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Summary

Diffusion MRI provides a non-invasive probe of tissue microstructure. We recently
proposed a novel method for diffusion-weighted imaging, so-called g-space trajectory
encoding, that facilitates tensor-valued diffusion encoding. This method grants
access to b-tensors with multiple shapes and enables us to probe previously
unexplored aspects of the tissue microstructure. Specifically, we can disentangle
diffusional heterogeneity that originates from isotropic and anisotropic tissue
structures; we call this diffusional variance decomposition (DIVIDE).

In Paper I, we investigated the statistical uncertainty of the total diffusional
variance in the healthy brain. We found that the statistical power was heterogeneous
between brain regions which needs to be taken into account when interpreting
results.

In Paper II, we showed how spherical tensor encoding can be used to separate the
total diffusional variance into its isotropic and anisotropic components. We also
performed initial validation of the parameters in phantoms, and demonstrated that
the imaging sequence could be implemented on a high-performance clinical MRI
system.

In Paper IIT and V, we explored DIVIDE parameters in healthy brain tissue and
tumor tissue. In healthy tissue, we found that diffusion anisotropy can be probed on
the microscopic scale, and that metrics of anisotropy on the voxel scale are
confounded by the orientation coherence of the microscopic structures. In
meningioma and glioma tumors, we found a strong association between anisotropic
variance and cell eccentricity, and between isotropic variance and variable cell density.

In Paper 1V, we developed a method to optimize waveforms for tensor-valued
diffusion encoding, and in Paper VI we demonstrated that whole-brain DIVIDE is

technically feasible at most MRI systems in clinically feasible scan times.
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Popularvetenskaplig

sammanfattning

Diffusion ar den slumpméssiga rorelse hos partiklar som drivs av deras kinetiska
energi. Den &r oftast osynlig for blotta 6gat, men den utgor en viktig funktion for
var 6verlevnad. Diffusionen star bland annat f6r transporten av niaringsdmnen over
cellmembran, och det &r diffusionen som goér att &mnen i kroppen blandas sa att
livsviktiga kemiska reaktioner kan ske.

Man kan undersoka diffusionsprocessen i det vatten som finns i kroppen med hjalp
av magnetresonanstomografi (MRT, eng. MRI). Diffusionsprocessen i biologisk
vavnad &dr dock mycket komplex. Komplexiteten hérstammar fran vattnets
interaktion med vdvnad, eftersom diffusionen paverkas av omgivningen dir den dger
rum. I omraden med tétt packade celler blir diffusionen langsam i alla riktningar,
medan i cellstrukturer som ar extremt avlanga, exempelvis nervfibrer, kan diffusions-
hastigheten skilja sig mellan olika riktningar. Med en sa kallad magnetkamera kan
man avbilda diffusionshastigheten och dédrmed uttala sig om védvnadens struktur pa
mikroskopisk skala, helt utan invasiva ingrepp. Saddan information kan sedan
anvéndas for att undersoka friska vivnader, for diagnostik av sjuka viavnader eller
for uppféljning av behandlingar.

Om vévnaden uppvisar olika snabb diffusion inom ett litet omrade blir
diffusionshastigheten heterogen. Denna typ av heterogenitet kan tdnkas harréra fran
omraden dér friska celler blandas med celler som angripits av en sjukdom och ersatts
med 16s nekrotisk vdvnad. Heterogeniteten kan ocksa aterspegla forekomst av
avlanga cell-strukturer dar vivnadens olika riktningar uppenbarar sig som heterogen
diffusion. Denna avhandling beskriver en ny metodik for att méta heterogenitet i
diffusionsprocessen, och tolkar heterogeniteten med stéd av mikroskopi av vadvnaden.
Vi har utvecklat metoder for att sirskilja dessa egenskaper, och visat att dessa kan
bidra med ny information i bade frisk hjarnvdvnad och i tumorer.
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Distribution of diffusion tensors (DTD)

Diffusion tensor

Diffusion encoding tensor, or b-tensor
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():()
E\[
Vil

Ensemble average of tensors or scalars
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Mean of tensor eigenvalues
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1 Introduction

Diffusion magnetic resonance imaging (dMRI) is widely used for examination of
biological tissues, and related methods have applications that range from
investigation of porous rocks to chemical compounds. The most unique feature of
dMRI is arguably its ability to non-invasively probe the microstructure of living
tissue. In dAMRI, spatial magnetic field gradients are used to sensitize the magnetic
resonance (MR) signal to the translational motion of hydrogen atoms bound in water
molecules. The effects of the gradients on the signal can be related to the rate of
diffusion, which in turn can be used to indirectly infer features of the tissue
microstructure. Even though the diffusion process takes place on the microscopic
scale, the geometry of the tissue has a significant effect on the diffusion process, and
therefore also on the signal measured (Beaulieu, 2002). An early discovery that
propelled dMRI as a clinical tool was presented by Moseley et al. (1990a), who
showed that diffusion-weighted imaging (DWI) was sensitive tissue disruption in
cerebral ischemia in an earlier phase than other imaging techniques (Moseley et al.,
1990a, Moseley et al., 1990b).

