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Chapter I — Introduction

Our bodies, as all living organisms, are constantly exchanging matter and energy
with their surrounding environments. They do so through an intricate symphony of
chemical reactions that we know as metabolism (a term derived from the Greek
word metabole meaning “change”). Metabolic activity is crucial to maintain the
delicate chemical equilibrium that sustains life, preventing its degradation into
entropy (1). This activity occurs in pathways — chains of sequential chemical
reactions that lead to the conversion of substances into final products — that govern
the utilization of nutrients, the production of energy, and the detoxification of waste
products, all of which underpin the optimal functioning of our bodies. The
elucidation of these pathways has been the focus of profound scientific inquiry,
unveiling the impact that disruptions, whether subtle or pronounced, can have on
metabolic balance and the development of diseases.

Woven into this complex fabric of chemical reactions lie the pathways dedicated
to energy metabolism, responsible for harnessing the energy stored in food to power
our daily activities. Highly efficient mechanisms carry out the conversion of
macronutrients — carbohydrates, proteins, and fats — into adenosine triphosphate
(ATP), the cellular energy endpoint. These mechanisms are highly adaptable to
changes in energy intake and demand, orchestrating the appropriate shifts in energy
utilisation and storage — mainly as fat — to ensure that our bodies have the power
they need to function optimally at all times (2).

The capacity of our metabolism to adapt to varying scenarios of food availability
and energy demands has likely evolved over millennia as a buffer against fluctuating
nutritional circumstances (3,4). However, over the last centuries our metabolism
faced a fast and profound transformation in dietary and physical activity patterns,
from our past as hunter-gatherers to agricultural and industrial revolutions. We are
now exposed to abundant highly processed foods which increase energy availability
than those consumed by our ancestors. Fast-foods like french fries pack on average
3 kilocalories per gram, much higher than most fruits, which range from 0.15 to 1
kilocalories per gram (5). Additionally, while it is estimated that our hunter-gatherer
ancestors usually engaged in over 2 hours of moderate to vigorous physical activity
per day (6), our current average is less than 30 minutes per day (7). Beyond total
calories consumed and spent, changes in the composition of our diets, such as the
content of micronutrients, as well as components causing high peaks in blood sugar
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after meals, produce powerful and lasting hormonal responses (8). The interplay of
these factors has favoured the emergence of two highly concerning outcomes:
chronic excessive fat accumulation causing obesity and impaired glucose
metabolism causing diabetes.

Obesity

For much of our history, obesity was a sign of wealth and privilege (Figure 1.1) (9).
Nonetheless, even in ancient times it was known that obesity could lead to health
problems. Hippocrates, for example, already 400 years B.C., stated (10):

“It is very injurious to health to take in more food than the constitution will bear,
when, at the same time one uses no exercise to carry off this excess (...) For as
aliment fills, and exercise empties the body, the result of an exact equipoise between
them must be to leave the body in the same state they found it, that is, in perfect
health”.

Figure 1.1. Obesity as a sign of wealth through history.
Left, the Venus of Willendorf, an 11cm figurine from 30,000 BC found in Austria. Right, The Tuscan
General, by Alessandro del Boro, from about 1645. Source: Wikimedia Commons — Public domain.

This link between obesity and disease became progressively more evident with
modernity and industrialisation. Of particular concern was the strong association
between obesity and mortality observed in weight and height tables published by
insurance companies at the beginning of the 20" century (11). This motivated the
search for indices of relative weight that could be used as proxies of excess fat at
the population level. In a seminal paper (12), Keys and colleagues in the 1970s
revived an index devised more than a century before by Adolphe Quetelet, a Belgian
polymath. In his quest to find the parameters defining the ‘average man’, he
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proposed measuring body size as the quotient of weight to squared height (13). Keys
found that, aside from its simplicity, this index - named the body mass index (BMI)
- had the lowest correlation with height, the highest correlation with body fat and
the highest generalisability across populations compared to other measures. Due to
these desirable properties, BMI quickly gained adoption within the medical
community. By the end of the 20" century, international institutions such as the
World Health Organization (WHO) embraced the BMI as the measure of choice for
evaluating body corpulence within populations and its relation to disease within and
between populations. Specific BMI thresholds were established to distinguish
individuals with a 'normal' body size from individuals likely to be undernourished
(BMI < 18.5 kg/m?) and individuals likely to have excess fat with detrimental effects
on health, categorised as having overweight (25 kg/m? < BMI > 30 kg/m?) or obesity
(BMI > 30 kg/m?®). These criteria were primarily informed by the population
distribution of BMI and its correlation with mortality, which follows a J-shaped
curve (14).

The widespread use of BMI enabled the global longitudinal surveillance of body
size, revealing how changes in diet and lifestyle have impacted our bodies over the
last decades. The global mean BMI has steadily increased from around 21 kg/m?* in
1975 to close to 25 kg/m” in 2016 (15). While this has certainly led to a reduction
the proportion of individuals with underweight, it has resulted in an increase in the
proportion of individuals with obesity, now 3 times higher than the figures recorded
in 1975 (16).

Longitudinal BMI surveillance also facilitated the quantification of the health
burden arising from the striking rise in obesity rates. The share of total deaths
attributable to obesity escalated from 4.7% in 1990 to 8.9% in 2019 (17). Likewise,
the share of total years lived with disability globally due to obesity rose from 2.4%
in 1990 to 4.75% in 2019 (17). Both higher mortality and disability impose
tremendous economic pressures, not only increasing healthcare costs but also
reducing work productivity. The costs attributed to obesity amounted to 2 trillion
US dollars in 2020 (~2% of global gross domestic product, GDP) (18). If global
BMI trends persist, it is projected that over 2 billion people around the world will
be living with obesity by 2035, exposing a large portion of the population to the
harmful effects of obesity, and representing global losses that would exceed 4
trillion US dollars, equivalent to ~3% percent of global GDP (18). It is this ominous
trajectory that has compelled health authorities to declare obesity as a resounding
global epidemic, calling for urgent action to curb its rise and mitigating its health
impacts.
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Type 2 diabetes

Like the trajectory of BMI, average blood sugar levels have been steadily increasing
worldwide. Since 1980, blood glucose has risen around 0.08 mmol/L per decade
(19). Although glucose is a fundamental source of energy in the human body,
chronic hyperglycaemia can result in severe damage to multiple organs, with
devastating consequences on health. Having glucose at levels where this damage is
likely to happen is what we currently define as diabetes.

The term “diabetes’ was coined by Aretaeus of Cappadocia in the 2™ century A.D.
to describe a rare syndrome of profuse urination, unquenchable thirst, and
emaciation, all of which are manifestations of uncontrolled hyperglycaemia (20).
Similar descriptions have been found in documents as old as Egyptian papyri from
1500 B.C. (21), demonstrating that diabetes is not a recent condition. The
knowledge that these symptoms originate in derailments in sugar metabolism can
also be dated back to writings from Indian physicians Sushruta and Chakara from
500 — 600 B.C., who associated these symptoms with sweet urine (22). Despite
being widely known and studied over centuries, diabetes remained highly lethal and
an effective treatment elusive until 1922, when a group of scientists from the
University of Toronto, composed by Frederick Banting, Charles Best, John McLeod
and James Collip, isolated insulin, the pancreatic hormone essential to promote
glucose uptake from the bloodstream into cells (23). Neverthetheless, around a
decade later the British physician Harold Percival Himsworth observed that insulin
administration worked best in younger individuals whose diabetes onset had been
acute, but in older individuals who often had a more insidious onset and were more
likely to have obesity, insulin was much less effective (24). It later became clear in
that the former profile, termed ‘type 1 diabetes’ (T1D), was driven by autoimmune
destruction of beta cells (located in the pancreas and the source of endogenous
insulin). The second type, termed ‘type 2 diabetes’ (T2D), is mainly driven by
resistance to insulin in peripheral tissues, and remains to this day the dominant type
in the general population (23).

Consequently, along with the rising trends in blood glucose levels, diabetes
prevalence has increased significantly over the past decades, from 3% in 1990 (~159
million individuals) to 6% in 2021 (~529 million individuals), and 96% of this
increase has been driven by T2D (25). Moreover, despite advances in diabetes
treatment, the share of total deaths attributed to diabetes has increased from 1.4% in
1990 to 2.8% in 2021 (25). Diabetes is also responsible for an increasing share of
disability worldwide from 2.3% to 4.3% between 1990 and 2021 (25). The global
cost of diabetes has risen from 200 million to 966 million US dollars during the
same period (26). As the prevalence is expected to increase to ~10% by 2050 (over
1.3 billion individuals worldwide) (25), diabetes-related health expenditure is also
projected to climb to >1 trillion US dollars (26).
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Figure 1.2. Global trends in prevalence of obesity and T2D.
Shaded areas are 95% confidence intervals. Source: NCD RisC Database.

Diabesity

People living with obesity have up to seven times higher risk of developing T2D
compared to individuals without obesity (27) and around 60% of individuals with
T2D have obesity (28). Due to the strength of the association between these two
conditions, it has been proposed to refer to their co-occurrence as ‘diabesity’ (29),
implying a causal pathophysiological link. The characteristic adipocyte hypertrophy
in obesity causes stress, hypoxia, immune cell infiltration and fibrosis, shifting
adipose tissue to a proinflammatory state. As a result, anti-inflammatory factors like
adiponectin tend to decrease, while proinflammatory cytokines, free fatty acids and
metabolically deleterious exosomes are released into the circulation, which interfere
with insulin production and sensitivity (30). These processes favour ectopic lipid
deposition, also adversely affecting insulin sensitivity, particularly in muscles and
in intraabdominal organs like the liver, leading to an increase in gluconeogenesis
(31). Ectopic fat in the pancreas can also in turn affect insulin secretion (32).
Additionally, excess adiposity is linked to disruptions in signalling pathways of
various hormones, such as leptin, a hormone produced by adipocytes with
widespread neuroendocrine effects, including anorexigenic action on the
hypothalamus, regulation of the pituitary, gonadal, thyroid and adrenal axes, as well
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as direct modulation of insulin sensitivity in peripheral tissues and insulin
production by pancreatic beta cells (33).

In addition to the epidemiological and mechanistic links, interventions aimed to
reduce weight in individuals with obesity are associated with a reduction in the risk
of developing T2D. For example, the Diabetes Prevention Program showed that
participants with overweight or obesity who underwent a diet and exercise
intervention had a reduction in the risk of developing T2D of 58% in the short term
(~3 years of follow-up) and 27% in the long term (~15 years of follow-up) compared
to individuals who received placebo. Likewise, in the SOS study in Sweden,
individuals with obesity without diabetes who underwent bariatric surgery had a
78% reduction in risk of incident T2D at 15 years of follow-up compared to
individuals who did not opt for surgery (34).

Cardiovascular impacts of obesity and type 2 diabetes

The relationships between obesity, T2D and early mortality are primarily mediated
through their association with coronary artery disease (CAD) and ischaemic stroke,
the most prominent manifestations of cardiovascular disease (CVD). Compared to
individuals with normal weight, individuals with obesity have on average a 30%
higher risk of CVD mortality (35). Similarly, CVD is a common complication in
individuals with T2D, who have around 4 times higher risk of dying from CVD than
individuals without T2D (36). Over two thirds of deaths associated with obesity and
half of those associated with T2D can be attributed to CVD (37,38).

The mechanisms linking obesity, T2D and CVD are multifaceted (Figure 1.3).
The higher free fatty acid content in blood seen in obesity leads to an increase in
triglyceride (TG)-rich lipoproteins, such as very low-density lipoproteins VLDL,
with a subsequent reduction in high-density lipoprotein (HDL) particles,
configuring a lipid profile that contributes to the formation of atherosclerotic
plaques in vessel walls (39). Obesity is also associated with extracellular fluid
volume expansion, increased blood flow and cardiac output, while impairing renal
pressure natriuresis due to neuroendocrine activation of the renin-angiotensin-
aldosterone system (RAAS) as well as physical compression of the kidneys by fat
deposition, all of which increase blood pressure, adding more strain to blood vessel
walls (40). This is further enhanced by the proinflammatory and prothrombotic state
of obesity, which promotes endothelial dysfunction due lower nitric oxide
bioavailability (41). Hyperglycaemia and hyperinsulinemia in T2D worsen
endothelial inflammation and dysfunction and thrombotic risk (42), elevate blood
pressure due to electrolytic imbalances and RAAS activation (43) and contribute to
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overproduction of VLDL in the liver (44). It is this multiplex of shared pathways
that has been denominated the ‘cardiometabolic’ complex of diseases (45).
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Figure 1.3. Mechanisms linking obesity, T2D and cardiovascular disease.

Excess fat leading to adipose hypertrophy causes an inflammatory cascade, release of free fatty acids
and deleterious exosomes, and disruption in hormone signaling with widespread effects. Drawn with
images from the public domain available at Wikimedia Commons and Servier Medical Art, and taken
from Barilla et al (46).

Interventions aimed at reducing weight and glycaemia in individuals with obesity
and T2D have demonstrated cardiovascular benefits. In the LookAHEAD trial,
while an intensive lifestyle intervention did not show overall reduction in CVD after
9 years of follow-up (47), individuals who lost >10% of their body weight during
the first year had a 20% reduction of CVD risk compared to those with stable weight
after the intervention (48). The UKPDS study was the first to show that individuals
with obesity and T2D who received metformin, an oral glucose-lowering agent with
a modest weight loss effect, had a risk reduction of 32% of a composite outcome
that included CVD and other diabetes-related microvascular complications,
compared to the standard of care arm after 10 years of follow-up (49). Newer agents,
particularly glucagon-like peptide 1 receptor agonists (GLP1RAs) significantly
reduce weight, glycaemia and CVD risk in patients with obesity and T2D (50,51).
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Heterogeneity and discordance in cardiometabolic
diseases

The strong association of obesogenic diets and insufficient physical activity with
cardiometabolic diseases has bolstered the notion that these conditions are the result
of poor personal choices and lack of “willpower” (52). However, it has been
demonstrated that these factors are not sufficient to produce the metabolic
consequences observed in the population. In a landmark study, Sims and
collaborators fed prisoners a diet of up to 10,000 kilocalories a day over a period of
40 weeks. While all participants gained weight, their metabolic rates also increased,
causing almost all of them to return to their own initial weights by the end of the
study (53). Similarly, losing weight through regimens of dietary energy restriction
leads to a decrease in metabolic rate, again driving individuals to their initial weights
(54).

Moreover, certain populations seem highly susceptible to weight gain and
metabolic imbalances driven by lifestyle exposures, while others remain highly
resilient. For example, the world’s highest prevalence of obesity occurs among
inhabitants of islands in Micronesia and Polynesia, where it is 3 times the global
average, reaching over 60%. In comparison, obesity prevalence is half in the
neighbouring region of Melanesia (~30%), and further to the west in Indonesia,
Malaysia and the Philippines, it is less than 10%, despite roughly similar changes in
dietary patterns over time (15). Within more homogenous populations, such as
cohorts in northern Sweden, distinct profiles of susceptibility and resilience have
also been found, with the susceptible profile having significantly higher CVD risk
compared to the resilient profile (55).

Moreover, while the relationship between BMI and metabolic dysfunction is
generally positive, with an increase in BMI ‘concordantly’ corresponding to an
increased risk of metabolic dysfunction, approximately 7% of individuals with
obesity exhibit a ‘discordant’ profile, with no signs of metabolic dysfunction (56).
Analogously, around 1 in 5 individuals within the normal range of BMI have a
‘discordant’ profile, characterised by the presence of multiple cardiometabolic risk
factors despite their apparently healthy BMIs (57). Part of this discordance is
because BMI is an imperfect proxy of the volume, distribution, and health of adipose
tissue. For instance, individuals with similar BMIs can have vastly different adipose
distributions: some individuals may have a higher proportion of visceral fat, which
tends to promote inflammation and insulin resistance, and is strongly associated
with CVD, while others may have a higher proportion of peripheral subcutaneous
fat, which is generally more insulin sensitive, metabolically active and less prone to
inflammation (58). This is also an important distinction between sexes, as men tend
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to accumulate more adipose tissue centrally, while females tend to accumulate
adipose tissue around the hip and thighs (59).

