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Abstract
Electromagnetic waves are widely used in society today for a multitude of ap-
plications. Design of electromagnetic devices and applications requires accurate
methods for evaluating performance, which often means modern computational
methods. While these methods have seen tremendous development in recent
decades, it is still very important to perform measurements to validate the per-
formance of devices and software. This dissertation contains work on the com-
putational side as well as validating measurements.

The dissertation consists of two parts. Part I is an introduction to the subject,
and Part II consists of five scientific papers. The introduction gives an overview of
the topics which are important for understanding the scientific papers of Part II
and puts the research in a wider context. Of the scientific papers in Part II,
two are published in peer-reviewed international journals, one is accepted for
publication, and two are under review.

The problem of electromagnetic scattering has long been important in radar,
where it is the mechanism for detection. This is often called the direct scatter-
ing problem, where a known object is illuminated by an incident wave and the
scattered wave is computed. In Paper I, a computational code implementing the
finite element-boundary integral method is presented. The code, which is pub-
licly available at https://www.github.com/nwingren/fe2ms, was developed using
open-source software to accelerate the development process. While this code is
verified in Paper I, there were no comparisons to measurements. In Paper II, a
complete design process was performed using the code from Paper I, with man-
ufacturing using 3D printing and measurements of the performance to validate
the computations. This acted both as a demonstration of using the code practi-
cally, and as a validation. One advantage of the finite element-boundary integral
method used in the code is that problems with highly complex media can be
solved. This was utilized in Paper III where characteristic modes were computed
for a an inhomogeneous, bianisotropic, and nonreciprocal object.

A different problem is that of inverse scattering, for which the scattered wave
is known but the object or incident wave is unknown. This is a more complicated
problem which requires the modern computational methods available today, and
can be used to discern properties of an object, for example for nondestructive
testing. In Paper IV, a method for nondestructive testing of singly curved com-
posite panels using millimeter waves is presented together with measurements of
real panels. The method is based on computational electromagnetics and was
designed specifically for detection of sparsely distributed flaws in such panels.
Microwaves and millimeter waves are relatively new in nondestructive testing
compared to other methods like ultrasound. One possible development would be
to combine the new and the old by utilizing interaction between acoustic and
electromagnetic waves. As a way to demonstrate that this might be possible,
microwaves scattered by ultrasound were measured in Paper V in air, where the
interaction would be much weaker than in nondestructive testing settings.
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Populärvetenskaplig sammanfattning
Elektromagnetiska vågor och deras tillämpningar utgör en viktig del av våra liv
även om många av oss kanske inte tänker på det. Våra mobiltelefoner innehåller
ett stort antal antenner för att kunna koppla upp sig mot internet, hitta vår po-
sition via GPS eller spela upp musik via Bluetooth. Vi använder en antenn inuti
vårt bankkort när vi ska betala trådlöst, och våra bilar håller ständig uppsikt för
hinder med inbyggda radarsensorer. En viktig förutsättning för denna utveckling
är de verktyg för elektromagnetiska beräkningar som är tillgängliga för dagens
ingenjörer.

En huvuddel av avhandlingen täcker just elektromagnetiska beräkningar.
Utvecklingen av nya tillämpningar inom elektromagnetismen ställer höga krav
på en motsvarande utveckling av verktyg som används vid beräkningar för nya
system. Ingenjörer som designar nya system använder sig främst av kommersiella
datorprogram, men dessa bygger i sin tur på nya metoder från akademisk forskn-
ing. Metoden för elektromagnetiska beräkningar jag använt mig av lämpar sig
vid problem med komplicerade materialstrukturer. Mitt arbete har fokuserat på
öppen källkod, vilket innebär att datorprogram görs fritt tillgängliga för andra
att använda och modifiera. Då jag använt andras program som byggblock har
utvecklingen av mitt program kunnat accelereras, och jag hoppas att andra kan få
liknande hjälp av mitt arbete. Utöver att jag har utvecklat ett öppet tillgängligt
beräkningsprogram har jag även visat hur det kan användas för olika typer av
beräkningsproblem. I ett av dessa har jag kunnat använda mitt beräkningspro-
gram för att designa en ny typ av elektromagnetisk struktur där en prototyp
senare uppmättes med god överenstämmelse. Programmet har även kunnat an-
vändas för en ny typ av teoretisk beräkning som kommersiella datorprogram inte
klarar av.

En annan del av avhandlingen handlar om tillämpningar inom avbildning för
industriell produktion. Utvecklingen av exempelvis trådlös kommunikation har
gjort att tekniken som används blivit billigare och mer kraftfull. Detta är något
som öppnar möjligheter att använda tekniken inom områden som inte tidigare
varit praktiska. Ett exempel är att vi idag effektivt kan använda mikrovågor för
att avbilda föremål på sätt som inte vanligt ljus kan göra. Detta sker på stor
skala i säkerhetskontroller på flygplatser, men stora möjligheter finns även inom
bland annat industriell kvalitetskontroll och medicinsk avbildning. Som del av
den här avhandlingen har jag arbetat med avbildning med mikrovågor för att
kunna utföra oförstörande provning av kompositmaterial som används i flygplan.
Oförstörande provning är ett samlingsnamn för olika metoder som används för
att hitta defekter i en produkt utan att påverka dess funktion. Detta är viktigt
inom många olika industrier, men särskilt inom flygindustrin är oförstörande
provning en nödvändighet för alla strukturella delar. Ofta används ultraljud för
detta, men mikrovågor är känsliga för andra typer av defekter och kan därför
vara av intresse. Tidigare metoder utvecklade i samma forskargrupp fokuserade
på plana paneler, men jag utvecklade metoden till att även kunna användas på
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krökta paneler. I flygplan är många ytor krökta för att få till rätt aerodynamik
och därför är detta ett viktigt steg.

Då ultraljud används ofta inom oförstörande provning är det nära till hands
att försöka kombinera ultraljud med mikrovågor och dra nytta av båda metoder-
nas fördelar. Växelverkan mellan elektromagnetiska vågor och akustiska vå-
gor har undersökts tidigare, men inte för de våglängder som är aktuella inom
oförstörande provning. För att undersöka hur väl det skulle fungera testade jag
att mäta detta, men i luft i stället för typiska material för flygplan. Detta gjorde
det möjligt för mig att mäta växelverkan i vår labbmiljö med befintlig utrust-
ning. Växelverkan i luft är väldigt svag, men jag lyckades trots det detektera
växelverkan mellan de två typerna av vågor. Detta bådar gott för mätningar i
andra material än luft där effekten väntas vara starkare.
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1 Background and Motivation 3

1 Background and Motivation
Electromagnetic waves are widely used in all areas of modern society. Broad-
casting like radio, terrestrial television and satellite television have been part of
society for a long time, with radio broadcasting being widely available in many
parts of the world a century ago [153]. In recent decades, however, other types of
wireless communications have changed our world profoundly. While various ana-
log forms of mobile communication technologies had been available earlier, the
release of the digital second generation of cellular networks (2G) in 1991 [6] made
wireless communications widely available and adopted by the public. Develop-
ment since then has been rapid with the latest release being 5G in 2019 [164],
and 6G currently under development [164]. During the same time, other wire-
less communication technologies like WiFi and Bluetooth have been developed as
well, and today we find all these technologies neatly packaged in small cell phones
together with other wireless technologies like satellite navigation and near-field
communication. All these require antennas, and the design of these hidden away
in a small package is not an easy task. One major reason why it is even possi-
ble to design a smartphone with all its electromagnetic capability is the use of
modern electromagnetic computations [153].

Another application of electromagnetic waves is radar and remote sensing.
Radar is originally an acronym for radio detection and ranging, and this essen-
tially describes the technology which uses electromagnetic waves to determine
position, velocity and possibly other properties of objects remotely. The first
large-scale development of radar was for military applications before and dur-
ing World War II [78, 153]. For much of the time since then, radar has been
widely applied in various military systems as well as in aviation, meteorological,
and marine applications [115]. However, with the rise of wireless communication
since the 1990s, radio-frequency hardware has seen much technical development
and as a consequence it became cheaper and more energy efficient. As radar
uses similar hardware, the civilian applications of radar have become much more
numerous with radar today being used widely in automotive applications [155],
civilian surveillance [9], and low-cost, low-power sensors [1, 67, 140]. An exam-
ple of a low-cost, low-power radar sensor is the Acconeer A121 sensor shown
in Figure 1. Radar is widely used in the field of remote sensing to determine
properties of an environment and produce large scale images of certain proper-
ties. This includes monitoring of various environmental properties of our planet
using satellite-based radar system, which is an application that has become very
important in Earth and climate science [12, 114]. Such a satellite-based radar
system is seen in Figure 1. It has a very different size compared to the small
Acconeer sensor, showing how radar systems can be useful at different scales. In
most radar applications, it is important to understand how different targets react
to illumination by electromagnetic waves from the radar transmitter. This is a
complex task as this response can only be analytically computed for a few special
geometries. It is possible to use various approximations, but for high-fidelity re-
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Figure 1: Two examples of radar systems. Left: Acconeer A121 radar sensor
mounted on a circuit board with transmitting and receiving antennas encircled in
red. Right: Sentinel-1A radar imaging satellite seen with its large radar antenna
facing the camera (Photo: © ESA–S. Corvaja, 2014).

sults it is necessary to use electromagnetic computations. Much of the efforts in
electromagnetic computations have been in search of lowering the response of an
object to radar in, for example, stealth aircraft [71, 78, 153]. These applications
can set very high demands on the capability of the computational methods used,
and many advances in such methods and software can be related back to uses in
military applications. For example, an early computational code called the nu-
merical electromagnetic code (NEC) was developed primarily to solve problems
for the US air force and navy, but also laid much of the groundwork for develop-
ment of methods and software which is widely used today in all electromagnetic
applications [24,25].

Electromagnetic computations have now been mentioned as an important en-
abling tool for our modern use of electromagnetic waves, and there is an interest
in its continued development to support the general development in electromag-
netics. In all fields of engineering, it is crucial to be able to compute and predict
the capabilities of a designed object before manufacturing it. In some cases, this
can be done analytically and that was the way most engineering was done before
modern computers. For electromagnetics, there are generally few problems that
can be solved analytically, and this limited engineering designs for much of the
time since the first applications of electromagnetic waves in the early 1900s [153].
With the advent of computers, however, new types of methods using numeri-
cal computations became possible. This is a development seen in most areas of
engineering, and many of the methods which are used in electromagnetics have
their origin in methods used in other areas of physics. This is understandable
since the methods themselves solve mathematical equations, and these equations
are not necessarily tied to any particular branch of physics. The most accurate
numerical methods used in electromagnetics are typically based on reformulating
the basic equations of Maxwell’s equations to other equations which are suit-
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able for numerical solution, often categorized as differential equations or integral
equations [35]. These two types of equations lead to different characteristics
of the numerical methods, and in this dissertation methods from both types of
equations are used. While the improved performance of computers was a large
part of why numerical methods became popular, improvements of the numerical
methods themselves have certainly played a role. The way that the numerical
cost of popular methods scale with larger problem sizes means that increased
computational power might not give much improvement in actual performance
of a method. With development of algorithms to reduce this scaling of numerical
cost, often referred to as acceleration or compression methods, the usefulness of
computational methods in electromagnetics has been improved [35,71].

With this great applicability of electromagnetic computations, it is important
to consider the way methods are implemented. In most user settings, commercial
software packages for computations are used. This is not strange, as such soft-
ware is typically easy to use, well-tested, and optimized in its performance [35].
For academic research into the methods themselves, on the other hand, the use
of such software is not ideal since it is generally not possible to modify. Instead,
researchers develop the software themselves to be able to access all of the con-
stituent parts. This is not without its drawbacks though, as development can
be very time-consuming and much work might be necessary to implement basic
methods from which to build upon. One way to reduce these issues is by us-
ing an open-source approach, i.e., developing software which is freely distributed
for others to use. It is not always easy to have a unified approach though, as
there are different programming languages used, different conventions for imple-
menting methods, and the fact that not everyone will want to distribute their
software freely. Nevertheless, it is possible to accelerate the development of com-
putational software by using freely available open-source packages, as was the
case for computational software developed for work in this dissertation.

The development of various computational methods were often originally
prompted by a need to solve a direct scattering problem, i.e., finding the scat-
tered electromagnetic wave for a known object illuminated by a known incident
wave. This can also be applied to antenna problems, where the antenna feed can
be formulated as the incident wave. Another important, but typically much more
difficult, problem is the inverse scattering problem. Here, the scattered wave is
known, but either the scattering object or the incident wave is unknown [56]. To
make matters worse, in practical settings the scattered wave is measured and will
include noise and other measurement errors. To be able to solve the inverse prob-
lem, methods used in the direct problem are typically applied, but with additions
to ensure that the inverse solution is accurate. This often comes in the form of op-
timization formulations where the direct problem, or problems similar to it, may
need to be solved many times for different source distributions [56,98]. Solutions
of inverse problems, for this reason, often require efficient direct solvers. With
the development of faster methods in computational electromagnetics (CEM),
as well as improved performance on the computer hardware side, the solution
of inverse problems have become increasingly attainable in recent decades. One
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Figure 2: Example of an industrially manufactured composite panel (left) and
an image indicating flaws (right).

use of inverse scattering is for nondestructive testing (NDT) in industrial set-
tings. This is an area in which other physical phenomena like ultrasound and
x-rays have been used for many decades, while the use of microwaves is relatively
new [131,168]. The typical use case is to detect flaws in a manufactured product
without affecting it negatively [131]. In many cases, it can also be interesting to
do this by generating an image, showing the possible locations of flaws as seen in
Figure 2. For microwaves, such imaging has been performed with a wide range of
methods which are not related to inverse scattering [2,98]. Often, these methods
are computationally cheaper than the alternatives based on inverse scattering,
but with less information regarding the physical characteristics of the sample.
Furthermore, methods in inverse scattering can use prior knowledge of the sam-
ple to improve images in ways not possible using traditional methods [98].

For NDT, as in similar areas like medical imaging, an interesting idea is the
simultaneous use of multiple physical phenomena [42]. In particular, the wide
use of ultrasound makes for an interesting possible combination with the newer
microwave methods, especially since there are well-known interaction mechanisms
for the interaction between acoustic and electromagnetic waves. This interaction
has been known for over a century [22], but has found most of its use in the
optical frequency range of electromagnetic waves. This field of acousto-optics
has led to the development of many devices in photonics [79, 123], but there are
also some applications where radar systems have been enhanced with acoustic
transmitters for detection of atmospheric phenomena otherwise undetectable [88,
89]. In acousto-optics, the two waves essentially travel perpendicular to each
other, while in the radar setting they travel in parallel. For a possible NDT
application, it might be interesting to have an oblique incidence to limit the
region in which possible flaws could interact with the waves. Study of this type
of interaction based on possible use in NDT is included in this dissertation.
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1.1 Structure
The structure of this introduction is as follows. Section 2 gives a brief overview
of the electromagnetic theory necessary for the work in this dissertation, and
particularly for the other sections of this introduction. Section 3 describes the
computational methods used in this dissertation, methods of accelerating compu-
tations, and issues related to implementing computational methods in software.
Section 4 introduces the topic of imaging using electromagnetic waves, and de-
scribes two different methods of doing so. Section 5 describes some techniques for
measuring electromagnetic waves, issues that arise and how to solve them, and
how these techniques were used in the included papers. Section 6 describes the
contributions of different parts of this dissertation and how they fit together, and
finally section 7 concludes this introduction and provides an outlook on possible
future work.

1.2 Notation
In this introduction, the notation is as follows

• Scalars are written in italic as A.

• Vectors are written in bold italic as A.

• Matrices are written in bold upright as A.

• The entry on row m, column n of a matrix A is written as Amn.

• Tensors are written with double overlines as A.

Matrix notation is generally used for numerical matrices in a fixed basis. Tensor
notation, however, is used for physical properties where there may not be a
reference to a particular basis. Vector notation is the same for both numerical
vectors and physical vectors though. This is consistent within the introduction,
but not in the included papers.
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2 Basic Electromagnetic Theory
Maxwell’s equations are a set of coupled partial differential equations (PDE)
which are the basis of all classical electromagnetics. A general, time-dependent
form of Maxwell’s equations is [68,80]

∇ × E(r, t) = − ∂B(r, t)
∂t

(2.1)

∇ × H(r, t) = J (r, t) + ∂D(r, t)
∂t

(2.2)

∇ · D(r, t) = ρe(r, t) (2.3)
∇ · B(r, t) = 0 (2.4)

where E is the electric field (unit V/m), H is the magnetic field (unit A/m), D
is the electric flux density (unit As/m2), B is the magnetic flux density (unit
Vs/m2), J is the electric current density (unit A/m2) and ρe is the electric
charge (unit As). In free space, the fields are also connected as D = ε0E and
B = µ0H where ε0 and µ0 are the permittivity and permeability of free space,
respectively (other cases are discussed in section 2.2). These constants have
numerical values [143]

ε0 ≈ 8.854 · 10−12 F/m (2.5)
µ0 ≈ 1.257 · 10−6 H/m. (2.6)

It is noticeable that Maxwell’s equations are not fully symmetric in the sense that
there are only electric currents and charges. A more symmetric version would
be [68,71]

∇ × E(r, t) = −M(r, t) − ∂B(r, t)
∂t

(2.7)

∇ × H(r, t) = J (r, t) + ∂D(r, t)
∂t

(2.8)

∇ · D(r, t) = ρe(r, t) (2.9)
∇ · B(r, t) = ρm(r, t). (2.10)

where the magnetic current density M and charge ρm have been introduced.
These new quantities have never been observed in nature, but they can be useful
as theoretical sources in certain applications. They will, for example, make an
appearance in this dissertation with the discussion of the surface equivalence
theorem, which in turn is a crucial building block for many of the computational
methods presented later.

An alternative to the time-domain formulation above is to express the equa-
tions in the frequency domain, by utilizing the Fourier transform. The electric
field in frequency and time domain respectively are connected to each other
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as [71,80]

E(r, ω) =
∫ ∞

−∞
E(r, t)e−jωt dt (2.11)

E(r, t) = 1
2π

∫ ∞

−∞
E(r, ω)ejωt dω (2.12)

and similarly for all other quantities. The quantity E(r, ω) is a complex quan-
tity for the electric field in the frequency domain. For many applications, it is
practical to assume a time-harmonic behavior of the electromagnetic fields, i.e.

E(r, t) = E0(r) cos(ωt + ϕ) (2.13)

where ϕ is a phase factor contained within E(r, ω) in the frequency domain. The
relation between time and frequency domain quantities then simplifies to

E(r, t) = Re{E(r, ω)ejωt}, (2.14)

again exemplified by the electric field. Maxwell’s equations are often used in a
form given by time-harmonic fields, i.e. [71]

∇ × E(r, ω) = −M(r, ω) − jωB(r, ω) (2.15)
∇ × H(r, ω) = J(r, ω) + jωD(r, ω) (2.16)

∇ · D(r, ω) = ρe(r, ω) (2.17)
∇ · B(r, ω) = ρm(r, ω) (2.18)

where magnetic current density and charge were again included. The ω is typ-
ically not written explicitly further in this introduction, unless there is some
dependence on frequency or other reason to specify it. It should be noted that
fields in the frequency domain can be defined in different ways. In this thesis,
the definition follows (2.14), but it is common in the literature to define it using
the exponential e−iωt instead. For the time-harmonic fields, and other complex
quantities, this time convention can be changed by substituting the imaginary
unit j for −i anywhere it appears [80].

