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Abstract

A new classical density functional approach is developed to accurately treat a coarse-
grained model of room temperature aromatic ionic liquids. Our major innovation is the
introduction of charge-charge correlations, which are treated in a simple phenomenologi-
cal way. We test this theory on a generic coarse-grained model for aromatic RTILs with
oligomeric forms for both cations and anions, approximating 1-alkyl-3-methyl imidazoliums
and BF−4 , respectively. We find that predictions by the new density functional theory for
fluid structures at charged surfaces are very accurate, as compared with molecular dynam-
ics simulations, across a range of surface charge densities and lengths of the alkyl chain.
Predictions of interactions between charged surfaces are also presented.

1 Introduction

Room-temperature ionic liquids (RTILs) are salts which are liquid at temperatures less than
100 ◦C. This property is imparted to them by the steric effects of oligomeric groups which
hinder crystallization. These liquids are electrically conducting albeit with a high viscosity
and have negligible vapour pressure. These properties are tunable from the point of view of
chemical structure, as the number of different combinations of anions and cations that form
RTILs is huge.1,2 Some RTILs are versatile and powerful solvents, even able to dissolve cel-
lulose.3 The electrochemical stability and short Debye screening lengths of RTILs also make
them an attractive option for use as electrolytes in electric double-layer capacitors (EDLCs),
although their dynamic response to electric fields is compromised by their high viscosity. A
property of prime importance in EDLCs, is the structure that the constituent electrolyte cre-
ates at charged surfaces. For example, RTILs exhibit an adsorption-layer saturation effect at
high absolute surface charge density, which causes the differential capacitance to eventually
decrease as the absolute surface potential increases. On the other hand, surface depletion of
the RTIL at the neutral electrode can cause the differential capacitance to decrease at low
potentials as well.4–7 This can be offset if the neutral electrode surface has a high affinity to
the RTIL. These effects combine to generate a (now characteristic) ’camel-shaped’ differen-
tial capacitance curve.8 Dilute electrolyte approximations to the Poisson equation (such as
the Gouy-Chapman-Stern model) fail to explain this behaviour, so more complex theories
have had to be developed.4,6
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EDLC’s generally contain electrodes of exceptional porosity and the rich phase be-
haviours of RTIL’s in nanoscale pores may lead to interesting phenomena. In very narrow
pores, the liquid may turn glassy, liquid crystalline, or completely freeze. All-atom simu-
lations by Sha et al.9 have suggested that a solid phase monolayer exists inside pores of a
comparable size to the cation. Surface force measurements by Perkin et al10 suggest that
the nature of the structure at the surface is dependent upon the competition between the
electrostatic forces and the excluded volume of the oligomeric units.

Due to their high viscosity, simulations of RTILs display a very slow convergence11 and,
depending upon the phenomenon being studied, using a coarse-grained (CG), rather than
all-atom model for the RTIL may be an appealing alternative.12,13 By removing some degrees
of freedom from the system, the Hamiltonian becomes essentially an effective free energy,
and allows one to model the RTIL more simply. The computational cost can be significantly
reduced and hence allow the simulations of larger systems, over a longer time-frame.14

CG models consist of simple connected spheres, possessing partial charges and dispersion
interactions, thus they have the added advantage of reducing the number of (adjustable)
model parameters. Hence, these simplified models are better able to highlight the most
important physical mechanisms of the system under study, albeit with an associated loss
of accuracy. In studies of various fluid phenomena, for example, those involving phase
transitions or due to general structural trends, coarse-grained models are invaluable tools
to elucidate physical mechanisms. This is also true of ionic liquids.

The simplifications enjoyed by the use of CG models may still not be sufficient to alleviate
all the time-consuming aspects of computer simulations. A ubiquitous example are studies
which couple bulk and non-uniform environments (such as RTILs in pores or adjacent to
electrodes). These simulations are difficult to perform, due to problems in maintaining a
constant chemical potential. Usually a large bulk reservoir needs to be included explicitly
within the simulations, at significant computational cost. For this reason other theoretical
methods, albeit approximate ones, are an attractive alternative to simulations. More ana-
lytical theoretical methods become viable options when CG models are used, as has been
demonstrated in the growing number of such studies reported in the literature.4,15–19 An-
alytical theoretical treaments are an important compliment to simulation studies, as they
often allow physical insights to be drawn, at a computational cost which often is many orders
of magnitude lower than is required for simulations.