It has also been also observed that in certain cases, especially following severe
CVD, as well as other chronic diseases such as cancer, there is a paradoxical inverse
association between BMI and mortality (60). Whether this phenomenon, named the
“obesity paradox”, reflects true biology or the result of selection bias in the
populations where it has been found, is still a matter of debate (61).

There is also significant heterogeneity within T2D. The diagnosis of T2D is
typically one of exclusion, leaving substantial inter-individual variability within the
group that receive the diagnosis. This has motivated efforts to decompose T2D into
subclasses that better reflect aetiology and risk of future complications. Data-driven
analyses utilising various modelling strategies have consistently partitioned
individuals into subgroups based on biomarker data at diagnosis, with significant
differences in complications over time and differences in treatment response
between the groups identified (62—64). For instance, these strategies have
consistently identified T2D subgroups with phenotypic characteristics of severe
insulin deficiency and resistance, which differ significantly in their disease
evolution and treatment requirements after diagnosis.

As current prevention and treatment strategies for obesity and T2D are primarily
based on average effects, the presence of significant heterogeneity can introduce
errors in individualized care (65). It is therefore imperative to understand the origins
of this heterogeneity and its clinical implications. This understanding may help
refining existing strategies, while identifying mechanisms of disease susceptibility
and resilience. Such insights have the potential to inform the development of new
and more effective preventive and therapeutic targets to improve the management
of cardiometabolic diseases (66,67).

Genetic factors in cardiometabolic diseases

An important explanation for why some individuals are at ‘discordantly’ higher or
lower risk of cardiometabolic diseases is genetics. It has been known for a long time
that both obesity and T2D run in families, in some rare cases with a strong
Mendelian pattern of inheritance (68,69). Early evidence supporting the heritable
basis of obesity in the general population came from the work of Stunkard et al in
1986 (70). They demonstrated that the BMI of Danish adopted adults approached
the BMIs of their biological parents more than the BMIs of their adoptive parents.
The same group of researchers also found, using a Swedish twin registry, that the
BMIs of identical twins were highly correlated, irrespective of whether they were
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raised together or apart from each other (71). Around the same time, twin studies in
the US reported that 58% of monozygotic twin pairs were concordant for T2D (both
individuals had the diseases), and 65% of the twin co-pairs that were discordant (one
of the pair did not have T2D) had hyperglycaemia (72).

Towards the end of the 20™ century, advances in DNA sequencing led to the
launch of the Human Genome Project, aiming to sequence the entire human genome.
This endeavour propelled the search for the genetic determinants of diseases. Due
to the high cost and difficulty of sequencing at the time, studies were restricted to
few candidate genes with a priori evidence of an effect on obesity and T2D from
experimental studies. Cases were also carefully selected, often with severe forms of
disease, to increase the likelihood of finding the causal gene, but imposing
limitations on the sample sizes. While these studies were frequently inconsistent
across populations, they shed light on certain monogenic forms of disease, such as
mutations in the leptin receptor LEPR and the melanocortin 4 receptor MC4R
causing severe obesity (73,74), and mutations in the glucokinase gene GCK as one
of the causes of maturity-onset diabetes of the young (MODY) (75).

The success of the Human Genome Project in delivering the first human genome
sequence in 2006, together with progressive reductions in the cost and complexity
of DNA sequencing as laboratory and computational techniques improved, helped
unveil important elements of human genetic variation. The most common types of
genetic mutations in the human sequence are single base-pair substitutions, known
as single nucleotide polymorphisms (SNPs), the majority of which are biallelic, i.e.,
two alleles are segregated in the population. Hundreds of thousands of these SNPs
covering many regions of the genome could be accommodated in microarrays
enabling fast and accurate genotyping of many individuals.

Additionally, SNPs in physical proximity are often inherited together in what is
known as a haplotype. This causes correlation of SNP alleles, a phenomenon called
linkage disequilibrium (LD). This property was leveraged in imputation algorithms
to accurately infer missing genotypes in regions of the genome adjacent to
genotyped variants, effectively improving genotyping coverage.

Linking genotyped and imputed data to phenotypes gave rise to genome-wide
association studies (GWAS). Merely one year after the publication of the human
sequence by the Human Genome Project, in 2007, the first large-scale GWAS of
BMI was published, pooling genetic data from more than 30,000 participants, and
revealing that common variation in the /70 gene was associated with 70% higher
odds of obesity (76). The first GWAS of T2D, also published that year, was
conducted in a French cohort of over 5,000 individuals, finding four novel genetic
loci robustly associated with T2D (77). Since these successful pioneering studies,
the number of GWAS have increased exponentially, with increasing coverage of the
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genome and an exponential increase of sample sizes with many modern GWAS
analyses incorporating data from millions of participants (Figure 1.4) (78). This
trend has led to the discovery of hundreds of thousands of robust genetic
associations, spanning many other clinical traits and phenotypes, including blood
biomarkers, proteins, RNA expression in multiple tissues, and a plethora of other
features (79).
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Figure 1.4. Trends in GWAS sample sizes over time.
Source: NHGRI-EBI GWAS Catalog.

GWAS have revealed that cardiometabolic diseases in the general population
have an important heritable component, and this component is highly polygenic,
with many genes contributing, each to a small degree, to the variance of the trait
(79). Close to a thousand independent loci have been found to be associated with
BMI (80), and over 300 associated with T2D (81). Together, these loci explain
around 20% of the variance in BMI and T2D (80,82). These estimates are lower
than heritability estimates from twin studies (the so-called ‘missing heritability’),
which could be explained by multiple factors, including additional common variants
that are yet to be identified, non-additive (dominant or recessive) effects, the
contribution of rare variants and non-genetic heritable factors and the inability of
standard GWAS to account for gene-environment and gene-gene (epistatic)
interactions (83).

Some of the loci identified in GWAS overlap with those associated with
monogenic conditions, whose mechanisms are better understood, facilitating
functional interpretation. An example of this is the MC4R gene, which has been
associated with both monogenic and polygenic forms of obesity (84). However,
most loci found in GWAS are located in non-coding areas of the genome (85).
Bioinformatic strategies combining information from multiple sources, such as the
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association to other traits (a phenomenon called pleiotropy), and interaction with
regulatory elements of nearby genes, has helped elucidate part of the biology linking
these variants to disease (85). The mechanistic insights collected from these
analyses have underscored the significant etiological heterogeneity of
cardiometabolic diseases. For example, while some of the loci associated with BMI
are likely to affect adipocyte biology, most of the associations link BMI with genes
that predominantly act in the brain, particularly in the centres regulating appetite
control (86). Additionally, while many genetic variants associated with BMI have
deleterious consequences on glucose and lipid metabolism, following what is
observed in observational data, some have rather been found to be associated with
a favourable metabolic profile (87-90). Similarly, T2D-associated SNPs seem to
cluster into groups acting through distinct pathways of insulin resistance or beta cell
dysfunction and having different effects on complications (91,92), resembling the
findings from phenotypic stratification previously exposed.

Purpose and aims

The global increase in cardiometabolic conditions, especially obesity and T2D,
presents substantial health challenges. This is further complicated by the
considerable heterogeneity among individuals with these conditions, with
individuals at discordantly higher or lower risk, affecting the delivery of appropriate
care. The purpose of this thesis is to improve our understanding of the heterogeneity
in cardiometabolic conditions through the application of genetic analyses and
machine learning techniques to identify these discordant profiles and provide robust
insights into the mechanisms that give rise to this discordance, as well as its potential
clinical implications. The aims of the papers included in this thesis are:

e In Paper I, I applied a genetic approach to identify two obesity profiles
that are either ‘concordantly’ associated with higher T2D risk or
‘discordantly’ associated with protection against T2D. Then we
conducted an agnostic phenome-wide comparison using various machine
learning techniques to uncover the most prominent differences that
distinctively characterize these profiles using data from various cohorts.
The traits in which we found differences were taken forward to causal
inference analyses to determine the causal relationships underlying
discordant obesity.

e In Paper II, I reapplied the approaches used in Paper I to identify and
characterise two genetically determined diabetogenic profiles that are
either ‘concordantly’ associated with higher risk of CVD or
‘discordantly’ associated with protection against CVD. We additionally
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assess the potential contribution of concordant and discordant profiles in
CVD risk prediction.

In Paper III, I designed a graph-based clustering approach to visualise
and decompose the general population into profiles that represent
phenotypic 'discordance' deviating from the 'concordant' linear
relationship between clinical measures and BMI. We explored the
characteristics of these profiles and their potential clinical implications
in cardiometabolic risk in four large independent cohorts across Europe.
In Paper 1V, we explored the overall and sex-specific effects of BMI on
T2D, CVD and multiple related biomarkers, and described the shape of
these causal effects using linear and non-linear Mendelian randomisation
techniques.
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Chapter II — Data sources

GWAS databases

Human genetics has played a pioneering role in open science and data sharing
mechanisms that improve reproducibility. The ability to share summary results of
GWAS, without compromising participant privacy has been a cornerstone of this
progress. This has enabled researchers to combine results from multiple cohorts to
improve statistical power to discover genetic associations as well as shared genetic
predisposition across various traits. Various databases have taken on the challenge
of combining genetic data generated using different genotyping and processing
methods, providing harmonised datasets that are publicly available and facilitate
downstream analyses. Although the format of these datasets is not uniform, they
typically consist of tables of millions of rows, each containing the effect estimate of
a SNP on the trait being analysed, its accompanying standard error and p-value, as
well as other useful information, such as allele frequency (93).

The GIANT consortium database

The Genetic Investigation of ANthropometric Traits (GIANT) consortium is the
largest international collaboration focusing on genetic variation associated with
human body size and shape. Established in 2007, the consortium aims to unravel the
genetic basis of height, weight, and related traits through GWAS meta-analyses.
Summary statistics generated from their publications are available online
(https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT consortiu
m). We used genetic associations to BMI that were found in the latest and largest
meta-analysis, that included over 700.000 individuals of European ancestry.

The DIAGRAM consortium database

The Diabetes Genetics Replication and Meta-analysis Consortium (DIAGRAM),
formed in 2009, is the largest international collaborative effort focused on GWAS
meta-analysis to uncover genetic factors contributing to T2D. Their summary results
are also available online (https://www.diagram-consortium.org/) and was the source
of genetic associations to T2D. We used the associations found in meta-analysis of
cohorts of European ancestry, which had the largest sample size (around 900.000,
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of which 9% were cases), thus aligned to the ancestry of the GWAS of BMI and
better powered to detect concordant and discordant associations.

The NHGRI-EBI GWAS Catalog

The NHGRI-EBI GWAS Catalog is a harmonised and curated collection GWAS
results produced by a collaboration between the National Human Genome Research
Institute (NHGRI) and the European Bioinformatics Institute (EBI). It has provided
data from published GWAS since 2008 and has been redesigned and relocated to
EMBL-EBI in 2015. The new infrastructure includes a graphical user interface
(www.ebi.ac.uk/gwas/), ontology-supported search functionality, and an improved
curation interface. It is accessible via the website, an application programming
interface (API), and R and Python packages to facilitate integration with third-party
analytical tools. The GWAS Catalog contains publications, top associations, and
full summary statistics. We used this database to identify the sources of genetic
associations to CVD that were included in Paper II.

The Open GWAS database

The OpenGWAS database is a resource developed at the MRC Integrative
Epidemiology Unit at the University of Bristol that provides a manually curated and
harmonised collection of complete genome-wide association study (GWAS)
summary datasets. The database currently contains over 125 billion genetic
associations from more than 14,500 complete GWAS datasets, representing a range
of different human traits and diseases. It is accessible via a website, an application
programming interface (API), and R and Python packages, designed to allow
programmatic access to GWAS summary data for thousands of traits
simultaneously. This facilitates phenome-wide analyses for single or multiple SNPs,
which we used in our comparative analyses of concordant and discordant profiles
(94).

The MiBioGen consortium

The MiBioGen (Microbiome Genome) Consortium is an international collaborative
initiative aimed at studying the influence of human genetics on the gut microbiota.
It currently comprises 18 cohorts worldwide, with a total of 19,000 participants of
predominant European origin (95). The consortium has standardised the analytical
pipelines for both microbiota phenotypes and genotypes across the cohorts. This
was the source of the concordant and discordant associations to gut microbiome in
Paper I and II.
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The GTEx database

The Genotype-Tissue Expression (GTEx) database is a comprehensive resource that
provides insights into the relationship between genetic variation and gene
expression across multiple human tissues. As most genetic associations found in
GWAS lay in non-coding regions of the genome, the aim of developing this database
is to bridge GWAS discoveries to genes, as a step to uncover the functional
mechanisms of genetic variation. It incorporates data from 17,000 post-mortem
samples across 54 tissue sites donated by over 900 individuals. Around 85% of
participants were of European origin and 66% were male (96). We used this
database to assess the effect concordant and discordant SNPs on the expression of
nearby genes (x1 million base pairs [Mb] upstream and downstream in the genome).
We used the 8" version of this database, which also includes genetic effects on
splicing of nearby genes. Genetic variants with such effects are called expression
and splicing quantitative trait loci, or eQTL and sQTL, respectively. Additionally,
we used data from GTEx to provide evidence of target genes with potential
discordant effects in cardiometabolic conditions.

The eQTLGen consortium

The eQTLGen is a database that integrates data from multiple large-scale studies of
predominantly European ancestry to explore the genetic determinants of gene
expression in whole blood (97). It incorporates a total of over 31,000 individuals.
We used these data to complement our analysis of discordant cis-eQTL effects as
done in GTEx.

Additional genetic analysis tools and databases

In addition to GWAS databases, I used existing tools and databases for genetic
analyses and functional annotation of genetic variants and genes, as well as to aid
in the construction of polygenic scores:

The 1000 Genomes database

The 1000 Genomes Project is a comprehensive international collaboration that
aimed to create a catalog of human genetic variations by sequencing the genomes
of a large number of individuals from different populations worldwide (98).
Launched in 2008, its primary objective was to capture genetic diversity across
various ethnic groups. The genotypes are publicly available, which I used mainly
for LD calculations, as well as for quality control procedures of GWAS data, as
explained in the methods section.
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The Roadmap Epigenomics Project

The Roadmap Epigenomics Project is a collaborative initiative launched in 2008,
with objective of systematic mapping of epigenetic marks, including DNA
methylation, histone modifications, and chromatin accessibility, across a wide range
of human cells (99). By providing an extensive database of epigenomic data, this
project contributes to the understanding of regulatory mechanisms of the human
genome. The integration of epigenomic information to GWAS results can therefore
provide mechanistic insights of genetic associations. We integrated concordant and
discordant SNPs to epigenetic data using this database to attempt to locate the most
likely tissue of action, as is described later in the methods section.

DEPICT

DEPICT (Data-driven Expression Prioritized Integration for Complex Traits) is an
analysis tool written in the Python programming language that helps pinpoint the
genes, pathways, and tissues likely underlying the associations derived from a
GWAS trait (100). It integrates data from multiple sources to map significant SNPs
to one or multiple genes according to proximity, potential consequences, epigenetic
interactions, effects on expression and protein interactions. The results are then used
to identify functional pathways, tissues and cell types that are potentially implicated
in the mechanisms linking genetic variation to the outcome under study. I used this
tool in Papers I and II to characterise concordant and discordant genetic variation.