2.1 Electromagnetic Waves
For time-varying electromagnetic fields, the concept of electromagnetic waves
arises. Here, this is exemplified using the time-harmonic formulation, but it
holds for any time variation as this can be transformed to the frequency domain
(as seen in (2.11)). In the simplest case, we consider electromagnetic fields in
free space with purely electric currents J acting as sources. If the curl is applied
to (2.15), one obtains

∇ × ∇ × E(r) = −jωµ0∇ × H(r) = ω2µ0ε0E(r) − jωµ0J(r) (2.19)
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where ∇ × H was identified with the left-hand side of (2.16). Cleaning this up
gives

∇ × ∇ × E(r) − k2
0E = −jk0η0J(r) (2.20)

which is often called the curl-curl equation or the vector wave equation. In the
equation, the wave number k0 was introduced as k0 = ω/c0 where c0 is the
propagation speed of the wave as

c0 = 1
√

ε0µ0
= 299 792 458 m/s (2.21)

otherwise known as the speed of light in vacuum. The wave impedance of free
space η0 =

√
µ0/ε0 was also introduced. Solutions to (2.20) are electromagnetic

waves with frequency f and wavelength λ given by

f = ω

2π (2.22)

λ = c0

f
. (2.23)

The exact solution to (2.20) of course depends on the problem, but there
are some canonical wave solutions that are particularly important. Two of them
are illustrated here: plane waves and spherical waves. For simplicity, only the
scalar complex amplitudes A = |E| are considered at first. Plane waves can be
expressed as [80]

A(r) = A0e−jk0k̂·r (2.24)
where A0 is a complex amplitude of the wave and k̂ is a unit vector in the
direction of propagation. The plane wave is what many might think of when
they hear the word wave, as flat wavefronts propagating in a single direction.
Plane waves are simple to analyze, and they can act as good approximations in
many applications such as scattering. Spherical waves, on the other hand, can
be expressed as [80]

A(r) = F0
e−jk0r

r
(2.25)

where r is the radial coordinate from an origin and F0 is an amplitude (unit V).
The appearance of the spherical wave is shown to the left in Figure 3. In contrast
to the plane wave, the spherical wave has a clear source at r = 0 and a diminishing
amplitude as it propagates further from its source, which in terms of power scales
as 1/r2. This is the well-known inverse square law. As indicated in Figure 3,
spherical waves can be approximated as plane waves if the distance from the
source becomes large enough, and within a small enough angular region.

While plane wave approximations is a useful concept for observations far from
a radiator, a more general one is that of near fields and far fields. This is related
to how an electromagnetic wave radiated by a source evolves with increasing
range. Far enough away from the source, the electric field can be expressed on
the particular form [80]

E(r) = e−jk0r

r
F (r̂) (2.26)
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Figure 3: Spherical wave propagating from a source. Within a small angular
region far from the source (marked in blue) it is approximately a plane wave.

where F (r̂) is called the far-field amplitude and only depends on the direction
r̂, and not the distance r from the source. By comparing (2.26) to (2.25), it
is clear that electromagnetic waves in the far field behave as spherical waves,
but with an amplitude that depends on the direction. The far-field amplitude is
always perpendicular to the propagation direction k̂ (transverse), and the fields
in this region behave as E = η0H × k̂. The polarization of ideal spherical waves
in (2.25) and plane waves in (2.24) follow this. Closer to the source, i.e., in the
near field, the electric field can have more complicated forms. It is not clear,
however, from (2.26) where the cutoff between near and far fields occurs. There
is no exact, universally agreed upon definition of this, but a common rule for
the cutoff range between near and far fields is the Fraunhofer distance given
by [11,147]

r >
2D2

λ
(2.27)

where D is introduced as the largest dimension of the radiating source, though
it is often also added that r ≫ λ and r ≫ D [80].

2.2 Constitutive Relations of Different Media
While Maxwell’s equations as presented in (2.1)–(2.4) hold for any medium, they
do not provide any information on how charges and currents in the medium be-
have. This is described by the constitutive relations of a medium, which connect
the fields E and H to D and B. The work presented in this dissertation is limited
to linear media, which limits the types of relations which are possible. In the time
domain, general linear constitutive relations can be expressed using convolutions
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on the form [80]

D(t) = ε0

(
ε · E(t) +

t∫
−∞

χee(t − t′) · E(t′) dt′ + η0

t∫
−∞

χem(t − t′) · H(t′) dt′
)

(2.28)

B(t) = µ0

(
1
η0

t∫
−∞

χme(t − t′) · E(t′) dt′ + µ · H(t) +
t∫

−∞

χmm(t − t′) · H(t′) dt′
)

(2.29)

where ε, µ describe the so-called optical response of the medium, which is the
response to the fields E and H on a shorter time frame than the other terms.
The four different χxy are susceptibilities describing the response of the medium
to electric and magnetic fields. The subscript xy indicates that the susceptibility
describes response on field x due to field y, where they can be e (electric) and m
(magnetic). The double overline indicates that the quantity is a tensor (specifi-
cally a dyadic tensor). This type of constitutive relation containing nonzero χem
and χme is often called magnetoelectric.

Commonly, however, constitutive relations are expressed in the frequency
domain. As the Fourier transform of a convolution is a regular product, the rela-
tions become mathematically simpler in this case. The general linear constitutive
relations can then be expressed as [80]

D(ω) = ε0

(
εr(ω) · E(ω) + η0ξ(ω) · H(ω)

)
(2.30)

B(ω) = µ0

(
1
η0

ζ(ω) · E(ω) + µr(ω) · H(ω)
)

. (2.31)

In this, new quantities for the constitutive relations have been introduced from
Fourier transformation of the previous ones. εr is called the relative permittivity
and µr is called the relative permeability. The quantities for the magnetoelectric
coupling from H to D and E to B do not have similar universal names. This
type of magnetoelectric relation is often called bianisotropic since both electric
and magnetic fields are connected (bi) by tensors (anisotropic). However, most
applications do not require these kinds of constitutive relations and there are
simpler ones that are often seen. Media without magnetoelectric interaction is
described using only relative permittivity and relative permeability as

D(ω) = ε0εr(ω) · E(ω) (2.32)
B(ω) = µ0µr(ω) · H(ω). (2.33)

Commonly, there are no magnetic effects (µ0µr(ω) = µ0) in which case the
medium is called dielectric. As expressed above, it is still an anisotropic medium
since the relative permittivity is a tensor, but an even simpler variety is the
isotropic dielectric where it also holds that εr(ω) = εr(ω)I where I is the identity



2 Basic Electromagnetic Theory 13

tensor. In the constitutive relations presented above, a frequency dependence
has been implied. This is generally the case, and such media are called disper-
sive [80]. Often in this dissertation, problems are considered only at a single
frequency which means that dispersion does not play a role in the results. This
often holds for small changes in frequency as well, where the dispersion is rela-
tively small.

In general, medium parameters in the frequency domain constitutive relations
are allowed to be complex-valued, and the properties determine the nature of
losses in the medium. A medium can be lossless, meaning that waves propagating
there do not lose or gain power, for which it holds that [80]

εr = εr
H (2.34)

µr = µr
H (2.35)

ξ = ζH (2.36)

with H indicating a Hermitian transpose. For a medium which is not lossless,
waves propagating there can either lose or gain power, and they are called passive
and active, respectively. For a passive medium (including the lossless case) it
holds that [80]

ω Im εr ≤ 0 (2.37)
ω Im µr ≤ 0 (2.38)

ω

{
4 Im µr −

(
ξ − ζH

)H
·
(
Im εr

)−1 ·
(

ξ − ζH
)}

≤ 0. (2.39)

These inequalities should be interpreted to be valid for all Hermitian quadratic
forms over the matrices in the left-hand side. Furthermore, the imaginary parts
of dyadic tenors are interpreted as Im A = (A − AH)/2j. If the conditions for
a passive medium are simplified for the commonly used isotropic media, they
become

ω Im εr ≤ 0 (2.40)
ω Im µr ≤ 0. (2.41)

For isotropic dielectric media fulfilling Ohm’s law J = σE with a real-valued
permittivity ε′

r and electric conductivity σ, a direct relation between conductivity
and losses is found by rewriting (2.16) as

∇ × H = J + jωD = σE + jωε0ε′
rE = jωε0εrE (2.42)

with
εr = ε′

r − j σ

ωε0
. (2.43)

Another property that can be seen in the constitutive relations is reciprocity.
Reciprocity is easier to understand if a one-dimensional network model is con-
sidered, as shown in Figure 4. This model contains an object (network) which
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Figure 4: One-dimensional waves in a two-port network.

has two ports from which waves can enter and leave. Such a network can be
described using the scattering parameters defined as the scattering matrix [110](

V −
1

V −
2

)
=

[
S11 S12
S21 S22

] (
V +

1
V +

2

)
(2.44)

with in-going waves V + and out-going waves V − as indicated in Figure 4. In a re-
ciprocal network, the scattering matrix is symmetrical, which holds for a network
with any number of ports [110]. What this means in our two-port network is that
if we have in-going waves V +

1 = Va, V +
2 = 0 and an out-going wave V −

2 = Vb,
the situation can be reversed as V +

1 = 0, V +
2 = Va and V −

1 = Vb. Note that the
reflected waves (V −

1 in the first case, V −
2 in the second) do not need to be the

same. The property of reciprocity can also be defined more generally for media
with constitutive relations instead of S-parameters and electromagnetic fields in-
stead of voltages. For a medium to be reciprocal, its constitutive relations must
be such that [80]

εr = εr
T (2.45)

µr = µr
T (2.46)

ξ = −ζT. (2.47)

While these relations make consequences more complex to define than in the two-
port network example, the same general property holds in that sources (currents)
and effects (fields) in two points can be interchanged for the same result in
a reciprocal medium. There are many examples of nonreciprocal media and
situations that have important effects.

A nonreciprocal medium used in practical applications is the magnetized fer-
rite, which is used in many microwave devices such as the circulator which is
a multi-port device in which signals can only propagate in one direction (e.g.,
1 → 2 → 3 → 1 for three ports) [110]. Another important nonreciprocal medium
is magnetized plasma, which is found naturally in the ionosphere and causes
polarization rotation of electromagnetic waves in different directions depending
on the direction of travel [71, 147]. Finally, nonreciprocal artificial materials
have been popular recently, with examples as nonreciprocal metamaterials ob-
taining nonreciprocity in new ways like modulation of the surface in space and
time [27,137].
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2.3 Boundary Conditions
Maxwell’s equations together with suitable constitutive relations describe the
physics of classical electromagnetism within a certain medium. However, they
do not describe what happens at the boundary between different media. For
this reason, additional conditions are required at each such instance. These are
commonly described as boundary conditions, although the fact that they appear
at interfaces within problem domain means that they might not be so in a strict
mathematical sense. The conditions are defined at any surface with a normal
vector n̂ pointing from region 2 to region 1 are given by [71]

n̂ × (E1 − E2) = −Ms (2.48)
n̂ · (D1 − D2) = ρe,s (2.49)

n̂ × (H1 − H2) = Js (2.50)
n̂ · (B1 − B2) = ρm,s. (2.51)

Js and Ms are electric and magnetic surface currents and ρe,s and ρm,s are
electric and magnetic surface charges. As previously stated, magnetic charges
and currents are not physically shown to exist, but can be useful as fictitious
quantities.

A commonly used boundary condition is for the boundary of a perfect electric
conductor (PEC) object. PEC is an idealized model of an electric conductor in
that it has an unlimited supply of electric charge which can perfectly oppose any
fields on its interior, which can be seen as an electric conductivity σ → ∞ [80].
Furthermore, as it is a model for a physical medium only electric currents and
charges are supported on its boundary. The PEC boundary conditions can thus
be expressed as [80]

n̂ × E = 0 (2.52)
n̂ · D = ρe,s (2.53)

n̂ × H = Js (2.54)
n̂ · B = 0. (2.55)

While electric conductors typically are lossy due to a finite conductivity, the PEC
model works well for many metals in the microwave frequency range. However,
as the frequency reaches the optical range, metals no longer behave as classical
conductors and the PEC model is not accurate [147]. In computations, the model
is very beneficial since bulk conductors can be replaced by a boundary condition,
reducing the number of unknowns in the problem. Analogously to PEC, a perfect
magnetic conductor (PMC) can be defined to only support magnetic currents and
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Figure 5: Scattering of an electromagnetic wave by a dielectric cylinder, shown
for the component of E perpendicular to paper. The total electric field is con-
sidered a sum of the incident field and the scattered field.

charges on its boundary [71]. This PMC boundary condition can be expressed as

n̂ × E = −Ms (2.56)
n̂ · D = 0 (2.57)

n̂ × H = 0 (2.58)
n̂ · B = ρm,s. (2.59)

While the PMC does not resemble any physical medium as the PEC, it is possible
to create artificial materials which act as PMC within certain limited conditions
on, for example, frequency or propagation direction of a wave. This includes well-
known structures like the mushroom high-impedance surface [132] and gaps in
strip-based artificial soft/hard surfaces [76]. PEC and PMC boundary conditions
can also be used in computations for problems with symmetries such that the
fields are known a priori to act as if such surfaces were present, which reduces
the number of unknowns.

2.4 Scattering
When electromagnetic waves encounter obstacles, typically in the form of a
medium with different properties, interaction with the object causes scattering
of the wave. An overview of how this problem is normally set up is shown in
Figure 5 where the electric field of the wave is considered. The total electric field
E is shown as a sum of the incident field Einc and the scattered field Esc. The
incident field is the field that would have been present without the obstacle, a
plane wave in this case. The scattered field can be considered to be generated
by sources on and in the obstacle to give the total field.

To compute the scattering of a general obstacle, it is almost always necessary
to use numerical methods. In certain cases there are analytical solutions, with one
of the most commonly known being the sphere. In the case of spherical symmetry,
scattering problems are solved by the well-known Mie series solution [80, 94].
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The simplest one is for a PEC sphere, but solutions are also possible for many
other objects with spherical symmetry, including homogeneous dielectric, PEC
coated by dielectric and multilayered spheres [41, 80]. The Mie series solution
is particularly interesting for use in verification of numerical codes as it is well
known and exact.

A quantity that is commonly used to quantify electromagnetic scattering by
an obstacle is the radar cross section (RCS), which considers how an obstacle
scatters an incident plane wave. This is typically specified to be monostatic
or bistatic, where the former only considers the reverse of the incident wave
direction while the latter considers scattering in all directions. The bistatic RCS
σ is defined by an IEEE standard [141], but here it is introduced based on incident
and scattered electric fields as [71,115]

σ(θ, ϕ, θinc, ϕinc) = lim
r→∞

4πr2 |Esc(r, θ, ϕ)|2

|Einc(θinc, ϕinc)|2 (2.60)

where Einc(θinc, ϕinc) is the electric field of a plane wave incident in the direction
(θinc, ϕinc) and Esc(r, θ, ϕ) is the scattered electric field in the point (r, θ, ϕ). The
scattered electric field can be replaced by the far-field amplitude from (2.26) as

σ(θ, ϕ, θinc, ϕinc) = lim
r→∞

4πr2 |e−jk0rF sc(θ, ϕ)/r|2

|Einc(θinc, ϕinc)|2 = 4π |F sc(θ, ϕ)|2

|Einc(θinc, ϕinc)|2 . (2.61)

It is seen that this expression has the advantage that dependence on r and the
limit are eliminated from the expression, and the RCS on this form is fairly simple
to compute.

While not necessarily exact, many scattering problems can be solved approx-
imately if the object is very large or small compared to the wavelength. For very
small objects, Rayleigh scattering dominates and this can be solved analytically,
though it is an approximation [80]. For very large objects, the classical laws of
ray optics become useful and the RCS of PEC objects approach the geometrical
cross section [80, 115]. It is generally in the region between where the scatter-
ing problem can be the most difficult to solve, and this is where full numerical
solutions can be necessary. An indication of this can be seen by looking at the
monostatic RCS of a PEC sphere computed from the Mie series for increasing
sphere radius. This is shown in Figure 6, where three different scattering regimes
can be seen. For very small radii the RCS increases monotonically, which is fol-
lowed by significant variation, and finally at very large radii the RCS approaches
a constant value. These are called the Rayleigh, resonance and optical scattering
regimes, respectively [115].
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Figure 6: Monostatic RCS normalized to geometric cross-section for a PEC
sphere of increasing radius. Rough ka ranges of different scattering regimes are
indicated.

2.5 Mechanical Perturbations of the Medium
In many cases, a medium can change its electromagnetic properties due to other
physical phenomena. In this dissertation there are two examples that deserve
special focus: acoustic waves, which is relevant in Paper V, and rotating media,
which is relevant in Paper III. Both of these phenomena are based on mechanical
perturbations which are time-harmonic in their nature, and this time-harmonic
nature affects how electromagnetic waves interact with them. Recently, there has
been a large interest in phenomena similar to these, where properties of a system
are time-modulated to introduce new interesting effects, as already mentioned
with respect to nonreciprocal effects at the end of section 2.2.

2.5.1 Acoustic Waves
The possibility for interaction between acoustic and electromagnetic waves has
been known since at least 1922 [22], and the theory of acousto-optics developed
in the following decades [79]. Following the invention of the laser, acousto-optics
has been applied to photonic devices used to modify properties of laser beams like
modulators and filters [79, 123]. While most development has been in acousto-
optics, interaction between acoustic and electromagnetic waves is not limited
to optical frequencies. An application at other electromagnetic frequencies is
radio-acoustic sounding which uses collocated radar and acoustic transmitters to
measure atmospheric properties like temperature profiles [88,89], but with other
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possible uses including forest fire detection [122] or aircraft wake vortices [119].
In its most basic form, interaction between electromagnetic and acoustic

waves can be understood as the acoustic wave modulating the density of a
medium, which in turn affects its dielectric properties and causes the electro-
magnetic wave to scatter [79, 123]. In fluids, this is a fairly correct picture as
acoustic waves directly correspond to changes in density in this case. In solids,
the picture becomes more difficult since more modes of acoustic, or rather elastic,
waves are possible. For example, acoustic waves based on pressure are still sup-
ported as so called p-waves, but so are s-waves which are waves based on shear
strain in the solid [118].

Photoelasticity provides the theory for how elastic phenomena affect electro-
magnetic properties of a medium. In solids, it is generally the case that both
elastic and electromagnetic properties are tensors, which makes for somewhat
complicated relations between them [79]. A relation for small perturbations in a
mechanically and electromagnetically isotropic medium is [157]

ε = ε0(εr + ε1) (2.62)

ε1 = εrp

K
p (2.63)

where p is a scalar photoelastic constant, K is the bulk modulus and p is the
acoustic pressure. For fluids, an expression for the scalar photoelastic constant
can be found using the Lorentz-Lorenz relations as [79,157]

p = (εr − 1)(εr + 2)
3ε2

r
. (2.64)

From this, it can be understood that interaction in air, or other media with εr
close to 1, is very weak.

Depending on the wavelengths of the acoustic and electromagnetic waves, and
the overlap of the waves, strong scattering is due to different mechanisms. This
can be quantified by the Klein-Cook parameter defined as [77,79]

Q = 2πλL

Λ2 (2.65)

where λ is the electromagnetic wavelength, Λ is the acoustic wavelength and L
is the length of the overlap between the waves. The main scattering mechanism
is Raman-Nath diffraction if Q ≪ 1, and Bragg diffraction if Q ≫ 1 [77]. The
typical case where Raman-Nath diffraction is important is in acousto-optics for
thin beams where λ ≪ Λ and waves have perpendicular incidence [123]. In cases
where λ ∼ Λ it is not immediately clear which mechanism is most relevant,
but L only needs to be a small number of wavelengths for Bragg diffraction to
dominate [77]. For the work presented in Paper V of this dissertation, Bragg
diffraction dominates, and as such this will be the focus here.

