and languages used to
program robots, and why they sometimes fall short in making sure robots work

3 Related Work 25

safely and correctly. These traditional methods have been the foundation for pro-
gramming robots for a long time, but they often struggle with the advanced needs
of today’s robots, especially autonomous ones.

Software faults in ROS are common and varied, as noted by Dittrich, Yvonne,
et al. in [Dit+17]. They include general programming errors like code exceptions
and type errors, issues in building and deployment infrastructure, and run-time er-
rors involving incorrect parameters or arguments. Other challenges include dealing
with changes over time, clock mistimings, and discrepancies between the robot’s
model and the real world. [FN+20] also talks about dependency bugs in ROS and
how they affect the software development process. Our research specifically fo-
cuses on these run-time errors and discrepancies between the robot’s world model
and the robot’s capabilities written by developers.

Andezej Wasowski (at QRARSAC 2021) also pointed out why these faults
happen. A major reason is the lack of a proper type system to connect different
parts of the robot’s software, leading to many runtime errors. Robots often mis-
understand or incorrectly execute tasks because their programmed model of the
world doesn’t match reality. Additionally, there are weak systems in place for
detecting and correcting errors automatically.

Moreover, studies like those by Gotlieb [GMS21] and Afzal [Afz+20] high-
light the key challenges in automating robot software testing. These include un-
predictable situations that the robot might not be programmed to handle, the sheer
complexity of engineering such systems, the prevailing culture around testing
these systems, coordination and documentation issues, the high costs involved,
the complex environments the robots operate in, the lack of reliable check systems
(oracle), challenges in integrating software and hardware, and a general distrust in
simulations.

All these issues point to the need for improved programming methods that
can handle the intricate nature of modern robots, ensuring they operate safely and
reliably in all kinds of situations.

3.3 Other DSL-based approaches that address safety-critical
systems

Domain Specific Languages (DSLs) have been increasingly recognized for their
potential to improve the functional safety of robotic systems. Typically, DSLs
execute models by generating code in a programming language, leading to in-
creased productivity and higher quality. However, in safety-/mission-critical envi-
ronments, the trustworthiness of generated code is often questioned due to uncer-
tainties in the generation mechanisms. This skepticism makes it challenging to jus-
tify the use of language workbenches in such environments. Voelter et al. [Voe+19]
argue that models created with domain-specific languages are easier to validate
and that the additional risk resulting from the transformation to code can be mit-
igated by a suitably designed transformation and verification architecture. This

26 Introduction

validation improves the trustworthiness of the generated code, making DSLs a vi-
able option in safety-critical robot applications. The paper [Mar+21] presents a
model-based approach to include safety considerations of the ArmAssist robotic
system, a healthcare system designed for hand and arm rehabilitation. The integra-
tion of new functionalities in Papyrus for Robotics, including contracts, has been
positively received by ArmAssist experts. This approach helps in making safety
considerations explicit, which are often implicit or buried in low-level details like
source code. Model-based approaches enhance design explicitness, facilitate com-
munication among stakeholders, and support early-phase validation through for-
mal assertions and contracts at component and system levels.

Miyazawa, Alvaro, et al. [Miy+19] introduce RoboChart, a domain-specific
modeling language based on UML but with a restricted set of constructs. This re-
striction enables simplified semantics and automated reasoning, making it partic-
ularly suited for robotics. RoboChart emphasizes design patterns appropriate for
robotics, modeling the physical robot explicitly in terms of its variables, events,
and operations. This approach contributes to the expressiveness and reliability of
safety-critical code in robotics.

Trezzy, Mickaël, et al. [Tre+21] discusses leveraging Model-Driven Engineer-
ing (MDE) to enhance the development process of Robot Operating System (ROS)
applications. The authors advocate for the adoption of MDE methodologies to fa-
cilitate higher-level reasoning and improve accessibility for field engineers. This
approach is particularly beneficial in enabling more sophisticated model analyses
for validation and verification purposes. In this context, the paper [Tre+21] intro-
duces MDE4ROS, a graphical Domain Specific Language (DSL) specifically de-
signed to streamline the development of high-level robotics applications. MDE4ROS
provides a comprehensive system view during the development phase through its
graphical representation. It also promotes a higher level of abstraction, simplify-
ing the development process by generating code for the ROS system. This graph-
ical DSL is particularly tailored for robotics applications, incorporating special-
ized DSLs and code generation techniques that are well-suited for ROS environ-
ments. As such, MDE4ROS exemplifies a model-driven DSL approach, focusing
on enhancing the efficiency and effectiveness of robotics application development
within the ROS framework.

In conclusion, concepts from model-driven engineering can be applied at run-
time for both functional and non-functional requirements in self-adaptive systems,
potentially enhancing robot safety. While this is an interesting research direc-
tion, we are not looking at safety and reliability from a model-driven or formal
verification perspective, but from the perspective of "what do today’s robotics pro-
grammers actually do, and how can we help them".

3 Related Work 27

3.4 DSLs for Static Error Detection of Behavior Tree Con-
struction

The integration of behavior trees (BTs) with robotic systems often involves the
use of DSLs and frameworks like the Robot Operating System (ROS). [Ghz+23]
emphasize the growing use of BTs in open-source robotic applications supported
by ROS, indicating their practicality in the real-world applications. However, ver-
ifying the safety and correctness of BTs remains a challenge.

[Hen+22] use SMTs to check safety properties specified in Linear Constraint
Horn Clauses notation over Behavior Tree specifications. Moreover, [TT22] use
Event-B for formal specification and verification of the BT instances, ensuring the
maintenance of invariant properties.

From a static semantics perspective, BhTSL is an example where the com-
piler checks the source text for non-declared variables and variable redeclara-
tion [Oli+20]. Despite the advancements in BT DSLs, there is a lack of DSLs
performing static checks as rigorously as desired. According to the survey pa-
per [Ghz+20], most used behavior tree DSLs, such as BehaviorTree.CPP 1, py_trees 2,
and the Behavior Tree from UnrealEngine 3, primarily focus on runtime type safety
and flexibility. For instance, MOOD2Be’s4 project from Horizon 2020, the Behav-
iorTree.CPP tool offers a C++ implementation of BTs with type safety [Fac19],
but the type-checking capability is largely left to the developer and is subject to
runtime checks. This indicates a gap in the domain of DSLs for BTs in ensuring
consistency and preventing inconsistencies in implementation between skills or
actions before runtime.

In general, behavior tree semantics have been studied thoroughly in the litera-
ture [CH10; CH11]. [ZFKA15] presents a simulator based validation of behavior
trees by executing system requirements and captures system states as rules and
facts in a database. It focuses on early validation of systems and identifies ways
to optimize execution paths, thereby enhancing the efficiency and reliability of
software development.

In conclusion, while there have been significant advancements in DSLs for
robotics and BTs, there is a continuous need for the development of languages and
tools that allow both static and early dynamic checking of behavior tree structure
to ensure the safety, reliability, and efficiency of robotic systems.

3.5 Evaluation methods for DSLs

One of the main goals of DSLs is to ease the work of developers in different ar-
eas. However, to achieve this goal it is necessary to provide an evaluation of the

1https://github.com/BehaviorTree/BehaviorTree.CPP
2https://github.com/splintered-reality/py_trees
3https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees
4https://robmosys.eu/mood2be/

https://github.com/BehaviorTree/BehaviorTree.CPP
https://github.com/splintered-reality/py_trees
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees
https://robmosys.eu/mood2be/

28 Introduction

usability of such languages. Evaluating Domain Specific Languages (DSLs) is
a subjective process, as evidenced by recent research in the field. Rodrigues et
al. [PRBCZ17] conducted a systematic literature review to understand how us-
ability has been assessed in DSLs, providing a comprehensive overview of the
methods and criteria used in such evaluations. Barisic [Bar17] proposed a concep-
tual framework to support the iterative development process of DSLs, particularly
focusing on usability evaluation, validated through multiple-case studies. Asici et
al. [ATK21] introduced a comparative evaluation methodology based on the Ana-
lytical Hierarchy Process for multi-agent system DSLs, emphasizing criteria like
appropriateness and development time reduction.

Furthermore, Bork et al. [BSK19] proposed an empirical evaluation technique
for assessing the intuitiveness of DSL notations, applying it to a business conti-
nuity management modeling language. Rodrigues et al. [Pol+18] presented Usa-
DSL, a usability evaluation framework specifically for DSLs, utilizing a focus
group method for validation. Lastly, Kahraman and Bilgen [KB15] developed a
framework for the qualitative assessment of DSLs by integrating ISO/IEC 25010:2011
standard, CMMI maturity level evaluation approach, and the scaling approach used
in DESMET into a perspective-based assessment.

Collectively, these studies underscore the importance of systematic, empirical,
and integrated approaches in evaluating DSLs. They highlight the need for assess-
ing various aspects such as usability, intuitiveness, and overall quality, ensuring
that DSLs are effectively serving their intended purpose in various domains. These
methodologies and frameworks provide valuable insights and tools for researchers
and practitioners aiming to develop or assess DSLs in their work.

In our thesis, we employed various methods to assess our Domain Specific
Languages (DSLs). Specifically, for ROSSMARie, we conducted a quantitative
evaluation focusing on the transformation and generation of the safety monitor, al-
though we have yet to perform a qualitative study for it. Conversely, for EzSkiROS,
we undertook a comprehensive evaluation that includes both quantitative valida-
tion against errors and qualitative analysis through case studies.

4 Contribution Summary 29

4 Contribution Summary

In this Chapter, I will briefly review each paper included in the thesis and its con-
tributions.

4.1 ROSSMARie: A Domain-Specific Language To Ex-
press Dynamic Safety Rules and Recovery Strate-
gies for Autonomous Robots

This paper explores the idea of dynamic safety and recovery strategies in au-
tonomous robotic systems. It addresses the issue of overly rigid safety strategies
that prevent autonomous agents from completing their tasks. We propose "ROSS-
MARie", a DSL inspired by "DeROS" (cited as Adam et al., 2016 [Ada+16]),
which is designed to specify safety constraints independent from the functionality
of the robot. Unlike DeROS, which enforces immediate and aggressive stops for
safety violations, ROSSMARie introduces capabilities for ongoing monitoring, re-
covery, and resumption of operations after hazardous conditions cease. This paper
demonstrates ROSSMARie’s potential to significantly enhance both the safety and
functionality of robots, as evidenced by various simulated experiments.

Contributions of the paper

• Modify the semantics of re-implementation of DeROS (ROSSMARie) to
keep monitoring and resume operation when the rule is no longer violated.

• Introduce strategies for autonomous robots to recover from safety hazards
autonomously.

• Integration challenges of ROSSMARie with a skill-based robot platform
SkiROS2.

• Verifies the effectiveness of ROSSMARie through its application in new
scenarios, showcasing (in simulation) how it enhances both the safety and
functionality of autonomous robots.

4.2 Enhancing Robotic Autonomy: Strategies for Dynamic
Safety and Immediate Recovery

In this technical report, we expand upon the concept introduced in Paper I to as-
sess how our proposed solution addresses the issue of aggressive safety stops that
unduly limit robot autonomy. We argue that while safety is important for robots, it
is often unnecessary to completely halt the robot in response to unexpected events.
In this paper, we answer three research questions. Our initial solution seeks to
answer the research question: How can we modify the DSL’s semantics to con-
tinuously monitor and appropriately react to dynamic situations? This involves

30 Introduction

adapting to changing conditions in real-time. Additionally, we propose alterna-
tive recovery strategies that are less extreme than complete shutdowns but still
maintain the robot’s safety. These strategies provide a more nuanced approach to
maintaining safety while preserving operational functionality.

Contributions of the paper

• Refined semantics of DeROS to facilitate continuous monitoring of haz-
ardous situations. By enabling continuous monitoring, robots are now equipped
to promptly resume normal operations after hazardous conditions are miti-
gated, ensuring safety without undue interruptions.

• Expands the DeROS framework to allow more action templates for recovery
strategies. This enhancement significantly broadens the framework’s utility
across different robotic platforms, particularly those equipped with robotic
arms. The introduction of varied and adaptable recovery strategies allows
for more tailored safety responses across diverse operational scenarios.

• Validates the effectiveness and applicability of ROSSMARie through a se-
ries of simulated and real robot experiments focusing on navigation and
manipulation tasks. These experiments provide concrete evidence of the
practical benefits and real-world impact of our enhancements, illustrating
how they can significantly improve both safety and functionality in robotic
systems.

4.3 EzSkiROS: A Case Study on Embedded Robotics DSLs
to Catch Bugs Early

In this paper, we address the problem of developing general-purpose robot soft-
ware, particularly the difficulty in detecting bugs early due to the varied execution
contexts. In this work, we propose using embedded DSLs to enforce early checks,
reducing debugging time and enhancing safety. The proposed solution uses an
embedded DSL, EzSkiROS, which is integrated into SkiROS2, a skill-based robot
control platform. Using DSL design patterns like Domain Language Mapping and
Symbolic Tracing, EzSkiROS enables early dynamic checking of robot skill de-
scriptions. The effectiveness of EzSkiROS is demonstrated through a user study,
showing its utility in reporting errors at pre-launch and thus improving the devel-
opment process. According to the user study, EzSkiROS improves code readability
and maintainability, and allows early error detection for more effective and safer
robot operations.

Contributions of the paper

• A survey of Python language features that enable DSL embedding;

• Two design patterns for embedding DSLs in general-purpose programming
languages that address common challenges in robotics, with details on how
to implement these patterns in Python;

4 Contribution Summary 31

• A case study of a robotics software SkiROS2 , in which we introduce our
DSL EzSkiROS for early detection of type errors and other bugs.

4.4 EzSkiROS: Enhancing Robot Skill Composition with
Embedded DSL for Early Error Detection

In this paper, we further substantiate the use of DSL design patterns to enforce
early checks at a lower-level skill implementation including the construction of
consistent behavior trees. We present two analyses of different abstraction levels
in SkiROS2 and show how we can use DSL design patterns to detect bugs at a pre-
launch phase before runtime. Case Study I demonstrated the value of our design
patterns by showing how they help detect bugs in the high-level contracts between
a variety of robot capabilities and the robot’s world model. Case Study II expands
EzSkiROS by adapting the same techniques to detect bugs in lower-level imple-
mentation code, in our case that implementation uses a behavior tree to integrate
different robot capabilities. Our work in this paper demonstrates how embedded
DSLs can help robotics developers detect bugs early, even when the analysis de-
pends on data that is not available until run-time. Our evaluation with EzSkiROS
further suggests that embedded DSLs can achieve this goal while simultaneously
increasing code maintainability.

Contributions of the paper

• Four design patterns for embedding DSLs in general-purpose programming
languages that address common challenges in robotics, with details on how
to implement these patterns in Python;

• A case study of a robotics software SkiROS2 , in which we introduce our
DSL EzSkiROS for early detection of type errors and other bugs, highlight-
ing its effectiveness in identifying errors in both high-level skill descriptions
and lower-level implementation details.

• A demonstration of how EzSkiROS detects various types of bugs in robot ca-
pabilities, world model contracts, and behavior trees, showcasing the DSL’s
comprehensive coverage and versatility in detecting bugs early.

32 Introduction

5 Interaction between Domain Specific Languages
for improved Reliability and Safety

In Section 1, I laid the foundation of the thesis with a research question "what are
the factors affecting safety and reliability of autonomous robots and how we can
deal with them using DSL?". Although this is a very broad question, in Section 4,
we summarised two DSLs ROSSMARieand EzSkiROS. ROSSMARieis designed
to handle runtime safety by actively monitoring the robot’s environment and mak-
ing real-time decisions to avoid hazards. EzSkiROS, on the other hand, is used to
preemptively identify and correct programming errors.

In this Chapter, I will reflect on my work until now and how it all connects
together to form deeper research questions. I will draw a picture emphasizing
the use of the two DSLs ROSSMARie and EzSkiROS as a cohesive strategy to
enhance the safety and reliability of autonomous robots. In the following sections,
I will try to answer new research questions focusing on the integration between
the two DSLs,

• How can we combine ROSSMARie and EzSkiROS to help make robots
safer?

• Can EzSkiROS pass on skill level information to ROSSMARie to define
more context-aware safety rules?

• How can ROSSMARie utilize static world model knowledge provided by
EzSkiROS?

– Can we predict the future using world model knowledge to have proac-
tive measures?

– Can we improve our recovery strategies based on the information about
the world?

• What are the potential benefits and challenges of using EzSkiROS for behav-
ior tree generation and modification in response to safety constraints defined
by ROSSMARie?

5.1 Unified Vision of DSLs
In Section 4 I introduced two DSLs, each designed to enhance different aspects of
robot safety and reliability. One focuses on dynamically adapting to environmental
changes to prevent failures, while the other addresses an early detection of bugs
that are caused by a lack of knowledge about other components. These DSLs
might initially seem disjoint, but I believe their combined application could offer a
more comprehensive solution to the challenging problems in robotics. This chapter
explores how these DSLs can be viewed not as disjoint parts but as complementary
strategies within a unified vision.

5 Interaction between Domain Specific Languages for improved Reliability and Safety33

5.2 Opportunities:
Synergy of Both Languages can help make robots safer and more
reliable

Both DSLs are designed with meaningful vocabulary to talk about and fix dif-
ferent parts of how robots work. Both DSLs have their own strengths. While
ROSSMARie is good at monitoring and describing runtime safety constraints,
EzSkiROS is adept at crafting meaningful low-level execution strategies using
behavior trees (BTs). Uniquely, EzSkiROS can access the robot’s static world
knowledge and understand the context of high-level skills being executed, a fea-
ture that enriches its functionality beyond what is offered by ROSSMARie. By
synergizing both DSLs, we can harness the advantages of each to create a more
robust and efficient system. The following sections explore how these DSLs can
complement and enhance each other:

Predicting safety hazards

One feedback that I got for ROSSMARie was "isn’t it sometimes too late to detect
unsafe scenarios based on sensor values if we are working with safety at runtime".
Traditional runtime monitors resort to aggressive measures due to this latency in
detection. I thought this was a valid point. To address this, I am considering to
leverage abstract world model knowledge to get insight to "predict" the future. For
instance, if the robot knows it is navigating through a school corridor, it could
adopt proactive safety measures like reducing speed and being vigilant for unex-
pected obstacles, notably children. EzSkiROS could provide ROSSMARie with
this anticipatory information, enhancing the system’s predictive capabilities and
allowing for more nuanced safety measures.

Skill-aware safety rules

Safety rules aren’t one-size-fits-all; they vary depending on the task at hand. I
discussed this problem in Paper I and II. For example, some tasks may neces-
sitate close contact with objects, contradicting general safety rules that mandate
keeping a distance. This discrepancy highlights the need for task-specific safety
considerations, informed by high-level skill context. EzSkiROS, with its access
to detailed skill information, can provide ROSSMARie with the necessary context
to adapt safety rules accordingly, ensuring that safety measures are both effective
and relevant to the task performed.

Generating recovery strategies as behavior trees

In practice, we’ve observed (Paper II) that defining recovery actions as singular
behaviors in ROSSMARie might not account for task sequencing or the timely
execution of subsequent recovery actions. Exploring behavior tree generation and

34 Introduction

modification in response to safety constraints is a promising avenue. Behavior
trees excel in managing task sequences and could effectively orchestrate a se-
ries of recovery actions, like rerouting upon detecting an obstacle. Integrating
EzSkiROS’s behavior management capabilities with ROSSMARie’s safety moni-
toring could lead to more dynamic and responsive recovery strategies.

Combining these DSLs not only broadens the scope of problems we can ad-
dress but also allows for handling more complex scenarios that might be challeng-
ing for a single DSL. This integration fosters a more comprehensive and flexible
approach to robot programming.

5.3 Technical Challenges
One of the main challenges is how these two DSLs can exchange information
effectively. As both DSLs interact with SkiROS2 in some way (EzSkiROS be-
ing embedded within the SkiROS2 API in Python and ROSSMARie connected
through ROS), they have the potential to communicate through higher-level APIs
or service layers provided by SkiROS2 and ROS respectively. This higher-level
communication would enable the DSLs to share, generate, or consume informa-
tion, creating a more integrated and coherent system.

Complex Integration Dynamics: Each DSL is designed with a specific pur-
pose and operational context in mind. When two such languages are integrated,
their interaction creates a complex dynamic. Understanding and evaluating how
one DSL’s output or behavior affects the other requires a deep understanding of
both the individual DSLs and their combined operation.

Performance Metrics: Defining appropriate metrics to evaluate the interac-
tion of DSLs is complex. These metrics must encompass not only individual DSL
performance but also the effectiveness of their integration. For example, in the
case of ROSSMARieand EzSkiROS, metrics might include the reduction in op-
erational errors, improvement in safety protocol adherence, and efficiency in task
execution.

I believe we need further research to explore these directions. My overall
expectation is that by uniting ROSSMARie and EzSkiROS, we would be able to
integrate the perspectives, capabilities, and insights of each DSL to enhance the
safety and reliability of robotic systems.

6 Interaction between ROSSMARie and Reinforcement Learning 35

6 Interaction between ROSSMARie and Rein-
forcement Learning

6.1 Constraining and Guiding Reinforcement Learning With
Rule-Based Safety Monitoring

In Section 1, I outlined several research questions. One of the primary research
questions is to identify the causes of unsafe robot behavior. I narrowed the focus
of my research to use Domain-Specific Languages (DSLs) to address two key fac-
tors: the dynamic environmental factors causing unexpected failures and software
faults due to incompatible representations within software components. To fur-
ther answer RQ1 (mentioned in Chapter 1) in the future, I would like to address
another source of unsafe behavior: autonomous robots using learning methods.
While Chapter 5 focused more on how EzSkiROS and ROSSMARie can interact
to unravel more opportunities to improve safety, in this chapter I will focus mainly
on ROSSMARie and how can we use it to guide and constrain the exploration part
of Reinforcement Learning (RL) using safety rules.

Note: This is a joint proposal created with Matthias Mayr.

6.2 Motivation

As robots get more advanced, making sure they are safe is more important than
ever, especially now that they are starting to learn on their own and work closely
with people. Reinforcement learning is a new way for robots to learn and get better
by trying different things and seeing what works best. However, this introduces
new complexities in ensuring safety.

Reinforcement learning algorithms, while powerful, start with an exploratory
phase that can involve significant trial and error. This exploration is essential for
learning but poses safety risks, especially when humans are in proximity. In indus-
trial environments, understanding and predicting the robot’s behavior is important
for the safety of both workers and equipment.

Herein lies the motivation for integrating ROSSMARie with reinforcement
learning. ROSSMARie, with its focus on expressing dynamic safety rules and
recovery strategies, provides a structured approach to guide and restrict RL explo-
ration. By embedding safety rules and acceptable operational parameters directly
into the learning process, ROSSMARie can act as a safety monitor, steering the
robot away from hazardous actions or states. Having a safety monitor is important
to ensure the safety of equipment and workers, but also to allow humans working
close to the assembly setup to predict the robot’s behavior.

To better understand the problem, consider an assembly task where the robot
needs to learn how to insert a piston into the engine. A mock-up of this task is
shown in Fig. 1. The setting of this insertion requires to hold the object upright
and to perform a spiral search motion. This task’s objective is to increase the

36 Introduction

Figure 4: A robot in an expensive and fragile industrial environment must learn
to avoid a fragile object and to perform a peg-in-hole insertion. The workspace
is divided into different zones: allowed volume v1, disallowed volume v2 and
allowed contact volume v3. (source: [May+22c] [May+22b]

performance of the insertion. We consider here that there is a fragile assembly part
(red box in Fig. 1). Even though our reward functions discourage closeness to the
fragile object, there is the safety hazard of the robot hitting the fragile red object
when learning a strategy to avoid it. Furthermore, a human worker is sharing the
workspace and the insertion must not exceed certain forces. For the robot to be able
to learn this piston insertion task safely, we propose an approach to incorporate a
safety monitor to guide the exploration without needing any external intervention
during episodes.

By using ROSSMARie as a safety overlay in this example, we can enable
more robust learning processes that are sensitive to the dynamic safety require-
ments of shared human-robot workspaces. This approach allows robots to learn
and adapt while ensuring that their exploratory behaviors are bounded within safe,
predictable parameters. It represents a step towards more reliable and trustworthy
robot operations in complex, unpredictable environments, enhancing both perfor-
mance and safety in industrial robotics.

6 Interaction between ROSSMARie and Reinforcement Learning 37

6.3 Formulating safety rules

ROSSMARie allows systems engineers to specify relevant risks in a formal lan-
guage, integrating these directly into the robot’s learning process. To show a pos-
sible application of ROSSMARie to define safety rules for the exploration part of
Reinforcement Learning RL algorithms, an example is shown in Listing 1. Safety
rules are categorized into robot operation, human-robot collaboration, and envi-
ronmental conditions, covering a comprehensive range of safety considerations. A
safety rule can consist of one or more safety conditions (entities shown in List-
ing 1) and one or more reactions that are executed when those conditions hold.

Each condition can either be used independently to obtain a safety rule (Line 34
in Listing 1) or combined with other conditions. This allows to implement detailed
safety configurations such as on [Wan+21] with different reactions depending on
the state of the robot system and the human. Safety rules can be divided into
task-independent and task-dependent rules. The former set of rules follows from
legal obligations, norms as well as robot operation limits and exist independent
of the task at hand. Additionally, there are task-dependent rules that depend on
the current setup of the workstation and the type of task and the expected robot
behavior and interaction.

For each detected violation, one can define corrective actions in ROSSMARie
to bring the robot to a safe state and provide feedback for the learning algorithm
that can be utilized in reward functions. This feedback can help in refining the
learning process and ensuring continuous, safe operation.

1 ac t i on dece le ra te ;
2 ac t i on retraceToTheLastEndEffectorPose ;
3 ac t i on tu rnOf fAc t i veForce ;
4 ac t i on logV io la tedRu le ;
5

6 const maxIner t ia = 0.17 kgm.m
7 const volume_2 = [−0.8 , 0 .1 , 0.65 , −0.2 , 0 .5 , 1 . 3] m
8 const maxDistanceAllowed = 0.08 m
9

10 ’ ’ ’ Task s p e c i f i c i n f o rma t i on coming from the s k i l l
d e s c r i p t i o n . ’ ’ ’

11 i npu t contactRichTask = t o p i c contact_a l lowed
12

13 ’ ’ ’ I npu ts are mapped to the re l evan t ROS t o p i c . ’ ’ ’
14 i npu t d i s tToOjec t = t o p i c de tec tob j ec t . d i s t
15 i npu t eePose = t o p i c endEffectorPose
16 i npu t e e I n e r t i a = t o p i c e n d E f f e c t o r I n e r t i a
17

18 ’ ’ ’ E n t i t i e s t h a t de f ine bounded sa fe t y cond i t i ons ’ ’ ’
19 e n t i t y opera t ion {
20 exceeds Iner t ia :
21 e e I n e r t i a > maxIner t ia f o r 1.0 sec ;

38 Introduction

22 }
23

24 e n t i t y env {
25 eeExceedsSpace :
26 eePose not i n volume_1 ;
27 closeToObject :
28 d is tToObjec t > maxDistanceAllowed ;
29 nonContact :
30 not contactRichTask ;
31 }
32

33 ’ ’ ’ Task dependent sa fe t y r u l e ’ ’ ’
34 i f env . eeExceedsSpace and env . nonContact
35 then { dece le ra te ;
36 retraceToTheLastEndEffectorPose ;
37 l ogV io la tedRu le ; } ;
38

39 ’ ’ ’ Task independent sa fe t y r u l e ’ ’ ’
40 i f env . c loseToObject and
41 opera t ion . exceeds Iner t i a
42 then { tu rnOf fAc t i veForce ;
43 dece le ra te ;
44 l ogV io la tedRu le ; } ;

Listing 1: An example code excerpt to define safety rules for the scenario shown in
Fig. 1. Actions definition and entities are defined to specify conditions and safety
rules.

