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Real-time Bayesian Control of Reactive
Brain Computer Interfaces
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Abstract: This paper introduces an improved method for real-time brain computer interface
control. We demonstrate how Bayesian optimization and feedback can be used to achieve faster
statistical convergence by controlling the sequence of stimuli shown in a brain computer interface
based on a visual oddball paradigm.

Keywords: Control in neuroscience, Biomedical system modeling, simulation and visualization,
Bayesian methods, Parameter and state estimation, Input and excitation design

1. INTRODUCTION

Brain computer interfaces (BCIs) are devices that enable
direct human-to-machine communication without using
regular pathways such as peripheral nerves or muscles,
Wolpaw et al. (2002). A distinction can be made between
active and reactive BCIs. With an active BCI, the user is
intentionally encoding mental states used as instructions
for the system to act upon, for example by thinking left,
stop, forward. This classification requires a long individual
calibration time to obtain high accuracy.

In contrast, a reactive BCI analyzes the subject’s brain
response to external stimuli. The typical example is to
attempt classification of a stimulus based on the recorded
response. In its simplest form, possible responses are
partitioned into one target category, and one non-target
category. This could be a user who is actively focusing on
an infrequently shown target category (oddball paradigm)
among a series of stimuli. Taking images from Fig. 1 as an
example, displaying one person at a time, green persons
could be the target category, while all non-green persons
would be the non-target category.

One modality used to capture brain signals in wearable
BCIs is the electroencephalogram (EEG), non-invasively
collected through a number of electrodes placed along the
scalp. When a subject is presented a sequence of stimuli
and the subject is focusing on the target stimulus, for ex-
ample by counting the number of occurrences, the recorded
EEG will differ depending on whether a stimulus is target
or non-target. To simplify the discussion, we will assume
that some suitable algorithm transforms each stimulus re-
sponse EEG time series to a real number, suitable for sep-
arating target from non-target responses. Representative
examples of target and non-target distributions, estimated
from real data using four different methods (see sections
2.6 and 3.1), are shown in Fig. 2.
★ All authors are members of the ELLIIT Excellence Center at Lund
University.

Fig. 1. Some of the visual color stimuli used in the Clear by
Mind brain game from the BCI-HIL research frame-
work published by Gemborn Nilsson et al. (2023).

Fig. 2. Data distributions when mapping the multi-channel
EEG epoch data to a real-valued output. Gaussian
mixture models (GMMs) 𝑓0 and 𝑓1 are estimated from
the dataset described in section 3.1.

In this setting, a relevant problem is for the BCI system
to rapidly guess, based on consecutive stimulus–response
data, which stimulus category is the target. A few re-
cent studies have proposed and evaluated heuristics for
improving reactive BCI performance through feedback
techniques. In Ma et al. (2021) an algorithm for adaptive



stimulus selection was developed and the speed of a BCI
speller was reported to be increased by 70 percent by use of
Thompson sampling, a classical method from the domain
of so called multi-armed bandit problems.

In this paper, we continue work in this area and show how
feedback and Bayesian optimization of stimulus selection
can be applied to further improve classification efficiency.

To illustrate the ideas we choose to apply closed loop
control on a reactive BCI based on visual stimuli, as
described by Vidal (1973). The setup uses the P300
response, an event-related response potential found about
300 ms after stimuli that induce a "working memory
update", described by Chapman and Bragdon (1964). It is
one of the most studied evoked response potentials (ERPs)
and can be used to separate target from non-target stimuli,
see Kappenman and Luck (2011). A subject’s evoked
response to visual stimuli as seen in Fig. 1 is recorded as a
fixed length time series containing multiple EEG channels,
together forming a one-second epoch.

2. METHOD

2.1 Stochastic stimulus–response model

We denote the sequence of 𝑇 consecutive stimuli

𝒖 =

[
𝑢1 . . . 𝑢𝑇

]⊤
, (1)

where each stimulus is coded as an integer, representing
one out of 𝐶 possible, mutually exclusive, categories, i.e.