Bragg diffraction as a general concept has its base in X-ray crystallography
where the X-ray wavelength is phase matched to the separation between planes



20 Part I: Introduction and Research Overview

q

k

k − q

α− α−

q

k

k + q

α+ α+

Figure 7: Incident acoustic (q) and electromagnetic (k) wave vectors, as well
as scattered electromagnetic wave vector with the angle α shown. Both (-) and
(+) cases of (2.66) are shown.

of atoms in a crystal lattice [20]. In interaction between acoustic and electro-
magnetic waves, the mechanism is similar but the planes of atoms are replaced
by the acoustic wavefront which is moving, as opposed to the crystal lattice. The
condition given by Bragg’s law for strong scattering due to phase matching is es-
sentially the same though, with crystal parameters exchanged for acoustic ones.
It is usually expressed using the angle of incidence of the electromagnetic wave
on the acoustic wave [79,123], but here is expressed using the angle between the
electromagnetic and acoustic propagation directions α as [157]

cos α = ∓ λ

2Λ . (2.66)

The angle α for the two cases shown in Figure 7 for the acoustic wave vector q,
the electromagnetic wave vector k for the incident wave, and the electromagnetic
wave vector k ± q for the scattered wave [123]. While the condition for strong
scattering is the same in X-ray crystallography and acousto-electromagnetic inter-
action, the moving acoustic wave introduces some differences. Most prominently,
the scattered electromagnetic wave exhibits a positive or negative frequency shift
by the acoustic frequency, which can be understood by looking at the wave vec-
tors for the scattered electromagnetic wave. As seen in Figure 7, sign of the
frequency shift is the same as the sign in (2.66), and as such coupled to the angle
α. This frequency shift can be crucial in measurements involving the interaction
as it clearly indicates that a measured electromagnetic wave was scattered by the
acoustic wave and not some other mechanism. In Paper V, for example, mea-
surements would not have been possible without the existence of this frequency
shift as the power scattered by the acoustic wave was significantly lower than
even the leakage between transmitting and receiving antennas.
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2.5.2 Rotating Media
Rapidly rotating dielectric media exhibit interesting electromagnetic properties.
In the general case, it needs to be considered under the framework of the micro-
Doppler effect, which considers objects under motion like rotation and vibra-
tion [31]. In the case of a rotating circular cylinder, the radial velocities which
typically cause effects such as the micro-Doppler effect vanish. For sufficiently
rapid rotations though, typically near 1 % of the speed of light, other effects
become apparent, and it can be found that the object acts as if it were fully
bianisotropic to a first order approximation [145]. While the problem is fairly
exotic, it is interesting to study as it is bianisotropic, nonreciprocal and inho-
mogeneous by no other cause than mechanical rotation. The derivation of effec-
tive constitutive relations for moving media starts with the relations for a linear
isotropic medium at rest, but are transformed to the laboratory frame. For non-
relativistic speeds and to a first order approximation, the constitutive relations
become [145,147]

D = ε0εrE + n2 − 1
c2

0
v × H (2.67)

B = µ0µrH − n2 − 1
c2

0
v × E (2.68)

where n = √
εrµr is the refractive index and v is the velocity vector at a particular

point. For a circular cylinder rotating with angular frequency Ω around z, the
velocity vector is

v = Ωẑ × r = Ω(xŷ − yx̂) (2.69)

in a Cartesian coordinate system. If this velocity is inserted in (2.67), the
constitutive relations can be written using the bianisotropic parameters defined
in (2.30)–(2.31) as

εr = εrI (2.70)

µr = µrI (2.71)

ξ = Ωn2 − 1
c0

 0 0 x
0 0 y

−x −y 0

 (2.72)

ζ = −ξ (2.73)

from which the inhomogeneous, bianisotropic, and nonreciprocal nature of the
model is clear.
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Figure 8: Illustration of the surface equivalence theorem with sources in Ω (left)
replaced by equivalent surface currents on ∂Ω (right).

2.6 The Surface Equivalence Theorem
A powerful result from electromagnetic theory is the surface equivalence theorem,
or surface equivalence principle. This states that sources within a volume Ω can
be replaced by equivalent currents on the boundary ∂Ω and still give the same
solution in the region outside Ω [58]. This is illustrated in Figure 8. While the
solution outside Ω is the same after replacing the sources by equivalent currents,
this is not the case for the solution inside of Ω. In fact, there is an infinite
number of valid equivalent currents, and they result in different solutions inside
Ω. There are some common choices though, with the most common one being the
zero field, or Love condition. This sets the fields inside Ω to zero, which means
that the equivalent currents can be found from the boundary conditions (2.48)
and (2.50) to be

Jeq
s = n̂ × H (2.74)

M eq
s = E × n̂. (2.75)

This direct relationship between currents and fields can be very practical, as is
seen in section 3.3 of this introduction.

One issue that can arise in numerical applications of the equivalence the-
orem is the use of both electric and magnetic currents. In such applications,
currents represent unknowns, and having both types would double the number
of unknowns for a problem as compared with only one type of current. There
are some ways of using either electric or magnetic currents in the equivalence
theorem. One way of doing this is to consider the volume Ω filled with PMC,
and electric currents on the surface ∂Ω. This gives the same equivalent currents
as in (2.74), and a dual method uses PEC and magnetic currents to give (2.75)
instead [58]. However, this can be troublesome in numerical applications as
the use of PMC or PEC require other methods than in the standard zero field
case [111]. One exception is if the region Ω is a half space, meaning that ∂Ω
is an infinite plane. In that case, the method of images can be used to elimi-
nate the PMC/PEC and instead give equivalent currents as twice those in (2.74)
and (2.75) [58]. Other methods for using only one of the electric and magnetic
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currents exist, with some able to use the same methods as for free space. Typi-
cally they do not give the same simple relationships between currents and fields
as in (2.74) and (2.75) though [111].

2.7 Integral Equations
Integral equations are important in many different electromagnetic problems. In
particular, there are many numerical methods based on integral equations, some
of which are described in more detail later in this dissertation.

The integral equations of interest in this work are based on the equivalence
theorem. This enables the replacement of all electromagnetic phenomena within
a closed object by equivalent surface currents on its boundary.

An important concept for integral equations is that of Green’s functions,
which is a general concept in mathematics with great applicability in electromag-
netics. It can be likened to the impulse response in dynamical systems theory,
but applied to differential operators. Generally, a Green’s function is similar to
the fundamental solution E which is [66]

LE = δ (2.76)

for a differential operator L and the Dirac delta distribution δ. As for impulse
responses in dynamical systems theory, other problems involving L and a source
term f can be solved by a convolution E ∗f [66]. The Green’s function is similar,
but also take boundary conditions into account [134]. In electromagnetics, a
Green’s function can be obtained for the magnetic vector potential A (in the
Lorenz gauge) in free space as the solution to [80]

∇2G0(r, r′) + k2
0G0(r, r′) = −δ(r − r′) (2.77)

which is
G0(r, r′) = e−jk0|r−r′|

4π|r − r′|
. (2.78)

This Green’s function can then be used to find vector potentials due to current
sources, and this can in turn be used to find the electric and magnetic fields.
Such a relation for the electric field can be written as [71]

E(r) = −jk0η0

∫
Ω

[
J(r′)G0(r, r′) + 1

k2
0

J(r′) · ∇∇G0(r, r′)
]

dV ′

+
∫

Ω
M(r′) × ∇G0(r, r′) dV ′ (2.79)

where both electric and magnetic currents inside a volume Ω are included.
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To simplify notation of different integral equations, it is useful to introduce
the integral operators [71]

L (X)(r) = jk0

∮
∂Ω

[
X(r′)G0(r, r′) + 1

k2
0

∇′ · X(r′)∇G0(r, r′)
]

dS′ (2.80)

K (X)(r) =
∮

∂Ω
X(r′) × ∇G0(r, r′) dS′ (2.81)

defined for the closed surface ∂Ω. The magnetic field and electric current are also
scaled as H̄ = η0H, J̄ = η0J for compactness. The integral equations consid-
ered here appear from a scattering problem where a volume Ω is illuminated by
incident fields Einc, H̄ inc. To obtain the scattered field, the surface equivalence
theorem can be applied using the zero field condition inside Ω, giving [32,71]

Einc(r) − L (J̄s)(r) + K (Ms)(r) =
{

E(r) r /∈ Ω
0 r ∈ Ω

(2.82)

H̄ inc(r) − L (Ms)(r) − K (J̄s)(r) =
{

H̄(r) r /∈ Ω
0 r ∈ Ω

. (2.83)

Classic integral equations are obtained in the limit of r → ∂Ω, and by taking a
cross product by n̂ as [71]

−n̂ × L (J̄s)(r) + n̂ × K (Ms)(r) = −n̂ × Einc(r) (2.84)
n̂ × L (Ms)(r) + n̂ × K (J̄s)(r) = n̂ × H̄ inc(r) (2.85)

where the first is the electric field integral equation (EFIE) and the second is the
magnetic field integral equation (MFIE).

The equations written on this form are not fully usable as the integral op-
erators contain a singularity which needs to be extracted, which can be done
analytically as shown in many reference books [71, 80, 146, 152]. This treatment
only affects the K operator as the extracted term vanishes for L . For the K
operator then, the extracted term depends on if the operator acts on the inside
or outside of the volume enclosed by ∂Ω. This is due to the extraction technique
which depends on deformation of ∂Ω by a small region such that the singular
point is excluded from the region of interest. The operator as modified by this
extraction, K̃ , is given by [71]

n̂ × K (X)(r) = n̂ × K̃ (X)(r) ± 1
2X(r) (2.86)

if the surface ∂Ω is smooth. Here + corresponds to evaluation on the outside of
Ω and − to evaluation on the inside. The integral equations in (2.84) and (2.85)
are now written as

1
2Ms(r) − n̂ × L (J̄s)(r) + n̂ × K̃ (Ms)(r) = −n̂ × Einc(r) (2.87)
1
2 J̄s(r) + n̂ × L (Ms)(r) + n̂ × K̃ (J̄s)(r) = n̂ × H̄ inc(r) (2.88)
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with evaluation on the outside of Ω.

2.8 Characteristic Modes
Characteristic modes are an example of a set of orthogonal solutions to a scat-
tering problem which can be useful in many design problems [53, 82]. Here, the
characteristic modes are introduced from the perspective of a pure PEC object,
which is a commonly used formulation [57]. For a PEC medium, the boundary
supports electric but not magnetic currents. This makes the EFIE in (2.84) take
on the form

n̂ × L (J̄)(r) = n̂ × Einc(r). (2.89)
This can be written in a different form as

Z(I) = V (2.90)

where Z corresponds to the L -operator acting on current densities represented
as I for an incident field represented as V . The notation is chosen to resemble
concepts from circuit theory, and consequently Z is called the impedance opera-
tor, I the current vector, and V the voltage vector. This notation is commonly
used in the method of moments (MoM) computational method which is based
on integral equations, and which is further discussed in section 3.2. In that case,
discretization of the problem means that Z, I, and V are represented by matrices
and vectors, but here the problem is considered from a pure operator point of
view. Looking at the L -operator defined in (2.80), it is clear that it is complex
and as such the impedance operator is rewritten as

Z = R + jX (2.91)

with R and X called resistance and reactance, respectively, following the theme
from circuit theory. These new operators can in turn be used to define a gener-
alized eigenvalue problem as

X (In) = λnR(In) (2.92)

where the solutions are called characteristic modes with eigenvectors In and
eigenvalues λn [57].

Characteristic modes have been known for a significant time [44, 95], but
were not widely used until more recently with the emergence of many appli-
cations in antenna design [26, 82]. The recent work has mostly been based on
the eigenvalue decomposition (2.92) described in [57], which limits applications
to solvers and formulations based on an impedance operator. Recent work has
shown how a formulation based on scattering problems, as originally proposed
in [44], can be used more generally [28,53,54]. This formulation is in many ways
more versatile than (2.92) in that the characteristic modes can be computed by
solving a scattering problem independent of the underlying operator. Charac-
teristic modes can then be computed using arbitrary solvers for electromagnetic
scattering problems [28,85].
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3 Computational Methods
Much of the success of modern electromagnetic applications can be attributed to
the development of increasingly capable computational methods together with
the growth in available computational power in recent decades. While the the-
ory based on Maxwell’s equations is highly descriptive of electromagnetic phe-
nomena, there are few problems which can be computed analytically. For this
reason, computational methods are indispensable to the modern electromagnetic
designer. Computational methods in electromagnetics can be organized in many
different ways. One common way to group them is by their theoretical accuracy,
which results in the grouping into full wave solvers and asymptotic solvers. Full
wave solvers attempt to solve electromagnetic problems without any approxima-
tions to Maxwell’s equations themselves. This should not be confused with exact
solutions as approximations do appear in later stages. Asymptotic solvers, on
the other hand, approximate the equations to be solved as the first step and, as
a result, they can become computationally more efficient compared to full wave
solvers. However, they can only be used if the original assumptions behind the
approximations hold.

While asymptotic solvers have very clear cases where the original assump-
tions break down, it is important to remember that all computational methods
have limitations. With full wave solvers it can be easy to think that the solution
should be accurate regardless of what electromagnetic problem it is applied to.
As will be seen in this section, there are still many approximations that are done
in full wave solvers. An example of this is the very step of generating a mesh for a
problem geometry, which is an important step in many computational methods.
This can be seen as an approximation of the original geometry, but in a way it
is rather a replacement of one geometry by another. A typical idea in numerical
methods is that increasingly small mesh elements should result in a numerical
solution converging to the actual solution. This, however, is not always the case.
Many of the most useful computational methods in electromagnetics suffer from
the so-called low-frequency breakdown if the mesh size becomes too small. If, in
the original problem, Maxwell’s equations were considered at a high frequency
for the problem size, the selected method may seem very suitable. After mesh-
ing, however, Maxwell’s equations should be considered for each mesh element,
which is essentially a different problem. For very small mesh elements, Maxwell’s
equations behave in a very different way, closer to electro- and magnetostatics,
and this is the basic issue which causes the low-frequency breakdown [32]. Of
course, there are remedies to this problem, but its existence is a good reminder
that even full wave solvers are not universally applicable without considering the
basic assumptions.

When implementing a computational method, another element of uncertainty
enters in the form of errors and bugs in the implementation. To ensure that
solutions are accurate, verification is crucial. This can take on many different
forms, from verification of individual subroutines to comparison of full solutions
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to benchmark solutions. Ideally, verification should take place at every level of
the computational code, but at the end it is the comparison of full solutions
that is most often used to convince others that the code is accurate. The most
common example for this is likely the solution of scattering by a sphere, where
a comparison can be made to the analytical Mie solution. However, this is not
without its drawbacks, as there can be errors in a code which are not visible
for that particular problem. Confidence in the accuracy of a particular code
should increase with the number of correctly computed benchmark solutions,
and a single sphere should not be sufficient for generalizing that a code is correct
for all problems. The benchmark which is offered by the Mie solution should not
be ignored though, as it provides an excellent first benchmark which is easy to
obtain.

In this dissertation, the focus of computational methods is on full wave solvers,
with the finite element method (FEM), the method of moments (MoM) and the
finite element-boundary integral (FE-BI) method which is a hybrid combining
the two. The FE-BI method is implemented in the FE2MS computational code
described in Paper I and used in Papers II and III, and the theoretical back-
ground to that code is given in this section. The code uses not only FE-BI,
but also the adaptive cross approximation (ACA) which is introduced here. Fur-
thermore, Paper IV presents an imaging method with similarities to MoM, and
an acceleration method for matrix-vector products which is introduced in this
section. The topic of computational methods is, of course, very large and this
section focuses only on the methods important to the rest of this dissertation. For
a more general overview, the reader is directed to some of the many textbooks
on the topic [35,71,120].

3.1 The Finite Element Method
The finite element method (FEM) is a versatile computational method which has
seen use in a wide range of applications for different branches of physics. It is a
method which solves PDEs with suitable boundary conditions using the idea of
a subdivision of the computational domain into finite elements: small, regularly
shaped subdomains where the solution can be approximated to be on a simple
form, typically based on polynomial functions [21,38]. The subdivided geometry
is called a mesh, with individual subdomains called mesh elements, and the func-
tions for approximating the solution called basis functions. The mathematical
foundation of FEM rests on calculus of variations and the problem of minimizing
functionals, which in physical terms corresponds to minimizing the energy of a
particular solution [38]. The variational formulation which is central to this re-
quires the PDE to be reformulated on a weak form which takes into account both
the function corresponding to the unknown, and a test function [21]. An alter-
native, but equivalent, way to motivate a FEM formulation is using the weighted
residual method. Typically, this introduces the expansion in basis functions at
an earlier stage, and the derivations are generally more direct than using calculus
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of variations [35, 71]. For a PDE, the typical procedure for obtaining its weak
form is multiplication of the equation by a test function, integration over the full
domain, and integration by parts [38].

In electromagnetics, FEM is typically used to solve a PDE similar to (2.20)
(possibly with other constitutive relations) for either the electric field E or the
magnetic field H. The way the weak form is discretized, material parameters are
local to the finite elements, which makes FEM particularly suitable to problems
that are highly inhomogeneous. As shown in the following parts of this section,
it is also possible to use very general constitutive relations in FEM, although the
weak forms do change. If there is no magnetoelectric coupling, the corresponding
parameters in the constitutive relations (2.30)–(2.31) are ξ = ζ = 0. If these
relations are inserted in Maxwell’s equations (2.15)–(2.16), we obtain

∇ × E = −jωµ0µr · H (3.1)
∇ × H = J + jωε0εr · E. (3.2)

By taking the curl of the first equation, they can be combined into a vector wave
equation on the form

∇ ×
(

µr
−1 · ∇ × E

)
− k2

0εr · E = −jk0η0J . (3.3)

A weak form based on this equation can be written as (see A.1 for details)∫
Ω

[
(∇ × Wm) ·

(
µr

−1 · ∇ × E
)

− k2
0Wm · εr · E

]
dV

+
∮

∂Ω
Wm ·

[
n̂ ×

(
µr

−1 · ∇ × E
)]

dS = −jk0η0

∫
Ω

Wm · J dV. (3.4)

In the case where full magnetoelectric coupling is considered, the situation
is more complicated. Inserting the full constitutive relations (2.30)–(2.31) in
Maxwell’s equations (2.15)–(2.16) gives

∇ × E = −jωµ0

(
1
η0

ζ · E + µr · H

)
(3.5)

∇ × H = J + jωε0

(
εr · E + η0ξ · H

)
. (3.6)

These can be combined into one equation (see A.2 for details)

∇ ×
(

µr
−1 · ∇ × E

)
− k2

0

(
εr − ξ · µr

−1 · ζ
)

· E

+ jk0

[
∇ ×

(
µr

−1 · ζ · E
)

− ξ · µr
−1 · ∇ × E

]
= −jk0η0J (3.7)

and a corresponding weak form
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∫
Ω

(∇ × Wm) ·
(

µr
−1 · ∇ × E

)
dV − k2

0

∫
Ω

Wm ·
(

εr − ξ · µr
−1 · ζ

)
· E dV

+ jk0

∫
Ω

(∇ × Wm) · µr
−1 · ζ · E dV − jk0

∫
Ω

Wm ·
(

ξ · µr
−1 · ∇ × E

)
dV

+
∮

∂Ω
Wm ·

[
n̂ ×

(
µr

−1 · ∇ × E
)]

dS − jk0

∮
∂Ω

n̂ ·
[
Wm ×

(
µr

−1 · ζ · E
)]

dS

= −jk0η0

∫
Ω

Wm · J dV. (3.8)

In general, the PDE that FEM is solving needs suitable boundary conditions
to be well posed. In the previous sections these have not been considered and
as such, the weak forms in (3.4) and (3.8) cannot be expected to be used as
they are. Modification of the weak forms would be necessary, and this depends
on the type of boundary condition used. Additionally, there could be different
boundary conditions on different parts of the boundary ∂Ω which further affects
the weak forms. The PEC boundary condition defined in (2.52)–(2.55) is one of
the most useful boundary conditions in practical applications due to the ubiquity
of conducting materials. In the electric field FEM formulation used here, it is
simple to define using only (2.52) which sets the tangential electric field to zero
on the PEC boundary. With some of the most common FEM basis functions
this is simple to implement as it only corresponds to setting certain unknowns
to zero [72].