6.4 Conclusion

The idea of integrating ROSSMARie with RL is to ensure the safety of autonomous
robots, particularly in dynamic and unpredictable environments. By guiding and
constraining the exploration phase of RL with rule-based safety monitoring, robots
can learn and adapt while adhering to strict safety protocols. This approach not
only enhances the safety and reliability of robot operations but also contributes to
the efficiency and robustness of the learning process itself.

In Figure 5, we conceptually show how we can integrate reinforcement learn-
ing with an isolated safety monitoring technique that detects violations of expert
safety rules and augments or replaces actions with safe reactions. This design
allows us to re-use safety rules intended for robot operations to also guide RL.
Combining RL and rule-based safety monitoring allows expert safety knowledge
to constrain the optimization strategy independent of the concrete RL algorithms
being used and in arbitrary (industrial) environments. It also enables safer learning
of black-box policies such as neural networks.

6 Interaction between ROSSMARie and Reinforcement Learning 39

Although this is an initial sketch of the solution, we plan to focus on further
developing and refining these ideas, exploring their potential and applications in
ensuring the safe and effective operation of autonomous robots. The insights and
methodologies presented here will guide my future work, aiming to contribute to
the broader field of robotics and autonomous systems.

40 Introduction

Learning Policy Evaluation

Policy
Optimizer

Learning
Scenario

Safety
Rules

Rule-based
Safety
Monitor

Systems
Engineer

R
ew

ar
d

Parameters

Sa
fe

ty
 I

nt
er

fa
ce

ActionState

Policy Update
10 Hz

Figure 5: The proposed architecture of the safety implementation where the sys-
tems engineer defines both the safety rules and the learning scenario. When ex-
ecuting a policy, the state and action is communicated to the runtime monitoring
system through the safety interface. The final action follows the reaction of the
runtime monitor.

7 Conclusions and Future Work 41

7 Conclusions and Future Work
This thesis primarily focuses on enhancing the safety and reliability of robotic
systems through innovative software technology tools, with a special emphasis
on Domain-Specific Languages (DSLs). Our exploration spans multiple levels
of robotic operation, encompassing environmental interactions detectable via sen-
sors, the learning processes during autonomous robot exploration, and addressing
software bugs arising from limited context awareness at the design stage. The
development and integration of DSLs, specifically ROSSMARieand EzSkiROS,
form the cornerstone of our approach.

Key Insights and Findings: Through our research, we uncovered valuable in-
sights into the application of these DSLs. Our evaluation of ROSSMARiehigh-
lighted the necessity of task-specific recovery strategies. We found that effective
runtime monitoring, particularly in human-interactive scenarios, must incorpo-
rate task context alongside sensor data to balance safety considerations accurately.
While, EzSkiROSdemonstrated proficiency in identifying errors in high-level skill
descriptions and was instrumental in detecting bugs in the pre- and post-conditions
of existing SkiROS skills. Future testing on newly developed skills by various de-
velopers is planned, necessitating the public release of EzSkiROSfor broader usage
and error collection.

My future endeavors, as outlined in Section 5, include a study of the interaction
between DSLs where I aim to integrate skill-level information from EzSkiROS
into ROSSMARie, enhancing recovery strategies and compensating for each DSL’s
limitations. Another future direction is to explore interactions of runtime moni-
toring and Reinforcement Learning(RL). As mentioned in Section 6, we have an
initial plan to apply safety rules, derived from our DSLs, to the exploration phase
of reinforcement learning.

We also plan to conduct further experiments to observe these interactions, and
other components in the robotic system, particularly focusing on how these inter-
actions influence the overall safety and reliability of the robot. Looking ahead,
it would be immensely valuable to delve into the methodologies for evaluating
DSLs and their interplay. Understanding and quantifying the impact of DSL inter-
actions on robot performance, safety, and reliability would open new avenues in
robotic software development. Additionally, exploring how runtime information
gathered by ROSSMARiecould enhance the efficiency of EzSkiROSin subsequent
runs presents an exciting research trajectory.

Final Thoughts: While several questions remain open for exploration, the
groundwork laid in this thesis sets the stage for future advancements in the field
of robotic safety and reliability. The integration of DSLs like ROSSMARieand
ezSkiROS, coupled with their application in real-world scenarios, heralds a new
era in the development of safer, more reliable autonomous robotic systems.

42 Introduction

References
[Ach+17] MS Hendriyawan Achmad et al. “Tele-operated mobile robot for

3d visual inspection utilizing distributed operating system
platform”. In: International Journal of Vehicle Structures &
Systems 9.3 (2017), pp. 190–194.

[Ada+16] Sorin Adam et al. “Rule-based dynamic safety monitoring for
mobile robots”. In: Journal of Software Engineering for Robotics
7.1 (2016), pp. 121–141.

[Afz+20] Afsoon Afzal et al. “A study on challenges of testing robotic
systems”. In: 2020 IEEE 13th International Conference on
Software Testing, Validation and Verification (ICST). IEEE. 2020,
pp. 96–107.

[AMK23] Faseeh Ahmad, Matthias Mayr, and Volker Krueger. “Learning to
Adapt the Parameters of Behavior Trees and Motion Generators
(BTMGs) to Task Variations”. In: 2023 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 2023,
pp. 10133–10140.

[Amb+16] Stanislaw Ambroszkiewicz et al. “Fault Tolerant Automated Task
Execution in a Multi-robot System”. In: Intelligent Distributed
Computing IX: Proceedings of the 9th International Symposium on
Intelligent Distributed Computing–IDC’2015, Guimarães,
Portugal, October 2015. Springer. 2016, pp. 101–107.

[ATK21] Tansu Zafer Asici, Baris Tekin Tezel, and Geylani Kardas. “On the
use of the analytic hierarchy process in the evaluation of
domain-specific modeling languages for multi-agent systems”. In:
Journal of Computer Languages 62 (2021), p. 101020.

[Ban+19] Siddhartha Banerjee et al. “Taking recoveries to task:
Recovery-driven development for recipe-based robot tasks”. In:
The International Symposium of Robotics Research. Springer.
2019, pp. 593–609.

[Bar17] Ankica Barišić. “Framework support for usability evaluation of
domain-specific languages”. In: Proceedings Companion of the
2017 ACM SIGPLAN International Conference on Systems,
Programming, Languages, and Applications: Software for
Humanity. 2017, pp. 16–18.

[BSK19] Dominik Bork, Christine Schrüffer, and Dimitris Karagiannis.
“Intuitive understanding of domain-specific modeling languages:
proposition and application of an evaluation technique”. In:
Conceptual Modeling: 38th International Conference, ER 2019,

7 Conclusions and Future Work 43

Salvador, Brazil, November 4–7, 2019, Proceedings 38. Springer.
2019, pp. 311–319.

[Boz+16] Darko Bozhinoski et al. “Leveraging collective run-time adaptation
for UAV-based systems”. In: 2016 42th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA). IEEE.
2016, pp. 214–221.

[Boz+19] Darko Bozhinoski et al. “Safety for mobile robotic systems: A
systematic mapping study from a software engineering
perspective”. In: Journal of Systems and Software 151 (2019),
pp. 150–179.

[CAÖ19] Michele Colledanchise, Diogo Almeida, and Petter Ögren.
“Towards blended reactive planning and acting using behavior
trees”. In: 2019 International Conference on Robotics and
Automation (ICRA). IEEE. 2019, pp. 8839–8845.

[CMÖ17] Michele Colledanchise, Richard M Murray, and Petter Ögren.
“Synthesis of correct-by-construction behavior trees”. In: 2017
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE. 2017, pp. 6039–6046.

[CÖ18] Michele Colledanchise and Petter Ögren. Behavior trees in
robotics and AI: An introduction. CRC Press, 2018.

[CH11] Robert J Colvin and Ian J Hayes. “A semantics for Behavior Trees
using CSP with specification commands”. In: Science of Computer
Programming 76.10 (2011), pp. 891–914.

[CH10] Robert Colvin and Ian J Hayes. “A semantics for Behavior Trees”.
In: (2010).

[Dit+17] Yvonne Dittrich et al. Quality Assurance Process and Community
Management in ROS. Tech. rep. Technical report, rosin-project. eu,
2017.

[Fac19] Davide Faconti. “Mood2be: Models and tools to design robotic
behaviors”. In: Eurecat Centre Tecnologic, Barcelona, Spain, Tech.
Rep 4 (2019).

[FN+20] Anders Fischer-Nielsen et al. “The forgotten case of the
dependency bugs: on the example of the robot operating system”.
In: Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering: Software Engineering in Practice. 2020,
pp. 21–30.

[Ghz+20] Razan Ghzouli et al. “Behavior trees in action: a study of robotics
applications”. In: Proceedings of the 13th ACM SIGPLAN
International Conference on Software Language Engineering.
2020, pp. 196–209.

44 Introduction

[Ghz+23] Razan Ghzouli et al. “Behavior Trees and State Machines in
Robotics Applications”. In: IEEE Transactions on Software
Engineering (2023).

[GMS21] Arnaud Gotlieb, Dusica Marijan, and Helge Spieker. “Testing
Industrial Robotic Systems: A New Battlefield!” In: Software
Engineering for Robotics (2021), pp. 109–137.

[Gra+08] Jeff Gray et al. “DSLs: the good, the bad, and the ugly”. In:
Companion to the 23rd ACM SIGPLAN conference on
Object-oriented programming systems languages and applications.
2008, pp. 791–794.

[Hen+22] Thomas Henn et al. “Verification of Behavior Trees using Linear
Constrained Horn Clauses”. In: International Conference on
Formal Methods for Industrial Critical Systems. Springer. 2022,
pp. 211–225.

[KB15] Gökhan Kahraman and Semih Bilgen. “A framework for
qualitative assessment of domain-specific languages”. In: Software
& Systems Modeling 14 (2015), pp. 1505–1526.

[Mar+21] Jabier Martinez et al. “Modelling the Component-based
Architecture and Safety Contracts of ArmAssist in Papyrus for
Robotics”. In: 2021 IEEE/ACM 3rd International Workshop on
Robotics Software Engineering (RoSE). IEEE. 2021, pp. 13–18.

[MRK23] Matthias Mayr, Francesco Rovida, and Volker Krueger. “SkiROS2:
A skill-based Robot Control Platform for ROS”. In: 2023
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE. 2023, pp. 6273–6280.

[May+22a] Matthias Mayr et al. “Combining Planning, Reasoning and
Reinforcement Learning to solve Industrial Robot Tasks”. In:
arXiv preprint arXiv:2212.03570 (2022).

[May+22b] Matthias Mayr et al. “Learning Skill-based Industrial Robot Tasks
with User Priors”. In: 2022 IEEE 18th International Conference on
Automation Science and Engineering (CASE). 2022,
pp. 1485–1492.

[May+22c] Matthias Mayr et al. “Skill-based Multi-objective Reinforcement
Learning of Industrial Robot Tasks with Planning and Knowledge
Integration”. In: 2022 IEEE International Conference on Robotics
and Biomimetics (ROBIO). 2022.

[May+23] Matthias Mayr et al. “Using Knowledge Representation and Task
Planning for Robot-Agnostic Skills on the Example of
Contact-Rich Wiping Tasks”. In: 2023 IEEE 19th International
Conference on Automation Science and Engineering (CASE).
IEEE, 2023, pp. 1–7.

7 Conclusions and Future Work 45

[Miy+19] Alvaro Miyazawa et al. “RoboChart: modelling and verification of
the functional behaviour of robotic applications”. In: Software &
Systems Modeling 18 (2019), pp. 3097–3149.

[MNK22] Valery Marcial Monthe, Laurent Nana, and
Georges Edouard Kouamou. “A Model-Based Approach for
Common Representation and Description of Robotics Software
Architectures”. In: Applied Sciences 12.6 (2022), p. 2982.

[Oli+20] Miguel Oliveira et al. “BhTSL, behavior trees specification and
processing”. In: (2020).

[Par94] Lynne E Parker. “ALLIANCE: An architecture for fault tolerant,
cooperative control of heterogeneous mobile robots”. In:
Proceedings of IEEE/RSJ international conference on intelligent
robots and systems (IROS’94). Vol. 2. IEEE. 1994, pp. 776–783.

[PRBCZ17] Ildevana Poltronieri Rodrigues, Márcia de Borba Campos, and
Avelino F Zorzo. “Usability evaluation of domain-specific
languages: a systematic literature review”. In: Human-Computer
Interaction. User Interface Design, Development and
Multimodality: 19th International Conference, HCI International
2017, Vancouver, BC, Canada, July 9-14, 2017, Proceedings, Part
I 19. Springer. 2017, pp. 522–534.

[Pol+18] Ildevana Poltronieri et al. “Usa-dsl: usability evaluation framework
for domain-specific languages”. In: Proceedings of the 33rd
Annual ACM Symposium on Applied Computing. 2018,
pp. 2013–2021.

[Rév+00] Laurent Réveillere et al. “A DSL approach to improve productivity
and safety in device drivers development”. In: Proceedings ASE
2000. Fifteenth IEEE International Conference on Automated
Software Engineering. IEEE. 2000, pp. 101–109.

[Rob03] ABB Robotics. “A Dependable Real-Time Platform for Industrial
Robotics”. In: WADS 2003 Workshop on Software Architectures for
Dependable Systems. 2003, p. 19.

[TT22] Matteo Tadiello and Elena Troubitsyna. “Verifying Safety of
Behaviour Trees in Event-B”. In: arXiv preprint arXiv:2209.14045
(2022).

[Tre+21] Mickaël Trezzy et al. “Leveraging domain specific modeling to
increase accessibility of robot programming”. In: 2021 IEEE
International Workshop of Electronics, Control, Measurement,
Signals and their application to Mechatronics (ECMSM). IEEE.
2021, pp. 1–9.

46 Introduction

[Voe+19] Markus Voelter et al. “Using language workbenches and
domain-specific languages for safety-critical software
development”. In: Software & Systems Modeling 18.4 (2019),
pp. 2507–2530.

[Wan+21] Lihui Wang et al. Advanced Human-Robot Collaboration in
Manufacturing. Springer, 2021.

[ZFKA15] Saad Zafar, Naurin Farooq-Khan, and Musharif Ahmed.
“Requirements simulation for early validation using Behavior
Trees and Datalog”. In: Information and Software Technology 61
(2015), pp. 52–70.

INCLUDED PAPERS

48

PA
P

E
R

I

ROSSMARIE: A DSL TO
EXPRESS DYNAMIC SAFETY

RULES AND RECOVERY
STRATEGIES FOR

AUTONOMOUS ROBOTS

1 Abstract

Ensuring functional safety is a critical challenge for autonomous robots, as they
must operate reliably and predictably despite uncertainty. However, existing safety
measures can over-constrain the system, limiting the robot’s availability to perform
its assigned task. To address this problem, we propose a more flexible strategy that
equips robots with the ability to adapt to system failures and recover from those
situations without human intervention. We extend a domain-specific language,
Declarative Robot Safety (DeROS), whose runtime response is to stop a robot
whenever it violates a safety rule (e.g., proximity to a human). Our extended lan-
guage, ROSSMARie, adds the capability to monitor whether a rule is no longer
violated and to recover and resume robot operation. We validate ROSSMARie on

Momina Rizwan, Christoph Reichenbach, Volker Krueger. “ROSSMARie: A Domain-Specific
Language To Express Dynamic Safety Rules and Recovery Strategies for Autonomous Robots”. In
Second Workshop on Quality and Reliability Assessment of Robotic Software Architectures and
Components, June, 2nd, 2023, ICRA 2023, London, UK. Conference website with selected
contributions: qrarsac2023.

https://sites.google.com/view/qrarsac2023

50 ROSSMARie: A Domain-Specific Language To Express Dynamic Safety Rules . . .

the ROS-based industrial platform SkiROS2 and verify its effectiveness in achiev-
ing safety and availability. Our experiments demonstrate that our DSL extension
ensures functional safety while enabling robots to complete their tasks.

2 Introduction

Ensuring the safe behavior of robots in a dynamic and unpredictable environment
where humans are present is a challenging task. Autonomous robots must be
designed to operate effectively in uncertain environments and are able to adapt
to system failures without external interference [Mül+21]. While deploying au-
tonomous robots in real-life settings, the safety of the environment, human users,
and the robot itself is of prior importance.

Runtime monitoring is one way of guaranteeing safety which has been ex-
plored in recent years [Mas+18]. A safety monitor is an independent component
that can detect potential safety violations and intervene with recovery or corrective
strategies. Adam et. al [Ada+16] trigger a stop action when the robot encounters
an unexpected situation and waits for the operator to start the robot. While this
strategy may be suitable for their experiments, it is a conservative strategy that
for an autonomous robot For example, in the case of service robots operating in
households, if the safety protocol requires the robot to stop whenever it encounters
uneven terrain, it may not be able to complete its task, such as cleaning a room, as
efficiently as it could if it were able to slow down until it has crossed the uneven
area and then continue cleaning at its normal speed.

While stopping the robot is an important safety measure to prevent accidents, it
can hinder the robot’s ability to function effectively in certain contexts. Therefore,
it is important to strike a balance between safety and functionality when design-
ing safety strategies [Are+21]. Addressing these challenges requires innovative
approaches to robot design and programming, as well as comprehensive safety
protocols to ensure that robots can operate safely in a variety of contexts. By con-
tinuing to improve the safety behaviours of autonomous robots, we can unlock the
full potential of these machines to make our lives easier and more efficient.

In this extended abstract, we focus on functional safety and assume that the
sensors are reliable. A system is considered functionally safe if it operates cor-
rectly in response to its inputs and if it can’t, then it should fail in a predictable
manner [Ada+16]. We extend an existing domain-specific language designed in
the spirit of DeROS [Ada+16] which generates a safety monitor (for ROS-based
software) that enforces rules expressed in that language. The contributions include:

1. We modify the semantics of the language, enabling robots to resume after a
hazardous/unsafe situation has passed.

2. We introduce strategies to recover from those safety hazards

3 Background: DeROS 51

3. We integrate the framework proposed by Adam et. al. [Ada+16] with SkiROS2,
a skill-based platform for ROS, and we demonstrate the effectiveness of our
recovery strategies by applying them to new scenarios.

To distinguish between the previous work and our implementation, we refer to
our modified DSL as ROSSMARie.

3 Background: DeROS

DeROS [Ada+16] is a DSL to express dynamic safety rules for runtime monitoring
based on informal safety specifications that provide information on components in
Robot Operating System (ROS) (topics and nodes). The DeROS compiler then
generates a runtime safety monitor to check the specified properties of the soft-
ware system. This framework proposed by Adam et. al. [Ada+16] is aimed at
isolating safety handling from the robot functionality and treating it as a cross-
cutting concern.

4 ROSSMARie

ROSSMARie is an extension of DeROS with modified semantics. The runtime se-
mantics of ROSSMARie enable continuous feedback from the sensors and allows
the robot to resume its current operation as soon as the sensor values are in a safe
range. We have implemented ROSSMARie in the JastAdd [HM03] meta-compiler.

4.1 Integration with SkiROS2

SkiROS2 [Rov+17] is a skill-based robot control platform that can execute mul-
tiple skills st the same time with the help of action server-based communication.
Actions provide non-blocking background processing and are ideal for executing
longer robot skills. While integrating ROSSMARie with SkiROS2, we encoun-
tered a problem where different modules send (publish) conflicting messages on
the same ROS topic. This can result in jittering or unsafe behaviours from the
robot. We realized that action servers need special handling. To address this, we
added a safety node to choose which message to publish on the topic. Figure 1
shows an example of a safety node that filters out commands that set velocity.
To introduce such a filter, we use the remap function in roslaunch. Remapping
redirects a ROS node to publish on /unfil_cmd_vel instead of /cmd_vel.

To support ROS action servers in ROSSMARie code generation, we cancel the
previous goal and send a new goal to the action server. DeROS, in comparison, can
only support components that communicate using topic-based publish-subscribe
communication.

52 ROSSMARie: A Domain-Specific Language To Express Dynamic Safety Rules . . .

Figure 1: Safety monitor acting as a filter to avoid conflicting information pub-
lished on a topic.

(a) (b)

Figure 2: (a) Bump and a ramp in the corridor. (b) Placing a block on the unex-
pectedly high table with an unknown height.

5 Experiments

To showcase the recovery strategies, we performed experiments with a robot named
Heron, as shown in Figure 2. Heron integrates a MIR 100 with a UR5e. The MIR
100 is an indoor autonomous mobile robot with a maximum payload capacity of
100 kg. It has two laser scanners and ultrasonic sensors providing 360◦ visual
feedback. The maximum speed of the robot is 1.5 m/s forward and 0.3 m/s back-
ward. The UR5e is a 20.6 kg robot arm with a maximum payload capacity of 5 kg.
It has a six-axis force/torque sensor to detect collisions. We ran our experiments
using SkiROS2 skills.

Case study I: We used ROSSMARie to define safety rules for Heron navi-
gating in uneven terrain with three safety hazards i.e. bumps, slight and steep
ramps shown in Figure 2(a). If the robot encounters a bump with one wheel (de-
tected through an IMU sensor), our rules reduce the speed until the robot has fully
crossed the bump. On the other hand, a slight ramp triggers an increase in speed
to enter the operating area. If the ramp is steep, the robot recovery strategy is to
go backward and replan. In all three scenarios, the robot tried to recover from the
situation that could have led to damage to the robot.

6 Limitations and Future Work 53

Case Study II: Figure 2(b) shows a simulation setup where Heron’s task is to
move an object from one table and place it on another. An active compliance con-
troller can produce vibrations in the robot arm when contact occurs while placing
the object. To avoid any serious damage, we switch to position control whenever
the force torque sensor detects those vibrations.

Case Study III: Proactive behaviours are required to avoid deadly/costly reper-
cussions e.g. harming a human in a crash is more costly. For human-shared
workspaces, we defined a safety rule to decrease arm speed whenever a human
is detected in the room.

6 Limitations and Future Work
While conducting our experiments, we observed that recovery strategies can vary
depending on the task at hand. While safety rules typically aim to maintain a safe
distance from objects, some tasks require interacting with (e.g., pushing) an object.
In such interaction scenarios, the robot may need to approach the object more
closely than safety rules would normally allow. We plan to address such scenarios
by allowing ROSSMARie’s safety rules to be task-aware. During experiments,
we also encountered conflicting recovery strategies for different safety rules. To
identify and resolve such conflicts, we plan to statically check rules for overlap.

Acknowledgements
This work was partially supported by the Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by the Knut and Alice Wallenberg Foun-
dation.

References
[Ada+16] Sorin Adam et al. “Rule-based dynamic safety monitoring for

mobile robots”. In: Journal of Software Engineering for Robotics
7.1 (2016), pp. 121–141.

[Are+21] Janis Arents et al. “Human–robot collaboration trends and safety
aspects: A systematic review”. In: Journal of Sensor and Actuator
Networks 10.3 (2021), p. 48.

[HM03] Görel Hedin and Eva Magnusson. “JastAdd—an aspect-oriented
compiler construction system”. In: Science of Computer
Programming 47.1 (2003), pp. 37–58.

54 ROSSMARie: A Domain-Specific Language To Express Dynamic Safety Rules . . .

[Mas+18] Lola Masson et al. “Tuning permissiveness of active safety
monitors for autonomous systems”. In: NASA Formal Methods
Symposium. Springer. 2018, pp. 333–348.

[Mül+21] Manuel Müller et al. “Industrial autonomous systems: a survey on
definitions, characteristics and abilities”. In:
at-Automatisierungstechnik 69.1 (2021), pp. 3–13.

[Rov+17] Francesco Rovida et al. “SkiROS— a skill-based robot control
platform on top of ROS”. In: Robot Operating System (ROS).
Springer, 2017, pp. 121–160.

PA
P

E
R

II

ENHANCING ROBOTIC
AUTONOMY: STRATEGIES

FOR DYNAMIC SAFETY AND
IMMEDIATE RECOVERY

1 Introduction

Functional safety is a critical aspect during the operation of autonomous robotic
systems. However, ensuring safe robot behavior has become a challenging task in
the presence of dynamic and unpredictable environment where robots work along-
side humans. Traditional definitions and approaches to functional safety, often
guided by standards like ISO 12100 (Safety of Machinery) [Isoc] and ISO 26262
(Road Vehicles - Functional Safety) [Isob], can be overly conservative for the dy-
namic and complex nature of autonomous robots.

In traditional industrial settings, machinery is designed to perform a set of
well-defined tasks in a controlled environment. Here, functional safety measures
often involve deterministic responses to errors or unexpected situations, typically
leading to an immediate shutdown or halt of the machine. For example, an indus-
trial robotic arm might stop immediately if a safety perimeter is breached or if an
internal fault is detected. While this approach effectively minimizes immediate
risk, it doesn’t align well with the concept of autonomy in robotics. Autonomous

Momina Rizwan, Christoph Reichenbach, Volker Krueger. “Enhancing Robotic Autonomy: Strategies
for Dynamic Safety and Immediate Recovery”. Technical Report 114, Lund Tekniska Högskola,
2024. To be submitted.

56 Strategies for Dynamic Safety and Immediate Recovery

robots are expected to perceive their environment, make decisions, and continue
operating despite uncertainties and changes, all while ensuring safety.

The conservative "stop and wait for the operator" approach negates the bene-
fits of autonomy, as it requires human intervention to reset or address the issue,
leading to downtime and reduced efficiency. Balancing safety and availability be-
comes a significant challenge, as overly aggressive safety measures can lead to
frequent unnecessary stops, while lenient strategies might compromise safety. Re-
cent ISO standards such as ISO-17757-2019 [Isoa] have introduced new rules for
autonomous mobile robots (AMRs) to adapt to environmental changes. These in-
clude using systems to adjust speeds, disable certain operations, provide close-off
areas, or make other necessary changes to ensure safe operation. However, au-
tonomous robots are not limited to only mobile robots, but also include flying
robots (drones), boats, and robotic arms.

Consider AMRs with an industrial manipulator that carries and assembles parts
in a manufacturing environment. A human inspector works alongside the robot,
checking the quality of these parts. As the robot assembles an electronic compo-
nent, it senses the human inspector standing close to the assembly station. In such
a scenario, the robot’s standard operation might pose a risk to the human, espe-
cially if both reach for the same part or if the robot moves unexpectedly. Stopping
the robot arm might seem like a safe response, but it could lead to the human
being trapped between the robot and a wall or other obstacles, especially in a con-
strained space. Instead, the robot should adapt its behavior to the situation, perhaps
by slowing down, entering a constrained motion mode, or switching to a gravity-
free mode to ensure both safety and continued operation. This approach maintains
safety while allowing the human inspector to continue their work without signifi-
cant interruption.

Runtime safety monitoring has emerged as a promising approach to ensure
safety requirements while maintaining operational efficiency [Mas+18; Mal+19].
By continuously observing the system’s behavior and performance, runtime mon-
itors can detect deviations or potential safety breaches and initiate appropriate re-
sponses. This approach allows for more nuanced safety strategies, such as reduc-
ing speed, rerouting, or other context-aware actions that maintain safety without
completely stopping the system.