A major problem in the theoretical treatment of RTILs, which makes it hard to cir-
cumvent the use of simulations, is the high degree of electrostatic and steric coupling.
This presents a stringent challenge to any analytical theoretical method used to analyze
them. This notwithstanding, several different (non-simulation) theoretical approaches have
emerged in recent years. These include lattice-based theories, which emphasize the steric
contributions to the free energy (beyond mean-field electrostatics)4 as well as localized di-
electric response.15,16 Other workers have modelled correlations using an approximate two-
particle direct correlation function (from the mean spherical approximation)17,18 or have
used a modified Poisson-Boltzmann treatment.19 Most (if not all) of these approaches can
be considered as different forms of classical density functional theory. In some cases novel
behaviours of RTILs have been predicted, e.g., oscillatory differential capacitance.17 All
these treatments use CG models for the RTIL. However, their accuracy has generally not
been tested against computer simulations of the same coarse-grained model.

Recently, we developed a non-perturbative DFT that implemented electrostatic cor-
relation expressions derived from an extended Debye-Hückel approach to one-component
plasmas.6 In that work we used a simple CG model of the RTIL, which facilitated our
semi-analytical approach. While our theory was also successful in producing novel differ-
ential capacitance behaviour, comparisons with Monte Carlo simulations of the same CG
model highlighted some discrepancies. In this work, we aim to correct the deficiencies of
our DFT, by developing more accurate treatment of electrostatic correlations. To do this,
we have used a phenomenological approach whereby the correlation contributions remain
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mathematically simple, yet are motivated by well-established physical considerations. The
ultimate accuracy of the theory is ascertained by Monte Carlo and Molecular Dynamics
simulations, within the framework of the CG models.

The CG model we will use in this study is slightly more complex than that used in.6 In
common with that model, it consists of simple bonded beads containing partial charges and
interacting via Lennard-Jones forces. While this general model can be optimized to fit a
range of RTILs we will focus on a cation structure which roughly matches the homologous
series of 1-alkyl-3-methyl imidazoliums , CnMIM+, where n denotes the length of the alkyl
chain. The anion will approximate tetrafluoroborate ion, BF−4 . We emphasize that the model
parameters chosen in the present study, are not fully optimized to the physical properties of
these RTILs per se. Rather, the purpose of this study is to highlight the performance of our
new classical DFT, for a generic set of CG model parameters. That is, the CG model we
use here is expected to be representative of a general class of RTILs, but further refinement
of its parameters would be needed to make the model optimal for a particular ionic liquid.

2 Model and Theory

2.1 RTIL model

In this section we will describe the features of the CG model used in this study. Our
aim is to broadly mimic the homologous series of 1-alkyl-3-methyl imidazolium cations
combined with the tetrafluoroborate anion. The model should be simple and contain as
few parameters as possible, and easily generalized to describe the homologous series. In
addition, the model should be possible to treat accurately via DFT methods. With these
criteria in mind, we chose to mimic the molecular architecture of the RTIL with connected
neutral and charged spheres. The DFT has been very successfully applied to oligimeric fluids
consisting of hard sphere monomers and we propose to take advantage of this in our ionic
liquid model. Our proposed model is illustrated in Figure 1. Here the CH2 and CH3 groups
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Figure 1: A cartoon of our RTIL model of [C4MIM+][BF−4 ]. The spheres are tangentially connected and freely
jointed.

in the CnMIM+ cation are modeled with neutral spheres, using a so-called united atom
strategy common in CG models. The imidazolium group consists of a star-like structure
of tangentially connected, freely jointed spherical beads, each carrying +0.2 elementary
charges. The anion has an identical structure to the imidazolium moiety with each sphere
carrying a −0.2 charge, again mimicking a disperse charge distribution. The homologous
series is built up by sequentially adding neutral CH2 spheres to the cation model. The
nomenclature, CnMIM(n = 2, 3, 4, ..) will be used to denote the members of the series.