Another type of boundary condition which is important is the class of absorb-
ing boundary conditions. As FEM requires the full computational domain to be
discretized, simulations with open boundaries, as in typical scattering, pose a
problem. Absorbing boundary conditions aim to solve this by, ideally, being for-
mulated such that all waves approaching such a boundary are absorbed perfectly.
This emulates an open boundary where the wave propagates to infinity without
further interactions. Many absorbing boundary conditions are based on enforcing
a radiation condition at the boundary such that waves are absorbed at normal
incidence, but reflected at oblique angles. To avoid reflections it can be necessary
to place the boundary at a large distance from the simulated object, increasing
the number of unknowns [71]. Another type of absorbing boundary condition is
the perfectly matched layer (PML), which is technically not a boundary condi-
tion but rather an anisotropic medium specially designed to absorb waves that
enter [71,147]. This medium is placed as a layer surrounding the computational
domain sufficiently thick to absorb all waves before they reach the outer bound-
ary, at which a PEC boundary condition is often used [71]. One important
consideration for all absorbing boundary conditions is the shape of the object to
be simulated. Since all waves are absorbed at such a boundary it is critical that
it is not placed in a way that interferes with the object. One example of this is
shown in Figure 9 where an object exhibiting multiple reflections is shown with
absorbing boundary conditions placed differently. To ensure that all characteris-
tics of an object are captured, absorbing boundary conditions can often not be
placed conformal to the object. In some cases, like for highly concave objects,
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Figure 9: Object exhibiting multiple reflection with absorbing boundary con-
dition (red) placed such that an incident wave (blue) is reflected correctly (left)
or is absorbed prematurely (right).

this can lead to a large number of additional unknowns in the FEM problem.
This is one of the reasons why other methods like the FE-BI method can be of
interest, as will be discussed in section 3.3.

3.2 The Method of Moments
The method of moments (MoM), or boundary element method as it is commonly
known outside of electromagnetics, is a computational method based on integral
equations. For electromagnetics, this often means either of, or a combination of,
the EFIE (2.84) and the MFIE (2.85). It has similarities to FEM, but where FEM
is based on a PDE, the integral equations which MoM is based on lead to different
characteristics. In FEM, the field solution is directly given by the unknown of
the problem, for example E in the PDE (3.3), and is intrinsically linked to the
discretization. To determine the solution in a larger region, that region needs to
be discretized. In MoM, on the other hand, the solution to the integral equation
is typically electric and magnetic currents, and E can be computed from these
in arbitrary points of space using (2.79).

One of the most common uses of MoM is for problems involving PEC objects
using the EFIE. As discussed in section 2.3, PEC objects only support electric
currents and charges. The EFIE in (2.84) is then simplified to

n̂ × L (J̄s)(r) = n̂ × Einc(r) (3.9)

for r on a closed PEC surface ∂Ω. In fact, this equation is valid even for open
surfaces despite the fact that the EFIE is typically derived only for closed sur-
faces [32], and for this reason the surface is denoted S in the following. To solve
this problem, the unknown current J̄s is expanded in a finite set of N basis func-
tions, which could be global or local functions on the surface S. This gives a
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Figure 10: A surface and its triangular mesh representation.

representation

J̄s =
N−1∑
n=0

Λn(r)In (3.10)

where Λn are basis functions and In unknown coefficients. Most commonly, local
basis functions are used on a triangular mesh which approximates the surface
as shown in Figure 10. The most commonly used basis functions are the linear
Rao-Wilton-Glisson (RWG) basis functions [112] which are defined on pairs of
triangles sharing an edge in triangular meshes. Expansion in basis functions is not
sufficient for a unique solution though, as there will be N unknown coefficients
and only one equation.

Furthermore, the discretization introduces an error (residual) due to the finite
number of basis functions. The weighted residual method is used to produce a
linear system while minimizing the errors introduced by the discretization. The
way this is done is by introducing a set of test functions Tm and taking the inner
product of these and the discretized equation of interest, in this case (3.9) with
the expansion of unknowns in (3.10). The test functions can then be selected
to minimize the error after inner product by the discretized equation. If the
test functions are selected to be orthogonal to the residual, this error will be
eliminated. This is the goal of the Galerkin method [21], typically leading to
test functions being the same as the basis functions [32]. In this case it means
Tm = Λm which gives a linear system on the form [32]

ZI = V (3.11)

with

Zmn =
∫

S

Λm(r) · L (Λn)(r) dS

= jk0

∫
S

Λm(r) ·
∫

S

[
Λn(r′)G0(r, r′) + 1

k2
0

∇′ · Λn(r′)∇G0(r, r′)
]

dS′ dS

(3.12)

and
Vm =

∫
S

Λm(r) · Einc(r) dS (3.13)
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where the n̂× operations originally in (3.9) were removed by noting that it is
sufficient that the left- and right-hand sides of (3.9) are tangential to the PEC
surface. After scalar products of this equation by tangential test functions, the
resulting Zmn and Vm are the same regardless of whether the terms in (3.9) are
tangential or not.

The integrals making up the entries of Z are generally not possible to compute
analytically (as opposed to many FEM integrals), and some numerical quadrature
is typically performed to obtain the matrix entries [35, 71]. One issue stemming
from the Galerkin testing is that some entries of Z become singular. This comes
from the fact that if both Λm and Λn are nonzero on a mesh triangle, the
inner integral will cover r = r′ where the Green’s function is singular. One
aspect of this singularity was handled in section 2.7, but that was only for the
inner operator before Galerkin testing was introduced. It is possible to alter
the testing and quadrature procedure such that r = r′ never occurs [35,86], but
other methods are typically more accurate [35]. Such methods include singularity
subtraction which subtracts a singular part of the integrand that can be solved
analytically [8,40,48], and singularity cancellation which introduces a coordinate
transformation where the singularity is canceled out [39,75]. For better accuracy,
it is also necessary to consider the outer (test) integral when the basis and testing
mesh elements are the same or adjacent [106,108,109,150].

While the EFIE and MFIE are widely used in MoM, theory predicts a number
of issues with them, with one of the more well known being the issue of interior
resonances [32]. The effect of this issue is that the solution to the aforementioned
integral equations become inaccurate at certain frequencies. To explain this, it is
useful to look at the equivalence theorem while exchanging the volumes being the
interior and exterior. If we let the fields be zero for r /∈ Ω in the right-hand sides
of (2.82) and (2.83), the problem becomes that of a resonance cavity shaped
as Ω with PEC at ∂Ω. At precisely the resonance frequencies of this cavity,
the problem of interior resonances will occur for the integral equations as the
cavity solution is a valid solution to the equation. Mathematically, this means
that there is a null-space of the EFIE/MFIE operator at these frequencies, which
causes both issues with inaccurate solutions and an ill-conditioned problem [32].
The latter occurs for other frequencies near the resonance which is an issue for
iterative solutions of the problem (this is further discussed in sections 3.3 and 3.4).
A common way to remove the issue of interior resonances is by combining the
EFIE and MFIE into the combined field integral equation (CFIE) [32].

3.3 The Finite Element–Boundary Integral
Method

As hinted toward at the end of section 3.1, the hybridization of FEM and MoM
could potentially be advantageous in certain situations, and a commonly used
name for such a hybrid method is the finite element-boundary integral (FE-BI)
method. The discussions on FEM and MoM by themselves have revealed some
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ways the methods complement each other. While FEM is well-suited toward
computations involving highly inhomogeneous or even complex media, this is
much more difficult and computationally expensive in MoM where it typically
requires a volumetric formulation instead of surface formulations similar to that
in section 3.2. On the other hand, FEM has several difficulties when it comes to
problems involving free space where absorbing boundary conditions need to be
used and concave geometries can lead to a large number of unknowns, while the
integral equations in MoM inherently handle free space outside the discretized
region. These differences and the ways in which the methods complement each
other were understood early in the development of FEM and MoM, and hy-
brid methods have a long history. Very early work on such hybrid methods
was done for other types of problems than the electromagnetic wave problems
of this dissertation, like scalar potential problems [90, 133]. For the electromag-
netic wave problems considered here, the FE-BI method was first introduced
as a way to implement free-space boundaries in FEM since modern absorbing
boundary conditions like PML were not yet developed. Early methods for do-
ing this included coupling FEM with spherical meshes to spherical harmonics at
the free-space boundary [92,96]. One of the earliest papers mentioning the term
“finite element-boundary integral” for electromagnetic wave problems is actually
related to a method based on spherical vector harmonics in the boundary integral
part, and differs significantly from later methods which use the term [97]. Hybrid
methods similar to the one described in this dissertation were later developed for
wave propagation in tissue for medical applications [102], and for scattering more
generally [70,165,166]. As new and faster methods for solving integral equations
have been developed, they have typically also been employed for the BI part of the
FE-BI method [49, 130, 154, 156]. As will be discussed later in this dissertation,
the BI part of the hybrid method dominates in memory use, and as such it is the
most important part to make more efficient. While much of the work in FE-BI
methods was conducted in the 1990s, there are still developments up to this day.
An important topic to handle is the ill-conditioned nature of the FE-BI system
matrix. Work related to this includes developing better preconditioners [87,160],
ans alternative solution strategies using domain decomposition [10, 50, 161, 162]
or H-matrices [156].

In this section, the formulation of the FE-BI method used in the FE2MS
computational code (discussed in Paper I) is introduced. The description roughly
follows that in [71, 72], but with some differences and emphasis added to parts
where it is important for understanding the work in this thesis. The FE-BI
method as discussed in this dissertation uses FEM inside of a volume Ω with a
weak form suitable for the media inside. A sketch of this geometry is seen in
Figure 11 where it is seen that Ω can contain bianisotropic media, PEC, and
current sources. Outside of Ω the medium is free space, though that could be
changed to another isotropic medium, and there can be an incident wave. On the
boundary ∂Ω, an integral equation is used, for example the EFIE in (2.84). This
means that the boundary condition on ∂Ω is not explicitly known, and instead a
boundary condition enforcing Maxwell’s equations, or more specifically, Faraday’s
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Figure 11: Problem geometry for the FE-BI method.

law is used. That is, a boundary condition equivalent to (2.15) written as

n̂ ×
(

µr
−1 · ∇ × E

)
= −jk0n̂ × H̄, r ∈ ∂Ω (3.14)

where the scaling of the magnetic field H̄ = η0H and the electric current J̄ = η0J
that was used when introducing MoM is now extended to FEM parts. This
condition is inserted in the weak forms, giving∫

Ω

[
(∇ × Wm) ·

(
µr

−1 · ∇ × E
)

− k2
0Wm · εr · E

]
dV

+ jk0

∮
∂Ω

n̂ ·
(
Wm × H̄

)
dS = −jk0

∫
Ω

Wm · J̄ dV (3.15)

for media without magnetoelectric coupling and∫
Ω

(∇ × Wm) ·
(

µr
−1 · ∇ × E

)
dV − k2

0

∫
Ω

Wm ·
(

εr − ξ · µr
−1 · ζ

)
E dV

+ jk0

∫
Ω

(∇ × Wm) · µr
−1 · ζ · E dV − jk0

∫
Ω

Wm ·
(

ξ · µr
−1 · ∇ × E

)
dV

+ jk0

∮
∂Ω

n̂ ·
(
Wm × H̄

)
dS = −jk0

∫
Ω

Wm · J̄ dV (3.16)

for media with magnetoelectric coupling (see A.1–A.2 for details). These weak
forms contain two unknown fields E and H̄ on ∂Ω which are connected using an
integral equation. When this connection is to be made, the unknowns need to
be related to each other. In the FE part, the unknowns are the fields E and H̄
while in BI part they are the currents J̄ and M . Using the surface equivalence
theorem with the zero field condition in (2.74) and (2.75), these are related as
J̄s = n̂ × H̄ and Ms = E × n̂. The use of the zero field equivalence theorem
means that standard free space integral equations can be used to give the true
solution without special regard to the medium inside Ω.
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Figure 12: Basis functions used in the FE (left) and BI (right) parts. The
triangle to the right is the same as the front face of the tetrahedron to the left.
Adapted from [128] (CC-BY-4.0).

3.3.1 Basis Functions
Next, the solution in both FEM and MoM rests upon expanding the unknowns
into a discrete set of basis functions, which means that they also need to be con-
nected. In the FE part, the expansion uses curl-conforming basis functions N ,
meaning that the functions are defined such that ∇×N is square integrable [46].
In the BI part, the expansion uses divergence-conforming basis functions Λ, which
instead are such that ∇ · Λ is square integrable [46]. Essentially, the curl or di-
vergence of such basis functions will not contain Dirac delta functions, making
them suitable in expressions with curl or divergence (like the FE or BI expres-
sions). Figure 12 shows an example of a lowest order Nédélec curl-conforming
basis function on a tetrahedron and a lowest order Raviart-Thomas divergence-
conforming basis function on a triangle (equivalent to RWG functions but often
defined with a different normalization). As these are linear functions, the curl-
or divergence-conforming property means that ∇ × N or ∇ · Λ is constant. Both
types of basis functions are so called edge based, meaning that they are linked
to edges in the mesh, as can be seen for the basis functions in Figure 12 which
are linked to the highlighted edges. If the FE unknowns E and H̄ are expanded
using curl-conforming basis functions, they can be written as

E(r) =
NI−1∑
n=0

N I
n(r)EI

n +
NS−1∑
n=0

NS
n(r)ES

n (3.17)

H̄(r) =
NS−1∑
n=0

NS
n(r)H̄S

n (3.18)

where NI is the number of mesh edges on the interior of Ω and NS is the number
of mesh edges on the external boundary ∂Ω. The superscripts I and S similarly
indicate whether a basis function and its corresponding degree of freedom are
based on an interior or boundary edge, respectively. If the BI unknowns J̄s
and Ms are to be expanded in basis functions, it is important that they can be
connected to the FE expansions. This is quite naturally done though, as a curl-
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conforming basis function transforms into a divergence-conforming one under
the rotation around a surface normal. This means that a suitable expansion is
obtained for r ∈ ∂Ω as

J̄s(r) = n̂ × H̄(r) =
NS−1∑
n=0

(
n̂ × NS

n(r)
)

H̄S
n =

NS−1∑
n=0

Λn(r)H̄S
n (3.19)

Ms(r) = E(r) × n̂ = −
NS−1∑
n=0

(
n̂ × NS

n(r)
)

ES
n = −

NS−1∑
n=0

Λn(r)ES
n (3.20)

with the derived divergence-conforming basis functions Λn. If Nn is a lowest
order Nédélec basis function on a tetrahedron, the derived Λn is a lowest order
Raviart-Thomas basis function on a triangle. By careful inspection of figure 12,
it can be seen that the Raviart-Thomas function is obtained by rotating the
Nédélec function 90◦ around the facet normal.

3.3.2 Finite Element Matrix Blocks
The finite element formulations can be separated into integrals involving E and
integrals involving H̄. The expansions in (3.17) and (3.18) are used, and the test
functions Wm in the weak forms are set to be equal to the basis functions. For
media without magnetoelectric coupling, using the E integrals of the weak form
in (3.15) results in a matrix K with entries

KXY
mn =

∫
Ω

[
(∇ × NX

m) ·
(

µr
−1 · ∇ × NY

m

)
− k2

0NX
m · εr · NY

m

]
dV (3.21)

where X, Y ∈ {I, S} indicate if corresponding unknowns are on the interior of Ω
or on the external boundary ∂Ω. For media with magnetoelectric coupling as
the weak form in (3.16), the matrix entries instead become

KXY
mn =∫

Ω
(∇ × NX

m) ·
(

µr
−1 · ∇ × NY

m

)
dV − k2

0

∫
Ω

NX
m ·

(
εr − ξ · µr

−1 · ζ
)

· NY
m dV

+ jk0

∫
Ω

(∇ × NX
m) · µr

−1 · ζ · NY
m dV − jk0

∫
Ω

NX
m ·

(
ξ · µr

−1 · ∇ × NY
m

)
dV.

(3.22)

The integrals involving H̄ are the same for both types of media, resulting in a
matrix B with entries

Bmn = jk0

∮
∂Ω

n̂ · (NS
m × NS

n) dS. (3.23)
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Since this only contains basis functions evaluated on the boundary ∂Ω, it can
also be rewritten using divergence-conforming basis functions as

Bmn = jk0

∮
∂Ω

n̂ · ([−n̂ × Λm] × [−n̂ × Λn]) dS = jk0

∮
∂Ω

n̂ · (Λm × Λn) dS.

(3.24)
The linear system built up by the matrices KXY and B can be expressed as

[
KII KIS 0
KSI KSS B

]  EI

ES

H̄S

 =
(

bI

bS

)
. (3.25)

This is underdetermined as the BI part has not yet been accounted for. The
entries in the right-hand side are obtained as

bY
m = −jk0

∫
Ω

NY
m · J̄ dV (3.26)

from the right-hand sides of (3.15) and (3.16).

3.3.3 Boundary Integral Matrix Blocks
The BI matrix blocks depend on the integral equation which is used. Starting
with the EFIE from (2.84), a cross product by n̂ is first used to eliminate all
occurrences of n̂ (the tangential nature of the equation is preserved since the basis
functions Λ are tangential to the elements of their support). The expansions for
currents in (3.19) and (3.20) are inserted and the equation is tested by the same
functions as the basis functions. For test function m, the equation then becomes

NS−1∑
n=0

∮
∂Ω

Λm(r) ·
(
L

[
Λn(r′)H̄S

n

]
− K

[
−Λn(r)ES

n

])
dS

=
∮

∂Ω
Λm(r) · Einc(r) dS. (3.27)

This gives a linear system on the form

PES + QH̄S = binc (3.28)

with entries given by

Pmn = P E
mn =

∮
∂Ω

Λm(r) · K (Λn(r′)) dS (3.29)

Qmn = QE
mn =

∮
∂Ω

Λm(r) · L (Λn(r′)) dS (3.30)

binc
m = bE

m =
∮

∂Ω
Λm(r) · Einc(r) dS. (3.31)
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As discussed in section 2.7, the K -operator contains a singularity which gives
an additional term when extracted. This term only appears for matrix entries
with testing and basis functions within the same mesh triangle. Furthermore,
the evaluation of matrix entries is done the same way as discussed for standard
MoM in section 3.2, which means that certain entries will be singular and not
possible to evaluate by numerical quadrature. Fortunately, the same methods of
singularity subtraction and cancellation are also useful in the FE-BI case.