Drug-gene interaction databases

In Paper I we used two databases to identify drugs that could potentially interact
with the genes identified in our analysis: the Drug-Gene Interaction database
(DGIdb) (101), developed by researchers at the Washington University School of
Medicine, and the PHAROS database, maintained by the US National Institutes of
Health (NIH) (102). In both cases, lookups were performed using the web-based
tool available online. DGIdb assigns an interaction score to the drug—gene
interactions, which is the result of combining publication count, source count,
relative drug specificity and relative gene specificity. This score allows researchers
to gauge the confidence level associated with each potential interaction. The
PHAROS database categorizes gene targets into four ‘Target Development Levels’
based on the available evidence of drug interactions:

e ‘Tdark’ encompasses understudied targets with limited information.

e ‘Tbio’ includes well-studied targets lacking known interactions with
compounds.
‘Tchem’ includes targets known to bind to small molecules.
‘Tclin’ comprises targets with interactions involving approved drugs.
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The PGS Catalog

The PGS Catalog is an open database of polygenic scores, which represent the
genetic predisposition for a certain trait by aggregating multiple genetic variants
associated with the trait found in GWAS (more details about polygenic scores in the
Analytical methods section). The database stores the genetic variants contained in
each polygenic score, which can be downloaded and used to compute scores in a
population with genotype data. The database also provides metadata of the
polygenic scores, such as trait information, sample description, performance
metrics, and publication details, to ensure reproducibility and accurate application
in biological and clinical research. It is accessible via the website, an application
programming interface (API), and a Python package, which facilitate analytical
integration (103).

Cohorts

UK Biobank

The UK Biobank is one of the largest ongoing prospective studies in the world, and
it is the main cohort we used in our analyses, particularly for discovery. Recruitment
run from 2006 to 2010, with postal invitations for participation sent to over 9 million
individuals aged 40—69 years who were registered in the UK National Health
Service and who resided at least 40 kilometres from one of the 22 participating
assessment throughout England, Wales and Scotland. Approximately 5.5% (around
500,000 individuals) of the total invited attended the assessment centres and
consented to participate. Participants are more likely to be female, older, healthier,
and more affluent than nonparticipants. Data collected includes comprehensive
genetic and phenotypic information, biochemical assays, and longitudinal health
outcomes through health records, such as hospitalisation and mortality (104,105).

In our analyses we used anthropometric and biomarker data collected at
recruitment, and we used hospitalisation and mortality records to derive hazard
estimates for our outcomes of interest, including data from 10 years of follow-up.
We also used genotyping data, which was generated using the UK Biobank Lung
Exome Variant Evaluation and the Applied Biosystems UK Biobank Axiom Array.
Genotype imputation was performed using the Haplotype Reference Consortium
(HRC) panel.

Approximately 84% (N = 409,512) of the population in the UK Biobank who

were genotyped were from European origin according to genetic principal
component projections. We used this subset in our main analyses to ensure high
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statistical power while mitigating confounding due to population structure. In the
context of our analysis of genetic discordance, this choice also ensured consistency
with the European origin of the datasets used to identify concordant and discordant
genetic variation. Additionally, only individuals who were part in the calculation of
genetic principal components were included, which ensures minimal genetic kinship
with other participants that could bias our results. We also excluded individuals with
inconsistency between their reported and genetic sex, had sex chromosome
aneuploidy or were outliers for heterozygosity or missingness. Population structure
was further adjusted for in our regression analyses that included genetic data by
adding the first ten genetic principal component as covariates.

BioVU

BioVU is an electronic health records (EHR) database established in 1990 in the
Vanderbilt University Medical Center. It includes data on billing codes from the
International Classification of Diseases, 9th and 10th editions (ICD-9 and ICD-10).
Disease phenotypes (‘phecodes’) are derived from these billing codes and case,
control and exclusion criteria are defined (106). Two codes on different visit days
were required to instantiate a case for each phecode. It also includes various
laboratory measurements taken during clinical care. EHR data is anonymised and
linked to a biobank launched in 2007, which comprises excess blood samples that
their donors had consented for use in biomedical research. This consent is obtained
using an “opt-out” approach, with around 5% refusing to participate, and favouring
fast data collection (500-1000 samples per week), reaching over 300,000 individuals
in 2023 (107,108).

We used a data freeze that included over 48,000 individuals of European descent
with genetic data linked to presence or absence of disease phenotypes, as well as
68,000 European and 14,000 African descent individuals with genetic data linked
with laboratory measurements. These data were used to replicate the comparative
analyses between BMI-T2D concordant and discordant genetic profiles. DNA
samples were analysed using genome-wide genotyping platforms including
[llumina multi-ethnic genotyping array. Genotype imputation was performed at the
Michigan imputation server using the HRC reference panel. Populations of African
American and European descent were identified by projecting individuals onto the
major principal-component space derived from 1000 Genomes reference panel.

ORIGIN

The ORIGIN trial is an international multicentre randomized controlled trial that
recruited participants from multiple ancestries with impaired fasting glucose,
impaired glucose tolerance, newly detected diabetes, or established diabetes. They
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were also required to have documented manifestations of CVD, such as history of
prior myocardial infarction or stroke, coronary or peripheral stenosis detected in
angiography, left ventricular hypertrophy or albuminuria (109). Participants were
then randomized to basal insulin titration with insulin glargine or placebo, and to
polyunsaturated fatty acid supplementation or placebo.

The genotypes were assayed using the HumanCoreExome BeadChip 12 v1.0 and
vl.l from Illumina and imputed to the TOPMED reference panel. Population
structure was assessed using principal-component analysis. We used data from
European (and Latin American ancestry in paper II to measure the association of
T2D-CVD concordant and discordant profiles to major adverse cardiovascular
events (MACE) which was defined as fatal and non-fatal myocardial infarction or
stroke. Participants were followed up for up to 7 years.

Cohorts in the SOPHIA consortium

Our analysis of phenotypic discordance to the expected for the BMI that is described
in Paper 111 is the collaborative product of one of the working groups that compose
the Stratification of Obesity PHenotypes to optimise future therapy (SOPHIA)
consortium, an IMI project that aims to identify and characterise clinically
meaningful subpopulations of patients with obesity (110). We proposed this analysis
plan and performed the discovery analysis in the UK Biobank, and then we sought
replication in three datasets that have been collected by partner institutions in
SOPHIA:

e The Maastricht Study is an observational population-based cohort
study based in the south of Limburg in the Netherlands, that aims to
investigate the causes, consequences, and prevention of type 2 diabetes,
cardiovascular disease, and other chronic conditions. It is enriched to
contain 25% of participants with type 2 diabetes. It contains
comprehensive demographic, biological, social, health, lifestyle,
cognition, and mental health data. The study is a collaboration between
Maastricht University, Maastricht University Medical Center, and the
regional health authorities (111).

e The Rotterdam Study is a population-based cohort study conducted in
the Ommoord district of Rotterdam, The Netherlands, with the primary
objective of assessing common diseases among the elderly population.
The study, which has been extensively documented (112) recruited 7983
individuals aged 55 years or older for the initial RS-I cohort in 1990.
Subsequently, in 2000, the RS-II cohort was expanded by 3011
participants who either relocated to the study area or reached the age of
55. The cohort was further extended with 3932 participants aged 45 years
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or older (RS-III). Baseline evaluations were conducted through home
interviews and comprehensive physical examinations at the time of
recruitment, followed by subsequent visits every 3-4 years for follow-up
assessments. We included longitudinal outcome data up to 10 years after
recruitment.

The Gutenberg Health Study is a prospective and observational adult
population-based cohort study in the Mainz-Bingen region of Rhine-
Palatine in Germany. The study sample consisted of 15,010 participants
aged 35-74 years who were enrolled at their baseline examination
between 2007 and 2012. Each study participant underwent a
comprehensive standardized clinical and laboratory examination at
enrolment. We included follow-up outcome data up to 5-year after
recruitment (113).



Chapter III — Analytical methods

Effect of variables on outcomes using regression

Regression is a flexible statistical framework that aims to understand how an
outcome of interest changes as one or multiple variables vary. This framework can
be adapted to different natures and distribution of the outcome of interest and can
be used both for inference and prediction. It has been fundamental to understand the
relationships across factors in cardiometabolic conditions, as well as understanding
the effect of genetics, and it is therefore essential for this thesis. We describe here
three modalities of regression we used in our analysis.

Linear regression

Linear regression is a statistical method used to model the relationship between a
single or multiple variables and an outcome of continuous nature. The goal of linear
regression is to find the best fitted line (or hyperplane) that describes the relationship
between the variables and the outcome. This is defined by an equation of the form:

Y =PBo+ P1x1 + Paxz + o+ By + € (D)

Where y is the dependent variable, x; to x,, are the values of m independent
variables, f3, is the intercept (the value of y when the values of x; to x,,, are 0) and
pB1 to P, are the coefficients, each representing the expected change in the
dependent variable y for a unit change in the corresponding independent variable
having the remaining fixed at their mean value. The residual variance term ¢ is
expected to follow a normal distribution around 0, denoted V' (0, ¢€).

The best set of coefficients is found using the least-squares method, which
consists of minimizing the sum of the squared differences between the observed and
predicted values of the dependent variable.

Linear regression can be used for predictive analysis, as it allows us to make
predictions about the dependent variable based on the values of the independent
variables. It is a popular statistical tool due to its easy implementation,
interpretability, and scalability (114).
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Logistic regression

Logistic regression extends linear regression to model the relationship between
single or multiple variables and the occurrence of an event. To achieve this, the
fitting procedure is performed on a transformed data space using the logit function,
which is defined as the logarithm of the odds of an event y occurring vs not
occurring:

logit(y) = log (%) @

This transforms the outcome from a scale that is constrained between 0 (no event)
and 1 (event) to an unconstrained scale (from minus to positive infinity). The
independent variables are then assumed to be linearly associated to the outcome in
this transformed space, similar to linear regression:

logit(y) = Bo + B1x1 + Boxz + -+ PmXm 3)

As a consequence of Equations 2 and 3, the exponentiated value of the
coefficients represent the relative increase or decrease in the odds of an event
happening for every unit increase in the corresponding independent variable.

The expected probability of an event given the model coefficients can be obtained
from this model using the inverse of the logit function:

eBotB1x1+B2x2++Bmxm

EW) = opormmr famar—Bmm )

This function is used to find the values of the coefficients that best fit the data
using maximum likelihood estimation. This consists of comparing the predicted
probabilities E(y); to the observed event y; for an individual i by calculating the
log-likelihood, which is defined as:

log(Ly) = y; - log(E(y):) + (1 —y;) -log(1 —E®)) (5

The sum of the log-likelihoods of all individuals is the model log-likelihood,
which represents the accuracy of the model predictions. This value is maximised by
updating the estimates using an iterative optimisation algorithm until convergence
is reached, which means that there is no further gain by updating the coefficients.
Several optimisation algorithms exist, although a detail explanation of them is
beyond the scope of this thesis (115).
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Cox regression

Cox regression is a statistical method used in the analysis of survival data, where
the occurrence of an event of interest is recorded during a certain follow-up time.
The aim is to investigate the effect of several variables on the time it takes for the
event of interest to happen. This is commonly expressed as the hazard function:

h(t) = lim P(t<T<t+At)
At—0 At

(6)

Here, P(t < T <t + At) is the probability of the event occurring at a particular
time within a small interval between t and At, provided it has not happened before.
It can be also interpreted as the instantaneous event rate at time T.

In a Cox model, the hazard function is linked with the predictor variables through
the following equation:

h(t) = hy(t) - eB1x1 + BaXz + .t Bmxm (7)

Which means that:

h(t
log (5) = Bixs + Boxa + ot BmXm ®)

Thus, like in logistic regression, the exponentiated coefficients of this model,
indicate the relative increase or decrease in the risk of an event at any point in time
for a one-unit change in the corresponding covariate. This reflects a key assumption
of the Cox model, known as the proportional hazards assumption, which implies
that, irrespective of the baseline hazard function hgy(t), the relative effects of
covariates remain constant over time. The baseline hazard is therefore left
unspecified, rendering the Cox model semi-parametric.

Coefficient estimation in Cox regression is achieved using the maximum
likelihood optimisation approach in a similar manner to logistic regression.
However, the likelihood function differs because for some individuals the event is
not recorded, and hence it is not known if and when the event occurred for that
individual, a feature of survival data known as censoring. To handle this, the
likelihood in a Cox model is computed at every time t; when an event occurs to an
individual i. This likelihood is the ratio of the expected hazard for the individual
who experienced the event h(t;);, over the sum of the expected hazards of the set
R; composed by all individuals j € R; who are still at risk at that particular time
point (individuals who have not yet experienced the event):
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h(ti)i eB1x11+Bzx2i+...+ﬁmxmi

L(t) = = ©)

Yjer; h(t); Sjer; eP1x1j + Baxaj+ A BmAm

Additional adjustments are commonly done when two or more individuals
experience an event at the same time, though without altering the general form of
this function, known as the partial likelihood. The sum of the logarithm of the
likelihoods over all times is the log-likelihood of the model, a measure of how close
the model fits the data (116).

Pooling effects using meta-analysis

Meta-analysis is a statistical technique used to synthesise evidence from multiple
independent studies that attempt to estimate a certain relationship between a variable
and an outcome. It typically consists of combining effect estimates obtained from
regressions run separately within each study into a single overall estimate. This has
been fundamental to increase statistical power and precision in the estimated effects
of risk factors in cardiometabolic conditions and has played a pivotal role in GWAS.

The most common meta-analytical method is the inverse-variance weighted
(IVW) method (117). The core assumption in [VW meta-analysis is that every effect
estimate ), from study k is an estimate of the true effect estimate 6, and that better
estimators have smaller standard errors SEgk, which reflect less sampling error.
Thus, the best estimator of the true effect, 0, is a weighted average of ék, with
weights proportional to the inverse of the standard errors:

A _ Zlk{=1§k’wk —
0 = =5%——— ,wherew, = —-

2
Zk=1 Wk SE@k

(10)

. (11)
Zlk(zlwk

These equations implicitly assume that 8 is fixed, and that differences between
0, are only due to sampling error, known as the fixed effects model. This
assumption is relaxed in a random effects model, where heterogeneity across studies
is introduced by adding the between-study variance 72 to the weights in Equation
10:

SEg =

Wi = —— (12)

- Sk2+‘L'2

Several methods for estimating 72 exist, thoroughly reviewed in (118).
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Cross-trait GWAS and genetic profiles

GWAS cross-referencing

In Papers I and II we were interested in identifying genetic variants strongly
associated with two phenotypes (BMI and T2D in Paper I, T2D and CVD in Paper
IT) with coefficients that had either the same or opposite sign, representing the
concordant and discordant genetic variation, respectively. To find these variants we
cross-referenced GWAS summary data, for which we followed a quality control
procedure:

e First, we ensured that GWAS sources used the same version of the human
genome assembly to locate genetic variants and SNP identifiers — generally
to the hgl19 genome assembly.

e We only included biallelic SNPs as these are the most common type of
mutations and are easier to cross-reference across studies and have
generally fewer genotyping errors compared to other types, such as
insertions, deletions and multiallelic SNPs.

e We only included SNPs with minor allele frequency (MAF) higher than 1%
as rarer variants are generally more prone to genotyping errors, as well as
higher errors in their effect estimates due to their low population frequency.

e We excluded palindromic SNPs with a MAF higher than 40%. This is
because the two alleles of a palindromic SNP are complementary bases that
can pair with each other in the double helix structure of DNA. This hinders
the assessment of directional concordance or discordance, especially as
MAF approaches 50%, because we would not know which of the two DNA
strands was measured in the studies, which might differ across genotyping
chips.

After this quality control procedure, we merged the GWAS summary statistics using
their genomic location and SNP identifiers and checked that the two alleles matched.
We removed SNPs in which the difference between MAF between studies was more
than 20%. We also checked that these SNPs matched to SNPs in the 1000 Genomes
reference panel. Finally, we aligned all effects to the BMI increasing allele in Paper
I and to the T2D risk allele in paper I1.