𝑢𝑡 ∈ {1, . . . , 𝐶} ≜ 𝑈, 𝑡 = 1, . . . , 𝑇 . (2)

To make the framework for the stimulus control problem
general, we will assume that the evoked measured brain
responses are mapped into real numbers denoted

𝒚 =

[
𝑦1 . . . 𝑦𝑇

]⊤
. (3)

Furthermore, events are for simplicity assumed to be
independent in the sense that 𝑦𝑡 is only affected by 𝑢𝜏

if 𝑡 = 𝜏. One of the stimuli categories, 𝑥 ∈ 𝑈, is denoted
the target, while the remaining 𝐶 − 1 categories are all
non-targets. The aim is to determine this unknown latent
variable 𝑥 from input-output data (𝒖, 𝒚). The response
𝑦𝑡 is assumed to follow a non-target distribution with
Probability Density Function (PDF) 𝑓0 if 𝑢𝑡 ≠ 𝑥, and a
target distribution PDF 𝑓1 if 𝑢𝑡 = 𝑥. For ease of notation
we introduce the compact notation

𝑓 (𝑦𝑡 |𝑢𝑡 , 𝑥) =
{
𝑓0 (𝑦𝑡 ) if 𝑢𝑡 ≠ 𝑥,

𝑓1 (𝑦𝑡 ) if 𝑢𝑡 = 𝑥.
(4)

The likelihood of observing 𝑦𝑡 as a response to 𝑢𝑡 is also
denoted L(𝑦𝑡 |𝑢𝑡 , 𝑥) = 𝑓 (𝑦𝑡 |𝑢𝑡 , 𝑥). As further discussed in
section 5, the PDF 𝑓 is in this paper assumed to be static
and known. In section 2.6, some alternatives for estimating
these distributions from real data are explained. The, very
relevant, problem of updating estimates of 𝑓0 and 𝑓1 from
new data is not considered here.

Next, we express the likelihood of 𝒚 conditioned on the
underlying stimuli 𝒖 and the target category, 𝑥, being 𝑘:

L𝑘 ≜ L(𝒚 |𝒖, 𝑥 = 𝑘) =
𝑇∏
𝑡=1

𝑓 (𝑦𝑡 |𝑢𝑡 , 𝑘). (5)

The maximum likelihood target estimator is thus
𝑥𝑀𝐿 = argmax

𝑘∈{1,...,𝐶 }
L𝑘 . (6)

To compute the probability that a candidate 𝑘 is the
target, conditioned on the data, the known distributions,
and an a priori assumption of equally likely targets, Bayes’
formula gives

𝑝𝑘 |𝒖, 𝒚 ≜ 𝑃(𝑥 = 𝑘 |𝒖, 𝒚) = L𝑘∑𝐶
𝑖=1 L𝑖

. (7)

Assume we have access to 𝒑 = [𝑝1 . . . 𝑝𝐶 ]⊤, choose the
next stimulus 𝑢, and observe the resulting response 𝑦. The
probability of 𝑘 being the target 𝑝𝑘 can then be updated
as 𝑝+

𝑘
:

𝑝+𝑘 (𝑦 |𝑢, 𝒑) = 𝑃(𝑥 = 𝑘 |𝑢, 𝑦, 𝒑)

=
𝑓 (𝑦 |𝑢, 𝑘)L𝑘∑𝐶
𝑖=1 𝑓 (𝑦 |𝑢, 𝑖)L𝑖

=
𝑓 (𝑦 |𝑢, 𝑘)𝑝𝑘∑𝐶
𝑖=1 𝑓 (𝑦 |𝑢, 𝑖)𝑝𝑖

.
(8)

The vector 𝒑 of probabilities hence constitutes a sufficient
statistic for updating the target probability distribution
amongst the candidates after a new stimulus-response pair.

We are now faced with an experiment design choice: How
should we select the next stimulus 𝑢?

2.2 Naive candidates for stimuli selection

Naive candidates for this experiment design step are:

• Round robin: Given the previous input 𝑢−, the next
input is chosen as 𝑢 = mod (𝑢− , 𝐶) + 1.

• Uniform random: The next input 𝑢 is drawn from a
discrete uniform distribution over 𝑈.

• Thompson sampling: Assign 𝑢 randomly, stratified by
belief, so that 𝑃(𝑢 = 𝑖) = 𝑝𝑖.

• Favorite: Choose the 𝑢 we currently believe is the
most likely target, the one with the highest 𝑝.

In section 4 we will compare these naive alternatives to
the one we propose in this paper:

• Target expectation maximization (TEM): Choose 𝑢 to
maximize the next true target probability 𝑝+𝑥 .