As for standard MoM, the use of the EFIE for closed surfaces like ∂Ω in-
troduces the known issue of interior resonances. One common way to eliminate
this issue is by using the CFIE instead. It is, however, important to test this
equation with appropriate test functions for the interior resonance problem to
fully disappear. One difficulty comes from the fact that versions of the CFIE
which eliminate the interior resonance problem combine the EFIE and the MFIE
with one of them having the rotating operation n̂× applied to it [130]. The suit-
able test functions for the rotated part of the CFIE are curl-conforming, and not
simply the rotated basis functions. Instead, another type of test function, often
called Buffa-Christiansen functions, can be used for that part of the CFIE to
obtain an appropriately tested equation [7, 23]. These functions have been used
to resolve issues with test functions for the MFIE [34], CFIE [163], and CFIE
used in the FE-BI method [49].

A difficulty with the approaches using Buffa-Christiansen test functions for
the CFIE is that implementations require significant amounts of additional work
with such functions being defined on a different mesh. One CFIE formulation
which is easy to implement with the exact same tools as for the EFIE formu-
lation is the so called TETH formulation from [130]. This does not have any
rotating operations for the EFIE or MFIE, and can use the same test functions
as before. However, this formulation does not eliminate the interior resonances
which was the main reason for using the CFIE. Nevertheless, it can be used to
improve performance with essentially no additional effort compared to an EFIE
implementation. If an iterative solver is used to solve a problem with interior
resonances, the solver converges very slowly in a band around the resonance
frequencies. With the TETH formulation, this band can be reduced so that solu-
tions can be obtained with reasonable convergence at more frequencies than with
the EFIE, although it is still not possible to obtain an accurate solution exactly
at the resonance. The P and Q matrix blocks for the TETH formulation are
obtained by linear combination of the ones for the EFIE as [130]

Pmn = 1
2

(
P E

mn − QE
mn

)
(3.32)

Qmn = 1
2

(
P E

mn + QE
mn

)
(3.33)

binc
m = 1

2
(
bE

m + bM
m

)
(3.34)

where
bM

m =
∮

∂Ω
Λm(r) · H̄ inc(r) dS. (3.35)
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Figure 13: Illustration of the nonzero entries of the FE-BI system matrix.
Purple lines are used to indicate the block structure.

These are used in the same system as (3.28).

3.3.4 Combined Linear System
When the FE and BI formulations are decided, their linear systems in (3.25)
and (3.28) can be combined into the complete FE-BI systemKII KIS 0

KSI KSS B
0 P Q

  EI

ES

H̄S

 =

 bI

bS

binc

 . (3.36)

For the FE2MS FE-BI code presented and used in papers I–III, only scattering
problems are considered, which means that bI and bS become zero. The system
is partly sparse, and partly dense due to the structure of the FE and BI blocks,
respectively. This is illustrated in Figure 13 for a small layered dielectric sphere
with 624 FE unknowns and 198 BI unknowns.

3.4 Solution Methods
All computational methods discussed in previous sections result in linear systems
of equations that are to be solved. Often, such methods are classified as direct
methods or iterative methods.

The oldest direct methods use a complete matrix with all entries, including
zeros, directly available. Most Gaussian elimination methods and LU decomposi-
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tion methods are included here. While this can be acceptable for dense matrices
with few zero entries, such methods are unsuitable for sparse matrices where the
majority of matrix entries are zeros. For sparse matrices, there are ways of stor-
age that do not require all zeros to be explicitly stored, meaning large memory
compression when implemented. For these types of matrices, there are other
direct methods available, often through specific software packages like UMF-
PACK [36], SuperLU [83], MUMPS [5]. These are typically much more complex
than the methods for full matrices though. Another type of direct method are
fast direct methods like H-matrix methods [17, 55]. These use underlying prop-
erties of the, typically dense, system matrix to rewrite it on a different form (the
ACA method discussed in section 3.5.2 is often used as part of these methods to
provide compression). This new form can then be used for a solution which can
give a representation like the aforementioned LU decomposition. Similar to the
methods for sparse matrices, the fast direct methods are more complex than the
methods for full matrices.

Iterative methods work in very different ways compared to direct methods.
While direct methods require matrices to have a certain structure, be it dense,
sparse or H-matrix, iterative methods require no knowledge of the matrix. They
are instead based on matrix-vector products and can be used to solve any system
for which such products can be performed. They are called iterative because they
use a series of matrix-vector products with different vectors to find a solution for
one right-hand side. This means that all of the matrix types described for direct
methods can also be used for iterative methods without much work, as matrix-
vector products are such essential building blocks for any implementation of linear
algebra. It also means that combinations of different matrix types which do not
easily work with direct solvers can use iterative methods. This includes the FE-
BI system in (3.36) which typically is too sparse to be efficiently solved using
methods for dense matrices, but too dense to be efficiently solved by methods for
sparse matrices. One drawback of iterative methods compared to direct methods
is that an iterative solution is only valid for one right-hand side. Direct methods
like LU decomposition result in a matrix representation applicable to any right-
hand side with low computational cost. In some cases, if solutions are similar, the
performance of iterative methods for multiple right-hand sides can be improved
by using the previous solution is as an initial guess. These considerations can be
very important for electromagnetic problems with multiple excitations common
in, for example, RCS computations.

One major consideration when working with iterative methods is that of con-
vergence. The number of iterations required to solve a system can vary signifi-
cantly, and depends strongly on the condition number of the matrix. Methods
to reduce the condition number, or preconditioning, are highly useful to improve
performance. Essentially, such methods aim to transform the system matrix to
one with better convergence, and ensure that the result is still correct or can
be made so with a simple transformation [121,144]. In practice, preconditioning
is typically not applied to the system matrix though, as that would be compu-
tationally expensive. Instead, the vectors in the matrix-vector products of the
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iterative method are transformed by the preconditioning, achieving the same ef-
fect. Depending on which stage of the iteration the preconditioner is applied,
different terms are used. In right preconditioning, the preconditioner is applied
to the right of the system matrix, i.e., on the vector going into the matrix-vector
product. In left preconditioning, the preconditioner is instead applied to the
left of the system matrix, i.e., on the vector resulting from the matrix-vector
product. It is also possible to combine the two [121]. There are many different
preconditioning methods, some which are more general than others. Methods
like Jacobian, successive over-relaxation and incomplete LU decomposition are
examples of general-purpose preconditioning methods applicable to many differ-
ent system matrices [121]. However, better performance is often possible if the
preconditioning method is adapted to the system in question. As an example
of specialized preconditioning, the FE-BI system in (3.36) based on the EFIE is
considered. This system is typically very ill-conditioned and needs a good pre-
conditioner for iterative methods to converge. The method used in the FE2MS
FE-BI code described in Paper I (similar to that described in [49]) applies a
sparsification procedure to the BI blocks in (3.36) to obtain a new matrix

M =

KII KIS 0
KSI KSS B
0 −2jk0P′ −2jk0Q′

 . (3.37)

The blocks P′ and Q′ are obtained by only considering interactions within single
mesh elements, which together with the multiplication by −jk0 causes M to
be both sparse and symmetric. The preconditioned vector is then obtained by
solving the system

Mx = y (3.38)

where y is the original vector and x the preconditioned vector. This system
can be solved directly using efficient methods for sparse systems, or iteratively,
though that typically requires another inner preconditioning step.

3.5 Acceleration and Compression Methods
There are many different ways to make computational codes faster, but certain
methods exist that use mathematical properties of the underlying computational
codes to dramatically improve performance. In this part the focus is going to
be on a few methods applicable to the MoM and FE-BI computational methods,
but there are many more methods that are not discussed here.

The main reason why MoM and FE-BI are discussed at the same time is
that they both share the same bottleneck in performance, which is due to the
use of integral equations. In the FE-BI system matrix (3.36), there are both
sparse matrices coming from the FE part and dense matrices coming from the
BI part. These matrix types have different complexities with regard to memory
and computation times as shown in Table 1. The effect of these on the FE-BI
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Table 1: Complexities for sparse and dense matrices with n unknowns. C is
the number of iterations.

Resource Sparse Dense

Matrix storage O(n) O(n2)
Matrix-vector product time O(n) O(n2)
Iterative solution time O(Cn) O(Cn2)

method is that the BI part dominates both in memory and time, even for small
problem sizes. It is very beneficial if this complexity can be reduced.

One way of reducing the complexity is by obtaining a representation of the
matrix which is significantly compressed as compared to the full matrix, and
doing this in a way that is computationally efficient in its construction. Important
mathematical operations like matrix-vector products also need to be possible to
perform efficiently. Typically, the possibility to compress information indicates
that the full representation contains redundant information [129], and this is also
the case for the methods described here.

The first method described in section 3.5.1 compresses a matrix by exploiting
translation invariance in the underlying operator. This means that the operator
remains the same under specific translations in space, meaning that matrix entries
are also unchanged for the same translations. Conceptually, it is easy to see
that there is redundant information, and compression should be possible. The
same properties allowing for compression as described here are also used in other
methods like the conjugate gradient-FFT method [29,104,124] and the adaptive
integral method [19]. The second method described in section 3.5.2 is the ACA
which uses low-rank properties to compress a matrix, or sub-blocks of a matrix.
The general property of a matrix having low rank means that it can be written
using only a subset of its columns. That this allows for compression is also
conceptually easy to understand. For both methods, however, the actual ways
to obtain compressed representations efficiently and use them in mathematical
operations take more work to understand. Of course, many other methods for
compression and acceleration exist with one of the more important ones being the
fast multipole method [33, 116, 117] in its multilevel implementation [135, 136].
While very important for MoM in general, it is not discussed in detail in this
dissertation.

3.5.1 Acceleration of Translation Invariant Operators
This first type of acceleration is based on exploiting properties of the Green’s
function. Consider the free space Green’s function as given by

G(r, r′) = e−jk0|r−r′|

4π|r − r′|
. (3.39)

If the source and evaluation points r′ and r are translated equally, there is no
change in the function value, i.e., G(r − rt, r′ − rt) = G(r, r′). The Green’s
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function is translation invariant, which can be used to accelerate matrix-vector
products for matrices based on it.

As a simple example, consider a regular rectangular grid with Nx nodes in x
and Ny nodes in y such that the node coordinates are

rm,n = m∆xx̂ + n∆yŷ (3.40)

with grid spacing ∆x and ∆y. Let an identical grid, but translated in z by z0,
be defined with node coordinates

r′
m,n = m∆xx̂ + n∆yŷ + z0ẑ. (3.41)

The Green’s function for source points on one grid and observation points on the
other is now expressed in a tensor form as

Am′,n′

m ,n = G(rm,n, r′
m′,n′) (3.42)

and due to translation invariance in the Green’s function, it holds that

Am′−m0,n′−n0
m −m0,n −n0

= Am′,n′

m ,n (3.43)

if m0 and n0 are integers such that the resulting indices are not out of bounds
for the grid in question. While the Green’s function could have been written
more traditionally as a two-dimensional matrix, the four-dimensional tensor form
makes the translation invariance more explicit.

The way this translation invariance affects the tensor Am′,n′

m ,n is similar to how
a Toeplitz matrix behaves. Such a matrix with dimensions N × N is defined to
have elements as [47]

T =


T0 T−1 T−2 . . . T−(N−1)
T1 T0 T−1 . . . T−(N−2)
T2 T1 T0 . . . T−(N−3)
...

...
...

. . .
...

TN−1 TN−2 TN−3 . . . T0

 . (3.44)

This type of matrix can be rewritten as a circulant matrix by embedding it in a
2N × 2N matrix as

T̃ =



T0 T−1 . . . T−(N−1) 0 TN−1 . . . T1
T1 T0 . . . T−(N−2) T−(N−1) 0 . . . T2
...

...
. . .

...
...

...
. . .

...
TN−1 TN−2 . . . T0 T−1 T−2 . . . 0

0 TN−1 . . . T1 T0 T−1 . . . T−(N−1)
T−(N−1) 0 . . . T2 T1 T0 . . . T−(N−2)

...
...

. . .
...

...
...

. . .
...

T−1 T−2 . . . 0 TN−1 TN−2 . . . T0


(3.45)
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where the top left block is the same as T and the others contain the same entries.
Looking at the columns of T̃, it is seen that each column is the same as the
previous, but shifted one entry down. This means that T̃ is circulant, and such
a matrix is diagonalized by the discrete Fourier transform (DFT) [47]. This is
important as it enables fast matrix-vector products and linear system solution
using the fast Fourier transform (FFT). If Fn is the matrix corresponding to the
DFT of dimension n, the diagonalization of T̃ can be written as [47,113]

T̃ = F−1
n diag(Fnt)Fn (3.46)

where t is the first column of T̃. A matrix-vector product involving T̃ can thus
be computed as

T̃v = F−1
n diag(Fnt)Fnv = F−1

n (Fnt ◦ Fnv) (3.47)

where ◦ indicates a Hadamard (elementwise) product. Operations involving Fn

and F−1
n are computed fast using the FFT. Since T̃ contains the original matrix T

in the first N rows and columns, a matrix-vector product Tw is easily obtainable
by appending N zeros to w, applying (3.47), and extracting the first N entries
of the result. Due to the performance of the FFT and the fact that only a vector
with 2N entries is used, this can dramatically improve performance.

Going back to the original problem with the tensor Am′,n′

m ,n , the Topelitz and
circulant structures become significantly harder to write out explicitly, but sim-
ilar acceleration as for matrices is possible for tensors of arbitrary order [113].
In the four-dimensional tensor case of interest here, the acceleration analogous
to (3.47) changes from using a one-dimensional DFT operating on vectors to
a two-dimensional DFT operating on matrices. Although the generalization is
more complicated to write out explicitly and implement in a code, the underly-
ing theory is the same as for the circulant matrices. A different situation arises
if the two grids in the Green’s function example are changed to only be equal
in one instead of two dimensions. That could be due to a curvature preventing
translation invariance in one of the two grid dimensions. In this case, translation
invariance still exists in one dimension, and with an appropriate formulation of
the four-dimensional tensor a circulant structure can be obtained such that a
one-dimensional DFT can be used in acceleration of matrix-vector products. Of
course, this is not as computationally efficient as the previous case as entries in
the other dimension need to be computed fully, but it still provides acceleration.

While there are many methods using translation invariance as described here
to solve MoM problems, in particular for volumetric MoM [30, 43, 169], in this
dissertation it is only used for computing electric fields due to electric currents
in disjoint regions. This is similar to approaches which have been used in digital
holography where the typical operators act on disjoint source and observation
planes [37, 52]. This implementation is simpler than would be necessary in the
full solution of a problem, but still adds additional complexity compared to the
Green’s function example. The Green’s function example is in turn more complex
than the pure Toeplitz matrix for which the DFT-based acceleration was shown.
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The operator needed for computing the forward problem of electric fields due
to electric current is the integral operator in (2.79) with M = 0. While the
operator is still translation invariant, it is more complex than the pure Green’s
function as it contains more different terms and is vector-valued in input and
output. Furthermore, the currents J must be represented in an appropriate
way which offers the same kind of translation invariance as between points in
meshed as described in the Green’s function case. This could, for example, be
done by using rooftop basis functions defined for each edge in the source grid.
If the source and observation grids are equal in x and y, the basis functions
are not aligned with the observation points and they differ in number. The
algorithm is still useful, but the enumeration of source and observation quantities
can become quite cumbersome in implementations. As for Green’s functions, it
is also possible to use translation invariance in only one direction when using the
operator in (2.79). This was done in Paper IV where such an operator was used
in an imaging algorithm with sources on a singly curved surface and observations
in a planar grid. That work was based on similar imaging techniques for planar
surfaces with full translation invariance in [60,61].

3.5.2 The Adaptive Cross Approximation
The adaptive cross approximation (ACA) is a method for compression of matrices
based on low-rank approximations. For any matrix A ∈ Cm×n, the rank r is given
by its number of linearly independent columns. If r < m, n the matrix can be
written on the outer product form as

A = UVH, U ∈ Cm×r, V ∈ Cn×r. (3.48)

It is clear that in cases where r ≪ m, n this form provides a more efficient
way to store A. One way to achieve this form is by using the singular value
decomposition (SVD) which reads

A = UΣVH, U ∈ Cm×m, V ∈ Cn×n, Σ ∈ Cm×n (3.49)

and where Σ only has nonzero entries σ1, . . . , σr on the diagonal. Any diagonal
entries above r in Σ are zero, which directly means that the decomposition can
be rewritten on the form in (3.48). However, the algorithm to compute the
SVD has a memory complexity O(n2), and a computational complexity O(n3)
if m ∼ n [144]. This offers no improvement over a direct method, so other
algorithms are needed. One such algorithm is the ACA.

At its core, the ACA is an algorithm which constructs an approximate repre-
sentation UVH for A by using only a subset of its rows and columns [16,17,167].
Since not all of A is used by the algorithm, the necessary parts can be constructed
as needed to greatly reduce the memory use compared to full storage of A. An
explicit description of the ACA algorithm for MoM computations can be found
in [167], and readers are referred to this for details. Here, a brief overview of the
algorithm, broadly based on [167], is provided. The starting point of the ACA
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is before the matrix A is constructed. In the first step, a row is selected to be
constructed, typically taken to be the first row of A. This, normalized by its
largest entry in absolute value, is saved as the first row of VH. Next, a column is
selected to be constructed, which is the column in A containing the largest entry
in absolute value of the first row. This column is saved as the first column of U.
Following these two first selections, subsequent rows of VH and columns of U are
constructed by a similar selection process, but with the entries already present
subtracted. If this was the full algorithm, rows and columns would continue to
be constructed until obtaining all entries, resulting in no compression. To avoid
this, an estimate of the error

∥∥A − UVH
∥∥ (in Frobenius norm) is computed at

each iteration of the algorithm, and the iteration can be stopped when a desired
error is reached. Crucially, this estimate is computed using only the information
already used for the construction of U and VH.

While the application of the ACA when constructing a matrix A results in
a representation on outer product form, it is not optimal in the way that the
SVD is, that is having U and V unitary and of minimal inner dimension. This
can be remedied by using the QR decomposition and the SVD to recompress the
representation from the ACA as follows [15]. The QR decompositions are written
as

U = QURU, U ∈ Cm×k, QU ∈ Cm×k, RU ∈ Ck×k (3.50)
V = QVRV, V ∈ Cn×k, QV ∈ Cn×k, RV ∈ Ck×k (3.51)

where the Q matrices are unitary and R matrices are upper triangular. The
outer product form can be represented as

UVH = QURURH
VQH

V. (3.52)

Now, the SVD can be computed for the product of the R matrices, which is only
k × k, as

RURH
V = ÛΣ̂V̂H (3.53)

and a new outer product form is finally obtained as

UVH =
(

QUÛΣ̂
) (

QVV̂
)H

(3.54)

where both matrices are unitary and of minimal inner dimension. If k ≪ m, n,
both the QR and SVD are computed for matrices with significantly smaller di-
mensions than A and the recompression can therefore be applied without chang-
ing the complexity of the ACA algorithm [15].

An important question when it comes to the applicability of the ACA is if
low rank matrices actually arise in the applications of interest. There are cases
in CEM where this can happen naturally. One example is in MoM computations
of large array antennas where the system matrix can be subdivided into blocks
corresponding to self-interaction and coupling between array elements. In this
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Level 0

Level 1

Level 2

Figure 14: An octree shown as a tree data structure and geometrically at the
three first levels. Note that there are several groups that are empty at level 2.

case, blocks which do not correspond to self-interaction are expected to have
lower rank and can readily be compressed using the ACA [62,63].

