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Recent studies show that both marine and limnic microalgal species often consist of several genetically
distinct populations. This is also valid for the nuisance freshwater algae Gonyostomum semen, which
originates from acidic, brown water swamp lakes, but can nowadays also be found in clearer lakes with
close to neutral pH. We hypothesized that the observed genetic differentiation among G. semen lake
populations, reported in earlier studies, is connected to adaptation to local environmental conditions. In
the present study we performed controlled laboratory experiments to test whether 12 strains originating
from five lakes varied in their response to five to six different pHs, light intensities and DOC
concentrations. Overall, growth (0.01-0.37 day~') was observed over a wide range of light intensities
Phenotypic differentiation and pHs, demonstrating high potential for photoacclimation and extensive plasticity of individual
Plasticity strains. Moreover, we found similar growth rates and consistent growth optima for specific pHs by
pH strains from the same lake, suggesting genetic differentiation of populations into distinct phenotypes.
Raphidophyte However, observed strain specific preferences did not always reflect environmental conditions in the
lakes of origin and provided limited evidence for the hypothesized local adaptation. Instead, the
observed phenotypic differentiation may indicate resilient effects of founder events. We suggest that the
wide phenotypic plasticity in this species enables it to thrive in fluctuating and variable environments,
and may play a role in its ability to colonize new habitats.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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1. Introduction

Despite being widespread, many microalgal species are
differentiated into genetically distinct populations. In fact, some
widely distributed species contain both cosmopolitan and endemic
clades at the same time (Godhe et al., 2006; Rynearson et al., 2009;
Watts et al,, 2011). Genetically diverged populations of harmful
algal bloom (HAB) species have been reported in many studies of
the toxic dinoflagellate genus Alexandrium (Casabianca et al., 2012;
Nagai et al., 2007; Tahvanainen et al., 2012). Also, several well-
differentiated populations of the marine, red-tide forming
raphidophyte Chattonella marina were recently described by
Demura et al. (2014). Studying the population structure of HAB
species is especially important, as high genetic diversity challenges

Abbreviations: AFLP, amplified fragment length polymorphism; DOC, dissolved
organic carbon.
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E-mail address: Ingrid.Sassenhagen@biol.lu.se (I. Sassenhagen).
! Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss
Landing, CA 95039, USA.
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predictions of dispersal and response to environmental changes.
Cryptic genetic diversity, expressed in different phenotypes, may
allow HAB species to invade new habitats or thrive with global
change (Kremp et al., 2012; Litchman, 2010), as they can tolerate a
wide range of environmental conditions.

Although high intraspecific genetic diversity in microalgae has
been frequently confirmed, the mechanisms behind the divergence
is largely unknown (Figuerola and Green, 2002). Genetic differen-
tiation may be caused by limited dispersal due to geological
barriers or geographic distance (Papke and Ward, 2004). On the
other hand, successful establishment in new habitats might be
restricted by biological barriers like founder effects or local
adaptation (Foissner, 2008; Weisse, 2008). The monopolization
hypothesis, which was established for zooplankton, argues that
large genetic differentiation between well-connected habitats can
be explained by rapid population growth after historical founder
events (De Meester et al.,, 2002). Low genetic diversity after
colonization by only a few individuals can lead to random genetic
drift during parthenogenetic growth. Newly established, fast
growing populations can adapt quickly to the local environmental
conditions (Allen et al., 2010), and later immigrants face difficulties

1568-9883/© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
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Table 1
Location and environmental conditions of lakes of origin. TOC = total organic carbon, Pt = platinum.
Lake Liasjon Dammen Mjotrasket Torsjon Kyldnalainen
Strains LI21, LI22 DM18, DM22 MJ12, MJ21, MJ39 TOO1, TO13 KY12, KY20, KY23
Location Southern Sweden Southern Sweden Northern Sweden Southern Sweden Southern Finland
Longitude 56.762604 56.551346 66.033538 56.762604 60.410038
Latitude 13.990871 14.320550 22.100801 14.906361 23.754930
pH 4.31 6.6 6.91 6.47 5
TOC (mgl~) 30-50 na. 6.8 6 5
Water colour
Absorbance 420 nm, cm ! 0.256 0.058 0.052 0.041 0.029
mgPtl~! 883 200 179 141 100

to establish, as they have to compete with this locally adapted
resident population with higher fitness (Haag et al., 2006). Hence,
bottlenecks after founder events are expected to lead to high
genetic differentiation among populations (Wade and McCauley,
1988; Whitlock and McCauley, 1990). This hypothesis might also
be applicable to microalgae, as most species can rapidly give rise to
enormous populations by asexual reproduction.