All beads are assumed to interact with each other via a pairwise additive Lennard-Jones
interaction:

φLJ(r) = 4εLJ
[
(
σ

r
)12 − (

σ

r
)6
]
. (1)
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Here r is the separation between sphere centers and εLJ and σ determine the attractive
strength and the repulsive range of the of the dispersion interaction, respectively. For
convenience we will assume that all species have the same values for these parameters, i.e.,
all constituent spheres have the same mutual dispersion interactions. The size parameter σ
is also assumed to be the fixed bond distance between connected spherical beads. We should
note that this simple parameter choice is for convenience, and in line with our aim for a
generic model. Subsequent fine-tuning of these values, e.g., differentiating parameter values
for different groups within the molecules, would be required for refined models of specific
RTILs. Here, we are interested in the ability of our new DFT to treat this generic model,
which is only representing a class of RTILs, inspired by the structure of the imidazolium
series. We set σ = 2.4 Å, a value that is reasonable for the chemical species that are modeled
by the spheres. The strength parameter, εLJ , was then chosen so that the experimentally
determined densities of CnMIM in the bulk liquid are reproduced in our simulations, at
ambient pressure and temperature. A surprising result was that this could be essentially
achieved with a single value of εLJ = 100kBK, where kB is Boltzmann’s constant. We will
present the numerical comparisons with experimental density data below.

All charged species also interact via the Coulomb potential,

φαβel (r) =
zαzβe

2

4πε0εrr
(2)

where zα and zβ are the valencies of the interacting pair, e is the elementary charge and ε0 is
the permittivity of vacuum. The relative permittivity, εr (due to the electronic polarizability)
is set equal to that of benzene, i.e. εr = 2.3. The choice of this value was inspired by the
aromatic structure of the anion in this class of RTILs.

2.2 Density Functional Theory

In classical density functional theory (DFT), the free energy is expressed as a functional of
the particle densities and then minimized with respect to the latter in order to determine
the corresponding equilibrium values. The DFT approach can be used to determine bulk
properties as well as structural properties in the presence of surfaces, such as capacitance in
confined geometries or even surface forces between charged particles.

As the CG model is oligomeric, a polymer version of DFT is required.20 Using a now
standard formulation, the Helmholtz free energy is written as a sum of ideal and excess
contributions,

F [{Nα(R)}] = F id[{Nα(R)}] + Fex[{Nα(R)}]. (3)

where {Nα(R);α = a, c} are the set of oligomeric densities describing the anions (a) and
cations (c). Here R represent the positions of the constituent spheres of the ions. The ideal
chain term is given by:20,21

βF id =
∑
α=a,c

∫
Nα(R) (ln[Nα(R)]− 1) dR+β

∑
α=a,c

∫
Nα(R)(V (B)

α (R)+V exα (R))dR, (4)

where V
(B)
α (R) is the bonding energy and V exα (R) is the external force field.

The mean-field electrostatic contribution to the excess free energy is given by the follow-
ing expression,

Fmfel =
1

2

∫ ∫ ∑
α

∑
λ

nα(r)nλ(r′)φαλel (|r− r′|)drdr′ +
∫ ∑

α

Vel(r)nα(r)dr + Esurf (5)

Here {nα(r);α = a, c} are the charge site densities of anions and cations. These are defined
as

nα(r) =

∫
dR
∑
i

δ(r− ri)Nα(R) (6)
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where δ(r) is a Dirac delta function, and the sum is over all the charged sites on species α.
The quantity Vel(r) represents the potential due to external charges, and Esurf denotes the
mutual interactions of those external charges.