While the easily separable geometry in antenna arrays makes for simple ACA
use, the same does not hold for general geometries. In a general mesh, it can
typically not be assumed that the matrix is easily decomposed into clear blocks
like array elements, but this can be achieved using an intermediate step. This
step is a geometric clustering of the unknowns in the problem such that groups of
unknowns are formed, which can be used similar to blocks in the array case. Typ-
ically, this is done by generating an octree, which is a hierarchical data structure
originally developed for computer graphics [91]. It provides geometric clustering
by creating a cubic bounding box around the geometry in question and splitting
it into eight cubes. These smaller cubes are considered children to the origi-
nal bounding box, and this is the start of a tree data structure of cubic groups
of decreasing size as the tree deepens. The octree is refined by performing the
same split into eights for each child until a stopping criterion, which could be
a certain tree depth or a certain number of unknowns in a leaf node group, for
example. An example of this clustering is shown in Figure 14 both as a tree and
the corresponding geometrical groups.

The ACA can be applied to unknowns using the leaf groups of the octree in
a similar way to that described for the array case. Typically this means that the
ACA is applied to interactions between non-neighboring leaf groups. However,
more improvements can be done by introducing a multilevel algorithm instead.
This is similar to how the multilevel fast multipole method works, but simpler
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Level ℓ Level ℓ− 1

Figure 15: Near groups for full computations (red) and far interacting groups
for ACA computations (blue) at two levels. The group marked with a crosshatch
pattern is the source group. Boundary lines between groups are dotted for level ℓ,
dashed for level ℓ − 1 and solid for level ℓ − 2.

to implement, which builds upon a more general concept for hierarchical com-
putations [14, 65]. Multilevel ACA computations using an octree begin at the
leaf level (level ℓ), where near interactions for sources in each group are consid-
ered first. Interactions between unknowns within the source group or this and
neighboring groups are computed without the ACA as these unknowns are too
close for reasonable compression. Since these interactions are few compared to
the total number of system matrix entries, their entries are stored in a sparse
matrix. Groups at level ℓ which are not neighbors with the source group, but
whose parent groups at level ℓ−1 are neighbors to the parent of the source group,
are called “far interacting”. Interactions between unknowns in these groups are
computed using the ACA. After this is done for all groups at level ℓ, level ℓ − 1
is considered. The far interacting groups at this level are identified for all groups
at level ℓ − 1, and interactions between them are computed using the ACA. In
Figure 15, these group types are shown for a two-dimensional (quadtree) rep-
resentation. It can be seen that the far interacting groups for the crosshatch
patterned source group at level ℓ − 1 are disjunct to those at level ℓ. As such,
there is no duplication of interactions at different levels. As we travel toward
the root of the octree, the group size increases as well as the separation between
groups. The idea is that a larger separation results in a lower rank for a given
group size, and as such the groups can contain more unknowns at higher levels.

While the ACA can be used for compression in many cases, it is optimal
for use with integral operators whose kernels are smooth [17]. Unfortunately,
this does not include the operators used in MoM for electrically large problems,
like the scattering problems of interest to this dissertation. However, while the
ACA should then be better for electrically small electromagnetic problems, the
performance degradation with increasing electrical size is graceful and the ACA
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can still be used with success for many problems where the kernel is not smooth,
like said scattering problems [17, 71]. Typically though, it scales worse than
the multilevel fast multipole method for an increasing electrical size [71]. Other
methods similar to the ACA, but with better performance for kernels which
are not smooth, have been developed like the butterfly decomposition [51, 93].
Nevertheless, there are certain geometries where low-rank approximations like the
ACA perform particularly well like elongated and quasi-planar structures [51]. In
this dissertation, the ACA was used to compress BI blocks for the FE2MS FE-BI
code introduced in Paper I. One detail which can be noted is that this code is
implemented using lowest order basis functions for both FE and BI parts. For
the FE part in particular, the mesh tetrahedrons for these basis functions may
need to be small in order to obtain sufficient accuracy, particularly if their face
triangles are compared to typical sizes of BI mesh triangles. Furthermore, mesh
sizes in the FE part are further reduced by scaling by the refractive index of the
medium. Taken together, the BI mesh can often contain smaller mesh elements
than typical sizes. These situations are well-adapted to the ACA though, as the
high mesh density means that far interacting groups for lower levels in the octree
are within electrically small regions where the kernel of the integral operator is
comparatively smooth.

3.6 Implementing Computational Methods
While some methods for accelerating computational methods were described in
section 3.5, details in how computational methods are implemented can also have
dramatic consequences on performance. These are very general concepts like
performance of different programming languages, optimization of code, general
code architecture and the type of hardware that is used in computations.

One way to divide types of programming languages is in interpreted languages
and compiled languages. In interpreted languages, each command in a program is
executed directly on the machine, while in compiled languages the full program
needs to be compiled into machine code that can in turn be executed on the
machine. Interpreted languages are typically more flexible to use than compiled
languages since commands can be executed one by one, and intermediate re-
sults are available at any point. However, compiled languages are typically much
more efficient. Some examples of programming languages often used in scientific
computations are the compiled languages C++ and Fortran, and the interpreted
languages Python and MATLAB [18, 99]. More recently, another option called
just-in-time (JIT) compilation has become more available. Languages with this
feature can compile parts of a program when they are first executed, while possi-
bly keeping features from interpreted languages for other parts. An example of a
language used in scientific computations with native JIT compilation is Julia [18],
but JIT compilation is also available for Python [81] and MATLAB [142].

A great aid when implementing computational methods from scratch is the
availability of open-source software to use as a base. At some level, there is
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always a base library of tools, regardless of what programming language is used.
However, software packages with significantly higher levels of functionality may
be available under open-source licenses, and what might be available depends
on the programming language. One language with a large number of easily
accessed open-source software packages is Python. There are many reasons for
this, including, of course, Python’s wide popularity and ease of use, but an
important factor for the specific application of scientific computing is the common
framework of efficient data structures, linear algebra functions and other utility
given by the NumPy package [59].

The FE2MS FE-BI code described in Paper I is written mostly in Python, and
combines many different open-source software packages for its functionality. The
most important packages and some of the reasons for using them are described
here, but a more in-depth discussion is available in Paper I. Before discussing
packages used for computations, it is important to consider the geometry and
mesh used for the code. Meshes used in the code are on the format produced
by the Gmsh package [45], and since this package has a Python application
programming interface (API) it is possible to handle meshing in the same Python
scripts as the computations. As for the computational code itself, the FE and
BI parts are considered somewhat separately, which makes sense when looking
at the theory of the FE-BI method in section 3.3. The FE part is implemented
using the FEniCSx package, which is a very versatile package for FEM which can
handle general weak forms, many different mesh elements and basis functions,
among others. FEniCSx consists of the components DOLFINx [13], FFCx [84],
Basix [126,127] and UFL [3]. In addition to providing a complete implementation
of the FE part, FEniCSx gives access to much of the infrastructure needed to
implement the BI part. This includes data structures for mesh, basis functions
and numerical quadrature. Furthermore, the connection between the two parts
is facilitated by the use of FEniCSx data structures for both. Much of the
BI part itself is written specifically for the FE2MS code with the lower-level
computational framework from NumPy. Furthermore, JIT compilation using
Numba [81] is used to dramatically improve performance of parts where standard
Python performance is poor, like in assembly of system matrices. An often
challenging part of integral equation methods is that of singularity handling. As
described in section 3.2, singular integrals arise from typical Galerkin testing of
the EFIE and MFIE, and they need to be handled appropriately. In the FE2MS
code this is done using the DEMCEM package which offers efficient methods
for solving singular integrals due to these equations for a triangular mesh [105–
107, 109]. Since DEMCEM is implemented in C++, its use in a Python code
required some additional work using the pybind11 package [69] for connecting
code from the two different programming languages. To improve performance
of the BI part of the FE2MS code, a multilevel ACA is used for compression of
the BI blocks of the system matrix. The octrees used for geometric clustering
of unknowns in this algorithm are created using the AdaptOctree package [73].
This combination of open-source software packages facilitated the development
process and greatly accelerated it, especially since the development was from
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scratch without an existing in-house codebase.
When working with open source, it is useful to understand some of the legal

framework and licenses that are commonly used. This is especially true if pub-
lishing software based on many open-source packages which might use different
licenses. Broadly, there are two types of licenses under the broader term open
source: permissible licenses and copyleft licenses. Permissive licenses are, as in-
dicated by the name, very permissive and put almost no restrictions on how the
user might apply the software. A common example is the Berkeley Software Dis-
tribution (BSD) 3-clause license [100] which is, for example, used in NumPy and
SciPy. Copyleft licenses, on the other hand, are more restrictive, mostly regard-
ing distribution of derivative software. One of the most common such licenses is
the general purpose license (GPL) which essentially states that software which
uses GPL-licensed software can only be distributed if it is so under the same
license [138]. The underlying reason is quite ideological in that it aims for open-
source software to not be used in closed-source software at a later stage [138].
This license mechanism is a reason why the FE2MS FE-BI code described in
Paper I is released under the GPLv3 license as opposed to, for example, BSD
3-clause.

4 Imaging Methods and Nondestructive
Testing

Microwave imaging has been used in many different applications such as remote
sensing, security scanners and NDT [2, 98]. Microwaves are defined as the fre-
quencies 300 MHz–300 GHz, with a narrower region of mm-waves taken as the
upper range starting at 30 GHz (corresponding to a wavelength of 1 mm). Mi-
crowave imaging has long been been performed for long-range applications such
as remote sensing and radar imaging from satellites and aircraft [114, 115], but
shorter-range systems have been feasible more recently [98]. These systems are
lower in cost due to significant developments in hardware, and progress in signal
processing means that there are more possibilities for what can be deduced from
the data [2]. The decrease in cost and increase in capabilities has opened up for
many new applications of microwave and mm-wave imaging [98].

In this dissertation, mm-wave imaging has been applied to NDT. NDT as a
general field of study covers a vast amount of applications and physical phenom-
ena, and as such it is difficult to give an all-encompassing introduction. The gen-
eral idea behind any NDT, however, is to use some kind of physical phenomenon
to learn about the properties of a device under test (DUT) without damaging its
usefulness. The phenomenon used in testing should give some indication which
can be connected to flaws in the DUT [131]. Depending on the property of the
DUT which is to be investigated, different physical phenomena might be more
or less useful. For example, mechanical properties are often evaluated using ul-
trasonic NDT methods since ultrasound is an acoustic wave whose propagation
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properties are determined by mechanical properties of the medium [125]. A flaw,
however, can have effects on many different properties. For example, hard metal-
lic inclusions in a soft foam would result in high contrasts both for ultrasound
and mm-waves.

The use of microwaves and mm-waves in NDT is relatively new compared
to ultrasound, but has advantageous properties when testing many newer types
of materials [74, 168]. It can be particularly interesting for applications where
electromagnetic performance is one of the properties to be evaluated, in addition
to mechanical flaws. One such application is radomes, where the full structure
has been carefully designed for high transmission in the band of an enclosed
antenna [103]. Another example may be aerospace structural elements, which
can be designed for low radar cross section in some defense applications. In
Paper IV, mm-wave imaging is applied to NDT of thin, low-permittivity, singly
curved composite panels used in aerospace applications.

4.1 Fourier-Based Imaging
Many of the most widely used methods in microwave and mm-wave imaging are
based on Fourier analysis [98]. Since Fourier analysis covers a wide range of
methods focused on trigonometric functions, like time-harmonic electromagnetic
waves, it is hardly surprising. The work presented in this dissertation, however,
rather focuses on imaging methods based on inverse scattering as will be described
in section 4.2. Nevertheless, Fourier-based imaging is always going to present
itself as a natural comparison due to its prevalence. In this section, one such
method is introduced as it is used as a method for comparison to the inverse
scattering method in Paper IV.

The method in question is referred to as time reversal in Paper IV, but is also
known as convolution-based reconstruction and migration, among others [98,139].
The main idea of the method is related to the propagation of plane waves on
the form given earlier in (2.24). The measurable signal of a single plane wave
propagating in z can be described as

s(z) = Se−jkzz (4.1)

where the complex amplitude S is typically not known. This means that if the
signal is measured at a z-coordinate z0, the signal at another z-coordinate z1 < z0
can be determined as

s(z1) = Se−jkzz1 = Se−jkzz0ejkz(z0−z1) = s(z0)ejkz(z0−z1). (4.2)

This is not very useful on its own as the signal measured in imaging applications is
not a plane wave, but if it is combined with the concept of plane wave expansions
the imaging method becomes clear. Plane waves can be used as a basis to describe
any type of wave. As such, a signal s can be described as [101]

s(x, y, z) = 1
(2π)2

∫ ∞

−∞

∫ ∞

−∞
S(kx, ky)e−j(kxx+kyy)e−jkzz dkx dky (4.3)
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where S is the signal representation in a plane-wave basis or, as commonly ex-
pressed, in the spectral domain, and the wave number in z depends on the other
wave numbers as kz =

√
k2 − k2

x − k2
y. Equation (4.3) is identified as a two-

dimensional Fourier transform in x and y, and the representation in the spectral
domain for a single pair of kx, ky can be treated as a single plane wave propagat-
ing in z. This means that the same approach for changing to z-coordinate that
was described for a single plane wave can be applied to each spectral-domain
signal component as

S(kx, ky, z1) = S(kx, ky)e−jkzz1 = S(kx, ky, z0)ejkz(z0−z1). (4.4)

A measured signal s(x, y, z0) can thus be time reversed to s(x, y, z1) by a sequence
of Fourier transformation, multiplication of each component by exp(jkz(z0 −
z1)) for its computed kz and inverse Fourier transformation of the result. This
enables imaging if the coordinate z1 is selected at appropriate values. Importantly
though, the model used for the signal contains no sources, and as such it is not
possible to propagate the signal beyond a region containing sources (such as a
transmitting antenna).

In practice, the signal measured at z0 is only sampled at a discrete set of
points (xm, yn, z0), m = 0, 1, . . . , Nx − 1, n = 0, 1, . . . , Ny − 1. If this is done
in a uniform grid, the Fourier transforms can be replaced by standard discrete
Fourier transforms (DFT) efficiently computed by fast Fourier transform (FFT)
algorithms. An imaging algorithm can now be written down as:

1. Obtain measured signal as a matrix with entries smn = s(xm, yn, z0).

2. Compute matrix in spectral domain with entries Smn = S(kx,m, ky,n, z0)
as S = fft2 (s).

3. Generate wave number matrix with entries kz,mn =
√

k2 − k2
x,m − k2

y,n.

4. Compute image in spectral domain as Si = S ◦ ejkz(z0−z1) (◦ denotes
element-wise product, exponential taken element-wise).

5. Compute image as si = ifft2
(
Si)

where fft2 and ifft2 are used to denote the two-dimensional FFT and inverse
FFT, respectively.

The time reversal algorithm as described here generates images in planes
parallel to a measurement plane, but it is easy to extend to images on other
surfaces. By generating images for a set of z-coordinates increasingly far from
z0, volumetric data is obtained. From such data, an image can be generated on
an arbitrary surface within the data volume. This is done in Paper IV where
images are generated on the surface of singly curved composite panels.
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4.2 Inverse Scattering
The second type of imaging methods are based on inverse scattering. The prob-
lem of electromagnetic scattering was introduced in section 2.4 as a problem
where a known object is illuminated by a known incident wave and the scattered
wave should be computed. Inverse scattering is, as might be deduced from the
name, an inverse of that problem. The type of inverse problem relevant here is
that an unknown object is illuminated by a known incident wave and the scat-
tered wave is measured. From the knowledge of the incident and scattered waves,
the properties of the unknown object should be determined. Inverse problems
like this are generally significantly more challenging than the direct scattering
problem as they are ill-posed [56]. An example of why this is can be seen if the
inverse problem would be to determine equivalent currents on a known object us-
ing measurements of the scattered electric field. This can be modeled using (2.79)
and a discretization procedure similar to that used for MoM as described in sec-
tion 3.2. However, the resulting matrix is ill-conditioned, meaning that small
measurement errors lead to large errors in the reconstructed currents, and this is
a typical issue in all inverse problems [56, 151]. It is necessary to use additional
methods to remove this problem, called regularization methods. These enforce
that the solution to the inverse problem fulfill certain properties like smoothness,
often by solving some kind of optimization problem [56].

In Paper IV, an inverse equivalent source formulation is used for mm-wave
imaging. This is a method based on the concept of equivalent currents in sec-
tion 2.6. From a set of electric and magnetic currents, as in the case of equivalent
currents, the electric field can be computed using (2.79). The inverse problem is
thus a computation of the currents using a measured electric field, as in the exam-
ple from the previous paragraph. Earlier work in [60] and [61] performed imaging
on planar composite panels. With regards to the use of equivalent currents, purely
electric currents were used with a theoretical basis that such equivalent currents
on an infinite plane are easily relatable to the tangential fields, as described in
section 2.6. Of course, the infinite plane was truncated to only be large enough to
contain all significant sources, since this surface would correspond to unknowns
in the integral operator. In paper IV though, the planar composite panels were
exchanged for singly curved ones. This change brought with it a number of the-
oretical issues. To use the equivalence theorem on a surface, it needs to be a
closed surface. In the planar case, this is simply an infinite plane, but it is not
as straight-forward in the singly curved case. In addition, the move away from
a planar surface meant that the simple connection between equivalent currents
and tangential fields would not be the same as before.

For the problem with closing the surface, it can be noted that the original
planar imaging did not use a fully closed surface either but instead relied on using
a sufficiently large open reconstruction surface. This is illustrated in Figure 16
where the equivalent currents for a radiating horn antenna are shown on a planar
surface. It is seen that only a subset of the full (infinite) planar surface contains
significant currents, and as such it is sufficient to reconstruct the currents there.
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Figure 16: Horn antenna and |M eq
s | on a planar surface in red. Reconstruction

surface in blue covers a small region containing significant equivalent currents.

Of course, what is meant by “significant” depends on the application and how
accurate the representation needs to be. The hypothesis for the singly curved
surface was that the same approach could be used, even though the exact shape
of the closed surface was unknown.

For the problem with the relation between equivalent currents and fields, a
few solutions were already discussed in section 2.6. Of course, the use of both
electric and magnetic currents with a standard zero field condition would give the
usual relations in (2.74) and (2.75). This would, however, increase the number of
unknowns by a factor 2, which was not desirable. Another solution would be to
fill the interior with PMC/PEC and only have one type of current, but this would
require custom Green’s functions as opposed to the free space Green’s function
used previously. Finally, it is possible to simply use purely electric equivalent
currents, but then the simple connection between equivalent currents and fields
would be lost. However, the idea was that it would not be a critical issue for the
application at hand.

One important consideration behind the choices in adapting the method for
singly curved surfaces was that the intended use was primarily qualitative. In ap-
plications such as near-field-to-far-field transformations for antenna diagnostics,
it is critical that equivalent currents are reconstructed correctly for the far-field
computation to be correct. Our application, on the other hand, was in imaging
directly on the DUT, which meant that the equivalent currents could not be
used in any subsequent computation step. Furthermore, the application for the
imaging was qualitative in that the goal of the NDT application is to determine
whether flaws are present in a DUT or not. Reconstruction errors which might
be critical in applications like antenna diagnostics can be irrelevant in such ap-
plications. However, it was necessary to test whether that actually was the case,
which was one of the main points of Paper IV.
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DUT Measurement

Source

NTx

NDUT

Figure 17: Geometry in transmission-based imaging. Operators NTx and NDUT
connect electric currents to electric fields.