When gene flow between habitats is restricted, each local
population should evolve traits that provide an advantage in its
local environmental conditions (Loeuille and Leibold, 2008; Nosil
and Crespi, 2004). Adaptation can occur in response to a variety of
environmental variables. As these variables structure habitats also
on a very fine scale, adaptation allows closely related phytoplank-
ton populations to coexist. Hence, local adaptation by natural
selection is an important mechanism for population differentiation
(Kawecki and Ebert, 2004). For example, Berge et al. (2011) found
evidence for ecotype differentiation in two common dinoflagellate
species based on pH adaptation along an oceanic-costal gradient.
Rynearson and Armbrust (2004) identified several populations of
Ditylum brightwellii (Bacillariophyceae) with distinct genetic and
physiological characteristics in closely connected estuaries. On the
east coast of the USA a high degree of toxin variability was found in
18 strains of Karlodinium veneficum (Dinophyceae) despite
homogenous morphology, genetic data and photopigments, which
suggest different functional roles among the coexisting strains
(Bachvaroff et al., 2009).

The invasive raphidophyte Gonyostomum semen (Ehrenberg)
has aroused much scientific attention in the last decades in
Scandinavia (Cronberg et al., 1988; Lepisto et al., 1994; Rakko et al.,
2008; Rengefors et al., 2012), as it has spread significantly over the
past 50 years from a few lakes in the South to the Arctic Circle.
Furthermore, a significant increase in biomass, often connected to
extensive blooms in summer, has been reported (Lepisto et al.,
1994; Rengefors et al., 2012; Trigal et al., 2013). Cell length ranges
from 50 to 100 pwm and, despite its high competitiveness, this
species is very fragile and grows slowly (0.02-0.08 d! observed in
nature, Lebret et al, 2012). G. semen is considered a nuisance
species, as it alters plankton communities (Angeler and Johnson,
2013) and discharges mucilaginous strands with trichocysts that
can cause skin irritations to people swimming in lakes with blooms
(Lepistd et al., 1994; Sérensen, 1954). This results in decreased
recreational value of the lakes. G. semen was originally described
from small lakes and ponds with low pH and high DOC
concentration resulting in immediate absorption of short light
wavelengths (blue and green) and little light penetration (Drouet
and Cohen, 1935; Sorensen, 1954). During the last decades it has
also been reported from many non-humic environments with
higher pH (Cronberg et al., 1988; Rengefors et al., 2012). Despite
this very recent expansion an earlier study by Lebret et al. (2013)
reported weak but significant differentiation of this species into
genetically distinct populations in Northern Europe.

We hypothesized that Gonyostomum semen strains are adapted
to the local environmental conditions of their native lake. This may
in turn prevent immigration of individuals from other populations
and thereby restrict gene flow. To test if strains were locally
adapted we performed controlled laboratory experiments, in
which we monitored the growth rates of different strains in
gradients of pH, DOC concentration and light intensity. These
environmental variables were chosen as lakes with regular
occurrence of G. semen vary significantly in these parameters.
However, bloom formation of this species is usually correlated to
low pH and high DOC concentrations (Rengefors et al., 2012; Trigal
et al, 2013). Adaptation to acidic conditions and low light
intensities, which are found at high DOC levels, might give G.
semen a competitive advantage over many other algal species.

2. Materials and methods
2.1. Sampling and culturing

In these experiments we used clonal Gonyostomum semen
cultures, which were established from several lakes in Fenno-
Scandinavia in August 2010 and 2011. We chose two strains from
the lakes Liasjon, Dammen and Torsjon in Southern Sweden, three
strains from lake Mjotrdsket in Northern Sweden and three strains
from lake Kyldnalainen in Southern Finland. Lake Liasjon is
characterized by a low pH and high DOC concentrations
(Table 1). Lake Kyldnalainen has a low pH as well, but low
concentrations of DOC, which results in little absorbance and deep
penetration of light in this lake (Table 2). The Swedish lakes
Dammen, Torsjon and Mjétrasket have intermediate pHs and DOC
concentrations. The water temperature at the day of sampling
varied between 18 °C and 23 °C. The microalgae were sampled
with a plankton net (mesh size 20 pum) from the shore of each lake
and filtered directly through 150 wm mesh to remove large
zooplankton, which might feed on G. semen. Single cells were
isolated by micropipetting under an inverted microscope (Nikon
Eclipse TS100, Melville, New York, USA) and transferred into 96-
well plates filled with a 300 wl mixture (1:1) of artificial medium

Table 2
Depth (cm), where experimental light intensity equals light intensity in lakes of
origin.

Lake Absorbance Light intensity
(420nm,cm™ ) (nmol photons m—2s71)
250 150 25 10 5

Liasjon 0.256 5 5 8 12 17
Dammen 0.058 22 24 37 52 74
Mijotrasket 0.052 24 27 41 58 83
Torsjon 0.041 31 34 52 73 105
Kyldnalainen 0.029 43 48 74 103 148
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(modified Woods Hole medium, pH 7, Guillard and Lorenzen,
1972) and filtered, autoclaved lake water. The cells were cultivated
in 20 °C climate chambers with a light:dark cycle of 14:10 h and a
photon flux of 25 pwmol photons m—2s~!. When the cells started
dividing, they were gradually transferred to bigger volumes up to
40 ml and grown in sterile, vented, polystyrene tissue culture
flasks (VWR, Radnor, Pennsylvania, USA).

