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Acoustic phonons are studied in finite nanowires based on the elastic continuum model. The phonon dispersion relations are
compared for different types of approximations both for pure nanowires and nanowire heterostructures including cubic and
wurtzite materials. We find that the isotropic approximation highly underestimates the frequency of torsional modes. The impact
of heterostructures on the lowest modes is rather weak and can be described by an average of the different structure parameters.

1. Introduction

The phonon spectrum for semiconductor nanowires is im-
portant for a variety of applications. On the one hand, nano-
wires are of high interest for thermoelectric applications [1,
2], where the energy transport by phonons deteriorates the
performance [3]. Furthermore, the phonon scattering is an
important feature for all sorts of electronic devices [4]. This
interaction could recently be directly experimentally accessed
[5, 6].

Currently, most calculations of the phonon spectrum are
done either within the isotropic approximations for ideal
(e.g., [7]) and coupled [8] quantum wires or using atomistic
approaches (e.g., [3, 9]). Here, we present corresponding
calculations using the commercial COMSOL package [10],
which allows to treat both the correct cubic material proper-
ties and nanowires with embedded heterostructures in a stra-
ightforward way. This enables us to check the quality of
the approximation by an isotropic material and the impact
of heterostructures [11] on the acoustic branches, which is
most important for the broadening of the zero photon line
[12].

Our paper is organized as follows: in Section 2, we show
how we extract the phonon dispersion relation from simula-
tions of a finite nanowire length. Here, we consider the iso-
tropic approximation, where one has easy access to analytical
results for comparison. Section 3 focuses on the cubic

material properties of GaAs wires, where we analyze the dif-
ferences for the acoustic branches. Nanowire heterostruc-
tures are considered in Section 4, where we show that the
acoustic branches are only weakly affected. The application
to wurtzite structures, see also [13], is demonstrated in
Section 5.

2. Obtaining the Phonon Spectrum from
Finite Nanowires

Throughout this work, we apply the elastic continuum mod-
el, which treats the crystal as a continuum. Thus, the internal
vibrations that give rise to the optical modes cannot be
considered in this model [14]. It is valid as long as the wave-
length of the phonon mode is much longer than the lattice
dimension.

The linear relation between stress T and strain S has the
general form

Ti =
6∑

j=1

ci jS j , (i = 1, 2, . . . , 6). (1)

Here, ci j are the elastic stiffness constants with 36 elements
in Voigt notation. These stiffness constants can be reduced
depending on the symmetries of the material. Many common
semiconductors having diamond structure (e.g., silicon and
germanium) or zincblende structure (e.g., GaAs and InAs)
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exhibit cubic symmetry. The matrix of elastic constants for
such materials has only three independent elements [15, 16],
c11, c12, and c44.

For isotropic approximation these three independent ela-
stic moduli for the cubic materials can be decreased into two
moduli, and they have been expressed by Lamé constants λ
and μ

λ = c12,

μ = (c11 − c12)
2

.
(2)

Then, the elastic moduli matrix in the isotropic approxima-
tion will only include both of Lamé constants as distinct con-
stants

c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2μ + λ λ λ 0 0 0

λ 2μ + λ λ 0 0 0

λ λ 2μ + λ 0 0 0

0 0 0 μ 0 0

0 0 0 0 μ 0

0 0 0 0 0 μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

As most of the materials have their elastic properties des-
cribed in terms of Young’s modulus E and Poisson’s ratio ν
[17], the two Lamé constants λ and μ can be written in terms
of E and ν [17]

λ = Eν

(1 + ν)(1− 2ν)
,

μ = E

2(1 + ν)
.

(4)

Here, we approximate the actual shape of the nanowires
by a cylinder with radius R, length l, and homogeneous mass
density ρ. The acoustic vibrational modes of an infinite cy-
linder can be classified into three types: longitudinal modes,
torsional modes, and flexural modes [17].