The imaging geometry used in Paper IV is shown in Figure 17 together with
operators which connect electric currents in one plane to electric fields in another.
In the figure, the source and DUT surfaces are surfaces where electric currents
can exist. In implementation, these are discretized as rectangular surface meshes
where currents are represented using rooftop basis functions. The measurement
surface does not contain any currents, but is discretized into a rectangular mesh
matching the density of the DUT mesh. Electric fields due to currents on the
source and DUT surfaces are computed in the node points of this measurement
mesh.

4.2.1 Source Separation
To perform inverse scattering, the scattered wave is required. To obtain this, the
typical procedure is to perform two measurements: one reference measurement
without the DUT and one measurement with the DUT. The reference measure-
ment is then subtracted, giving results for only the wave scattered by the DUT.
However, this can be time-consuming if the measurement system is based on me-
chanical scanning, and it is also sensitive to changes between the measurements.
Particularly in the case for mm-waves, mechanically small changes can still be
significant electromagnetically due to the small wavelength. Another issue with
the traditional method for the NDT application is that the scattered wave is due
to the entire DUT and not just flaws.

To remove the need for two measurements, the incident electric field can be
removed numerically. In Paper IV, this is done using a truncated SVD according
to a method introduced in the earlier work from [60]. The method attempts to
find equivalent currents for the smooth part of the measured electric field using
only a single measurement of the DUT. As it is the smooth part of the electric
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field that is found, it includes any such contributions from the DUT which are
likely to be due to the larger structure of the DUT and not due to flaws.

The source separation algorithm attempts to perform a decomposition of the
measured field Emeas as

Emeas = Einc + Esc (4.5)

where Einc is the incident field from the source and the homogeneous part of the
DUT and Esc is the field scattered by flaws in the DUT, which is assumed to
be orders of magnitude smaller than Einc. A plane is constructed in front of the
source antenna for equivalent currents to be placed. The incident electric field is
related to electric currents JTx in this source plane using a linear operator NTx
based on (2.79) as

Einc = NTxJTx. (4.6)

Insertion of this in (4.5) gives a system

Emeas = NTxJTx + Esc. (4.7)

Since the left-hand side is known and Esc is considered to be small, it is possible
to estimate JTx by considering a solution by truncated SVD regularization [56].
For this, the operator is expressed as the SVD

NTx = UΣVH (4.8)

where U and V are unitary and Σ is diagonal with the reciprocal of singular
values on the diagonal. The regularization is now performed by truncating the
matrix Σ. The elements corresponding to normalized singular values smaller
than a threshold τ are set to zero. This threshold is traditionally set according
to the L-curve criterion [56], but as discussed in [61] there are difficulties with
this approach. Instead, the approach for selecting τ here combines analysis of the
drop-off of the normalized singular values with inspection of the resulting solution
ĴTx. The regularized solution ĴTx is found using a Moore-Penrose pseudoinverse
from the truncated SVD as [56]

ĴTx = VΣ̃−1UHEmeas (4.9)

where Σ̃ is the truncated diagonal matrix. The solution ĴTx can now be used to
compute an estimate Êinc anywhere, which for this method primarily means at
the DUT and the measurement plane. At the measurement plane, it is subtracted
from Emeas to render an estimate for the scattered field, Êsc, which is used in
the next step of the imaging process. An example of the source separation is
shown in Figure 18 for a singly curved dielectric DUT containing four small PEC
squares. This data was synthetically generated using MoM in the solver Feko [4].
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|Emeas|

|Êinc| ↙ ↘ |Êsc|

Figure 18: Images showing amplitudes of the measured field and the separation
into estimated incident and scattered fields.

4.2.2 Sparse Image Reconstruction

The image reconstruction step uses the estimate for the scattered field Êsc to com-
pute electric currents on the DUT surface. Since the inverse scattering problem
is generally ill-posed, some type of regularization is necessary. We use methods
based on a forward operator NDUT from electric currents JDUT on the DUT
surface to scattered electric fields using (2.79) on the form

Esc = NDUTJDUT. (4.10)

Due to uneven illumination of the DUT, though, the scattered electric field from
different regions can vary in amplitude. To construct an image without this
variation, the electric currents are normalized by the incident field on the DUT
EDUT, which is computed from the source separation currents ĴTx. Images are
constructed from these scattering amplitudes s defined as

JDUT = s ◦ EDUT (4.11)

where ◦ indicates a Hadamard (elementwise) product.
To construct images of s using the forward operator in (4.10), some properties

specific to the NDT problem that are used, leading to a hypothesis of sparsity.
Since the production methods where NDT is to be used are generally mature, it
is assumed that any flaws are few and well separated such that high sparsity is
achieved in a local basis. This is also dependent on the DUT being made from
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low-permittivity composite materials with little scattering on its own, and further
aided by the source separation removing this bulk scattering. The method for
image reconstruction should therefore take sparsity into account and use only the
forward operator in (4.10). As in [60,61] a method using basis pursuit denoising
is used in Paper IV. This is an optimization method based on the L1 norm which
is suitable for finding sparse solutions [148]. What it amounts to is solving an
optimization problem to find estimates ŝ of scattering amplitudes as

ŝ = arg min
s

∥s∥1 (4.12)

s.t ∥NDUT(s ◦ ÊDUT) − Êsc∥2 ≤ κσ (4.13)

with κ ≤ 1 being a user-defined parameter and σ is given by

σ = ∥NDUTNH
DUTÊsc − Êsc∥2. (4.14)

Here, NH
DUTÊsc is the solution from a single phase conjugation of the estimated

scattered field Êsc (the measured field subtracted by the estimated incident field).
The bound in (4.13) thus leads to solutions with smaller residuals in L2 than
obtained by phase conjugation, with κ < 1 enabling even tighter bounds.

Implementation-wise, the optimization problem is solved using the SPGL-1
solver in basis pursuit denoise mode [148, 149]. This solver applies the operator
NDUT and its Hermitian conjugate a large number of times before arriving at
a solution. For this reason, acceleration of that particular operator can have
a significant effect on the total performance. In [60, 61] the imaging method
used parallel DUT and measurement planes, and as such acceleration could be
achieved by exploiting translation invariance in the Green’s function as described
in section 3.5.1. However, in Paper IV the DUT geometry is singly curved which
means that this approach is no longer fully available. Instead, such acceleration
is possible along one dimension but not the other to still provide some degree of
acceleration. Another important computational detail is related to the resolution
in the DUT mesh. It is possible to improve this from the original spatial sampling
in the measurement plane by sub-sampling, i.e. dividing the mesh elements into
smaller elements. Since equal discretization is necessary for acceleration though,
the grid in the measurement plane needs to be extended to match the finer
sampling in the DUT mesh. These additional points in the grid are only used for
computational reasons and no additional measurement data is required.

5 Measurement Techniques
While much of this introduction has focused on computations, the papers in
this dissertation include electromagnetic measurements as well. As such, a brief
overview of such measurements is provided with emphasis on the issues partic-
ularly related to the measurements performed for the included papers. As this
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Tx/Rx DUT Tx RxDUT

Figure 19: Monostatic (left) and bistatic (right) measurement setups. In both
cases, a DUT is being measured. Note that the DUT scatters in many directions,
and only the direction of interest is shown here.

dissertation focuses on electromagnetic scattering, this section focuses on scatter-
ing measurements in different forms. This typically means that there is a device
under test (DUT) which is being subjected to an electromagnetic wave from a
transmitting (Tx) antenna, and the waves affected by the DUT are measured
using a receiving (Rx) antenna. The transmitting and receiving antennas can be
in the same location, or even the same physical antenna, in which case the mea-
surement is called monostatic. If they are in different locations, the measurement
is called bistatic. This is illustrated in Figure 19.

Often the quantity of interest is the scattered electric field, but the measured
quantity at the receiving end is the total electric field which is a combination
of the incident and scattered waves as discussed in section 2.4. In a monos-
tatic measurement this might not differ much from the scattered field, but in
a bistatic measurement the incident field at the receiver may be significant, as
seen in Figure 19. A commonly used method to obtain only the scattered field is
to perform two measurements: one measurement with the DUT, and one refer-
ence measurement without the DUT. Since the situation is linear, the scattered
field is obtained by subtracting the two received signals. This doubling of the
number of measurements can be time-consuming though, especially if the mea-
surement involves mechanical scanning of the receiving antenna to obtain the
field in a certain region. To reduce the measurement time, the incident field can
be numerically estimated using only one measurement with the DUT present.
One way of doing this is by using the source separation technique described in
section 4.2.1.

If a signal corresponding to the scattered wave has been measured, for example
by subtracting a reference measurement, this is not sufficient for obtaining a
quantity like the electric field or the RCS. The measured signal is typically a
voltage which is not calibrated to the full measurement system, but is affected
by the cables, the antennas, and in the case of RCS measurements, the free-
space propagation. In measurements of microwave components, calibration can
be done using known components to obtain accurate measurements at the ends
of the cables. This type of calibration can be used in free-space measurements
to remove effects of the cables, but further calibration is necessary to obtain a
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calibration accurate for the electric field or the RCS. For some antennas, like
open-ended waveguide probes, the effect of the antenna can be compensated for
using theoretical expressions which makes them suitable for measurements in the
near field [158, 159]. If measurements are done in the far field, calibration can
be done by measuring a reference object with known properties and comparing
measurements against that. For example, the DUT can be replaced by an object
like a metallic sphere which has a well-known RCS to calibrate for [78].

5.1 Measurement Challenges and Solutions
One common problem in all measurements is the presence of random noise, which
the signal of interest needs to exceed for it to be measurable. To quantify noise,
the signal-to-noise ratio (SNR) which is the ratio between signal and noise power
is used. This can, of course, be increased by using a larger signal power in
the numerator, but there are also actions that can be performed to reduce the
noise in the denominator. Noise can have many different origins, both from
external sources and from within the measurement instruments, and this affects
the steps which can be taken to reduce its influence. Noise sources external to
the measurement instruments include other radiating devices, but also thermal
radiation from surrounding objects with temperatures above 0 K [115]. One way
to reduce external noise in particular is to perform measurements in a shielded
chamber so that noise originating from outside the chamber is not received [78].
Significant noise also originates from within the measurement instruments, and
this noise cannot be eliminated by external actions. Instead, the settings and
setup of the instruments can be selected to reduce noise. Some of these settings
act on noise in general, and not only instrument noise.

Due to the random nature of noise, a general action which reduces noise
is averaging of the received signal over multiple samples [115]. Of course, this
increases the measurement time as multiple samples are needed. Another action
which is more related to the design of the receiver is to change settings for the
so-called intermediate frequency (IF) filter in the receiver. How this is done
in practice depends on the design of the receiver, but the result is a reduced
bandwidth or increased selectivity of the filter with the bandwidth being the most
important parameter. A decreased IF bandwidth increases the measurement
time though, as more time is required to avoid transients of the reactive filter
components [64].

Another problem in measurements is that of unwanted scattering and multi-
path propagation. This is a problem that needs to be considered in all measure-
ments of freely propagating electromagnetic waves. Ideally, a measurement setup
would only include the transmitting and receiving antennas as well as the device
under test (DUT) suspended in free space stretching out to infinity. This way, the
received signal would only be affected by the (hopefully) characterized antennas
and the unknown DUT. Unfortunately, the real world does not look like that, and
the received signal is also affected by all other objects which scatter electromag-
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Tx/Rx DUT Tx RxDUT

Figure 20: Examples of multipath propagation in monostatic (left) and bistatic
(right) measurements.

netic waves. This is illustrated in Figure 20. If a reference measurement without
the DUT is performed, much of this can be subtracted from the measurement.
However, minor changes in the background between measurements can lead to
significant signal components from unwanted scattering still being present after
this subtraction. This is especially the case if the scattering from the DUT is
weak in comparison to some of the possible scatterers.

One way to try to control this problem is by minimizing scattering from
the measurement environment by using radiation-absorbent materials. These
materials are engineered to absorb electromagnetic waves at certain frequencies
of interest, and as such absorbers made from those materials can be used to reduce
scattering by objects in the measurement setup [78]. A common use of absorbers
is in anechoic chambers, where the floor, walls and ceiling are all covered by
absorbers. With perfect absorbers, this environment would act as infinite free
space (similar to the absorbing boundary conditions discussed in section 3.1). An
example of an anechoic chamber is shown in Figure 21 where pyramidal absorbers
can be seen covering most surfaces.

Other methods to reduce unwanted scattering are related to control over
where waves are directed. One way to do this is by selecting transmitting and
receiving antennas with narrow beamwidths such that only scattering by the
DUT is captured [78]. The physical placement of the DUT is also important
since a larger separation from surrounding objects means that fewer potential
scatterers are visible within the beamwidth of the transmitting and receiving
antennas. Objects can also be placed as to deliberately scatter waves, but in
directions where they will not interfere with the measurement. This is the same
idea as the concept in stealth technology where incident waves from a radar are
redirected as to not return to the radar [78].

Finally, there are post-processing methods that can be used to separate the
received signal into scattering by the DUT and scattering by other objects. As
seen in Figure 22, the scattered waves that combine at the receiving antenna have
different path lengths. These correspond to different propagation times which of-
fers a way to remove unwanted signal components. If signals can be discriminated
by the time between transmission and reception, with high enough temporal res-
olution, only the direct Tx-DUT-Rx signal component can be kept. This is called
time gating as the unwanted components are “gated” out due to their too large
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Figure 21: Anechoic chamber of the antenna laboratory at Lund University.
Transmitting/receiving antenna in the center.

Tx RxDUT

Figure 22: Two multipath components with unwanted path (red) having longer
path length than the direct path (blue).
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Figure 23: Example of background subtraction and time gating. The data is
from a monostatic measurement of scattering by a metal sphere of radius 2.5 cm.
The gate function shown in blue the third step is scaled for visualization purposes.
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or too small propagation times. Typically, measurements are performed in the
frequency domain so there is no direct access to the propagation times, but gat-
ing is easily done by Fourier analysis where the signal can be transformed to
the time domain, processed, and transformed back to the frequency domain [78].
The application of the gate in the time domain changes the frequency content of
the signal, causing sidelobes in the spectrum as the signal is transformed back
to the frequency domain. There are many different window functions that can
be selected as the gate to control these sidelobes [115]. An example of time gat-
ing as well as background subtraction of the raw data is shown in Figure 23 for
real measurement data of monostatic scattering by a sphere. It is clear that the
background subtraction is very effective, in particular due to reflections in the
antenna being present in the raw data. However, the data can be improved by
time gating and many unwanted scatterers are seen in the time domain plot. For
time gating to be effective, the temporal resolution needs to be high enough to
discriminate between different multipath components. The temporal resolution
is directly related to an equivalent pulse width of the transmitter, which in turn
is inversely proportional to the bandwidth. Time gating therefore puts a require-
ment on the bandwidth, which can be estimated if the spatial separation between
scatterers in the setup is known.

5.2 Measurements in this Dissertation
Paper II, IV and V of this dissertation contain measurements with different se-
tups, challenges and solutions. In this section, details of how the measurements
were performed and why are provided. All instrument settings and details are
not provided here as they are in the papers themselves. Instead, the decisions
behind the measurement setups and instruments are explained.

5.2.1 Paper II: Monostatic RCS
For Paper II, the monostatic RCS of a water-based electromagnetic device was
measured. This was done using a vector network analyzer (VNA) connected to
a horn antenna, and in an anechoic chamber to reduce the influence of unwanted
scattering. However, the chamber was set up for antenna measurements and con-
tained a large rotation stage for the purpose of angular scanning. This was not
needed for the RCS measurements, but it posed a problem as it was difficult to
remove from the chamber, and was a significant scatterer compared to the DUT.
The DUT was mounted on a structure made from expanded polystyrene, which
typically scatters very little [78]. The measurement setup is shown in Figure 24
for measurement of a metal-coated sphere of radius 20 cm. Background subtrac-
tion using reference measurements without the DUT were necessary to remove
many unwanted reflections, with reflections from the antenna being particularly
important to reduce. Further reductions of unwanted reflections were necessary
though, both due to the antenna and due to the rotation stage. For the rota-
tion stage, absorbers could be placed to cover structures exhibiting particularly
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Figure 24: Measurement setup in anechoic chamber for a reference sphere.
Absorbers as seen covering the rotation stage.

strong scattering like metallic corners. This had a significant effect, but did not
fully eliminate the problem. Additional processing in the form of time gating was
performed, which affected effects both due to the rotation stage and the antenna.
This did require measurements in a larger frequency band, but since there was
no mechanical scanning involved, measurement times were not large enough for
this to pose any big issues.

Another issue which had to be addressed was that of noise. Measuring inside
the anechoic chamber was an important part for this as it is a shielded environ-
ment, but the expected RCS was weak enough that further measures needed to
be taken. One simple action was to increase the output power, which directly
increases SNR. In addition to this, the bandwidth of the IF filter of the VNA was
significantly reduced, and its selectivity increased, together with averaging over
multiple measurements. These actions significantly increased the measurement
time, but as previously discussed, this could be done to a large extent as no
scanning was performed.

Finally, as RCS was the quantity to be measured it was crucial to perform
an accurate calibration. Three different reference objects were used for this: one
metal-coated sphere of radius 20 cm, one metallic sphere of radius 2.5 cm, and
one metallic cylinder of height 8 cm and radius 2 cm. While the spheres had
exact solutions for the RCS available, the RCS for the cylinder needed to be
computed numerically, possibly introducing errors. However, as three different
calibration objects were available, the cylinder measurements could be calibrated
against a sphere to validate the numerical solution. The cylinder was eventually
selected as the reference object, meaning that this intermediate step was used as
indication that the final calibration could be trusted.
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Figure 25: Setup for the mm-wave near-field scanning.

5.2.2 Paper IV: mm-Wave Near-Field Scanning
For Paper IV, near-field measurements were performed in a rectangular grid
for use with the imaging algorithms described in section 4. This was done us-
ing a VNA connected to a Tx horn antenna and a mechanically scanned Rx
open-ended waveguide probe. The measurement setup for a DUT mounted on a
medium-density fiberboard table is shown in Figure 25. The measurements were
performed on a metallic optical table, which meant that a very strong reflection
in the table surface was present in the measured data, together with other un-
wanted scattering from holders and other surrounding objects. While absorbers
could be placed in some locations, time gating was necessary to remove the effect
of this reflection. Additionally, to increase the length of the reflection path and
facilitate the time gating procedure, the Tx antenna, DUT and Rx probes were
raised to a level significantly above the tabletop. To ensure that the time gating
procedure would be effective, a large bandwidth of 10 GHz was used.

The measurements in this case were performed using mechanical scanning,
and with high demands on precision in the positioning of the Rx probe. To ensure
this precision, the mechanical positioning system was run with explicit stops
at each measurement position, as opposed to measuring during the mechanical
movement. The drawback of this is that acceleration and deceleration, as well
as measurement time when the probe is stationary, makes the time for the full
scan quite substantial. In the measurements, this time was roughly 7 h for
81 × 81 measurement points in a 300 mm × 300 mm plane. To boost the SNR
without further increases to the measurement time (which would be a side-effect
of changes to the IF bandwidth or averaging), an external power amplifier was
used at the Tx antenna.
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Tx horn Ultrasonic
source

Rx horn

Figure 26: Setup for measurements of scattering by acoustic waves.

5.2.3 Paper V: Scattering by Acoustic Waves
For paper V, microwave scattering by an ultrasonic wave was measured. As this
involved measuring a frequency shifted signal, the measurement was set up with
a signal generator connected to a Tx antenna, and a separate spectrum analyzer
connected to an Rx antenna. A different signal generator was needed for the
ultrasonic source.