2.2. Molecular fingerprinting

Each culture was genotyped to assure that strains represented
genetically distinct clonal lineages. Cultures were harvested by
centrifugation at 500 x g for 15 min. Pellets were frozen at —80 °C
until DNA extraction. DNA was extracted from all cultures
following a modified CTAB protocol (Lebret et al., 2012). Final
DNA concentrations were measured spectrophotometrically with a
NanoDrop 2000 (Thermo Scientificc Waltham, Massachusetts,
USA). For each sample, the quality of the DNA was determined
using 260/280 ratios. Each strain was genotyped by amplified
fragment length polymorphism (AFLP) following protocols from
Vos et al. (1995) and Lebret et al. (2012) using 100 ng extracted
DNA. The M and E-primers 5-GACTGCGTACCAATTCNNN-3/, and
5'-GATGAGTCCTGAGTAANNN-3’ were used for selective amplifi-
cation. Specifically, the following six primer combinations were
chosen: Ercr X Mcga, Erer X Mcce,  Erac X Mcce,  Erce X Meac,
Etcg X Mcgg and Etcc X Mcga. PCR prOdUCtS from three primer
combinations labelled with different dyes (Ned, Fam and Hex)
were combined in single wells of a 96-well plate. All samples were
analyzed by ABI3730XL capillary electrophoresis using a Map-
Marker 1000 bp size standard at the Uppsala Genome Centre,
Sweden. The software GeneMapper (version 4.0, Applied Biosys-
tems) was used to detect peaks in the electropherograms and these
raw data were evaluated and filtered with AFLPscore, version 1.4b
(Whitlock et al., 2008). After the scoring, a data set based on
presence and absence of fragments was generated. Expected
heterozygosity within lake groups was calculated in the pro-
gramme GeneAlex, version 6.4 (Peakall and Smouse, 2006). The
software FAMD, version 1.25 (Schluter and Harris, 2006), was used
to create a genetic distance matrix based on Jaccard’s similarity
coefficients and an UPGMA (unweighted pair group method using
arithmetic averages) dendrogram of the 12 strains.

2.3. pH experiment

In order to determine differences in growth rate between
Gonyostomum semen strains in response to different pHs, the 12
strains were cultivated for approximately two weeks (3-4
generations) in five distinct pHs (pH 8, 7, 6, 5 and 4) corresponding
to the natural range of pH in Northern European lakes (Rengefors
etal., 2012). The experiment was set up in two batches, which were
conducted one after the other. Each batch consisted of six strains,
replicated four times, at four or five different pH levels. The
experimental growth conditions did not differ from culturing
conditions except for the pH. The MWC medium was prepared
with MilliQ and lake water without adding any buffer to be able to
realize different pHs by bubbling with CO,. Final adjustments were
made with a few drops of 0.2 M HCI or 0.1 M NaOH. Prior to the
start of the experiment, the pH in all cultures was gradually
changed every second day by one unit, starting from pH 7, by
adding acidic medium (pH 3.5) to the culture until it reached the
new pH. The strains were acclimated for at least 3 days in the final
experimental conditions. The pH was measured to the nearest 0.01
unit with a pH meter (Mettler-Toledo GoFive, Greifensee,
Switzerland). The pH sensor was calibrated on a daily basis using
IUPAC buffers pH 4.01 and 7.0 (International Union of Pure and
Applied Chemistry). All culturing flasks were filled to capacity

(80 ml) with the appropriate medium to avoid gas exchange with
the air. The experiment ran on benches that were isolated by black
foil or cardboard from the surrounding light climate in a walk-in
incubator. An initial cell concentration of 25 cells ml~! was used to
avoid strong fluctuations in pH due to photosynthesis and
respiration. During the experiment we sampled 3 ml every second
or third day, depending on the growth rate, from all cultures for pH
measurement, measuring of chl a autofluorescence and cell counts.
The sample volume was replaced by fresh medium with lower pH
to adjust the pH in the cultures.

Every time at least 100 cells, fixed with Lugol’s solution, were
manually counted in a 1 ml Sedgewick-Rafter chamber with an
inverted microscope (Nikon Eclipse TS100, Melville, New York, USA)
with 400x magnification from at least two replicates. The cell
concentration from the uncounted cultures was calculated based on
the linear correlation between chl a autofluorescence and cell
number. The raw fluorescence was measured with a TD-700
Fluorometer (TURNER DESIGNS, Sunnyvale, California, USA) after
running a single point calibration with a culture close to the highest
expected experimental cell concentration (1000 cells ml~!) and a
blank consisting of the culture medium.