A survey of strategies for multi-armed bandit problems
can be found in Heskebeck et al. (2022).

2.3 Analysing a simple but non-trivial case

Given 𝐶 ≥ 3 (the other cases being trivial) categories and
the possibility to show only 𝑇 = 2 consecutive stimuli
𝑢1 and 𝑢2, what is the optimal decision strategy for
maximizing the expectation of the true target probability
𝑝𝑥 based on stimuli 𝑢1, 𝑢2, responses 𝑦1, 𝑦2, and knowing
the distributions 𝑓0, 𝑓1? We will assume that we are
allowed to use information conveyed by the first stimulus-
response pair 𝑢1, 𝑦1 to decide the second stimulus 𝑢2.

Using (5) and (7), while assuming a uniform initial prob-
ability vector 𝒑, the true target probability is



𝑝𝑥 | (𝑢1, 𝑢2, 𝑦1, 𝑦2) =
L𝑥 (𝒚 |𝒖, 𝑥)∑𝐶
𝑖=1 L𝑖 (𝒚 |𝒖, 𝑖)

=
𝑓 (𝑦1 |𝑢1, 𝑥) 𝑓 (𝑦2 |𝑢2, 𝑥)∑𝐶
𝑖=1 𝑓 (𝑦1 |𝑢1, 𝑖) 𝑓 (𝑦2 |𝑢2, 𝑖)

.

(9)

At start we consider it equally likely that the target is
either of the 𝐶 categories, and therefore can choose 𝑢1
randomly. After having shown 𝑢1 and observed 𝑦1 we
define 𝑤(𝑦1) as

𝑤(𝑦1) ≜ 𝑃(𝑢1 = 𝑥 |𝑦1) =
𝑓1 (𝑦1)

(𝐶 − 1) 𝑓0 (𝑦1) + 𝑓1 (𝑦1)
, (10a)

𝑃(𝑢1 ≠ 𝑥 |𝑦1) = 1 − 𝑤(𝑦1). (10b)

The two strategies we can choose between are 𝑢2 = 𝑢1 and
𝑢2 ≠ 𝑢1. For the latter strategy, we do not have information
to make an educated choice between the 𝐶 − 1 stimuli
candidates. This symmetry motivates us to treat 𝑢2 ≠ 𝑢1
as one case, rather than 𝐶 − 1 statistically identical cases.

Since 𝑢1 carries no information, the only decision support
we have for choosing 𝑢2 is the observed 𝑦1, and our
complete knowledge of 𝑓0 and 𝑓1.

Let us begin with investigating the strategy 𝑢2 = 𝑢1. With
probability 𝑤(𝑦1) we have 𝑥 = 𝑢1, resulting in

L𝑥 | (𝑢1 = 𝑢2 = 𝑥) = 𝑓1 (𝑦1) 𝑓1 (𝑦2). (11a)

With probability 1−𝑤(𝑦1) we instead have 𝑢1 ≠ 𝑥, in which
case the 𝑢1 = 𝑢2 strategy gives

L𝑥 | (𝑢1 ≠ 𝑥, 𝑢2 = 𝑢1) = 𝑓0 (𝑦1) 𝑓0 (𝑦2). (11b)
With 𝐵 = 𝐶 − 1 to shorten equations, we have that

𝐶∑︁
𝑖=1

L𝑖 | (𝑢2 = 𝑢1) = 𝐵 𝑓0 (𝑦1) 𝑓0 (𝑦2) + 𝑓1 (𝑦1) 𝑓1 (𝑦2). (12)

Hence the expectation of the correct target probability, as
a function of 𝑦1, conditioned on 𝑢1 = 𝑢2 is

E 𝑝𝑥 (𝑦1) | (𝑢1 = 𝑢2) =

𝑤(𝑦1)
∫

𝑓1 (𝑦1) 𝑓1 (𝑦2)
𝐵 𝑓0 (𝑦1) 𝑓0 (𝑦2) + 𝑓1 (𝑦1) 𝑓1 (𝑦2)

𝑓1 (𝑦2)𝑑𝑦2

+ (1 − 𝑤(𝑦1))
∫

𝑓0 (𝑦1) 𝑓0 (𝑦2)
𝐵 𝑓0 (𝑦1) 𝑓0 (𝑦2) + 𝑓1 (𝑦1) 𝑓1 (𝑦2)

𝑓0 (𝑦2) 𝑑𝑦2

=
1

𝐵 𝑓0 (𝑦1) + 𝑓1 (𝑦1)

∫
𝑓 21 (𝑦1) 𝑓 21 (𝑦2) + 𝐵 𝑓 20 (𝑦1) 𝑓 20 (𝑦2)
𝐵 𝑓0 (𝑦1) 𝑓0 (𝑦2) + 𝑓1 (𝑦1) 𝑓1 (𝑦2)

𝑑𝑦2.