The longitudinal modes represent the vibrations of the
atoms around their equilibrium positions, where the dis-
placements of the atoms are mostly parallel to the direction
of the nanowire [17]. In contrast to bulk longitudinal modes,
there is also a small radial component due to the Poisson’s
ratio. The angular frequency ω of each mode is related to its
wavevector k by the following relation:

ω = ck, (5)

this relation is called the dispersion relation and the propor-
tionality constant is the mode velocity. The longitudinal
modes velocity clong have the form

clong =
√

E

ρ
. (6)

In the torsional vibrations, the radial displacement of the
atoms about their equilibrium positions is perpendicular to

the direction of the wave propagation. The torsional modes
also have linear dispersion relation as in (5), and the torsional
modes velocity ctor has the following form:

ctor =
√

μ

ρ
. (7)

The flexural modes are more complicated than the pre-
vious modes. The dispersion relation of the flexural modes is
quadratic

ω = fflexk
2, (8)

where the proportionality factor of the flexural modes reads

fflex =
√√√ER2

4ρ
. (9)

Simulating a finite nanowire by COMSOL, we obtain dir-
ectly the set of eigenfrequencies. From the spatial structure,
see Figure 1, we determine the character of the modes and
determine the wavevector k = 2π/λ by a close inspection
of the spatial periodicity of the mode (with period λ) in the
wire direction. One can clearly identify the different branches
from the infinite wire. Figure 2 shows the calculated lowest
frequencies for GaAs nanowire with isotropic approximation
of length 225 nm and radius 20 nm. In this way, we obtain the
dispersion relations (5), (8). From the data in Figure 2, we
extract the velocities clong = 3890 m/s and ctor = 2484 m/s.
These values are very close to the theoretical values given
by (6) and (7), clong = 4020 m/s, ctor = 2484 m/s. The
extracted proportionality factor of the flexural modes fflex =
4.7∗10−5 m2/s also agrees roughly with the theoretical value
given by (9), fflex = 4 ∗ 10−5 m2/s. We conclude that our
procedure allows to obtain reliable data for the dispersion
relations.

3. Isotropic Approximation versus
Cubic Nanowire

In this section, the isotropic symmetry, which manifests the
same result at any direction, will be compared to the actual
cubic symmetry of GaAs. As is well known and mentioned
above, the cubic symmetry has three distinct elastic moduli
whereas the isotropic material has only two independent
elastic constants. The question that arises currently is how
the dispersion relations of phonon modes, in material with
cubic symmetry, will differ from those that have been dis-
played previously with isotropic symmetry. The COMSOL
simulation tool allows for a treatment of both types of
symmetries, which are directly compared in this section.
For this purpose, we study the phonon modes in GaAs
nano-wires along [001] direction. In Figure 3, one can easily
notice the difference between the dispersion relations of
the two kinds of symmetries. The longitudinal modes have
similar dispersion relations in both, and they have almost
identical longitudinal velocities in the both symmetries. The
dispersion relation of the flexural modes in the two types
of symmetries are similar at lower frequencies, but they
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Table 1: The density (ρ) and the elastic properties Young’s modulus
(E) and Poisson’s ratio (ν) of materials of zincblende structure that
considered in this work as isotropic material.

Material ρ (kg/m3) E (GPa) ν

GaAsa 5318b 85.9 0.31

AlAsa 3598 83.5 0.32

InAsc 5667b 51.4 0.35

InPd 4810 61.1 0.36
a
: Elastic properties are from [18].

b: [17].
c: Elastic properties are from [19].
d: [20].

Table 2: The elastic moduli of materials with cubic symmetry.

Material c11 (GPa) c12 (GPa) c44 (GPa)

GaAsa 118.8 53.8 59.4

AlAsa 120.2 57 58.9
a
: [21].

manifest a divergence at high frequencies. More noticeable,
the torsional modes exhibit a significant difference in their
dispersion relations, as shown in Figure 3. For the cubic
material, we extract ctor = 3343 m/s, while the isotropic ap-

proximation provides ctor =
√
μ/ρ = 2484 m/s as addressed

above. This difference can be elucidated by the fact that the
Lamé coefficients extracted from the material parameters in
Table 1 by (4) satisfy λ = c12 and μ = (c11 − c12)/2 for
the cubic parameters from Table 2. Now, the isotropic ap-
proximation, see (3), requires c44 = (c11−c12)/2, which, how-
ever, does not hold exactly for cubic materials; see Table 2. In
contrast, the observed velocity ctor for the torsional modes

equals
√
c44/ρ in this case. As c44 > (c11 − c12)/2, the isotropic

approximation underestimates the torsional velocity in [001]
direction.