Total inorganic carbon (TIC) was measured with the total
organic carbon analyzer TOC-Vcpy (Shimadzu, Kyoto, Japan) in the
different culture media before the experiment and in one replicate
of each strain in all pH treatments at the end of the experiment.

2.4. DOC experiment

The 12 strains (replicated as above) from the pH experiment
were additionally used to test the response of growth rate to
different DOC concentrations. All strains were acclimated prior to
the experiment to five different DOC concentrations (0, 10, 20, 30,
40 mg C171) for two weeks (app. three cell divisions). These DOC
concentrations were chosen to cover the range of natural
concentration in humic lakes with regular Gonyostomum semen
blooms. Nordic Reservoir Natural Organic Matter (International
Humic Substance Society), extracted from the Norwegian lake
Vallsjgen, was used as a DOC source and dissolved in artificial
MWC medium. The experimental growth conditions did not differ
from culturing conditions in the other experiments. The experi-
ment started with 100 cells ml~! in 35 ml and each culture was
sampled every third day for cell counts. Cell densities were
estimated solely by counting as above.

2.5. Light experiment

To test adaptations of strains to different light conditions, we
used the same 12 strains as in the previous experiments (replicated
as above) and cultivated them for approximately two weeks (3-4
generations) in six distinct light climates. A pilot experiment with
one strain had shown that the growth rate of Gonyostomum semen
does not differ significantly between light intensities from 12 to
100 wmol photons m~—2 s~! (unpublished data). Hence, we cultivat-
ed the 12 strains at 5, 10, 25, 150 and 200 pmol photons m 25!
(AURA Luminette 36 W 840). Additionally red light at an intensity of
25 wmol photons m~2 s~! was used, as red light penetrates deepest
in brown water lakes (Eloranta, 1978). The red light climate was
achieved by filtering out all other wavelength (<600 nm) with a
Rosculux filter (#19, Port Chester, NY, USA). The light intensities and
spectra were measured with an Ocean Optics Inc. USB 2000
spectrometer, Dunedin, Florida, USA (software OOIBase32) and a LI-
COR light meter (Model LI-189, Lincoln, Nebraska, USA). The chosen
light intensities correspond to a range of 4-150 cm depth in the
original lakes of the tested strains (Table 2), which is a distance
covered by diel vertical migration of G. semen (Salonen and
Rosenberg, 2000). All strains were acclimated to the experimental
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light conditions by gradually changing the light intensity (20 wmol
photons m—2 s~! per day) starting from 20 wmol photons m~2 s~}
and grew in each light treatment for at least 10 days (two
generations) prior to the start of the experiment. The experiment
started with 500 cells ml~! and was sampled every four days. Cell

densities were estimated by counting as above.
2.6. Statistical analysis

Growth rates were calculated from the obtained growth curves
(cell concentration as a function of time). We calculate the
maximum growth rate per day during the exponential growth
phase between all measured time points after the lag phase
(;e =(In Ny — In No) * t~1) and calculated an average growth rate for
each replicate.

We tested for differences in growth rates among strains, groups
of strains pooled by their lake of origin and effects of environmen-
tal variables using a mixed model ANOVA (environmental
variable = fixed, within subject factor; lake = random, between
subject factor) with the factor strain nested in the factor lake.
Single main effects were investigated by pairwise comparison of
lake groups in each treatment and treatment levels in each lake
group using one-way ANOVAs. Linear correlations between growth
rates and light intensity and DOC concentrations were analyzed by
Spearman rho correlations. All statistical tests were performed in
the programme IBM SPSS Statistics, version 21 (Armonk, New York,
USA).

3. Results
3.1. Molecular fingerprinting

After evaluating and filtering the AFLP raw data in AFLPscore,
302 loci were retained for downstream analysis. On average 30% of
these loci were polymorphic among lake groups. All 12 strains
showed a unique AFLP profile featuring between three and 24
private loci and therefore represented unique genotypes. Jaccard-
distance-coefficients ranged from 0.6 to 0.925 between strains and
expected heterozygosity from 0.009 to 0.136 within lake groups. In
the UPGMA dendrogram all strains were clearly differentiated
from each other, but did not cluster by lake of origin, except for the
strains DM18 and DM22, which formed a monophylum (Fig. 1).

TO13

LI21
MJ12

KY20

MJ21
MJ39

KY12

LI22

KY23

TOO01
DM18

0.1 DM22

Fig. 1. UPGMA dendrogram based on Jaccard’s similarity coefficient of AFLP loci of
the 12 G. semen strains used in the three experiments. Each lake is represented by
either two or three strains. Dammen = DM18, DM22; Kyldnalainen = KY12, KY20,
KY23; Liasjon = LI21, LI22, Mjotrasket = MJ12, MJ21, M]39, Torsjon = TOO01, TO13.
The scale bar shows approximate Jaccard’s similarity coefficient of 0.1.