• RQ1: How can dynamic safety monitoring systems adapt to unpredictable
environments while maintaining robust safety protocols?

• RQ2: What role do recovery strategies play in ensuring the continuous op-
eration and safety of mobile robots in complex environments?

• RQ3: Are these recovery strategies task-dependant or they can be gener-
alised?

In this paper, we aim to strike a balance between aggressive and lenient safety
strategies in autonomous robotics, particularly focusing on domains such as robotic

2 Background 57

arms. We introduce a Domain-Specific Language (DSL), ROSSMARie, inspired
by DeROS [Ada+16], to articulate dynamic safety rules for autonomous robots
and generate corresponding safety monitors. In the study [Ada+16], for most ex-
periments a generic fault handling approach is used, meaning that a complete stop
action was used as a reaction to any safety rule violation. While this approach
fulfilled the specific safety requirements of the robots in those experiments, it may
not be the optimal action for other robots. For example, in a situation where a mo-
bile robot encounters an obstacle, instead of a generic stop or retreat response, the
robot might choose to bypassing the obstacle if it’s safe to do so. This keeps the
robot operational while still adhering to safety protocols. The authors acknowl-
edges the need for more advanced fault-handling strategies based on diagnosis and
fault isolation, suggesting that DeRoS currently lacks a nuanced approach to han-
dling different types of faults or safety issues. In this paper, we want to explore
further recovery strategies and answer some research questions that we proposed
earlier. The contributions of the research are as follows:

1. We refine the semantics of DeROS to enable continuous monitoring of haz-
ardous situations. This enhancement enables a more dynamic and respon-
sive safety monitoring system. By allowing continuous monitoring of haz-
ardous situations, the system can quickly identify when a threat is no longer
present and resume normal operations. This reduces unnecessary opera-
tional interruptions, improving efficiency while maintaining safety. It di-
rectly addresses RQ1.

2. We extend the framework with a broader range of action templates for re-
covery strategies. The introduction of more action templates for recovery
strategies expands the framework’s applicability to different robotic plat-
forms, including those with robotic arms. This is done to validate RQ2 and
RQ3.

3. We demonstrate the applicability and effectiveness of ROSSMARie through
simulated and real robot experiments with navigation and manipulation tasks.
This contribution provides empirical evidence addressing the research ques-
tions, showcasing the real-world impact of our proposed enhancements.

2 Background
Declarative Robot Safety (DeROS), a Domain-Specific Language (DSL) designed
for expressing dynamic safety rules for mobile robots [Ada+16]. DeROS was
specifically created to address the need for an isolated safety layer in robot soft-
ware that is easy to understand and facilitates safety certification. It is intended
to explicitly declare functional safety-critical concerns separately from the main
program in terms of externally observable properties. According to the study pre-
sented in [Ada+16], developers create a DeROS program from an informal safety

58 Strategies for Dynamic Safety and Immediate Recovery

specification, leveraging a system model for static consistency checks. The model
details components like ROS topics and nodes. this model is required to automat-
ically generate the necessary launch files for a ROS system. A DeROS compiler
then generates a runtime safety component to monitor the software system’s spec-
ified properties, ensuring dynamic adherence to safety rules. DeROS only support
components that communicate using topic-based publish-subscribe.

In the DeRoS (Declarative Robot Safety) system, the following actions are
mentioned as part of the recovery strategies:

• halting the robot completely as a response to safety rule violations.

• reduces the robot’s speed, allowing it to continue operating but at a lower,
safer speed. This is used when a less severe safety rule is violated.

• stopping the motor action is a more severe action than just stopping the
robot, as it involves stopping the motor, and it remains active until manually
reset by an operator.

• Controller OK Action action is used to reset the stop and low-speed actions.
It signals that the robot’s controller is functioning correctly and that it’s safe
to resume normal operation.

These actions, implemented in a dedicated robot-specific library, are a part of
the functional safety features provided by DeRoS. The system’s emphasis is on
providing a straightforward and effective set of actions to respond to safety vi-
olations, primarily focusing on stopping or slowing down the robot to mitigate
potential hazards. However, as noted in the paper, these actions, particularly the
complete stop action, might not be the best fit for all types of robots, and an im-
proved fault-handling based on diagnosis and fault isolation is required. In this
paper, we are interested in how robots can use better fault-handling and recover
automatically from safety hazards when faced with unforeseen events or failures.

3 Enhancing Functional Safety with Continu-
ous Monitoring in ROSSMARie

Similar to DeROS, ROSSMARie compiler generates a runtime safety component
designed to continuously monitors the robot’s operational parameters and environ-
mental factors against the predefined safety rules. The safety rules are evaluated
based on real-time data received from various sensors and internal robot states.
For instance, if a rule is set to monitor the robot’s speed, ROSSMARie also checks
the actual speed against the defined safety threshold.

Unlike DeROS, when a safety rule is violated (e.g., the robot exceeds a speed
limit or detects an obstacle too close), ROSSMARie triggers predefined recovery
actions while still updating the safety rules to monitor the current state and go

3 Enhancing Functional Safety with Continuous Monitoring in ROSSMARie 59

back to normal operational mode when the recovery actions are completed. For
example, when encountering a human, the robot slows down and perform some
cautionary behavior like having the arm go limp while human is around but as
soon as the human leaves the robot goes back to finish the original task.

3.1 Implementation of ROSSMARie

In our pursuit to address the outlined research questions and to further validate
the efforts of Adam et al. [Ada+16] in the field of functional safety in robotics,
we have developed ROSSMARie, a DSL tailored to express dynamic safety rules
and suitable recovery actions to adapt a robot’s actions without aborting the given
task. ROSSMARieis implemented using JastAdd [HM03], a meta-compilation
system based on Java that supports Reference Attribute Grammars(RAGs). The
language syntax of ROSSMARie closely follows the syntax of ROSSMARie to
include features such as alias names for ROS topics, constants, measurement units,
and intervals in logical expressions. This section discusses the implementation of
ROSSMARie and how it contributes to addressing the research questions.

Unlike the examples in paper [Ada+16] which are aimed specifically to de-
fine safety rules for mobile robots, we apply ROSSMARie to describe rules for
a robot arm as well. the safety rules for a robot with a robotic arm are shown
in the Listing 1. To address RQ1, ROSSMARie implements a continuous moni-
toring mechanism, continuously updating the rules like "oscillation_not_safe"
(as shown in Listing 1) with current force sensor information. This mechanism is
crucial for ensuring that the robot can adapt its behavior in real time based on the
current operational context. For instance, if a robot detects (through a force sensor
attached to its end effector) that the arm is oscillating too fast, ROSSMARie let
us express recovery actions like triggering a predefined safety response. The re-
sponse of ROSSMARie in this case is defined as first decreasing stiffness and then
retracting the arm until it reaches a safe state to continue the task as shown in List-
ing 1. This continuous monitoring ensures that safety is maintained dynamically,
allowing the robot to resume normal operation as soon as the risk is mitigated.

The comprehensive action templates from the paper [Ada+16] are discussed in
Section 2. To address RQ2, we have implemented more action templates than the
authors mentioned in [Ada+16] to better suit the safety of robotic arms, enabling
more sophisticated and domain-specific recovery strategies. These templates in-
clude actions like decrease_stiffness and go to torque_control_mode (shown in
line 1-3 in Listing 1)to manage torques for arm motion, ensuring that the robot
arm moves smoothly and predictably, thus avoiding those sudden or jerky move-
ments that could pose risks. This is introduced as an additional proactive mea-
sure to the safety hazard encountered above. Considering the risk assessment of
the robot arm, we also introduced a "gravity-free mode" action template which
is aimed at the scenarios where human is involved. Gravity-free mode, or zero-
gravity mode, is a state where the robot arm moves as if there is no gravity acting

60 Strategies for Dynamic Safety and Immediate Recovery

1 a c t i o n d e c r e a s e _ s t i f f n e s s ;
2 a c t i o n r e t r a c t ;
3 a c t i o n t o r q u e _ c o n t r o l _ m o d e ;
4

5 c o n s t max_force = −15 N/ s e c
6 c o n s t max_torque = 60 Nm
7

8 i n p u t f o r c e = t o p i c Wrench . f o r c e
9 i n p u t t o r q u e = t o p i c Twis t . a n g u l a r

10 e n t i t y f o r c e _ m o n i t o r {
11 o s c i l l a t i o n _ n o t _ s a f e :
12 f o r c e . z > max_force f o r 3 . 0 s e c ;
13 }
14 e n t i t y t o r q u e _ m o n i t o r {
15 t o r q u e _ t o o _ h i g h :
16 t o r q u e > max_torque ;
17 }
18 i f f o r c e _ m o n i t o r . o s c i l l a t i o n _ n o t _ s a f e then { d e c r e a s e _ s t i f f n e s s ;

r e t r a c t ; } ;
19 i f t o r q u e _ m o n i t o r . t o r q u e _ t o o _ h i g h then { t o r q u e _ c o n t r o l _ m o d e ; } ;

Listing 1: An example ROSSMARie code to specify safety rules for a robotic arm.

on it. This mode is typically achieved by counterbalancing the gravitational forces
on the arm, making it feel weightless and easy to move manually. In the context of
safety, entering gravity-free mode can be an effective strategy when close human
interaction is detected, as it significantly reduces the risk of injury from sudden
or forceful movements. The robot can switch to this mode as a precautionary
measure, ensuring safety while still allowing some degree of operation or manual
repositioning by a human operator.

3.2 Integration with SkiROS2

In order to integrate these action templates as robot skills, we use a robot control
platform SkiROS2. Integrating our domain-specific language, ROSSMARie, with
the SkiROS2 [Rov+17] robot control platform presented unique challenges, partic-
ularly in handling action server-based ROS communication. SkiROS2 [Rov+17],
a skill-based robot control platform built atop the ROS framework, executes mul-
tiple skills concurrently using action server-based communication. This method is
ideal for longer robot skills due to its non-blocking background processing capa-
bilities.

Challenges faced To be able to integrate with SkiROS2, we had to generate
recovery actions to cancel SkiROS2 skills which uses action server-based commu-
nication. However, our initial implementation of ROSSMARie(similar to DeROS
was limited to components communicating via topic-based publish-subscribe, ne-

3 Enhancing Functional Safety with Continuous Monitoring in ROSSMARie 61

cessitating significant enhancements to support action servers.
In ROS, topic-based communication is the standard method for nodes to ex-

change messages. It’s based on a publish-subscribe model where publishers send
messages on a topic and subscribers receive them. This model is simple and effec-
tive for many scenarios but lacks the ability to handle long-running, stateful tasks
that require feedback and potential preemption. Actions, on the other hand, are de-
signed for these more complex tasks. They allow for continuous feedback during
task execution and can be preempted or canceled if necessary. This makes actions
particularly suitable for robot skills that involve prolonged activities or require the
ability to stop and start in response to changing conditions. Each action maintains
a state for the duration of a goal, and multiple goals can be processed in parallel,
each with its unique state.

Another issue that we faced during the integration of ROSSMARie with SkiROS2
is that different modules were publishing conflicting messages on the same ROS
topic, leading to erratic or unpredictable robot behavior. We realized that action
servers need special handling. To resolve this, we introduced a safety filter node
in our architecture. It is important to note that because DeROS didn’t involve
action-server based communication, they never needed a safety filter node. We
will explain the safety filter node in the next section because it is important to
show how that works.

3.3 Safety Filter Node

In this section, we will explain the safety filter node for ROSSMARie implemen-
tation. Although DeRoS system did include a concept referred to as the "DeRoS
safety node" but it does not act as a filter to all the operational commands. In our
case, the safety filter (as shown in Figure1 node acts as a mediator, ensuring that
only the appropriate commands are executed by the robot, thereby preventing con-
flicts and ensuring smooth operation. It filters out potentially harmful commands
based on the current safety context and rules defined in ROSSMARie. This node
uses the remap function in roslaunch to redirect messages from the standard com-
mand topic to a filtered command topic, where the safety node has the opportunity
to vet and modify the commands as needed.

For example, if a command is issued to set the robot’s velocity that exceeds
a safe threshold, the safety filter node can intercept this command and adjust the
velocity to a safer level or stop the robot altogether, depending on the defined
safety rules.

Implementing Action Server Support To fully support ROS action servers
in ROSSMARie, we implemented functionality to cancel any previous goals and
send new goals to the action server. This capability is crucial for maintaining the
flexibility and responsiveness of the robot, allowing it to adapt to new instructions
and safety constraints dynamically.

By enhancing ROSSMARie to handle action server-based communication, we’ve

62 Strategies for Dynamic Safety and Immediate Recovery

Figure 1: Safety node acting as a filter to avoid conflicting information published
on a topic.

significantly broadened the range of robot skills and scenarios our DSL can sup-
port. This enhancement directly addresses the need for more sophisticated and
adaptable safety mechanisms in complex robotic systems.

4 Experiments

For the experiments on real robot, we used a robot platform Heron (as shown
in Figure 1), which is an integration of MIR 100 and UR5e robot by ARHO.
Heron integrates the mobility and flexibility of the MIR base with the precision
and dexterity of the UR5 arm, creating a comprehensive solution for automation
and robotics challenges. MIR 100 is an indoor autonomous mobile robot with a
maximum payload capacity of 100 kg. For navigation, it uses two laser scanners
and ultrasonic sensors providing 360◦ visual feedback. It is also equipped with
wheel encoders, and an IMU sensor, allowing for precise and safe maneuvering in
diverse environments. The maximum speed of the robot is 1.5 m/s forward and 0.3
m/s backward. Mounted on the MIR base, the UR5 robotic arm is known for its
lightweight design and exceptional accuracy. UR5e is a 20.6 kg robot arm with a
maximum payload capacity of 5 kg. It provides six degrees of freedom and has a
six-axis force/torque sensor to detect collisions.

The Heron platform is powered by a robust electrical system, ensuring con-
sistent and reliable performance during extended operations. The high-level con-
troller software, built on the ROS framework, runs on a powerful computing unit,
ensuring real-time processing and decision-making. This software architecture al-
lows for easy integration of additional sensors like a camera for visual feedback,
making Heron a highly customizable and scalable solution.

4 Experiments 63

In terms of safety, the Heron platform incorporates several features to ensure
the well-being of human operators and the integrity of the surrounding environ-
ment. The system includes bumper sensors, emergency stop buttons, and advanced
algorithms for detecting and avoiding obstacles. A dedicated safety PLC works in
tandem with the high-level controller to monitor the system’s status and execute
safety protocols when necessary. Visual and auditory indicators, such as stack
lights and buzzers, provide clear and immediate feedback about the robot’s state
and actions, further enhancing the safety measures.

The risk assessment of the robot indicates that while MIR base is well equipped
with bumpers and safety features to maintain a certain distance from obstacles, it
is not very good at adapting to the uneven terrain causing a risk of damaging itself.
On the other hand, UR5 is an industrial robot with a metal body intended to be
used in separate safety cells and is not designed for safe interaction.

4.1 Case Studies

(a) Experimental Setup I: Heron Mobile Robot Navigating Unstructured Ter-
rain

Objective: This experiment aims to assess the navigation and recovery strate-
gies of a MiR100 mobile robot when encountering unexpected terrain features like
bumps and slopes in a corridor while it is on a mission to pick up a block from a
specific room. The task demonstrates the robot’s ability to adapt to unstructured
environments typical in factory floors.

1 a c t i o n moveBack ;
2 a c t i o n lowSpeed ;
3 a c t i o n i n c r e a s e T o r q u e ;
4 c o n s t maxSpeed = 0 . 5 m/ s
5 c o n s t r e a s o n a b l e t i l t = 10 deg
6 c o n s t m a x t i l t = 20 deg
7 i n p u t o r i e n t a t i o n = t o p i c i m u I n f o r m a t i o n
8 e n t i t y imuSensorSys tem {
9 g e n t l e S l o p e :

10 o r i e n t a t i o n . p i t c h () not i n r e a s o n a b l e t i l t
11 f o r 4 . 0 s e c ;
12

13 steepRamp :
14 o r i e n t a t i o n . p i t c h () not i n m a x t i l t
15 f o r 4 . 0 s e c ;
16

17 }
18

19 e n t i t y d r i v e S y s t e m {
20 maxspeedExceeded :
21 l i n e a r S p e e d > maxSpeed f o r 2 . 0 s e c ;
22 moving :
23 l i n e a r S p e e d > minSpeed f o r 4 . 0 s e c ;
24 }

64 Strategies for Dynamic Safety and Immediate Recovery

25

26 i f imuSenso r sys t em . g e n t l e S l o p e and d r i v e S y s t e m . moving
27 then { i n c r e a s e T o r q u e ; } ;
28

29 i f imuSenso r sys t em . steepRamp and d r i v e S y s t e m . moving
30 then { lowSpeed ; moveBack ; } ;

Listing 2: An example ROSSMARie code to specify safety rules for

Setup Details: MiR100, a compact and robust mobile robot equipped with an
Inertial Measurement Unit (IMU) sensor to detect changes in movement and ori-
entation. The corridor leading to the target room features an unexpected bump and
a gentle slope, simulating an unstructured factory floor. The robot’s objective is
to navigate the corridor, overcome the terrain challenges, and enter a room with a
sloped entrance to pick up a designated block.

The unstructured terrain poses a risk of damage to the robot’s body due to the
unexpected bump and gentle slope. The robot’s standard response to such sudden
changes in terrain might be to stop entirely upon detecting a sharp jerk from the
bump or the onset of a slope, which, while safe, could lead to task abandonment
or significant delays. To address these challenges, we used ROSSMARie to ex-
press safety rules as shown in Listing 2. We also implemented adaptive recovery
strategies based on the severity and nature of the terrain encountered:

• Upon detecting a bump through the IMU sensor indicating a jerky motion,
the safety rule ensures to reduce the speed, allowing for safer passage over
the bumpy terrain. This cautious approach minimizes the risk of damage
while maintaining task progress.

• When a gentle slope is detected, instead of stopping, the robot increases
its torque output temporarily to maintain momentum and stability until the
slope levels off. This adjustment is crucial for ensuring that the robot can
successfully navigate up or down slopes without halting its mission.

Observation: As the MiR100 approached the room with the sloped entrance,
the IMU sensor detected the incline, triggering the robot to increase torque and
adjust its speed accordingly. This adaptive response allowed the robot to navigate
into the room smoothly. Once inside and on level ground, the robot returned to its
normal torque operation and proceeded to successfully complete the task of pick-
ing up the block. The implemented recovery strategies demonstrated the robot’s
capability to adapt to minor structural changes in the terrain without stopping or
aborting the task. This resilience is critical in dynamic and unstructured environ-
ments, ensuring that robots can carry out their duties efficiently and effectively,
even when faced with unexpected obstacles.

The experiment with the MiR100 mobile robot underscores the significance of
intelligent and adaptive recovery strategies in robotic navigation. By employing

4 Experiments 65

advanced sensors and responsive control systems, the robot can adapt to various
terrain challenges, ensuring continued operation and task completion. These ca-
pabilities are especially valuable in industrial settings, where environments are
often unpredictable and dynamic. The successful navigation and task completion
in this experiment highlight the potential of such adaptive strategies in enhancing
the autonomy and efficiency of mobile robots in real-world applications.

(a) (b)

Figure 2: (a) Simulation of the robot Heron crossing a corridor with a bump and
ramp. (b) Real-robot experiment with Heron in the corridor with a speed bump.

(a) Experimental Setup II: UR5 Arm in a Pick and Place Task

Objective: The experiment is designed to demonstrate the execution of a pick
and place task using a UR5 robotic arm. The task involves picking up a blue block
and placing it on a specified goal location. The robot’s behavior is managed using
a Behavior Tree (BT) controlled through the SkiROS framework.

Setup Details: The UR5 arm is equipped with a gripper to handle the blue
block. The UR5 arm is fitted with force sensors to detect contact forces and
torques. The task involves the robot arm picking up a blue block from a speci-
fied location and placing it on a table whose height may vary between trials.

While placing the block, there was uncertainty about the commanded goal
location for the block, including the varying heights of tables. This led to instances
where the robot miscalculated the height and, upon contact with the table, the arm
started to oscillate due to the impedance controller. These oscillations produced
alarming noises and posed a risk to both the robot arm and the table. To express
this safety constraint, we use ROSSMARie to define safety rules that concerns the
functionality of a robot with arms (as shown in Listing 1). To address this issue, we

66 Strategies for Dynamic Safety and Immediate Recovery

implemented a recovery action triggered by the detection of oscillations through
the arm’s force sensor. Upon detecting such an event:

1. Retraction: The arm first retracts from the table to avoid further contact
and potential damage. This retraction is a safety measure to ensure that no
additional stress is exerted on the table or the arm.

2. Controller Adjustment: After retracting, the controller’s parameters are
adjusted to account for the detected discrepancy in height. This may in-
volve recalibrating the height estimation or adjusting the impedance control
parameters to better handle variations in table height.

Because of the refined semantics of the language, when the robot senses that
the oscillations are now controlled then it attempts the placement task again, ap-
proaching the table more cautiously and with better-informed height estimation.

Observation: While performing the task, it was observed that the torques
exerted by the robot arm were excessively high at times. This was attributed to
the motion planner sending goal locations that were too ambitious, prompting the
robot to make abrupt movements to reach these points quickly. Such sudden move-
ments led to spikes in torque, affecting the overall stability and safety of the opera-
tion. To mitigate this, we integrated a system-level torque control mechanism that
continuously monitors torque values. This control system acts as a safeguard, en-
suring that the robot operates within safe torque thresholds and preventing abrupt
or unsafe movements. The implementation of this safety measure addresses a crit-
ical oversight in the initial code logic, where no checks for such torque spikes were
in place. In Figure 3, we test our safety monitor in simulation and on the real robot.

The experiment with the UR5 arm performing a pick-and-place task underlines
the importance of adaptive and responsive safety measures in robotic operations.
By integrating force sensing, recovery actions, and system-level torque control,
the setup ensures that the robot can adapt to unexpected scenarios and perform
tasks safely and effectively. This approach not only protects the hardware but also
contributes to a safer interaction environment, crucial for real-world applications
where robots and humans coexist.

4.2 Discussion

The demonstrations conducted with the UR5 arm and the MiR100 mobile robot
provide practical answers to our research questions. For RQ1, both robots show-
cased real-time behavioral adaptation to maintain safety without unnecessary halts;
the UR5 arm adjusted its actions upon detecting oscillations, and the MiR100 nav-
igated uneven terrain by modulating speed and torque. The continuous monitoring
and immediate adjustment strategies seen in the experiments highlight how the
semantics of safety rules can be modified for better responsiveness. Addressing
RQ2, the varied nature of these robots – an arm and a mobile unit – demonstrates

5 Related Work 67

(a) (b)

Figure 3: (a) Simulation of Heron placing a block. (b) Real-robot experiment of
Heron placing a blue box on an unexpectedly high table with unknown height.

the strategies’ applicability across different robotic platforms. Together, these ex-
periments show a promising direction for making autonomous robots safer and
more adaptive to their environments.

5 Related Work

Weber, Jörg, and Franz Wotawa. [WW10] presented a comprehensive approach
for autonomous robots to autonomously handle software failures, focusing on run-
time diagnosis, reconfiguration, planning with degraded capabilities, and ensuring
the monitorability of plans. The study shows that the robot can switch to differ-
ent, less efficient actions or new goals when original ones become unattainable
due to the loss of certain capabilities. This approach allows the robot to con-
tinue its mission, albeit at reduced performance, leading to graceful degradation.
while their approach also aims to enhance the safety and reliability of autonomous
systems, the paper focuses on recovery and continued operation in the face of soft-
ware failures, employing a combination of runtime diagnosis and AI planning for
graceful degradation. In contrast, our work is geared towards defining and enforc-
ing specific safety conditions to prevent hazards, potentially with some recovery
mechanisms, but with a primary focus on rule compliance and hazard avoidance.

There is a rich body of work on the design of runtime assurance components
for safety-critical systems [Fer+20; SVCH22; RCD21; Mas+18; Ada+16]. Some
of these works present language-based approaches that instrument an implemen-
tation of a system to assure that certain executions are enforced to satisfy certain
requirements, other approaches combine design time techniques with runtime ver-

68 Strategies for Dynamic Safety and Immediate Recovery

ification techniques to assure that environment assumptions made at design time
also hold at runtime.

Work on active monitors [Mas+18] synthesizes safety strategies for monitors
and defines two properties safety and permissiveness. These properties ensure that
any safety strategy should not remove the reachability of states that are intended,
thus not defeating the very purpose of the robot. They bind the functionality and
safety models together to get an orthogonal state space. Although the aim of this
work closely matches our aim, they present a model-based approach while our
runtime monitor deals with unexpected safety hazards which are hard to model.

6 Conclusion

In this paper, we present a DSL, ROSSMARie which follows a nuanced approach
compared to the inspiration language DeROS to ensure the functional safety of
robots without unnecessarily hindering their operational tasks. We appreciate the
efforts of the authors of the study [Ada+16] and further verify the language with
recovery strategies rather than generic fault-handling. We further substantiate the
study by applying the safety rules to a robot arm which shows the generic ap-
plicability of dynamic safety rules designed in the spirit of DeROS. We perform
simulated and physical robot experiments to demonstrate the viability of the pro-
posed recovery strategies that maintain safety while making logical sense in the
context of the task at hand.

Our observation is that in an ideal world, we want to have generalized safety
rules that fit all the safety hazards a robot encounters but in reality some recov-
ery strategies are task-dependant and vary from time to time. To understand this
observation, we further explain the limitations of our work in the next section.

7 Limitations and Future Work

Our domain-specific language-based runtime approach, however, has limitations.
We identify and discuss unsafe behaviors that are not yet handled by our language.
We delve into the reasons behind these scenarios and explore potential solutions
or mitigations. Understanding these limitations is crucial for future enhancements
and for setting realistic expectations for the current system’s capabilities. Some
limitations are as follows:

• Our framework currently lacks a sophisticated mechanism for prioritizing
rules, which can lead to conflicts when multiple safety constraints are ap-
plicable simultaneously. We discuss the implications of this limitation and
propose potential strategies for introducing rule prioritization, ensuring that
the most critical safety measures are always given precedence.

7 Limitations and Future Work 69

• We consider scenarios where the robot’s task might inherently involve ac-
tions typically deemed unsafe, such as pushing an object or erasing a white-
board. We discuss how our system can differentiate between genuinely haz-
ardous situations and those that are part of a normal, intended operation.
This discussion includes potential strategies for the robot to intelligently dis-
cern and adapt to such contexts, ensuring safety without aborting essential
tasks.

By addressing these limitations and discussing potential pathways for future
research, we aim to contribute to the ongoing development of safer, more reliable,
and more effective autonomous robotic systems. Our work underscores the im-
portance of continuous improvement and adaptation in the field of robotic safety,
particularly as robots become increasingly integrated into diverse and dynamic
human environments.

Acknowledgements
This work was partially supported by the Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by the Knut and Alice Wallenberg Foun-
dation.

References
[Ada+16] Sorin Adam et al. “Rule-based dynamic safety monitoring for

mobile robots”. In: Journal of Software Engineering for Robotics
7.1 (2016), pp. 121–141.