As is common in DFT theory, we shall assume that all the contributing terms to the
excess free energy are functionals only of the monomeric particle densities, such as the charge
site densities, nc(r) and na(r), defined above. It is also convenient to define the neutral bead
density nn(r), which is defined analogously to the charge site densities (but one sums over
neutral sites on both anions and cations instead). Finally, the total bead density ns(r) is
defined as ns(r) = nc(r) + na(r) + nn(r).

A simple, mean-field expression to describe the dispersion interaction between beads is
given by,

Fdisp ≈
1

2

∫ ∫
|r−r′|)≥σ

ns(r)ns(r
′)φdisp(|r− r′|)dr (7)

where
φdisp(r) = −4εLJ(

σ

r
)6 (8)

If only ideal and mean-field electrostatic and dispersion terms are used in the DFT, then
one obtains a generalized polymer Poisson-Boltzmann theory for the ionic liquid. Such an
approach completely ignores:

• excluded volume (steric) effects, due to the inability of particles to overlap at short
separations

• attractive correlations due to dispersion forces

• charge-charge correlations due to soft repulsions between like charges and attractions
between and unlike charges

We will consider these correlation contributions below on a term by term basis.

2.2.1 Excluded volume

Excluded volume correlations have already been treated successfully by us in a polymer
DFT applied to hard sphere chains.20,21 In the current application one needs to define a
weighted density over all monomers (as originally suggested by Nordholm et al.22 in the
context of a generalized van der Waals theory for simple hard spheres),

n̄s(r) =
3

4πσ3

∫
|r−r′|<σ

ns(r
′)dr′. (9)

This weighted density is then used as input into the excess hard-sphere term from an appro-
priate polymer equation of state. We chose to use the Generalized Flory-Dimer equation of
state,23 which has already provided accurate non-uniform structures in hard core polymer
models.21 Thus this steric correction is a highly non-linear functional of the total monomer
density.

2.2.2 Correlations due to dispersion attractions

In order to assess the importance of correlations due to dispersion forces, we performed bulk
NPT (constant pressure) MD simulations on our coarse-grained RTIL model, but where the
charges are switched off, and compared them with density functional calculations wherein
only the mean-field dispersion attractions and the excluded volume correlations were in-
cluded in the excess free energy. The pressure was chosen to give simulated bulk densities
comparable to the corresponding “real” (experimental, fully ionized) RTILs. Though the
simulations employed ”soft spheres” (a full Lennard-Jones potential was used) while Eq.(8)
was used for DFT calculations, we found that the resulting bulk densities from DFT and
MD simulations were reasonably similar (see Figure 2), for the various alkyl lengths. In
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particular, the agreement between the DFT and simulations with respect to the trend as a
function of the cationic length is quite remarkable. There seems to be a constant difference,
with the simulated density about 5% higher than DFT for all chain lengths. The slightly
higher bulk density in the simulations can be attributed to the ability for molecules to clus-
ter (see Suporting Information), which is not accounted for directly in DFT. It should be
noted that use of Eq.(8), which neglects the soft repulsion of the Lennard-Jones potential,
may be viewed as a crude way to capture some effects from dispersion correlations.
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Figure 2: Comparing MD data and DFT predictions for bulk densities of RTIL models of CnMIM , but where
the charges have been switched off. The bulk pressures (identical for MD and DFT) were chosen, via MD-NPT, so
as to approximately reproduce the corresponding experimental densities (where the RTILs are ionized, of course).
This means that the pressures are considerably higher than the atmospheric value.

2.2.3 Electrostatic Correlations

Our general approach with respect to the electrostatic correlation contributions to the excess
free energy functional, will be to assume that they are all second-order with respect to the
relevant particle densities, i.e.,

Fcorr ≈
1

2

∫ ∫
nα(r)nλ(r′)Kαλ

corr(|r− r′|)drdr′ (10)

The algebraic form of the correlation kernels, Kαλ
corr, will be physically motivated and will

be ultimately chosen to reproduce appropriate thermodynamic properties.