3.2. pH experiment

The growth rates differed significantly among strains and lake
groups depending on the specific pH (mixed model ANOVA,
pH x lake, p < 0.001, Table 3). These differences were especially
pronounced at pH 4, as only strains from lake Kyldnalainen were
able to grow under these conditions (Fig. 2). The strains LI21,
DM18, DM22, MJ12, MJ21 and M]J39 did not survive the
acclimation to pH 4 and were therefore not used in that
experimental treatment. A simple main effect test between lake
groups at single pHs showed that there were group specific
differences between growth rates. At pH 5 and 6 strains from
Mjotrasket grew 70% slower than all other strains, while strains
from Dammen were on average 75% faster than all other strains at
pH 6 (p < 0.01). Strains from Liasjon grew significantly faster than
all other strains at pH 7 (p < 0.04). However, there were no
significant differences in growth rates among lake groups at pH 8.
Strains from the lakes Mjotrdsket, Liasjon and Dammen showed a
significant growth optimum at one or two pHs (pH 7 and pH 6/7
respectively, Fig. 2), while strains from Kyldnalainen and Torsjon
grew evenly over a range of pHs (pH 5-8 and pH 5-7 respectively,
Fig. 2). The pH in the lake of origin was reflected by the pH at the
growth optima of the strains DM18, DM22, KY12, MJ12, M]21,
M]J39 and TO13. The strains LI21, LI22, KY20, KY23 and TOO1 grew
faster at a different pH then present in their lake of origin (Fig. 3).

The analysis of inorganic carbon (IC) in all cultures and
treatments showed no significant influence of differences in the
starting inorganic carbon concentration on the IC concentration at
the end of the experiment due to different pHs (one-way ANOVA
p=0.105).

3.3. DOC experiment

The growth rates differed significantly among all tested strains
(mixed model ANOVA, p < 0.001, Table 3) in the DOC experiment.
In general the growth rates decreased with increasing DOC
concentration (Spearman rho correlation coefficient —0.407,
p <0.001) (Fig. 4). The growth rates were on average twice as
high at DOC 0 compared to all other treatments (one-way ANOVA
p < 0.001) and lowest at 40 mg C1~!. There were no significant

Table 3
Statistical results from mixed model ANOVA analysis. Growth rate is used as
response variable.

Variable df Mean F p
square

pH experiment

pH 3 0.072 50.339 <0.001
Lake 4 0.076 48.093 <0.001
Strain (lake) 7 0.012 7.829 <0.001
pH x lake 12 0.017 11.679 <0.001
pH x strain (lake) 21 0.005 3.849 <0.001
Error (pH) 108 0.001

DOC experiment

DOC 4 0.043 85.904 <0.001
Lake 4 0.032 96.622 <0.001
Strain (lake) 6 0.16 46.405 <0.001
DOC x lake 16 0.001 2917 <0.001
DOC x strain (lake) 24 0.002 4415 <0.001
Error (DOC) 132 0.001

Light experiment

Light 4 0.117 228.827 <0.001
Lake 4 0.001 1.853 0.142
Strain (lake) 6 0.019 40.501 <0.001
Light x lake 16 0.004 8.32 <0.001
Light x strain (lake) 24 0.004 6.872 <0.001
Error (light) 132 0.001
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Fig. 2. Growth rates (day ") of 12 G. semen strains at five different pH levels. Strains
are pooled by lake of origin. Error bars represent standard errors.

differences in over-all growth rates between 10,20 and 30 mg C 1!
(one-way ANOVA, p = 0.822-0.999). Strain TOO01 from lake Torsjon
was excluded from all further analysis, as it did not grow in any
treatments with added DOC. There were significant differences in
growth rates among strains grouped by lake of origin (mixed
model ANOVA, p < 0.001), as strains from Mjétrdsket on average
grew faster in all treatments (p < 0.001) while strains from Liasjon
grew slower (p < 0.001) than the other strains. Furthermore, we
found a significant interaction between lake of origin and DOC
concentration (mixed model ANOVA, DOC x lake, p < 0.001). All
strains showed a clear growth optimum at DOC concentration O,
but there were differences in their performance regarding higher
DOC concentrations. The growth rates of strains from lake
Kyldnalainen, Liasjon, Mjotrasket and Torsjon did not differ
significantly between higher DOC concentrations. However,
strains from lake Dammen grew significantly faster at 10, 20
and 30 mg C1~! than at 40 mg C1~! (p = 0.006, p = 0.016, p < 0.001
respectively).