[Isoa] Earth-moving machinery and mining Autonomous and
semi-autonomous machine system safety. Standard. International
Organization for Standardization, 2019.

[Fer+20] Angelo Ferrando et al. “ROSMonitoring: a runtime verification
framework for ROS”. In: Towards Autonomous Robotic Systems:
21st Annual Conference, TAROS 2020, Nottingham, UK,
September 16, 2020, Proceedings 21. Springer. 2020, pp. 387–399.

[HM03] Görel Hedin and Eva Magnusson. “JastAdd—an aspect-oriented
compiler construction system”. In: Science of Computer
Programming 47.1 (2003), pp. 37–58.

[Mal+19] Piergiuseppe Mallozzi et al. “A runtime monitoring framework to
enforce invariants on reinforcement learning agents exploring
complex environments”. In: 2019 IEEE/ACM 2nd International
Workshop on Robotics Software Engineering (RoSE). IEEE. 2019,
pp. 5–12.

70 Strategies for Dynamic Safety and Immediate Recovery

[Mas+18] Lola Masson et al. “Tuning permissiveness of active safety
monitors for autonomous systems”. In: NASA Formal Methods
Symposium. Springer. 2018, pp. 333–348.

[RCD21] Quazi Marufur Rahman, Peter Corke, and Feras Dayoub.
“Run-Time Monitoring of Machine Learning for Robotic
Perception: A Survey of Emerging Trends”. In: IEEE Access 9
(2021), pp. 20067–20075.

[Isob] Road vehicles Functional safety Part 1: Vocabulary. Standard.
International Organization for Standardization, Dec. 2018.

[Rov+17] Francesco Rovida et al. “SkiROS— a skill-based robot control
platform on top of ROS”. In: Robot Operating System (ROS).
Springer, 2017, pp. 121–160.

[Isoc] Safety of machinery General principles for design Risk assessment
and risk reduction. Standard. International Organization for
Standardization, Nov. 2010.

[SVCH22] Marco Stadler, Michael Vierhauser, and Jane Cleland-Huang.
“Towards flexible runtime monitoring support for ROS-based
applications”. In: Proceedings of the 4th International Workshop
on Robotics Software Engineering. 2022, pp. 43–46.

[WW10] Jörg Weber and Franz Wotawa. “Combining runtime diagnosis and
ai-planning in a mobile autonomous robot to achieve a graceful
degradation after software failures”. In: International Conference
on Agents and Artificial Intelligence. Vol. 2. SCITEPRESS. 2010,
pp. 127–134.

PA
P

E
R

II
I

EZSKIROS: A CASE STUDY
ON EMBEDDED ROBOTICS

DSLS TO CATCH BUGS
EARLY

1 Abstract

When we develop general-purpose robot software components, we rarely know the
full context that they will execute in. This limits our ability to make predictions,
including our ability to detect program bugs early. Since running a robot is an
expensive task, finding errors at runtime can prolong the debugging loop or even
cause safety hazards. In this paper, we propose an approach to help developers find
bugs early with minimal additional effort by using embedded Domain-Specific
Languages (DSLs) that enforce early checks. We describe DSL design patterns
suitable for the robotics domain and demonstrate our approach for DSL embedding
in Python, using a case study on an industrial tool SkiROS2, designed for the
composition of robot skills. We demonstrate our patterns on the embedded DSL
EzSkiROS and show that our approach is effective in performing safety checks
while deploying code on the robot, much earlier than at runtime. An initial study
with SkiROS2 developers show that our DSL-based approach is useful for early

Momina Rizwan, Ricardo Caldas, Christoph Reichenbach, and Matthias Mayr. "EzSkiROS: A Case
Study on Embedded Robotics DSLs to Catch Bugs Early." In 2023 IEEE/ACM 5th International
Workshop on Robotics Software Engineering (RoSE), pp. 61-68. IEEE, 2023.
DOI: 10.1109/RoSE59155.2023.00014.

https://doi.org/10.1109/RoSE59155.2023.00014

72 EzSkiROS: A Case Study on Embedded Robotics DSLs to Catch Bugs Early

bug detection and improving the maintainability of robot code.

2 Introduction
The design and coding of robotic systems to perform socio-technical missions has
never been more relevant or challenging. To ensure that robot developers can meet
market demands with confidence in the correctness of their systems, a range of de-
velopment tools and techniques is required. Specifically, robot development tools
should provide expressive programming languages and frameworks that allow hu-
man developers to describe correct robot behavior [Bru+07].

For example, SkiROS23 [RGK17] is a skill-based knowledge integration tool
for autonomous mission execution. It allows roboticists to write robot skills such
as “pick” or “drive” skill. Skills are defined in a modular way to allow interoper-
ability between different tasks and robot systems. Each skill description is based
on pre-conditions that are checked before a skill execution, and post-conditions
that are checked after the skill execution. In SkiROS2, these conditions are based
on the robot’s knowledge, organised into an ontology. An ontology represents the
concepts and relations in the domain to check whether conditions necessary for
the execution are met.

As a concrete example, the parameters for a “pick” skill shown in Figure 1,
have ontology relations such as “gripper is part of the robot arm”, which are used
to infer other parameters such as “which arm to move” or “what is the location of
the object”. An object should not be part of the robot arm, as this would imply
that the object always moves with the arm. The developer must be careful when
writing such relationships, as bugs introduced at this stage tend to remain silent
and can be difficult to debug.

To avoid such errors, we propose to use a DSL to allow us to analyse the code
for possible errors after build time, while deploying it on the actual robot. The
benefits of using DSLs to aid debugging, visualization, and static checking are
well-known. DSLs have been used for mission specification [Dra+21], and robot
knowledge modeling [Ceh+11]. Nordmann et al. [Nor+16] collect and categorise
over 100 such DSLs for robotics in their Robotics DSL Zoo3.

In this paper, we propose to help robot developers, who write control logic in
Python, to catch bugs early by embedding DSLs directly in Python. We support
our case through:

• A survey of Python language features that enable DSL embedding;

• Two design patterns for embedding DSLs in general-purpose programming
languages that address common challenges in robotics, with details on how
to implement these patterns in Python;

3https://github.com/RVMI/skiros2
3https://corlab.github.io/dslzoo

https://github.com/RVMI/skiros2
https://corlab.github.io/dslzoo/

2 Introduction 73

Figure 1: The robot using a pick skill with a visualization of the necessary pa-
rameters. To run this skill, we only need the Gripper and the Object parameters.
SkiROS2 can deduce all other necessary parameters through a set of rules in the
skill description shown in Listings 3 and 5.

• A case study of a robotics software SkiROS2 , in which we introduce our
DSL EzSkiROS for early detection of type errors and other bugs.

To this end, we place our contributions in perspective by analysing the state-
the-art in embedded DSLs for robotics Section 3. Then, in Section 4, we offer a
set of four robotic DSL design patterns to embed DSL constructs in Python. In
short, our design patterns aim at lessening cognitive complexity (i.e., readabil-
ity and modifiability) and shortening the feedback loop by materializing ontology
constructs in a type system. Moreover, in Section 6, we demonstrate the efficacy of
applying the four patterns in a skill-based robot development framework in a case
study with SkiROS2, originating EzSkiROS. We conduct a user study with ex-
perts in robotics and SkiROS2 to evaluate to what extent our EzSkiROS promotes
readability and modifiability, Section 7. EzSkiROS and the material used for the
case study are available in an online replication package. Finally, we conclude the
paper and outline possible directions to follow up with the study.

74 EzSkiROS: A Case Study on Embedded Robotics DSLs to Catch Bugs Early

3 Related Work
Several studies have explored the use of model-driven approaches for program-
ming robots. Buch et al. [Buc+14] describe an internal Domain-Specific Lan-
guage (DSL) over C++ to sequence robotic skills using pre- and post-conditions.
Their DSL uses a model-driven approach to instantiate a textual representation
of the assembly sequence, which is interpreted to execute the assembling behav-
ior. However, it is unclear whether the authors use early checking techniques to
prevent erroneous sequences. The authors argue in favor of a loop between simu-
lation and active learning to overcome uncertainties in the environment. Kunze et
al. [KRB11] propose the Semantic Robotic Description Language (SRDL), a dif-
ferent model-based approach that matches robot descriptions and actions via static
analysis of robot capability dependencies. SRDL uses Web Ontology Language
(OWL) notation to model knowledge about robots, capabilities, and actions.

Coste-Manière and Turro [CMT97] propose MAESTRO, an external DSL for
specifying reactive behavior and checking in the robotics domain that handles
complex and hierarchical missions prone to concurrency and requiring portable
solutions. MAESTRO allows specification of user-defined typed events that may
or must occur before (pre-conditions), during (hold-conditions), or after (post-
conditions) task execution. MAESTRO offers type-checking of user-defined types
and stop condition checks.

4 Embedding Robotics DSLs in Python
DSLs can help developers by simplifying notation and improving performance or
error detection. However, developing and maintaining DSLs requires effort. For
external DSLs (e.g., MAESTRO, SRDL), much of this effort comes from building
a language frontend. Internal or embedded DSLs (as in Buch et al. [Buc+14]) avoid
this overhead, and instead re-use an existing “host” language, possibly adjusting
the language’s behaviour to accommodate the needs of the problem domain.

We look at Python as one of the three main supported languages of the popular
robotics platform ROS [Qui+09]. The other two languages, C++ and LISP, also
support internal DSLs, but with different trade-offs.

4.1 Python Language Features for DSLs
While Python’s syntax is fixed, it offers several language constructs that DSL de-
signers can repurpose to reflect their domain, such as freely overloadable infix op-
erators (excluding the type-restricted boolean operators), type annotations (since
Python 3.0), and decorator mechanisms [Mog+13].

Listing 1 illustrates some of these techniques. Class A represents a deferred
operation op with parameters args. A.eval (Line 18) forces recursive evaluation.
The @staticmethod decorator tells Python that this method takes no implicit self

4 Embedding Robotics DSLs in Python 75

1 c lass M(type) :
2 def _ _g e t a t t r i b u t e_ _ (s e l f , name) :
3 i f name [0] == ’ _ ’ and name [1 :] . i sdec ima l () :
4 r e t u r n s e l f (lambda x : x , i n t (name [1 :]))
5 r e t u r n type . __ ge t a t t r i b u te __ (s e l f , name)
6

7 c lass A(metaclass=M) :
8 def _ _ i n i t _ _ (s e l f , op , * args) :
9 s e l f . op = op

10 s e l f . args = args
11 def __add__ (s e l f , o ther) :
12 r e t u r n A(i n t . __add__ , s e l f , o ther)
13 def __ca l l__ (s e l f , arg : i n t) :
14 r e t u r n A(i n t . __mul__ , s e l f , arg)
15 @staticmethod
16 def eva l (e) :
17 i f i s i n s t a n c e (e , A) :
18 r e t u r n e . op (* (A . eva l (y) f o r y i n e . args))
19 r e t u r n e
20

21 a = A. _2 + 1 # a = A. __add__ (A(λ x : x , 2) , 1)
22 b = a (4) # b = a . __ca l l__ (4)
23 p r i n t (A . eva l (b)) # evaluates (2 + 1) * 4

Listing 1: DSL-friendly Python features: decorator (line 15), metaclass (lines 1–
7), overloading (lines 11,13), type annotations (line 13)

parameter. DSL designers can define other decorators to transform the semantics
of functions, methods, or classes.

The metaclass M in line 1 allows class A (line 7) to handle references to un-
known class attributes. The code in lines 2–5 checks for attributes that start with
an underscore and continue in decimal digits. Line 21 shows how we can write
A._2 to construct an instance of A (via line 4).

Class A overloads infix addition in line 11 and function call notation in line 13,
which allows instances of A to participate in addition and to behave like callable
functions (lines 21 and 22). While the code is a toy example, it illustrates how a
DSL designer can construct in-memory representations of complex computations
for staging, which could (e.g., in A.eval) perform optimisations or translate the
code representation into a more efficient format (e.g., for a GPU).

Line 13 illustrates Python’s type annotations, annotating parameter arg with
type int . By default, such annotations have no runtime effect, but DSL designers
can access and repurpose them to collect DSL-specific information without inter-
ference from Python. Since Python 3.5 (with extensions in 3.9), these annotations
also allow type parameters (e.g., x : list [int]).

Finally, Python permits dynamic construction of classes (and metaclasses),

76 EzSkiROS: A Case Study on Embedded Robotics DSLs to Catch Bugs Early

which we have found particularly valuable for the robotics domain: since the sys-
tem configuration and world model used in robotics are often specified outside of
Python (e.g., in configuration files or ontologies) but are critical to program logic,
we can map them to suitable type hierarchies at robot launch time (just after build
time).

4.2 Robotics DSL Design Patterns

Domain Language Mapping Our first pattern’s purpose is to make domain nota-
tion visible in Python, to decrease notational overhead. It is a direct application of
the “Piggyback” DSL implementation pattern documented by Spinellis [Spi01].

As an example, the ontology specification language OWL allows us to express
the relationships and attributes of the objects in the world, the robot hardware
and the robot’s available capabilities (skills and primitives). Existing libraries like
owlready2 [Lam17] already expose these specifications as Python objects, so if
the ontology contains a class pkg:Robot, we can create a new “Robot” object by
writing

r = pkg.Robot("MyRobotName")
and iterate over all known robots by writing

for robot in pkg.Robot.instances(): ...
The owlready2 library creates these classes at runtime, based on the contents of
the ontology specification files. Thus, changes in the ontology are immediately
reflected in Python: if we rename pkg:Robot in the ontology, the code above will
trigger an error when executed.

While Moghadam et al. expressed concern about “syntactic noise” for DSL
embedding in earlier versions of Python [Mog+13] compared to external DSLs,
found such noise to be modest in modern Python, and instead emphasise the ad-
vantages of embedding in a language that is already integrated into the ROS envi-
ronment and that developers are familiar with.

In tools like SkiROS2, combining Python code, ontologies and configuration
files at runtime introduces points of failure. To detect such failures early, we pro-
pose a second pattern:
Early Dynamic Checking The purpose of this pattern is to detect type and config-
uration errors in a critical piece of code early, such as during robot launch time,
with no or minimal extra effort for developers. The conditions for this pattern are:

• We can collect all critical pieces of code at a suitably early point during
execution

• The critical code does not depend on return values of operations that we
cannot predict at robot deployment

The behaviour of this pattern is as follows:

4 Embedding Robotics DSLs in Python 77

1 def expand (s e l f , s k i l l) :
2 s k i l l . setProcessor (Sequent ia l ())
3 s k i l l (
4 s e l f . s k i l l (" Navigate " , " ") ,
5 s e l f . s k i l l (" WmSetRelation " , " wm_set_re lat ion " ,
6 remap={ ’ Dst ’ : ’ TargetLocat ion ’ } ,
7 spec i f y ={ ’ Src ’ : s e l f . params [" Robot "] . value ,
8 ’ Re la t ion ’ : ’ s k i r o s : a t ’ , ’ Re la t i onS ta te ’ : True }) ,)

Listing 2: Constructing the behavior tree of a drive skill in SkiROS2. It is a
sequential execution of the compound drive skill "Navigate" and a primitive skill
to update the world model ("WmSetRelation").

• We execute all critical pieces of code early, while redefining the semantics
of the predetermined set of operations (e.g. ontology relations from our
previous example) to immediately return or to only perform checking

In Python, configuration and type errors only trigger software faults once we
run code that depends on faulty data. In robotics, we might find such code in
operations that (a) run comparatively late (e.g., several minutes after the start of the
robot) and (b) are difficult to unit-test (e.g., due to their coupling to specific ROS
functionality and/or robotics hardware). For robotics developers, both challenges
increase the cost of verification and validation [Rei21]: a fault might trigger only
after a lengthy robot program and require substantial manual effort to reproduce.
For example, a software module for controlling an arm might take a configuration
parameter that describes the target arm pose. If arm control is triggered late (e.g.,
because the arm is part of a mobile platform that must first reach its goal position),
any typos in the arm pose will also trigger the fault late. If the pose description
comes from a configuration file or ontology, traditional static checkers will also
be ineffective. We can only check for such bugs after we have loaded all relevant
configuration.

Through careful software design, developers can work around this problem,
e.g., by checking that code and configuration are well-formed as soon as possi-
ble, before they run the control logic. If the critical code itself is free of external
side effects, the check can be as simple as running the critical code twice. For
example, SkiROS2 composes BTs [CÖ18] within such critical Python code (List-
ing 2): composing (as opposed to running) these objects has no side effects, so
we can safely construct them early to detect simple errors (e.g., typos in parameter
names). This is a typical example that eludes static checking but is amenable to
Early Dynamic Checking: line 7 depends on self .params["Robot"].value, which is
a configuration parameter that we cannot access until the robot is ready to launch.
Not all robotics code is similarly declarative. Consider the following example, in a
hypothetical robotics framework in which all operations are subclasses of RobotOp

78 EzSkiROS: A Case Study on Embedded Robotics DSLs to Catch Bugs Early

and must provide a method run() that takes no extra parameters:

1 c lass MyRobotOp (RobotOp) :
2 def _ _ i n i t _ _ (s e l f , con f i g) : # Conf igure
3 s e l f . con f i g = con f i g
4 def check (s e l f) : # Check c o n f i g u r a t i o n
5 asser t s e l f . con f i g . mode i n ["A" , "B"]
6 asser t i s i n s t a n c e (s e l f . con f i g . v , i n t)
7 def run (s e l f) : # Run wi th c o n f i g u r a t i o n
8 i f s e l f . con f i g . mode == "A" :
9 s e l f . runA () ;

10 e l i f s e l f . con f i g . mode == "B" :
11 s e l f . runB (s e l f . con f i g . v + 10) ;
12 else :
13 f a i l ()

Here, the developers introduced a separate method check() that can perform
early checking during robot initialisation or launch. However, check() and run()
both have to be maintained to make the same assumptions.

The Early Dynamic Checking pattern instead uses internal DSL techniques to
allow developers to use the same code in two different ways: (a) for checking, and
(b) for logic.

In our example, calling run() “normally” captures case (b). For case (a), we can
also call run(), but instead of passing an instance of MyRobotOp, we pass a mock
instance of the same class, in which operations like runA() immediately return:

1 c lass MyRobotOpMock :
2 def _ _ i n i t _ _ (s e l f , parent) :
3 s e l f . parent = parent
4 @property
5 def con f i g (s e l f) :
6 # s e l f . con f i g = s e l f . parent . con f i g
7 r e t u r n s e l f . parent . con f i g
8 def runA (s e l f) :
9 pass # mock opera t ion : do noth ing

10 def runB (s e l f , arg) :
11 pass # mock opera i ton : do noth ing

If we execute MyRobotOpMock.run() with the same configuration as MyRobotOp
, run() will execute almost as for MyRobotOp but immediately return from any call
to runA or runB. If the configuration is invalid, e.g., if config.mode == "C" or
config.v == false, running MyRobotOpMock.run() will trigger the error early.

Since Python can reflect on a class or an object to identify all fields and meth-
ods, we can construct classes like MyRobotOpMock at run-time: instead of writing
them by hand, we can implement a general-purpose mock class generator that con-
structs methods like runA and accessors like config automatically. If the configura-
tion objects may themselves trigger side effects, we can apply the same technique
to them.

However, the above implementation strategy is only effective if we know that
the critical code will only call methods on self and other Python objects that we

4 Embedding Robotics DSLs in Python 79

know about ahead of time. We can relax this requirement by controlling how
Python resolves nonlocal names:1

FunctionType(MyRobotOp.run.__code__, globals() | { ’print’ : g})(obj)

This code will execute obj.run() via the equivalent MyRobotOp.run(obj), but re-
place all calls to print by calls to some function g. The same technique can use
a custom map-like object to detect at runtime which operations the body of the
method wants to call and handle them suitably.

However, the more general-purpose we want to allow the critical code to be,
the more challenging it becomes to apply this pattern. For instance, if the critical
code can get stuck in an infinite loop, so may the check; if this is a concern, the
check runner may need to use a heuristic timeout mechanism. A more significant
limitation is that we may not in general know what our mocked operations like
runA() should return, if anything. If the critical code depends on a return value
(e.g., if it reads ROS messages), the mocked code must be able to provide suitable
answers. The same limitation arises when the critical code is in a method that takes
parameters. If we know the type of the parameter or return value, e.g. through a
type annotation, we can exploit this information to repeatedly check (i.e., fuzz-test)
the critical code with different values; however, without further cooperation from
developers, this method can quickly become computationally prohibitive.

If we know that the code in question has simple control flow, we may be able
to apply the next pattern, Symbolic Tracing.
Symbolic Tracing The purpose of this pattern is to detect bugs in a critical piece
of code early, if that code depends on parameters or operation return values, with
minimal extra effort for developers. The conditions for this pattern are that

• We can access and execute the critical code

• We have access to sufficient information (via type annotations, properties,
. . .) to simulate parameter values and operation return values symbolically
(see below)

• The number of control flow paths through the critical code is small (see
below)

The behaviour of this pattern is as follows:

1. We execute the critical code while passing symbolic values as parameters
and/or returning symbolic values from operations of relevance

2. We collect any constraints imposed by operations on the symbolic values

3. After executing the critical code, we verify the constraints against the prob-
lem domain

1Python’s eval function offers similar capabilities, but as of Python 3.10 does not appear to allow
passing parameters to code objects.

80 EzSkiROS: A Case Study on Embedded Robotics DSLs to Catch Bugs Early

Here, a symbolic parameter is a special kind of mock parameter that we use to
record information [Kin76].

Consider the following RobotOp subclass:

c lass SetArmSpeedOp (RobotOp) :
def run (s e l f , speedup) :

s e l f . setArmSpeed (speedup)
s e l f . setArmSafety (speedup)

This class only calls two operations, but its run operation depends on a param-
eter speedup about which we know nothing a priori — thus, we cannot directly
apply the Early Dynamic Checking pattern.

In cases where we lack prior knowledge about an operation, it may still be
possible to obtain useful insights about it. For example, if we are aware that
setArmSpeed accepts only numeric parameters and setArmSafety only accepts
boolean parameters, we can flag this code as having a type error. To avoid blindly
testing various parameters, we can pass a symbolic parameter to the run function
and employ a modified version of the mock-execution strategy used in Early Dy-
namic Checking. The mock objects can be adapted as follows:

TYPE_CONSTRAINTS = []

c lass SetArmSpeedOpMock :
def setArmSpeed (s e l f , ob j) :

TYPE_CONSTRAINTS. append ((obj , f l o a t))
def setArmSafety (s e l f , ob j) :

TYPE_CONSTRAINTS. append ((obj , bool))

We can

now (1) create a fresh object obj and an SetArmSpeedOpMock instance that we
call mock, (2) call SetArmSpeedOp.run(mock, obj), and (3) read out all constraints
that we collected during this call from TYPE_CONSTRAINTS, and check them for
consistency, which makes it easy to spot the bug. If the constraints come from
accesses to obj (e.g., method calls like obj.__add__(1) that result from code like
obj + 1), obj itself can collect the resultant constraints.

Depending on the problem domain, constraint solving can be arbitrarily com-
plex, from simple type equality checks to automated satisfiability checking [BR20].
It can involve dependencies across different pieces of critical code (e.g., to check
if all components agree on the types of messages sent across ROS channels, or
to ensure that every message that is sent has at least one reader). However, this
approach requires information about specific operations like setArmSpeed and
setArmSafety, which can be providedto Python in a variety of ways, e.g., via type
annotations.

As an example, consider an operation that picks up a coffee from the table with
a gripper, where we annotate all parameters to run with Web Ontology Language
(OWL) ontology types:

4 Embedding Robotics DSLs in Python 81

1 c lass PickCoffeeTableOp (RobotOp) :
2 def run (s e l f , robot : rob.Robot ,
3 g r i ppe r : rob.Gripper ,
4 co f f ee_ tab le : world.Furniture) :
5 / / bug :
6 asser t co f f ee_ tab le . robotPar tOf (robot) ;
7 . . .

This example is derived from the SkiROS2 ontology, with minor simplifica-
tions. In the above SkiROS2 code, the developer intended to write a precondition
that to be able to pick a coffee cup, the robot should be close to the table. Instead,
the developer mistakenly wrote that a robot should be a part of the coffee table.

The ontology requires that robotPartOf is a relation between a technical Device
and a Robot. However, Furniture is not a subtype of Device, so the assertion in
line 6 is unsatisfiable.

We can again detect this bug through symbolic tracing. This time we must con-
struct symbolic variables for robot, gripper, and coffee_table that expose methods
for all applicable relations, as described by their types. For instance, gripper will
contain a method robotPartOf(gripper, obj) that records on each call that gripper
and obj should be in a robotPartOf relation. Meanwhile, coffee_table will not have
such an operation. When we execute run(), we can then defer to Python’s own
type analysis, which will abort execution and notify us that coffee_table lacks the
requisite method.

Key to this symbolic tracing is our use of mock objects as symbolic variables.
Symbolic variables reify Python variables to objects that can trace the operations
that they interact with, in execution order, and translate them into constraints.

The main limitation of this technique stems from its interaction with Python’s
boolean values and control flow, e.g. conditionals and loops. Python does not
allow the boolean operators to return symbolic values, but instead forces them (at
the language level) to be bool values; similarly, conditionals and loops rely on
access to boolean outcomes. Thus, when we execute code of the form if x: ... ,
we must decide right there and then if we should collapse the symbolic variable
that x is bound to True or False. While we can re-run the critical code multiple
times with different decisions per branch, the number of runs will in general be
exponential over the number of times that a symbolic variable collapses to a bool.

4.3 Alternative Techniques for Checking

Internal DSLs are not the only way to implement the kind of early checking that
we describe. The mypy tool2 is a stand-alone program for type-checking Python
code. Mypy supports plugins that can describe custom typing rules, which we
could use e.g. to check for ontology types. Similarly, we could use the Python
ast module to implement our own analysis over Python source code. However,

2https://mypy-lang.org/

https://mypy-lang.org/

82 EzSkiROS: A Case Study on Embedded Robotics DSLs to Catch Bugs Early

both approaches require separate passes and would first have to be integrated into
the ROS launch process. Moreover, they are effectively static, in that they cannot
communicate with the program under analysis; thus, we cannot guarantee that the
checker tool will see the same configuration (e.g., ontology, world model).

Another alternative would be to implement static analysis over the bytecode
returned by the Python disassembler dis, which can operate on the running pro-
gram. However, this API is not stable across Python revisions3.

An external DSL such as MAESTRO [CMT97] would similarly require a sep-
arate analysis pass. However, it would be able to offer arbitrary, domain-specific
syntax and avoid any trade-offs induced by the embedding in Python (e.g., boolean
coercions). The main downside of this technique is that it requires a completely
separate DSL implementation, including maintenance and integration.

5 Case Study: An open source software for skill-
based robot execution

As a case study, we implement our patterns on the skill-based robot control plat-
form SkiROS2 [RGK17]. SkiROS2 is used by several research institutions in the
context of industrial robot tasks [May+22c; May+22b; Wut+21; May+22a]. It is
implemented in Python, on top of the ROS [Qui+09] middleware. SkiROS2 uses
behavior trees (BTs) [CÖ18] formalism to represent procedures. We refer the
reader to [CÖ18] for a general introduction to BTs, to [Rov+17] for a thorough
introduction to SkiROS1 and to [RGK17] for BTs in SkiROS2.