Currently, one of the most popular dMRI methods in clinical research and
neuroscience is diffusion tensor imaging (DTI) (Basser et al., 1994). The diffusion
tensor is a mathematical object that describes the diffusion process in terms of the
apparent diffusion coefficient (ADC) along any given direction, and can also provide
derived parameters such as the average diffusivity and diffusion anisotropy
(Figure 1) (Stejskal, 1965, Kingsley, 2006a).

DTI is most frequently applied to the central nervous system. In the brain, it has
been used to study, for example, anatomy (Assaf and Pasternak, 2008), maturation
(Lebel et al., 2008, Lobel et al., 2009), ageing (Moseley, 2002, Sullivan and
Pfefferbaum, 2006) and plasticity (Scholz et al., 2009, Zatorre et al., 2012). It has
also been a powerful tool in the investigation of conditions such as ischemia (Sotak,
2002), trauma (Huisman, 2003), and neurodegeneration (Horsfield and Jones, 2002),
and in oncology to study tumor differentiation (Jiang et al., 2014), delineation,
staging, treatment response (Tropine et al., 2004, Maier et al., 2010), and pre-
surgical planning (Potgieser et al., 2014). Although dMRI outside of the brain is
more challenging — due in part to elevated subject motion (Taouli et al., 2016) — it
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Figure 1 | Schematic examples of axonal loss (left) and cell necrosis (right). The plots exemplify how
diffusivity and anisotropy may depend on changes in the tissue microstructure. It appeals to the intuition
that the diffusion inside a thin tube would exhibit a preferred direction of movement, since it is restricted
along the short axis and free along the long axis of the tube. When axons are removed, or made more
permeable, the diffusivity increases and the anisotropy decreases. Similarly, the rate of diffusion appears
to be faster in aloosely assembled tissue compared to that in a tightly packed cell matrix. This is because
the movement of water molecules is restricted, or hindered, by the obstacles in the tissue.

has been used to study, for example, breast tissue (Partridge et al., 2010), prostate
tissue (Li et al., 2015), skeletal muscle (Damon et al., 2016), and even the heart
(Mekkaoui et al., 2015). In addition to characterizing tissue on a voxel-by-voxel
basis, DTT has been seminal in the evolution of tractography (Mori et al., 1999),
which can be used for segmentation of white matter pathways (Catani and Thiebaut
de Schotten, 2008) and investigations of brain connectivity (Hagmann et al., 2010,
Lazar, 2010).

DTI is a powerful tool because it provides several parameters with seemingly
intuitive interpretations. For example, during brain maturation, reduced diffusivity
and increased anisotropy in the white matter is interpreted as axon myelination
(Lebel et al., 2008), and the anisotropy serves as a marker of healthy development.
In white matter afflicted by neurodegenerative disease, elevated diffusivity
perpendicular to the nerves may indicate demyelination (Song et al., 2002), whereas
reduced diffusivity along the nerves reflects axonal damage (Sun et al., 2006). In
both cases, the anisotropy decreases, and may therefore be interpreted as a marker
of tissue degeneration. In tumors, changes to the average diffusivity are commonly
interpreted as changes in tissue density (Chen et al., 2013) or in the volume fraction
of water that is inside or outside cells (Chenevert et al., 2000).

DTI also has several well-known limitations (Alexander et al., 2001, Alexander et
al., 2007, Jones and Cercignani, 2010, Jones et al., 2012). For the purposes of this
thesis, two major limitations are relevant. First, DTI is ill-suited to capture

microscopic diffusion heterogeneity, i.e. the presence of multiple rates of diffusion
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Figure 2 | Multiple intra-voxel diffusion tensor distributions (top row) map onto the same voxel-scale
diffusion tensor (bottom row). In the first example (left), the same voxel-scale tensor is observed for
randomly oriented anisotropic tensors, homogeneous isotropic tensors, and a mixture of isotropic tensors
that exhibit fast and slow diffusion. In the second example (right), the voxel-scale tensor cannot
distinguish between ordered tensors with moderate anisotropy, bending tensors with high anisotropy, or
a mixture of oblate and prolate tensors. This demonstrates that some tisse characteristics cannot be
distinguished by DTI.