3.4. Light experiment
The growth rates in the light experiment differed significantly

among all tested strains (mixed model ANOVA, p < 0.001, Table 3).
However, individual variation disappeared when strains were

7 [ ] @] |
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=}
£
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o
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®
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O Kylanalainen
5 © X @ Liasion
W Mjotrasket
X Torsjon
40 50 6.0 70

pH in lake of origin

Fig. 3. pH at the growth optimum of each strain plotted against the pH in the lake of
origin. Each lake is represented by either two or three strains. Dammen = DM18,
DM22; Kyldnalainen = KY12, KY20, KY23; Liasjon = LI21, LI22, Mjotrdsket = MJ12,
M]J21, MJ39, Torsjon = TO01, TO13. Line indicates 1:1 correlation between pH at
growth optimum and in lake of origin.
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0.05+
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Fig. 4. Growth rates (day™ ') of 12 G. semen strains in five different DOC
concentrations (mg carbon 1-1). Strains are pooled by lake of origin. Error bars
represent standard errors.

grouped by lake of origin (p = 0.142). All groups showed the same
trend: growth rates increased in all strains with increasing light
intensity (Spearman rho correlation coefficient 0.802, p < 0.001).
None of the strains were able to grow at 5 wmol photons m=2 s~ 1.
Most strains showed the lowest growth rate in the 25 pmol
photons m~2s~! red light treatment or grew equally slow in the
10 wmol photons m~2 s~! white light treatment. The growth rates
increased significantly at 25 pumol photons m~2s~! white light
(one-way ANOVA p < 0.001) and increased even farther at 150 and
200 pwmol photons m~2s~! (Fig. 5). Growth rates increases on
average eight-fold between 25 pumol photons m~2 s~ red light and
200 pwmol photons m~2s~! white light. Strains originating from
lake Kyldnanlainen were the only strains with highest growth rates
at 150 pwmol photons m~2s~' white light instead of 200 pwmol
photons m—2s~! white light, but growth rates did not differ
significantly between the two treatments (p = 0.162). Strain LI21
from lake Liasjon was excluded from further analyses, as it did not
grow in any of the treatments.

There was a significant interaction between light treatments
and lake groups (mixed model ANOVA, light x lake, p < 0.001).
Strains from lake Mjétrasket grew significantly faster at 10 pmol
photons m—2 s~! white light than strains from Kylinalainen and
Liasjon, which had the slowest growth rate in this treatment
(p < 0.05). Strains from lake Torsjon grew significantly slower than

0.20 -<>-- Dammen

--O- - Kylanalainen

—@— Liasjon .
—— Mijotrasket

0.10

--¢-- Torsjon

0.00

growth rate (d")

-0.10

-0.20-
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5 10 25 150 200 red

light intensity (umol photons m™ s?)

Fig. 5. Growth rates (day ') of 12 G. semen strains in five different light intensities:
10, 25, 150 and 200 wmol photons m~2 s~! white light and additionally 25 pwmol
photons m~2 s~ red light. Strains are pooled by lake of origin. Error bars represent

standard error.
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all other strains in 25 pmol photons m~2 s~ ! white light (p < 0.01).
There was no significant difference in growth rates between lake
groups in the 150 pmol photons m~2s~! white light treatment
(p > 0.06). At 200 p.mol photons m~2 s~ white light strains from
lake Kyldnalainen grew significantly slower than all other strains
(p < 0.004) and strains from Torsjon significantly faster (p < 0.02).
Strains from Torsjon also had a significantly higher growth rate
than most other strains (except KY) in the red light treatment
(p <0.03).

4. Discussion

In this study we found pronounced physiological differences
among strains of a single species, the nuisance microalga
Gonyostomum semen. Our results indicate genetic differentiation
in physiological traits among populations, and not only neutral
genetic divergence. However, despite signatures of phenotypic
differentiation among populations, the evidence for local adapta-
tion was weak. At the same time we observed high phenotypic
plasticity. Our results demonstrate the importance of using
multiple strains in order to make conclusions regarding species
traits.

4.1. Differences among strains and lake groups

Strains from the same lake generally behaved similar to each
other and were significantly different from other lake groups in
response to both pH and DOC. These repeated findings suggest
genetic differentiation into population specific phenotypes.
Phenotypic differentiation of Gonyostomum semen was especially
evident in the response to varying pHs, which may represent an
important selective force in each lake. Growth optima differed
significantly among lake groups, suggesting preference for a single
pH in some populations and broad tolerance in other populations.
The growth optima of several tested strains reflected the pH in
their lake of origin, especially strains from lake Dammen and lake
Mjotrasket. These strains originated from lakes with close to
neutral pH and could not be acclimated to pH 4 in this experiment.
Strains from more acidic lakes (especially Kyldnalainen), on the
other hand, could tolerate pH 4 despite the presumably high
physiological cost of regulating the pH in the cytoplasm. However,
other strains had their growth optimum at a pH deviating from the
environmental conditions in their native lake. Furthermore, we did
not observe a pattern of “local” strains outcompeting “foreign”
strains at their native lake pH, which is used as a diagnostic test for
local adaptation. The only exception was the treatment with pH 6,
where strains from lake Dammen (pH 6.6) grew faster than all
other strains. These results do not provide strong support for the
hypothesized local adaptation of G. semen to the tested environ-
mental conditions in each lake of origin. However, based on the
limited number of strains per lake in this study we cannot
completely rule out local adaptation. For instance, it is possible
that this species was highly plastic in its original, acidic
environments, and lost part of its tolerance for a wide range of
pHs when it spread to more alkaline lakes.

