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Introduction

Many research problems in environmental and climate science are
solved with the partitioned approach: Specialized models for subpro-
cesses are developed independently and coupled for the full numer-
ical simulation.

Figure 1: For example, Earth system models consist of various submodels for individual processes/subsystems.

The better we model the subprocesses, the more we have to consider
numerical errors developing at the interface between components.

⇒We study the coupling error in time.

Iterative Coupling Algorithms

Simple coupling algorithms:
• severely restrict the convergence order
• introduce instabilities
Iterative coupling algorithms
• enable high-order solutions
• pose few requirements on subsolvers (black box assumption)
• confirm validity of interface boundary conditions in highly non-
linear settings
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Figure 2: The most generic, high-order coupling algorithm are waveform iterations, where the solvers exchange interpolants of their data. Adapted with permission from Benjamin Rodenberg.

Outlook

Focus: atmosphere-ocean coupling & groundwater-surface flows.
• fully discrete analysis in idealized models
• verify results & test new algorithms in full complexity models

⇒ develop high-order, energy efficient, black-box
coupling algorithms
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Example: Coupled Groundwater and Surface Flows

Water management projects such as stream bed re-naturalization affect the water table. We can use
numerical models to predict how the aquifer is affected by river systems, e.g., in case of floods.

Collaboration with Andreas Dedner and Robert Klöfkorn.

Modeling Approach [1]

We restrict ourselves to a simplified 1D model.
Groundwater: Richards equation in 1D
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Surface: shallow water equations in 0D
dh
dt

= vs(t) (2)

Coupling: mass + pressure conservation
vs(t) = v(ψ(t, 0)) (3a)

ψ(t, 0) = h(t) (3b)

Coupling Algorithm

Dirichlet-Neumann Iteration
with Relaxation

k← 1, h0 given
repeat

solve (1) using (3b)→ ψk given hk−1

solve (2) using (3a)→ h̃k given ψk

relax: hk = ωh̃k + (1− ω)hk−1

k← k + 1
until termination

Linear Analysis [2]

• linearization: assume K, c constant
• space discretization: linear finite elements
• time discretization: implicit Euler method
We can now express the water height at t = tn

and in iteration k in terms of old data:

hn,k = (ωS + (1− ω))hn,k−1 + ωbn−1,

where S = S(c,K,∆t,∆z).

Optimal Relaxation Parameter ωopt

Convergence is obtained when hn,k does not
change with increasing k. We can find an op-
timal value of ω which ensures convergence of
the coupling algorithm in two iterations:

ωopt =
1

1− S
, S = b2α− a

2
with
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2
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c∆z + 2

K∆t
∆z

, b =
1
6
c∆z− K∆t

∆z
,

and

α = ∆z
M−1∑
j=1

sin2(jπ∆z) (a− 2b cos(jπ∆z))−1 .

Figure 3: Öre river in Västerbotten. (Credit: SiberianJay, CC BY-SA 4.0)

Analysis Verification

We verify our analysis with an example code,
using DUNE [3] for the Richards equation and
preCICE [4] for equation coupling. The exper-
imental results are in agreement with the de-
rived formula. ωopt is strongly affected by the
material parameters K and c which can span
various orders of magnitude in the Richards
equation.

1×10 8 1×10 6 1×10 4 1×10 2 1
 

1×10 3

1×10 2

1×10 1

1
 

z = 1/20a)
CR
|S|

1×10 8 1×10 6 1×10 4 1×10 2 1
 

z = 1/500b)
CR
|S|

t

C
on

ve
rg

en
ce

 R
at

e

Figure 4: Experimental and theoretical convergence rates, CR and |S|, for varying grid resolutions (K = c = 1).
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Figure 5: Optimal relaxation parameter ωopt for varying material parameters (∆t = 1/10).

Work in Progress

How well does our 1D-0D analysis translate to
the nonlinear 2D-1D case?
Test case: Lake at rest, varying soil types.
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Figure 6: 2D setup of the coupled surface-groundwater-flow system. We obtain the 1D-0D case by omitting the x-axis.

The analysis indicates that the robustness of the
coupling algorithm is very sensitive to the non-
linearities in the Richards equation.

⇒ need to track K and c at runtime!
Future work: Study advanced coupling setups
(waveform iterations, Quasi-Newton accelera-
tion) using preCICE.