Cross-trait GWAS strategies and profile assembly

To identify SNPs strongly associated with both conditions, in Paper I we used a
simple strategy: we selected variants with p-values for both conditions that reached
the standard genome-wide significance threshold (p <5-10). After recognising that
this approach is too stringent, leading to loss of power to detect important discordant
genetic variation, in Paper Il we improved upon this strategy by applying a cross-
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trait GWAS approach. We used a method called C-GWAS, which optimises
statistical power to detect SNPs with effects on the two traits by having into account
their genetic correlation (119). This method discriminates true correlation of genetic
effects I1 from a background correlation ¥ that affect genetic effects and their
correlation and can itself be affected by cryptic relatedness or population
stratification. These estimated correlations are then used to combine the test
statistics of each SNP from both GWAS into a single test statistic that reflect the
deviation from the null hypothesis that the SNP is not associated with any trait. The
process to obtain these estimates includes various optimisation algorithms achieved
through multiple runs and systematic SNP sampling that can be extended to the
analysis of multiple traits simultaneously. The following are the fundamental steps
to combine two GWASSs, which was the use case in this thesis:

e To accurately estimate ¥, first each GWAS undergoes a genomic control
step, where the observed test statistics are modelled in an iterative
optimisation algorithm as a function of an inflation factor I, the proportion
of SNPs with true effects p and an expected normal distribution of these
true effects around 0 with variance A:

E(T) =1+1+p4 (13)

The test statistics from each GWAS are then adjusted by the estimated
inflation factor from Equation 13:

T
Tadj = 5555 (14)

e An initial estimate of ¥ between the two GWAS is calculated from the
corresponding sets of adjusted test statistics T;and T, from Equation 14:

"IJO = COT‘(Tl, Tz) (15)

A combined T-statistic for each SNP is computed using this correlation
estimate:

CTsnp = (Trsnps To,snp) o ! (Ty,snps T2,snp)" (16)
Where W is the 2x2 correlation matrix with 1 in the diagonal and ¥, in the
off diagonal. The set of SNPs with a CTsyp equivalent to an F-statistic lower
than a critical threshold (0.5) are considered unlikely to be associated to the

traits under the joint distribution of GWAS:

id = which(F zCT < 0.5) (17)
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This subset of SNP is then used to compute ¥¢, an update from ¥:
Wr = cor(Tyiq, T2,ia) (18)

This new estimate W replaces ¥, and Equations 15 through 18 are
reiterated until there is no further gain in updating (i.e., |‘1’f - ‘1’0| = 0),
with the final ¥ being the best estimate of '

e An overall effect covariance matrix H is obtained by subtracting ¥ from Z,
the observed covariance matrix of T-statistic. The effect correlation matrix
IT is derived from H, with 1 in the diagonal and I in the off diagonal.

e These matrices are used to calculate the single combined association
statistic for each SNP using an approach called effect-based inverse-
covariance weighted meta-analysis (EbICoW), an extension of the random
effects IVW technique previously described. To illustrate this, in IVW the
T-statistic of the overall estimate T, derived from Equations 10 to 12 and
reformulated as a function of w and t, the vectors containing the weights
and T-statistics, is:

\/—T
- <19>

In EbICoW the T-statistic is additionally weighted by the matrices derived
from the previous steps, thereby considering the covariance structure of the
estimates, and improving statistical power:

Tc

_ (sign(T-¥)HowT) p~1 ¢
€7 J(sign(-¥)HowT) $—1(sign(l1—¥)HowT)T

(20)

In line with other cross-trait GWAS methods, the estimated values of ¥ and
II for a given GWAS pair are assumed to be shared across all SNPs, and
therefore remain unchanged in the computation of T¢ for each SNP.
However, this approach also accommodates the potential variability in the
covariance structure across SNPs by allowing the matrix H to change during
the computation for each SNP depending on its joint strength of association
to the traits. This feature make this approach more flexible than other
methods such as MTAG (120), and was the reason for its selection.

In Paper 11, to consider a SNP to be associated with both traits, the univariate p-

value for each trait had to be less than 2.23-10"*, equivalent to the value of two joint
tests reaching 5-10°%, the standard genome-wide significance. Additionally, the p-

43



value derived from the C-GWAS method had to be less than the genome-wide
significance.

We then performed clumping of the signals identified, a procedure that identifies
the most significant SNP (i.e., lowest p-value) in each block of the genome that is
in LD. To clump we used a threshold for LD t* (a number from 0 to 1 indicating
correlation of alleles between two SNPs) of 0.01 over a 500kb window. To assemble
the concordant and discordant profiles, we classified these independent SNPs as
concordant or discordant according to their positive or negative direction of
association to T2D in Paper I and to CVD in Paper I1.

Phenome-wide comparative analyses

Phenome-wide scan of concordant and discordant effects

After identifying SNPs within the concordant or discordant genetic profiles, we
were interested in finding what are the main phenotypic characteristics that differ
between these two profiles, which would give us clues on how discordance emerges.
To accomplish this, we exploited the ability to combine genetic association from
multiple sources using a Phenome-Wide Association (PheWAS) framework. A
PheWAS is an orthogonal application of GWAS, in which the aim is to investigate
the associations between genetic variants and a wide range of phenotypes. These
pleiotropic effects can provide mechanistic information linking genetic variation to
disease (106).

We performed a PheWAS of concordant and discordant SNPs using the
OpenGWAS database through its R package. We followed a similar quality control
procedure as the GWAS cross-reference to ensure SNP and allele matching.
Additionally, in cases where the effect of a SNP on a trait was not found, we looked
for the effect of the nearest proxy SNP up to an r* of 0.5 over a 500-kb window.

After aligning all SNP effects to the BMI increasing allele in Paper I and to the
T2D risk allele in Paper II, we used the random effects [VW meta-analysis described
before to combine the effects of each set of concordant and discordant SNPs
separately on every trait, rendering a single concordant (8;) and discordant (Sp)
effect estimates.
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Traits where concordant and discordant effects differ

We then proceeded to compare the concordant and discordant estimates on each
trait. We calculated the absolute difference between the two estimates § as (121):

6 = |Bc = Pol e2y)

The corresponding standard error of this difference:

SEs = /SEgc + SEZ, 1)

Given the large number of statistical tests we run in the comparative analyses, we
adjusted the p-values of ., fp and § using a false discovery rate correction (FDR)
of 5%. Traits in which any of the combined estimates and the difference reached
statistical significance after this correction were taken forward to the second
analytical stage, where we applied a Random Forest algorithm designed to ensure
that the difference between [, and i, was consistent across the SNPs from each
profile.

Using Random Forest to refine trait selection

The Random Forest algorithm is a technique that operates by constructing many
decision trees during training. Each tree in the forest is trained on a random subset
of the training data, typically chosen with replacement (bootstrapping). Moreover,
at each split in the decision tree, a random subset of features is considered for
splitting. These random selection processes introduce diversity among the trees in
the forest and improve prediction accuracy (122). A key aspect of Random Forest
is the variable importance measure, which is computed as the average drop in
accuracy of decision trees when the variable is absent. This measure is an important
tool for variable selection.

We apply the Random Forest algorithm to identify the most important features
that separate concordant and discordant SNPs. To do this, we converted the effect
estimates for each SNP and the selected traits during the first stage to z-scores. We
then placed them in a SNP—trait matrix, with SNPs coded as ‘0’ if concordant and
‘1’ if discordant. Several Random Forest classifiers (1,000 iterations) were trained
with this matrix, all attempting to classify SNPs in their correct category. To
ascertain which traits were relevant to distinguish discordant from concordant SNPs,
we used Boruta, an algorithm that creates randomly shuffled copies of all traits in
the SNP—trait matrix, and then evaluates for each trait if its contribution to the
accuracy of decision trees in the Random Forest is higher than its corresponding
random set (123). This ensured that in the traits selected there was minimal
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heterogeneity of within-profile SNP effects while having maximal between-profile
difference.

Polygenic risk scores (PRS)

In Papers I and II we combined concordant and discordant SNPs into two
corresponding PRSs, which were calculated using individual genotype data as
follows:

PRSp; = X Gyj (23)

Here, Mp is the set of SNPs belonging to the P profile (either concordant or
discordant) and G;; is the genotype for SNP j in individual i, coded as 0, 1 and 2
based on the number of risk alleles. This is a numerical representation of an
individual's concordant or discordant genetic predisposition. We used these PRSs to
evaluate the association of concordant and discordant profiles to multiple outcomes
by adding them as covariates in regression models, which were adjusted for age, sex
and the first 10 genetic principal components, to account for population
stratification (124). These results extended our phenome-wide comparison of
concordant and discordant profiles previously described.

Similarly, in paper 111, we calculated PRSs for BMI and each of the biomarkers
in which we found phenotypic discordance extracted from the PGS Catalog. The
SNPs included were weighted by the corresponding GWAS coefficient,
representing the strength of its association with the trait. Likewise, in paper IV, we
calculated a PRS of BMI that was used in causal inference analyses as described in
the next section. The SNPs were extracted from a GWAS meta-analysis from the
GIANT consortium. A set of highly significant, independent SNP were identified
through clumping using a p-value threshold of 5-10® and a LD 1* of 0.2 over a 250kb
window. Each of these SNPs were also weighted in the PRS calculation by the
corresponding BMI coefficient. These analyses were also adjusted for age, sex and
the first 10 genetic principal components.

Causal inference analyses

To provide causal estimates we used the Mendelian randomisation (MR), an
analytical framework that draws from meta-analysis as well as instrumental analysis
from econometrics (125). MR leverages genetic variants as instruments of an
exposure and assess the causal effect of the exposure on an outcome. Because
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genetic variation is randomly allocated at birth and remain invariant throughout life,
allocation of the genetically determined exposure is akin to a randomized controlled
trial. This random allocation of the exposure enables better estimations of causal
effects.

The MR methodology relies on 3 strong assumptions: first, the genetic
instruments selected must be reliably associated with the exposure. Second, the
instruments should not be associated with confounding factors between the
exposure and the outcome. Lastly, these variants should influence the outcome
solely through their impact on the exposure (Figure 3.1).

Figure 3.1. Causal diagram representing the core underlying assumptions in MR.

Here the genotype Gj is affecting the exposure X which in turn affects the outcome Y, an association
confounded by C. Variables shown as rectangles or ovals, with ovals denoting potentially unobserved
variables. Causal effects are indicated using one-sided arrows in the direction of the causal effect, with
an accompanying effect size. Adapted from (126).

Potential causal factors of cardiometabolic discordance

We applied this framework to assess the potential causal impact of the traits that
emerged from the phenome-wide comparative analyses on offsetting the
diabetogenic effect of obesity in Paper I and the cardiovascular risk of T2D in Paper
II. In Paper I, we selected genetic instruments for each of the traits identified in the
phenome-wide comparison using SNPs that were also robustly associated with BMI
(i.e., p-value for both BMI and the trait of interest <5 x 10°%). In Paper II we paired
each trait with T2D and run C-GWAS to identify SNPs associated with both traits.
These SNP selection procedures were intended to identify instruments that reflect a
dual exposure: trait of interest + BMI in Paper I, and trait of interest + T2D in Paper
11

Next, we then decomposed these instruments into two groups based on their
direction of effect on the trait of interest, after alignment to the BMI-increasing
allele in Paper I and T2D risk allele in Paper II, which reflected two distinct
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exposure groups. We then calculated the combined the effect of each of these two
groups of SNPs on the outcome of interest (T2D risk on Paper I, CAD on Paper II)
in a separate sample using the random effects meta-analytical approach previously
described. We focused on the traits in which any of the two exposure groups
conveyed a protective effect on these outcomes.

Genes and proteins with potential discordant effects

We exploited this framework also in Paper I and II to identify genes and proteins
with potential discordant effects in cardiometabolic diseases. For this we used the
Summary-based MR (SMR) method of colocalization, which consists of identifying
for a protein or gene the strongest association signal, which is used as a genetic
instrument to test for its pleiotropic (or colocalised) effect on an outcome (127).

After selection of genes and proteins whose expression is affected by discordant
SNPs, we identified for each of these molecular exposures a SNP with the strongest
association statistics to these genes and proteins, suitable to be used as a genetic
instrument. This SNP was required to be located in the cis region (£ 500 MB from
the transcription start site), enhancing the likelihood that it is acting directly on the
gene or protein of interest. We then computed for the SNP identified:

Bz
IBxy = ﬁ_zi (24)

Where By, represents extent that the genetic effect on the outcome of interest f3,,,

coincide with the genetic effect on expression f,,. The statistical significance of
this expression can be evaluated with the respective test statistics:

2 2
Tsmur = % ~Xi (25)

Here we also focused on genetic instruments that reflected a dual exposure to the
molecular trait and the primary exposure in each Paper (BMI in Paper I, T2D in
Paper II), and had a protective effect against the outcomes (T2D risk on Paper I,
CAD on Paper II). Given the large number of genes and proteins we tested in our
analysis, we applied 5% FDR correction. This is an advantage over other methods
of colocalization (e.g. COLOC), where multiple test correction cannot be applied,
making SMR better suited for genome-wide scans.

To ensure that these findings indicated true pleiotropy rather than mere linkage
due to LD, SMR is combined with the HEterogeneity in Dependent Instruments
(HEIDI) method (127). The main assumption in HEIDI is that in true pleiotropy the
estimates By, calculated at SNPs in LD with the lead SNP used in SMR are
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homogeneous, varying only as a function of LD. Thus, using Equation 22, we can
compute the difference between the estimates of each SNP i in LD against the lead
SNP, which is expected to be normally distributed:

d; = ﬁxy,i - ,Bxy,lead ~ N(d: V) (26)
Where V is the covariance matrix of d and each element being:

COU(di, dj) = Cov(ﬁxy,i' ﬁxy,j) - Cov(ﬁxy,i' ﬁxy,lead) - Cov(ﬂxy,j' ﬁxy,lead) + Uar(ﬁxy,lead) (27)

And the covariance of two estimates depends on their LD correlation:

var(Bzy)var(Bzy,j)

Bzx,iﬁzx,j

+ Bry,iBxy,j (; - %) (27)

Zzxi%zxj  Zzxi%zxj

coV(By,ir Buy,) =7

To test whether the estimates of SNPs in LD are homogeneous, i.e., d =0, a
vector of test statistics Zzq can be derived from d, expected to also be normally
distributed around 0:

di

Zgi = \/F(di) ~ N(O, R) (28)

Where R is the correlation matrix of zq and each element is:

_ cov(d;,dj)
"(Zai20) = emasvar 29)
The overall test statistic Tygpy is the sum of the squared vector zgq containing all
M SNPs included in the calculation:

Tygip1 = ZIiVI Z?l,i (30)

The p-value derived from this test statistic puemi is approximated using the
Saddlepoint method, a technique to approximate probability distributions. A higher
prem! value means heterogeneity is less likely, which supports true pleiotropy across
the gene/protein and outcome signal, while a lower puripi value means there is
heterogeneity in the estimates, and the SMR signal is probably due to linkage. We
consider an association to be potential true pleiotropy if puem: > 0.01.

We applied this technique on significant SMR signals that had at least 3 SNPs at
sufficient LD with the lead SNP (0.05 < 1* < 0.9) and with a sufficient strength of
association to the gene or protein (p < 1.53-107, equivalent to a y? > 10) to be
informative for HEIDI. We included in the calculations the top 20 SNPs ranked by
their p-values of association to the gene or protein, as this is where the power of the
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HEIDI test and its computational efficiency is maximal according to simulations
(128).

Causal effects of BMI and its shape on cardiometabolic conditions

In Paper IV we used a BMI PRS as the instrumental variable and used the two-stage
least squares (TSLS) method to assess the effect of genetically determined BMI on
multiple outcomes. The first stage of TSLS involves regressing the exposure on the
instrumental variable while adjusting for relevant covariates. Then, fitted values of
the exposure are generated for use in the second stage model. Here, the outcome is
regressed on these fitted values (used as the exposure) while adjusting for the same
covariates as in the first stage. The regression coefficients of the fitted values
represent estimates of the causal effect of the exposure on the outcome.