SkiROS2 implements a layered, hybrid control architecture (Fig. 2) to define
and execute parametric skills for robots [Bøg+12; Kru+16]. As the figure shows,
SkiROS2 represents knowledge about the skills, the robot and the environment in
a World Model (WM) with the Ontologies specified in OWL format. This explicit
representation, built upon the World Wide Web Consortium’s Resource Descrip-
tion Framework standard(RDF), allows the use of existing ontologies.

Skills in SkiROS2 are parametric procedures that modify the world state from
an initial state to a final state according to pre- and post-conditions [Ped+16].
Skills can be either primitive or compound skills. Primitive skills are atomic ac-
tions that implement functions that change the real world, such as moving a robot
arm. Whereas, compound skills allow to use primitive skills and other compound
skills in a BT to build more complex behaviors. An example for such a connection
is shown in Listing 2. All of these skills are loaded by the Skill Manager at robot
launch time (shown in Fig. 2.

Every skill implements a Skill Description and a Skill Implementation as shown
in Fig. 2. Skill Description consists of four elements:

1. Parameters define input and output of a skill

3https://docs.python.org/3/library/dis.html

https://docs.python.org/3/library/dis.html

5 Case Study: An open source software for skill-based robot execution 83

1 c lass Pick (S k i l l D e s c r i p t i o n) :
2 def c rea teDesc r i p t i on (s e l f) :
3 s e l f . addParam (" Robot " , Element (" cora : Robot ") , ParamTypes . I n f e r r e d)
4 s e l f . addParam ("Arm" , Element (" r p a r t s : ArmDevice ") , ParamTypes . I n f e r r e d)
5 s e l f . addParam (" StartPose " , Element (" s k i r o s : TransformationPose ") ,

ParamTypes . I n f e r r e d)
6 s e l f . addParam (" GraspPose " , Element (" s k i r o s : GraspingPose ") , ParamTypes .

I n f e r r e d)
7 s e l f . addParam (" ApproachPose " , Element (" s k i r o s : ApproachPose ") ,

ParamTypes . I n f e r r e d)
8 s e l f . addParam (" Workstat ion " , Element (" sca lab le : Workstat ion ") ,

ParamTypes . I n f e r r e d)
9 s e l f . addParam (" ObjectLocat ion " , Element (" s k i r o s : Locat ion ") , ParamTypes .

I n f e r r e d)
10 s e l f . addParam (" Object " , Element (" s k i r o s : Product ") , ParamTypes . Required)
11 s e l f . addParam (" Gr ipper " , Element (" r p a r t s : G r i ppe rE f f ec to r ") , ParamTypes .

Required)
12

13 s e l f . addPreCondit ion (s e l f . getRelat ionCond (" ObjectLocat ionConta inObject "
, " s k i r o s : con ta in " , " Objec tLocat ion " , " Object " , True))

14 s e l f . addPreCondit ion (s e l f . getRelat ionCond (" Gr ipperAtStar tPose " , " s k i r o s
: a t " , " Gr ipper " , " StartPose " , True))

15 s e l f . addPreCondit ion (s e l f . getRelat ionCond (" NotGr ipperConta inObject " , "
s k i r o s : con ta in " , " Gr ipper " , " Object " , False))

16 s e l f . addPreCondit ion (s e l f . getRelat ionCond (" ObjectHasAApproachPose " , "
s k i r o s : hasA " , " Object " , " ApproachPose " , True))

17 s e l f . addPreCondit ion (s e l f . getRelat ionCond (" ObjectHasAGraspPose " , "
s k i r o s : hasA " , " Object " , " GraspPose " , True))

18 s e l f . addPreCondit ion (s e l f . getRelat ionCond (" RobotAtWorkstat ion " , " s k i r o s
: a t " , " Robot " , " Workstat ion " , True))

19 s e l f . addPreCondit ion (s e l f . getRelat ionCond ("
Works ta t ionConta inObjectLocat ion " , " s k i r o s : con ta in " , " Workstat ion " , "
Objec tLocat ion " , True))

20 s e l f . addPostCondi t ion (s e l f . getRelat ionCond (" NotGr ipperAtStar tPose " , "
s k i r o s : a t " , " Gr ipper " , " StartPose " , False))

21 s e l f . addPostCondi t ion (s e l f . getRelat ionCond (" GripperAtGraspPose " , "
s k i r o s : a t " , " Gr ipper " , " GraspPose " , True))

22 s e l f . addPostCondi t ion (s e l f . getRelat ionCond ("
NotObjectConta inedObjectLocat ion " , " s k i r o s : con ta in " , " Objec tLocat ion " ,

" Object " , False))
23 s e l f . addPostCondi t ion (s e l f . getRelat ionCond (" Gr ipperConta inObject " , "

s k i r o s : con ta in " , " Gr ipper " , " Object " , True))

Listing 3: An excerpt of the parameters, pre- and post-conditions of a pick skill in
SkiROS2 without EzSkiROS. It depends heavily on the usage of string to refer to
parameters or classes in the ontology.

84 EzSkiROS: A Case Study on Embedded Robotics DSLs to Catch Bugs Early

Skill Description

Skill Implementation

World Model

check skill
parameters

check skill
conditions

Task ManagerOntology

Robot Developers

1. Design time 3. Runtime2. Launch time

managingcoding
Legend

with EzSkiROS

without EzSkiROS

input output

artifact

process

control flow

information flow

Ontology Items

New Syntax

Checking

new bug

Running Skill A

caught bug

silent bug

Skill B

Skill C

Skill
Manager

 Skill A

Figure 2: A diagram with the different components of SkiROS2, their relations and
the additions by EzSkiROS. Previously, a bug that has been introduced in a skill
description by a developer will often only trigger at runtime. EzSkiROS addresses
these costs and risks by finding a wide range of bugs at launch time when the skills
are loaded at launch time.

2. Pre-conditions must hold before the skill is executed

3. Hold-conditions must be fulfilled during the execution

4. Post-conditions are checked once the execution finished

Listing 3 shows how developers define these skills in SkiROS2 by calling the
Python method addParam to set parameters and similarly to define pre- and post-
conditions. Parameters are typed, using a primitive (e.g., str) and WM element
types (e.g., Element("concept")), and can be optional or inferred from the world
model.

Pre-conditions allow SkiROS2 to check requirements for skill execution, and
to automatically infer skill parameters. For example, in the pick skill shown in
Listing 3, the parameter “Object” in line 10 is Required, i.e., it must be set before
skill execution. At execution time, SkiROS2 infers the parameter “container” by
reasoning about the pre-condition rule “ObjectLocationContainObject” (line 13).
If “Object” is semantically not at a location in the WM, the pre-conditions are not
satisfiable: the skill cannot be executed.

6 Concise and Verifiable Robot Skill Interface
EzSkiROS

We have validated our design patterns in an internal DSL EzSkiROS, which adds
Early Dynamic Checking (Section 4.2) to Skill Descriptions. Following a user-
centered design methodology, we developed EzSkiROS by first identifying needs

6 Concise and Verifiable Robot Skill Interface EzSkiROS 85

24 c lass Pick (S k i l l D e s c r i p t i o n) :
25 def d e s c r i p t i o n (s e l f ,
26 Robot : INFERRED[cora.Robot] ,
27 Arm : INFERRED[rparts.ArmDevice] ,
28 StartPose : INFERRED[skiros.TransformationPose] ,
29 GraspPose : INFERRED[skiros.GraspingPose] ,
30 ApproachPose : INFERRED[skiros.ApproachPose] ,
31 Workstat ion : INFERRED[scalable.Workstation] ,
32 ObjectLocat ion : INFERRED[skiros.Location] ,
33 Object : skiros.Product ,
34 Gripper : rparts.GripperEffector) :
35

36 s e l f . p re_cond i t i ons += Objec tLocat ion . con ta in (Object)
37 s e l f . p re_cond i t i ons += Gripper . a t (StartPose)
38 s e l f . p re_cond i t i ons += ~ Gripper . con ta in (Object)
39 s e l f . p re_cond i t i ons += Object . hasA (ApproachPose)
40 s e l f . p re_cond i t i ons += Object . hasA (GraspPose)
41 s e l f . p re_cond i t i ons += Robot . a t (Workstat ion)
42 s e l f . p re_cond i t i ons += Workstat ion.con ta in(Objec tLocat ion)
43 s e l f . pos t_cond i t i ons += ~ Gripper . a t (StartPose)
44 s e l f . pos t_cond i t i ons += Gripper . a t (GraspPose)
45 s e l f . pos t_cond i t i ons += ~ Objec tLocat ion . con ta in (Object)
46 s e l f . pos t_cond i t i ons += Gripper . con ta in (Object)
47

Listing 4: The skill description of the pick skill shown in Listing 3 with EzSkiROS.
We respresent OWL classes in Python as identifiers in type declarations.

for early bug checking via semi-structured interviews with skilled roboticists who
use SkiROS2, reviewed documentation, and manual code inspection. We found
that even expert skill developers made errors in writing Skill Descriptions, and that
Python’s dynamic typing only identified bugs when they triggered faults during
robot execution.

We designed EzSkiROS to simplify how Skill Descriptions are specified, with
the intent to increase their readability, maintainability, and writability. We map on-
tology objects and relations into Python’s type system. Skill Descriptions can then
directly include ontology information in type annotations. Listing 5 illustrates the
EzSkiROS syntax on the example of the pick skill from Listing 3. The EzSkiROS
variant avoids several redundant syntactic elements and specifies type information
through type annotations instead of string encodings.

6.1 EzSkiROS implementation

We follow owlready2’s approach to Domain Language Mapping in exposing the
ontology as Python types and objects. For instance in Listing 5, line 3 describes
a parameter Robot with the type annotation INFERRED[cora.Robot]. Here, cora
.Robot is a Python class that we dynamically generate to mirror an OWL class
‘Robot’ in the OWL namespace ‘cora’. INFERRED is a parametric type that tags

86 EzSkiROS: A Case Study on Embedded Robotics DSLs to Catch Bugs Early

< o w l : O b j e c t P r o p e r t y r d f : a b o u t =" h t t p : / / rvmi . aau . dk / o n t o l o g i e s / s k i r o s . # hasA ">
< r d f s : s u b P r o p e r t y O f r d f : r e s o u r c e =" h t t p : / / rvmi . aau . dk / o n t o l o g i e s / s k i r o s . #

s p a t i a l l y R e l a t e d " / >
< r d f s : r a n g e r d f : r e s o u r c e =" # T r a n s f o r m a t i o n P o s e " / >
< r d f s : d o m a i n r d f : r e s o u r c e =" # P r o d u c t " / >

< / o w l : O b j e c t P r o p e r t y >

Listing 5: The definition of the object property ‘hasA’ in the SkiROS ontology.

inferred parameters. We mark optional parameters analogously as OPTIONAL; all
other parameters are required. At robot launch time, we use Python’s reflection fa-
cilities to extract and check this parameter information, both to link with SkiROS2’
skill manager and for part of our Early Dynamic Checking.

For additional checking, we utilise Symbolic Tracing as described in Sec-
tion 4.2, deferring Python’s own language semantics to identify any mistyped
names in the skill conditions. This step collects all pre-, post-, and hold condi-
tions via the overloaded Python operator ‘+=’ (lines 13–23). We then check for
ontology type errors among these conditions.

6.2 Validation

We validate our DSL implementation by integrating it with SkiROS2 to see how it
behaves with a real skill running on a robot4. To demonstrate the effectiveness of
EzSkiROS, we use a ‘pick’ skill written in EzSkiROS (Listing 5) and load it while
launching a simulation of a robot shown in Figure 1.

Listing 6 shows that the ObjectProperty ‘hasA’ is a relation allowed only be-
tween a ‘Product’ and a ‘TransformationPose’. If we introduce a nonsensical re-
lation like Object.hasA(Gripper), then the early dynamic check in EzSkiROS over
ontology types returns a type error:
TypeEr ro r : G r i p p e r : < c l a s s ’ e z s k i r o s . pa ram_type_sys t em . r p a r t s . G r i p p e r E f f e c t o r

’> i s n o t a (s k i r o s . T r a n s f o r m a t i o n P o s e | s k i r o s . T r a n s f o r m a t i o n P o s e)

7 Evaluation

To evaluate the effectiveness and usability of the Domain Specific Language (DSL)
in detecting bugs at launch time, we conducted a user study with robotics experts.
Seven robotic skill developers participated in our user study, including one mem-
ber of the SkiROS2 development team. The user study consisted of three phases:
an initial demonstration, a follow-up discussion, and a feedback survey5. Due to

4Available online in https://github.com/lu-cs-sde/EzSkiROS
5A replication of the surveyhttps://github.com/lu-cs-sde/EzSkiROS

https://github.com/lu-cs-sde/EzSkiROS
https://github.com/lu-cs-sde/EzSkiROS

7 Evaluation 87

time limitations, we defer a detailed study, with exercises for users to write new
skills in EzSkiROS, to the future.

To showcase the embedded DSL and the early bug checking capabilities of
EzSkiROS, we presented a video showing (1) a contrast between the old and new
skill description written in EzSkiROS and (2) demonstrating how errors in the skill
description are detected early at launch time by intentionally introducing an error
in the skill conditions.

During the follow-up discussion, we encouraged participants to ask any ques-
tions or clarify any confusion they had about the EzSkiROS demonstration video.

After the discussion, we invited the participants to complete a survey to eval-
uate the readability and effectiveness of the early ontology type checks imple-
mented in EzSkiROS. The survey included Likert-scale questions about read-
ability, modifiability, and writability. Six participants answered ‘strongly agree’
that EzSkiROS improved readability, and one answered ’somewhat disagree’. For
modifiability, four of them ’strongly agree’ but three participants answered ’some-
what agree’ and ’neutral’. All the participants answered ’strongly agree’ or ’some-
what agree’ that EzSkiROS improved writability.

To gain more in-depth insights, the survey also included open-ended questions,
e.g.: (a) “Would EzSkiROS have been beneficial to you, and why or why not?”,
(b) “What potential benefits or concerns do you see in adopting EzSkiROS in your
work?”, and (c) “What potential benefits or concerns do you see in beginners, such
as new employees or M.Sc. students doing project work, adopting EzSkiROS?”.

For question (a), all participants agreed that EzSkiROS would have helped
them. Participants liked the syntax of EzSkiROS, they thought that it takes less
time to read and understand the ontology relations than before. One of them
claimed that “pre- and post- conditions are easy to make sense”. They also found
that mapping the ontology to Python types would have helped reduce the number
of lookups required in the ontology. One of the participants said, “in my experi-
ence, SkiROS2 error messages are terrible, and half the time they are not even the
correct error messages (i.e. they do not point me to the correct cause), so I think
the improved error reporting would have been extremely useful.”.

For question (b), the majority of participants reported that EzSkiROS’s concise
syntax is a potential benefit, which they believe would save coding time and effort.
One participant found EzSkiROS’s specific error messages useful, responding that
“the extra checks allow to know some errors before the robot is started” while
one participant answered that EzSkiROS does not benefit their current work but
it might be useful for writing a new skill from scratch. None of the participants
expressed any concerns about adopting EzSkiROS in their work.

For question (c), one developer acknowledges the benefits of EzSkiROS by
saying “In addition to the error reporting, it seems much easier for a beginner to
learn this syntax, particularly because it looks more like “standard” object oriented
programming (OOP)”. One person claimed that EzSkiROS would help beginners,
describing SkiROS2 as “it is quite a learning curve and needs some courage to

88 EzSkiROS: A Case Study on Embedded Robotics DSLs to Catch Bugs Early

start learning SkiROS2 from the beginning autonomously”.
In summary, the results of the user evaluation survey indicate a positive percep-

tion of EzSkiROS in terms of readability and writability. Most respondents found
EzSkiROS to be easy to read and understand, with only one exception. In addi-
tion, respondents found EzSkiROS’s early error checking to be particularly useful
in detecting and resolving errors in a timely manner. This suggests that EzSkiROS
is an effective tool for improving code quality and productivity.

8 Conclusion
Our work demonstrates how embedded DSLs can help robotics developers detect
bugs early, even when the analysis depends on data that is not available until run-
time. Our evaluation with EzSkiROS further suggests that embedded DSLs can
achieve this goal while simultaneously increasing code maintainability. In the fu-
ture, we plan to do a detailed user study where the users write the skill descriptions
in EzSkiROSthemselves. We also plan to apply the DSL patterns explained in this
paper to enable early bug checking in other areas of robot software development,
such as compound skill construction with behaviour trees or safety monitoring,
without requiring developers to move from their main development language to an
external specification language.

Acknowledgements
This work was partially supported by the Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by the Knut and Alice Wallenberg Foun-
dation.

References
[BR20] Hampus Balldin and Christoph Reichenbach. “A domain-specific

language for filtering in application-level gateways”. In: GPCE
2020. 2020, pp. 111–123.

[Bøg+12] Simon Bøgh et al. “Does your robot have skills?” In: Proceedings
of the 43rd international symposium on robotics. VDE Verlag
GMBH. 2012.

[Bru+07] Davide Brugali et al. “Trends in robot software domain
engineering”. In: Software Engineering for Experimental Robotics.
Springer, 2007, pp. 3–8.

8 Conclusion 89

[Buc+14] Jacob Pørksen Buch et al. “Applying Simulation and a
Domain-Specific Language for an Adaptive Action Library”. In:
Simulation, Modeling, and Programming for Autonomous Robots.
2014, pp. 86–97.

[Ceh+11] Ines Ceh et al. “Ontology driven development of domain-specific
languages”. In: Computer Science and Information Systems 8.2
(2011), pp. 317–342.

[CÖ18] Michele Colledanchise and Petter Ögren. Behavior trees in
robotics and AI: An introduction. CRC Press, 2018.

[CMT97] Eve Coste-Maniere and Nicolas Turro. “The maestro language and
its environment: Specification, validation and control of robotic
missions”. In: RSJ International Conf. on Intelligent Robot and
Systems. Innovative Robotics for Real-World Applications. IROS.
Vol. 2. IEEE. 1997.

[Dra+21] Swaib Dragule et al. “Languages for specifying missions of robotic
applications”. In: Software Engineering for Robotics. Springer,
2021, pp. 377–411.

[Kin76] James C King. “Symbolic execution and program testing”. In:
Communications of the ACM 19.7 (1976), pp. 385–394.

[Kru+16] Volker Krueger et al. “A Vertical and Cyber–Physical Integration
of Cognitive Robots in Manufacturing”. In: Proceedings of the
IEEE 104.5 (2016), pp. 1114–1127.

[KRB11] Lars Kunze, Tobias Roehm, and Michael Beetz. “Towards semantic
robot description languages”. In: 2011 IEEE International
Conference on Robotics and Automation. IEEE, 2011.

[Lam17] Jean-Baptiste Lamy. “Owlready: Ontology-oriented programming
in Python with automatic classification and high level constructs
for biomedical ontologies”. In: Artificial intelligence in medicine
80 (2017), pp. 11–28.

[May+22a] Matthias Mayr et al. “Combining Planning, Reasoning and
Reinforcement Learning to solve Industrial Robot Tasks”. In:
arXiv preprint arXiv:2212.03570 (2022).

[May+22b] Matthias Mayr et al. “Learning Skill-based Industrial Robot Tasks
with User Priors”. In: 2022 IEEE 18th International Conference on
Automation Science and Engineering (CASE). 2022,
pp. 1485–1492.

[May+22c] Matthias Mayr et al. “Skill-based Multi-objective Reinforcement
Learning of Industrial Robot Tasks with Planning and Knowledge
Integration”. In: 2022 IEEE International Conference on Robotics
and Biomimetics (ROBIO). 2022.

90 EzSkiROS: A Case Study on Embedded Robotics DSLs to Catch Bugs Early

[Mog+13] Mikael Moghadam et al. “Towards python-based domain-specific
languages for self-reconfigurable modular robotics research”. In:
arXiv preprint arXiv:1302.5521 (2013).

[Nor+16] Arne Nordmann et al. “A Survey on Domain-Specific Modeling
and Languages in Robotics”. In: Journal of Software Engineering
in Robotics (JOSER) 7.1 (2016), pp. 75–99.

[Ped+16] Mikkel Rath Pedersen et al. “Robot skills for manufacturing: From
concept to industrial deployment”. In: Robotics and
Computer-Integrated Manufacturing 37 (2016), pp. 282–291.

[Qui+09] Morgan Quigley et al. “ROS: an open-source Robot Operating
System”. In: ICRA workshop on open source software. Vol. 3. 3.2.
Kobe, Japan. 2009, p. 5.

[Rei21] Christoph Reichenbach. “Software ticks need no specifications”.
In: ICSE-NIER 2021. IEEE. 2021, pp. 61–65.

[RGK17] Francesco Rovida, Bjarne Grossmann, and Volker Krüger.
“Extended behavior trees for quick definition of flexible robotic
tasks”. In: RSJ International Conf. on Intelligent Robots and
Systems (IROS). IEEE. 2017, pp. 6793–6800.

[Rov+17] Francesco Rovida et al. “SkiROS— a skill-based robot control
platform on top of ROS”. In: Robot Operating System (ROS).
Springer, 2017, pp. 121–160.

[Spi01] Diomidis Spinellis. “Notable design patterns for domain-specific
languages”. In: Journal of systems and software 56.1 (2001),
pp. 91–99.

[Wut+21] D. Wuthier et al. “Productive Multitasking for Industrial Robots”.
In: 2021 IEEE International Conference on Robotics and
Automation (ICRA). 2021, pp. 12654–12661.

PA
P

E
R

IV

EZSKIROS: ENHANCING
ROBOT SKILL COMPOSITION

WITH EMBEDDED DSL FOR
EARLY ERROR DETECTION

1 Abstract

When developing general-purpose robot software components, we often lack com-
plete knowledge of the specific contexts in which they will be executed. This lim-
its our ability to make predictions, including our ability to detect program bugs
statically. Since running a robot is an expensive task, finding errors at runtime
can prolong the debugging loop or even cause safety hazards. In this paper, we
propose an approach to help developers catch these errors as soon as we have
some context (typically at pre-launch time) with minimal additional effort. We
use embedded DSL techniques to enforce early checks. We describe design pat-
terns suitable for robot programming and show how to use these design patterns
for DSL embedding in Python, using two case studies on an open-source robot
skill platform SkiROS2, designed for the composition of robot skills. These two
case studies help us understand how to use DSL embedding on two abstraction
levels: the high-level skill description that focuses on what the robot can do and

Momina Rizwan, Christoph Reichenbach, Ricardo Caldas, Matthias Mayr, and Volker Krueger.
“EzSkiROS: Enhancing Robot Skill Composition with Embedded DSL for Early Error Detection”.
"Submitted for publication" to the Special Issue “Robotics Software Engineering" as a Journal in
Frontiers in Robotics and AI, section Computational Intelligence in Robotics.

92 EzSkiROS: Enhancing Robot Skill Composition with Embedded DSL for Early . . .

under what circumstances, and the lower-level decision making and execution flow
of tasks. Using our DSL EzSkiROS, we show how our design patterns enable
robotics software platforms to detect bugs in the high-level contracts between the
robot’s capabilities and the robot’s understanding of the world. We also apply the
same techniques to detect bugs in the lower-level implementation code, such as
writing behavior trees to control the robot’s behavior based on its capabilities. We
perform consistency checks during the code deployment phase, significantly ear-
lier than the typical runtime checks. This enhances overall safety by identifying
potential issues with the skill execution before they can impact robot behavior.
An initial study with SkiROS2 developers shows that our DSL-based approach is
useful for finding bugs early and thus improving the maintainability of code.

2 Introduction

The design and implementation of robotic systems to perform socio-technical mis-
sions has never been more relevant or challenging. To ensure that robot developers
can meet market demands with confidence in the correctness of their systems, a
range of development tools and techniques is required. Specifically, robot devel-
opment tools should provide expressive programming languages and frameworks
that allow human developers to describe correct robot behavior [Bru+07]. One
such robot development platform is SkiROS21, a skill-based robot control plat-
form with knowledge integration. SkiROS2 [MRK23] allows developers to define
modular skills for autonomous mission execution.

These skills, ranging from “pick” to “drive”, are modularly defined with pre-
and post-conditions. In SkiROS2, the assessment and validation of these condi-
tions rely on the robot’s knowledge, systematically organized into an ontology.
These ontologies are a rich, interlinked representation of concepts and relation-
ships within a specific domain. It serves as a foundation for verifying that all
necessary conditions for skill execution are satisfied. For instance, in an auto-
mated assembly line or robotic healthcare surgery, the ontology would encompass
all relevant entities and their relationships, providing a comprehensive context for
skill execution.

Consider the "pick" skill as an example. The pre-conditions might include
ontology-based relationships like "gripper is part of the robot arm". This rela-
tionship assists in deducing additional parameters such as "which arm to move"
by employing subtle semantic differences of entities and their relationships in the
ontology. For example, if we say the gripper is part of the arm then we know
which arm to move if we want to pick an object with the gripper. The distinction
between relationships like "is part of" and is holding is critical in ensuring the
correct application of parameters and actions during skill execution.

1https://github.com/RVMI/skiros2

https://github.com/RVMI/skiros2

2 Introduction 93

Robot

Arm

Gripper

Approach Pose

Object

Grasp Pose

Object Location

Figure 1: The robot using a pick skill with a visualization of the necessary pa-
rameters. To run this skill, we only need the Gripper and the Object parameters.
SkiROS2 can deduce all other necessary parameters through a set of rules in the
skill description shown in Listings 3 and 5.

The developer must be careful when declaring such relationships, as bugs in-
troduced at this stage can lead to silent errors, disrupting the skill’s behavior and
potentially leading to incorrect or inefficient task execution. The reason is that
some of these errors in skill description are logical errors that would not mani-
fest as explicit runtime errors. Certain errors may only become evident when a
particular skill is executed, which could be weeks later when demonstrating the
robot under specific circumstances that are not immediately predictable. Such de-
layed detection makes troubleshooting and rectifying these errors more challeng-
ing. Therefore, properly defining relationships and conditions within the ontology
and skill descriptions is crucial for technical correctness and ensuring operational
reliability robotic skills in real-world applications.

In SkiROS2, each high-level skill description acts as a behavioral contract, set-
ting parameters and conditions that the corresponding implementations must sat-
isfy. These descriptions guide the development of concrete skill implementations.
Many implementations use extended BTs that reuse other existing skills, relying
on their pre-conditions and post-conditions for a structured execution. Extended
BTs in SkiROS2 merge task-level planning and execution, allowing for modularity
and reactivity [RGK17]. The reactivity comes inherently from BTs in the way with
which tasks are organized in a BT defines their priority order, where more impor-
tant tasks interrupt less important ones [Iov+22]. However, constructing consistent
and correct BTs is crucial, as inconsistencies can lead to unexpected failures and
outcomes.

94 EzSkiROS: Enhancing Robot Skill Composition with Embedded DSL for Early . . .

To avoid such errors, we propose using a Domain-Specific Language (DSL) to
allow for analyzing the code for potential errors before deploying it on the actual
robot. Our proposed approach ensures that the high-level abstract skill descrip-
tions align with the lower-level BTs, providing a comprehensive framework for
skill execution. DSLs offer specific constructs for defining and connecting nodes,
conditions, and actions, enforcing correct patterns and practices, thus reducing
the likelihood of logical or structural errors. The benefits of using DSLs to aid
debugging, visualization, and static checking are well-recognized, making them
a valuable tool in robot software development. DSLs have been used for mis-
sion specification [Dra+21], and robot knowledge modeling [Ceh+11]. Nordmann
et al. [Nor+16] collect and categorise over 100 such DSLs for robotics in their
Robotics DSL Zoo2.