within a single voxel, because it only retains information about an average across
the whole voxel. This limitation prevents accurate quantification of tissue
heterogeneity. The presence of heterogeneous diffusion favors a description of the
diffusion process as an intra-voxel distribution of apparent diffusion coefficients
(DDC) rather than an average value (Callaghan and Pinder, 1983). Secondly, DTI
conflates the effects of diffusion anisotropy and orientation coherence (Pierpaoli et
al., 1996). An elegant example of this was demonstrated by Douaud et al. (2011)
who showed that partial axonal degeneration in a region with crossing white matter
pathways could cause the anisotropy to increase, which contradicts the simplistic
interpretation. This is one of many examples that contradict the simple — but
ultimately flawed — interpretation of voxel-scale anisotropy as a marker of white
matter “integrity” (Jones et al., 2012). Thus, measures of voxel-scale anisotropy are
most reliable in homogeneous tissues with high orientation coherence (Alexander et
al., 2001), but such tissues have been estimated to make up only 10% of the brain
volume (Jeurissen et al., 2013). Figure 2 shows six tissue models where anisotropy,
orientation coherence, and heterogeneity cannot be accurately distinguished by DTT.

Many alternative approaches have been proposed to overcome the shortcomings
of DTT (Shemesh et al., 2010, Yablonskiy and Sukstanskii, 2010, Tournier et al.,
2011). The scope of this thesis is limited to diffusional kurtosis imaging as a probe
of tissue heterogeneity, and methods based on double diffusion encoding as probes
of microscopic anisotropy.
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Diffusional kurtosis imaging (DKI) is an extension of DTT that can quantify the
heterogeneity of diffusivities within a voxel in terms of the so-called diffusional
kurtosis (Jensen et al., 2005, Jensen and Helpern, 2010). Similar parameters have
also been derived from g-space analysis (Latt et al., 2003) and statistical models
(Yablonskiy et al., 2003). Traditionally, “diffusional kurtosis” refers to a feature of
the so-called “diffusion propagator”. In this thesis, we will instead refer to this
feature as “diffusional variance” and relate it to the distribution of apparent diffusion
coefficients. For example, a mixture of dense and loose tissue contributes both low
and high values to the DDC, which is observed as a high diffusional variance.
Diffusional variance may therefore reflect tissue heterogeneity. Tissue heterogeneity
has been studied in tumors by DKI, where parameters that reflect the diffusional
variance tend to outperform DTI metrics for differentiation of tumor grades (Raab
et al., 2010, Van Cauter et al., 2012), probably due to an association between tissue
heterogeneity and malignancy (Hempel et al., 2016).

A fundamental limitation of DKI is that it entangles the diffusional variance that
is caused by anisotropic structures, and variable isotropic diffusivity, on the sub-
voxel scale. We refer to these tissue features as “microscopic anisotropy” and
“isotropic heterogeneity”. For example, if a voxel exhibits a high diffusional variance
and no voxel-scale anisotropy, we know that the DDC comprises multiple
diffusivities, but we cannot say whether this is due to anisotropic structures that
are randomly oriented (microscopic anisotropy) or isotropic structures with variable
diffusivity (isotropic heterogeneity), or a mixture of both (Mitra, 1995). This lack
of specificity may contribute to the limited interpretability of DKI parameters in
terms of relevant structural features (Jensen and Helpern, 2010, Jespersen et al.,
2010, Maier et al., 2010, Chuhutin et al., 2015, Tietze et al., 2015). This is not a
limitation of the model, but rather an inherent limitation of any method that relies
solely on single diffusion encoding (SDE, or sSPFG) (Mitra, 1995).

Microscopic anisotropy, orientation coherence, and isotropic heterogeneity can be
disentangled (Cheng and Cory, 1999), but it requires diffusion encoding that goes
beyond the canonical SDE sequence proposed by Stejskal and Tanner (1965). A
prominent example of the evolution of diffusion encoding is the double diffusion
encoding sequence (DDE, or dPFG) (Cory et al., 1990). DDE uses two gradient
pairs, compared to one pair in SDE, and is capable of encoding the diffusion in two
independent directions during a single acquisition of the signal (Shemesh et al.,
2010). By doing so, it is possible to access information on the microscopic diffusion
anisotropy even if the tissue appears isotropic on the voxel scale (Callaghan and
Komlosh, 2002, Ozarslan and Basser, 2008, Lawrenz et al., 2010, Shemesh et al.,
2010, Jespersen et al., 2013, Jensen et al., 2014, Shemesh et al., 2016). The main
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limitation of imaging techniques based on DDE is the low efficiency of the encoding
and the prolonged acquisition time incurred by the extended sampling schemes
(Jespersen et al., 2013, Hui and Jensen, 2015). Furthermore, even though DDE is
theoretically capable of separating out the isotropic heterogeneity, we know of no
studies that have attempted to do this. Consequently, the components of diffusional
variance and their relation to the underlying tissue microstructure are largely
unexplored.