Additionally, in Paper IV we also applied an extension of MR that allows the
exploration of non-linear relationships between the exposure and the outcome,
known as the residual method (129). This method involves calculating local average
causal effects (LACE) as ratios of coefficients within quantiles of the exposure.
However, given that conditioning on a certain level of the exposure to find a causal
estimate could lead to collider bias, the quantiles generated are instead based on the
instrumental variable-free distribution of the exposure. This distribution is
calculated as the residuals of a model in which the exposure is regressed on the I'V.
From these LACE values, the relationship between exposure and outcome can be
fitted using non-linear regression, which is achieved by including fractional
polynomial terms. Tests of nonlinearity are then applied to test the null hypothesis
that the resultant non-linear model is no different from a linear model.

This method, however, relies on the strong assumption of a constant effect of the
genetic instrument on the exposure across all quantiles, which can be violated when,
for example, the effect of the instrument on the exposure is itself nonlinear (130).
To overcome this issue a novel method to calculate the quantiles have been
designed, called the doubly ranked method, where individuals are ranked first
according to the level of the genetic instrument, and then according to their level of
the exposure (131). This ranking procedure maximises the similarity in the
distribution of the genetic instrument identical within each quantile, which controls
the effect of heterogeneous instrument-exposure associations, while still obtaining
strata where the average level of the exposure is increasing, as necessary to estimate
the shape of the causal relationship. We used the doubly rank method to rerun the
nonlinear analyses in Paper ['V.
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Phenotypic discordance with respect to the BMI

In Paper IV we estimated the degree of discordance between the observed value of
10 common clinical biomarkers against the expected for the BMI. We selected these
biomarkers because of their clinical use in the assessment tools of different
biological systems that are affected in obesity:

Glycaemia: Fasting glucose.

Lipid metabolism: HDL, LDL and TG.

Systolic and diastolic blood pressure (SBP and DBP, respectively).
Renal function: Creatinine (SCr).

Liver function: Alanine transaminase (ALT).

Fat distribution: Waist-to-hip ratio (WHR).

Inflammation: C-reactive protein (CRP).

We estimated the age- and current smoking-adjusted change in all biomarkers for
every unit increase in BMI using linear models. Then we calculated the difference
between expected and observed values, which were centred and scaled to have zero
mean and unit standard deviation. We then measure to what extent individuals
deviated from the expected multivariate normal distribution of standardised
residuals NV (0, X), where X is the observed covariance matrix of residuals across
biomarkers. To this end we used the squared Mahalanobis distance, which is defined
as (132):

D= X —mTE (X — ) 31)

Here, X is the vector containing biomarker discordance for individual i and p is
the mean vector of the distribution, equal to a vector of zeros in this case. Since D%
follows a x? distribution with degrees of freedom equal to the number of
biomarkers, we used this property to calculate for each individual their probability
to belong to the expected distribution of residuals and quantified the proportion of
individuals who are above the critical threshold of 0.05 (expected proportion 5%).
We compared the observed proportion to the expected using a binomial test.

Probabilistic clustering of phenotypic discordance

To identify subgroups of individuals with similar patterns of biomarker deviations
from the expected for their BMI, we applied Uniform Manifold Approximation and
Projection (UMAP) to the residual data. UMAP is a dimension reduction technique
that uses a network-based approach to represent the data, connecting individuals
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that are similar to each other, and then embedding this network in a lower
dimensional space while preserving both the local and global structure of the
network (133). We embedded the residual data in a two-dimensional space to
visualise the distribution of BMI-discordance. Thereafter, we applied an ensemble
of clustering algorithms to the underlying network to identify distinct discordant
profiles, while recognising that individuals may display features of more than one
profile, thus avoiding forcing individuals to have a single profile.

The ensemble algorithm consisted of several steps. We first applied two network-
based algorithms to partition UMAP’s network: first, we used the leading eigen
vector algorithm to decompose the proximity matrix that represents the network
(134). This provided stable initial seeds to subsequently run the Leiden algorithm,
which partition the data iteratively in densely connected ‘communities’ of
individuals with similar discordant profiles, while maximising the modularity score,
a measure of the density of within-community relative to between-community
connections, until no further improvements can be made (135). We iterated the
Leiden algorithm over 500 times, resulting in hard partitions, where individuals are
assigned to a single cluster.

To transform this hard partition into a probabilistic partition, we calculated for
every individual the normalised eigen centrality scores for their respective clusters,
which measures its importance within the cluster. These scores were used as weights
to calculate the mean vector g and covariance matrix X of each cluster, thereby
converting each hard cluster into a sub distribution, or profile, of discordance. We
used these profiles to fit a Gaussian mixture model, where the overall probability
distribution of discordance is modelled as a weighted sum of each profile (136):

P(X) = XXoqy i - N (pye, Zx ) (32)

Where 1y, is the weight of profile k, which reflects how frequent the k profile is
in the population. To further improve the separation of highly discordant profiles
deviating strongly from the expected normal distribution of residuals, we included
in the Gaussian mixture a highly ‘concordant’ profile, where residuals follow a
normal distribution around 0 with identity covariance matrix (N'(0,1)), reflecting
no correlation of residuals beyond the explained by BMI. In the Gaussian mixture
calculation, we kept pj and X, fixed and estimated m,. The resulting partition
included concordant and discordant profiles and every individual i was given a
probability score 7y ; for each profile, satisfying that for each individual:

K
Doy i =1 (33)
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We ran identical analyses in the discovery cohort (UK Biobank) and in the
cohorts in SOPHIA and assessed whether individuals allocated to a profile in the
discovery model with high certainty (i.e., a probability higher than 80%) also had a
high median probability of being allocated to a profile found in any of the other
three ‘validation’ cohorts (again higher than 80%). We considered a profile as being
replicated if this condition was met in all three validation cohorts, which ensured
that only robust clusters were included in the final model. We then readjusted the
weights for each profile and focused all downstream analyses on these latter
replicated clusters.

To assess cluster separation quality, we calculated the relative entropy of the final
partition. This measure takes values from 0 to 1, indicating either identical
probability distributions of all profiles (i.e., equal probabilities to all profiles for
every subject) or perfect cluster separation (no overlap between clusters) (137). We
also used the relative entropy to compare our final partition to partitions obtained
from other clustering algorithms applied to the biomarker discordance data, all
being based on different approaches for data partition: centroid-based (Gaussian
mixture model directly applied to the data), boundary-based (archetypal model,
where archetypes are located at the extremes of the data distribution) (138) and
density-based (Hierarchical Density-Based Spatial Clustering of Applications with
Noise, HDBSCAN, which is able to detect clusters of irregular shapes) (139). More
details of these algorithms are found in Paper II1.

Understanding probabilistic clustering as a composition

In Paper 111, once we identified the concordant and discordant profiles and estimated
the probability of profile allocation ;, ; for every individual i to every profile k, we
characterised each profile by calculating weighted averages and proportions using
the corresponding 7y ;, thereby using data from all individuals in these calculations
and improving statistical power (140).

Additionally, we assessed the risk to events of interest (MACE and diabetes)
conveyed by profile allocations by fitting Cox proportional hazard models with
as predictors. Due to the sum-to-1 constrain in Equation 33, using m; directly as
predictors makes the model unidentifiable, i.e., it has more than one solution. We
therefore turned to the log-contrast framework, commonly applied in the analysis of
compositional data (141). In this framework, compositional predictors, which have
the sum-to-1 constrain, such as 1, can be accommodated in a regression model:

y= 3. o log(m) (34)
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With the constrain that:

2115=1 a =0 (35)

To implement this constrain, the model can be reformulated to:

y=) " Berlog(2) (6)

This transformation is known as the additive log-ratio transformation, where 7 is
an arbitrarily selected reference component of the composition. We chose this
reference component to be the concordant profile, thereby ; being the effect of
each discordant profile. This estimate represents the change in the outcome y
expected from increasing the log-ratio of one discordant profile one unit while
keeping the other log-ratios constant. Because of the sum-to-1 constrain, this is
equal to increasing the probability of a particular discordant profile by a certain
factor while decreasing all other profiles by the same factor, which would
effectively keep the other log-ratios constant.

Given that we were interested in measuring the added value of BMI-discordance
in prediction beyond the information provided by biomarkers and BMI alone, we
fitted nested models with and without discordant log-ratios. In the models that
included discordant log-ratios, a change in the probability of a certain discordant
profile inevitably carries changes not only in the other profile probabilities but also
in the biomarkers. In this context, discordant log-ratios essentially represent
interactions terms that modify the relationship between biomarkers and risk,
conditional on their pattern of discordance with BMI. This might be better illustrated
in a simplified example where an outcome is modelled as a function of glycemia
and BMI, as well as the discordance between observed and predicted glucose based
on BMI:

y = B1Glucose + B,BMI + B3 (Glucose — E(Glucose|BMI))(37)

Here, B; would represent the effect of a certain discordant log-ratio in the high-
dimensional case. Thus, the effect of increasing glucose on the outcome is modified
by the degree of discordance between observed and predicted glucose. Therefore, to
correctly estimate the effect of a shift in the probability distribution from the
concordant to a specific discordant profile, while keeping the other discordant
profiles fixed at their population value, we included all the changes — both in
biomarker and discordant log-ratio terms — that would correspond to this shift.
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Added value of a biomarker in risk prediction

Nested models

In Papers II and III we used Cox regression models to predict clinical outcomes and
assessed whether adding information on genetic or phenotypic discordance
improved the predictive ability of these models. The main clinical outcome we
attempted to predict in these two Papers was MACE. The baseline model contained
the predictors of SCORE2, the current risk stratification tool for primary care
prevention of CVD recommended by the European Society of Cardiology (142).
The competing models contained in addition information on T2D-CAD genetic
discordance (Paper II) and biomarker-BMI discordance (Paper III). Relevant
comorbidities, as well as antidiabetic, antihypertensive and lipid lowering
medication were included as covariates in both models. In Paper 11l we run a similar
analysis of competing models to predict diabetes diagnosis, where the baseline
model included the biomarkers while the competing model had in addition
information on biomarker-BMI discordance. These models were fitted separately
for men and women. We ensured models were properly calibrated with calibration
plots comparing the predicted versus the observed event rate, and then carried out
comparison across the nested models using likelihood-based and ranked-based
methods as explained below.

Likelihood-based measures

From Equation 9 it is shown that the partial log-likelihood in Cox regression
represents how well the model separates individuals who experience the event of
interest from those who are still at risk. Consequently, a powerful way to compare
two models that are nested, one of which includes additional covariates, is by
comparing their log-likelihoods. The ratio of the log-likelihoods of two nested
models follows a x? distribution with degrees of freedom equal to the number of
additional covariates in the complete model. Thus, this test statistic, known as the
likelihood ratio test (LRT) statistic, can yield a probability that the model
comparison deviates from the null hypothesis of no improvement in prediction,
while penalising for the added complexity of the model (140).

Moreover, once the LRT shows statistical significance, a quantity of added
information can be derived from the LRT statistics from comparing each model to
a null model with no coefficients (where essentially the likelihood is reduced to the
cumulative risk at every event time). The ratio of the baseline to the complete model
statistic (LRTg/LRT;), called the adequacy index, represents the proportion of
explained variation in the complete model that is contained in the baseline model.
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Hence, one minus this quantity is the fraction of additional variance Fy44 explained
by the additional covariates in the complete model (140):
LRp

Frqq4 = 1 — Adequacy Index =1 — I (38)
c

Rank-based measures

To perform optimally, a Cox model should predict longer survival times for
individuals who remain event-free for longer periods and shorter survival times for
those who experience the event sooner. This means that if we rank individuals based
on their predicted and actual survival times, these two ranks must be as highly
correlated as possible. Two rank-based measures were used in our analyses: the c-
statistic and the net reclassification improvement.

The c-statistic

The most common way to quantify the rank correlation is using the concordance
statistic, or c-statistic. This is computed as a scoring system at each event time by
pairing individuals who have experienced the event with those who have not yet
done so. If the predicted probability for the individual who had the event is higher
than the individual without the event, the pair is said to be concordant, adding 1
point to the score. Pairs with tied predicted probabilities add 0.5 to the score. The
final statistic is the ratio of the score over the total number of pairs (143):

N + 0.5-NT;
C — Concordant Tied (39)
Npairs

This statistic reflects the probability that if we take two individuals i and j at
random, one with the event and one without, the individual with the event will have
a higher predicted probability, i.e., will be ranked higher:

C =P(R; > Rj|Y; = 1,Y; = 0) (40)

To calculate the variance of this statistic, an infinitesimal jack-knife approach is
generally used, which consists of computing how much the statistic varies by
leaving each observation out.

Competing models in the medical literature are often compared using their
difference in C-statistic. The variance of this difference and its corresponding
confidence interval can also be computed using the infinitesimal jack-knife method.
However, the C-statistic difference is insensitive to clinically meaningful changes
in predicted probabilities that do not change the ranks (115,116).
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The net reclassification improvement (NRI)

Another approach commonly used to measure the added benefit of a biomarker is
to evaluate if its inclusion in the prediction model help reclassify better cases and
non-cases into higher and lower risk categories, respectively. This can be inspected
in reclassification tables and plots, stratifying individuals based on their predicted
probabilities by the baseline and the complete model and evaluating whether the
predicted event rates from the complete model match better the observed event rates
than the baseline model (144).

To quantify the overall proportions of individuals with and without the event who
were correctly reassigned higher or lower risk, respectively, we used the Net
Reclassification Improvement (NRI), adapted to the survival setting, and calculated
separately for events (NRIg) and non-events (NRIy) (145):

P(TSthc>RB)'P(R(:> RB)—P(TSthc<RB)'P(Rc<RB)

NRIy = P (reD (41)

_ P(T>t|Rc<Rp)-P(R¢c< Rg)—P(T>t|R¢c>RpB)-P(Rc>Rp)
NRIy = (TS0 (42)

In these equations, ‘T < t’ and ‘T > t’ denote the occurrence or absence of the
event at a given time point t, and Rg and R are the predicted risks derived from the
baseline and complete models, respectively. These measures have the advantage of
being readily interpretable as proportions correctly reclassified within each group,
while not being affected by threshold selections as the reclassification tables. They
can, however, reflect changes in the predicted probabilities that might be too small
to be clinically meaningful.

Decision curve analysis

While the previous measures are useful to define how well predictive models
discriminate cases from non-cases, they do not provide direct guidance on how these
models should be translated into clinical practice, where thresholds on predicted
probabilities are used to make decisions of whether or not to intervene, and what
intervention modalities to use.

Thresholds that guide interventions implicitly reflect how health practitioners and
patients weigh true positives over false positives, as well as true negatives over false
negatives (146). Lower thresholds give higher weight to detecting cases, while
higher thresholds give higher weight to avoiding unnecessary interventions. For
example, if a threshold to intervene is set to 10%, this means that a true positive is
weighted 9 times higher than a false positive, or that it is acceptable to intervene 9
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individuals who might not benefit from the intervention to treat 1 individual who
will.

As a consequence of this, a measure of the net benefit (NB) of using a predictive
model to guide an intervention can be derived by comparing the proportion of true
positives TP against the appropriately weighted proportion of false positives FP,
where the weight w is dictated by the threshold Pt that defines whether or not to
intervene, and how TP are valued in terms of FP (146):

NB =TP — wFP (43)

W= Pt
T @-pPo)

(44)

In the context of survival data:
TP =P(T <t|R> Pt)-P(R> Pt) (45)
FP=(1—-P(T <t|R> Pt))-P(R> Pt) (46)

Where T < t denotes occurrence of an event at time ¢t and R is the predicted risk.
The NB indicates the number of true positives gained by using the model without
increasing the number of unnecessary interventions. The NB can be calculated and
plotted over a range of a range of plausible Pt, which enables the examination of
the clinical utility of one or multiple models across different scenarios, with the
model with the highest NB providing more clinical utility. Additionally, any
predictive model has to be superior to the NB of default strategies of universal
intervention (which has the greatest utility at lower Pt but drops below 0 when Pt
matches the disease rate) or no intervention (which has always a NB = 0).