(13)

For the case where 𝑢2 ≠ 𝑢1 we instead have three possible
cases. First, with probability 𝑤(𝑦1) we have 𝑢1 = 𝑥, in
which case the 𝑢1 ≠ 𝑢2 strategy gives

L𝑥 | (𝑢1 = 𝑥, 𝑢2 ≠ 𝑢1) = 𝑓1 (𝑦1) 𝑓0 (𝑦2). (14)
Second, with probability

𝑤2 (𝑦1) ≜
𝑓0 (𝑦1)

(𝐶 − 1) 𝑓0 (𝑦1) + 𝑓1 (𝑦1)
=
1 − 𝑤(𝑦1)
𝐶 − 1

, (15)

we have 𝑢1 ≠ 𝑥 and 𝑢2 = 𝑥, giving
L𝑥 | (𝑢1 ≠ 𝑥, 𝑢2 = 𝑥) = 𝑓0 (𝑦1) 𝑓1 (𝑦2). (16)

Finally, with probability (𝐶 − 2)𝑤2 (𝑦1) = (𝐶 − 2) (1 −
𝑤(𝑦1))/(𝐶 − 1) we have 𝑢1 ≠ 𝑥 and 𝑢2 ≠ 𝑥, giving

L𝑥 | (𝑢1 ≠ 𝑥, 𝑢2 ≠ 𝑢1) = 𝑓0 (𝑦1) 𝑓0 (𝑦2). (17)

Fig. 3. Expectation of target probability E 𝑝𝑥 when show-
ing the same stimuli 𝑢2 = 𝑢1, as a function of 𝑦1.

Fig. 4. Expectation of target probability E 𝑝𝑥 when show-
ing different stimuli 𝑢2 ≠ 𝑢1, as a function of 𝑦1.

Fig. 5. Summary of Fig 3 and 4 showing the TEM al-
gorithm decision boundary: The optimal choice when
𝑦1 < 0.5 is to choose the next stimuli as 𝑢2 ≠ 𝑢1. When
𝑦1 >= 0.5, choose 𝑢2 = 𝑢1, since this will maximize
the resulting certainty and lead to a faster decision
on guessing the target class.

With the notation

𝑑 (𝑦1, 𝑦2) =
𝐶∑︁
𝑖=1

L𝑖 | (𝑢2 ≠ 𝑢1)

= (𝐶 − 2) 𝑓0 (𝑦1) 𝑓0 (𝑦2) + 𝑓0 (𝑦1) 𝑓1 (𝑦2) + 𝑓1 (𝑦1) 𝑓0 (𝑦2),
we get the corresponding expected value of 𝑝𝑥 , marginal-
ized over 𝑦2, as function of 𝑦1



E 𝑝𝑥 (𝑦1) | (𝑢1 ≠ 𝑢2) =

𝑤(𝑦1)
∫

𝑓1 (𝑦1) 𝑓0 (𝑦2)
𝑑 (𝑦1, 𝑦2)

𝑓0 (𝑦2) 𝑑𝑦2

+ 𝑤2 (𝑦1)
∫

𝑓0 (𝑦1) 𝑓1 (𝑦2)
𝑑 (𝑦1, 𝑦2)

𝑓1 (𝑦2) 𝑑𝑦2

+ (𝐶 − 2)𝑤2 (𝑦1)
∫

𝑓0 (𝑦1) 𝑓0 (𝑦2)
𝑑 (𝑦1, 𝑦2)

𝑓0 (𝑦2) 𝑑𝑦2.