Growth rates of Gonyostomum semen strains, grouped by lake of
origin, were also significantly differentiated in the DOC experi-
ment. In the field, G. semen occurrence is positively correlated to
high concentrations of organic carbon (Rengefors et al., 2012;
Trigal et al., 2013). Surprisingly, the DOC experiment indicated that
G. semen does not benefit from additional DOC, but instead all
strains were inhibited in their growth. However, increased DOC
concentrations did not enhance this effect. Rengefors et al. (2008)
suggested earlier that G. semen might be able to utilize humic
substances as an additional carbon source (heterotrophy). They
found that small amounts of fulvic acids (5.2 mg C1~!) increased,

but higher concentrations (9.5 mg C 1-!) inhibited growth rates. All
treatments in the current study contained much higher DOC
concentrations (10-40 mg C 1~1), similar to concentrations in lakes
with G. semen blooms. One possible explanation for the inhibiting
effect of DOC addition may be differences in chemical character-
istics between added DOC in the experiment and humic acids in
the native lakes. Although we chose DOC extracted from a
Scandinavian lake in order to provide a natural source, the quality
of DOC can vary significantly between different habitats depending
on the catchment area (Dillon and Molot, 1997). The carbon
specific absorbance (CSA =absorbance(420nm, m™') x DOC
(mg1~1)~1) of the original lakes (around 0.67) was higher than
the CSA of the medium used in this study (0.12) suggesting more
absorbing compounds per unit carbon in G. semen habitats
(Weishaar et al., 2003).

Cultivation of microorganisms over a long time often results in
genetic changes of the cultured strain by processes like genetic
drift, inbreeding and adaptation to culturing conditions (Berge
et al., 2012; Lakeman et al., 2009). Lohbeck et al. (2012) reported
genetic changes related to an increase in CO, concentration in
Emiliania huxleyi after approximately 500 generations. The
Gonyostomum semen strains used in this study were isolated at
most 3 years prior to the experiment, which represents approxi-
mately 226 generations in this species (based on the average
growth rate of 0.143 day ! in these experiments under standard
culturing conditions). Although, potential genetic changes in the
algal strains during cultivation in the laboratory have to be
considered, selection pressure has been the same on all strains due
to the same culturing conditions. Subsequent adaptation to these
culturing conditions should have resulted in similar growth rates
instead of different growth optima as observed in the experiments.
Adaptation in monoclonal cultures is also assumed to be very slow
because of a lack of genetic recombination due to asexual
reproduction, meaning that only mutations can give rise to genetic
changes. This suggests that all observed phenotypic differences are
based on genetic differences the strains established prior to
cultivation.

The observed phenotypic differentiation, if not caused by local
adaptation, might instead reflect resilient effects of founder events
in each lake (Boileau et al., 1992). A few colonizing Gonyostomum
semen cells were likely able to rapidly establish a large population
by asexual reproduction. The growing, bottlenecked population
with low genetic diversity may have experienced random genetic
drift. This has been suggested as a common process after
colonization of a new habitat by few individuals and is an essential
part of the monopolization hypothesis (De Meester et al., 2002).
Furthermore, G. semen forms resting stages, which could act as a
genetic backup in the sediment and may have buffered the local
population against the impact of new invaders. These founder
effects may have prevented successful establishment of invading
genotypes and resulted in slow differentiation of populations.

Several studies report similar patterns in marine phytoplankton
(Casabianca et al., 2012; Godhe and Harnstrom, 2010; Rynearson
and Armbrust, 2004; Watts et al., 2011), indicating that population
differentiation is common in microalgae. Variability due to
phenotypic differentiation into distinct populations is further
enhanced by high intra-population variability in Gonyostomum
semen. Each tested strain displayed a unique phenotypic profile
with characteristic growth optimum and reaction norm to a
specific range of environmental variables. AFLP analysis indicated
that strain specific, phenotypic differences are based on genetic
differences, although genotypes did not cluster by lake of origin
like the phenotypes in the pH and DOC experiment using a very
limited number of strains. However, Lebret et al. (2013) reported
genetically differentiation into distinct populations using a larger
data set. Freshwater habitats might provide equal or even stronger
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dispersal barriers and potential for differentiation than marine
habitats due to less connectivity of water bodies and large
variation in environmental variables. The functional diversity of
microorganisms in freshwater may therefore be considerably
larger than is presently assumed based mainly upon a limited
number of tested strains. Thus, using multiple algal strains in
physiological experiments may be essential for evaluating species
traits.