Likewise, the clinical utility can also be expressed in terms of net interventions
avoided (NIA), which is calculated as a weighted difference in the NB of the model
against that of the universal intervention strategy NBy;, weighted by the inverse of
w:

NIA = (NB — NBy;) -w™! (47)
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Chapter IV — Results

Paper I

In this Paper we found 67 SNPs strongly associated with BMI and T2D, with 48
concordant and 19 discordant, which we used to construct the respective obesity
profiles. In our phenome-wide exploration, we found that the concordant and
discordant profiles differed strongly in three features: HDL, WHR and SBP (Figure
4.1). We also found differences in risk of CAD and stroke, which were lower in the
discordant compared to the concordant profile. The levels of liver biomarkers such
as ALT were lower in the discordant relative to the concordant profile. The sex-
hormone binding globulin (SHBG), a protein also produced in the liver and
associated with better metabolic function, was higher in the discordant as opposed
to the concordant profile. There were also differences in red blood cell morphology,
with discordant profile was associated with higher mean corpuscular volume. The
concordant profile had higher levels of urate compared to the concordant profile.
Interestingly, the odds of receiving treatment with alendronate was higher in the
discordant than in the concordant profile, a drug indicated for osteoporosis.
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Figure 4.1. Phenome-wide comparison of concordant and discordant obesity profiles.
Concordant and discordant effects on traits where we found significant differences between profiles
using GWAS summary data.
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In the PRS analyses in BioVU (Figure 4.2), we found that both profiles were
associated with higher obesity risk, as well as the odds of receiving surgical
interventions for obesity. In line with our expectations, the concordant profile was
associated with higher risk of diabetes and higher levels of related biomarkers such
as HbA lc, while the discordant profile associations tended to the opposite direction.
This divergent association pattern was also reproduced in African American
individuals. We replicated in BioVU our previous results of differences in lipids,
blood pressure and red blood cell morphology, while finding additional differences,
such as chronic kidney disease (CKD), which was higher in the concordant
compared to the discordant profile, and osteoarthrosis, which was higher in the
discordant compared to the concordant profile. We also found that leucocyte count,
urea, creatinine, phosphate, C-reactive protein and PTH were all at higher in the
concordant compared to the discordant profiles.
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Figure 4.2. Comparison of concordant and discordant in BioVU.
The figure shows traits where we found significant differences after a 5% FDR correction.

The PRS analysis in the UK Biobank showed that the relationship between the
two obesity profiles and early mortality was also divergent: the concordant profile
was associated with higher mortality (HR per allele: 1.01, 95% CI: 1.01, 1.02), while
the discordant profile was not (HR per allele: 0.99, 95% CI: 0.98, 1.01, pd=0.02).

In the analysis of the molecular differences between the two profiles, we found
that the discordant profile was associated with higher cholesterol in lipoprotein
particles of all densities, particularly HDL, while lower triglyceride content in
lipoprotein particles of low densities, as opposed to concordant diabesity. The
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discordant profile also correlated with lower levels of branched chain (BCAA) and
aromatic amino acids (Figure 4.3, left panel).

Although there were no differences between pooled concordant and discordant
estimates for bacterial abundance in the gut that survived the FDR correction, we
found nominal associations (p < 0.05) in taxa belonging the phyla Bacteroidetes —
more abundant in the concordant profile — and Firmicutes — more abundant in the
discordant profile (Figure 4.3, bottom right panel).

We found two proteins strongly influenced by discordant variants: heparan
sulfate 6-O-sulfotransferase 2 (HS6ST2), which was higher in the discordant
relative to the concordant profile, and metalloproteinase inhibitor 4 (TIMP4), which
was under the influence of a discordant SNP near PPARG. In the expression data
we found around 800 genes whose expression/splicing in a variety of tissues was
significantly influenced by concordant and discordant SNPs. Enrichment analysis
indicated that the discordant, but not the concordant profile, was functionally
enriched in adipose tissue.
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Figure 4.3. Molecular differences between concordant and discordant obesity profiles
Significant differences between estimates from each profile found in metabolite, protein and gut
microbiome data. Metabolite and microbiome traits shown were significantly different between the two
profiles. Gut microbiome data show bacterial taxa where we found nominal differences (p < 0.05).

In our causal inference analyses, we found that genetic profiles of higher BMI but
WHR, lower SBP or higher free cholesterol content in HDL particles were
associated with lower T2D risk. Additionally, we identified significant discordant
effect of the TIMP4 protein levels and the expression of 17 genes in multiple tissues
(Figures 4.4 and 4.5).
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Figure 4.4. Estimates of traits with potential discordant protective effects.

Left, clinical and molecular traits where we found that a genetic profile associated with obesity and
either higher or lower level of the trait was associated with T2D risk. Right, locus zoom plot showing
regional association to BMI, TIMP4 levels and T2D risk.
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Figure 4.5. Genes with potential discordant protective effects in obesity.

Genes whose expression are pleiotropically associated with higher BMI but lower T2D risk, as
evidenced by SMR and HEIDI methods. The three central panels show the association of the lead
genetic instrument of each gene on BMI, expression and T2D risk. On the right, the logarithm of the
score we used to identify the potential tissue of action of the instrument used to identify the gene.
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Paper 11

In this Paper we run cross-trait GWAS analyses between T2D and major
cardiovascular complications of diabetes: CAD, acute ischaemic stroke (AIS) and
CKD. We only found enough signals to run our comparative analysis in the T2D-
CAD dyad: 83 SNPs, of which 70 were concordant and 13 discordant. We focused
all downstream analyses to this dyad.

In the PRS analyses of concordant and discordant T2D-CAD profiles, we found
that despite both PRSs showing associations with higher T2D, they exhibited
opposing effects on primary incidence of MACE. When the two PRSs were added
to SCORE2, we observed a statistically significant increase in the LRT in men, with
a Fpqq of around 1.5%. In this sex group, the difference in C-statistic between the
two models was small but statistically significant. In the reclassification tables
(Figure 4.6) we found that approximately 8.6% of the population were reclassified
into different risk categories with considerably better calibrated predictions. The
NRI calculations showed that 5.4% of male incident MACE cases were correctly
reassigned as having higher predicted risk, while 2.93% of men who were
subsequently event-free were reassigned as having lower predicted risk.
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Figure 4.6. CVD risk reclassification using concordant and discordant profiles.

The y axis classifies individuals based on their predicted risk by both models. The x axis is the
observed risk, showing Kaplan-Meier estimates within each category. To the right, distribution of age
and size of each risk category.
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We introduced interaction terms in regression models to assess the effect of the
PRSs in high-risk groups. We found a statistically significant interaction between
T2D and the discordant PRS in males, which translated into a lower MACE risk in
individuals with T2D but a predominantly discordant genetic profile (Figure 4.7).
We also rerun our analysis including individuals with and without MACE history
and added interaction terms between each PRS and prior MACE. We found a
significant interaction between the concordant PRS and prior MACE, such that the
effect of the concordant PRS was significantly attenuated in individuals with prior
MACE. We further explore this in the ORIGIN trial, where we found that the effects
of the concordant and discordant PRSs on MACE prevalence were directionally
consistent with our stratification in European and Latin American populations. In
contrast to these cross-sectional associations, during follow-up the discordant PRS
was significantly associated with higher MACE incidence, exceeding the estimated
effect of the concordant PRS. In ancestry-specific analyses we found that in Native
Latin population the concordant PRS was associated with lower incidence of
MACE. We noted that this finding was driven by individuals with prior history of
MACE. Nonetheless, the overall association of the discordant PRS with higher
incidence was attenuated after adjusting for traditional risk factors (see
Supplementary Note in Paper II).
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Figure 4.7. Differential effect of T2D by the level of concordant and discordant predisposition.
This figure shows the predicted CVD risk in a 60-year old individual with or without T2D at varying
levels of concordant and discordant PRS, obtained from a model with T2D*PRS interactions.

We found that concordant and discordant profiles differed in selected traditional
CVD risk factors, especially in TG and SBP, both of which were lower in the
discordant compared to the concordant profile (Figure 4.8, top panel). In the
phenome-wide comparison, we found additional differences in other manifestations
of atherosclerotic diseases (Figure 4.8, bottom panel). For example, the discordant
profile was associated with lower odds of peripheral artery disease (PAD) and stroke
relative to the concordant profile. The discordant profile also conveyed lower risks
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of diabetic hypoglycaemia compared to the concordant profile. Interestingly, we
found that blood monocytes, the precursors of macrophages, were higher in the
discordant compared to the concordant profile. Paternal lifespan was longer in the
discordant compared to the concordant profile. Although there was a similar pattern
of divergence in maternal lifespan, the difference between profiles was smaller and
did not pass multiple test correction. The concordant profile had higher odds of
dorsopathies, higher self-reported health satisfaction and lower odds of having been
breastfed as a baby compared to the discordant profile.
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Figure 4.8. Phenome-wide comparison of T2D-CAD concordant and discordant profiles.

The top panel shows differences within a group of selected established CVD risk factors. The bottom
panel shows the differences obtained from running a phenome-wide comparison between the two
profiles.

From the metabolite data we found that the concordant profile was associated
with higher levels of small VLDL particles, as well as lower concentrations of large
HDL particles with lower cholesterol and phospholipid content, compared to the
discordant profile (Figure 4.9, top left panel). This is in line with the findings from
the protein scan, where we identified 43 proteins whose levels in blood were
significantly influenced by SNPs in the discordant profile, almost all driven by a
missense mutation in APOE. These included lower levels of E2 and E3 isoforms of
apolipoprotein E, as well as other proteins involved in lipid metabolism elsewhere
in the genome, such as lower apolipoprotein B levels and lower levels of
cardiotrophin-1, an inflammatory biomarker highly expressed in heart. We also
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found strong links between SNPs in the discordant profile and expression and
splicing of over 100 genes in multiple tissues.

In the causal inference analysis, we found that the content of free cholesterol and
the content of phospholipids in VLDL particles are likely within the causal pathways
leading to protection against atherosclerosis in diabetes (Figure 4.9, top right panel).
We prioritized 8 independent loci harbouring 33 genes whose expression in a variety
of tissues was strongly associated with discordance between T2D and CAD (Figure
4.9 bottom panel). Among these genes was HMGCR, the target of statins, and

KCNKS, a gene encoding the potassium

channel K2P5 and in the vicinity of

GLPIR, the target of glucagon-like peptide 1 receptor agonists.
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Figure 4.9. Molecular traits with potential discordant protective effects on T2D.

Top left panel: main differences between concordant and discordant T2D profiles in metabolite data.
Top right panel: metabolites where we found that a genetic profile associated with T2D and either
higher or lower level of the metabolite was associated with CAD risk. Bottom: genes whose expression
are pleiotropically associated with higher T2D but lower CAD risk, as evidenced by SMR and HEIDI
methods. The three panels show the association of the lead genetic instrument of each gene on BMI,

expression and CAD risk.
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Paper III

In this Paper we used UK Biobank data to quantify biomarker discordance to the
expected given the BMI, finding that a significantly higher proportion of individuals
displayed substantial biomarker discordance compared to the anticipated proportion
under a normal distribution (expected proportion = 5%, observed proportion =
10.3%, Pbinomial < 0.001). These individuals appeared clustered in subgroups in the
UMAP projection (Figure 4.10), a pattern absent in projections generated under a
normal distribution. Principal component projections were unable to detect these
deviations. The UMAP projections in the SOPHIA cohorts had similar patterns.
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Figure 4.10. Concordant and discordant phenotypic profiles.

Profiles discovered in the UK Biobank and robustly replicated across 3 independent cohorts. Left upper
panel: UMAP two-dimensional projection. Colours denote profile allocations. Left lower panel: Cluster
weights. Right panels: Profile centres.

Our clustering algorithm run on each sex separately defined a concordant profile
and five discordant profiles consistently replicated across all cohorts, with high
relative entropy (>.8). Most individuals (~80%) had predominantly a concordant
phenotypic profile (called the baseline concordant [BC] profile). Approximately 8%
of females displayed a discordant hypertensive profile (DHT), with blood pressure
values above the expected for their BMIs. This profile was not found in males.
Around 5% of females and 7% of males showed a discordant adverse lipid profile
(DAL), characterised by higher TG, lower HDL, and higher LDL than expected for
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their BMIs. Profiles of discordant liver transaminase (DLT) and discordant
inflammatory state (DIS), characterised by higher ALT and CRP than expected for
the BMI, respectively, were each observed in 4 to 5% of individuals in both sexes.
About 2.5% had a discordant hyperglycaemic profile (DHG), with higher fasting
glucose levels that correlated with lower LDL levels than the expected for the BMIs.

Among the differences at baseline between these profiles, the DHG profile in
both sexes was associated with over 30-fold higher odds of T2D and around 3 times
higher odds of CAD compared to the BC profile. In contrast, there were fewer cases
of T2D and CAD in DAL compared to BC in both sexes. Individuals with this
profile were also less likely to be taking lipid-lowering medication compared to BC.

Adding BMI-biomarker discordance information to fully adjusted models for
MACE prediction led to a statistically significant increase in LRT and the c-statistic
in men, with a value of Faqq that ranged between 1.4 to 5.4%. For a proper inference
from these models, we derived the expected change in risk of MACE in a 60-year-
old individual with a BMI of 30 kg/m2 whose probability to have a specific
discordant profile increases 10%, at the expense of decreasing the probability to
have a BC profile by the same amount. After multiple test correction, a 10% higher
probability to have a DAL profile was associated with a higher risk of MACE
compared to BC across sexes. In contrast, a 10% higher DHG profile probability
was associated with lower risk of MACE compared to BC (Figure 4.11).
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Figure 4.11. Risk of MACE and diabetes within each discordant profile relative to the concordant.
Pooled estimates of the expected hazard ratio corresponding to a 10% higher probability to have a
specific discordant profile while decreasing their probability of being concordant by the same amount.
Estimates were derived using 5 years (which contained more individuals at baseline) and 10 years of
follow-up.
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In the case of predictive models for diabetes progression, we found greater gains
in prediction from adding BMI-biomarker discordant information in individuals
with higher median glucose values at baseline. For instance, in the Rotterdam Study,
we found that Fadd was to 8 — 12%, much higher than in the UK Biobank (<1%).
This was mainly driven by the DHG profile. A 10% increase in the probability of
having a DHG profile and away from the BC cluster was associated with 20 — 60%
increase in risk of progressing to diabetes compared to individuals in BC (see Table
1 in Paper III).

In decision curve analysis we found that BMI-biomarker discordance yielded a
net benefit of 4 additional true positives and 37 additional true negatives per 10,000
men compared to the baseline model, when the threshold for intervention was set at
10% (Figure 4.12). To provide context for these values, we computed the additional
net benefit of LDL, a recognized MACE risk factor, beyond models incorporating
only age, which is 5 additional true positives and 42 additional true negatives per
10,000 men individuals tested. In diabetes progression models BMI-biomarker
discordance provided 15 additional true positives and 135 additional true negatives
per 10,000 women, and 4 additional true positives and 33 additional true negatives
per 10,000 men.

DM MACE
oc | '
ois{ | - - .
DHT i [ | 3
= =
DHG - | ] =
DAL | |
BC |
DLT |
ois ]
DHT i = =z
i o &
DHG = 1 o
DAL ||
Bc{ | ; |
e e e S ——
25 00 25 50 7525 00 25 50 75 25 0 25 50 25 0 25 50
Additional net benefit per 10,000 Net interventions avoided per 10,000

Figure 4.12. Additional net benefit and net interventions avoided by using discordant profiles.
The results are discriminated by profile to determine the profiles with the highest and lowest gains in
prediction. The dotted lines in the left panel correspond to the unity.