2.2.4 Correlations between like charges

The mean-field expression for the electrostatic interaction, Eq.(5), includes a ”self-interaction”
term. In dilute electrolytes, this term is expected to be small and delocalized. However, in
dense RTILs this self term is localized and contributes a significant repulsive contribution
to the mean-field expression, which should be removed. This can be viewed as a “Coulomb
hole” in the like-charge density about a given particle. This is a soft hole as particles carry-
ing charges of the same sign naturally tend to avoid each other via the long-ranged Coulomb
repulsive force.

We shall borrow ideas from an earlier work,24 and arrive at an approximation for the
“Coulomb hole” by first considering the mean-field expression for the bulk Coulomb energy
per particle with charge α, emfα :

emfα = 2πnbα

∫ ∞
0

φααel (r)dr (11)
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where nbα denotes the (constant) bulk density of α particles. Note that eq.(11) implies a
spurious self-interaction. This could be avoided with exclusion sphere, of radius s, centred on
the tagged particle (at the origin). Our self-correction objective then leads to the following
criterion for s: nbα4πs3/3 = 1, i.e.

s =
[

3

4πnbα

]1/3
(12)

The corresponding “corrected” energy per particle, ecα becomes:

βecα = 2πβ

∫ ∞
0

φααel (r)dr − πlBz2αs2 (13)

where β is the inverse thermal energy and lB = βe2

4πε0εr
is the Bjerrum length. The self cor-

rection, formulated in this manner, enters in a drastic step-like manner. However, “Coulomb
holes” are usually rather soft, we will instead assume that the radial distribution function,
gαα(r), displays an exponential approach to unity:

nbα → nbα(1− e−λα(r)) (14)

where r = |r|. We choose λα such that the corrected energy per particle becomes identical
to the one we established with a step-function like g(r), eq. (13). In other words, we require
that:

λα =

√
2

s
(15)

where s is given in eq.(12).
In principle, a more accurate correction might be obtained if we allow λα to be position-

dependent. However, the present formulation has the advantage of simplicity. Furthermore,
one should note, that in such dense fluids as RTILs charge density variations are usually not
as great as those of dilute electrolytes.

2.2.5 Correlations between opposite charges

Interestingly, the attraction between opposite charges can be overestimated by the mean-
field expression, Eq.(5). This is due to the fact that the mean-field theory allows complete
penetration by opposite charge densities, which in reality is excluded by the steric repulsion
between charges. A simple and pragmatic way to effectively correct the mean-field theory
is to build in an effective hard sphere exclusion correlation. Thus, the unlike Coulombic
interactions (between anions and cations) is then given by

Funlikeel =
1

2

∫ ∫ ∑
α 6=β

nα(r)nβ(r′)Θ(|r− r′| − dαβ)φαβel (|r− r′|)drdr′ (16)

where the Heaviside function is defined as: Θ(x) = 1 for x > 0 and Θ(x) = 0 for x ≤ 0.
The parameter dαβ is a ”distance of closest approach” between unlike charged species. As
such it should be numerically equal to the sum of the radii of the species, σαβ . However,
additional correlations (beyond hard sphere exclusion) between oppositely charged species
can be mimicked to some extent by setting dαβ = χσαβ , with χ an adjustable parameter.
Given this ansatz, the question then arises as to how χ should be chosen. Recall that εLJ was
chosen, so as to obtain agreement between experimental and simulated bulk RTIL densities
at atmospheric pressure. Hence an obvious choice is to choose χ so that the correct bulk
density is obtained in the DFT as well. For CnMIM this procedure gives rise to the values
χ = 0.64, 0.71 and 0.80 for n = 2, 4, 6 respectively. The fact that χ is generally less than
unity reflects the positive adsorption between unlike ions, which is modelled as a smaller
distance of closest approach in our approximate theory.
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2.3 Surfaces

To test the model and the DFT, we shall investigate structures and surface interactions
in systems where two charged surfaces are separated by an RTIL film. There is complete
equilibrium between the confined space and a bulk liquid, i.e. the chemical potential is
maintained if the surface separation or surface charge is changed. We will model the surfaces
as flat and uniformly charged, extending infinitely in the x and y directions, perpendicular
to the z axis (along the surface normal). We let as denote the inverse surface charge
density. All spherical beads of our RTIL model, irrespective of their charge, also experience
a non-electrostatic interaction with the electrodes, obtained by integrating the Lennard-
Jones potential over the half-spaces constituting the surfaces,

βwLJ(z) = 2πεLJ

[
2

45
(
σ

z
)9 − 1

3
(
σ

z
)3
]
, (17)

where z is the distance from the plane of charge. The total non-electrostatic interaction
due to the surfaces, VLJ , is given by the sum of the two separate contributions, i.e., VLJ =
wLJ(z) + wLJ(h− z), where h is the distance between the surfaces.