4. Acoustic Phonons in Nanowire
Heterostructure

Now, we consider acoustic phonons in nanowire heterostruc-
tures in order to compare the results to those of simpler pure
nanowires. We consider structures, where the wires consist of
segments of different materials stacked in the wire direction
as experimentally realized in [11]. Note that the interfaces
between the materials are perpendicular to the wire direction
in contrast to the case intensively studied by Balandin and
coworkers [22], where the interfaces are parallel to the wire
direction. Due to the lacking translational invariance in the
wire direction, k is not an exact quantum number for the
phonon modes in our case. Nevertheless, we can still extract
an average distance λ between nodes or maxima in the mode
profile as discussed above, and thus obtain an effective k =
2π/λ for comparison with the ideal wires.

We consider a nanowire of total length 225 nm. In the
middle, there is GaAs region with length 35 nm, embedded
between two barriers of AlAs of thickness 5 nm. The outer

Table 3: The density (ρ) and the elastic moduli of materials with
wurtzite symmetry.

Material
ρ

(kg/m3)
c11

(GPa)
c12

(GPa)
c13

(GPa)
c33

(GPa)
c44

(GPa)

GaNa,d 6095b 390 145 106 398 105

AlNc,d 3255b 410 148 99 388 130
a
: Elastic moduli are from [23].

b: [17].
c: Elastic moduli are from [24].
d: [16].

regions are again GaAs. This structure constitutes the proto-
type of an electron resonant tunneling nanowire device. The
acoustic phonons in the AlAs/GaAs/AlAs nanowire hetero-
structure display the same behavior as in the pure GaAs
nanowire of the same length; see Figure 4(a). Very slight
differences in the eigenfrequencies of the phonon modes
are observed due to existence of another material, and we
checked that these differences are getting larger by increas-
ing the amount of the other material. Consequently, the dis-
persion relations of all phonon modes are essentially the
same in a nanowire and a nanowire heterostructure. For
the heterostructure, we extract the values clong = 3898 m/s,
ctor = 2494 m/s, and fflex = 4.75 ∗ 10−5 m2/s in the iso-
tropic approximation, which are slightly larger than the cor-
responding values for pure GaAs wires are clong(GaAs) = 3881,
ctor(GaAs) = 2484 m/s, and fflex(GaAs) = 4.7 ∗ 10−5. The main
difference can be accounted for by considering an average
material of 95.556% GaAs and 4.444% AlAs, corresponding
to the composition of the finite wire. Then, we expect

clong(av) =
95.556∗ clong(GaAs) + 4.444∗ clong(AlAs)

100

= 3915 m/s,

(10)

and similarly ctor(av) = 2505 m/s and fflex(av) = 4.8 ∗
10−5 m2/s, which all slightly overestimate the increase.

Similar results have been obtained from the comparison
between phonon modes in nanowire and nanowire hetero-
structure with the cubic symmetry. The dispersion relations
of phonon modes in a cubic pure GaAs nanowire are in full
accord with those in a cubic GaAs/AlAs nanowire hetero-
structure, as it is illustrated in Figure 4(b). The phonon
modes in these two kind of nanostructures have also very
small variances in their eigenfrequencies due to the existence
of small part of another material which has different elastic
properties.

Indium arsenide (InAs) and indium phosphide (InP) also
have a zincblende structure with three independent elastic
constants. But for simplicity, we have used the isotropic
approximation to study the phonon modes in InAs/InP het-
erostructure. Then, the dispersion relations of the acoustic
phonon modes in InAs/InP heterostructure have been com-
pared to those in a pure InAs nanowire; see Figure 5. It is
difficult to distinguish the difference in the frequencies of
the modes in a nanowire and a nanowire heterostructure
by just looking at Figure 5, due to the smallness of these
variances. These small variances arise from usage of different
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Figure 1: Examples of the vibrational mode shapes. (a) Longitudinal mode, (b) Torsional mode, and (c) Flexural mode. The vertical axis
displays the nanowire height in units if 100 nm.
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Figure 2: Dispersion relations of the acoustic phonons in pure
GaAs nanowires with isotropic approximation.