In this paper, we aim to support robot developers, particularly those who write
control logic in Python, to catch bugs early by embedding DSLs directly in Python.
We support our case through:

• Four design patterns for embedding DSLs in general-purpose programming
languages that address common challenges in robotics, with details on how
to implement these patterns in Python;

• A case study of a robotics software SkiROS2 , in which we introduce our
DSL EzSkiROS for early detection of type errors and other bugs, highlight-
ing its effectiveness in identifying errors in both high-level skill descriptions
and lower-level implementation details.

• A demonstration of how EzSkiROS detects various types of bugs in robot ca-
pabilities, world model contracts, and behavior trees, showcasing the DSL’s
comprehensive coverage and versatility in detecting bugs early.

Lastly, we discuss the advancements and distinctions of our approach com-
pared to the initial insights presented in the paper [Riz+23], providing an overview
of the evolution and impact of our design patterns.

3 Related Work
Several studies have explored the use of model-driven approaches for program-
ming robots, focusing on the development of DSLs to enhance the reliability of
robotic systems. [Buc+14] describe an internal Domain-Specific Language (DSL)
over C++, that incorporates structuring of complex actions, where actions are mod-
eled through sets of parameters, and each action contains a pre-condition specify-
ing the state of relevant parts. This structure implies the use of pre- and post-
conditions in sequencing robotic skills.. Unlike our DSL, their DSL uses a model-
driven approach. It instantiates a textual representation of the assembly sequence,

2https://corlab.github.io/dslzoo

https://corlab.github.io/dslzoo/

3 Related Work 95

which is interpreted to execute the assembling behavior. However, it is unclear if
they use early checking techniques to prevent erroneous sequences. While it dis-
cusses error handling and the probabilistic approach to tackle uncertainties, spe-
cific methods like early checking techniques are not clearly outlined.

[KRB11] propose the Semantic Robotic Description Language (SRDL), a model-
based approach that utilizes Web Ontology Language (OWL) notation to match
robot descriptions and actions through static analysis of robot capability dependen-
cies. SRDL models knowledge about robots, capabilities, and actions, contributing
to the understanding and specification of robotic behaviors. However, the extent
to which SRDL supports early dynamic checking in general-purpose languages
remains unclear, highlighting the need for further exploration in this area.

[CMT97] propose MAESTRO, an external DSL for specifying reactive behav-
ior and checking in the robotics domain. MAESTRO focuses on complex and hi-
erarchical missions, accommodating concurrency and portability requirements. It
allows the specification of user-defined typed events and conditions, offering type-
checking of user-defined types and stop condition checks to ensure the correctness
and safety of specified behaviors.

Behavior trees BTs have emerged as an effective method for modeling and
executing autonomous behaviors of robots, particularly in dynamic environments.
Unlike the traditional Finite State Machines (FSMs), BTs represent action selec-
tion decisions in a hierarchical tree structure enhancing flexibility in planning and
replanning robot behavior. As [DP22] highlight, BTs offer a more maintainable
approach to decision-making than FSMs, which is crucial in the rapidly evolv-
ing field of robotics. Originally developed for the video game industry, BTs have
been widely adopted in robotics due to their modularity and scalability. [Iov+22]
presents a detailed survey of BTs in robotics and AI, discussing their application,
evolution, and the benefits. BTs are composed of various types of nodes, including
control nodes (e.g., sequences, selectors), leaf nodes (e.g., tasks, conditions), and
decorator nodes (modifying the behavior or output of other nodes), organized in a
tree structure from a root node and branching out.

The integration of BTs with robotic systems often involves the use of DSLs
and frameworks like the Robot Operating System (ROS). [Ghz+23] emphasize
the growing use of BTs in open-source robotic applications supported by ROS,
indicating their practicality in the real-world applications. However, verifying the
safety and correctness of BTs remains a challenge.

[Hen+22] use SMTs to check safety properties specified in Linear Constraint
Horn Clauses notation over Behavior Tree specifications. Moreover, [TT22] use
Event-B for formal specification and verification of the BT instances, ensuring the
maintenance of invariant properties.

From a static semantics perspective, BhTSL is an example where the com-
piler checks the source text for non-declared variables and variable redeclara-
tion [Oli+20]. Despite the advancements in BT DSLs, there is a lack of DSLs
performing static checks as rigorously as desired. According to the survey pa-

96 EzSkiROS: Enhancing Robot Skill Composition with Embedded DSL for Early . . .

per [Ghz+20], most used behavior tree DSLs, such as BehaviorTree.CPP 3, py_trees 4,
and the Behavior Tree from UnrealEngine 5, primarily focus on runtime type safety
and flexibility. For instance, MOOD2Be’s6 project from Horizon 2020, the Behav-
iorTree.CPP tool offers a C++ implementation of BTs with type safety [Fac19],
but the type-checking capability is largely left to the developer and is subject to
runtime checks. This indicates a gap in the domain of DSLs for BTs in ensuring
consistency and preventing inconsistencies in implementation between skills or
actions before runtime.

In conclusion, while there have been significant advancements in DSLs for
robotics and BTs, there is a continuous need for the development of languages
and tools that allow both static and early dynamic checking to ensure the safety,
reliability, and efficiency of robotic systems. Future research should focus on en-
hancing the capabilities of DSLs to perform comprehensive checks and verifica-
tions, both at design time and runtime, to address the increasing complexity and
demands of modern robotic applications.

4 Embedding Robotics DSLs in Python

Domain-Specific Languages (DSLs) can help developers by simplifying notation,
improving performance or error detection. However, developing and maintaining
DSLs requires effort. For external DSLs (e.g., MAESTRO, SRDL), much of this
effort comes from building a language frontend. Internal or embedded DSLs (as
in [Buc+14]) avoid this overhead, and instead re-use an existing “host” language,
possibly adjusting the language’s behavior to accommodate the needs of the prob-
lem domain.

We look at Python as one of the three mainly supported languages of the popu-
lar robotics platform ROS (cf. [Qui+09]). The other two languages, C++ and LISP,
also support internal DSLs, but with different trade-offs.

4.1 Python Language Features for DSLs

While Python’s syntax is fixed, it offers several language constructs that DSL de-
signers can repurpose to reflect their domain, such as freely overloadable infix op-
erators (excluding the type-restricted boolean operators), type annotations (since
Python 3.0), and decorator mechanisms (cf. [Mog+13]).

Listing 1 illustrates some of these techniques. Class A represents a deferred
operation op with parameters args. A.eval (Line 18) forces recursive evaluation.
The @staticmethod decorator tells Python that this method takes no implicit self

3https://github.com/BehaviorTree/BehaviorTree.CPP
4https://github.com/splintered-reality/py_trees
5https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees
6https://robmosys.eu/mood2be/

https://github.com/BehaviorTree/BehaviorTree.CPP
https://github.com/splintered-reality/py_trees
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees
https://robmosys.eu/mood2be/

4 Embedding Robotics DSLs in Python 97

1 c lass M(type) :
2 def _ _g e t a t t r i b u t e_ _ (s e l f , name) :
3 i f name [0] == ’ _ ’ and name [1 :] . i sdec ima l () :
4 r e t u r n s e l f (lambda x : x , i n t (name [1 :]))
5 r e t u r n type . __ ge ta t t r i b u te __ (s e l f , name)
6

7 c lass A(metaclass=M) :
8 def _ _ i n i t _ _ (s e l f , op , * args) :
9 s e l f . op = op

10 s e l f . args = args
11 def __add__ (s e l f , o ther) :
12 r e t u r n A(i n t . __add__ , s e l f , o ther)
13 def __ca l l__ (s e l f , arg : i n t) :
14 r e t u r n A(i n t . __mul__ , s e l f , arg)
15 @staticmethod
16 def eva l (e) :
17 i f i s i n s t a n c e (e , A) :
18 r e t u r n e . op (* (A . eva l (y) f o r y i n e . args))
19 r e t u r n e
20

21 a = A. _2 + 1 # a = A. __add__ (A(λ x : x , 2) , 1)
22 b = a (4) # b = a . __ca l l__ (4)
23 p r i n t (A . eva l (b)) # evaluates (2 + 1) * 4

Listing 1: An example with DSL-friendly Python features: Line 15 shows a
decorator, metaclass is shown in lines 1–5, overloading in lines 11 and 13 and
finally type annotations in line 13.

parameter. DSL designers can define other decorators to transform the semantics
of functions, methods, or classes.

The metaclass M in line 1 allows class A (line 7) to handle references to un-
known class attributes. The code in lines 2–5 checks for attributes that start with
an underscore and continue in decimal digits. Line 21 shows how we can write
A._2 to construct an instance of A (via line 4).

Class A overloads infix addition in line 11 and function call notation in line 13,
which allows instances of A to participate in addition and to behave like callable
functions (lines 21 and 22). While the code is a toy example, it illustrates how a
DSL designer can construct in-memory representations of complex computations
for staging, which could (e.g., in A.eval) perform optimisations or translate the
code representation into a more efficient format (e.g., for a GPU).

Line 13 illustrates Python’s type annotations, annotating parameter arg with
type int . By default, such annotations have no runtime effect, but DSL designers
can access and repurpose them to collect DSL-specific information without inter-
ference from Python. Since Python 3.5 (with extensions in 3.9), these annotations
also allow type parameters (e.g., x : list [int]).

98 EzSkiROS: Enhancing Robot Skill Composition with Embedded DSL for Early . . .

Finally, Python permits dynamic construction of classes (and metaclasses),
which we have found particularly valuable for the robotics domain: since the sys-
tem configuration and world model used in robotics are often specified outside of
Python (e.g., in configuration files or ontologies) but are critical to program logic,
we can map them to suitable type hierarchies at robot pre-launch time (just after
build time).

4.2 Robotics DSL Design Patterns
In the following, we list our DSL design patterns with a brief summary block that
highlights each pattern’s purpose and key implementation concepts. For each, we
show examples and discuss trade-offs, as appropriate.

Domain Language Mapping

Pattern: Domain Language Mapping
Purpose: Make domain notation visible in host language, reduce

notational overhead
Implementation: See the “Piggyback” DSL implementation pattern docu-

mented by [Spi01]
Domain Language Mapping identifies language concepts in the host language

that correspond to the domain language in some sense, and then uses the tech-
niques described in [Spi01] to implement them. This mapping can be manual, or
be the result of reflection.

As an example, the Web Ontology Language (OWL) allows us to express the
relationships and attributes of the objects in the world, the robot hardware and the
robot’s available capabilities (skills and primitives). Existing libraries like owl-
ready2 (cf. [Lam17]) already expose these specifications as Python objects, so if
the ontology contains a class pkg:Robot, we can create a new “Robot” object by
writing

r = pkg.Robot("MyRobotName")
and iterate over all known robots by writing

for robot in pkg.Robot.instances(): ...
While [Mog+13] expressed concerns about “syntactic noise” for DSL embed-

ding in earlier versions of Python, when compared to external DSLs, we found
such noise to be modest in modern Python, and instead emphasise the advantages
of embedding in a language that is already integrated into the ROS environment
and that developers are familiar with.

Maintenance and Integration Considerations When domain knowledge
is available in machine-readable form, much or all of the mapping process may be
automable. For example, the owlready2 library creates these classes at runtime,
based on the contents of the ontology specification files. Thus, changes in the

4 Embedding Robotics DSLs in Python 99

ontology are immediately reflected in Python: if we rename pkg:Robot in the on-
tology, our earlier code example will trigger an error when it encounters pkg.Robot
in the Python source code.

Another strategy for automating the mapping process is to generate code in the
host language. In our example, this code would take the form of Python modules,
such as pkg.py, that contain classes and methods to reflect the mapping (e.g., a
class Robot). This strategy mirrors DSL implementation strategies for host lan-
guages that lack advanced reflection facilities, such as C (cf. [LMB92]).

Code generation has two potential disadvantages over reflection. First, code
generation persists a snapshot of the domain language mapping. The build and
development process must thus ensure that this snapshot is kept fresh, and prevent
developers from accidentally modifying the generated code. Second, code genera-
tion requires the domain language mapping to take place before build time. When
domain knowledge is only available at pre-launch time, the generated code will
necessarily be stale, which may render this implementation strategy useless.

In our discussions with practitioners, we did however observe a key advan-
tage that code generation offers: Since the mapping becomes visible as Python
source code, it is also available to language servers and integrated development
environments, and may help developers find bugs in their code even earlier.

Early Dynamic Checking

Pattern: Early Dynamic Checking
Purpose: Detect type and configuration errors in a critical piece of

code early, such as during robot pre-launch time, with no
or minimal extra effort for developers.

Implementation: Execute all critical pieces of code early, while redefining
the semantics of the predetermined set of operations (e.g.
ontology relations from our previous example) to imme-
diately return or to only perform checking

In tools like SkiROS2, combining Python code, ontologies and configuration
files at runtime introduces points of failure. To detect such failures early, we pro-
pose a second pattern. The conditions for this pattern are:

• We can collect all critical pieces of code at a suitably early point during
execution

• The critical code does not depend on return values of operations that we
cannot predict at pre-launch time

In Python, configuration and type errors only trigger software faults once we
run code that depends on faulty data. In robotics, we might find such code in
operations that (a) run comparatively late (e.g., several minutes after the start of the
robot) and (b) are difficult to unit-test (e.g., due to their coupling to specific ROS

100 EzSkiROS: Enhancing Robot Skill Composition with Embedded DSL for Early . . .

1 def expand (s e l f , s k i l l) :
2 s k i l l . setProcessor (S e r i a l S t a r ())
3 s k i l l (
4 s e l f . s k i l l (" Navigate " , " ") ,
5 s e l f . s k i l l (" WmSetRelation " , " wm_set_re lat ion " ,
6 remap={ ’ Dst ’ : ’ TargetLocat ion ’ } ,
7 spec i f y ={ ’ Src ’ : s e l f . params [" Robot "] . value ,
8 ’ Re la t ion ’ : ’ s k i r o s : a t ’ , ’ Re la t i onS ta te ’ : True }) ,)

Listing 2: Constructing the behavior tree (BT) of a drive skill in SkiROS2. It is
a sequential execution of a compound skill (a skill with its own BT of smaller,
executable skills) "Navigate" and a primitive skill (an atomic skill that can not be
broken down into smaller parts) to update the world model "WmSetRelation".

functionality and/or robotics hardware). For robotics developers, both challenges
increase the cost of verification and validation [Rei21]: a fault might trigger only
after a lengthy robot program and require substantial manual effort to reproduce.
For example, a software module for controlling an arm might take a configuration
parameter that describes the target arm pose. If the arm controller is triggered late
(e.g., because the arm is part of a mobile platform that must first reach its goal
position), any typos in the arm pose will also trigger the fault late. If the pose
description comes from a configuration file or ontology, traditional static checkers
will also be ineffective. We can only check for such bugs after we have loaded all
relevant configuration.

Through careful software design, developers can work around this problem,
e.g., by checking that code and configuration are well-formed as soon as possi-
ble, before they run the control logic. If the critical code itself is free of external
side effects, the check can be as simple as running the critical code twice. For
example, SkiROS2 composes BTs [CÖ18] within such critical Python code (List-
ing 2): composing (as opposed to running) these objects has no side effects, so
we can safely construct them early to detect simple errors (e.g., typos in parameter
names). This is a typical example that eludes static checking but is amenable to
Early Dynamic Checking: line 7 depends on self .params["Robot"].value, which is
a configuration parameter that we cannot access until the robot is ready to launch.
Not all robotics code is similarly declarative. Consider the following example, in a
hypothetical robotics framework in which all operations are subclasses of RobotOp
and must provide a method run() that takes no extra parameters:

1 c lass MyRobotOp (RobotOp) :
2 def _ _ i n i t _ _ (s e l f , con f i g) : # Conf igure
3 s e l f . con f i g = con f i g
4 def check (s e l f) : # Check c o n f i g u r a t i o n
5 asser t s e l f . con f i g . mode i n ["A" , "B"]
6 asser t i s i n s t a n c e (s e l f . con f i g . v , i n t)

4 Embedding Robotics DSLs in Python 101

7 def run (s e l f) : # Run wi th c o n f i g u r a t i o n
8 i f s e l f . con f i g . mode == "A" :
9 s e l f . runA () ;

10 e l i f s e l f . con f i g . mode == "B" :
11 s e l f . runB (s e l f . con f i g . v + 10) ;
12 else :
13 f a i l ()

Here, the developers introduced a separate method check() that can perform
early checking during robot initialisation or pre-launch. However, check() and
run() both have to be maintained to make the same assumptions.

The Early Dynamic Checking pattern instead uses internal DSL techniques to
allow developers to use the same code in two different ways: (a) for checking, and
(b) for logic.

In our example, calling run() “normally” captures case (b). For case (a), we can
also call run(), but instead of passing an instance of MyRobotOp, we pass a mock
instance of the same class, in which operations like runA() immediately return:

1 c lass MyRobotOpMock :
2 def _ _ i n i t _ _ (s e l f , parent) :
3 s e l f . parent = parent
4 @property
5 def con f i g (s e l f) :
6 # s e l f . con f i g = s e l f . parent . con f i g
7 r e t u r n s e l f . parent . con f i g
8 def runA (s e l f) :
9 pass # mock opera t ion : do noth ing

10 def runB (s e l f , arg) :
11 pass # mock opera i ton : do noth ing

If we execute MyRobotOpMock.run() with the same configuration as MyRobotOp
, run() will execute almost as for MyRobotOp but immediately return from any call
to runA or runB. If the configuration is invalid, e.g., if config.mode == "C" or
config.v == false, running MyRobotOpMock.run() will trigger the error early.

Since Python can reflect on a class or an object to identify all fields and meth-
ods, we can construct classes like MyRobotOpMock at run-time: instead of writing
them by hand, we can implement a general-purpose mock class generator that con-
structs methods like runA and accessors like config automatically. If the configura-
tion objects may themselves trigger side effects, we can apply the same technique
to them.

However, the above implementation strategy is only effective if we know that
the critical code will only call methods on self and other Python objects that we
know about ahead of time. We can relax this requirement by controlling how
Python resolves nonlocal names:7

FunctionType(MyRobotOp.run.__code__, globals() | { ’print’ : g})(obj)

7Python’s eval function offers similar capabilities, but as of Python 3.10 does not seem to allow
passing parameters to code objects.

102 EzSkiROS: Enhancing Robot Skill Composition with Embedded DSL for Early . . .

This code will execute obj.run() via the equivalent MyRobotOp.run(obj), but re-
place all calls to print by calls to some function g. The same technique can use
a custom map-like object to detect at runtime which operations the body of the
method wants to call and handle them suitably.

However, the more general-purpose we want to allow the critical code to be,
the more challenging it becomes to apply this pattern. For instance, if the critical
code can get stuck in an infinite loop, so may the check; if this is a concern, the
check runner may need to use a heuristic timeout mechanism. A more significant
limitation is that we may not in general know what our mocked operations like
runA() should return, if anything. If the critical code depends on a return value
(e.g., if it reads ROS messages), the mocked code must be able to provide suitable
answers. The same limitation arises when the critical code is in a method that takes
parameters. If we know the type of the parameter or return value, e.g. through a
type annotation, we can exploit this information to repeatedly check (i.e., fuzz-test)
the critical code with different values; however, without further cooperation from
developers, this method can quickly become computationally prohibitive.

If we know that the code in question has a simple control flow, we may be able
to apply the next pattern, Symbolic Tracing.

Symbolic Tracing

Pattern: Symbolic Tracing
Purpose: Detect Bugs in a critical piece of code early, if that code

depends on parameters or operation return values, with
minimal extra effort for developers.

Implementation:

1. Execute the critical code while passing symbolic values as parameters
and/or returning symbolic values from operations of relevance

2. Collect any constraints imposed by operations on the symbolic values

3. After executing the critical code, verify the constraints against the prob-
lem domain

Here, a symbolic value is a special kind of mock value that we use to record
information (cf. [Kin76]).

The conditions for this pattern are that

• We can access and execute the critical code

• We have access to sufficient information (via type annotations, properties,
. . .) to simulate parameter values and operation return values symbolically
(see below)

• The number of control flow paths through the critical code is small (see
below)

4 Embedding Robotics DSLs in Python 103

Consider the following RobotOp subclass:

1 c lass SetArmSpeedOp (RobotOp) :
2 def run (s e l f , speedup) :
3 s e l f . setArmSpeed (speedup)
4 s e l f . setArmSafety (speedup)

This class only calls two operations, but its run operation depends on a param-
eter speedup about which we know nothing a priori — thus, we cannot directly
apply the Early Dynamic Checking pattern.

In cases where we lack prior knowledge about an operation, it may still be
possible to obtain useful insights about it. For example, if we are aware that
setArmSpeed accepts only numeric parameters and setArmSafety only accepts
boolean parameters, we can flag this code as having a type error. To avoid blindly
testing various parameters, we can pass a symbolic parameter to the run function
and employ a modified version of the mock-execution strategy used in Early Dy-
namic Checking. The mock objects can be adapted as follows:

1 TYPE_CONSTRAINTS = []
2

3 c lass SetArmSpeedOpMock :
4 def setArmSpeed (s e l f , ob j) :
5 TYPE_CONSTRAINTS. append ((obj , f l o a t))
6 def setArmSafety (s e l f , ob j) :
7 TYPE_CONSTRAINTS. append ((obj , bool))

We can now (1) create a fresh object obj and an SetArmSpeedOpMock in-
stance that we call mock, (2) call SetArmSpeedOp.run(mock, obj), and (3) read out
all constraints that we collected during this call from TYPE_CONSTRAINTS, and
check them for consistency, which makes it easy to spot the bug. If the constraints
come from accesses to obj (e.g., method calls like obj.__add__(1) that result from
code like obj + 1), obj itself can collect the resultant constraints.

Depending on the problem domain, constraint solving can be arbitrarily com-
plex, from simple type equality checks to automated satisfiability checking [BR20].
It can involve dependencies across different pieces of critical code (e.g., to check
if all components agree on the types of messages sent across ROS channels, or
to ensure that every message that is sent has at least one reader). However, this
approach requires information about specific operations like setArmSpeed and
setArmSafety, which can be provided to Python in a variety of ways, e.g., via
type annotations.

As an example, consider an operation that picks up a coffee from the table with
a gripper, where we annotate all parameters to run with OWL ontology types:

104 EzSkiROS: Enhancing Robot Skill Composition with Embedded DSL for Early . . .

1 c lass PickCoffeeTableOp (RobotOp) :
2 def run (s e l f , robot : rob.Robot ,
3 g r i ppe r : rob.Gripper ,
4 co f f ee_ tab le : world.Furniture) :
5 / / bug :
6 asser t co f f ee_ tab le . robotPar tOf (robot) ;
7 . . .

This example is derived from the SkiROS2 ontologies, with minor simplifica-
tions. In the above SkiROS2 code, the developer intended to write a pre-condition
that to be able to pick a coffee cup, the robot should be close to the table. Instead,
the developer mistakenly wrote that a robot should be a part of the coffee table.

The ontology requires that robotPartOf is a relation between a technical Device
and a Robot. However, Furniture is not a subtype of Device, so the assertion in
line 6 is unsatisfiable.

We can again detect this bug through symbolic tracing. This time we must con-
struct symbolic variables for robot, gripper, and coffee_table that expose methods
for all applicable relations, as described by their types. For instance, gripper will
contain a method robotPartOf(gripper, obj) that records on each call that gripper
and obj should be in a robotPartOf relation. Meanwhile, coffee_table will not have
such an operation. When we execute run(), we can then defer to Python’s own
type analysis, which will abort execution and notify us that coffee_table lacks the
requisite method.

Key to this symbolic tracing is our use of mock objects as symbolic variables.
Symbolic variables reify Python variables to objects that can trace the operations
that they interact with, in execution order, and translate them into constraints.

The main limitation of this technique stems from its interaction with Python’s
boolean values and control flow, e.g. conditionals and loops. Python does not
allow the boolean operators to return symbolic values, but instead forces them (at
the language level) to be bool values; similarly, conditionals and loops rely on
access to boolean outcomes. Thus, when we execute code of the form if x: ... ,
we must decide right there and then if we should collapse the symbolic variable
that x is bound to True or False. While we can re-run the critical code multiple
times with different decisions per branch, the number of runs will in general be
exponential over the number of times that a symbolic variable collapses to a bool.

Source Provenance Tracking

Pattern: Source Provenance Tracking
Purpose: Make early dynamic error reports more actionable by re-

porting relevant source locations
Implementation: Dynamic stack inspection

The intent in early error detection in (embedded) DSLs is generally to prevent
undesirable behavior. When this undesirable behavior is due to a problematic user

4 Embedding Robotics DSLs in Python 105

specification, it is– in our experience– valuable to point the user to the problematic
specification. In practice, “blaming” the right part of the program can be nontriv-
ial, since the disagreement may be across multiple user specifications ([Ahm+11]
discuss this challenge in more detail).

Handling multiple conflicting constraints can be particularly challenging for
embedded DSLs. Let’s say that we are using a technique like Symbolic Trac-
ing in two user-defined functions, declaration() and implementation(), such that
implementation() must ensure the constraints that are required declaration():

def d e c l a r a t i o n (x : i n t) :
r equ i re (x > 0)
requ i re (x < 10)

def implementat ion (x : i n t) :
ensure (x > 3)
ensure (x <= 10)

. . .
more code f o l l o w s
. . .
reg i s te r_ imp lemen ta t i on (dec la ra t i on , implementat ion)

In the above example, we might find a bug: implementation allows x = 10, but
this is not allowed according to declaration(). A typical but naïve implementation
of such a consistency check might simply inform the user that declaration and
implementation disagree about what x is allowed to do, and raise an exception.

The programmer must now identify the line of code that is the culprit by hand.
In practical scenarios such as our case studies, there may be multiple declaration
and implementation functions in the same file (usually as methods), which further
complicates the task.

Reflection can help us here: for example, given a function object in Python, we
can use reflection to access implementation.__code__.co_firstlineno
and implementation.__code __.co_filename to obtain the location at
which the function was defined in the form of the first line of code and the source
file name. For larger definitions even this information may be insufficiently pre-
cise.

Some languages offer facilities that allow us to obtain even the exact lines of
code that were responsible for the error (lines 3 and 7, in our example). While
some languages support this inspection through macro- or preprocessor facilities
(e.g., __LINE__ and __FILE__ in C), Python 3.1 and later offer direct read
access to the call stack via inspect.stack(). The symbolic tracing code for reqire()
and ensure() can then “walk” this stack down until it finds the first stack frame
that belongs to the code under analysis, and extract file name and line number
from there. The symbolic tracer can then attach this provenance information to the
constraint and expose it to the user if the constraint is contributing to some error
report.

106 EzSkiROS: Enhancing Robot Skill Composition with Embedded DSL for Early . . .

4.3 Alternative Techniques for Checking

Internal DSLs are not the only way to implement the kind of early checking that
we describe. The mypy tool8 is a stand-alone program for type-checking Python
code. Mypy supports plugins that can describe custom typing rules, which we
could use e.g. to check for ontology types. Similarly, we could use the Python
ast module to implement our own analysis over Python source code. However,
both approaches require separate passes and would first have to be integrated into
the ROS launch process. Moreover, they are effectively static, in that they cannot
communicate with the program under analysis; thus, we cannot guarantee that the
checker tool will see the same configuration (e.g., ontology, world model).