In summary, DKI provides a probe for tissue heterogeneity but it is unspecific
and is fundamentally incapable of resolving the isotropic and anisotropic variance
due to its reliance on SDE. More specific features of the tissue microstructure can
be accessed by using non-conventional diffusion encoding. To date, however, non-
conventional encoding has not been systematically employed to explore the
components of diffusional variance.

In this thesis, we investigated two gaps in our current knowledge. First, we sought
alternatives to the DDE technique that could facilitate improved imaging of
diffusional variance in a clinical setting. Secondly, we investigated the link between
dMRI parameters such as the diffusional variance and features of the tissue
microstructure.

Our approach was to develop and implement a custom diffusion encoding
sequence capable of executing arbitrary gradient waveforms, or so-called g-space
trajectory encoding (QTE), in order to yield tensor-valued diffusion encoding. The
tissue was modeled by a diffusion tensor distribution (DTD), which allows a straight
forward characterization of the tissue without relying on strong assumptions, making
it applicable to a wide variety of healthy and diseased tissues. Based on QTE and
the DTD framework, we proposed diffusional variance decomposition (DIVIDE) as
a means of disentangling the diffusional variance into its isotropic and anisotropic
components. Finally, we investigated the validity and interpretation of the DIVIDE
parameters by correlating them to features of the tissue microstructure derived from

quantitative microscopy.
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2 Aims

The work presented in this thesis describes how diffusion in heterogeneous tissue
can be modeled by a distribution of diffusion tensors, and how tensor-valued
diffusion encoding can be used to explore new aspects of diffusional variance and
microscopic diffusion anisotropy. It also describes the theoretical background,
practical implementation, and implications of such methods when applied to healthy

brain tissue and tumors.
The aims of this thesis were:

e To develop techniques for diffusion weighting with tensor-valued encoding
(Paper II), and to investigate the feasibility of diffusional variance
decomposition in a clinical setting (Paper III).

e To investigate the experimental design in terms of the encoding waveform
(Paper 1IV), the imaging protocol (Paper VI), and the study design (Paper
I) in order to optimize the quality of imaging studies aimed at quantification
of diffusional variance.

e Explore the metrics of diffusional variance and anisotropy in healthy tissue
and tumor tissue (Paper IIT and V), and to validate their interpretation by

investigating their association with structural features in tumors (Paper V).
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3 Diffusion tensor distribution as

a model of heterogeneous tissue

Biological tissue comprises many different types of cells and tissues arranged in more
or less coherent cell matrices. In neural tissue, structures range from axons, in which
the water diffusion is extremely anisotropic, to approximately spherical cells that
cause negligible diffusion anisotropy. Approximately 20% of the water is also located
in the extracellular space, where the diffusion characteristics are defined by the
surrounding tissue (Sykova and Nicholson, 2008, Novikov and Kiselev, 2010).
Moreover, the voxel volume is of the order of 1-30 mm?® and may therefore contain
many tissue types, cell types, and orientations of structures. Diffusion in biological
tissue may therefore be considered to be quite complex.

A potentially interesting feature of complex tissue is its heterogeneity. In this
thesis, we consider “tissue heterogeneity” to be any structural feature that causes
multiple rates of diffusion in a single voxel (Paper V). Two types of heterogeneity
were identified, namely “microscopic anisotropy” and “isotropic heterogeneity”,
which correspond to anisotropic and isotropic diffusional variance (Paper IT and V).

This chapter describes how a diffusion tensor distribution (de Swiet and Mitra,
1996, Jian et al., 2007, Scherrer et al., 2015, Westin et al., 2016a) can be used to
model heterogeneous tissue, and how macroscopic features of the distribution reflect

the underlying heterogeneity.

3.1 The diffusion tensor

The rate of diffusion is defined from the relation between the average displacement
of particles and the time during which they diffuse. In a medium with no restrictions,
the mean-square displacement along the direction z is simply (z2) =2- D, - tp,
where D, and tp, are the diffusion coefficient and diffusion time (Einstein, 1905).
The diffusivity of freely diffusing water at body temperature is approximately
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Figure 3 | Particle displacement (top row) and corresponding diffusion tensor glyphs (bottom row). Each
tensor glyph reflects the mean-square displacement of the diffusion particles. The square root of the
three eigenvalues determines the shape of the ellipsoid. Apart from the leftmost case, all tensors have
the same mean diffusivity.