material and it depends on the percentage contribution of
each substance in the nanoheterostructure size. We extract
the values clong = 2960 m/s, ctor = 1842 m/s, and fflex =
3.5∗10−5 m2/s for the heterostructure wire. Here, the assum-
ption of an average material provides clong(av) = 2961 m/s,
ctor(av) = 1844 m/s, and fflex(av) = 3.32 ∗ 10−5 m2/s. This
approximation works much better for the InAs/InP material
system than for the GaAs/AlAs case discussed above (except
for the flexural modes, where the coefficient is difficult to
extract).
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Figure 3: Dispersion relations of the acoustic phonons in pure
GaAs nanowires with isotropic and cubic symmetries along [001]
direction. The results for the longitudinal modes fall on top of each
other.

Another way to prove the similarities of the acoustic
phonon modes, with small wavevectors, in both pure InAs
nanowire and InAs/InP nanoheterostructure are the compar-
isons of the strain components in both structures. Figure 6
illustrate the likeness of normal strains for the longitudinal
modes and the shear strains for the flexural modes in
both pure InAs nanowire and InAs/InP nanoheterostructure
regardless of the discontinuities of the strain components
at the interfaces between InAs and InP segments. One can
see mirror reflections around z-axis of some modes in
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Figure 4: These figures illustrate that the phonon dispersion relations in pure GaAs nanowire and GaAs/AlAs nanowire-heterostructures are
almost identical. (a) GaAs nanowire and GaAs/AlAs nanowire-heterostructure with isotropic approximation. (b) Same structures calculated
with cubic symmetry. The wire length is 225 nm in all cases.
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Figure 5: Dispersion relations of phonons in both InAs nanowire
and InAs/InP nanowire heterostructure with the same length
300 nm, which are almost equal to each other.

the figures, but with the same strain values. The reason is
that the solver in COMSOL multiphysics is solving for the
absolute value which may take positive or negative values.
Taking this into account, we conclude that the strain profiles
are only weakly affected by the presence of the heterostruc-
ture.

5. Acoustic Phonons in a Nitride
Heterostructure

Another kind of structure has been used in this work, the
wurtzite structure. The materials that have wurtzite struc-

ture, such as Gallium nitride (GaN) and aluminum nitride
(AlN), manifest symmetry in the elastic moduli matrix
with five independent constants c11, c12, c13, c33, and c44 [14,
16, 17]; see Table 3. The motivation of studying acoustic
phonons in plenty of materials with different structures is
to explore whether acoustic phonons might show different
behavior in different structures. The dispersion relations of
acoustic phonon modes have been drawn in a pure GaN
nanowire in Figure 7(a) and a GaN/AlN nanoheterostructure
in Figure 7(b). In these structures the longitudinal and
torsional modes have linear dispersion relations, as it is
observed above for the isotropic and zincblende materials.
The flexural modes have two components due to bending of
the nanostructure toward (x-axis) and (y-axis). While these
are exactly degenerate for cubic materials addressed in pre-
ceding sections, these two flexural components become non-
degenerate for higher frequencies in the pure GaN nanowire
as well as in the GaN/AlN heterostructure. The acoustic
phonon eigenfrequencies in the GaN/AlN heterostructure
are slightly higher than those in a pure GaN nanowire, and
the approximation of an average material again slightly over-
estimates the trend.

6. Conclusion

The phonon dispersion relation, ω(k), that holds for an infi-
nite wire, has been extracted from COMSOL calculations in
finite nanostructures made of different III-V semiconductors
such as GaAs, InAs, and GaN. We find that the dispersion
relation of torsional modes has changed significantly during
the switching between the isotropic and cubic symmetries,
while the longitudinal modes are not influenced at all for a
[001] wire direction. For heterostructures, we demonstrated,
that the phonon spectrum is only weakly modified and the
strain components do not vary essentially. This suggests that
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Figure 6: The normal and shear strains ez and exz of the lowest longitudinal and flexural modes respectively in a cross-section taken in the
middle of an InAs nanowire and an InAs/InP nanowire heterostructure with l = 60 nm along z-axis, where the region shown includes two
barriers and the quantum well in the heterostructures (calculations in isotropic approximation).
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one can safely ignore the presence of heterostructures if the
lowest phonon branches are needed in calculations for elec-
tron scattering processes.
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