4.2. Plasticity

This study demonstrated that Gonyostomum semen can grow
over a wide range of environmental conditions, which suggests
high phenotypic plasticity of this species. Plasticity is defined as
variability in a phenotypic trait of the same genotype at different
environmental conditions (Pigliucci, 2005; Richards et al., 2006).
Heterogeneous environments select for plasticity (Hollander,
2008) and several aquatic organisms, therefore, display high
tolerance to variable conditions (Strom et al., 2013). There are
extensive fluctuations in light intensity during the day and
between seasons (Dubinsky and Stambler, 2009; Reusch and
Boyd, 2013), substantial differences in temperature, predation and
nutrient concentrations in the water column and the pH in
freshwater habitats varies as well (Erlandsson et al., 2008).
Furthermore, organisms with high dispersal rates perceive high
environmental heterogeneity also on a spatial scale (Sultan and
Spencer, 2002). Menden-Deuer and Rowlett (2014) suggested that
plasticity, which results from intra-specific variability, allows
multiple species to coexist and explains the paradox of the
plankton (Hutchinson, 1961). Individual variability maintains high
functional diversity within microbial species and may open many
options to persist in a habitat despite constant competition with
several other planktonic species (Menden-Deuer and Rowlett,
2014).

We expected Gonyostomum semen to be adapted to low light
intensities, as several field studies showed that G. semen blooms
are correlated to high DOC concentrations and strong absorbance
of light in the water column (Findlay et al., 2005; Trigal et al.,
2013). Our data instead suggest that G. semen can photosynthesize
over a wide range of light intensities due to photoacclimation. In
comparison, several other freshwater microalgae become light
saturated at irradiances between 40 and 100 pwmol photons
m~'s™! (Kirk, 2011) while G. semen grew well at 200 pmol
photons m~2s~!. However, the maximal light intensity in this
experiment (200 wmol photons m~2s~') did not reflect the
maximal possible light intensity in lakes in Sweden (up to
1000 wmol photons m 2s~! close to the surface; Hellstrom,
1991) and G. semen might actually experience photoinhibition in
nature. In a previous study we showed that G. semen changes its
pigment concentrations to acclimate to shifts in irradiance and
photoprotective pigments like alloxanthin and diadinoxanthin
may absorb excessive light energy (Sassenhagen et al., 2014). In
addition G. semen has the ability to migrate in the water column
and actively choose the right intensity for photosynthesis.

Most Gonyostomum semen strains in this study were able to
grow over the wide pH range observed in its natural habitats (pH
4-7)and additionally at pH 8. So far, G. semen has not been found
in such alkaline lakes (pH > 7), but our data suggest that it might
be able to establish there, if other environmental conditions are
favourable as well. Especially acidic environments are challeng-
ing for aquatic organisms, as they have to maintain a close to
neutral pH in the cytoplasm despite the surrounding lower pH
(Nixdorf et al., 2001). Additionally, dissolved inorganic carbon
concentrations are often low in acidic waters, as it exists mainly
in form of dissolved CO,, when pH is below 6 (Wetzel et al., 1985).
Some microalgal taxa like G. semen, freshwater Chlorophyceae,

Chrysophyceae, Cryptophyceae, Dinophyceae and Euglenophy-
ceae can cope with these environmental conditions (Lessmann
etal.,2000), but species diversity of algae has been reported to be
reduced at low pH. Several cyanobacteria, diatoms, and a few
green algal species can only be found in lakes with a pH above 5.0
(Blouin, 1989).

Highly plastic organisms, like Gonyostomum semen, usually
perform well in a variety of habitats, as they can rapidly acclimate
to new environmental conditions (Pigliucci, 2005; Reusch and
Boyd, 2013; Schaum et al., 2013). Plastic species might have a
considerable advantage over coexisting species in variable
environments (Kremer and Klausmeier, 2013). For example, Stomp
et al. (2008) showed that the cyanobacterium Pseudanabaena sp.
outcompetes other cyanobacteria with stable pigmentation by
chromatic adaptation during fluctuating light conditions. Several
studies suggest that phenotypic plasticity might play an important
role in successful invasions (Richards et al., 2006) and it could have
facilitated the recent colonization of new habitats by G. semen, as
this species can tolerate a wide range of pH and light conditions.

5. Conclusion

This study shows that Gonyostomum semen is highly plastic due
to intra-specific variability and can grow over a wide range of
environmental conditions. It might not actually prefer the acidic,
humic lakes with little light penetration it originated from. Instead,
G. semen seems to prefer habitats with neutral pH and high light
intensity. However, extensive blooms of this species are still
correlated to low pH and high DOC concentrations, as it probably
has competitive disadvantages in phytoplankton communities of
clear water lakes due to its relatively slow growth rate and high
sensitivity to turbulences. At the same time, our results indicate
that the genetic differentiation observed among population in
Lebret et al. (2013) likely is reflected in phenotypic differentiation
as well. Differential selection or founder effects probably have
produced distinct populations with unique physiological char-
acteristics.
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