Another alternative would be to implement static analysis over the bytecode
returned by the Python disassembler dis, which can operate on the running pro-
gram. However, this API is not stable across Python revisions9.

An external DSL such as MAESTRO [CMT97] would similarly require a sep-
arate analysis pass. However, it would be able to offer arbitrary, domain-specific
syntax and avoid any trade-offs induced by the embedding in Python (e.g., boolean
coercions). The main downside of this technique is that it requires a completely
separate DSL implementation, including maintenance and integration.

5 SkiROS2: An open source software for skill
based robot execution

As a case study, we implement our patterns on an open-source software for skill-
based robot execution SkiROS2 [MRK23]. SkiROS2 is used by several research
institutions in the context of industrial robot tasks as demonstrated in [May+23;
May+22a; May+22c; May+22b; AMK23; Wut+21]. It is a complete re-implementation
of the predecessor SkiROS1by [Rov+17], and is implemented in Python on top
of the ROS [Qui+09] middleware. SkiROS2 uses behavior trees (BTs) [CÖ18]
formalism to represent procedures. The platform implements a layered, hybrid
control architecture to define and execute parametric skills for robots [Bøg+12;
Kru+16]. SkiROS2 system architecture is shown in (Fig. 2) which illustrates how
different components interact with each other at different phases. It uses ontologies
to represent the comprehensive knowledge about the world. As the figure shows,
SkiROS2 represents knowledge about the skills, the robot and the environment in
a WM with the Ontologies specified in OWL format. This explicit representation,
built upon the World Wide Web Consortium’s Resource Description Framework
(RDF) [HKR09] standard, allows the use of existing ontologies. This approach to
knowledge management is important for complex decision-making and reasoning
in autonomous systems [CA22].

8https://mypy-lang.org/
9https://docs.python.org/3/library/dis.html

https://mypy-lang.org/
https://docs.python.org/3/library/dis.html

5 SkiROS2: An open source software for skill based robot execution 107

Central to SkiROS2’s architecture is its world model, which serves as a dy-
namic repository of the robot’s environment and state. This model continuously
updates and maintains a semantic representation of the surroundings, objects, and
the robot’s own status. The integration of the world model with the ontology (as
shown in Fig. 2 ensures that the robot has a thorough understanding of its opera-
tional context, enhancing its interaction capabilities with the environment.

Skills in SkiROS2 are parametric procedures that modify the world state from
an initial state to a final state according to pre- and post-conditions [Ped+16]. Ev-
ery skill has a Skill Description and one or more Skill Implementation as shown in
Fig. 2. The Skill Description consists of four elements:

1. Parameters define input and output of a skill. The types of these parameters
can vary from certain primitive data types to a world model element in the
ontologies.

2. Pre-conditions must hold before the skill is executed

3. Hold-conditions must be fulfilled during the execution

4. Post-conditions indicates that a skill has successfully executed

These conditions are checked by the Skill Manager as shown in the Fig. 2. When
a skill is invoked, the system first checks the pre-conditions to decide if it is safe
or viable to start the skill. During execution, hold-conditions are continuously
monitored to ensure ongoing criteria are met. Finally, once the skill reports its
completion, post-conditions are checked to confirm successful execution. These
checks are essential to maintain the robustness, safety, and reliability of robotic
operations, ensuring that skills are only performed when appropriate and achieve
the intended results.

The Listing 3 shows how developers define a ‘pick’ skill in SkiROS2 by calling
the Python method addParam to set the parameters of the skill and similarly to de-
fine its pre- and post-conditions. The parameters are typed, using basic datatypes
(e.g., str) or a WM element defined in ontology, and can be required, optional
or inferred from the world model. Pre-conditions allow SkiROS2 to check re-
quirements for skill execution, and to automatically infer skill parameters from
the world model. For example, in the pick skill shown in Listing 3, the parameter
“Object” in line 10 is Required, i.e., it must be set before the execution of the skill.
At execution time, SkiROS2 infers the parameter “ObjectLocation” (line 9) by rea-
soning about the pre-condition rule “ObjectLocationContainObject” (line 13). If
“Object” is semantically not at a location in the WM, the pre-conditions are not
satisfiable and the skill cannot be executed.

A Skill Implementation, on the other hand acts as a class that implements the
interface Skill Description and refers to the actual coding and logic that enables a
robot to perform a task. Skills can be either primitive or compound skills. Depend-
ing on the type of skill, primitive skills implement atomic functions that change

108 EzSkiROS: Enhancing Robot Skill Composition with Embedded DSL for Early . . .

1 c lass Pick (S k i l l D e s c r i p t i o n) :
2 def c rea teDesc r i p t i on (s e l f) :
3 s e l f . addParam (" Robot " , Element (" cora : Robot ") , ParamTypes .

I n f e r r e d)
4 s e l f . addParam ("Arm" , Element (" r p a r t s : ArmDevice ") , ParamTypes .

I n f e r r e d)
5 s e l f . addParam (" StartPose " , Element (" s k i r o s : TransformationPose

") , ParamTypes . I n f e r r e d)
6 s e l f . addParam (" GraspPose " , Element (" s k i r o s : GraspingPose ") ,

ParamTypes . I n f e r r e d)
7 s e l f . addParam (" ApproachPose " , Element (" s k i r o s : ApproachPose ") ,

ParamTypes . I n f e r r e d)
8 s e l f . addParam (" Workstat ion " , Element (" sca lab le : Workstat ion ") ,

ParamTypes . I n f e r r e d)
9 s e l f . addParam (" ObjectLocat ion " , Element (" s k i r o s : Locat ion ") ,

ParamTypes . I n f e r r e d)
10 s e l f . addParam (" Object " , Element (" s k i r o s : Product ") , ParamTypes

. Required)
11 s e l f . addParam (" Gr ipper " , Element (" r p a r t s : G r i ppe rE f f ec to r ") ,

ParamTypes . Required)
12

13 s e l f . addPreCondit ion (s e l f . getRelat ionCond ("
ObjectLocat ionConta inObject " , " s k i r o s : con ta in " , "
Objec tLocat ion " , " Object " , True))

14 s e l f . addPreCondit ion (s e l f . getRelat ionCond (" Gr ipperAtStar tPose
" , " s k i r o s : a t " , " Gr ipper " , " StartPose " , True))

15 s e l f . addPreCondit ion (s e l f . getRelat ionCond ("
NotGr ipperConta inObject " , " s k i r o s : con ta in " , " Gr ipper " , "
Object " , False))

16 s e l f . addPreCondit ion (s e l f . getRelat ionCond ("
ObjectHasAApproachPose " , " s k i r o s : hasA " , " Object " , "
ApproachPose " , True))

17 s e l f . addPreCondit ion (s e l f . getRelat ionCond ("
ObjectHasAGraspPose " , " s k i r o s : hasA " , " Object " , " GraspPose " ,
True))

18 s e l f . addPreCondit ion (s e l f . getRelat ionCond (" RobotAtWorkstat ion
" , " s k i r o s : a t " , " Robot " , " Workstat ion " , True))

19 s e l f . addPreCondit ion (s e l f . getRelat ionCond ("
Works ta t ionConta inObjectLocat ion " , " s k i r o s : con ta in " , "
Workstat ion " , " Objec tLocat ion " , True))

20 s e l f . addPostCondi t ion (s e l f . getRelat ionCond ("
NotGr ipperAtStar tPose " , " s k i r o s : a t " , " Gr ipper " , " StartPose " ,
False))

21 s e l f . addPostCondi t ion (s e l f . getRelat ionCond ("
GripperAtApproachPose " , " s k i r o s : a t " , " Gr ipper " , " ApproachPose
" , True))

22 s e l f . addPostCondi t ion (s e l f . getRelat ionCond ("
NotObjectConta inedObjectLocat ion " , " s k i r o s : con ta in " , "
Objec tLocat ion " , " Object " , False))

23 s e l f . addPostCondi t ion (s e l f . getRelat ionCond ("
Gr ipperConta inObject " , " s k i r o s : con ta in " , " Gr ipper " , " Object " ,

True))

Listing 3: An excerpt of the parameters, pre- and post-conditions of a pick skill in
SkiROS2 without EzSkiROS. It depends heavily on the usage of strings to refer to
parameters or classes in the ontology.

5 SkiROS2: An open source software for skill based robot execution 109

Skill Description

Skill Implementation

World Model

check skill
parameters

check skill
conditions

Task Manager
Ontology

Robot Developers

1. Design time 3. Runtime2. Launch time

managingcoding
Legend

with EzSkiROS

without EzSkiROS

input output

artifact

process

control flow

information flow

Ontology Items

New Syntax (Skill Desc.)

Pre-launch file

new bug

Running Skill A

caught bug

silent bug

Skill B

Skill C

Skill
Manager

 Skill A

New Syntax (BT expand)

check param
remaps in BT.

check
existence of a
skill in the BT.

Launch file

Figure 2: A diagram with the different components of SkiROS2, their interaction
during different time phases, and the advancements by EzSkiROS(shown as green
blocks). In SkiROS2, a bug that has been introduced in a skill description by a
developer will often only trigger at runtime. EzSkiROS addresses these costs and
risks by adding checks to find a wide range of bugs by running a pre-launch file
where the skills are loaded before runtime.

the real world, such as moving a robot arm, while compound skills build com-
plex behaviors in a BT. An example of a pick Skill Implementation is shown in
Listing 4.

The createDescription method (line 2,Listing 4) sets the description (interface)
to an implementation. The expand method (line 5,Listing 4) within the skill im-
plementation uses behavior trees to structure the execution of skills. Each node in
the tree could represent a specific skill (action node) or a decision-making process
(commonly known as a control flow node) that determines which skill to execute
next, as illustrated in Figure 3. The control flow node sets the processor and speci-
fies how the compound skill decomposed into a behavior tree (line 6). In SkiROS2,
control flow nodes or processors dictate how a compound skill invokes its child
skills. Before delving into specific processors, it is essential to understand the
common states a node might return during execution:

• SUCCESS indicates that the skill or all skills (in case of compound skills)
have been completed successfully.

• FAILURE indicates that the skill has failed to complete successfully or con-
ditions for success are not met.

• RUNNING indicates that the skill is still in progress and has not yet reached
a conclusion of success or failure.

These states are not exclusive to compound skills but are also applicable to leaf
nodes. Following is the list of processors and how they operate in these states:

110 EzSkiROS: Enhancing Robot Skill Composition with Embedded DSL for Early . . .

48 c lass p ick (Sk i l lBase) :
49 def c rea teDesc r i p t i on (s e l f) :
50 s e l f . se tDesc r i p t i on (Pick () , s e l f . __class__ . __name__)
51

52 def expand (s e l f , s k i l l) :
53 s k i l l . setProcessor (S e r i a l S t a r ())
54 s k i l l (
55 s e l f . s k i l l (" Sw i t chCon t ro l l e r " , " " , spec i f y ={ ’

C o n t r o l l e r ’ : ’ j o i n t _ c o n f i g ’ }) ,
56 s e l f . s k i l l (" MoveitCartesianSpaceMotion " , " " , remap={ ’

GoalPose ’ : ’ ApproachPose ’ }) ,
57 s e l f . s k i l l (" WmSetRelation " , " wm_set_re lat ion " ,
58 remap={ ’ Src ’ : ’ Gr ipper ’ , ’ Dst ’ : ’

ApproachPose ’ } ,
59 spec i f y ={ ’ Re la t ion ’ : ’ s k i r o s : a t ’ , ’

Re la t i onSta te ’ : True }) ,
60 s e l f . s k i l l (" HSVDetection " , " ") ,
61 s e l f . s k i l l (" Sw i t chCon t ro l l e r " , " " , spec i f y ={ ’

C o n t r o l l e r ’ : ’ compl iant ’ }) ,
62 s e l f . s k i l l (" ApproachMovement " , " go_ to_ l i nea r " , remap

={ ’ Target ’ : ’ GraspPose ’ }) ,
63 s e l f . s k i l l (" WmSetRelation " , " wm_set_re lat ion " ,
64 remap={ ’ Src ’ : ’ Gr ipper ’ , ’ Dst ’ : ’

GraspPose ’ } ,
65 spec i f y ={ ’ Re la t ion ’ : ’ s k i r o s : a t ’ , ’

Re la t i onSta te ’ : True }) ,
66 s e l f . s k i l l (" Wait " , " " , spec i f y ={ " Durat ion " : 2 . 0 }) ,
67 s e l f . s k i l l (" ActuateGr ipper " , " " , spec i f y ={ ’Open ’ :

False }) ,
68 s e l f . s k i l l ("WmMoveObject " , " wm_move_object " ,
69 remap={ " TargetLocat ion " : " Gr ipper " }) ,
70 s e l f . s k i l l (" ApproachMovement " , " go_ to_ l i nea r " , remap

={ ’ Target ’ : ’ ApproachPose ’ }) ,
71 s e l f . s k i l l (" Wait " , " " , spec i f y ={ " Durat ion " : 2 . 0 })
72)

Listing 4: The skill implementation of the pick Skill Description shown in
Listing 3.

5 SkiROS2: An open source software for skill based robot execution 111

∅

WmSetRelation

MoveItCartesianSpaceMotion

relation(skiros:contain, ObjectLocation, Object, True)
relation(skiros:at, Gripper, StartPose, True)
relation(skiros:contain, Gripper, Object, False)
relation(skiros:hasA, Object, ApproachPose, True)
relation(skiros:hasA, Object, GraspPose, True)
relation(skiros:at, Robot, Workstation, True)
relation(skiros:contain, Workstation, ObjectLocation, True)

relation(skiros:at, Gripper, StartPose, False)
relation(skiros:at, Gripper, ApproachPose, True)
relation(skiros:contain, ObjectLocation, Object, False)
relation(skiros:contain, Gripper, Object, True)

SwitchController ActuateGripper ApproachMovement

Wait

SwitchController

Pick:pick <→*> (Object, Gripper)

HSVDetection

WmSetRelation

WaitApproachMovement WmMoveObject

Figure 3: The BT of the pick skill in the eBT format [RGK17]. It has a SerialStar
operator and will execute all children in sequence. The pre-conditions and post-
conditions are shown.

• Serial processes the children one by one in order until all succeed. It will
continuously loop through the children until one returns RUNNING or FAIL-
URE or until all children succeed. The Serial processor returns SUCCESS
only if all children succeed, FAILURE if any child fails, and RUNNING
if any child is still in the process of completing its task. SerialStar is a
variation of Serial processor, which remembers which skills have already
succeeded so it does not repeat them. The returned states are the same as
Serial but with the added efficiency of not repeating successful children.

• Selector runs its children one after the other until one succeeds (returning
SUCCESS), or all fail (returning FAILURE). If a child is in progress (RUN-
NING), the processor will also return RUNNING. The key feature here is
that it prioritizes success among its children, effectively ignoring failures
unless all fail. SelectorStar is a variation of Selector but remembers which
skills have already been tried and succeeded, so it does not repeat them.

• ParallelFf (Parallel First Fail) invokes all the children at the same time. It
returns SUCCESS only if all children succeed. If any child fails, it immedi-
ately returns FAILURE and halts the other children.

• ParallelFs (Parallel First Stop) also runs all the children simultaneously.
However, it stops all processes and returns SUCCESS as soon as any child
succeeds or FAILURE if any child fails, regardless of the others’ states.

When we mention that a node "returns" something, we are referring to the
result of an operation or computation performed by that node. This result dictates
the next action in the behavior tree, like whether to continue, stop, or try a different
approach.

112 EzSkiROS: Enhancing Robot Skill Composition with Embedded DSL for Early . . .

In Listing 4, the skill () operator allows to set the skill children, which can
be an action node or another control node (to make a nested control structure).
To add several children at once it is possible to use the syntax as shown in the
Listing 4 (line 9-22). Each child has a template self.skill(skilltype,
label="", remap=, specify=) which is a placeholder for a skilltype re-
placed at run-time with an available implementation specified as label. While
remap and specify are used to manage how parameters and variables are passed
and used within the tree. "remap" refers to the redirection or reassignment of input
or output parameters from one part of the tree to another and "specify" is used to
set a static value of a parameter.

The relationship between Skill Descriptions and BTs is evident in how the
expand function uses the behavior tree structure to implement the skill’s logic.
The parameters, pre-conditions, hold-conditions and post-conditions defined in
the Skill Description guide the construction and execution of BTs. For instance,
the pre-conditions in a skill description determine when a particular branch of the
behavior tree is activated, and the post-conditions signal when a skill or sequence
of skills has been successfully completed.

All of these skills are loaded by the Skill Manager at robot launch time (shown
in Fig. 2).

6 Case Study I: Concise and Verifiable Robot
Skill Interface

We have validated our design patterns in an internal DSL EzSkiROS, which adds
Early Dynamic Checking (Section 4.2) to Skill Descriptions. Following a user-
centered design methodology, we developed EzSkiROS by first identifying needs
for early bug checking via semi-structured interviews with skilled roboticists who
use SkiROS2, reviewed documentation, and manual code inspection. We found
that even expert skill developers made errors in writing Skill Descriptions, and that
Python’s dynamic typing only identified bugs when they triggered faults during
robot execution.

We designed EzSkiROS to simplify how Skill Descriptions are specified, with
the intent to increase their readability, maintainability, and writability. We map
ontology objects and relations into Python’s type system. Skill Descriptions can
then directly include ontology information in type annotations. This approach
streamlines the syntax by avoiding redundant syntactic elements and specifying
type information through annotations rather than string encodings, as illustrated
with the example of the pick skill in Listing 5. Listing 5 illustrates the EzSkiROS
syntax on the example of the pick skill from Listing 3. The Skill Description in
Listing 5 is more concise and intuitive, with type annotations providing a clear and
direct way to specify the types of parameters and their ontology information.

In EzSkiROS, we employed owlready2’s approach to Domain Language Map-

6 Case Study I: Concise and Verifiable Robot Skill Interface 113

ping in exposing the world model elements in the ontology as Python types and
objects. For instance in Listing 5, line 3 describes a parameter Robot with the
type annotation INFERRED[cora.Robot]. Here, cora.Robot is a Python class that
we dynamically generate to mirror an OWL class ‘Robot’ in the OWL namespace
‘cora’. INFERRED is a parametric type that tags inferred parameters. We mark
optional parameters analogously as OPTIONAL; all other parameters are required.
At robot pre-launch time, we use Python’s reflection facilities to extract and check
this parameter information, both to link with SkiROS2’ skill manager and for part
of our Early Dynamic Checking. In addition to our ontology types, we also al-
lowed basic data types (str , float , int , bool) in EzSkiROS, enforcing that each
must specify a default value. Originally, SkiROS2 also allowed the parameters of
data types list and dict. However, in EzSkiROS, we restricted the use of lists and
dicts as it was not clear if we would need this in practice. One of the develop-
ers claimed that dicts are considered ‘hacks’ in the system’s context. While lists
are valid for representing e.g. joint configurations, it might be better served by
a specialized joint-config type to encapsulate their complexities and intended use
more accurately. We allowed enums to handle such parameters, acknowledging
that enums cannot encode lists or dicts but it can provide a more controlled and
predictable set of values, enhancing the system’s integrity and reliability.

1 c lass Pick (S k i l l D e s c r i p t i o n) :
2 def d e s c r i p t i o n (s e l f ,
3 Robot : INFERRED[cora.Robot] ,
4 Arm : INFERRED[rparts.ArmDevice] ,
5 StartPose : INFERRED[skiros.TransformationPose] ,
6 GraspPose : INFERRED[skiros.GraspingPose] ,
7 ApproachPose : INFERRED[skiros.ApproachPose] ,
8 Workstat ion : INFERRED[scalable.Workstation] ,
9 ObjectLocat ion : INFERRED[skiros.Location] ,

10 Object : skiros.Product ,
11 Gripper : rparts.GripperEffector) :
12

13 s e l f . p re_cond i t i ons += ObjectLocat ion . con ta in (Object)
14 s e l f . p re_cond i t i ons += Gripper . a t (StartPose)
15 s e l f . p re_cond i t i ons += ~ Gripper . con ta in (Object)
16 s e l f . p re_cond i t i ons += Object . hasA (ApproachPose)
17 s e l f . p re_cond i t i ons += Object . hasA (GraspPose)
18 s e l f . p re_cond i t i ons += Robot . a t (Workstat ion)
19 s e l f . p re_cond i t i ons += Workstat ion.con ta in(Objec tLocat ion)
20 s e l f . pos t_cond i t i ons += ~ Gripper . a t (StartPose)
21 s e l f . pos t_cond i t i ons += Gripper . a t (GraspPose)
22 s e l f . pos t_cond i t i ons += ~ ObjectLocat ion . con ta in (Object)
23 s e l f . pos t_cond i t i ons += Gripper . con ta in (Object)

Listing 5: The skill description of the pick skill shown in Listing 3 with EzSkiROS.
We respresent OWL classes in Python as identifiers in type declarations.

In addition to skill parameters, we also want to make sure that skill conditions

114 EzSkiROS: Enhancing Robot Skill Composition with Embedded DSL for Early . . .

satisfy contracts in our ontology. These pre-, post-, and hold-conditions can be
expressed in different ways depending on what aspects of the robot’s environment
and state we want to assess.

According to SkiROS2 documentation, one can define a skill with the help of
four kinds of skill conditions:

1. ConditionHasProperty are unary relations to check whether a certain ele-
ment or entity has a specific property. It’s useful when the skill needs to
verify certain attributes or characteristics of objects or elements before pro-
ceeding. When a condition checks for a property, it’s essentially querying
the ontology to see if the entity conforms to certain criteria or states defined
within it. For instance, if an ontology defines that a "door" entity can have a
"state" property with values "open" or "closed," the ConditionHasProperty
might check if the door’s state is "open."

2. ConditionProperty are binary relations which rely on the ontology to un-
derstand and evaluate properties or attributes of entities. However, it might
be used to assess the value or state of a property rather than just its pres-
ence. For example, it could check whether the temperature (property) of a
machine is within a certain range.

3. ConditionRelation is used to evaluate the relationships between different el-
ements or entities. It’s crucial for tasks that require understanding spatial or
hierarchical relationships, such as "is next to," "is on top of," or "is part of."
This condition utilizes the relational information in the ontology to assess
how entities are related to each other. Ontologies define not just entities but
also the possible relationships between them. For example, it might check
if "object A is on top of object B" by referring to the ontology’s definitions
of "object A," "object B," and the "on top of" relationship.

4. AbstractConditionRelation is a more generalized or template form of Con-
ditionRelation, which can be specified or extended for various specific rela-
tional conditions.

Since all types of skill conditions rely heavily on the ontology for their eval-
uation regardless of , it is important to add Early Dynamic checking to detect
mistyped conditions. We utilise Symbolic Tracing as described in Section 4.2.
This step collects all pre-, post-, and hold conditions via the overloaded Python
operator ‘+=’ (lines 13–23). We then check for wrong ontology relations and
ontology type errors among these conditions. Since we use Domain Language
Mapping to expose the world model entities as classes and relations as Python
methods, Python’s own name analysis will catch such mistyped ontology relation
or entity names, and the symbolic values that we pass into the description method
capture all type information that we need for type-checking.

6 Case Study I: Concise and Verifiable Robot Skill Interface 115

We test our DSL implementation by integrating it with SkiROS2 to see how it
behaves with a real skill running on a robot10. To demonstrate the effectiveness of
our type check in EzSkiROS, we use a ‘pick’ skill written in EzSkiROS (Listing 5)
and load it while launching a simulation of a robot shown in Figure 1.

<owl :Ob jec tProper ty r d f : a b o u t = " h t t p : / / rvmi . aau . dk / on to log ies / s k i r o s
.# hasA ">
<rd fs :subProper tyOf r d f : r e s o u r c e =" h t t p : / / rvmi . aau . dk / on to log ies /
s k i r o s .# s p a t i a l l y R e l a t e d " / >
< rd f s : r ange r d f : r e s o u r c e =" #TransformationPose " / >
<rdfs :domain r d f : r e s o u r c e =" #Product " / >

< / ow l :Ob jec tProper ty>

Listing 6: The definition of the object property ‘hasA’ in the SkiROS ontology.

Listing 6 shows that the ObjectProperty ‘hasA’ is a relation allowed only be-
tween a ‘Product’ and a ‘TransformationPose’. If we introduce a nonsensical re-
lation like Object.hasA(Gripper), then the early dynamic check in EzSkiROS over
ontology types returns a type error:

TypeError : Gr ipper : <c lass ’ ezsk i ros . param_type_system . r p a r t s .
G r i ppe rE f f ec to r ’ > i s not a s k i r o s . TransformationPose

In addition to the error message, we also provide the source of the error high-
lighting the line containing the error.

6.1 Evaluation
To evaluate the effectiveness and usability of EzSkiROS in detecting bugs at pre-
launch time, we conducted a user study with robotics experts. Seven robotic skill
developers participated in our user study, including one member of the SkiROS2
development team. The user study consisted of three phases: an initial demonstra-
tion, a follow-up discussion, and a feedback survey11. Due to time limitations, we
defer a detailed study, with exercises for users to write new skills in EzSkiROS, to
the future.

To showcase the embedded DSL and the early bug checking capabilities of
EzSkiROS, we presented a video showing (1) a contrast between the old and new
skill description written in EzSkiROS and (2) demonstrating how errors in the
skill description are detected early at pre-launch time by intentionally introducing
an error in the skill conditions.

During the follow-up discussion, we encouraged participants to ask any ques-
tions or clarify any confusion they had about the EzSkiROS demonstration video.

After the discussion, we invited the participants to complete a survey to eval-
uate the readability and effectiveness of the early ontology type checks imple-

10Available online in https://github.com/lu-cs-sde/EzSkiROS
11A replication of the surveyhttps://github.com/lu-cs-sde/EzSkiROS

https://github.com/lu-cs-sde/EzSkiROS
https://github.com/lu-cs-sde/EzSkiROS

116 EzSkiROS: Enhancing Robot Skill Composition with Embedded DSL for Early . . .

mented in EzSkiROS. The survey included Likert-scale questions about read-
ability, modifiability, and writability. Six participants answered ‘strongly agree’
that EzSkiROS improved readability, and one answered ’somewhat disagree’. For
modifiability, four of them ’strongly agree’ but three participants answered ’some-
what agree’ and ’neutral’. All the participants answered ’strongly agree’ or ’some-
what agree’ that EzSkiROS improved writability.

To gain more in-depth insights, the survey also included open-ended questions,
e.g.: (a) “Would EzSkiROS have been beneficial to you, and why or why not?”,
(b) “What potential benefits or concerns do you see in adopting EzSkiROS in your
work?”, and (c) “What potential benefits or concerns do you see in beginners, such
as new employees or M.Sc. students doing project work, adopting EzSkiROS?”.

For question (a), all participants agreed that EzSkiROS would have helped
them. Participants liked the syntax of EzSkiROS, they thought that it takes less
time to read and understand the ontology relations than before. One of them
claimed that “pre- and post- conditions are easy to make sense”. They also found
that mapping the ontology to Python types would have helped reduce the number
of lookups required in the ontology. One of the participants said, “in my experi-
ence, SkiROS2 error messages are terrible, and half the time they are not even the
correct error messages (i.e. they do not point me to the correct cause), so I think
the improved error reporting would have been extremely useful.”.