Dy =3.0 pm*/ms =3.0-107% m?/s (Mills, 1973, Holz et al., 2000). For this
diffusivity, the mean-square displacement along x is approximately 25 um after ¢, =
100 ms. This level of displacement is comparable to the size of individual cells,
considering that the diameters of axons and cell bodies are roughly 1 and 10 pm
(Yablonskiy and Sukstanskii, 2010, Caminiti et al., 2013). Whenever diffusing
particles interact with obstacles, e.g. water in biological tissue, the movement of the
diffusing particles may be unbounded but slowed down by obstacles (hindered
diffusion) or confined to a finite compartment (restricted diffusion). In both
situations, the intrinsic diffusivity may be unchanged, but the average displacement
for a given diffusion time is reduced. In dMRI, this corresponds to a reduction in
the observed diffusivity, and the diffusion coefficient derived from such systems is
therefore called the apparent diffusion coefficient. Furthermore, the ADC may
depend on the direction along which the diffusion is measured, which is referred to
as anisotropic diffusion.

The diffusion process can be described in three dimensions in terms of a diffusion
tensor (Stejskal, 1965, Basser et al., 1994). The conventional, voxel-scale, diffusion
tensor ((D)) is written as a matrix with nine elements,
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D XX D Xy D Xz
D)= |Dy Dy Dy |, Eq. 1
DZX DZy DZZ
which has six degrees of freedom due to diagonal symmetry (Dy = Dj). In the

principal axis system (PAS), the off-diagonal elements are zero and the diagonal
elements are its three eigenvalues (\; = [N\; Ny A\3]), which describe the diffusivity
along three orthogonal eigenvectors (e, €5, €5). Figure 3 shows examples of particle
displacements and the corresponding diffusion tensor glyphs in isotropic and
anisotropic cases.

Throughout this thesis, boldface capital letters denote tensors or tensor
distributions. Tensors are visualized as ellipsoids where the length of each axis
reflects the square root of the tensor eigenvalues (Basser et al., 1994, Kindlmann,
2004), and the color of the tensor glyph will indicate its fractional anisotropy (white
to black indicates low to high anisotropy).

3.2 Diffusion tensor distribution model

Tissue heterogeneity can be captured by describing the diffusion in each segment of
coherent tissue with a diffusion tensor. Because the tissue is normally only coherent
on short length scales, coherent segments are referred to as “microenvironments”
(Westin et al., 2016a). The collection of microenvironments within a voxel can be
described by an ensemble of diffusion tensors, where each tensor in the ensemble
represents a microenvironment. Since it is not feasible to resolve the individuals of
the ensemble, we will consider its macroscopic observables, using an approach similar
to statistical mechanics.

We refer to the ensemble of tensors as a diffusion tensor distribution (Westin et
al., 2016a), denoted D. If the assumptions of the model hold (see section 3.4), the
DTD provides a comprehensive and accurate description of the diffusion process
within the tissue. From the DTD, it is then possible to derive invariant metrics that
are observable on the voxel scale pertaining to the diffusivity and diffusional
variance, as well as the diffusion anisotropy on the voxel and microscopic scales.
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3.3 Parameterization of the DTD

3.3.1 Tensor operators

The voxel-scale diffusion tensor, (D), is the average over all individuals in the
distribution of diffusion tensors. Assuming that the DTD is a continuous probability
density function (P(D)), the average tensor is

<D>:/D-P(D) dD . Eq. 2

Throughout the thesis, diffusion tensors within averaging brackets represent the
voxel-scale diffusion tensor, whereas the same symbol without brackets refers to the
diffusion tensor distribution. The placeholder tensor (T) is used to describe three
useful operators. The average across tensor eigenvalues (E, []) is defined as
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Eq. 3
i=1

where X\, are the eigenvalues of T. The sum across eigenvalues is equal to the trace

of the tensor (E,[T]= Tr(T)/3), which can be calculated without knowing the

eigenvalues. The population variance of tensor eigenvalues (Vy[]) is defined as

VAT =230~ By [T))2 Eq. 4

i—1
Note that Eq. 4 describes the entire population of eigenvalues, rather than a sample,
yielding a variance that is normalized by a factor of 1/3 instead of 1/2. The variance
can also be calculated without knowing the eigenvalues (Basser and Pierpaoli, 1996,
Westin et al., 2016a). Finally, the double inner product (:) of two tensors (T and
T’) is a scalar defined as the sum over all element-wise products, according to

3 3
T:T=> YT, T, . 