3 Results

3.1 Bulk densities

Before we evaluate the system behavior in non-uniform conditions, we will demonstrate
that our simple coarse-grained model produces a reasonable scaling of the bulk density
with respect to the length of the oligomeric chains of the cation species. Initially, the
Lennard-Jones strength parameter, εLJ was fitted so that our NPT simulations reproduced
the experimental bulk density of C4MIM (given all other model parameters were fixed at
their values described in the previous section). This gave εLJ = 100kbK. This value was
then assumed the same for all CnMIM models, irrespective of the length (n) of the alkyl
chain. In Figure 3, we see that this generates simulated bulk densities which are in very
good agreement with experiments for the investigated range of chain lengths, i.e., n = 2, 4, 6.
This result lends support to the notion that our coarse-grained model captures the essential
physics of this class of RTILS.
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Figure 3: Bulk salt densities of CnMIM , for various lengths n of the alkyl chain. Experimental data are
compared with MD simulation and DFT values, at 294 K and ambient pressure.
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3.2 Structural comparisons

In this section we focus on evaluating the (in-house) DFT, by comparing with results ob-
tained from Molecular Dynamics (MD) simulations (GROMACS version 4.5.425). In these
simulations it is convenient to solve the dynamics using harmonic potentials between bonded
spheres and where the confining surfaces are built up with discrete charges, rather than a
uniform surface charge density. For more details, see the Supporting Information. On the
other hand, a different simulation approach using the Metropolis Monte Carlo (MC) algo-
rithm, has the advantage that it is relatively straightforward to treat the same model system
as is assumed in the DFT approach. The main drawback is that the MC simulations run
considerably more slowly than MD for such dense systems, at least on our multiprocessor
machines.

3.2.1 MC vs. MD simulation results

In Figure 4, density profiles obtained with (in-house) MC simulations, for our model of
C2MIM are compared with corresponding data from MD simulations. The agreement is
nearly perfect. Hence, in our simulation studies reported below, we have used the much
faster MD approach, confident that the slight model differences will only produce minor
changes in system properties.

0 5 10 15

(z-σ/2)/Å

0

0,4

0,8

n α(
z)

σ3

ncσ3

naσ3

nsσ3

comparing MC (solid) and MD (dashed) models

Figure 4: Comparing density profiles as obtained via MD and MC simulations of our model of C2MIM . In the
former case, however, there are (for practical reasons) slight deviations from the model. Specifically, the surface
charge is in MD generated by discrete charges, of low valency, and bonds within cat- and anions are (in MD)
modelled by an harmonic potential. Details and further tests are provided in the Supporting Information.

3.2.2 DFT evaluations

In Figure 9, we compare DFT predictions with simulation data focusing on the structure
of C4MIM in the vicinity of surfaces with varying surface charge densities. While there
are inevitable deviations, the DFT performs remarkably well, seemingly capturing all the
important physical characteristics of the profiles. The largest discrepancy is found for the
anion density profiles, at negative surfaces, where DFT predicts too strong oscillations, at
about 8-12 Å from the surface. Hence one might be tempted to attribute this effect to a
failure in the ability of the DFT to account for steric packing effects. However, we have tested
replacing our simple weight function (Eq.(9)), by a more elaborate expression suggested
by Tarazona26 for simple hard-spheres. The resulting structural changes following this
replacement are barely discernible (not shown), suggesting that other mechanisms (primarily
electrostatic) determine the packing of beads in the dense RTIL.
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Figure 5: Comparing simulated and calculated (by DFT - dashed lines) density distributions, of C4MIM
adjacent to negatively charged surfaces (at z = 0).
(a) as = −100Å2/e
(b) as = −200Å2/e
(c) as = −400Å2/e
(d) as = 100Å2/e