For question (b), the majority of participants reported that EzSkiROS’s concise
syntax is a potential benefit, which they believe would save coding time and effort.
One participant found EzSkiROS’s specific error messages useful, responding that
“the extra checks allow to know some errors before the robot is started” while
one participant answered that EzSkiROS does not benefit their current work but
it might be useful for writing a new skill from scratch. None of the participants
expressed any concerns about adopting EzSkiROS in their work.

For question (c), one developer acknowledges the benefits of EzSkiROS by
saying “In addition to the error reporting, it seems much easier for a beginner to
learn this syntax, particularly because it looks more like “standard” object oriented
programming (OOP)”. One person claimed that EzSkiROS would help beginners,
describing SkiROS2 as “it is quite a learning curve and needs some courage to
start learning SkiROS2 from the beginning autonomously”.

In summary, the results of the user evaluation survey indicate a positive per-
ception of EzSkiROS in terms of readability and writability. Most respondents
found EzSkiROS to be easy to read and understand, with only one exception. In
addition, respondents found EzSkiROS’s early error checking to be particularly
useful in detecting and resolving errors in a timely manner. This suggests that the
users perceived EzSkiROS as an effective tool.

7 Case Study II: Verifiable construction of a behavior tree in Skill Implementation 117

7 Case Study II: Verifiable construction of a be-
havior tree in Skill Implementation

We further substantiate our design patterns by extending EzSkiROS to add Early
Dynamic Checking to the implementation of compound skills through the ver-
ifiable construction of behavior trees. In this process, our design methodology
involved identifying the requirements for the construction of BTs by examining
the BT specifications, analyzing GitHub issues encountered by developers when
writing BTs in SkiROS2 by performing a systematic search for specific keywords
including “Behavior Tree”, “Remaps” and “Skill Implementation”. Subsequently,
we engaged in a verification process with the developers to ensure the validity of
the identified issues.

First modification in the skill implementation is to make the link between
SkillDescription and SkillBase as indicated by Listing 3 and Listing 4 respectively.
We use Dynamic Language Mapping to dynamically link a skill implementa-
tion (SkillBase) to a SkillDescription. Instead of having each skill implementation
manually create its description as shown in line 2 of Listing 4, this design pattern
sets up the description internally within the SkillDescription interface. This means
when we implement the “Pick” skill, we inherit from Pick.SkillBase (as shown in
Listing 5 line 1), the necessary description and parameter handling is already in
place.

Recall from the discussion from Section ??, on how behavior trees are con-
structed in the Skill Implementation phase. Originally, skills and their implemen-
tations were passed as strings, for example, the previous version of the BT speci-
fication for “pick” consists of a skill ApproachMovement.go_to_linear as self
. skill ("ApproachMovement", "go_to_linear", remap = ’Target’:’GraspPose’). This
approach could be error-prone if we pass a string which does not match any skill
description or its implementation. To address this issue, we use Domain Lan-
guage Mapping to map the available SkillDescription classes as BehaviorNodes().
Behavior Nodes class represent the nodes of the behavior tree (BT) we define
in expand method. In this way, we enable more explicit and clear references to
skills within the behavior tree. Instead of vaguely referring to a skill with a string,
programmers can directly call the skill with its specific implementation, such as
ApproachMovement.go_to_linear (as shown in Listing 7 line 10). This not
only makes the code clearer and easier to understand but also reduces the risk
of errors related to incorrect skill references. With Domain Language Mapping,
the SkillDescription class (shown in Listing 5) serves a dual purpose: it helps
construct BehaviorNodes and assists in defining parameters, post-conditions, pre-
conditions, and hold-conditions for the skills. This dual usage streamlines the pro-
cess of defining and implementing skills, ensuring that all necessary information
and functionality are encapsulated within a single, coherent structure.

As shown previously in Listing 4, behavior trees were specified in the expand
method where a list of skills are passed to a skill () wrapper after initializing a

118 EzSkiROS: Enhancing Robot Skill Composition with Embedded DSL for Early . . .

processor (line 7-24). Each child has a template self.skill(skilltype,
label="", remap=, specify=) where remap and specify are used to pass
parameters to the skills. From our analysis of the BT specifications, we found
the concept of "remapping" to be critical. Remapping allows parameters from one
skill to be redirected or reassigned to the parameters of another, ensuring that the
right data is available where and when it is needed. However, if not managed
correctly, remapping can lead to issues, particularly when non-existent parame-
ters are referenced. Consider the case of a compound skill named SkillB with
parameters paramA and paramB. If an incorrect remapping occurs, such as self
. skill (" SkillA ", " skill_a ", remap = ’param’ : ’paramC’), where paramC doesn’t
exist in SkillB this would typically lead to errors or unintended behavior. It is cru-
cial that such issues are detected and reported early in the development process to
prevent complications later in the skill execution. The system or the developers
should ensure that remappings reference existing and appropriate parameters. In
EzSkiROS (example shown in Listing 7), we use Dynamic Language Mapping
to address this issue. This method exposes skill parameters to their respective Skill
Descriptions as objects, which can accessed and manipulated more intuitively. For
instance, in Listing 7, we pass the skill parameters of the Pick skill as an input to
the expandBT method and are accessed directly as params.ApproachPose, sim-
plifying the process of defining and checking parameter remappings. This ap-
proach not only makes skill specifications more natural and easier to understand
but also links parameters to the skill being implemented (Pick), ensuring that the
entire system works cohesively.

Additionally, we improve error messages through Source Provenance Track-
ing to make the debugging of behavior trees easier than before. Its true utility
lies in pinpointing the exact location of issues, providing file and line numbers for
where things went wrong. This capability is invaluable when dealing with complex
behavior trees, as it allows developers to quickly find and address issues without
manually sifting through the code.

Need for static Pre-/Post-Condition Matching in SkiROS
As mentioned in Sections ?? and ??, pre- and post-conditions in SkiROS2 serve

as essential components for ensuring the correct execution of skills to complete a
robot’s task. These conditions are checked by the Skill Manager before starting
and parameterizing the skill. These conditions are also important if you use a task
planner and they play an important role in scaling SkiROS2 to meet more complex
challenges. The key motivations to include pre-conditions are:

• for planning, pre- and post-conditions are vital to understand and verify
whether a skill can be initiated (pre-condition) and confirming if the skill’s
goal has been achieved (post-condition) after execution,

• for dynamic sanity checks (without using a planner), these checks are cru-
cial for maintaining the integrity of skill execution, especially in complex
scenarios where multiple skills interact. While they might seem less critical

7 Case Study II: Verifiable construction of a behavior tree in Skill Implementation 119

1 c lass p ick (Pick . Sk i l lBase) :
2

3 def expandBT (s e l f , params) :
4 s e l f . s e r i a l s t a r (
5 Swi t chCon t ro l l e r (C o n t r o l l e r = ’ j o i n t _ c o n f i g ’) ,
6 MoveitCartesianSpaceMotion (GoalPose=params .

ApproachPose) ,
7 WmSetRelation . wm_set_re lat ion (Src=params . Gripper , Dst

=params . ApproachPose , Re la t ion= ’ s k i r o s . a t ’ , Re la t i onSta te=
True) ,

8 HSVDetection () ,
9 Swi t chCon t ro l l e r (C o n t r o l l e r = ’ compl iant ’) ,

10 ApproachMovement . go_ to_ l i nea r (Target=params . GraspPose
) ,

11 WmSetRelation . wm_set_re lat ion (Src=params . Gripper , Dst
=params . GraspPose , Re la t ion= ’ s k i r o s . a t ’ , Re la t i onSta te=True) ,

12 Wait (Durat ion =2.0) ,
13 ActuateGr ipper (Open=False) ,
14 WmMoveObject (TargetLocat ion=params . Gr ipper) ,
15 ApproachMovement . go_ to_ l i nea r (Target=params .

ApproachPose) ,
16 Wait (Durat ion =2.0)
17)

Listing 7: The EzSkiROS representation of the skill implementation shown
in Listing 4. Here the inheritance from Pick.SkillBase links the Pick skill
description shown in Listing 5 to its implementation.

in controlled or smaller settings, their importance escalates as the complex-
ity and scale of tasks grow. Poor quality or incorrectly defined conditions
can significantly limit the ability of SkiROS2 to scale and handle complex,
dynamic tasks efficiently.

If we don’t use a planner, then manually creating parent skills or adjusting ex-
isting ones without thorough checks can lead to mismatches between expected and
actual skill behaviors. Static checking of pre-/post-conditions becomes essential
to identify and correct these errors early in the development cycle, preventing po-
tential failures during execution. To verify this requirement, we randomly selected
five SkiROS2 skills written by developers to understand the prevalence of errors.
Among those five skills, four of them failed the following basic checks:

• Sequence Skills: For a sequence skill s = sequence(A, B, C), the pre-condition
of ‘s’ must entail the pre-condition of ‘A’, and the aggregate post-conditions
of ‘A’ must entail the pre-condition of ‘B’, and so on.

• Selector Skills: For a selector skill s = selector(A, B, C), the pre-condition
of ‘s’ must entail the conjunction of the pre-conditions of ‘A’, ‘B’, and ‘C’.

120 EzSkiROS: Enhancing Robot Skill Composition with Embedded DSL for Early . . .

Post-conditions of ‘s’ can be conservatively checked as any of the children
can lead to success without a predetermined order.

• Parallel Skills: For parallel skills, all children must succeed, with specific
differences in handling the completion and order. This requires that no post-
condition of one skill may invalidate the pre-condition of another due to the
simultaneous nature of execution.

This evidence points to a common oversight in defining these conditions care-
fully and makes it important to have robust tooling to ensure that pre- and post-
conditions are correctly matched and implemented.

To address these challenges, we plan to create a comprehensive mapping and
verification system in the future. This system would track all pre- and post-
conditions, manage dependencies and changes, handle remapping accurately, and
ensure that all conditions are consistent and verifiable at each step of the skill exe-
cution. It would likely involve a combination of static analysis tools, careful struc-
turing of skill descriptions, and possibly enhancements to the SkiROS2 framework
to support more robust condition checking and error reporting.

8 Overall Evaluation of the Extended EzSkiROS

Our evaluation of the extension of EzSkiROS (as mentioned in Case Study II) is
primarily based on an in-depth review provided by an experienced SkiROS2 devel-
oper and maintainer who has used the tool for transforming old SkiROS2 code into
EzSkiROS. We requested developer feedback on various aspects of EzSkiROS, in-
cluding its strengths and weaknesses, the impact on code readability and writabil-
ity, the ease of code translation, the comprehensibility of errors encountered, and
any general observations or suggestions they might have. The user’s experience of-
fers valuable insights into the strengths, weaknesses, and overall impact of EzSkiROS on
skill description development in robotics.

Strengths and Weaknesses The developer highlighted several key strengths
of EzSkiROS:

• Early Detection of Misuse: EzSkiROS enables the detection of misuse in
the world model before the skills are utilized, enhancing the correctness of
the code.

• Validation of Naming in Conditions: The tool validates naming in pre-
conditions and post-conditions, ensuring consistency and correctness in el-
ement types and names.

• Improved Error Messaging: Compared to traditional SkiROS, EzSkiROS
provides clearer and more concise error messages.

8 Overall Evaluation of the Extended EzSkiROS 121

• Readability: There is a significant improvement in the readability of skill
descriptions, and skill implementations of both compound and primitive
skills.

However, the developer also noted a primary weakness:

• Developer Productivity: Despite the aforementioned strengths, the devel-
oper expects that EzSkiROS will not provide substantial productivity bene-
fits. The developer attributes this to the dynamic nature of most checks and
the fact that world model errors abort Python execution, leading to one error
being reported at a time.

Impact on Code Quality The developer review suggests that EzSkiROS pos-
itively impacts the code quality in several ways:

• Correctness: By enforcing element types on parameters and consistent
naming, the correctness of the code is improved.

• Readability and Intuitiveness: The conciseness and clarity in pre- and
post-conditions make the code easier to read and understand.

• Clarity in Skill Dependencies: The dependencies between Skill Descrip-
tion and SkillBase (Skill Implementation) of a skill are more apparent in the
code.

• Conciseness in Writing behavior trees: Writing behavior trees for com-
pound skills has become more concise and less cluttered.

Translation Process The developer reported the translation of existing skill
descriptions to EzSkiROS to be straightforward. The time required for translation
depends on the number of skill descriptions to be converted but it can be auto-
mated.

Error Reporting and Understanding The user affirmed that the errors iden-
tified by EzSkiROS were sensible and contributed to a better understanding of the
issues in the skill descriptions.

General Feedback The developer acknowledged EzSkiROS as a significant
step forward, particularly in moving from string-based descriptions to more natural
and correct Python code. The reduction in common errors due to the validation of
parameter names and world element relations was especially noted. For future
work, the developer suggested:

• Static Analysis Integration: Implementing static analysis to run checks on
modules and skills independently, possibly integrated with a linter, to further
reduce bugs at an early stage.

• Code Generation for Enhanced Development Experience: Utilizing code
generation to enable features like autocompletion and static checks during

122 EzSkiROS: Enhancing Robot Skill Composition with Embedded DSL for Early . . .

coding, particularly for the world model, to improve the development expe-
rience.

The user review provides an insightful evaluation of EzSkiROS, highlighting
its strengths in improving code readability, correctness, and error messaging. The
contribution of EzSkiROS to reducing common errors and improving the overall
quality of skill descriptions is evident. According to the reviewer, it falls short in
significantly enhancing developer productivity due to the fact that we do dynamic
checks at pre-launch and the user suggests static analysis. It is important to note
here that static check requires certain information (ontology, robot configuration)
to be available at development time, which is not guaranteed. Modulo this caveat,
we see no fundamental barrier towards using the techniques that we describe here
for both pre-launch and static checks in practice, using language server or devel-
opment environment plugins.

9 Conclusion

In this paper, we present two analyses of different abstraction levels of a robotic
software and how can we use DSL design patterns to detect bugs at a pre-launch
stage before runtime. Case Study I demonstrated the value of our design pat-
terns by showing how they help detect bugs in the high-level contracts between a
variety of robot capabilities and the robot’s world model. Case Study II expands
EzSkiROS by adapting the same techniques to detecting bugs in lower-level imple-
mentation code, in our case that implementation uses a behavior tree to integrate
different robot capabilities.

In exploring the relationship between the two analyses, it’s important to ask:
Do they work separately, depend on each other, or are they independent yet work
better together, creating a stronger combined effect than each would alone? The
study shows that analysis of behavior trees (Case Study II) require information
about the skill parameters from the higher level descriptions to check correct in-
formation being passed on between skills. Behavior trees also need to access the
pre-, post- and hold-conditions from the skill descriptions of the skill being im-
plemented. On the other hand, the higher level analysis (Case Study I) is stand-
alone but can benefit from the BT sequencing information to suggest pre- and
post-conditions to the developer. Our work demonstrates how embedded DSLs
can help robotics developers detect bugs early, even when the analysis depends on
data that is not available until run-time. Our evaluation with EzSkiROS further
suggests that embedded DSLs can achieve this goal while simultaneously increas-
ing code maintainability.

In our future work, we plan to collect some objective results to further substan-
tiate our efforts. We plan to make EzSkiROS publicly available to SkiROS2 users
so people can write skills and transform their old skills into EzSkiROS, and we can

9 Conclusion 123

get some error reports and if people find the error reports helpful. We aim to con-
duct an in-depth user study to explore how EzSkiROS assists users in writing skill
descriptions and detecting bugs in Behavior trees through pre-and post-condition
matching. This study will mainly focus on understanding the user experience with-
EzSkiROS, particularly in terms of its usability and effectiveness in early bug de-
tection. A significant aspect of this study will be to extend the possibility of the
integration of the two analyses at different abstraction levels and how their com-
bination influences the bug detection process. We are particularly interested in
whether this integration simplifies the process of writing error-free skill descrip-
tions and how it impacts the overall development workflow. By analyzing the
data collected from this study, we expect to gain valuable insight into the practical
applications and limitations of EzSkiROS. This will not only help us in refining
the tool but also contribute to the broader understanding of skill programming in
robotics.

Acknowledgements
This work was partially supported by the Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by the Knut and Alice Wallenberg Foun-
dation.

References
[AMK23] Faseeh Ahmad, Matthias Mayr, and Volker Krueger. “Learning to

Adapt the Parameters of Behavior Trees and Motion Generators
(BTMGs) to Task Variations”. In: 2023 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 2023,
pp. 10133–10140.

[Ahm+11] Amal Ahmed et al. “Blame for all”. In: Proceedings of the 38th
annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. 2011, pp. 201–214.

[BR20] Hampus Balldin and Christoph Reichenbach. “A domain-specific
language for filtering in application-level gateways”. In: GPCE
2020. 2020, pp. 111–123.

[Bøg+12] Simon Bøgh et al. “Does your robot have skills?” In: Proceedings
of the 43rd international symposium on robotics. VDE Verlag
GMBH. 2012.

[Bru+07] Davide Brugali et al. “Trends in robot software domain
engineering”. In: Software Engineering for Experimental Robotics.
Springer, 2007, pp. 3–8.

124 EzSkiROS: Enhancing Robot Skill Composition with Embedded DSL for Early . . .

[Buc+14] Jacob Pørksen Buch et al. “Applying Simulation and a
Domain-Specific Language for an Adaptive Action Library”. In:
Simulation, Modeling, and Programming for Autonomous Robots.
2014, pp. 86–97.

[CA22] Angelo Cangelosi and Minoru Asada. Cognitive Robotics. MIT
Press, 2022.

[Ceh+11] Ines Ceh et al. “Ontology driven development of domain-specific
languages”. In: Computer Science and Information Systems 8.2
(2011), pp. 317–342.

[CÖ18] Michele Colledanchise and Petter Ögren. Behavior trees in
robotics and AI: An introduction. CRC Press, 2018.

[CMT97] Eve Coste-Maniere and Nicolas Turro. “The maestro language and
its environment: Specification, validation and control of robotic
missions”. In: RSJ International Conf. on Intelligent Robot and
Systems. Innovative Robotics for Real-World Applications. IROS.
Vol. 2. IEEE. 1997.

[DP22] Eric Dortmans and Teade Punter. “Behavior Trees for Smart
Robots Practical Guidelines for Robot Software Development.” In:
Journal of Robotics (2022).

[Dra+21] Swaib Dragule et al. “Languages for specifying missions of robotic
applications”. In: Software Engineering for Robotics. Springer,
2021, pp. 377–411.

[Fac19] Davide Faconti. “Mood2be: Models and tools to design robotic
behaviors”. In: Eurecat Centre Tecnologic, Barcelona, Spain, Tech.
Rep 4 (2019).

[Ghz+20] Razan Ghzouli et al. “Behavior trees in action: a study of robotics
applications”. In: Proceedings of the 13th ACM SIGPLAN
International Conference on Software Language Engineering.
2020, pp. 196–209.

[Ghz+23] Razan Ghzouli et al. “Behavior Trees and State Machines in
Robotics Applications”. In: IEEE Transactions on Software
Engineering (2023).

[Hen+22] Thomas Henn et al. “Verification of Behavior Trees using Linear
Constrained Horn Clauses”. In: International Conference on
Formal Methods for Industrial Critical Systems. Springer. 2022,
pp. 211–225.

[HKR09] Pascal Hitzler, Markus Krötzsch, and Sebastian Rudolph.
Foundations of Semantic Web Technologies. Chapman &
Hall/CRC, 2009.

9 Conclusion 125

[Iov+22] Matteo Iovino et al. “A survey of behavior trees in robotics and ai”.
In: Robotics and Autonomous Systems 154 (2022), p. 104096.

[Kin76] James C King. “Symbolic execution and program testing”. In:
Communications of the ACM 19.7 (1976), pp. 385–394.

[Kru+16] Volker Krueger et al. “A Vertical and Cyber–Physical Integration
of Cognitive Robots in Manufacturing”. In: Proceedings of the
IEEE 104.5 (2016), pp. 1114–1127.

[KRB11] Lars Kunze, Tobias Roehm, and Michael Beetz. “Towards semantic
robot description languages”. In: 2011 IEEE International
Conference on Robotics and Automation. IEEE, 2011.

[Lam17] Jean-Baptiste Lamy. “Owlready: Ontology-oriented programming
in Python with automatic classification and high level constructs
for biomedical ontologies”. In: Artificial intelligence in medicine
80 (2017), pp. 11–28.

[LMB92] John R Levine, Tony Mason, and Doug Brown. Lex & yacc. "
O’Reilly Media, Inc.", 1992.

[MRK23] Matthias Mayr, Francesco Rovida, and Volker Krueger. “SkiROS2:
A skill-based Robot Control Platform for ROS”. In: 2023
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE. 2023, pp. 6273–6280.

[May+22a] Matthias Mayr et al. “Combining Planning, Reasoning and
Reinforcement Learning to solve Industrial Robot Tasks”. In:
arXiv preprint arXiv:2212.03570 (2022).

[May+22b] Matthias Mayr et al. “Learning Skill-based Industrial Robot Tasks
with User Priors”. In: 2022 IEEE 18th International Conference on
Automation Science and Engineering (CASE). 2022,
pp. 1485–1492.

[May+22c] Matthias Mayr et al. “Skill-based Multi-objective Reinforcement
Learning of Industrial Robot Tasks with Planning and Knowledge
Integration”. In: 2022 IEEE International Conference on Robotics
and Biomimetics (ROBIO). 2022.

[May+23] Matthias Mayr et al. “Using Knowledge Representation and Task
Planning for Robot-Agnostic Skills on the Example of
Contact-Rich Wiping Tasks”. In: 2023 IEEE 19th International
Conference on Automation Science and Engineering (CASE).
IEEE, 2023, pp. 1–7.

[Mog+13] Mikael Moghadam et al. “Towards python-based domain-specific
languages for self-reconfigurable modular robotics research”. In:
arXiv preprint arXiv:1302.5521 (2013).

126 EzSkiROS: Enhancing Robot Skill Composition with Embedded DSL for Early . . .

[Nor+16] Arne Nordmann et al. “A Survey on Domain-Specific Modeling
and Languages in Robotics”. In: Journal of Software Engineering
in Robotics (JOSER) 7.1 (2016), pp. 75–99.

[Oli+20] Miguel Oliveira et al. “BhTSL, behavior trees specification and
processing”. In: (2020).

[Ped+16] Mikkel Rath Pedersen et al. “Robot skills for manufacturing: From
concept to industrial deployment”. In: Robotics and
Computer-Integrated Manufacturing 37 (2016), pp. 282–291.

[Qui+09] Morgan Quigley et al. “ROS: an open-source Robot Operating
System”. In: ICRA workshop on open source software. Vol. 3. 3.2.
Kobe, Japan. 2009, p. 5.

[Rei21] Christoph Reichenbach. “Software ticks need no specifications”.
In: ICSE-NIER 2021. IEEE. 2021, pp. 61–65.

[Riz+23] Momina Rizwan et al. “Ezskiros: A case study on embedded
robotics dsls to catch bugs early”. In: 2023 IEEE/ACM 5th
International Workshop on Robotics Software Engineering (RoSE).
IEEE. 2023, pp. 61–68.

[RGK17] Francesco Rovida, Bjarne Grossmann, and Volker Krüger.
“Extended behavior trees for quick definition of flexible robotic
tasks”. In: RSJ International Conf. on Intelligent Robots and
Systems (IROS). IEEE. 2017, pp. 6793–6800.

[Rov+17] Francesco Rovida et al. “SkiROS— a skill-based robot control
platform on top of ROS”. In: Robot Operating System (ROS).
Springer, 2017, pp. 121–160.

[Spi01] Diomidis Spinellis. “Notable design patterns for domain-specific
languages”. In: Journal of systems and software 56.1 (2001),
pp. 91–99.

[TT22] Matteo Tadiello and Elena Troubitsyna. “Verifying Safety of
Behaviour Trees in Event-B”. In: arXiv preprint arXiv:2209.14045
(2022).

[Wut+21] D. Wuthier et al. “Productive Multitasking for Industrial Robots”.
In: 2021 IEEE International Conference on Robotics and
Automation (ICRA). 2021, pp. 12654–12661.

	Abstract
	Contribution Statement
	Acknowledgements
	Introduction
	Motivation
	Research Questions
	Thesis Contribution
	Thesis Outline

	Background
	ROS
	"pre-launch time" and "post-launch time" activities in ROS

	SkiROS2
	Behavior Trees (BT)
	Runtime Monitoring
	DeROS
	Later in the thesis

	Related Work
	Gaps in robotics software development
	Traditional ways to program robots
	Other DSL-based approaches that address safety-critical systems
	DSLs for Static Error Detection of Behavior Tree Construction
	Evaluation methods for dsl

	Contribution Summary
	ROSSMARie: A Domain-Specific Language To Express Dynamic Safety Rules and Recovery Strategies for Autonomous Robots
	Enhancing Robotic Autonomy: Strategies for Dynamic Safety and Immediate Recovery
	EzSkiROS: A Case Study on Embedded Robotics DSLs to Catch Bugs Early
	EzSkiROS: Enhancing Robot Skill Composition with Embedded DSL for Early Error Detection
	Interaction between Domain Specific Languages for improved Reliability and Safety
	Unified Vision of dsl
	Opportunities:
	Synergy of Both Languages can help make robots safer and more reliable
	Predicting safety hazards
	Skill-aware safety rules
	Generating recovery strategies as behavior trees

	Technical Challenges

	Interaction between ROSSMARie and Reinforcement Learning
	Constraining and Guiding Reinforcement Learning With Rule-Based Safety Monitoring
	Motivation
	Formulating safety rules
	Conclusion
	Conclusions and Future Work

	References
	Included Papers
	ROSSMARie: A Domain-Specific Language To Express Dynamic Safety Rules and Recovery Strategies for Autonomous Robots
	Abstract
	Introduction
	Background: DeROS
	ROSSMARie
	Integration with SkiROS2

	Experiments
	Limitations and Future Work
	References

	Strategies for Dynamic Safety and Immediate Recovery
	Introduction
	Background
	Enhancing Functional Safety with Continuous Monitoring in ROSSMARie
	Implementation of ROSSMARie
	Integration with SkiROS2
	Safety Filter Node

	Experiments
	Case Studies
	Discussion

	Related Work
	Conclusion
	Limitations and Future Work
	References

	EzSkiROS: A Case Study on Embedded Robotics DSLs to Catch Bugs Early
	Abstract
	Introduction
	Related Work
	Embedding Robotics DSLs in Python
	Python Language Features for DSLs
	Robotics DSL Design Patterns
	Alternative Techniques for Checking

	Case Study: An open source software for skill-based robot execution
	Concise and Verifiable Robot Skill Interface EzSkiROS
	EzSkiROS implementation
	Validation

	Evaluation
	Conclusion
	References

	EzSkiROS: Enhancing Robot Skill Composition with Embedded DSL for Early Error Detection
	Abstract
	Introduction
	Related Work
	Embedding Robotics DSLs in Python
	Python Language Features for DSLs
	Robotics DSL Design Patterns
	Domain Language Mapping
	Early Dynamic Checking
	Symbolic Tracing
	Source Provenance Tracking

	Alternative Techniques for Checking
	SkiROS2: An open source software for skill based robot execution
	Case Study I: Concise and Verifiable Robot Skill Interface
	Evaluation
	Case Study II: Verifiable construction of a behavior tree in Skill Implementation
	Overall Evaluation of the Extended EzSkiROS
	Conclusion
	References