We evaluated how discordant profiles identified in European populations were
distributed in African and South Asian populations in the UK Biobank. Both
populations had higher odds of DHG profiles compared to the Europeans, although
the risk was twice as high in South Asians, who were also more likely to have a
DAL profile than Europeans. Improvement of models predicting MACE by
incorporating discordant profile information was highest in South Asian men with
a DAL probability, while in diabetes progression the highest gains were in African
men with a DHG profile (Figure 4.13).
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Figure 4.13. Distribution of concordant and discordant profiles by ancestry in the UK Biobank.
Each bar represents the weighted proportion of individuals mapped to the profiles identified in the

European subset of the UK Biobank.

Paper IV

In this Paper we found linear associations of genetically predicted BMI with T2D,
hypertension (HTN) and CAD, but not with CKD or stroke. Positive effects were
found for glycaemia, TG and blood pressure, and inverse effects were found for
total cholesterol, HDL and LDL. Sex-stratified analyses showed a stronger positive
effect of BMI on CAD and a stronger negative effect on LDL in men compared to

women (Figure 4.14).
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Figure 4.14. Causal estimates of BMI on selected cardiometabolic outcomes.
Odds ratio and standardised beta coefficients on each outcome per standard deviation unit of BMI.

Lines represent 95% confidence intervals
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Here we show the results of the doubly ranked nonlinear MR analyses. As found
with the original methodology, we found consistent evidence to support a nonlinear
causal effect of BMI on glycaemia, with at least three of the four tests of nonlinearity
surpassing the significance threshold in the combined and the sex-specific analyses

(Figures 4.15 —4.17).
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Figure 4.15. Tests for nonlinearity in the doubly ranked method.
PQ is the heterogeneity test across causal estimates from each quantile. Pquad is the significance of a
quadratic model. Pfp is the significance of the fractional polynomial model. Pfp2 is the significance of a
fractional polynomial model with two degrees compared to a simpler model with one degree. The

dotted line represent -log10(0.05).

OR

NN
N\

Combined

Women

aons

[e)le]

20

25 30 35 40 15 20 25 30

BMI

35 40 15 20 25 30 35 40

Figure 4.16. Shape of causal relationships of BMI on selected cardiometabolic outcomes.
Each line shows the odds ratio compared with the reference point at 25 kg/m?. Shaded areas are 95%

confidence intervals.

71



Combined

44

d4da

44

-84
1.0

/
/

28s0on|o

0.0

7.5+
5.0
2.5+

OTvaH

0.4 4
0.2 4
0.0
-0.24

1aH

0.254
0.00
-0.254
-0.504
-0.75
104
54

aan

VN

W

vdl

-5
-10 4

5+

ddas

54
-104

0.54
0.0
-0.54

-1.0
0.54

0.0

oL

-0.54

0.4+
0.24

eain

-0.24
-0.44
-0.6 4

\ \ / \\

15 20 25 30 35 40 15 20 25 30 35 40 15 20 25 30 35 40
BMI

Figure 4.17. Shape of the causal relationships of BMI to continuous cardiometabolic traits.
Each line shows the odds ratio compared with the reference point at 25 kg/m?. Shaded areas are 95%
confidence intervals.

72



Chapter V — Discussion

BMI-T2D discordance

Our genetic decomposition of the obesity phenotype into distinct diabetogenic or
antidiabetogenic profiles facilitates the identification of crucial factors that either
link or detach obesity from metabolic risks, which may help understand better the
underlying mechanisms driving heterogeneity in obesity.

Our results highlight adipose distribution as a core feature of discordant obesity.
We provide genetic evidence that an obesity profile that is less prone to accumulate
adiposity in the visceral relative to the subcutaneous compartment in the hip, as
indicated by a lower WHR, have lower risk of T2D compared to a contrasting
obesity profile with higher WHR. Many factors have been proposed for this
disparate effect of visceral versus subcutaneous adiposity on metabolic health. A
positive energy balance that exceeds the capacity to store fat in the subcutaneous
compartment drives visceral adipose accumulation, as seen in individuals with
lipodystrophy (147). In addition, multiple lines of evidence suggest a biological
difference in the adipose tissue from these two compartments. Animal studies have
shown that transplanting subcutaneous, but not visceral fat, can improve the
metabolic disturbances in obesity (148). Compared to subcutaneous adipose tissue,
visceral adipose tissue responds less to insulin and preadipocyte differentiation
stimulation but responds more to a more labile and prone to catecholamine-induced
lipolysis. It is also more susceptible to immune cell infiltration and inflammation
(149). Additionally, products from visceral adipose tissue may have a more direct
effect on liver metabolism because of its drainage through the portal vein, which
might underlie the difference we observe in biomarkers of liver failure between the
two obesity profiles (150). Interestingly, due to its immune function, higher visceral
fat can provide protection against intestinal infections in early life, but those who

benefit from this protection might be more vulnerable to metabolic disturbances in
adulthood (151).

Our results also highlight the importance of a sufficient vascular supply and a
supportive extracellular matrix (EMC) remodelling in adipose tissue expansion
without detrimental metabolic effects. We show that a genetically determined
obesity profile coupled with better vascular function, reflected by lower SBP, have
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lower risk of T2D compared to its hypertensive counterpart. Additionally, we found
that the expression of two proteins associated with extracellular matrix remodelling,
HS6ST2 and TIMP4, are associated with a discordant phenotype in obesity. It is
possible that both vascularisation capacity and EMC remodelling have roles in fat
accumulation in subcutaneous and visceral compartments (152). Moreover, vascular
dysfunction, although a consequence of T2D, can also has precede metabolic
perturbations through its effects on nutrient and hormonal flux, not only in adipose
tissue, but also in other tissues, such as pancreas and muscle (153).

Our analyses using gene expression that is determined by genetic variation
provide potential targets that could be used to activate discordant metabolic
processes to shift obesity into a more discordant phenotype. Some of the genes
identified have already known interactions with currently used medications, such as
metformin, thiazolidinediones and sulphonylureas. However, the mechanisms
through which many of these targets contribute to discordance, and their medication
interactions, are yet to be characterised.

In comparison to previous strategies to characterize the discordance between BMI
and metabolic risk, our analysis is not constrained to a subset of traits selected a
priori, but rather we determine the differential phenotypic structure of discordance
in data-driven, agnostic manner across many phenotypic layers. Our strategy also
enables profile comparisons using data generated by multiple datasets, rather than
restricting to measurements in a single cohort. Both analytical choices enhance
statistical power and minimise cohort-specific biases, which could be anticipated if
the analyses were performed in a single cohort. Furthermore, using germline DNA
variation helps mitigate reverse causality and other sources of confounding that
hamper the interpretation of the differences between the obesity profiles.

Genetic discordance was defined using data from datasets of predominantly
European ancestry, which potentially limits the transferability of our results to other
populations. This choice that was dictated by the larger sample sizes available in
this ancestral group, which facilitated the identification of concordant and
discordant signals, and the availability of genetic associations with other multiple
traits in our phenome-wide scans. This also mitigates the potential risk of spurious
findings due to heterogeneity in allele frequencies across studies. Nonetheless, we
found consistent results in African descent populations in BioVU, providing
evidence of the trans-ethnic importance of BMI-T2D discordance.
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T2D-CVD discordance

Similar to Paper I, in Paper Il we decompose the diabetic phenotype into distinct
genetic profiles with either susceptibility to or protection against CVD to identify
mechanisms exacerbating or mitigating CVD risk in T2D, with additional analyses
that show a potential role of quantifying genetic concordance and discordance for
CVD risk stratification.

The use of univariate GWAS results has shown value for prediction of chronic
diseases, including CVD (154). Further benefits might be achieved by partitioning
the genetic predisposition of a disease represented by a single PRS into multiple
complementary PRSs that represent distinct profiles and potential etiological bases
of disease (155). This might provide a better understanding of the underlying
processes leading to disease development in an individual, which can then help
improve delivery of appropriate care. We found that quantifying highly concordant
and highly discordant genetic predispositions improve CVD prediction in the
general population, though likely not by modifying the risk ranks already given by
traditional risk factors, but by giving better calibrated predictions. It is, however,
important to note that our genetic stratification focuses on capturing variation in the
predisposition to diabetic CVD, which is a subset (~30%) of total CVD. Our
interaction analysis shows that the cardioprotective benefit of diabetes prevention is
likely to be positively correlated with discordance.

The higher predictive value of concordant and discordant quantification in men
than women is consistent with the higher heritability estimates of CVD reported
previously in men than in women (156). This finding might be driven by the use of
non-sex-specific estimates from GWAS to derive the PRSs, the enrichment of male
cases in the cohorts used to discover genetic signals for CVD and differential
participation of healthier women (157).

The comparative analyses across the phenome show that genetically determined
T2D-CAD discordance is indicative of a broader T2D-systemic atherosclerosis
discordance. In the subsequent causal inference analyses we found that the key
mechanisms driving this discordance are the content of free cholesterol and
phospholipids within small VLDL particles, as well as lower levels of ApoB (the
main lipoprotein of VLDL) in relation to ApoAl (the main lipoprotein of HDL).
These findings align with previous investigations of genetic discordance between
T2D and LDL as an intermediate phenotype of CVD (158), which underscore the
central role of lipolytic remodelling of VLDL particles in peripheral tissues and their
clearance from plasma in the discordant phenotype (159).

We prioritized eight loci with targets potentially capable of ameliorating
cardiovascular risk in T2D. Two of these loci include targets of currently available
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drugs with established cardioprotective benefits, namely statins and GLP-1RAs.
While statins have been shown to exert its cardioprotective effects primarily by
lowering LDL cholesterol levels, they have been associated with higher glycemia,
through mechanisms that are not well understood, and might include both
interference with insulin secretion and insulin sensitivity (160). Nonetheless, it has
been shown that they also decrease VLDL production in the liver and subsequent
reductions in circulating VLDL levels (161). Similarly, GLP-1RAs decrease VLDL
production in the liver while enhancing VLDL clearance from circulation, leading
to improvements in lipid profiles and a reduction in cardiovascular risk (162).

Stratification approaches in diabetes, both using genetic and phenotypic data,
often centre around intermediate traits. Instead, we focused on identifying
subgroups based directly on the adverse clinical outcomes associated with diabetes.
As described in Paper I, by leveraging genetic data, we minimize the risks of
confounding and reverse causality. However, also like in Paper I, we based our
genetic stratification on signals found in European populations. We show using data
from the ORIGIN trial that at higher risk individuals of Latin American ancestry,
there were still divergent associations with prevalence of MACE, which provides
evidence of trans-ethnic importance of these profiles. However, as our analysis of
the ORIGIN trial shows, more research is needed to identify genetic associations to
secondary traits, while incorporating the potential of collider bias.

Observational BMI-biomarker discordance

In Paper 111 we focused on intermediate biomarkers of risk and defined 5 phenotypic
profiles defined by specific patterns of biomarker discordance with BMI. These
discordant profiles were robustly replicated across four independent large-scale
population-based cohorts. The estimated weighted proportion of individuals having
these profiles is around 20% of the general population. We found that these profiles
convey distinct CVD and diabetes risks when compared to the more common
concordant phenotypic profile, highlighting the considerable degree of
heterogeneity in the relationship between BMI and cardiometabolic risk.

Enhancement of MACE prediction appears to be driven by the quantification of
BMI discordance with lipid fractions, reflected by the DAL profile. This profile
resembles the phenotype of familial combined hyperlipidaemia, characterised by
disproportionate elevations of TG-rich lipoproteins for the same increases in
adiposity, with accompanying higher levels of atherogenic small dense LDL
particles and lower levels of HDL (163). Individuals with a DAL profile had a lower
prevalence of MACE at baseline and were more commonly unmedicated, indicating
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that quantifying discordance might be useful for early identification and prevention
of cardiovascular events in this subgroup of individuals.

The DHG profile, though enriched for individuals with prior history of
multimorbidity and a higher risk of incident diabetes, was not associated with higher
MACE incidence compared with the BC profile. Furthermore, within the DHG
profile there is an inverse correlation between glycaemia and LDL. Thus, it is
possible that this profile resembles the phenotypic signature of the T2D-CAD
discordance described in Paper II.

Similarly, the DLT profile, which is associated with higher ALT, had no
association with diabetes progression and had lower risk of MACE compared to the
concordant profile. This is in line with findings in the large-scale NHANES
population survey in the US, showing that ALT was positively associated with risk
of diabetes-related CAD — most likely representing the concordant profile in our

study — but was inversely associated with risk of CAD that was not attributable to
diabetes (164).

Among the sex differences observed, the overall linear estimate of the increase in
blood pressure per BMI unit was greater in women than men, as has been previously
observed, even after adjusting for menopause (165). Moreover, a discordant
hypertensive profile was identified in women but not in men, where the BMI-blood
pressure association was enhanced. Nonetheless, the incidence of MACE in this
profile was not significantly different than in the concordant profile.

Although we found similar estimates of MACE and diabetes risk associated with
the discordant profiles in men and women, we found differences in the added
predictive value of the profiles. In MACE, the added value was higher in men than
women, possibly due to higher rates in men, but also because of the same limitations
of healthy volunteer bias being stronger in women, as exposed in Paper I1. Notably,
we found that females in the DIS profile were classified less accurately when
discordant profile information was incorporated in the predictive models, in contrast
to the male counterpart where classification improved. Women tend to have higher
CRP levels than men, a stronger relationship between adiposity and CRP levels, and
a stronger relationship between CRP and fat distribution (166).

Conversely, in diabetes progression we found higher gains in predictive ability in
women than men. Previous studies have shown that discrimination of models for
diabetes progression generally perform better in women than men, especially when
including anthropometric measures (167). Our study suggest that predictive ability
can be further enhanced if discordance between anthropometric measures and other
risk factors are considered.
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Our strategy to define discordant subgroups applies nonlinear dimension
reduction techniques to large-scale datasets, revealing the distribution of
multivariate data without the constraints of linear assumptions. Similar techniques
have been successfully utilized in the dissection of the clinical heterogeneity of
patients with T2D at diagnosis (63). These techniques have the advantage of not
assigning categorical labels to individuals. Categorical assignment has the problem
of assuming that individuals within a category can be treated as a homogeneous
group. It also ignores the possibility that some individuals at the boundary between
two groups might share features of the two groups. Additionally, measurement error
errors due to intra-individual variability is largely ignored in categorical allocations,
while this is better handled in probabilistic allocations by incorporating allocation
error. Thus, our approach offers a more nuanced representation of phenotypic
discordance. Furthermore, this enables the evaluation of the effect of subtle
discordances even within the concordant profile. According to our decision curve
analyses, this is where the highest benefit of discordance quantification is observed.

Although our study included four large independent cohorts and the profiles
identified were successfully replicated across all cohorts, the sample size of
discordant profiles was small, which limits the statistical power of our analyses.
This might also explain why we were not able to replicate certain subgroups.
Notably, none of the profiles identified resembled a category of ‘protective’
discordance, where biomarker levels are at lower levels than the expected for the
BMI. While this might imply that such a phenotypic pattern is likely to be part of
the normal distribution around the concordant profile, rather than a discrete
phenotype, better separation of this and other profiles can potentially be achieved
through a more comprehensive biomarker assessment.

We used biomarker data from European populations, mainly because this was the
predominant ancestry with data available across discovery and replication cohorts.
We show nonetheless that taking the European discordance distribution as
reference, we could assess the pattern of discordance in African and South Asian
populations in UK Biobank. The samples sizes of these populations are much less
than the European and are therefore not adequately powered to detect some of the
discordant profiles.

Overall, sex-specific, and nonlinear BMI effects

In this study, we investigated the linear effect of BMI on multiple cardiometabolic
outcomes, and the heterogeneity of causal estimates stratified by sex and age, and
at different levels of BMI, deriving estimated shapes of these causal relationships.
Overall, we found widespread effects of BMI on multiple biomarkers and disease
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phenotypes, with consistent positive effects on CAD, T2D, HTN and an
unfavourable lipid profile characterised by lower HDL and higher TG, reflecting the
predominant concordant obesity phenotype characterised in Paper 1.