It is instructive to illustrate the importance of correlations, in these highly coupled sys-
tems. We will do this via comparisons with predictions from a DFT in which some of these
correlations have been removed. Specifically, we removed the ”second-order” correlation
terms from the DFT, of the type described by Eq.(10), while retaining the higher-order
excluded volume correlations. More specifically, the electrostatic correlations were removed
by evaluating the Coulomb interactions using the mean-field expression, Eq.(5). Further-
more, we also removed the subtle correlations we artificially introduced in our estimate of
the dispersion energy. Thus we used the full Lennard-Jones interaction, φLJ(r), given by
Eq.(1), in place of φdisp(r) in the dispersion energy term, Eq.(7). In Figure 6, we compare
predictions from this reduced correlation form of DFT with the case when all correlations
are included. We see that the leaving out these second-order correlations leads to extremely
inaccurate predictions, with vastly overestimated density oscillations near the surface. This
illustrates the importance of including these correlations within any theoretical treatment
of RTILs.

In Figure 7, we have investigated structural properties of our model for CnMIM (n =
2, 4, 6) at a fixed surface charge density. The latter was chosen as a rough estimate of mica,
immersed in a typical RTIL. Unfortunately, even an approximate estimate for the surface

10



0 1 2 3 4 5
(z−σ/2)/Å

0

0.5

1

1.5

n α
(z

)σ
3

as = −400 Å
2
 / e

dashed: "correlation−stripped" version 

ncσ
3

naσ
3

nsσ
3

Figure 6: Comparing the performance of our standard model (solid lines), with that obtained by setting λ = 1,
as well as treating Coulomb interactions in a Poisson-Boltzmann (mean-field) manner (“correlation-stripped”
version, dashed lines).
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Figure 7: Simulations and DFT predictions of density distributions, for our coarse-grained models of C2MIM−
C6MIM . The inverse charge density is as = −320Å2/e, corresponding to a crude model of mica (see text).

charge density is not straightforward. If we assume that mica is fully charged in water, with
as = -48 Å2/e and εr = 80, a simple Born energy argument suggests that for a typical RTIL

dielectric response of εr ≈ 12,27,28 one would obtain as ≈ 48
√

80/12 Å2/e ≈ -124 Å2/e.
This value deviates considerably from literature estimates, obtained by fitting the double-
layer interaction between mica surfaces to a linearized Poisson-Boltzmann expression.29 In
that case, the values obtained ranged between as ≈ −670Å2/e to as ≈ −1670Å2/e. In
our study here we have used an intermediate value of as = −320Å2/e. At this surface
charge density, we find that the DFT is able to accurately predict structure for all three
investigated RTILs. This is important, as it allows us to use DFT for predictions of quantities
and behaviours that are difficult to obtain with simulations. These include surface forces,
differential capacitances, surface tensions and phase equilibria. An interesting observation
from Figure 7 is that the interfacial structure is remarkably insensitive to the length of
the alkyl chain. The oscillation period for charged beads does seem to increase with chain
length, but the effect is very small. This observation is even more unexpected in light of the
substantial response of surface interactions to changes of the alkyl chain length, as shown
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below.