(18)

Fig. 3, Fig. 4 and Fig. 5 show results for the case where
non-target responses are distributed as N(0, 1) and target
responses as N(1, 1) so

𝑓0 (𝑦) =
1

√
2𝜋

𝑒−
1
2
𝑦2 , 𝑓1 (𝑦) =

1
√
2𝜋

𝑒−
1
2
(𝑦−1)2 . (19)

2.4 Target expectation maximization (TEM)

When we are to decide on which of the possible stimulus
candidates 𝑢 to present, we do of course not yet have access
to the resulting response 𝑦. All we know is that 𝑦 will follow
the target distribution with probability 𝑝𝑢 and the non-
target distribution with probability 1− 𝑝𝑢. Presenting the
stimulus 𝑢, the likelihood of the resulting response 𝑦 is

L(𝑦 |𝑢) = 𝑝𝑢 𝑓 (𝑦 |𝑢, 𝑥 = 𝑢) + (1 − 𝑝𝑢) 𝑓 (𝑦 |𝑢, 𝑥 ≠ 𝑢). (20)
Since L(𝑦 |𝑢) integrates to unity over 𝑦, we can simply say
that 𝑦 will follow a distribution with PDF

𝑔(𝑦 |𝑢) = L(𝑦 |𝑢). (21)

If we treat 𝑝+
𝑘

of (8) as an ordinary function of the
stochastic variable 𝑦, we can thus compute the expectation

𝑝∗𝑘 (𝑢) ≜ E 𝑝+𝑘 (𝑦 |𝑢) =
∫

𝑝+𝑘 (𝑦 |𝑢)𝑔(𝑦 |𝑢) 𝑑𝑦, (22)

and treat it as an ordinary function of 𝑢.

One candidate for this choice is to maximize the expecta-
tion of the updated true target probability 𝑝𝑥 . Since we
(obviously) do not know which candidate is the target, we
will rely on our prior belief 𝒑 and choose

𝑢∗ = argmax
𝑢∈{1,...,𝐶 }

𝐶∑︁
𝑘=1

𝑝𝑘 𝑝
∗
𝑘 (𝑢). (23)

2.5 One Step Optimization

An alternative criterion for choice of stimulus 𝑢 is to
maximize the success probability for maximum likelihood
to produce the correct choice after the next experiment
result (𝑢, 𝑦) has been obtained. This is the optimal strategy
if it is decided that only one more stimulus is to be shown
before a classification decision must be taken.

Notice that, after showing a stimuli 𝑢 = 𝑖, the pairwise
quotient of all other 𝑝 𝑗 where 𝑗 ≠ 𝑖 will remain constant.
Thus, with categories relabeled such that 𝑝1 ≥ 𝑝2 ≥
. . . 𝑝𝐶 , after showing 𝑢 = 1 the only two candidates for 𝑥𝑀𝐿

will become 1 and 2. Similarly, when showing 𝑢 = 𝑖 ≠ 1, the
only two candidates for 𝑥𝑀𝐿 will become 𝑖 and 1. When
displaying 𝑢 = 𝑖 we get a decision boundary (as a function
of 𝑦) between the candidates 𝑖, 𝑗 , given by

𝑥𝑀𝐿 =

{
𝑖 if 𝑝𝑖 𝑓1 (𝑦) ≥ 𝑝 𝑗 𝑓0 (𝑦)
𝑗 otherwise.

(24)

To simplify further analysis, we assume that (19) holds,
and consider each of the two cases one at a time.

Case 1: When category 𝑢 = 1 is used, (6) gives

𝑥𝑀𝐿 =

{
1 if 𝑦 ≥ 𝑟 ( 𝑝1

𝑝2
)

2 otherwise,

where the decision threshold 𝑟 is given by 𝑟 (𝛼) = 1
2−log(𝛼).

The probability of a successful ML decision, 𝑃(𝑥𝑀𝐿 = 𝑥),
is in this case (where Φ denotes the CDF of N(0, 1))

𝑃1 :=

(
1 −Φ

(
𝑟

(
𝑝1

𝑝2

)
− 1

))
𝑝1 +Φ

(
𝑟

(
𝑝1

𝑝2

))
𝑝2.

Case 2: If 𝑢 > 1 is used, then instead we have

𝑥𝑀𝐿 =

{
𝑢 if 𝑦 ≥ 𝑟 ( 𝑝𝑢

𝑝1
)

1 otherwise.