In the comparison of causal effects between sexes, we found that higher BMI is
linked to CAD in men, but this connection is attenuated in women. Specifically,
postmenopausal women show the most significant decrease in this association.
Previous prospective studies have also noted that after menopause, central adiposity,
rather than overall adiposity reflected by BMI, remains linked to CAD in women
(168). Nonetheless, BMI was negatively associated with LDL, a major risk factor
for CAD, and this association was more negative in men than women. It has been
previously observed that individuals who have CAD despite having low levels of
LDL are more likely to be male, and also have a worse overall profile, with higher
glycaemia and triglycerides and lower HDL, compared to individuals with CAD and
higher levels of LDL (169). This is likely a consequence of changes in lipid
subfractions seen in obesity, with the predominance of small, dense LDL over larger
LDL particles, a change that is more pronounced in men than women (170), and
strongly associated with higher risk of CVD (171).

Our results highlight a nonlinear association between BMI and glycaemia.
Similar findings were derived using orthogonal nonlinear MR techniques (172). The
curve increases rapidly over a BMI of 25 kg/m? and is steeper in men than women,
consistent with observational and overall MR estimates (173), indicating more
detrimental effect on glycemia at higher BMIs, and also implying a beneficial effect
of modest reductions in weight at higher BMIs (174). At the lower end of the BMI
spectrum, estimates from the doubly ranked method show that the curve for glucose
flattened while the curve for HbAlc was more variable and tended upwards. The
interpretation of these effects is challenging because the segment of the population
below the normal BMI range can include individuals with comorbidities associated
with wasting that could affect glucose metabolism (175). However, it can also
include lean cases of T2D, which occur more frequently in men, and is usually
characterised by postprandial glucose peaks rather than sustained hyperglycaemia,
which could be a cause of discordance between HbA 1c and glucose (176,177).

It has been recently recognised that the original approach of nonlinear MR applied
in Paper 1V, referred to as the residual method, can produce biased estimates,
especially when the assumption of a constant genetic effect on the exposure across
strata in the population is violated (130). The doubly ranked method intends to solve
through its ranking method which effectively controls the heterogeneity in the
exposure association, while still obtaining strata where the average level of the
exposure is increasing (131). The primary results from the residual method were
found to be robust to changes in the approach, which enhances the validity of our
findings. Both methods are, nonetheless, sensitive to selection bias in the population
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under study, which can give nonsensical results, such as causal associations of BMI
with age and sex that varies across BMI strata (178). Given that this issue is less
severe as samples are more representative of the source population (157,175),
replication in unselected samples are needed to properly evaluate the external
validity of our findings.

Summary and conclusions

Obesity profiles with either diabetogenic or antidiabetogenic proclivities reveal
distinctive etiological subtypes, with key differences in fat distribution, blood
pressure and cholesterol content in HDL particles. We identify proteins related to
extracellular matrix remodelling as potential mediators of discordance in obesity
and prioritise 17 genes potentially involved in the molecular mechanisms of
discordance, involving pleiotropic effects across multiple tissues.

Similarly, we also identify two distinct T2D profiles with contrasting CVD risk,
highlighting the key role of VLDL metabolism in separating T2D from CVD risk,
and identifying eight discordant loci through bioinformatic evaluation, warranting
subsequent validation in experimental investigations. We show that adding
concordant and discordant predispositions can improve the predictive ability of
current stratification models for CVD, especially in men, where 8% of people are
reclassified into more appropriate risk categories, supporting the use of partitioned
PRS in classifying individuals according to the etiological source of their disease.

We also identified five distinct phenotypic profiles exhibiting diverse
relationships between BMI and risk biomarkers and varying degrees of CVD and
diabetes risks, reflecting substantial heterogeneity in the link between BMI and risk.
Conceptualising these as different subtypes of obesity requires further validation,
but incorporating phenotypic discordance with BMI enhances the prediction of
MACE and diabetes progression in the general population.

Finally, we use genetically driven causal inference analysis to estimate the overall
and sex-specific effect of BMI on multiple outcomes, finding consistent positive
effects on T2D, CAD, HTN and in dyslipidaemia. We found differences in the
causal effect of BMI on CAD, with stronger effects in men than women, and a non-
linear relationship BMI and glycaemia, with stronger positive effects at higher
BMIs.

These studies highlight the diverse nature of cardiometabolic conditions by

through genetic and phenotypic profilin, offering insights into the underlying
mechanisms and clinical implications of this diversity. By recognizing individual
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variability, integrating these findings into clinical care could lead to more precise
and tailored approaches in managing cardiometabolic diseases, potentially
enhancing clinical care.

Future perspectives

Our work on defining discordance using genetics can be extended beyond
cardiometabolic diseases, which could help gaining insights into the factors that
give rise to more resilient or more susceptible phenotypes, while also informing
pathways and therapeutic targets that could be used to uncouple diseases from its
complications. Such an extension could include autoimmune diseases, neurological
disorders, and cancer. Additionally, by investigating discordant phenotypes in
diverse ancestral populations, we can assess the generalizability of the observed
discordances and uncover population-specific factors influencing disease
susceptibility and progression.

Comprehensive functional characterisation of discordant genetic variants holds
promise in elucidating underlying biological mechanisms and molecular pathways
contributing to phenotypic discordance. Two targets identified in our analyses
(TIMP4 and DNAH10) are the subject of functional validation by other members of
our research group. Integration of genomics and other omics data with functional
experiments may reveal novel pathways underlying divergent disease outcomes,
paving the way for targeted interventions and precision medicine approaches.

Investigating treatment response in individuals with discordant phenotypes offers
insights into the effectiveness of interventions tailored to specific discordant
profiles. Individuals with concordant and discordant profiles may receive the same
treatment, such as both concordant and discordant obesity profiles having similar
odds of undergoing bariatric surgery. Due to their underlying physiological
differences, it is possible that their response varies. I am currently collaborating with
a consortium investigating the genetic factors of bariatric surgery outcomes in
thousands of individuals, which could give a unique opportunity to test these
hypotheses.

The development and validation of partitioned polygenic scores based on
discordant profiles can potentially enhance risk prediction while improving the
understanding of the aetiology of disease. Integrating genetic data representing
distinct phenotypic profiles may improve the accuracy and specificity of polygenic
risk scores for personalized risk assessment, facilitating early detection and
intervention strategies.
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Utilizing nonlinear techniques allow for the exploration of complex relationships
between genetic factors, biomarkers, and disease outcomes, which are unlikely to
be uniformly linear. In particular, our nonlinear dimension reduction technique can
be extended to incorporate additional biomarkers and diverse ancestries, improving
the understanding of phenotypic heterogeneity, and informing targeted interventions
and precision medicine approaches.

I am also involved in ongoing projects that explore the impact of longitudinal
trends on heterogeneity in cardiometabolic diseases, characterising distinct
trajectory patterns that could be used to better distinguish individuals with rapid
changes leading to more severe disease phenotypes. In this matter, continuous
monitoring technologies, and improved phenotyping methods is essential. Long-
term follow-up studies and comprehensive phenotypic profiling can elucidate the
dynamic nature of disease progression and identify novel prognostic markers and
therapeutic targets, ultimately enhancing patient outcomes and public health.

I believe that understanding average trends and relationships is important to
deliver effective interventions at the population level. However, as the papers in this
thesis show, there are individuals who deviate from these expected trends. As we
advance in data collection and analytical capabilities, my vision for the future is
clinical care that effectively incorporates this information, potentially moving away
from categorisation using hard clinical entities to a multidimensional and
probabilistic approach to treatment.
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Popular science summary

Cardiometabolic diseases like obesity and type 2 diabetes represent significant
public health concerns worldwide, contributing substantially to mortality rates,
primarily due to cardiovascular disease. However, the manifestation of these
conditions varies widely among individuals, with some experiencing severe
complications while others remain relatively unaffected. To understand this
variability better, in this thesis [ used genetic and biomarker data from large studies,
exploring the factors associated with a disproportionately higher or lower risk of
complications commonly associated with obesity and type 2 diabetes.

In Paper I, I examined what are the main differences between two genetically
determined obesity profiles, one of which is associated with a ‘concordant’ higher
risk of type 2 diabetes, while the other profile, which we called ‘discordant’, is
associated with protection against type 2 diabetes. We found that key distinctions
between these two profiles are how adipose tissue is distributed in the body, the
vascular function, reflected by blood pressure, and the microenvironment in which
adipose tissue cells live. We identify 17 genes that, when more or less abundant,
have a discordant effect, being protective against type 2 diabetes despite being
associated with obesity. These genes could potentially be used, for example, as
medication targets to improve sugar levels in individuals with obesity.

In Paper II, I extended this analysis to focus on genetically determined type 2
diabetes profiles, which are either concordant or discordant in their association with
cardiovascular disease. By comparing these profiles, I uncovered insights into how
certain metabolic pathways, particularly those involving very low-density
lipoprotein metabolism, play a pivotal role in determining cardiovascular risk in
individuals with type 2 diabetes. This research identified eight genetic loci
associated with cardioprotective effects in type 2 diabetes, some of which contain
target genes of current medications like statins and GLP-1 receptor agonists.
Additionally, we found that adding polygenic scores representing these profiles to
common cardiovascular risk markers can improve cardiovascular disease
prediction, especially in men, updating the probabilities of 5% of cases and 3% of
non-cases in the right direction.

In Paper III, I introduced an approach composed of various machine learning
algorithms to identify distinct subgroups within the population with unexpected
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variations in common biomarkers of cardiovascular risk relative to their body mass
index, that is, being either concordant or discordant for their body size. This method
revealed that approximately 20% of individuals show significant deviations from
expected biomarker levels based on their body mass index. We found five distinct
patterns of discordance between biomarkers and body mass index, with significant
differences in men and women. These discordant profiles differ from the concordant
profile in their association with the prevalence and incidence of cardiovascular
disease and can also enhance cardiovascular risk prediction. We found that adding
discordant profile information to common cardiovascular risk markers led to
improvements in prediction that are comparable to adding low-density lipoprotein
levels, a known important cardiovascular risk factor.

Lastly, in Paper IV, I contributed to an investigation into the causal effects of
BMI on various health outcomes, including type 2 diabetes and cardiovascular
disease, using a method called Mendelian randomisation, which leverages the
inherent randomness of genetics as a natural random experiment of nature, similar
to the random assignment into different treatment groups in a drug trial. We found
consistent positive effects of BMI on type 2 diabetes risk across sexes while
observing sex-differential effects on coronary artery disease. Additionally, we found
evidence of nonlinear effects of BMI particularly in lipid blood sugar levels.

In conclusion, through comprehensive genetic and phenotypic analyses of
divergent manifestations of cardiometabolic diseases like obesity and type 2
diabetes, we underscore key mechanisms for why some individuals are more
susceptible to complications than others. We show potential clinical applications of
these analyses, by informing potential molecular targets for intervention and
through improvements in cardiovascular risk prediction. These findings offer
insights for the development of more targeted interventions and personalized
treatment strategies in cardiometabolic diseases.
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Popularvetenskaplig sammanfattning

Kardiometabola sjukdomar som fetma och typ 2-diabetes utgér betydande
folkhélsoproblem 6ver hela virlden och bidrar vasentligt till dodligheten, framst till
foljd av hjart-kérlsjukdomar. Dock varierar manifestationen av dessa tillstind
kraftigt bland individer, dér vissa upplever allvarliga komplikationer medan andra
forblir relativt opaverkade. For att béttre forstd denna variation anvinde jag
genetiska och biomarkorsdata fran stora studier for att utforska faktorer som é&r
associerade med en oproportionellt hogre eller lagre risk for komplikationer som
vanligtvis édr forknippade med fetma och typ 2-diabetes.

I forsta studien undersokte jag de frdmsta skillnaderna mellan tva genetiskt
bestdmda fetmaprofiler, varav den ena dr associerad med en 'konkordant' hogre risk
for typ 2-diabetes, medan den andra profilen, som vi kallade 'diskordant', &r
forknippad med skydd mot typ 2-diabetes. Vi fann att nyckelskillnaderna mellan
dessa tvé profiler 4r hur fettvdvnaden fordelas i kroppen, den vaskuléra funktionen,
som aterspeglas av blodtrycket, och den ndrmaste miljon (s k mikromiljon) dar
fettvivnadsceller lever. Vi identifierade 17 gener som, nir de &r mer eller mindre
uttryckta i celler, har en skyddande effekt mot typ 2-diabetes trots att de é&r
forknippade med fetma. Dessa gener kan potentiellt anvéndas for att utveckla nya
behandlingar for att forbéttra sockernivaerna hos personer med fetma.

I artikel I utvidgade jag denna analys for att fokusera pé genetiskt bestimda typ
2-diabetesprofiler, som antingen &r konkordanta eller diskordanta i sin association
med hjart-kérlsjukdom. Genom att jimfora dessa profiler avslojade jag insikter om
hur vissa metabola végar, sérskilt de som involverar metabolismen av mycket
lagdensitetslipoprotein, spelar en avgorande roll for att bestimma hjért-kérlrisken
hos personer med typ 2-diabetes. Vi identifierade tta genetiska markdrer kopplade
till skydd mot kardiovaskulér sjukdom vid typ 2-diabetes. Négra av dessa dr mal for
nuvarande ldkemedel s& som statiner och GLP-1-receptorblockare. Vi kunde dven
visa att om man adderar genetisk risk podng bestdende av minga genvarianter (s k
polygen risk score) som representerar dessa profiler till vanliga markorer for hjart-
karlrisk kan forbéttra prognosen for hjart-kérlsjukdom, sarskilt hos mén.

I artikel III introducerade jag en metod bestdende av olika
maskininldrningsalgoritmer for att identifiera specifika subgrupper inom
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populationen med ovéntade variationer i vanliga biomarkorer for hjart-kérlrisk i
forhallande till deras BMI (ett métt pa fetma), det vill séga att vara antingen
konkordanta eller diskordanta for sin kroppsstorlek. Denna metod avsléjade att cirka
20% av individerna visar betydande avvikelser fran forviantade biomarkorsnivéer
baserat pd deras BMI. Vi fann fem distinkta monster av diskordans mellan
biomarkoérer och BMI, med betydande skillnader mellan mén och kvinnor. Dessa
diskordanta profiler skiljer sig fran den konkordanta profilen i deras association med
forekomsten och insjukningsfrekvens av hjért-kérlsjukdom och kan ocksa forbéttra
prognosen for hjért-kérlrisk. Vi fann att genom att ldgga till information om
diskordanta profiler till vanliga markorer for hjért-kérlrisk ledde till forbéttringar i
prognos som &r jdmforbara med att lagga till lagdensitetslipoproteinnivéer, en kénd
viktig riskfaktor for hjért-kérlsjukdom.

Slutligen bidrog jag i artikel IV till en undersokning av de kausala effekterna av
BMI pa olika hélsorelaterade resultat, inklusive typ 2-diabetes och hjért-
kérlsjukdom, med hjilp av en metod som kallas Mendelsk randomisering. Metoden
utnyttjar det faktum att gener fordelas slumpmissigt vid befruktning som ett
naturligt experiment, liknande den slumpmaissiga tilldelningen till olika
behandlingsgrupper i en likemedelsstudie. Vi fann positiva kopplingar mellan BMI
och risken for typ 2-diabetes i bade mén och kvinnor medan vi observerade
konsspecifika effekter pa hjartkarlssjukdom. Dessutom fann vi bevis for icke-linjéira
effekter av BMI sérskilt pé lipid- och blodsockernivéer.

Sammanfattningsvis, genom omfattande genetiska och fenotypiska analyser av
olika manifestationer av kardiometabola sjukdomar sa som fetma och typ 2-diabetes
understryker vi viktiga mekanismer for varfor vissa individer d4r mer mottagliga for
komplikationer &n andra. Vi visar potentiella kliniska tillimpningar av dessa
analyser genom att visa mojliga molekyldra mal for intervention och genom
forbattringar av prognoser for hjart-kérlrisk. Dessa resultat kan leda till utvecklingen
av mer riktade interventioner och personliga behandlingsstrategier.
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