3.3 Surface forces

In this section, we will investigate surface interactions between negatively charged surfaces,
immersed in our models of C2MIM − C6MIM . We have used an inverse surface charge
density of as = -320 Å2/e as a reference, but since this poorly established for a mica surface
in an ionic liquid, we will also consider effects from changing this quantity (most exper-
imental surface force measurements are performed with mica surfaces). The results are
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Figure 8: Surface interactions, between uniformly charged surfaces (as ≈ −320Å2/e) in solutions of (our models
of) C2MIM − C6MIM .
(a) Osmotic pressures, as obtained from integrating the force normal to the surfaces (lines) as well as from the
negative slope of the free energy vs separation (symbols). The latter symbols are plotted sparsely, for clarity).
(b) Interaction free energies, shown in the experimentally more common form, as force/radius, which implicitly
assumes the validity of Derjaguin’s Approximation.30

presented in Figure 8, which displays osmotic pressures and interaction free energies. The
osmotic pressure was evaluated from integrated surface interactions, from first principles.
This direct evaluation agrees also with the numerical derivative of the free energy/unit area
vs. separation, i.e. the contact value theorem is fulfilled, which is an important thermo-
dynamic consistency check. Figure 8b gives the free energies per unit area, transformed to
force/radius via the Derjaguin Approximation.30 The latter quantity is commonly reported
from experimental measurements. A remarkable observation is that the surface interactions
are rather sensitive to the alkyl length, despite a modest structural difference. Specifically,
we see how the range and strength of the oscillatory forces grow with chain length, which is
in qualitative agreement with surface force measurements by Perkin et al., who found similar
differences between C4MIM and C6MIM , although the anion was different from the BF−4
used in our model. Furthermore, the force oscillations that they measured, extended to
larger separations than we find here, especially for C6MIM . On the other hand, Min et al.
only observed minor force oscillations with mica in C4MIM (with BF−4 as anion). These,
barely detectable, oscillations (as manifested by separation jumps) were superimposed on a
monotonic repulsion. The reasons for the discrepancy between these experimental results
are not clear to us.

At any rate, it is clear from Figure 8 that the period of oscillation is not directly reflected
by corresponding density oscillation periods, found at a single surface (cf. Figure 7). Note
that similar oscillations also have been found in other experiments on surface interactions
in RTILs.31,32
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Given that the surface charge density is not well established, for mica immersed in ionic
liquids, it is of interest to establish how sensitive our predicted surface interactions are
to variations of this quantity. Such analyses are provided in Figure 9. An unexpected
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Figure 9: Interactions betwen planar surfaces immersed in C2MIM − C6MIM . Several different values of
uniform inverse surface charge density (as) are considered. Interaction free energies are, as in Figure 8, displayed
as force/radius, as established via the Derjaguin Approximation.30

finding (to us) is that the amplitude of the oscillations decreases upon an increase of the
surface charge density. We interpret this as a consequence of the RTIL molecules being less
free to align in an “amphiphilic” manner, with neutral parts facing the surfaces, when the
latter are charged. In other words, such an amphiphilic ordering is partly broken when the
surface charge density increases, and this will in turn lead to a drop of the force oscillation
amplitudes .

4 Conclusions and outlook

We have proposed a coarse-graining approach for aromatic RTILs. These models can also
be treated with accurate classical DFT methods, and the corresponding calculations are
quite fast in system geometries that admits at least one dimension to be integrated out.
Using experimental bulk densities as a guide, a common value of εLJ = 100kBK, for bead-
bead LJ interactions, was found appropriate for C4MIM . Using this fixed value for other
RTILS, C2MIM and C6MIM , our simulation results gave bulk densities also in agreement
with experiments. This suggests that our approach for coarse-graining is physically sound.
We have developed a new, correlated DFT. This theory uses a single adjustable parameter,
namely the effective hard core distance, dαβ , between ions of unlike charge. The correlation-
corrected DFT is able to reproduce structural properties obtained from simulations with
a remarkable accuracy. Our work is concluded by a DFT study of interactions between
charged surfaces confining our coarse-grained models of C2MIM − C6MIM . Such force
curves would be computationally very demanding to produce via simulations. Another
advantage of developing a useful and accurate DFT for these systems, is that one is forced
to make approximations that identifies and retains the important physics of the system.

Our combination of a simple coarse-grained model, and a correlation-corrected classical
DFT forms a very powerful tool for theoretical investigations of RTILs. Areas where sim-
ulation approaches are problematic includes differential capacitance in narrow pores, phase
transitions and phase equilibria in pores and at electrode surfaces, and interactions between
aggregates and surfaces.
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