The probability of a successful ML decision is in this case

𝑃𝑢 :=

(
1 −Φ

(
𝑟

(
𝑝𝑢

𝑝1

)
− 1

))
𝑝𝑢 +Φ

(
𝑟

(
𝑝𝑢

𝑝1

))
𝑝1.

Using that 1 − Φ(𝑦) = Φ(−𝑦) and 𝑟 (𝛼) = 1 − 𝑟 (𝛼−1) it
is easy to see that 𝑃1 = 𝑃2. Further analysis also shows
that 𝑃1 ≥ 𝑃𝑢 for all 𝑢. Any of the two top candidates
corresponding to 𝑝1 and 𝑝2 are hence optimal for one step
optimization.

2.6 From EEG epochs to Gaussian mixture models

The stimulus control algorithm presented assumes the
existence of some algorithm that reduces the dimension
of the evoked EEG response into one single number 𝑦 ∈ R,
to be used for target classification. This can be done in
several ways. We have investigated some alternatives based
on Riemannian distance between covariance matrices, av-
eraging of percentile amplitudes, and absolute area under
the curve, all with the goal of obtaining good separation
between distributions of 𝑦’s for the target and non-target
classes. Due to the inherently noisy nature of EEG signals,
the separation will not be perfect, and the probability
density function of non-targets 𝑓0 and targets 𝑓1 may
overlap.

When estimating 𝑓0 and 𝑓1 using Riemannian geome-
try, we first reduce the number of channels by apply-
ing a spatial filter, xDAWN, introduced by Rivet et al.
(2009). Then, augmented ERP-covariance matrices are
constructed, as introduced by Congedo et al. (2013). Fi-
nally, using the Riemannian metric for symmetric positive
definite matrices presented by Moakher (2005), for target-
class data, the geometric mean covariance matrix can be
computed iteratively as in Fletcher et al. (2004). Using the
Riemannian metric, distances from ERP-covariance ma-
trices for each epoch to the mean target ERP-covariance
matrix is computed. The processing steps described above
was done using either all 16 available EEG channels (FP1,
FP2, F5, AFz, F6, T7, Cz, T8, P7, P3, Pz, P4, P8, O1,
Oz and O2), or an eight channel subset (AFz, Cz, Pz, Oz,
P7, P3, P4 and P8) resembling the set used in Hoffmann
et al. (2008).

Notice that xDAWN, construction of ERP-covariance ma-
trices, and the computation of the mean-covariance ma-
trices for the target class, all need labeled training data
to fit parameters. In our case we used the first six sessions
out of eight as training dataset. Accordingly, the data used



to estimate the target and non-target PDFs of 𝑦 are the
epochs from the two remaining sessions.

Using percentile amplitudes, the mapping from one EEG-
epoch to a scalar value is done in two steps. First, for
each epoch and channel, the difference between the 95th
and 5th percentiles for the distribution of samples are
computed. Second, for each epoch, these differences are
averaged across all EEG channels, resulting in a scalar,
𝑦, representing each epoch. This was done for all eight
available sessions for one subject with 480 epochs per
session, 3840 in total.

Using absolute area under the curve, for each epoch and
channel, the sum of the absolute value of the time-series is
computed. Then, for each epoch, these sums are averaged
across all EEG channels, resulting in a scalar, 𝑦 repre-
senting each epoch. This was done for all eight available
sessions for one subject with 480 epochs per session, 3840
in total.

For each method listed above, the expectation maximiza-
tion (EM) algorithm was used to fit a Gaussian mixture
model (GMM) with three components for the target and
non-target distributions respectively. Histograms and fit-
ted GMMs for each method can be seen in Fig. 2.

3. SIMULATIONS

3.1 Dataset and analysis

The dataset used for empirical estimation of the target
and non-target distributions (see Figure 2) was the "Brain
Invaders 2013" dataset developed at the GIPSA-lab by
Congedo et al. (2011). The data was accessed with the
moabb Python package by Jayaram and Barachant (2018).
For the estimation of probability distributions we used
data from eight sessions recorded on a different days with
the first subject. Each session consists of 480 trials (80
target, 400 non-target), resulting in a total of 3840 epochs
(640 target, 3200 non-target). Each epoch contains one
second of EEG data starting from the stimuli onset.