Since measurements were performed in air, the photoelastic interaction due to
the ultrasonic wave was expected to be very weak. The Bragg diffraction mecha-
nism described in section 2.5.1 had two crucial elements to enable measurements
despite this difficulty. The first element was the clear scattering angle given by
Bragg’s law in (2.66), which could be selected by tuning the acoustic and electro-
magnetic wavelengths. As such, the scattering angle could be selected to place
the Rx antenna outside the beam of the Tx antenna. The second, and most im-
portant element, was the frequency shift of scattered microwaves. By measuring
at a frequency significantly separated from the Tx frequency, unwanted scattering
would ideally not affect the measurements. This was clearly seen in the measure-
ments as even the direct transmission between the horn gave a signal roughly
40 dB above the one scattered by ultrasound. Furthermore, this frequency shift
provided a good way to verify that a measured signal was due to the ultrasonic
wave as a shift in the ultrasonic frequency could immediately be seen to shift the
measured microwave signal.

Despite the beneficial properties of the Bragg mechanism, unwanted scatter-
ing could still be problematic. No signal generator can provide a perfect single-
frequency signal, and as the signal to be measured was very weak it was possible
that the signal generator could produce significant enough levels at the frequency
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shift of 40 kHz that was used. This would only be an issue if unwanted scattering
was strong enough, and the main way this was reduced was by guiding the main
beam away from the measurement region. Absorbers were used to enclose the
measurement region, and care was taken to place them for specular reflections to
guide the beam out of this region. This can be seen in Figure 26 where there is
a path for waves to escape seen in the top of the figure.

Finally, due to the very low signal levels to be measured, noise reduction was
crucial. The IF bandwidth of the signal generator was set to its minimum level
of 10 Hz for this reason, and averaging over 10 measurements was also applied.
These actions resulted in a noise floor below −130 dBm, which was sufficient to
reliably measure the very weak scattering in air.

6 Contributions of Included Papers
As this dissertation is a compilation of papers, it is prudent to describe what their
contributions are, and how they fit together in the bigger picture. The papers
included in this dissertation can roughly be separated into two blocks: CEM
software and NDT using mm-waves. However, there is still significant overlap
between the two, especially with regards to integral equations which play an
important role in both blocks.

6.1 Computational Electromagnetics Software
The first block is comprised of papers I–III and is about the development and
use of the FE2MS software for electromagnetic scattering computations.

Paper I introduces the software which implements the FE-BI method com-
bined with a multilevel ACA for improved performance. The paper has a par-
ticular focus on the development which was done with heavy use of open-source
software, and aims to help readers who might want to work with open source
by giving practical advice and insights. The FE-BI method is suitable for in-
homogeneous, complex media and the software was developed to handle general
bianisotropic media. The FE2MS software is itself open source, and is publicly
available at https://www.github.com/nwingren/fe2ms. In the paper, there are
also examples of how the software can be used, including details on accuracy and
performance related to the commercial software Feko. However, all results are
theoretical in the sense that they are either computed by computational software
or the Mie series theoretical solution for scattering by spheres.

Paper II demonstrates that the FE2MS code can be used in realistic designs
with complex geometry, and validates the results of the code against measured
data. The paper presents a 3D-printed device which can be filled with water, and
a siphon in the device causes given states to form as water is added. Depending
on these states, the device reflects different microwave polarizations differently.
While the device was primarily designed to act as a proof of concept for the use

https://www.github.com/nwingren/fe2ms
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of siphons, it is possible to imagine possible applications. By having a specific
water volume trigger a sharp electromagnetic transition, it would be possible to
remotely monitor water levels, or some property related to it. The design was
simulated using the FE2MS software, and measurements were in good agreement
with the simulated results. This demonstrates both that the software gives correct
results for complicated geometries, and that it can be used in practical design
work. While different materials were used in the siphon design, they were all
isotropic, though the software can handle fully bianisotropic media.

Paper III uses the FE2MS software for computations involving a highly com-
plex medium in a way that is unprecedented. The paper computes characteristic
modes for structures involving nonreciprocity, which is something that has not
been done previously. The application of the FE2MS software is for a rapidly
rotating dielectric cylinder, which results in an effective medium which is inhomo-
geneous, bianisotropic and nonreciprocal. Conventional methods for computing
characteristic modes are not easily adapted to this type of problem, but the FE-
BI method is readily applied using a recently developed scattering formulation.
The FE2MS software, in particular, is used due to its capability for bianisotropic
media, which is not commonly found in commercial software.

6.2 Nondestructive Testing using mm-Waves
The second block is comprised of papers IV–V and is about using mm-waves to
perform NDT of composite panels used in aerospace applications.

Paper IV uses methods from CEM to perform imaging of singly curved com-
posite panels using mm-waves. This extends previous work on planar panels
to this singly curved geometry, which finds several applications in aerodynamic
structures. Significant modifications necessary to make the method work for
the new geometry are presented. Additional details on theoretical concerns are
considered in section 4.2 of this introduction. One point to notice is that, for
the qualitative indications of discrete flaws investigated here, it was sufficient to
use only electric currents instead of both electric and magnetic currents. This
reduced the number of unknowns in the numerical problem by a factor of two.
While mm-waves are promising for NDT, ultrasound is a commonly used method
which works very well. For even better performance, one could ask if the two
could be combined.

Paper V demonstrates how microwaves scattered by ultrasound in air can
be clearly measured despite very low signal levels. While interaction between
electromagnetic and acoustic waves is well-known, the literature is sparse when it
comes to wavelengths of interest to NDT. In the paper we measure this interaction
at wavelengths near those useful in NDT, but in air instead of the materials of
interest. The scattering in air could be clearly measured to behave as predicted
by theory, although at low signal levels. However, air is a medium with much
weaker acousto-electromagnetic interaction than other media, and detection in air
suggests that detection would be possible in most media. The main reason why
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the detection could be made despite this difficulty was through the frequency shift
of the scattered electromagnetic wave. This was done at an ultrasonic frequency
of 40 kHz, which is fairly low compared to many industrial systems. An increase
in the frequency shift, as well as the interaction strength itself could therefore be
expected for a system used in NDT.

7 Conclusions
This dissertation has used both computational electromagnetics and measure-
ments to investigate and evaluate electromagnetic scattering in its direct form
and as an inverse problem. This is a large area to cover, and to draw any all-
encompassing conclusions from my work is difficult. Nevertheless, some more
general conclusions can be made where a topic has been covered by multiple
papers with different approaches.

Both the FE2MS FE-BI code and the code used for imaging in Paper IV
required substantial amounts of implementation work on my part. However, the
starting points were quite different for the two. At the start of the development
of the FE2MS code, there was no preexisting codebase to build upon. At that
stage, I was very free in exploring various open-source packages which could be
used to accelerate the development process. For the imaging code, on the other
hand, a working code for planar imaging was already in place before I started
working on extending it to singly curved imaging. In that case, there were very
few opportunities where the integration of an open-source software package could
have provided significant help. These two, somewhat opposed, situations tell us
about the difficulty in integrating external software packages as a code matures.
This can depend on the code architecture though, as it would have been fairly
simple to change the optimization routine in the imaging code, but less so for
the mesh handling. The reason is that the optimization was already an external
open-source package, and the code around it was adapted to this. If more of the
code architecture is designed for such modularity at an early stage, the challenge
of integrating other code components might be smaller.

The benefits of simulation codes with direct access to the source code was also
clear from the work shown in the dissertation. While commercial codes can be
very capable, it is typically not possible to access all lower-level components, let
alone the source code. The use of in-house codes like the FE2MS code allows for
significant modifications in many cases. Before the work leading up to Paper III,
the FE2MS code was only implemented with isotropic media in mind. When
the interest for nonreciprocal media became clear, it was possible to change the
implementation of FE forms for general bianisotropic media, and this could be
done quickly with the help of FEniCSx. The algorithm computing characteristic
modes could also be implemented with direct access to lower-level functions in
the FE2MS code, making computations much faster than if only the high-level
functions had been used. A hope is that the FE2MS code can be used in similar
manners for other applications in the future, both within our research group, but
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also in a wider context since the code is publicly available.
While much of the work performed for this dissertation focused on time-

harmonic waves considered at single frequencies, a curious topic of frequency
shifts became important in both Paper III and Paper V. In Paper III, the rotation
of a cylinder affected its characteristic modes by shifting the resonance frequencies
of certain modes, with the shift increasing with faster rotation. In Paper V,
measurements of microwaves scattered by ultrasound was largely made possible
through a frequency shift by the ultrasonic frequency. Both of these examples
consider moving media in some form, and it is seen that interesting phenomena
arise, which are not present in the stationary case. These phenomena are both
due to fairly simple forms of movement, but illustrate why it is so interesting to
pursue more complex ways of modulating media in time and space.

7.1 Future Work
There are many possible ways to further improve the FE2MS code presented in
Paper I. One extension with much promise, which has been hinted towards in
this introduction, would be the implementation of a fast direct solution method.
A good reason for this is that the FE-BI system is typically ill-conditioned and
needs an expensive preconditioner for iterative solvers to converge. This is com-
putationally expensive, both in time and memory, and this issue is avoided if
direct methods are used. Furthermore, such methods would be highly useful for
problems with many right-hand sides as they only need to be solved once, in
contrast to once per right-hand side for iterative solvers. Fast direct methods
are well established for fully dense systems such as those in MoM, but less work
has been done for the partly sparse, partly dense FE-BI system. Another im-
provement to the code which would increase its applicability would be to adapt
it to distributed computing on clusters. While the code has some elements of
parallel execution, the main drawback of the current approach is that there is
no implementation for distributed memory. To be able to handle truly large
problems, this would be necessary. Looking at the scaling of different parts of
the FE-BI system, the BI part would likely be the part where this is necessary
first, even with compression of the BI blocks. Some of the support in FEniCSx
for distributed memory might be useful since some of its functionality, like mesh
handling, are used in the BI part.

The water-based scatterer shown in Paper II was presented mainly as a proof
of concept for the use of siphons for reconfigurability in water-based devices.
It would be interesting if siphons, like the self-priming siphon used in our de-
sign, could be used in other devices with other applications. While our device
would possibly enable some types of polarization-based remote measurements of
whether a specific amount of water had been collected, there are likely other
applications that could benefit from using siphons. Compared to other ways of
controlling water for use in electromagnetic devices like pumps, siphons are me-
chanically simple, robust, and require no moving parts or external power. This
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could make them interesting in, for example, environments where use of pumps
would be difficult.

For the use of characteristic modes in problems exhibiting nonreciprocity
shown in Paper III, the work presented here is in a very early stage. To our
knowledge, this has not been attempted before, and as such there could be many
ways in which to proceed. In the paper, the examples are mostly presented to
demonstrate that it is in fact possible to compute modes for these problems, but
less so to demonstrate particularly practical problems where characteristic modes
might help. It would be good to identify such problems in future work. Since
there is a large interest in devices with modulation in space and time, possibly
with nonreciprocal behavior, the use of characteristic modes could be of interest.
Especially the identification of modes which exhibit nonreciprocal behavior and
modes which do not, as seen in Paper III, could be of interest when designing
devices which should be explicitly nonreciprocal.

The mm-wave imaging algorithm for NDT presented in Paper IV could be
improved upon in some different ways. One interesting development would be to
use multi-frequency data in the reconstruction. The current algorithm uses only
single-frequency data for that step, although multi-frequency data is collected
in measurements for use in the time gating procedure. A hope would be that
by using data for multiple frequencies, the number of spatial data points could
be reduced. Experiments with multi-frequency data in the current algorithm
have not produced good results, indicating that the problem formulation may
need to change in that case. Another idea, which would follow the planar imag-
ing algorithm, is to extend the algorithm from transmission- to reflection-based
measurements. This was done for planar imaging using a ground plane and the
theory of image currents, but the same method was not immediately applicable
to imaging of singly curved surfaces. A more recent development which could be
interesting to explore is that of large array-based measurement systems. With
the arrival of 5G and more mm-wave systems to the market, such measurement
systems have become more common. The largest bottleneck of the NDT method
in Paper IV is the mechanical near-field scanning which took roughly 7 h for the
measurements in the paper. With a one-dimensional array this time would be
drastically reduced, and with a two-dimensional array it would, for all practical
purposes, be eliminated.

With regards to Paper V and interaction between acoustic and electromag-
netic waves, an interesting path for future work would be to investigate the
interaction in some other medium than air, where the NDT application might be
explored. For sufficiently high resolution in such an application, the wavelengths
of both electromagnetic and acoustic waves may need to be smaller. Due to a
likely higher propagation speed for acoustic waves in the medium, the ultrasonic
frequency would then have to be significantly higher, requiring another type of
transducer. There could also be some challenges for how to insert the waves into
the medium, particularly for the ultrasonic waves. In many applications, they are
guided into denser samples using water or gels at the interface, but the question
is how that affects the microwave scattering.
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Appendix A Derivations

A.1 Weak Form for Media without Magnetoelec-
tric Coupling

This derivation begins with the vector wave equation as written in (3.3). A weak
form can be derived for this by multiplying (3.3) by a test function Wm and an
integrating over Ω, giving∫

Ω
Wm ·

[
∇ ×

(
µr

−1 · ∇ × E
)

− k2
0εr · E

]
dV = −jk0η0

∫
Ω

Wm · J dV. (A.1)

The curl can be transferred to the test function by using the identity

∇ · (A × B) = (∇ × A) · B − (∇ × B) · A (A.2)

giving∫
Ω

[
(∇ × Wm) ·

(
µr

−1 · ∇ × E
)

− k2
0Wm · εr · E

]
dV

−
∫

Ω
∇ ·

[
Wm ×

(
µr

−1 · ∇ × E
)]

dV = −jk0η0

∫
Ω

Wm · J dV. (A.3)

The second integral is now rewritten using the divergence theorem, giving the
weak form as∫

Ω

[
(∇ × Wm) ·

(
µr

−1 · ∇ × E
)

− k2
0Wm · εr · E

]
dV

+
∮

∂Ω
Wm ·

[
n̂ ×

(
µr

−1 · ∇ × E
)]

dS = −jk0η0

∫
Ω

Wm · J dV. (A.4)

If the boundary condition from (2.16) is used on the external boundary, i.e.

n̂ ×
(

µr
−1 · ∇ × E

)
= −jk0n̂ × H̄, r ∈ ∂Ω (A.5)

the surface integral in the weak form can be replaced. This gives a weak form
for the interior FE problem for the FE-BI formulation as∫

Ω

[
(∇ × Wm) ·

(
µr

−1 · ∇ × E
)

− k2
0Wm · εr · E

]
dV

+ jk0

∮
∂Ω

n̂ ·
(
Wm × H̄

)
dS = −jk0

∫
Ω

Wm · J̄ dV. (A.6)
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A.2 Weak Form for Media with Magnetoelectric
Coupling

This derivation begins with Maxwell’s equations on the form in (3.5)–(3.6). These
are combined in a similar way as for the case without magnetoelectric interaction,
giving

∇ ×
(

µr
−1 · ∇ × E

)
= −jωµ0

[
1
η0

∇ ×
(

µr
−1 · ζ · E

)
+ J + jωε0εr · E

− ε0η0ξ ·
(

1
µ0

µr · ∇ × E + jω 1
η0

µr
−1 · ζ · E

)]
. (A.7)

Rearranging and rewriting gives the equation corresponding to the previous vec-
tor wave equation as.

∇ ×
(

µr
−1 · ∇ × E

)
− k2

0

(
εr − ξ · µr

−1 · ζ
)

· E

+ jk0

[
∇ ×

(
µr

−1 · ζ · E
)

− ξ · µr
−1 · ∇ × E

]
= −jk0η0J . (A.8)

Using the same steps as for media without magnetoelectric coupling, the weak
form can also be derived. Multiplication by a test function Wm and integration
over Ω gives∫

Ω
Wm ·

[
∇ ×

(
µr

−1 · ∇ × E
)]

dV + jk0

∫
Ω

Wm ·
[
∇ ×

(
µr

−1 · ζ · E
)]

dV

− jk0

∫
Ω

Wm ·
(

ξ · µr
−1 · ∇ × E

)
dV − k2

0

∫
Ω

Wm ·
(

εr − ξ · µr
−1 · ζ

)
· E dV

= −jk0η0

∫
Ω

Wm · J dV. (A.9)

The first integral is the same as for the problem without magnetoelectric coupling,
and is rewritten in the same way as∫

Ω
Wm ·

[
∇ ×

(
µr

−1 · ∇ × E
)]

dV

=
∫

Ω
(∇ × Wm) ·

(
µr

−1 · ∇ × E
)

dV +
∮

∂Ω
Wm ·

[
n̂ ×

(
µr

−1 · ∇ × E
)]

dS.

(A.10)
The second integral is treated similarly as∫

Ω
Wm ·

[
∇ ×

(
µr

−1 · ζ · E
)]

dV

=
∫

Ω
(∇ × Wm) · µr

−1 · ζ · E dV −
∫

Ω
∇ ·

[
Wm ×

(
µr

−1 · ζ · E
)]

dV

=
∫

Ω
(∇ × Wm) · µr

−1 · ζ · E dV −
∮

∂Ω
n̂ ·

[
Wm ×

(
µr

−1 · ζ · E
)]

dS (A.11)
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where (A.2) and the divergence theorem were used. A weak form can be written
as ∫

Ω
(∇ × Wm) ·

(
µr

−1 · ∇ × E
)

dV − k2
0

∫
Ω

Wm ·
(

εr − ξ · µr
−1 · ζ

)
· E dV

+ jk0

∫
Ω

(∇ × Wm) · µr
−1 · ζ · E dV − jk0

∫
Ω

Wm ·
(

ξ · µr
−1 · ∇ × E

)
dV

+
∮

∂Ω
Wm ·

[
n̂ ×

(
µr

−1 · ∇ × E
)]

dS − jk0

∮
∂Ω

n̂ ·
[
Wm ×

(
µr

−1 · ζ · E
)]

dS

= −jk0η0

∫
Ω

Wm · J dV. (A.12)

As for the simpler case in A.1, the boundary condition from (2.16) is used on the
external boundary to give a new weak form. In this case, the boundary condition
appears explicitly only in one surface integral, but some more effort is required
to include it in the second one. This second surface integral can be written as

−jk0

∮
∂Ω

Wm ·
[
n̂ ×

(
µr

−1 · ζ · E
)]

dS. (A.13)

This can be rewritten using (3.5) written as

−jk0µr
−1 · ζ · E = µr

−1 · ∇ × E + jk0H̄ (A.14)

giving the surface integral as∮
∂Ω

Wm ·
[
n̂ ×

(
µr

−1 · ∇ × E
)

+ jk0n̂ × H̄
]

dS. (A.15)

This can be identified in the boundary condition, showing that the second surface
integral is identically zero. Now the final weak form can be written as∫

Ω
(∇ × Wm) ·

(
µr

−1 · ∇ × E
)

dV − k2
0

∫
Ω

Wm ·
(

εr − ξ · µr
−1 · ζ

)
· E dV

+ jk0

∫
Ω

(∇ × Wm) · µr
−1 · ζ · E dV − jk0

∫
Ω

Wm ·
(

ξ · µr
−1 · ∇ × E

)
dV

+ jk0

∮
∂Ω

n̂ ·
(
Wm × H̄

)
dS = −jk0

∫
Ω

Wm · J̄ dV. (A.16)
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