The probability distributions, 𝑓0 and 𝑓1, used for simula-
tions was estimated using the method based on xDAWN,
ERP-covariance matrices and the Riemannian metric, here
applied to eight EEG channels. The resulting histograms
are shown in the lower left plot of Fig. 2 leading to 𝑓0 and
𝑓1 as seen in Fig. 6. Using these, we now simulate different
stimuli selection algorithms to understand their statistical
convergence properties.

3.2 Runtime and download

The computational complexity of the TEM algorithm
is low, making real-time decisions on stimuli selection
possible with embedded processors. We conducted 2048
simulations for each algorithm, using different random
seeds and thus different samples from the PDFs. The code
is written in Julia, takes less than a minute to run, and
can be downloaded from bci.lu.se/bayesian

4. RESULTS

Depending on how the next stimuli is chosen, the probabil-
ity for correctly classifying the target category differs. Al-

Fig. 6. Probability density functions 𝑓0 (𝑦) and 𝑓1 (𝑦) for
non-target respective target responses to a visual
stimuli. A Riemannian distance method and an eight
channel xDAWN spatial filter has been used to pro-
duce the real-valued coding 𝑦 of the EEG response.

Fig. 7. Mean probability of correct target classification as
a function of number of timesteps as a solid line for
different stimuli selection algorithms. The target is
represented by the upper blue area, which shows the
10th to 90th percentile of its distribution. The non-
targets are represented by the overlapping red, yellow
and green areas.

gorithms that don’t know the responses gotten so far gen-
erally perform the worst, as when making random or round
robin choices. The algorithms that perform the best adapts
to the responses gotten so far, like repeatedly choosing
to show the favorite category that we currently assess
having the highest probability, or the target expectation
maximization algorithm described in this paper. Fig. 7
shows how the Bayesian probability evolves for the target
category using 4 different stimuli selection algorithms.

The upper limit for any algorithm is the Oracle, which
already knows the correct category and cheats by choosing
that one all the time. We can compare and rate the
performance of algorithms by their statistical convergence,
as can be seen in Fig. ??.

Another way of presenting the performance of algorithms
is to register how many stimuli are needed to reach
a 95% confidence in the target category. By running



Fig. 8. Probability that a session has reached a correct
guess with a certainty of 0.95 as a function of number
of timesteps, using six different stimuli selection algo-
rithms. Oracle performs the best while breaking the
rules of the game. Random performs the worst. TEM
performs slightly better than the Thompson sampling
method used in Ma et al. (2021).

many simulations with the same algorithm with responses
sampled from the PDFs 𝑓0 and 𝑓1, we get the probability
that a certain algorithm has reached a 95% confidence after
a certain number of shown stimuli, as seen in Fig. 8.

5. DISCUSSION

In this paper we have investigated how different mech-
anisms for choice of presented stimuli affect accuracy
within a BCI prediction scenario. In particular, we have
used Bayesian analysis for the evolution of the probabil-
ity vector 𝒑 for some different methods and compared
performance by simulations. We determined the optimal
strategy for the case of a sequence of two consecutive
stimuli, 𝑇 = 2. We also proposed a method which can be a
good candidate for longer time horizons, where multistep
optimization remains computationally intractable.

Probability distribution functions 𝑓0 and 𝑓1 used in our
simulations are based on measured responses from EEG
captured during an experimental setup with a human
subject. The processing steps in the chosen Riemannian
method are fitted on data from sessions different than the
ones used for estimating the distributions, but still gives
good results, indicating robustness towards inter-session
variability. Distributions fitted to data from other subjects
show similar results, however inter-subject analysis are left
for future work.

It is also likely that faster convergence could be achieved
by more advanced mappings from EEG epochs to the tar-
get and non-target distributions, for example by allowing
for vector-valued representations.

An issue worthy of further consideration is better models
for the stimuli to response memory, since evoked response
potentials, like the P300 signal, are not memory-less. In
fact response strength typically increases, the more rare
the target stimulus is. This introduces an interesting trade-
off, reducing the efficiency of some methods.

The proposed TEM and the Favorite algorithms perform
equally well using known static PDFs for one subject.
However, when there is little or no previous EEG data

available for a new subject, we can neither assume that
the PDFs are known nor static. Transfer learning could
initially use known PDFs from other subjects and/or ses-
sions, but would need to update the PDFs while capturing
the responses of this new subject.
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